aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/Documentation/trace/rv
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/trace/rv')
-rw-r--r--Documentation/trace/rv/da_monitor_instrumentation.rst171
-rw-r--r--Documentation/trace/rv/deterministic_automata.rst184
-rw-r--r--Documentation/trace/rv/index.rst17
-rw-r--r--Documentation/trace/rv/linear_temporal_logic.rst134
-rw-r--r--Documentation/trace/rv/monitor_rtapp.rst133
-rw-r--r--Documentation/trace/rv/monitor_sched.rst402
-rw-r--r--Documentation/trace/rv/monitor_synthesis.rst271
-rw-r--r--Documentation/trace/rv/monitor_wip.rst55
-rw-r--r--Documentation/trace/rv/monitor_wwnr.rst45
-rw-r--r--Documentation/trace/rv/runtime-verification.rst231
10 files changed, 1643 insertions, 0 deletions
diff --git a/Documentation/trace/rv/da_monitor_instrumentation.rst b/Documentation/trace/rv/da_monitor_instrumentation.rst
new file mode 100644
index 000000000000..6c67c7b57811
--- /dev/null
+++ b/Documentation/trace/rv/da_monitor_instrumentation.rst
@@ -0,0 +1,171 @@
+Deterministic Automata Instrumentation
+======================================
+
+The RV monitor file created by dot2k, with the name "$MODEL_NAME.c"
+includes a section dedicated to instrumentation.
+
+In the example of the wip.dot monitor created on [1], it will look like::
+
+ /*
+ * This is the instrumentation part of the monitor.
+ *
+ * This is the section where manual work is required. Here the kernel events
+ * are translated into model's event.
+ *
+ */
+ static void handle_preempt_disable(void *data, /* XXX: fill header */)
+ {
+ da_handle_event_wip(preempt_disable_wip);
+ }
+
+ static void handle_preempt_enable(void *data, /* XXX: fill header */)
+ {
+ da_handle_event_wip(preempt_enable_wip);
+ }
+
+ static void handle_sched_waking(void *data, /* XXX: fill header */)
+ {
+ da_handle_event_wip(sched_waking_wip);
+ }
+
+ static int enable_wip(void)
+ {
+ int retval;
+
+ retval = da_monitor_init_wip();
+ if (retval)
+ return retval;
+
+ rv_attach_trace_probe("wip", /* XXX: tracepoint */, handle_preempt_disable);
+ rv_attach_trace_probe("wip", /* XXX: tracepoint */, handle_preempt_enable);
+ rv_attach_trace_probe("wip", /* XXX: tracepoint */, handle_sched_waking);
+
+ return 0;
+ }
+
+The comment at the top of the section explains the general idea: the
+instrumentation section translates *kernel events* into the *model's
+event*.
+
+Tracing callback functions
+--------------------------
+
+The first three functions are the starting point of the callback *handler
+functions* for each of the three events from the wip model. The developer
+does not necessarily need to use them: they are just starting points.
+
+Using the example of::
+
+ void handle_preempt_disable(void *data, /* XXX: fill header */)
+ {
+ da_handle_event_wip(preempt_disable_wip);
+ }
+
+The preempt_disable event from the model connects directly to the
+preemptirq:preempt_disable. The preemptirq:preempt_disable event
+has the following signature, from include/trace/events/preemptirq.h::
+
+ TP_PROTO(unsigned long ip, unsigned long parent_ip)
+
+Hence, the handle_preempt_disable() function will look like::
+
+ void handle_preempt_disable(void *data, unsigned long ip, unsigned long parent_ip)
+
+In this case, the kernel event translates one to one with the automata
+event, and indeed, no other change is required for this function.
+
+The next handler function, handle_preempt_enable() has the same argument
+list from the handle_preempt_disable(). The difference is that the
+preempt_enable event will be used to synchronize the system to the model.
+
+Initially, the *model* is placed in the initial state. However, the *system*
+might or might not be in the initial state. The monitor cannot start
+processing events until it knows that the system has reached the initial state.
+Otherwise, the monitor and the system could be out-of-sync.
+
+Looking at the automata definition, it is possible to see that the system
+and the model are expected to return to the initial state after the
+preempt_enable execution. Hence, it can be used to synchronize the
+system and the model at the initialization of the monitoring section.
+
+The start is informed via a special handle function, the
+"da_handle_start_event_$(MONITOR_NAME)(event)", in this case::
+
+ da_handle_start_event_wip(preempt_enable_wip);
+
+So, the callback function will look like::
+
+ void handle_preempt_enable(void *data, unsigned long ip, unsigned long parent_ip)
+ {
+ da_handle_start_event_wip(preempt_enable_wip);
+ }
+
+Finally, the "handle_sched_waking()" will look like::
+
+ void handle_sched_waking(void *data, struct task_struct *task)
+ {
+ da_handle_event_wip(sched_waking_wip);
+ }
+
+And the explanation is left for the reader as an exercise.
+
+enable and disable functions
+----------------------------
+
+dot2k automatically creates two special functions::
+
+ enable_$(MONITOR_NAME)()
+ disable_$(MONITOR_NAME)()
+
+These functions are called when the monitor is enabled and disabled,
+respectively.
+
+They should be used to *attach* and *detach* the instrumentation to the running
+system. The developer must add to the relative function all that is needed to
+*attach* and *detach* its monitor to the system.
+
+For the wip case, these functions were named::
+
+ enable_wip()
+ disable_wip()
+
+But no change was required because: by default, these functions *attach* and
+*detach* the tracepoints_to_attach, which was enough for this case.
+
+Instrumentation helpers
+-----------------------
+
+To complete the instrumentation, the *handler functions* need to be attached to a
+kernel event, at the monitoring enable phase.
+
+The RV interface also facilitates this step. For example, the macro "rv_attach_trace_probe()"
+is used to connect the wip model events to the relative kernel event. dot2k automatically
+adds "rv_attach_trace_probe()" function call for each model event in the enable phase, as
+a suggestion.
+
+For example, from the wip sample model::
+
+ static int enable_wip(void)
+ {
+ int retval;
+
+ retval = da_monitor_init_wip();
+ if (retval)
+ return retval;
+
+ rv_attach_trace_probe("wip", /* XXX: tracepoint */, handle_preempt_enable);
+ rv_attach_trace_probe("wip", /* XXX: tracepoint */, handle_sched_waking);
+ rv_attach_trace_probe("wip", /* XXX: tracepoint */, handle_preempt_disable);
+
+ return 0;
+ }
+
+The probes then need to be detached at the disable phase.
+
+[1] The wip model is presented in::
+
+ Documentation/trace/rv/deterministic_automata.rst
+
+The wip monitor is presented in::
+
+ Documentation/trace/rv/da_monitor_synthesis.rst
diff --git a/Documentation/trace/rv/deterministic_automata.rst b/Documentation/trace/rv/deterministic_automata.rst
new file mode 100644
index 000000000000..d0638f95a455
--- /dev/null
+++ b/Documentation/trace/rv/deterministic_automata.rst
@@ -0,0 +1,184 @@
+Deterministic Automata
+======================
+
+Formally, a deterministic automaton, denoted by G, is defined as a quintuple:
+
+ *G* = { *X*, *E*, *f*, x\ :subscript:`0`, X\ :subscript:`m` }
+
+where:
+
+- *X* is the set of states;
+- *E* is the finite set of events;
+- x\ :subscript:`0` is the initial state;
+- X\ :subscript:`m` (subset of *X*) is the set of marked (or final) states.
+- *f* : *X* x *E* -> *X* $ is the transition function. It defines the state
+ transition in the occurrence of an event from *E* in the state *X*. In the
+ special case of deterministic automata, the occurrence of the event in *E*
+ in a state in *X* has a deterministic next state from *X*.
+
+For example, a given automaton named 'wip' (wakeup in preemptive) can
+be defined as:
+
+- *X* = { ``preemptive``, ``non_preemptive``}
+- *E* = { ``preempt_enable``, ``preempt_disable``, ``sched_waking``}
+- x\ :subscript:`0` = ``preemptive``
+- X\ :subscript:`m` = {``preemptive``}
+- *f* =
+ - *f*\ (``preemptive``, ``preempt_disable``) = ``non_preemptive``
+ - *f*\ (``non_preemptive``, ``sched_waking``) = ``non_preemptive``
+ - *f*\ (``non_preemptive``, ``preempt_enable``) = ``preemptive``
+
+One of the benefits of this formal definition is that it can be presented
+in multiple formats. For example, using a *graphical representation*, using
+vertices (nodes) and edges, which is very intuitive for *operating system*
+practitioners, without any loss.
+
+The previous 'wip' automaton can also be represented as::
+
+ preempt_enable
+ +---------------------------------+
+ v |
+ #============# preempt_disable +------------------+
+ --> H preemptive H -----------------> | non_preemptive |
+ #============# +------------------+
+ ^ |
+ | sched_waking |
+ +--------------+
+
+Deterministic Automaton in C
+----------------------------
+
+In the paper "Efficient formal verification for the Linux kernel",
+the authors present a simple way to represent an automaton in C that can
+be used as regular code in the Linux kernel.
+
+For example, the 'wip' automata can be presented as (augmented with comments)::
+
+ /* enum representation of X (set of states) to be used as index */
+ enum states {
+ preemptive = 0,
+ non_preemptive,
+ state_max
+ };
+
+ #define INVALID_STATE state_max
+
+ /* enum representation of E (set of events) to be used as index */
+ enum events {
+ preempt_disable = 0,
+ preempt_enable,
+ sched_waking,
+ event_max
+ };
+
+ struct automaton {
+ char *state_names[state_max]; // X: the set of states
+ char *event_names[event_max]; // E: the finite set of events
+ unsigned char function[state_max][event_max]; // f: transition function
+ unsigned char initial_state; // x_0: the initial state
+ bool final_states[state_max]; // X_m: the set of marked states
+ };
+
+ struct automaton aut = {
+ .state_names = {
+ "preemptive",
+ "non_preemptive"
+ },
+ .event_names = {
+ "preempt_disable",
+ "preempt_enable",
+ "sched_waking"
+ },
+ .function = {
+ { non_preemptive, INVALID_STATE, INVALID_STATE },
+ { INVALID_STATE, preemptive, non_preemptive },
+ },
+ .initial_state = preemptive,
+ .final_states = { 1, 0 },
+ };
+
+The *transition function* is represented as a matrix of states (lines) and
+events (columns), and so the function *f* : *X* x *E* -> *X* can be solved
+in O(1). For example::
+
+ next_state = automaton_wip.function[curr_state][event];
+
+Graphviz .dot format
+--------------------
+
+The Graphviz open-source tool can produce the graphical representation
+of an automaton using the (textual) DOT language as the source code.
+The DOT format is widely used and can be converted to many other formats.
+
+For example, this is the 'wip' model in DOT::
+
+ digraph state_automaton {
+ {node [shape = circle] "non_preemptive"};
+ {node [shape = plaintext, style=invis, label=""] "__init_preemptive"};
+ {node [shape = doublecircle] "preemptive"};
+ {node [shape = circle] "preemptive"};
+ "__init_preemptive" -> "preemptive";
+ "non_preemptive" [label = "non_preemptive"];
+ "non_preemptive" -> "non_preemptive" [ label = "sched_waking" ];
+ "non_preemptive" -> "preemptive" [ label = "preempt_enable" ];
+ "preemptive" [label = "preemptive"];
+ "preemptive" -> "non_preemptive" [ label = "preempt_disable" ];
+ { rank = min ;
+ "__init_preemptive";
+ "preemptive";
+ }
+ }
+
+This DOT format can be transformed into a bitmap or vectorial image
+using the dot utility, or into an ASCII art using graph-easy. For
+instance::
+
+ $ dot -Tsvg -o wip.svg wip.dot
+ $ graph-easy wip.dot > wip.txt
+
+dot2c
+-----
+
+dot2c is a utility that can parse a .dot file containing an automaton as
+in the example above and automatically convert it to the C representation
+presented in [3].
+
+For example, having the previous 'wip' model into a file named 'wip.dot',
+the following command will transform the .dot file into the C
+representation (previously shown) in the 'wip.h' file::
+
+ $ dot2c wip.dot > wip.h
+
+The 'wip.h' content is the code sample in section 'Deterministic Automaton
+in C'.
+
+Remarks
+-------
+
+The automata formalism allows modeling discrete event systems (DES) in
+multiple formats, suitable for different applications/users.
+
+For example, the formal description using set theory is better suitable
+for automata operations, while the graphical format for human interpretation;
+and computer languages for machine execution.
+
+References
+----------
+
+Many textbooks cover automata formalism. For a brief introduction see::
+
+ O'Regan, Gerard. Concise guide to software engineering. Springer,
+ Cham, 2017.
+
+For a detailed description, including operations, and application on Discrete
+Event Systems (DES), see::
+
+ Cassandras, Christos G., and Stephane Lafortune, eds. Introduction to discrete
+ event systems. Boston, MA: Springer US, 2008.
+
+For the C representation in kernel, see::
+
+ De Oliveira, Daniel Bristot; Cucinotta, Tommaso; De Oliveira, Romulo
+ Silva. Efficient formal verification for the Linux kernel. In:
+ International Conference on Software Engineering and Formal Methods.
+ Springer, Cham, 2019. p. 315-332.
diff --git a/Documentation/trace/rv/index.rst b/Documentation/trace/rv/index.rst
new file mode 100644
index 000000000000..a2812ac5cfeb
--- /dev/null
+++ b/Documentation/trace/rv/index.rst
@@ -0,0 +1,17 @@
+====================
+Runtime Verification
+====================
+
+.. toctree::
+ :maxdepth: 2
+ :glob:
+
+ runtime-verification.rst
+ deterministic_automata.rst
+ linear_temporal_logic.rst
+ monitor_synthesis.rst
+ da_monitor_instrumentation.rst
+ monitor_wip.rst
+ monitor_wwnr.rst
+ monitor_sched.rst
+ monitor_rtapp.rst
diff --git a/Documentation/trace/rv/linear_temporal_logic.rst b/Documentation/trace/rv/linear_temporal_logic.rst
new file mode 100644
index 000000000000..9eee09d9cacf
--- /dev/null
+++ b/Documentation/trace/rv/linear_temporal_logic.rst
@@ -0,0 +1,134 @@
+Linear temporal logic
+=====================
+
+Introduction
+------------
+
+Runtime verification monitor is a verification technique which checks that the
+kernel follows a specification. It does so by using tracepoints to monitor the
+kernel's execution trace, and verifying that the execution trace sastifies the
+specification.
+
+Initially, the specification can only be written in the form of deterministic
+automaton (DA). However, while attempting to implement DA monitors for some
+complex specifications, deterministic automaton is found to be inappropriate as
+the specification language. The automaton is complicated, hard to understand,
+and error-prone.
+
+Thus, RV monitors based on linear temporal logic (LTL) are introduced. This type
+of monitor uses LTL as specification instead of DA. For some cases, writing the
+specification as LTL is more concise and intuitive.
+
+Many materials explain LTL in details. One book is::
+
+ Christel Baier and Joost-Pieter Katoen: Principles of Model Checking, The MIT
+ Press, 2008.
+
+Grammar
+-------
+
+Unlike some existing syntax, kernel's implementation of LTL is more verbose.
+This is motivated by considering that the people who read the LTL specifications
+may not be well-versed in LTL.
+
+Grammar:
+ ltl ::= opd | ( ltl ) | ltl binop ltl | unop ltl
+
+Operands (opd):
+ true, false, user-defined names consisting of upper-case characters, digits,
+ and underscore.
+
+Unary Operators (unop):
+ always
+ eventually
+ next
+ not
+
+Binary Operators (binop):
+ until
+ and
+ or
+ imply
+ equivalent
+
+This grammar is ambiguous: operator precedence is not defined. Parentheses must
+be used.
+
+Example linear temporal logic
+-----------------------------
+.. code-block::
+
+ RAIN imply (GO_OUTSIDE imply HAVE_UMBRELLA)
+
+means: if it is raining, going outside means having an umbrella.
+
+.. code-block::
+
+ RAIN imply (WET until not RAIN)
+
+means: if it is raining, it is going to be wet until the rain stops.
+
+.. code-block::
+
+ RAIN imply eventually not RAIN
+
+means: if it is raining, rain will eventually stop.
+
+The above examples are referring to the current time instance only. For kernel
+verification, the `always` operator is usually desirable, to specify that
+something is always true at the present and for all future. For example::
+
+ always (RAIN imply eventually not RAIN)
+
+means: *all* rain eventually stops.
+
+In the above examples, `RAIN`, `GO_OUTSIDE`, `HAVE_UMBRELLA` and `WET` are the
+"atomic propositions".
+
+Monitor synthesis
+-----------------
+
+To synthesize an LTL into a kernel monitor, the `rvgen` tool can be used:
+`tools/verification/rvgen`. The specification needs to be provided as a file,
+and it must have a "RULE = LTL" assignment. For example::
+
+ RULE = always (ACQUIRE imply ((not KILLED and not CRASHED) until RELEASE))
+
+which says: if `ACQUIRE`, then `RELEASE` must happen before `KILLED` or
+`CRASHED`.
+
+The LTL can be broken down using sub-expressions. The above is equivalent to:
+
+ .. code-block::
+
+ RULE = always (ACQUIRE imply (ALIVE until RELEASE))
+ ALIVE = not KILLED and not CRASHED
+
+From this specification, `rvgen` generates the C implementation of a Buchi
+automaton - a non-deterministic state machine which checks the satisfiability of
+the LTL. See Documentation/trace/rv/monitor_synthesis.rst for details on using
+`rvgen`.
+
+References
+----------
+
+One book covering model checking and linear temporal logic is::
+
+ Christel Baier and Joost-Pieter Katoen: Principles of Model Checking, The MIT
+ Press, 2008.
+
+For an example of using linear temporal logic in software testing, see::
+
+ Ruijie Meng, Zhen Dong, Jialin Li, Ivan Beschastnikh, and Abhik Roychoudhury.
+ 2022. Linear-time temporal logic guided greybox fuzzing. In Proceedings of the
+ 44th International Conference on Software Engineering (ICSE '22). Association
+ for Computing Machinery, New York, NY, USA, 1343–1355.
+ https://doi.org/10.1145/3510003.3510082
+
+The kernel's LTL monitor implementation is based on::
+
+ Gerth, R., Peled, D., Vardi, M.Y., Wolper, P. (1996). Simple On-the-fly
+ Automatic Verification of Linear Temporal Logic. In: Dembiński, P., Średniawa,
+ M. (eds) Protocol Specification, Testing and Verification XV. PSTV 1995. IFIP
+ Advances in Information and Communication Technology. Springer, Boston, MA.
+ https://doi.org/10.1007/978-0-387-34892-6_1
diff --git a/Documentation/trace/rv/monitor_rtapp.rst b/Documentation/trace/rv/monitor_rtapp.rst
new file mode 100644
index 000000000000..c8104eda924a
--- /dev/null
+++ b/Documentation/trace/rv/monitor_rtapp.rst
@@ -0,0 +1,133 @@
+Real-time application monitors
+==============================
+
+- Name: rtapp
+- Type: container for multiple monitors
+- Author: Nam Cao <namcao@linutronix.de>
+
+Description
+-----------
+
+Real-time applications may have design flaws such that they experience
+unexpected latency and fail to meet their time requirements. Often, these flaws
+follow a few patterns:
+
+ - Page faults: A real-time thread may access memory that does not have a
+ mapped physical backing or must first be copied (such as for copy-on-write).
+ Thus a page fault is raised and the kernel must first perform the expensive
+ action. This causes significant delays to the real-time thread
+ - Priority inversion: A real-time thread blocks waiting for a lower-priority
+ thread. This causes the real-time thread to effectively take on the
+ scheduling priority of the lower-priority thread. For example, the real-time
+ thread needs to access a shared resource that is protected by a
+ non-pi-mutex, but the mutex is currently owned by a non-real-time thread.
+
+The `rtapp` monitor detects these patterns. It aids developers to identify
+reasons for unexpected latency with real-time applications. It is a container of
+multiple sub-monitors described in the following sections.
+
+Monitor pagefault
++++++++++++++++++
+
+The `pagefault` monitor reports real-time tasks raising page faults. Its
+specification is::
+
+ RULE = always (RT imply not PAGEFAULT)
+
+To fix warnings reported by this monitor, `mlockall()` or `mlock()` can be used
+to ensure physical backing for memory.
+
+This monitor may have false negatives because the pages used by the real-time
+threads may just happen to be directly available during testing. To minimize
+this, the system can be put under memory pressure (e.g. invoking the OOM killer
+using a program that does `ptr = malloc(SIZE_OF_RAM); memset(ptr, 0,
+SIZE_OF_RAM);`) so that the kernel executes aggressive strategies to recycle as
+much physical memory as possible.
+
+Monitor sleep
++++++++++++++
+
+The `sleep` monitor reports real-time threads sleeping in a manner that may
+cause undesirable latency. Real-time applications should only put a real-time
+thread to sleep for one of the following reasons:
+
+ - Cyclic work: real-time thread sleeps waiting for the next cycle. For this
+ case, only the `clock_nanosleep` syscall should be used with `TIMER_ABSTIME`
+ (to avoid time drift) and `CLOCK_MONOTONIC` (to avoid the clock being
+ changed). No other method is safe for real-time. For example, threads
+ waiting for timerfd can be woken by softirq which provides no real-time
+ guarantee.
+ - Real-time thread waiting for something to happen (e.g. another thread
+ releasing shared resources, or a completion signal from another thread). In
+ this case, only futexes (FUTEX_LOCK_PI, FUTEX_LOCK_PI2 or one of
+ FUTEX_WAIT_*) should be used. Applications usually do not use futexes
+ directly, but use PI mutexes and PI condition variables which are built on
+ top of futexes. Be aware that the C library might not implement conditional
+ variables as safe for real-time. As an alternative, the librtpi library
+ exists to provide a conditional variable implementation that is correct for
+ real-time applications in Linux.
+
+Beside the reason for sleeping, the eventual waker should also be
+real-time-safe. Namely, one of:
+
+ - An equal-or-higher-priority thread
+ - Hard interrupt handler
+ - Non-maskable interrupt handler
+
+This monitor's warning usually means one of the following:
+
+ - Real-time thread is blocked by a non-real-time thread (e.g. due to
+ contention on a mutex without priority inheritance). This is priority
+ inversion.
+ - Time-critical work waits for something which is not safe for real-time (e.g.
+ timerfd).
+ - The work executed by the real-time thread does not need to run at real-time
+ priority at all. This is not a problem for the real-time thread itself, but
+ it is potentially taking the CPU away from other important real-time work.
+
+Application developers may purposely choose to have their real-time application
+sleep in a way that is not safe for real-time. It is debatable whether that is a
+problem. Application developers must analyze the warnings to make a proper
+assessment.
+
+The monitor's specification is::
+
+ RULE = always ((RT and SLEEP) imply (RT_FRIENDLY_SLEEP or ALLOWLIST))
+
+ RT_FRIENDLY_SLEEP = (RT_VALID_SLEEP_REASON or KERNEL_THREAD)
+ and ((not WAKE) until RT_FRIENDLY_WAKE)
+
+ RT_VALID_SLEEP_REASON = FUTEX_WAIT
+ or RT_FRIENDLY_NANOSLEEP
+
+ RT_FRIENDLY_NANOSLEEP = CLOCK_NANOSLEEP
+ and NANOSLEEP_TIMER_ABSTIME
+ and NANOSLEEP_CLOCK_MONOTONIC
+
+ RT_FRIENDLY_WAKE = WOKEN_BY_EQUAL_OR_HIGHER_PRIO
+ or WOKEN_BY_HARDIRQ
+ or WOKEN_BY_NMI
+ or KTHREAD_SHOULD_STOP
+
+ ALLOWLIST = BLOCK_ON_RT_MUTEX
+ or FUTEX_LOCK_PI
+ or TASK_IS_RCU
+ or TASK_IS_MIGRATION
+
+Beside the scenarios described above, this specification also handle some
+special cases:
+
+ - `KERNEL_THREAD`: kernel tasks do not have any pattern that can be recognized
+ as valid real-time sleeping reasons. Therefore sleeping reason is not
+ checked for kernel tasks.
+ - `KTHREAD_SHOULD_STOP`: a non-real-time thread may stop a real-time kernel
+ thread by waking it and waiting for it to exit (`kthread_stop()`). This
+ wakeup is safe for real-time.
+ - `ALLOWLIST`: to handle known false positives with the kernel.
+ - `BLOCK_ON_RT_MUTEX` is included in the allowlist due to its implementation.
+ In the release path of rt_mutex, a boosted task is de-boosted before waking
+ the rt_mutex's waiter. Consequently, the monitor may see a real-time-unsafe
+ wakeup (e.g. non-real-time task waking real-time task). This is actually
+ real-time-safe because preemption is disabled for the duration.
+ - `FUTEX_LOCK_PI` is included in the allowlist for the same reason as
+ `BLOCK_ON_RT_MUTEX`.
diff --git a/Documentation/trace/rv/monitor_sched.rst b/Documentation/trace/rv/monitor_sched.rst
new file mode 100644
index 000000000000..3f8381ad9ec7
--- /dev/null
+++ b/Documentation/trace/rv/monitor_sched.rst
@@ -0,0 +1,402 @@
+Scheduler monitors
+==================
+
+- Name: sched
+- Type: container for multiple monitors
+- Author: Gabriele Monaco <gmonaco@redhat.com>, Daniel Bristot de Oliveira <bristot@kernel.org>
+
+Description
+-----------
+
+Monitors describing complex systems, such as the scheduler, can easily grow to
+the point where they are just hard to understand because of the many possible
+state transitions.
+Often it is possible to break such descriptions into smaller monitors,
+sharing some or all events. Enabling those smaller monitors concurrently is,
+in fact, testing the system as if we had one single larger monitor.
+Splitting models into multiple specification is not only easier to
+understand, but gives some more clues when we see errors.
+
+The sched monitor is a set of specifications to describe the scheduler behaviour.
+It includes several per-cpu and per-task monitors that work independently to verify
+different specifications the scheduler should follow.
+
+To make this system as straightforward as possible, sched specifications are *nested*
+monitors, whereas sched itself is a *container*.
+From the interface perspective, sched includes other monitors as sub-directories,
+enabling/disabling or setting reactors to sched, propagates the change to all monitors,
+however single monitors can be used independently as well.
+
+It is important that future modules are built after their container (sched, in
+this case), otherwise the linker would not respect the order and the nesting
+wouldn't work as expected.
+To do so, simply add them after sched in the Makefile.
+
+Specifications
+--------------
+
+The specifications included in sched are currently a work in progress, adapting the ones
+defined in by Daniel Bristot in [1].
+
+Currently we included the following:
+
+Monitor sco
+~~~~~~~~~~~
+
+The scheduling context operations (sco) monitor ensures changes in a task state
+happen only in thread context::
+
+
+ |
+ |
+ v
+ sched_set_state +------------------+
+ +------------------ | |
+ | | thread_context |
+ +-----------------> | | <+
+ +------------------+ |
+ | |
+ | schedule_entry | schedule_exit
+ v |
+ |
+ scheduling_context -+
+
+Monitor snroc
+~~~~~~~~~~~~~
+
+The set non runnable on its own context (snroc) monitor ensures changes in a
+task state happens only in the respective task's context. This is a per-task
+monitor::
+
+ |
+ |
+ v
+ +------------------+
+ | other_context | <+
+ +------------------+ |
+ | |
+ | sched_switch_in | sched_switch_out
+ v |
+ sched_set_state |
+ +------------------ |
+ | own_context |
+ +-----------------> -+
+
+Monitor scpd
+~~~~~~~~~~~~
+
+The schedule called with preemption disabled (scpd) monitor ensures schedule is
+called with preemption disabled::
+
+ |
+ |
+ v
+ +------------------+
+ | cant_sched | <+
+ +------------------+ |
+ | |
+ | preempt_disable | preempt_enable
+ v |
+ schedule_entry |
+ schedule_exit |
+ +----------------- can_sched |
+ | |
+ +----------------> -+
+
+Monitor snep
+~~~~~~~~~~~~
+
+The schedule does not enable preempt (snep) monitor ensures a schedule call
+does not enable preemption::
+
+ |
+ |
+ v
+ preempt_disable +------------------------+
+ preempt_enable | |
+ +------------------ | non_scheduling_context |
+ | | |
+ +-----------------> | | <+
+ +------------------------+ |
+ | |
+ | schedule_entry | schedule_exit
+ v |
+ |
+ scheduling_contex -+
+
+Monitor sts
+~~~~~~~~~~~
+
+The schedule implies task switch (sts) monitor ensures a task switch happens
+only in scheduling context and up to once, as well as scheduling occurs with
+interrupts enabled but no task switch can happen before interrupts are
+disabled. When the next task picked for execution is the same as the previously
+running one, no real task switch occurs but interrupts are disabled nonetheless::
+
+ irq_entry |
+ +----+ |
+ v | v
+ +------------+ irq_enable #===================# irq_disable
+ | | ------------> H H irq_entry
+ | cant_sched | <------------ H H irq_enable
+ | | irq_disable H can_sched H --------------+
+ +------------+ H H |
+ H H |
+ +---------------> H H <-------------+
+ | #===================#
+ | |
+ schedule_exit | schedule_entry
+ | v
+ | +-------------------+ irq_enable
+ | | scheduling | <---------------+
+ | +-------------------+ |
+ | | |
+ | | irq_disable +--------+ irq_entry
+ | v | | --------+
+ | +-------------------+ irq_entry | in_irq | |
+ | | | -----------> | | <-------+
+ | | disable_to_switch | +--------+
+ | | | --+
+ | +-------------------+ |
+ | | |
+ | | sched_switch |
+ | v |
+ | +-------------------+ |
+ | | switching | | irq_enable
+ | +-------------------+ |
+ | | |
+ | | irq_enable |
+ | v |
+ | +-------------------+ |
+ +-- | enable_to_exit | <-+
+ +-------------------+
+ ^ | irq_disable
+ | | irq_entry
+ +---------------+ irq_enable
+
+Monitor nrp
+-----------
+
+The need resched preempts (nrp) monitor ensures preemption requires
+``need_resched``. Only kernel preemption is considered, since preemption
+while returning to userspace, for this monitor, is indistinguishable from
+``sched_switch_yield`` (described in the sssw monitor).
+A kernel preemption is whenever ``__schedule`` is called with the preemption
+flag set to true (e.g. from preempt_enable or exiting from interrupts). This
+type of preemption occurs after the need for ``rescheduling`` has been set.
+This is not valid for the *lazy* variant of the flag, which causes only
+userspace preemption.
+A ``schedule_entry_preempt`` may involve a task switch or not, in the latter
+case, a task goes through the scheduler from a preemption context but it is
+picked as the next task to run. Since the scheduler runs, this clears the need
+to reschedule. The ``any_thread_running`` state does not imply the monitored
+task is not running as this monitor does not track the outcome of scheduling.
+
+In theory, a preemption can only occur after the ``need_resched`` flag is set. In
+practice, however, it is possible to see a preemption where the flag is not
+set. This can happen in one specific condition::
+
+ need_resched
+ preempt_schedule()
+ preempt_schedule_irq()
+ __schedule()
+ !need_resched
+ __schedule()
+
+In the situation above, standard preemption starts (e.g. from preempt_enable
+when the flag is set), an interrupt occurs before scheduling and, on its exit
+path, it schedules, which clears the ``need_resched`` flag.
+When the preempted task runs again, the standard preemption started earlier
+resumes, although the flag is no longer set. The monitor considers this a
+``nested_preemption``, this allows another preemption without re-setting the
+flag. This condition relaxes the monitor constraints and may catch false
+negatives (i.e. no real ``nested_preemptions``) but makes the monitor more
+robust and able to validate other scenarios.
+For simplicity, the monitor starts in ``preempt_irq``, although no interrupt
+occurred, as the situation above is hard to pinpoint::
+
+ schedule_entry
+ irq_entry #===========================================#
+ +-------------------------- H H
+ | H H
+ +-------------------------> H any_thread_running H
+ H H
+ +-------------------------> H H
+ | #===========================================#
+ | schedule_entry | ^
+ | schedule_entry_preempt | sched_need_resched | schedule_entry
+ | | schedule_entry_preempt
+ | v |
+ | +----------------------+ |
+ | +--- | | |
+ | sched_need_resched | | rescheduling | -+
+ | +--> | |
+ | +----------------------+
+ | | irq_entry
+ | v
+ | +----------------------+
+ | | | ---+
+ | ---> | | | sched_need_resched
+ | | preempt_irq | | irq_entry
+ | | | <--+
+ | | | <--+
+ | +----------------------+ |
+ | | schedule_entry | sched_need_resched
+ | | schedule_entry_preempt |
+ | v |
+ | +-----------------------+ |
+ +-------------------------- | nested_preempt | --+
+ +-----------------------+
+ ^ irq_entry |
+ +-------------------+
+
+Due to how the ``need_resched`` flag on the preemption count works on arm64,
+this monitor is unstable on that architecture, as it often records preemption
+when the flag is not set, even in presence of the workaround above.
+For the time being, the monitor is disabled by default on arm64.
+
+Monitor sssw
+------------
+
+The set state sleep and wakeup (sssw) monitor ensures ``set_state`` to
+sleepable leads to sleeping and sleeping tasks require wakeup. It includes the
+following types of switch:
+
+* ``switch_suspend``:
+ a task puts itself to sleep, this can happen only after explicitly setting
+ the task to ``sleepable``. After a task is suspended, it needs to be woken up
+ (``waking`` state) before being switched in again.
+ Setting the task's state to ``sleepable`` can be reverted before switching if it
+ is woken up or set to ``runnable``.
+* ``switch_blocking``:
+ a special case of a ``switch_suspend`` where the task is waiting on a
+ sleeping RT lock (``PREEMPT_RT`` only), it is common to see wakeup and set
+ state events racing with each other and this leads the model to perceive this
+ type of switch when the task is not set to sleepable. This is a limitation of
+ the model in SMP system and workarounds may slow down the system.
+* ``switch_preempt``:
+ a task switch as a result of kernel preemption (``schedule_entry_preempt`` in
+ the nrp model).
+* ``switch_yield``:
+ a task explicitly calls the scheduler or is preempted while returning to
+ userspace. It can happen after a ``yield`` system call, from the idle task or
+ if the ``need_resched`` flag is set. By definition, a task cannot yield while
+ ``sleepable`` as that would be a suspension. A special case of a yield occurs
+ when a task in ``TASK_INTERRUPTIBLE`` calls the scheduler while a signal is
+ pending. The task doesn't go through the usual blocking/waking and is set
+ back to runnable, the resulting switch (if there) looks like a yield to the
+ ``signal_wakeup`` state and is followed by the signal delivery. From this
+ state, the monitor expects a signal even if it sees a wakeup event, although
+ not necessary, to rule out false negatives.
+
+This monitor doesn't include a running state, ``sleepable`` and ``runnable``
+are only referring to the task's desired state, which could be scheduled out
+(e.g. due to preemption). However, it does include the event
+``sched_switch_in`` to represent when a task is allowed to become running. This
+can be triggered also by preemption, but cannot occur after the task got to
+``sleeping`` before a ``wakeup`` occurs::
+
+ +--------------------------------------------------------------------------+
+ | |
+ | |
+ | switch_suspend | |
+ | switch_blocking | |
+ v v |
+ +----------+ #==========================# set_state_runnable |
+ | | H H wakeup |
+ | | H H switch_in |
+ | | H H switch_yield |
+ | sleeping | H H switch_preempt |
+ | | H H signal_deliver |
+ | | switch_ H H ------+ |
+ | | _blocking H runnable H | |
+ | | <----------- H H <-----+ |
+ +----------+ H H |
+ | wakeup H H |
+ +---------------------> H H |
+ H H |
+ +---------> H H |
+ | #==========================# |
+ | | ^ |
+ | | | set_state_runnable |
+ | | | wakeup |
+ | set_state_sleepable | +------------------------+
+ | v | |
+ | +--------------------------+ set_state_sleepable
+ | | | switch_in
+ | | | switch_preempt
+ signal_deliver | sleepable | signal_deliver
+ | | | ------+
+ | | | |
+ | | | <-----+
+ | +--------------------------+
+ | | ^
+ | switch_yield | set_state_sleepable
+ | v |
+ | +---------------+ |
+ +---------- | signal_wakeup | -+
+ +---------------+
+ ^ | switch_in
+ | | switch_preempt
+ | | switch_yield
+ +-----------+ wakeup
+
+Monitor opid
+------------
+
+The operations with preemption and irq disabled (opid) monitor ensures
+operations like ``wakeup`` and ``need_resched`` occur with interrupts and
+preemption disabled or during interrupt context, in such case preemption may
+not be disabled explicitly.
+``need_resched`` can be set by some RCU internals functions, in which case it
+doesn't match a task wakeup and might occur with only interrupts disabled::
+
+ | sched_need_resched
+ | sched_waking
+ | irq_entry
+ | +--------------------+
+ v v |
+ +------------------------------------------------------+
+ +----------- | disabled | <+
+ | +------------------------------------------------------+ |
+ | | ^ |
+ | | preempt_disable sched_need_resched |
+ | preempt_enable | +--------------------+ |
+ | v | v | |
+ | +------------------------------------------------------+ |
+ | | irq_disabled | |
+ | +------------------------------------------------------+ |
+ | | | ^ |
+ | irq_entry irq_entry | | |
+ | sched_need_resched v | irq_disable |
+ | sched_waking +--------------+ | | |
+ | +----- | | irq_enable | |
+ | | | in_irq | | | |
+ | +----> | | | | |
+ | +--------------+ | | irq_disable
+ | | | | |
+ | irq_enable | irq_enable | | |
+ | v v | |
+ | #======================================================# |
+ | H enabled H |
+ | #======================================================# |
+ | | ^ ^ preempt_enable | |
+ | preempt_disable preempt_enable +--------------------+ |
+ | v | |
+ | +------------------+ | |
+ +----------> | preempt_disabled | -+ |
+ +------------------+ |
+ | |
+ +-------------------------------------------------------+
+
+This monitor is designed to work on ``PREEMPT_RT`` kernels, the special case of
+events occurring in interrupt context is a shortcut to identify valid scenarios
+where the preemption tracepoints might not be visible, during interrupts
+preemption is always disabled. On non- ``PREEMPT_RT`` kernels, the interrupts
+might invoke a softirq to set ``need_resched`` and wake up a task. This is
+another special case that is currently not supported by the monitor.
+
+References
+----------
+
+[1] - https://bristot.me/linux-task-model
diff --git a/Documentation/trace/rv/monitor_synthesis.rst b/Documentation/trace/rv/monitor_synthesis.rst
new file mode 100644
index 000000000000..ac808a7554f5
--- /dev/null
+++ b/Documentation/trace/rv/monitor_synthesis.rst
@@ -0,0 +1,271 @@
+Runtime Verification Monitor Synthesis
+======================================
+
+The starting point for the application of runtime verification (RV) techniques
+is the *specification* or *modeling* of the desired (or undesired) behavior
+of the system under scrutiny.
+
+The formal representation needs to be then *synthesized* into a *monitor*
+that can then be used in the analysis of the trace of the system. The
+*monitor* connects to the system via an *instrumentation* that converts
+the events from the *system* to the events of the *specification*.
+
+
+In Linux terms, the runtime verification monitors are encapsulated inside
+the *RV monitor* abstraction. The RV monitor includes a set of instances
+of the monitor (per-cpu monitor, per-task monitor, and so on), the helper
+functions that glue the monitor to the system reference model, and the
+trace output as a reaction to event parsing and exceptions, as depicted
+below::
+
+ Linux +----- RV Monitor ----------------------------------+ Formal
+ Realm | | Realm
+ +-------------------+ +----------------+ +-----------------+
+ | Linux kernel | | Monitor | | Reference |
+ | Tracing | -> | Instance(s) | <- | Model |
+ | (instrumentation) | | (verification) | | (specification) |
+ +-------------------+ +----------------+ +-----------------+
+ | | |
+ | V |
+ | +----------+ |
+ | | Reaction | |
+ | +--+--+--+-+ |
+ | | | | |
+ | | | +-> trace output ? |
+ +------------------------|--|----------------------+
+ | +----> panic ?
+ +-------> <user-specified>
+
+RV monitor synthesis
+--------------------
+
+The synthesis of a specification into the Linux *RV monitor* abstraction is
+automated by the rvgen tool and the header file containing common code for
+creating monitors. The header files are:
+
+ * rv/da_monitor.h for deterministic automaton monitor.
+ * rv/ltl_monitor.h for linear temporal logic monitor.
+
+rvgen
+-----
+
+The rvgen utility converts a specification into the C presentation and creating
+the skeleton of a kernel monitor in C.
+
+For example, it is possible to transform the wip.dot model present in
+[1] into a per-cpu monitor with the following command::
+
+ $ rvgen monitor -c da -s wip.dot -t per_cpu
+
+This will create a directory named wip/ with the following files:
+
+- wip.h: the wip model in C
+- wip.c: the RV monitor
+
+The wip.c file contains the monitor declaration and the starting point for
+the system instrumentation.
+
+Similarly, a linear temporal logic monitor can be generated with the following
+command::
+
+ $ rvgen monitor -c ltl -s pagefault.ltl -t per_task
+
+This generates pagefault/ directory with:
+
+- pagefault.h: The Buchi automaton (the non-deterministic state machine to
+ verify the specification)
+- pagefault.c: The skeleton for the RV monitor
+
+Monitor header files
+--------------------
+
+The header files:
+
+- `rv/da_monitor.h` for deterministic automaton monitor
+- `rv/ltl_monitor` for linear temporal logic monitor
+
+include common macros and static functions for implementing *Monitor
+Instance(s)*.
+
+The benefits of having all common functionalities in a single header file are
+3-fold:
+
+ - Reduce the code duplication;
+ - Facilitate the bug fix/improvement;
+ - Avoid the case of developers changing the core of the monitor code to
+ manipulate the model in a (let's say) non-standard way.
+
+rv/da_monitor.h
++++++++++++++++
+
+This initial implementation presents three different types of monitor instances:
+
+- ``#define DECLARE_DA_MON_GLOBAL(name, type)``
+- ``#define DECLARE_DA_MON_PER_CPU(name, type)``
+- ``#define DECLARE_DA_MON_PER_TASK(name, type)``
+
+The first declares the functions for a global deterministic automata monitor,
+the second for monitors with per-cpu instances, and the third with per-task
+instances.
+
+In all cases, the 'name' argument is a string that identifies the monitor, and
+the 'type' argument is the data type used by rvgen on the representation of
+the model in C.
+
+For example, the wip model with two states and three events can be
+stored in an 'unsigned char' type. Considering that the preemption control
+is a per-cpu behavior, the monitor declaration in the 'wip.c' file is::
+
+ DECLARE_DA_MON_PER_CPU(wip, unsigned char);
+
+The monitor is executed by sending events to be processed via the functions
+presented below::
+
+ da_handle_event_$(MONITOR_NAME)($(event from event enum));
+ da_handle_start_event_$(MONITOR_NAME)($(event from event enum));
+ da_handle_start_run_event_$(MONITOR_NAME)($(event from event enum));
+
+The function ``da_handle_event_$(MONITOR_NAME)()`` is the regular case where
+the event will be processed if the monitor is processing events.
+
+When a monitor is enabled, it is placed in the initial state of the automata.
+However, the monitor does not know if the system is in the *initial state*.
+
+The ``da_handle_start_event_$(MONITOR_NAME)()`` function is used to notify the
+monitor that the system is returning to the initial state, so the monitor can
+start monitoring the next event.
+
+The ``da_handle_start_run_event_$(MONITOR_NAME)()`` function is used to notify
+the monitor that the system is known to be in the initial state, so the
+monitor can start monitoring and monitor the current event.
+
+Using the wip model as example, the events "preempt_disable" and
+"sched_waking" should be sent to monitor, respectively, via [2]::
+
+ da_handle_event_wip(preempt_disable_wip);
+ da_handle_event_wip(sched_waking_wip);
+
+While the event "preempt_enabled" will use::
+
+ da_handle_start_event_wip(preempt_enable_wip);
+
+To notify the monitor that the system will be returning to the initial state,
+so the system and the monitor should be in sync.
+
+rv/ltl_monitor.h
+++++++++++++++++
+This file must be combined with the $(MODEL_NAME).h file (generated by `rvgen`)
+to be complete. For example, for the `pagefault` monitor, the `pagefault.c`
+source file must include::
+
+ #include "pagefault.h"
+ #include <rv/ltl_monitor.h>
+
+(the skeleton monitor file generated by `rvgen` already does this).
+
+`$(MODEL_NAME).h` (`pagefault.h` in the above example) includes the
+implementation of the Buchi automaton - a non-deterministic state machine that
+verifies the LTL specification. While `rv/ltl_monitor.h` includes the common
+helper functions to interact with the Buchi automaton and to implement an RV
+monitor. An important definition in `$(MODEL_NAME).h` is::
+
+ enum ltl_atom {
+ LTL_$(FIRST_ATOMIC_PROPOSITION),
+ LTL_$(SECOND_ATOMIC_PROPOSITION),
+ ...
+ LTL_NUM_ATOM
+ };
+
+which is the list of atomic propositions present in the LTL specification
+(prefixed with "LTL\_" to avoid name collision). This `enum` is passed to the
+functions interacting with the Buchi automaton.
+
+While generating code, `rvgen` cannot understand the meaning of the atomic
+propositions. Thus, that task is left for manual work. The recommended pratice
+is adding tracepoints to places where the atomic propositions change; and in the
+tracepoints' handlers: the Buchi automaton is executed using::
+
+ void ltl_atom_update(struct task_struct *task, enum ltl_atom atom, bool value)
+
+which tells the Buchi automaton that the atomic proposition `atom` is now
+`value`. The Buchi automaton checks whether the LTL specification is still
+satisfied, and invokes the monitor's error tracepoint and the reactor if
+violation is detected.
+
+Tracepoints and `ltl_atom_update()` should be used whenever possible. However,
+it is sometimes not the most convenient. For some atomic propositions which are
+changed in multiple places in the kernel, it is cumbersome to trace all those
+places. Furthermore, it may not be important that the atomic propositions are
+updated at precise times. For example, considering the following linear temporal
+logic::
+
+ RULE = always (RT imply not PAGEFAULT)
+
+This LTL states that a real-time task does not raise page faults. For this
+specification, it is not important when `RT` changes, as long as it has the
+correct value when `PAGEFAULT` is true. Motivated by this case, another
+function is introduced::
+
+ void ltl_atom_fetch(struct task_struct *task, struct ltl_monitor *mon)
+
+This function is called whenever the Buchi automaton is triggered. Therefore, it
+can be manually implemented to "fetch" `RT`::
+
+ void ltl_atom_fetch(struct task_struct *task, struct ltl_monitor *mon)
+ {
+ ltl_atom_set(mon, LTL_RT, rt_task(task));
+ }
+
+Effectively, whenever `PAGEFAULT` is updated with a call to `ltl_atom_update()`,
+`RT` is also fetched. Thus, the LTL specification can be verified without
+tracing `RT` everywhere.
+
+For atomic propositions which act like events, they usually need to be set (or
+cleared) and then immediately cleared (or set). A convenient function is
+provided::
+
+ void ltl_atom_pulse(struct task_struct *task, enum ltl_atom atom, bool value)
+
+which is equivalent to::
+
+ ltl_atom_update(task, atom, value);
+ ltl_atom_update(task, atom, !value);
+
+To initialize the atomic propositions, the following function must be
+implemented::
+
+ ltl_atoms_init(struct task_struct *task, struct ltl_monitor *mon, bool task_creation)
+
+This function is called for all running tasks when the monitor is enabled. It is
+also called for new tasks created after the enabling the monitor. It should
+initialize as many atomic propositions as possible, for example::
+
+ void ltl_atom_init(struct task_struct *task, struct ltl_monitor *mon, bool task_creation)
+ {
+ ltl_atom_set(mon, LTL_RT, rt_task(task));
+ if (task_creation)
+ ltl_atom_set(mon, LTL_PAGEFAULT, false);
+ }
+
+Atomic propositions not initialized by `ltl_atom_init()` will stay in the
+unknown state until relevant tracepoints are hit, which can take some time. As
+monitoring for a task cannot be done until all atomic propositions is known for
+the task, the monitor may need some time to start validating tasks which have
+been running before the monitor is enabled. Therefore, it is recommended to
+start the tasks of interest after enabling the monitor.
+
+Final remarks
+-------------
+
+With the monitor synthesis in place using the header files and
+rvgen, the developer's work should be limited to the instrumentation
+of the system, increasing the confidence in the overall approach.
+
+[1] For details about deterministic automata format and the translation
+from one representation to another, see::
+
+ Documentation/trace/rv/deterministic_automata.rst
+
+[2] rvgen appends the monitor's name suffix to the events enums to
+avoid conflicting variables when exporting the global vmlinux.h
+use by BPF programs.
diff --git a/Documentation/trace/rv/monitor_wip.rst b/Documentation/trace/rv/monitor_wip.rst
new file mode 100644
index 000000000000..a95763438c48
--- /dev/null
+++ b/Documentation/trace/rv/monitor_wip.rst
@@ -0,0 +1,55 @@
+Monitor wip
+===========
+
+- Name: wip - wakeup in preemptive
+- Type: per-cpu deterministic automaton
+- Author: Daniel Bristot de Oliveira <bristot@kernel.org>
+
+Description
+-----------
+
+The wakeup in preemptive (wip) monitor is a sample per-cpu monitor
+that verifies if the wakeup events always take place with
+preemption disabled::
+
+ |
+ |
+ v
+ #==================#
+ H preemptive H <+
+ #==================# |
+ | |
+ | preempt_disable | preempt_enable
+ v |
+ sched_waking +------------------+ |
+ +--------------- | | |
+ | | non_preemptive | |
+ +--------------> | | -+
+ +------------------+
+
+The wakeup event always takes place with preemption disabled because
+of the scheduler synchronization. However, because the preempt_count
+and its trace event are not atomic with regard to interrupts, some
+inconsistencies might happen. For example::
+
+ preempt_disable() {
+ __preempt_count_add(1)
+ -------> smp_apic_timer_interrupt() {
+ preempt_disable()
+ do not trace (preempt count >= 1)
+
+ wake up a thread
+
+ preempt_enable()
+ do not trace (preempt count >= 1)
+ }
+ <------
+ trace_preempt_disable();
+ }
+
+This problem was reported and discussed here:
+ https://lore.kernel.org/r/cover.1559051152.git.bristot@redhat.com/
+
+Specification
+-------------
+Grapviz Dot file in tools/verification/models/wip.dot
diff --git a/Documentation/trace/rv/monitor_wwnr.rst b/Documentation/trace/rv/monitor_wwnr.rst
new file mode 100644
index 000000000000..9f739030f826
--- /dev/null
+++ b/Documentation/trace/rv/monitor_wwnr.rst
@@ -0,0 +1,45 @@
+Monitor wwnr
+============
+
+- Name: wwrn - wakeup while not running
+- Type: per-task deterministic automaton
+- Author: Daniel Bristot de Oliveira <bristot@kernel.org>
+
+Description
+-----------
+
+This is a per-task sample monitor, with the following
+definition::
+
+ |
+ |
+ v
+ wakeup +-------------+
+ +--------- | |
+ | | not_running |
+ +--------> | | <+
+ +-------------+ |
+ | |
+ | switch_in | switch_out
+ v |
+ +-------------+ |
+ | running | -+
+ +-------------+
+
+This model is broken, the reason is that a task can be running
+in the processor without being set as RUNNABLE. Think about a
+task about to sleep::
+
+ 1: set_current_state(TASK_UNINTERRUPTIBLE);
+ 2: schedule();
+
+And then imagine an IRQ happening in between the lines one and two,
+waking the task up. BOOM, the wakeup will happen while the task is
+running.
+
+- Why do we need this model, so?
+- To test the reactors.
+
+Specification
+-------------
+Grapviz Dot file in tools/verification/models/wwnr.dot
diff --git a/Documentation/trace/rv/runtime-verification.rst b/Documentation/trace/rv/runtime-verification.rst
new file mode 100644
index 000000000000..c700dde9259c
--- /dev/null
+++ b/Documentation/trace/rv/runtime-verification.rst
@@ -0,0 +1,231 @@
+====================
+Runtime Verification
+====================
+
+Runtime Verification (RV) is a lightweight (yet rigorous) method that
+complements classical exhaustive verification techniques (such as *model
+checking* and *theorem proving*) with a more practical approach for complex
+systems.
+
+Instead of relying on a fine-grained model of a system (e.g., a
+re-implementation at instruction level), RV works by analyzing the trace of the
+system's actual execution, comparing it against a formal specification of
+the system behavior.
+
+The main advantage is that RV can give precise information on the runtime
+behavior of the monitored system, without the pitfalls of developing models
+that require a re-implementation of the entire system in a modeling language.
+Moreover, given an efficient monitoring method, it is possible to execute an
+*online* verification of a system, enabling the *reaction* for unexpected
+events, avoiding, for example, the propagation of a failure on safety-critical
+systems.
+
+Runtime Monitors and Reactors
+=============================
+
+A monitor is the central part of the runtime verification of a system. The
+monitor stands in between the formal specification of the desired (or
+undesired) behavior, and the trace of the actual system.
+
+In Linux terms, the runtime verification monitors are encapsulated inside the
+*RV monitor* abstraction. A *RV monitor* includes a reference model of the
+system, a set of instances of the monitor (per-cpu monitor, per-task monitor,
+and so on), and the helper functions that glue the monitor to the system via
+trace, as depicted below::
+
+ Linux +---- RV Monitor ----------------------------------+ Formal
+ Realm | | Realm
+ +-------------------+ +----------------+ +-----------------+
+ | Linux kernel | | Monitor | | Reference |
+ | Tracing | -> | Instance(s) | <- | Model |
+ | (instrumentation) | | (verification) | | (specification) |
+ +-------------------+ +----------------+ +-----------------+
+ | | |
+ | V |
+ | +----------+ |
+ | | Reaction | |
+ | +--+--+--+-+ |
+ | | | | |
+ | | | +-> trace output ? |
+ +------------------------|--|----------------------+
+ | +----> panic ?
+ +-------> <user-specified>
+
+In addition to the verification and monitoring of the system, a monitor can
+react to an unexpected event. The forms of reaction can vary from logging the
+event occurrence to the enforcement of the correct behavior to the extreme
+action of taking a system down to avoid the propagation of a failure.
+
+In Linux terms, a *reactor* is an reaction method available for *RV monitors*.
+By default, all monitors should provide a trace output of their actions,
+which is already a reaction. In addition, other reactions will be available
+so the user can enable them as needed.
+
+For further information about the principles of runtime verification and
+RV applied to Linux:
+
+ Bartocci, Ezio, et al. *Introduction to runtime verification.* In: Lectures on
+ Runtime Verification. Springer, Cham, 2018. p. 1-33.
+
+ Falcone, Ylies, et al. *A taxonomy for classifying runtime verification tools.*
+ In: International Conference on Runtime Verification. Springer, Cham, 2018. p.
+ 241-262.
+
+ De Oliveira, Daniel Bristot. *Automata-based formal analysis and
+ verification of the real-time Linux kernel.* Ph.D. Thesis, 2020.
+
+Online RV monitors
+==================
+
+Monitors can be classified as *offline* and *online* monitors. *Offline*
+monitor process the traces generated by a system after the events, generally by
+reading the trace execution from a permanent storage system. *Online* monitors
+process the trace during the execution of the system. Online monitors are said
+to be *synchronous* if the processing of an event is attached to the system
+execution, blocking the system during the event monitoring. On the other hand,
+an *asynchronous* monitor has its execution detached from the system. Each type
+of monitor has a set of advantages. For example, *offline* monitors can be
+executed on different machines but require operations to save the log to a
+file. In contrast, *synchronous online* method can react at the exact moment
+a violation occurs.
+
+Another important aspect regarding monitors is the overhead associated with the
+event analysis. If the system generates events at a frequency higher than the
+monitor's ability to process them in the same system, only the *offline*
+methods are viable. On the other hand, if the tracing of the events incurs
+on higher overhead than the simple handling of an event by a monitor, then a
+*synchronous online* monitors will incur on lower overhead.
+
+Indeed, the research presented in:
+
+ De Oliveira, Daniel Bristot; Cucinotta, Tommaso; De Oliveira, Romulo Silva.
+ *Efficient formal verification for the Linux kernel.* In: International
+ Conference on Software Engineering and Formal Methods. Springer, Cham, 2019.
+ p. 315-332.
+
+Shows that for Deterministic Automata models, the synchronous processing of
+events in-kernel causes lower overhead than saving the same events to the trace
+buffer, not even considering collecting the trace for user-space analysis.
+This motivated the development of an in-kernel interface for online monitors.
+
+For further information about modeling of Linux kernel behavior using automata,
+see:
+
+ De Oliveira, Daniel B.; De Oliveira, Romulo S.; Cucinotta, Tommaso. *A thread
+ synchronization model for the PREEMPT_RT Linux kernel.* Journal of Systems
+ Architecture, 2020, 107: 101729.
+
+The user interface
+==================
+
+The user interface resembles the tracing interface (on purpose). It is
+currently at "/sys/kernel/tracing/rv/".
+
+The following files/folders are currently available:
+
+**available_monitors**
+
+- Reading list the available monitors, one per line
+
+For example::
+
+ # cat available_monitors
+ wip
+ wwnr
+
+**available_reactors**
+
+- Reading shows the available reactors, one per line.
+
+For example::
+
+ # cat available_reactors
+ nop
+ panic
+ printk
+
+**enabled_monitors**:
+
+- Reading lists the enabled monitors, one per line
+- Writing to it enables a given monitor
+- Writing a monitor name with a '!' prefix disables it
+- Truncating the file disables all enabled monitors
+
+For example::
+
+ # cat enabled_monitors
+ # echo wip > enabled_monitors
+ # echo wwnr >> enabled_monitors
+ # cat enabled_monitors
+ wip
+ wwnr
+ # echo '!wip' >> enabled_monitors
+ # cat enabled_monitors
+ wwnr
+ # echo > enabled_monitors
+ # cat enabled_monitors
+ #
+
+Note that it is possible to enable more than one monitor concurrently.
+
+**monitoring_on**
+
+This is an on/off general switcher for monitoring. It resembles the
+"tracing_on" switcher in the trace interface.
+
+- Writing "0" stops the monitoring
+- Writing "1" continues the monitoring
+- Reading returns the current status of the monitoring
+
+Note that it does not disable enabled monitors but stop the per-entity
+monitors monitoring the events received from the system.
+
+**reacting_on**
+
+- Writing "0" prevents reactions for happening
+- Writing "1" enable reactions
+- Reading returns the current status of the reaction
+
+**monitors/**
+
+Each monitor will have its own directory inside "monitors/". There the
+monitor-specific files will be presented. The "monitors/" directory resembles
+the "events" directory on tracefs.
+
+For example::
+
+ # cd monitors/wip/
+ # ls
+ desc enable
+ # cat desc
+ wakeup in preemptive per-cpu testing monitor.
+ # cat enable
+ 0
+
+**monitors/MONITOR/desc**
+
+- Reading shows a description of the monitor *MONITOR*
+
+**monitors/MONITOR/enable**
+
+- Writing "0" disables the *MONITOR*
+- Writing "1" enables the *MONITOR*
+- Reading return the current status of the *MONITOR*
+
+**monitors/MONITOR/reactors**
+
+- List available reactors, with the select reaction for the given *MONITOR*
+ inside "[]". The default one is the nop (no operation) reactor.
+- Writing the name of a reactor enables it to the given MONITOR.
+
+For example::
+
+ # cat monitors/wip/reactors
+ [nop]
+ panic
+ printk
+ # echo panic > monitors/wip/reactors
+ # cat monitors/wip/reactors
+ nop
+ [panic]
+ printk