aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/arch/arm64/kernel/head.S
diff options
context:
space:
mode:
Diffstat (limited to 'arch/arm64/kernel/head.S')
-rw-r--r--arch/arm64/kernel/head.S597
1 files changed, 152 insertions, 445 deletions
diff --git a/arch/arm64/kernel/head.S b/arch/arm64/kernel/head.S
index cefe6a73ee54..ce08b744aaab 100644
--- a/arch/arm64/kernel/head.S
+++ b/arch/arm64/kernel/head.S
@@ -70,26 +70,54 @@
__EFI_PE_HEADER
- __INIT
+ .section ".idmap.text","a"
/*
* The following callee saved general purpose registers are used on the
* primary lowlevel boot path:
*
* Register Scope Purpose
+ * x19 primary_entry() .. start_kernel() whether we entered with the MMU on
* x20 primary_entry() .. __primary_switch() CPU boot mode
* x21 primary_entry() .. start_kernel() FDT pointer passed at boot in x0
- * x22 create_idmap() .. start_kernel() ID map VA of the DT blob
- * x23 primary_entry() .. start_kernel() physical misalignment/KASLR offset
- * x24 __primary_switch() linear map KASLR seed
- * x25 primary_entry() .. start_kernel() supported VA size
- * x28 create_idmap() callee preserved temp register
*/
SYM_CODE_START(primary_entry)
+ bl record_mmu_state
bl preserve_boot_args
+
+ adrp x1, early_init_stack
+ mov sp, x1
+ mov x29, xzr
+ adrp x0, init_idmap_pg_dir
+ mov x1, xzr
+ bl __pi_create_init_idmap
+
+ /*
+ * If the page tables have been populated with non-cacheable
+ * accesses (MMU disabled), invalidate those tables again to
+ * remove any speculatively loaded cache lines.
+ */
+ cbnz x19, 0f
+ dmb sy
+ mov x1, x0 // end of used region
+ adrp x0, init_idmap_pg_dir
+ adr_l x2, dcache_inval_poc
+ blr x2
+ b 1f
+
+ /*
+ * If we entered with the MMU and caches on, clean the ID mapped part
+ * of the primary boot code to the PoC so we can safely execute it with
+ * the MMU off.
+ */
+0: adrp x0, __idmap_text_start
+ adr_l x1, __idmap_text_end
+ adr_l x2, dcache_clean_poc
+ blr x2
+
+1: mov x0, x19
bl init_kernel_el // w0=cpu_boot_mode
mov x20, x0
- bl create_idmap
/*
* The following calls CPU setup code, see arch/arm64/mm/proc.S for
@@ -97,18 +125,44 @@ SYM_CODE_START(primary_entry)
* On return, the CPU will be ready for the MMU to be turned on and
* the TCR will have been set.
*/
-#if VA_BITS > 48
- mrs_s x0, SYS_ID_AA64MMFR2_EL1
- tst x0, #0xf << ID_AA64MMFR2_LVA_SHIFT
- mov x0, #VA_BITS
- mov x25, #VA_BITS_MIN
- csel x25, x25, x0, eq
- mov x0, x25
-#endif
bl __cpu_setup // initialise processor
b __primary_switch
SYM_CODE_END(primary_entry)
+ __INIT
+SYM_CODE_START_LOCAL(record_mmu_state)
+ mrs x19, CurrentEL
+ cmp x19, #CurrentEL_EL2
+ mrs x19, sctlr_el1
+ b.ne 0f
+ mrs x19, sctlr_el2
+0:
+CPU_LE( tbnz x19, #SCTLR_ELx_EE_SHIFT, 1f )
+CPU_BE( tbz x19, #SCTLR_ELx_EE_SHIFT, 1f )
+ tst x19, #SCTLR_ELx_C // Z := (C == 0)
+ and x19, x19, #SCTLR_ELx_M // isolate M bit
+ csel x19, xzr, x19, eq // clear x19 if Z
+ ret
+
+ /*
+ * Set the correct endianness early so all memory accesses issued
+ * before init_kernel_el() occur in the correct byte order. Note that
+ * this means the MMU must be disabled, or the active ID map will end
+ * up getting interpreted with the wrong byte order.
+ */
+1: eor x19, x19, #SCTLR_ELx_EE
+ bic x19, x19, #SCTLR_ELx_M
+ b.ne 2f
+ pre_disable_mmu_workaround
+ msr sctlr_el2, x19
+ b 3f
+2: pre_disable_mmu_workaround
+ msr sctlr_el1, x19
+3: isb
+ mov x19, xzr
+ ret
+SYM_CODE_END(record_mmu_state)
+
/*
* Preserve the arguments passed by the bootloader in x0 .. x3
*/
@@ -119,270 +173,15 @@ SYM_CODE_START_LOCAL(preserve_boot_args)
stp x21, x1, [x0] // x0 .. x3 at kernel entry
stp x2, x3, [x0, #16]
+ cbnz x19, 0f // skip cache invalidation if MMU is on
dmb sy // needed before dc ivac with
// MMU off
add x1, x0, #0x20 // 4 x 8 bytes
b dcache_inval_poc // tail call
-SYM_CODE_END(preserve_boot_args)
-
-SYM_FUNC_START_LOCAL(clear_page_tables)
- /*
- * Clear the init page tables.
- */
- adrp x0, init_pg_dir
- adrp x1, init_pg_end
- sub x2, x1, x0
- mov x1, xzr
- b __pi_memset // tail call
-SYM_FUNC_END(clear_page_tables)
-
-/*
- * Macro to populate page table entries, these entries can be pointers to the next level
- * or last level entries pointing to physical memory.
- *
- * tbl: page table address
- * rtbl: pointer to page table or physical memory
- * index: start index to write
- * eindex: end index to write - [index, eindex] written to
- * flags: flags for pagetable entry to or in
- * inc: increment to rtbl between each entry
- * tmp1: temporary variable
- *
- * Preserves: tbl, eindex, flags, inc
- * Corrupts: index, tmp1
- * Returns: rtbl
- */
- .macro populate_entries, tbl, rtbl, index, eindex, flags, inc, tmp1
-.Lpe\@: phys_to_pte \tmp1, \rtbl
- orr \tmp1, \tmp1, \flags // tmp1 = table entry
- str \tmp1, [\tbl, \index, lsl #3]
- add \rtbl, \rtbl, \inc // rtbl = pa next level
- add \index, \index, #1
- cmp \index, \eindex
- b.ls .Lpe\@
- .endm
-
-/*
- * Compute indices of table entries from virtual address range. If multiple entries
- * were needed in the previous page table level then the next page table level is assumed
- * to be composed of multiple pages. (This effectively scales the end index).
- *
- * vstart: virtual address of start of range
- * vend: virtual address of end of range - we map [vstart, vend]
- * shift: shift used to transform virtual address into index
- * order: #imm 2log(number of entries in page table)
- * istart: index in table corresponding to vstart
- * iend: index in table corresponding to vend
- * count: On entry: how many extra entries were required in previous level, scales
- * our end index.
- * On exit: returns how many extra entries required for next page table level
- *
- * Preserves: vstart, vend
- * Returns: istart, iend, count
- */
- .macro compute_indices, vstart, vend, shift, order, istart, iend, count
- ubfx \istart, \vstart, \shift, \order
- ubfx \iend, \vend, \shift, \order
- add \iend, \iend, \count, lsl \order
- sub \count, \iend, \istart
- .endm
-
-/*
- * Map memory for specified virtual address range. Each level of page table needed supports
- * multiple entries. If a level requires n entries the next page table level is assumed to be
- * formed from n pages.
- *
- * tbl: location of page table
- * rtbl: address to be used for first level page table entry (typically tbl + PAGE_SIZE)
- * vstart: virtual address of start of range
- * vend: virtual address of end of range - we map [vstart, vend - 1]
- * flags: flags to use to map last level entries
- * phys: physical address corresponding to vstart - physical memory is contiguous
- * order: #imm 2log(number of entries in PGD table)
- *
- * If extra_shift is set, an extra level will be populated if the end address does
- * not fit in 'extra_shift' bits. This assumes vend is in the TTBR0 range.
- *
- * Temporaries: istart, iend, tmp, count, sv - these need to be different registers
- * Preserves: vstart, flags
- * Corrupts: tbl, rtbl, vend, istart, iend, tmp, count, sv
- */
- .macro map_memory, tbl, rtbl, vstart, vend, flags, phys, order, istart, iend, tmp, count, sv, extra_shift
- sub \vend, \vend, #1
- add \rtbl, \tbl, #PAGE_SIZE
- mov \count, #0
-
- .ifnb \extra_shift
- tst \vend, #~((1 << (\extra_shift)) - 1)
- b.eq .L_\@
- compute_indices \vstart, \vend, #\extra_shift, #(PAGE_SHIFT - 3), \istart, \iend, \count
- mov \sv, \rtbl
- populate_entries \tbl, \rtbl, \istart, \iend, #PMD_TYPE_TABLE, #PAGE_SIZE, \tmp
- mov \tbl, \sv
- .endif
-.L_\@:
- compute_indices \vstart, \vend, #PGDIR_SHIFT, #\order, \istart, \iend, \count
- mov \sv, \rtbl
- populate_entries \tbl, \rtbl, \istart, \iend, #PMD_TYPE_TABLE, #PAGE_SIZE, \tmp
- mov \tbl, \sv
-
-#if SWAPPER_PGTABLE_LEVELS > 3
- compute_indices \vstart, \vend, #PUD_SHIFT, #(PAGE_SHIFT - 3), \istart, \iend, \count
- mov \sv, \rtbl
- populate_entries \tbl, \rtbl, \istart, \iend, #PMD_TYPE_TABLE, #PAGE_SIZE, \tmp
- mov \tbl, \sv
-#endif
-
-#if SWAPPER_PGTABLE_LEVELS > 2
- compute_indices \vstart, \vend, #SWAPPER_TABLE_SHIFT, #(PAGE_SHIFT - 3), \istart, \iend, \count
- mov \sv, \rtbl
- populate_entries \tbl, \rtbl, \istart, \iend, #PMD_TYPE_TABLE, #PAGE_SIZE, \tmp
- mov \tbl, \sv
-#endif
-
- compute_indices \vstart, \vend, #SWAPPER_BLOCK_SHIFT, #(PAGE_SHIFT - 3), \istart, \iend, \count
- bic \rtbl, \phys, #SWAPPER_BLOCK_SIZE - 1
- populate_entries \tbl, \rtbl, \istart, \iend, \flags, #SWAPPER_BLOCK_SIZE, \tmp
- .endm
-
-/*
- * Remap a subregion created with the map_memory macro with modified attributes
- * or output address. The entire remapped region must have been covered in the
- * invocation of map_memory.
- *
- * x0: last level table address (returned in first argument to map_memory)
- * x1: start VA of the existing mapping
- * x2: start VA of the region to update
- * x3: end VA of the region to update (exclusive)
- * x4: start PA associated with the region to update
- * x5: attributes to set on the updated region
- * x6: order of the last level mappings
- */
-SYM_FUNC_START_LOCAL(remap_region)
- sub x3, x3, #1 // make end inclusive
-
- // Get the index offset for the start of the last level table
- lsr x1, x1, x6
- bfi x1, xzr, #0, #PAGE_SHIFT - 3
-
- // Derive the start and end indexes into the last level table
- // associated with the provided region
- lsr x2, x2, x6
- lsr x3, x3, x6
- sub x2, x2, x1
- sub x3, x3, x1
-
- mov x1, #1
- lsl x6, x1, x6 // block size at this level
-
- populate_entries x0, x4, x2, x3, x5, x6, x7
+0: str_l x19, mmu_enabled_at_boot, x0
ret
-SYM_FUNC_END(remap_region)
-
-SYM_FUNC_START_LOCAL(create_idmap)
- mov x28, lr
- /*
- * The ID map carries a 1:1 mapping of the physical address range
- * covered by the loaded image, which could be anywhere in DRAM. This
- * means that the required size of the VA (== PA) space is decided at
- * boot time, and could be more than the configured size of the VA
- * space for ordinary kernel and user space mappings.
- *
- * There are three cases to consider here:
- * - 39 <= VA_BITS < 48, and the ID map needs up to 48 VA bits to cover
- * the placement of the image. In this case, we configure one extra
- * level of translation on the fly for the ID map only. (This case
- * also covers 42-bit VA/52-bit PA on 64k pages).
- *
- * - VA_BITS == 48, and the ID map needs more than 48 VA bits. This can
- * only happen when using 64k pages, in which case we need to extend
- * the root level table rather than add a level. Note that we can
- * treat this case as 'always extended' as long as we take care not
- * to program an unsupported T0SZ value into the TCR register.
- *
- * - Combinations that would require two additional levels of
- * translation are not supported, e.g., VA_BITS==36 on 16k pages, or
- * VA_BITS==39/4k pages with 5-level paging, where the input address
- * requires more than 47 or 48 bits, respectively.
- */
-#if (VA_BITS < 48)
-#define IDMAP_PGD_ORDER (VA_BITS - PGDIR_SHIFT)
-#define EXTRA_SHIFT (PGDIR_SHIFT + PAGE_SHIFT - 3)
-
- /*
- * If VA_BITS < 48, we have to configure an additional table level.
- * First, we have to verify our assumption that the current value of
- * VA_BITS was chosen such that all translation levels are fully
- * utilised, and that lowering T0SZ will always result in an additional
- * translation level to be configured.
- */
-#if VA_BITS != EXTRA_SHIFT
-#error "Mismatch between VA_BITS and page size/number of translation levels"
-#endif
-#else
-#define IDMAP_PGD_ORDER (PHYS_MASK_SHIFT - PGDIR_SHIFT)
-#define EXTRA_SHIFT
- /*
- * If VA_BITS == 48, we don't have to configure an additional
- * translation level, but the top-level table has more entries.
- */
-#endif
- adrp x0, init_idmap_pg_dir
- adrp x3, _text
- adrp x6, _end + MAX_FDT_SIZE + SWAPPER_BLOCK_SIZE
- mov x7, SWAPPER_RX_MMUFLAGS
-
- map_memory x0, x1, x3, x6, x7, x3, IDMAP_PGD_ORDER, x10, x11, x12, x13, x14, EXTRA_SHIFT
-
- /* Remap the kernel page tables r/w in the ID map */
- adrp x1, _text
- adrp x2, init_pg_dir
- adrp x3, init_pg_end
- bic x4, x2, #SWAPPER_BLOCK_SIZE - 1
- mov x5, SWAPPER_RW_MMUFLAGS
- mov x6, #SWAPPER_BLOCK_SHIFT
- bl remap_region
-
- /* Remap the FDT after the kernel image */
- adrp x1, _text
- adrp x22, _end + SWAPPER_BLOCK_SIZE
- bic x2, x22, #SWAPPER_BLOCK_SIZE - 1
- bfi x22, x21, #0, #SWAPPER_BLOCK_SHIFT // remapped FDT address
- add x3, x2, #MAX_FDT_SIZE + SWAPPER_BLOCK_SIZE
- bic x4, x21, #SWAPPER_BLOCK_SIZE - 1
- mov x5, SWAPPER_RW_MMUFLAGS
- mov x6, #SWAPPER_BLOCK_SHIFT
- bl remap_region
-
- /*
- * Since the page tables have been populated with non-cacheable
- * accesses (MMU disabled), invalidate those tables again to
- * remove any speculatively loaded cache lines.
- */
- dmb sy
-
- adrp x0, init_idmap_pg_dir
- adrp x1, init_idmap_pg_end
- bl dcache_inval_poc
- ret x28
-SYM_FUNC_END(create_idmap)
-
-SYM_FUNC_START_LOCAL(create_kernel_mapping)
- adrp x0, init_pg_dir
- mov_q x5, KIMAGE_VADDR // compile time __va(_text)
- add x5, x5, x23 // add KASLR displacement
- adrp x6, _end // runtime __pa(_end)
- adrp x3, _text // runtime __pa(_text)
- sub x6, x6, x3 // _end - _text
- add x6, x6, x5 // runtime __va(_end)
- mov x7, SWAPPER_RW_MMUFLAGS
-
- map_memory x0, x1, x5, x6, x7, x3, (VA_BITS - PGDIR_SHIFT), x10, x11, x12, x13, x14
-
- dsb ishst // sync with page table walker
- ret
-SYM_FUNC_END(create_kernel_mapping)
+SYM_CODE_END(preserve_boot_args)
/*
* Initialize CPU registers with task-specific and cpu-specific context.
@@ -402,7 +201,7 @@ SYM_FUNC_END(create_kernel_mapping)
stp xzr, xzr, [sp, #S_STACKFRAME]
add x29, sp, #S_STACKFRAME
- scs_load \tsk
+ scs_load_current
adr_l \tmp1, __per_cpu_offset
ldr w\tmp2, [\tsk, #TSK_TI_CPU]
@@ -428,38 +227,16 @@ SYM_FUNC_START_LOCAL(__primary_switched)
str_l x21, __fdt_pointer, x5 // Save FDT pointer
- ldr_l x4, kimage_vaddr // Save the offset between
+ adrp x4, _text // Save the offset between
sub x4, x4, x0 // the kernel virtual and
str_l x4, kimage_voffset, x5 // physical mappings
mov x0, x20
bl set_cpu_boot_mode_flag
- // Clear BSS
- adr_l x0, __bss_start
- mov x1, xzr
- adr_l x2, __bss_stop
- sub x2, x2, x0
- bl __pi_memset
- dsb ishst // Make zero page visible to PTW
-
-#if VA_BITS > 48
- adr_l x8, vabits_actual // Set this early so KASAN early init
- str x25, [x8] // ... observes the correct value
- dc civac, x8 // Make visible to booting secondaries
-#endif
-
-#ifdef CONFIG_RANDOMIZE_BASE
- adrp x5, memstart_offset_seed // Save KASLR linear map seed
- strh w24, [x5, :lo12:memstart_offset_seed]
-#endif
#if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
bl kasan_early_init
#endif
- mov x0, x21 // pass FDT address in x0
- bl early_fdt_map // Try mapping the FDT early
- mov x0, x20 // pass the full boot status
- bl init_feature_override // Parse cpu feature overrides
mov x0, x20
bl finalise_el2 // Prefer VHE if possible
ldp x29, x30, [sp], #16
@@ -471,7 +248,7 @@ SYM_FUNC_END(__primary_switched)
* end early head section, begin head code that is also used for
* hotplug and needs to have the same protections as the text region
*/
- .section ".idmap.text","awx"
+ .section ".idmap.text","a"
/*
* Starting from EL2 or EL1, configure the CPU to execute at the highest
@@ -484,14 +261,17 @@ SYM_FUNC_END(__primary_switched)
* Returns either BOOT_CPU_MODE_EL1 or BOOT_CPU_MODE_EL2 in x0 if
* booted in EL1 or EL2 respectively, with the top 32 bits containing
* potential context flags. These flags are *not* stored in __boot_cpu_mode.
+ *
+ * x0: whether we are being called from the primary boot path with the MMU on
*/
SYM_FUNC_START(init_kernel_el)
- mrs x0, CurrentEL
- cmp x0, #CurrentEL_EL2
+ mrs x1, CurrentEL
+ cmp x1, #CurrentEL_EL2
b.eq init_el2
SYM_INNER_LABEL(init_el1, SYM_L_LOCAL)
mov_q x0, INIT_SCTLR_EL1_MMU_OFF
+ pre_disable_mmu_workaround
msr sctlr_el1, x0
isb
mov_q x0, INIT_PSTATE_EL1
@@ -501,6 +281,15 @@ SYM_INNER_LABEL(init_el1, SYM_L_LOCAL)
eret
SYM_INNER_LABEL(init_el2, SYM_L_LOCAL)
+ msr elr_el2, lr
+
+ // clean all HYP code to the PoC if we booted at EL2 with the MMU on
+ cbz x0, 0f
+ adrp x0, __hyp_idmap_text_start
+ adr_l x1, __hyp_text_end
+ adr_l x2, dcache_clean_poc
+ blr x2
+0:
mov_q x0, HCR_HOST_NVHE_FLAGS
msr hcr_el2, x0
isb
@@ -515,47 +304,45 @@ SYM_INNER_LABEL(init_el2, SYM_L_LOCAL)
mov_q x1, INIT_SCTLR_EL1_MMU_OFF
/*
- * Fruity CPUs seem to have HCR_EL2.E2H set to RES1,
- * making it impossible to start in nVHE mode. Is that
- * compliant with the architecture? Absolutely not!
+ * Compliant CPUs advertise their VHE-onlyness with
+ * ID_AA64MMFR4_EL1.E2H0 < 0. HCR_EL2.E2H can be
+ * RES1 in that case.
+ *
+ * Fruity CPUs seem to have HCR_EL2.E2H set to RES1, but
+ * don't advertise it (they predate this relaxation).
*/
+ mrs_s x0, SYS_ID_AA64MMFR4_EL1
+ ubfx x0, x0, #ID_AA64MMFR4_EL1_E2H0_SHIFT, #ID_AA64MMFR4_EL1_E2H0_WIDTH
+ tbnz x0, #(ID_AA64MMFR4_EL1_E2H0_SHIFT + ID_AA64MMFR4_EL1_E2H0_WIDTH - 1), 1f
+
mrs x0, hcr_el2
and x0, x0, #HCR_E2H
- cbz x0, 1f
-
+ cbz x0, 2f
+1:
/* Set a sane SCTLR_EL1, the VHE way */
+ pre_disable_mmu_workaround
msr_s SYS_SCTLR_EL12, x1
mov x2, #BOOT_CPU_FLAG_E2H
- b 2f
+ b 3f
-1:
+2:
+ pre_disable_mmu_workaround
msr sctlr_el1, x1
mov x2, xzr
-2:
- msr elr_el2, lr
+3:
+ __init_el2_nvhe_prepare_eret
+
mov w0, #BOOT_CPU_MODE_EL2
orr x0, x0, x2
eret
SYM_FUNC_END(init_kernel_el)
-/*
- * Sets the __boot_cpu_mode flag depending on the CPU boot mode passed
- * in w0. See arch/arm64/include/asm/virt.h for more info.
- */
-SYM_FUNC_START_LOCAL(set_cpu_boot_mode_flag)
- adr_l x1, __boot_cpu_mode
- cmp w0, #BOOT_CPU_MODE_EL2
- b.ne 1f
- add x1, x1, #4
-1: str w0, [x1] // Save CPU boot mode
- ret
-SYM_FUNC_END(set_cpu_boot_mode_flag)
-
/*
* This provides a "holding pen" for platforms to hold all secondary
* cores are held until we're ready for them to initialise.
*/
SYM_FUNC_START(secondary_holding_pen)
+ mov x0, xzr
bl init_kernel_el // w0=cpu_boot_mode
mrs x2, mpidr_el1
mov_q x1, MPIDR_HWID_BITMASK
@@ -573,6 +360,7 @@ SYM_FUNC_END(secondary_holding_pen)
* be used where CPUs are brought online dynamically by the kernel.
*/
SYM_FUNC_START(secondary_entry)
+ mov x0, xzr
bl init_kernel_el // w0=cpu_boot_mode
b secondary_startup
SYM_FUNC_END(secondary_entry)
@@ -582,11 +370,13 @@ SYM_FUNC_START_LOCAL(secondary_startup)
* Common entry point for secondary CPUs.
*/
mov x20, x0 // preserve boot mode
- bl finalise_el2
+
+#ifdef CONFIG_ARM64_VA_BITS_52
+alternative_if ARM64_HAS_VA52
bl __cpu_secondary_check52bitva
-#if VA_BITS > 48
- ldr_l x0, vabits_actual
+alternative_else_nop_endif
#endif
+
bl __cpu_setup // initialise processor
adrp x1, swapper_pg_dir
adrp x2, idmap_pg_dir
@@ -595,9 +385,14 @@ SYM_FUNC_START_LOCAL(secondary_startup)
br x8
SYM_FUNC_END(secondary_startup)
+ .text
SYM_FUNC_START_LOCAL(__secondary_switched)
mov x0, x20
bl set_cpu_boot_mode_flag
+
+ mov x0, x20
+ bl finalise_el2
+
str_l xzr, __early_cpu_boot_status, x3
adr_l x5, vectors
msr vbar_el1, x5
@@ -624,6 +419,19 @@ SYM_FUNC_START_LOCAL(__secondary_too_slow)
SYM_FUNC_END(__secondary_too_slow)
/*
+ * Sets the __boot_cpu_mode flag depending on the CPU boot mode passed
+ * in w0. See arch/arm64/include/asm/virt.h for more info.
+ */
+SYM_FUNC_START_LOCAL(set_cpu_boot_mode_flag)
+ adr_l x1, __boot_cpu_mode
+ cmp w0, #BOOT_CPU_MODE_EL2
+ b.ne 1f
+ add x1, x1, #4
+1: str w0, [x1] // Save CPU boot mode
+ ret
+SYM_FUNC_END(set_cpu_boot_mode_flag)
+
+/*
* The booting CPU updates the failed status @__early_cpu_boot_status,
* with MMU turned off.
*
@@ -654,12 +462,13 @@ SYM_FUNC_END(__secondary_too_slow)
* Checks if the selected granule size is supported by the CPU.
* If it isn't, park the CPU
*/
+ .section ".idmap.text","a"
SYM_FUNC_START(__enable_mmu)
mrs x3, ID_AA64MMFR0_EL1
- ubfx x3, x3, #ID_AA64MMFR0_TGRAN_SHIFT, 4
- cmp x3, #ID_AA64MMFR0_TGRAN_SUPPORTED_MIN
+ ubfx x3, x3, #ID_AA64MMFR0_EL1_TGRAN_SHIFT, 4
+ cmp x3, #ID_AA64MMFR0_EL1_TGRAN_SUPPORTED_MIN
b.lt __no_granule_support
- cmp x3, #ID_AA64MMFR0_TGRAN_SUPPORTED_MAX
+ cmp x3, #ID_AA64MMFR0_EL1_TGRAN_SUPPORTED_MAX
b.gt __no_granule_support
phys_to_ttbr x2, x2
msr ttbr0_el1, x2 // load TTBR0
@@ -670,15 +479,18 @@ SYM_FUNC_START(__enable_mmu)
ret
SYM_FUNC_END(__enable_mmu)
+#ifdef CONFIG_ARM64_VA_BITS_52
SYM_FUNC_START(__cpu_secondary_check52bitva)
-#if VA_BITS > 48
- ldr_l x0, vabits_actual
- cmp x0, #52
- b.ne 2f
-
+#ifndef CONFIG_ARM64_LPA2
mrs_s x0, SYS_ID_AA64MMFR2_EL1
- and x0, x0, #(0xf << ID_AA64MMFR2_LVA_SHIFT)
+ and x0, x0, ID_AA64MMFR2_EL1_VARange_MASK
cbnz x0, 2f
+#else
+ mrs x0, id_aa64mmfr0_el1
+ sbfx x0, x0, #ID_AA64MMFR0_EL1_TGRAN_SHIFT, 4
+ cmp x0, #ID_AA64MMFR0_EL1_TGRAN_LPA2
+ b.ge 2f
+#endif
update_early_cpu_boot_status \
CPU_STUCK_IN_KERNEL | CPU_STUCK_REASON_52_BIT_VA, x0, x1
@@ -686,9 +498,9 @@ SYM_FUNC_START(__cpu_secondary_check52bitva)
wfi
b 1b
-#endif
2: ret
SYM_FUNC_END(__cpu_secondary_check52bitva)
+#endif
SYM_FUNC_START_LOCAL(__no_granule_support)
/* Indicate that this CPU can't boot and is stuck in the kernel */
@@ -700,123 +512,18 @@ SYM_FUNC_START_LOCAL(__no_granule_support)
b 1b
SYM_FUNC_END(__no_granule_support)
-#ifdef CONFIG_RELOCATABLE
-SYM_FUNC_START_LOCAL(__relocate_kernel)
- /*
- * Iterate over each entry in the relocation table, and apply the
- * relocations in place.
- */
- adr_l x9, __rela_start
- adr_l x10, __rela_end
- mov_q x11, KIMAGE_VADDR // default virtual offset
- add x11, x11, x23 // actual virtual offset
-
-0: cmp x9, x10
- b.hs 1f
- ldp x12, x13, [x9], #24
- ldr x14, [x9, #-8]
- cmp w13, #R_AARCH64_RELATIVE
- b.ne 0b
- add x14, x14, x23 // relocate
- str x14, [x12, x23]
- b 0b
-
-1:
-#ifdef CONFIG_RELR
- /*
- * Apply RELR relocations.
- *
- * RELR is a compressed format for storing relative relocations. The
- * encoded sequence of entries looks like:
- * [ AAAAAAAA BBBBBBB1 BBBBBBB1 ... AAAAAAAA BBBBBB1 ... ]
- *
- * i.e. start with an address, followed by any number of bitmaps. The
- * address entry encodes 1 relocation. The subsequent bitmap entries
- * encode up to 63 relocations each, at subsequent offsets following
- * the last address entry.
- *
- * The bitmap entries must have 1 in the least significant bit. The
- * assumption here is that an address cannot have 1 in lsb. Odd
- * addresses are not supported. Any odd addresses are stored in the RELA
- * section, which is handled above.
- *
- * Excluding the least significant bit in the bitmap, each non-zero
- * bit in the bitmap represents a relocation to be applied to
- * a corresponding machine word that follows the base address
- * word. The second least significant bit represents the machine
- * word immediately following the initial address, and each bit
- * that follows represents the next word, in linear order. As such,
- * a single bitmap can encode up to 63 relocations in a 64-bit object.
- *
- * In this implementation we store the address of the next RELR table
- * entry in x9, the address being relocated by the current address or
- * bitmap entry in x13 and the address being relocated by the current
- * bit in x14.
- */
- adr_l x9, __relr_start
- adr_l x10, __relr_end
-
-2: cmp x9, x10
- b.hs 7f
- ldr x11, [x9], #8
- tbnz x11, #0, 3f // branch to handle bitmaps
- add x13, x11, x23
- ldr x12, [x13] // relocate address entry
- add x12, x12, x23
- str x12, [x13], #8 // adjust to start of bitmap
- b 2b
-
-3: mov x14, x13
-4: lsr x11, x11, #1
- cbz x11, 6f
- tbz x11, #0, 5f // skip bit if not set
- ldr x12, [x14] // relocate bit
- add x12, x12, x23
- str x12, [x14]
-
-5: add x14, x14, #8 // move to next bit's address
- b 4b
-
-6: /*
- * Move to the next bitmap's address. 8 is the word size, and 63 is the
- * number of significant bits in a bitmap entry.
- */
- add x13, x13, #(8 * 63)
- b 2b
-
-7:
-#endif
- ret
-
-SYM_FUNC_END(__relocate_kernel)
-#endif
-
SYM_FUNC_START_LOCAL(__primary_switch)
adrp x1, reserved_pg_dir
adrp x2, init_idmap_pg_dir
bl __enable_mmu
-#ifdef CONFIG_RELOCATABLE
- adrp x23, KERNEL_START
- and x23, x23, MIN_KIMG_ALIGN - 1
-#ifdef CONFIG_RANDOMIZE_BASE
- mov x0, x22
- adrp x1, init_pg_end
+
+ adrp x1, early_init_stack
mov sp, x1
mov x29, xzr
- bl __pi_kaslr_early_init
- and x24, x0, #SZ_2M - 1 // capture memstart offset seed
- bic x0, x0, #SZ_2M - 1
- orr x23, x23, x0 // record kernel offset
-#endif
-#endif
- bl clear_page_tables
- bl create_kernel_mapping
+ mov x0, x20 // pass the full boot status
+ mov x1, x21 // pass the FDT
+ bl __pi_early_map_kernel // Map and relocate the kernel
- adrp x1, init_pg_dir
- load_ttbr1 x1, x1, x2
-#ifdef CONFIG_RELOCATABLE
- bl __relocate_kernel
-#endif
ldr x8, =__primary_switched
adrp x0, KERNEL_START // __pa(KERNEL_START)
br x8