aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/arch/x86/kernel/cpu/resctrl/monitor.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/x86/kernel/cpu/resctrl/monitor.c')
-rw-r--r--arch/x86/kernel/cpu/resctrl/monitor.c732
1 files changed, 199 insertions, 533 deletions
diff --git a/arch/x86/kernel/cpu/resctrl/monitor.c b/arch/x86/kernel/cpu/resctrl/monitor.c
index eaf25a234ff5..c261558276cd 100644
--- a/arch/x86/kernel/cpu/resctrl/monitor.c
+++ b/arch/x86/kernel/cpu/resctrl/monitor.c
@@ -15,37 +15,15 @@
* Software Developer Manual June 2016, volume 3, section 17.17.
*/
-#include <linux/module.h>
-#include <linux/slab.h>
-#include <asm/cpu_device_id.h>
-#include "internal.h"
+#define pr_fmt(fmt) "resctrl: " fmt
-struct rmid_entry {
- u32 rmid;
- int busy;
- struct list_head list;
-};
+#include <linux/cpu.h>
+#include <linux/resctrl.h>
-/**
- * @rmid_free_lru A least recently used list of free RMIDs
- * These RMIDs are guaranteed to have an occupancy less than the
- * threshold occupancy
- */
-static LIST_HEAD(rmid_free_lru);
-
-/**
- * @rmid_limbo_count count of currently unused but (potentially)
- * dirty RMIDs.
- * This counts RMIDs that no one is currently using but that
- * may have a occupancy value > intel_cqm_threshold. User can change
- * the threshold occupancy value.
- */
-static unsigned int rmid_limbo_count;
+#include <asm/cpu_device_id.h>
+#include <asm/msr.h>
-/**
- * @rmid_entry - The entry in the limbo and free lists.
- */
-static struct rmid_entry *rmid_ptrs;
+#include "internal.h"
/*
* Global boolean for rdt_monitor which is true if any
@@ -58,16 +36,12 @@ bool rdt_mon_capable;
*/
unsigned int rdt_mon_features;
-/*
- * This is the threshold cache occupancy at which we will consider an
- * RMID available for re-allocation.
- */
-unsigned int resctrl_cqm_threshold;
-
#define CF(cf) ((unsigned long)(1048576 * (cf) + 0.5))
+static int snc_nodes_per_l3_cache = 1;
+
/*
- * The correction factor table is documented in Documentation/x86/resctrl.rst.
+ * The correction factor table is documented in Documentation/filesystems/resctrl.rst.
* If rmid > rmid threshold, MBM total and local values should be multiplied
* by the correction factor.
*
@@ -116,6 +90,7 @@ static const struct mbm_correction_factor_table {
};
static u32 mbm_cf_rmidthreshold __read_mostly = UINT_MAX;
+
static u64 mbm_cf __read_mostly;
static inline u64 get_corrected_mbm_count(u32 rmid, unsigned long val)
@@ -127,19 +102,45 @@ static inline u64 get_corrected_mbm_count(u32 rmid, unsigned long val)
return val;
}
-static inline struct rmid_entry *__rmid_entry(u32 rmid)
+/*
+ * When Sub-NUMA Cluster (SNC) mode is not enabled (as indicated by
+ * "snc_nodes_per_l3_cache == 1") no translation of the RMID value is
+ * needed. The physical RMID is the same as the logical RMID.
+ *
+ * On a platform with SNC mode enabled, Linux enables RMID sharing mode
+ * via MSR 0xCA0 (see the "RMID Sharing Mode" section in the "Intel
+ * Resource Director Technology Architecture Specification" for a full
+ * description of RMID sharing mode).
+ *
+ * In RMID sharing mode there are fewer "logical RMID" values available
+ * to accumulate data ("physical RMIDs" are divided evenly between SNC
+ * nodes that share an L3 cache). Linux creates an rdt_mon_domain for
+ * each SNC node.
+ *
+ * The value loaded into IA32_PQR_ASSOC is the "logical RMID".
+ *
+ * Data is collected independently on each SNC node and can be retrieved
+ * using the "physical RMID" value computed by this function and loaded
+ * into IA32_QM_EVTSEL. @cpu can be any CPU in the SNC node.
+ *
+ * The scope of the IA32_QM_EVTSEL and IA32_QM_CTR MSRs is at the L3
+ * cache. So a "physical RMID" may be read from any CPU that shares
+ * the L3 cache with the desired SNC node, not just from a CPU in
+ * the specific SNC node.
+ */
+static int logical_rmid_to_physical_rmid(int cpu, int lrmid)
{
- struct rmid_entry *entry;
+ struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl;
- entry = &rmid_ptrs[rmid];
- WARN_ON(entry->rmid != rmid);
+ if (snc_nodes_per_l3_cache == 1)
+ return lrmid;
- return entry;
+ return lrmid + (cpu_to_node(cpu) % snc_nodes_per_l3_cache) * r->num_rmid;
}
-static u64 __rmid_read(u32 rmid, u32 eventid)
+static int __rmid_read_phys(u32 prmid, enum resctrl_event_id eventid, u64 *val)
{
- u64 val;
+ u64 msr_val;
/*
* As per the SDM, when IA32_QM_EVTSEL.EvtID (bits 7:0) is configured
@@ -149,132 +150,70 @@ static u64 __rmid_read(u32 rmid, u32 eventid)
* IA32_QM_CTR.Error (bit 63) and IA32_QM_CTR.Unavailable (bit 62)
* are error bits.
*/
- wrmsr(MSR_IA32_QM_EVTSEL, eventid, rmid);
- rdmsrl(MSR_IA32_QM_CTR, val);
-
- return val;
-}
+ wrmsr(MSR_IA32_QM_EVTSEL, eventid, prmid);
+ rdmsrq(MSR_IA32_QM_CTR, msr_val);
-static bool rmid_dirty(struct rmid_entry *entry)
-{
- u64 val = __rmid_read(entry->rmid, QOS_L3_OCCUP_EVENT_ID);
+ if (msr_val & RMID_VAL_ERROR)
+ return -EIO;
+ if (msr_val & RMID_VAL_UNAVAIL)
+ return -EINVAL;
- return val >= resctrl_cqm_threshold;
+ *val = msr_val;
+ return 0;
}
-/*
- * Check the RMIDs that are marked as busy for this domain. If the
- * reported LLC occupancy is below the threshold clear the busy bit and
- * decrement the count. If the busy count gets to zero on an RMID, we
- * free the RMID
- */
-void __check_limbo(struct rdt_domain *d, bool force_free)
+static struct arch_mbm_state *get_arch_mbm_state(struct rdt_hw_mon_domain *hw_dom,
+ u32 rmid,
+ enum resctrl_event_id eventid)
{
- struct rmid_entry *entry;
- struct rdt_resource *r;
- u32 crmid = 1, nrmid;
-
- r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl;
-
- /*
- * Skip RMID 0 and start from RMID 1 and check all the RMIDs that
- * are marked as busy for occupancy < threshold. If the occupancy
- * is less than the threshold decrement the busy counter of the
- * RMID and move it to the free list when the counter reaches 0.
- */
- for (;;) {
- nrmid = find_next_bit(d->rmid_busy_llc, r->num_rmid, crmid);
- if (nrmid >= r->num_rmid)
- break;
-
- entry = __rmid_entry(nrmid);
- if (force_free || !rmid_dirty(entry)) {
- clear_bit(entry->rmid, d->rmid_busy_llc);
- if (!--entry->busy) {
- rmid_limbo_count--;
- list_add_tail(&entry->list, &rmid_free_lru);
- }
- }
- crmid = nrmid + 1;
+ switch (eventid) {
+ case QOS_L3_OCCUP_EVENT_ID:
+ return NULL;
+ case QOS_L3_MBM_TOTAL_EVENT_ID:
+ return &hw_dom->arch_mbm_total[rmid];
+ case QOS_L3_MBM_LOCAL_EVENT_ID:
+ return &hw_dom->arch_mbm_local[rmid];
+ default:
+ /* Never expect to get here */
+ WARN_ON_ONCE(1);
+ return NULL;
}
}
-bool has_busy_rmid(struct rdt_resource *r, struct rdt_domain *d)
+void resctrl_arch_reset_rmid(struct rdt_resource *r, struct rdt_mon_domain *d,
+ u32 unused, u32 rmid,
+ enum resctrl_event_id eventid)
{
- return find_first_bit(d->rmid_busy_llc, r->num_rmid) != r->num_rmid;
+ struct rdt_hw_mon_domain *hw_dom = resctrl_to_arch_mon_dom(d);
+ int cpu = cpumask_any(&d->hdr.cpu_mask);
+ struct arch_mbm_state *am;
+ u32 prmid;
+
+ am = get_arch_mbm_state(hw_dom, rmid, eventid);
+ if (am) {
+ memset(am, 0, sizeof(*am));
+
+ prmid = logical_rmid_to_physical_rmid(cpu, rmid);
+ /* Record any initial, non-zero count value. */
+ __rmid_read_phys(prmid, eventid, &am->prev_msr);
+ }
}
/*
- * As of now the RMIDs allocation is global.
- * However we keep track of which packages the RMIDs
- * are used to optimize the limbo list management.
+ * Assumes that hardware counters are also reset and thus that there is
+ * no need to record initial non-zero counts.
*/
-int alloc_rmid(void)
+void resctrl_arch_reset_rmid_all(struct rdt_resource *r, struct rdt_mon_domain *d)
{
- struct rmid_entry *entry;
+ struct rdt_hw_mon_domain *hw_dom = resctrl_to_arch_mon_dom(d);
- lockdep_assert_held(&rdtgroup_mutex);
+ if (resctrl_arch_is_mbm_total_enabled())
+ memset(hw_dom->arch_mbm_total, 0,
+ sizeof(*hw_dom->arch_mbm_total) * r->num_rmid);
- if (list_empty(&rmid_free_lru))
- return rmid_limbo_count ? -EBUSY : -ENOSPC;
-
- entry = list_first_entry(&rmid_free_lru,
- struct rmid_entry, list);
- list_del(&entry->list);
-
- return entry->rmid;
-}
-
-static void add_rmid_to_limbo(struct rmid_entry *entry)
-{
- struct rdt_resource *r;
- struct rdt_domain *d;
- int cpu;
- u64 val;
-
- r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl;
-
- entry->busy = 0;
- cpu = get_cpu();
- list_for_each_entry(d, &r->domains, list) {
- if (cpumask_test_cpu(cpu, &d->cpu_mask)) {
- val = __rmid_read(entry->rmid, QOS_L3_OCCUP_EVENT_ID);
- if (val <= resctrl_cqm_threshold)
- continue;
- }
-
- /*
- * For the first limbo RMID in the domain,
- * setup up the limbo worker.
- */
- if (!has_busy_rmid(r, d))
- cqm_setup_limbo_handler(d, CQM_LIMBOCHECK_INTERVAL);
- set_bit(entry->rmid, d->rmid_busy_llc);
- entry->busy++;
- }
- put_cpu();
-
- if (entry->busy)
- rmid_limbo_count++;
- else
- list_add_tail(&entry->list, &rmid_free_lru);
-}
-
-void free_rmid(u32 rmid)
-{
- struct rmid_entry *entry;
-
- if (!rmid)
- return;
-
- lockdep_assert_held(&rdtgroup_mutex);
-
- entry = __rmid_entry(rmid);
-
- if (is_llc_occupancy_enabled())
- add_rmid_to_limbo(entry);
- else
- list_add_tail(&entry->list, &rmid_free_lru);
+ if (resctrl_arch_is_mbm_local_enabled())
+ memset(hw_dom->arch_mbm_local, 0,
+ sizeof(*hw_dom->arch_mbm_local) * r->num_rmid);
}
static u64 mbm_overflow_count(u64 prev_msr, u64 cur_msr, unsigned int width)
@@ -285,412 +224,134 @@ static u64 mbm_overflow_count(u64 prev_msr, u64 cur_msr, unsigned int width)
return chunks >> shift;
}
-static u64 __mon_event_count(u32 rmid, struct rmid_read *rr)
+int resctrl_arch_rmid_read(struct rdt_resource *r, struct rdt_mon_domain *d,
+ u32 unused, u32 rmid, enum resctrl_event_id eventid,
+ u64 *val, void *ignored)
{
- struct rdt_hw_resource *hw_res = resctrl_to_arch_res(rr->r);
- struct mbm_state *m;
- u64 chunks, tval;
+ struct rdt_hw_mon_domain *hw_dom = resctrl_to_arch_mon_dom(d);
+ struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r);
+ int cpu = cpumask_any(&d->hdr.cpu_mask);
+ struct arch_mbm_state *am;
+ u64 msr_val, chunks;
+ u32 prmid;
+ int ret;
- tval = __rmid_read(rmid, rr->evtid);
- if (tval & (RMID_VAL_ERROR | RMID_VAL_UNAVAIL)) {
- return tval;
- }
- switch (rr->evtid) {
- case QOS_L3_OCCUP_EVENT_ID:
- rr->val += tval;
- return 0;
- case QOS_L3_MBM_TOTAL_EVENT_ID:
- m = &rr->d->mbm_total[rmid];
- break;
- case QOS_L3_MBM_LOCAL_EVENT_ID:
- m = &rr->d->mbm_local[rmid];
- break;
- default:
- /*
- * Code would never reach here because an invalid
- * event id would fail the __rmid_read.
- */
- return RMID_VAL_ERROR;
- }
+ resctrl_arch_rmid_read_context_check();
- if (rr->first) {
- memset(m, 0, sizeof(struct mbm_state));
- m->prev_bw_msr = m->prev_msr = tval;
- return 0;
- }
+ prmid = logical_rmid_to_physical_rmid(cpu, rmid);
+ ret = __rmid_read_phys(prmid, eventid, &msr_val);
+ if (ret)
+ return ret;
- chunks = mbm_overflow_count(m->prev_msr, tval, hw_res->mbm_width);
- m->chunks += chunks;
- m->prev_msr = tval;
+ am = get_arch_mbm_state(hw_dom, rmid, eventid);
+ if (am) {
+ am->chunks += mbm_overflow_count(am->prev_msr, msr_val,
+ hw_res->mbm_width);
+ chunks = get_corrected_mbm_count(rmid, am->chunks);
+ am->prev_msr = msr_val;
+ } else {
+ chunks = msr_val;
+ }
- rr->val += get_corrected_mbm_count(rmid, m->chunks);
+ *val = chunks * hw_res->mon_scale;
return 0;
}
/*
- * Supporting function to calculate the memory bandwidth
- * and delta bandwidth in MBps.
- */
-static void mbm_bw_count(u32 rmid, struct rmid_read *rr)
-{
- struct rdt_hw_resource *hw_res = resctrl_to_arch_res(rr->r);
- struct mbm_state *m = &rr->d->mbm_local[rmid];
- u64 tval, cur_bw, chunks;
-
- tval = __rmid_read(rmid, rr->evtid);
- if (tval & (RMID_VAL_ERROR | RMID_VAL_UNAVAIL))
- return;
-
- chunks = mbm_overflow_count(m->prev_bw_msr, tval, hw_res->mbm_width);
- cur_bw = (get_corrected_mbm_count(rmid, chunks) * hw_res->mon_scale) >> 20;
-
- if (m->delta_comp)
- m->delta_bw = abs(cur_bw - m->prev_bw);
- m->delta_comp = false;
- m->prev_bw = cur_bw;
- m->prev_bw_msr = tval;
-}
-
-/*
- * This is called via IPI to read the CQM/MBM counters
- * on a domain.
+ * The power-on reset value of MSR_RMID_SNC_CONFIG is 0x1
+ * which indicates that RMIDs are configured in legacy mode.
+ * This mode is incompatible with Linux resctrl semantics
+ * as RMIDs are partitioned between SNC nodes, which requires
+ * a user to know which RMID is allocated to a task.
+ * Clearing bit 0 reconfigures the RMID counters for use
+ * in RMID sharing mode. This mode is better for Linux.
+ * The RMID space is divided between all SNC nodes with the
+ * RMIDs renumbered to start from zero in each node when
+ * counting operations from tasks. Code to read the counters
+ * must adjust RMID counter numbers based on SNC node. See
+ * logical_rmid_to_physical_rmid() for code that does this.
*/
-void mon_event_count(void *info)
+void arch_mon_domain_online(struct rdt_resource *r, struct rdt_mon_domain *d)
{
- struct rdtgroup *rdtgrp, *entry;
- struct rmid_read *rr = info;
- struct list_head *head;
- u64 ret_val;
-
- rdtgrp = rr->rgrp;
-
- ret_val = __mon_event_count(rdtgrp->mon.rmid, rr);
-
- /*
- * For Ctrl groups read data from child monitor groups and
- * add them together. Count events which are read successfully.
- * Discard the rmid_read's reporting errors.
- */
- head = &rdtgrp->mon.crdtgrp_list;
-
- if (rdtgrp->type == RDTCTRL_GROUP) {
- list_for_each_entry(entry, head, mon.crdtgrp_list) {
- if (__mon_event_count(entry->mon.rmid, rr) == 0)
- ret_val = 0;
- }
- }
-
- /* Report error if none of rmid_reads are successful */
- if (ret_val)
- rr->val = ret_val;
+ if (snc_nodes_per_l3_cache > 1)
+ msr_clear_bit(MSR_RMID_SNC_CONFIG, 0);
}
-/*
- * Feedback loop for MBA software controller (mba_sc)
- *
- * mba_sc is a feedback loop where we periodically read MBM counters and
- * adjust the bandwidth percentage values via the IA32_MBA_THRTL_MSRs so
- * that:
- *
- * current bandwidth(cur_bw) < user specified bandwidth(user_bw)
- *
- * This uses the MBM counters to measure the bandwidth and MBA throttle
- * MSRs to control the bandwidth for a particular rdtgrp. It builds on the
- * fact that resctrl rdtgroups have both monitoring and control.
- *
- * The frequency of the checks is 1s and we just tag along the MBM overflow
- * timer. Having 1s interval makes the calculation of bandwidth simpler.
- *
- * Although MBA's goal is to restrict the bandwidth to a maximum, there may
- * be a need to increase the bandwidth to avoid unnecessarily restricting
- * the L2 <-> L3 traffic.
- *
- * Since MBA controls the L2 external bandwidth where as MBM measures the
- * L3 external bandwidth the following sequence could lead to such a
- * situation.
- *
- * Consider an rdtgroup which had high L3 <-> memory traffic in initial
- * phases -> mba_sc kicks in and reduced bandwidth percentage values -> but
- * after some time rdtgroup has mostly L2 <-> L3 traffic.
- *
- * In this case we may restrict the rdtgroup's L2 <-> L3 traffic as its
- * throttle MSRs already have low percentage values. To avoid
- * unnecessarily restricting such rdtgroups, we also increase the bandwidth.
- */
-static void update_mba_bw(struct rdtgroup *rgrp, struct rdt_domain *dom_mbm)
-{
- u32 closid, rmid, cur_msr, cur_msr_val, new_msr_val;
- struct mbm_state *pmbm_data, *cmbm_data;
- struct rdt_hw_resource *hw_r_mba;
- struct rdt_hw_domain *hw_dom_mba;
- u32 cur_bw, delta_bw, user_bw;
- struct rdt_resource *r_mba;
- struct rdt_domain *dom_mba;
- struct list_head *head;
- struct rdtgroup *entry;
-
- if (!is_mbm_local_enabled())
- return;
-
- hw_r_mba = &rdt_resources_all[RDT_RESOURCE_MBA];
- r_mba = &hw_r_mba->r_resctrl;
- closid = rgrp->closid;
- rmid = rgrp->mon.rmid;
- pmbm_data = &dom_mbm->mbm_local[rmid];
-
- dom_mba = get_domain_from_cpu(smp_processor_id(), r_mba);
- if (!dom_mba) {
- pr_warn_once("Failure to get domain for MBA update\n");
- return;
- }
- hw_dom_mba = resctrl_to_arch_dom(dom_mba);
-
- cur_bw = pmbm_data->prev_bw;
- user_bw = resctrl_arch_get_config(r_mba, dom_mba, closid, CDP_NONE);
- delta_bw = pmbm_data->delta_bw;
- /*
- * resctrl_arch_get_config() chooses the mbps/ctrl value to return
- * based on is_mba_sc(). For now, reach into the hw_dom.
- */
- cur_msr_val = hw_dom_mba->ctrl_val[closid];
-
- /*
- * For Ctrl groups read data from child monitor groups.
- */
- head = &rgrp->mon.crdtgrp_list;
- list_for_each_entry(entry, head, mon.crdtgrp_list) {
- cmbm_data = &dom_mbm->mbm_local[entry->mon.rmid];
- cur_bw += cmbm_data->prev_bw;
- delta_bw += cmbm_data->delta_bw;
- }
-
- /*
- * Scale up/down the bandwidth linearly for the ctrl group. The
- * bandwidth step is the bandwidth granularity specified by the
- * hardware.
- *
- * The delta_bw is used when increasing the bandwidth so that we
- * dont alternately increase and decrease the control values
- * continuously.
- *
- * For ex: consider cur_bw = 90MBps, user_bw = 100MBps and if
- * bandwidth step is 20MBps(> user_bw - cur_bw), we would keep
- * switching between 90 and 110 continuously if we only check
- * cur_bw < user_bw.
- */
- if (cur_msr_val > r_mba->membw.min_bw && user_bw < cur_bw) {
- new_msr_val = cur_msr_val - r_mba->membw.bw_gran;
- } else if (cur_msr_val < MAX_MBA_BW &&
- (user_bw > (cur_bw + delta_bw))) {
- new_msr_val = cur_msr_val + r_mba->membw.bw_gran;
- } else {
- return;
- }
-
- cur_msr = hw_r_mba->msr_base + closid;
- wrmsrl(cur_msr, delay_bw_map(new_msr_val, r_mba));
- hw_dom_mba->ctrl_val[closid] = new_msr_val;
-
- /*
- * Delta values are updated dynamically package wise for each
- * rdtgrp every time the throttle MSR changes value.
- *
- * This is because (1)the increase in bandwidth is not perfectly
- * linear and only "approximately" linear even when the hardware
- * says it is linear.(2)Also since MBA is a core specific
- * mechanism, the delta values vary based on number of cores used
- * by the rdtgrp.
- */
- pmbm_data->delta_comp = true;
- list_for_each_entry(entry, head, mon.crdtgrp_list) {
- cmbm_data = &dom_mbm->mbm_local[entry->mon.rmid];
- cmbm_data->delta_comp = true;
- }
-}
-
-static void mbm_update(struct rdt_resource *r, struct rdt_domain *d, int rmid)
-{
- struct rmid_read rr;
-
- rr.first = false;
- rr.r = r;
- rr.d = d;
-
- /*
- * This is protected from concurrent reads from user
- * as both the user and we hold the global mutex.
- */
- if (is_mbm_total_enabled()) {
- rr.evtid = QOS_L3_MBM_TOTAL_EVENT_ID;
- __mon_event_count(rmid, &rr);
- }
- if (is_mbm_local_enabled()) {
- rr.evtid = QOS_L3_MBM_LOCAL_EVENT_ID;
- __mon_event_count(rmid, &rr);
-
- /*
- * Call the MBA software controller only for the
- * control groups and when user has enabled
- * the software controller explicitly.
- */
- if (is_mba_sc(NULL))
- mbm_bw_count(rmid, &rr);
- }
-}
+/* CPU models that support MSR_RMID_SNC_CONFIG */
+static const struct x86_cpu_id snc_cpu_ids[] __initconst = {
+ X86_MATCH_VFM(INTEL_ICELAKE_X, 0),
+ X86_MATCH_VFM(INTEL_SAPPHIRERAPIDS_X, 0),
+ X86_MATCH_VFM(INTEL_EMERALDRAPIDS_X, 0),
+ X86_MATCH_VFM(INTEL_GRANITERAPIDS_X, 0),
+ X86_MATCH_VFM(INTEL_ATOM_CRESTMONT_X, 0),
+ {}
+};
/*
- * Handler to scan the limbo list and move the RMIDs
- * to free list whose occupancy < threshold_occupancy.
+ * There isn't a simple hardware bit that indicates whether a CPU is running
+ * in Sub-NUMA Cluster (SNC) mode. Infer the state by comparing the
+ * number of CPUs sharing the L3 cache with CPU0 to the number of CPUs in
+ * the same NUMA node as CPU0.
+ * It is not possible to accurately determine SNC state if the system is
+ * booted with a maxcpus=N parameter. That distorts the ratio of SNC nodes
+ * to L3 caches. It will be OK if system is booted with hyperthreading
+ * disabled (since this doesn't affect the ratio).
*/
-void cqm_handle_limbo(struct work_struct *work)
-{
- unsigned long delay = msecs_to_jiffies(CQM_LIMBOCHECK_INTERVAL);
- int cpu = smp_processor_id();
- struct rdt_resource *r;
- struct rdt_domain *d;
-
- mutex_lock(&rdtgroup_mutex);
-
- r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl;
- d = container_of(work, struct rdt_domain, cqm_limbo.work);
-
- __check_limbo(d, false);
-
- if (has_busy_rmid(r, d))
- schedule_delayed_work_on(cpu, &d->cqm_limbo, delay);
-
- mutex_unlock(&rdtgroup_mutex);
-}
-
-void cqm_setup_limbo_handler(struct rdt_domain *dom, unsigned long delay_ms)
+static __init int snc_get_config(void)
{
- unsigned long delay = msecs_to_jiffies(delay_ms);
- int cpu;
-
- cpu = cpumask_any(&dom->cpu_mask);
- dom->cqm_work_cpu = cpu;
-
- schedule_delayed_work_on(cpu, &dom->cqm_limbo, delay);
-}
-
-void mbm_handle_overflow(struct work_struct *work)
-{
- unsigned long delay = msecs_to_jiffies(MBM_OVERFLOW_INTERVAL);
- struct rdtgroup *prgrp, *crgrp;
- int cpu = smp_processor_id();
- struct list_head *head;
- struct rdt_resource *r;
- struct rdt_domain *d;
-
- mutex_lock(&rdtgroup_mutex);
-
- if (!static_branch_likely(&rdt_mon_enable_key))
- goto out_unlock;
-
- r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl;
- d = container_of(work, struct rdt_domain, mbm_over.work);
-
- list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
- mbm_update(r, d, prgrp->mon.rmid);
-
- head = &prgrp->mon.crdtgrp_list;
- list_for_each_entry(crgrp, head, mon.crdtgrp_list)
- mbm_update(r, d, crgrp->mon.rmid);
-
- if (is_mba_sc(NULL))
- update_mba_bw(prgrp, d);
- }
+ struct cacheinfo *ci = get_cpu_cacheinfo_level(0, RESCTRL_L3_CACHE);
+ const cpumask_t *node0_cpumask;
+ int cpus_per_node, cpus_per_l3;
+ int ret;
- schedule_delayed_work_on(cpu, &d->mbm_over, delay);
+ if (!x86_match_cpu(snc_cpu_ids) || !ci)
+ return 1;
-out_unlock:
- mutex_unlock(&rdtgroup_mutex);
-}
+ cpus_read_lock();
+ if (num_online_cpus() != num_present_cpus())
+ pr_warn("Some CPUs offline, SNC detection may be incorrect\n");
+ cpus_read_unlock();
-void mbm_setup_overflow_handler(struct rdt_domain *dom, unsigned long delay_ms)
-{
- unsigned long delay = msecs_to_jiffies(delay_ms);
- int cpu;
+ node0_cpumask = cpumask_of_node(cpu_to_node(0));
- if (!static_branch_likely(&rdt_mon_enable_key))
- return;
- cpu = cpumask_any(&dom->cpu_mask);
- dom->mbm_work_cpu = cpu;
- schedule_delayed_work_on(cpu, &dom->mbm_over, delay);
-}
+ cpus_per_node = cpumask_weight(node0_cpumask);
+ cpus_per_l3 = cpumask_weight(&ci->shared_cpu_map);
-static int dom_data_init(struct rdt_resource *r)
-{
- struct rmid_entry *entry = NULL;
- int i, nr_rmids;
+ if (!cpus_per_node || !cpus_per_l3)
+ return 1;
- nr_rmids = r->num_rmid;
- rmid_ptrs = kcalloc(nr_rmids, sizeof(struct rmid_entry), GFP_KERNEL);
- if (!rmid_ptrs)
- return -ENOMEM;
+ ret = cpus_per_l3 / cpus_per_node;
- for (i = 0; i < nr_rmids; i++) {
- entry = &rmid_ptrs[i];
- INIT_LIST_HEAD(&entry->list);
-
- entry->rmid = i;
- list_add_tail(&entry->list, &rmid_free_lru);
+ /* sanity check: Only valid results are 1, 2, 3, 4, 6 */
+ switch (ret) {
+ case 1:
+ break;
+ case 2 ... 4:
+ case 6:
+ pr_info("Sub-NUMA Cluster mode detected with %d nodes per L3 cache\n", ret);
+ rdt_resources_all[RDT_RESOURCE_L3].r_resctrl.mon_scope = RESCTRL_L3_NODE;
+ break;
+ default:
+ pr_warn("Ignore improbable SNC node count %d\n", ret);
+ ret = 1;
+ break;
}
- /*
- * RMID 0 is special and is always allocated. It's used for all
- * tasks that are not monitored.
- */
- entry = __rmid_entry(0);
- list_del(&entry->list);
-
- return 0;
+ return ret;
}
-static struct mon_evt llc_occupancy_event = {
- .name = "llc_occupancy",
- .evtid = QOS_L3_OCCUP_EVENT_ID,
-};
-
-static struct mon_evt mbm_total_event = {
- .name = "mbm_total_bytes",
- .evtid = QOS_L3_MBM_TOTAL_EVENT_ID,
-};
-
-static struct mon_evt mbm_local_event = {
- .name = "mbm_local_bytes",
- .evtid = QOS_L3_MBM_LOCAL_EVENT_ID,
-};
-
-/*
- * Initialize the event list for the resource.
- *
- * Note that MBM events are also part of RDT_RESOURCE_L3 resource
- * because as per the SDM the total and local memory bandwidth
- * are enumerated as part of L3 monitoring.
- */
-static void l3_mon_evt_init(struct rdt_resource *r)
-{
- INIT_LIST_HEAD(&r->evt_list);
-
- if (is_llc_occupancy_enabled())
- list_add_tail(&llc_occupancy_event.list, &r->evt_list);
- if (is_mbm_total_enabled())
- list_add_tail(&mbm_total_event.list, &r->evt_list);
- if (is_mbm_local_enabled())
- list_add_tail(&mbm_local_event.list, &r->evt_list);
-}
-
-int rdt_get_mon_l3_config(struct rdt_resource *r)
+int __init rdt_get_mon_l3_config(struct rdt_resource *r)
{
unsigned int mbm_offset = boot_cpu_data.x86_cache_mbm_width_offset;
struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r);
- unsigned int cl_size = boot_cpu_data.x86_cache_size;
- int ret;
+ unsigned int threshold;
+
+ snc_nodes_per_l3_cache = snc_get_config();
- hw_res->mon_scale = boot_cpu_data.x86_cache_occ_scale;
- r->num_rmid = boot_cpu_data.x86_cache_max_rmid + 1;
+ resctrl_rmid_realloc_limit = boot_cpu_data.x86_cache_size * 1024;
+ hw_res->mon_scale = boot_cpu_data.x86_cache_occ_scale / snc_nodes_per_l3_cache;
+ r->num_rmid = (boot_cpu_data.x86_cache_max_rmid + 1) / snc_nodes_per_l3_cache;
hw_res->mbm_width = MBM_CNTR_WIDTH_BASE;
if (mbm_offset > 0 && mbm_offset <= MBM_CNTR_WIDTH_OFFSET_MAX)
@@ -705,19 +366,24 @@ int rdt_get_mon_l3_config(struct rdt_resource *r)
*
* For a 35MB LLC and 56 RMIDs, this is ~1.8% of the LLC.
*/
- resctrl_cqm_threshold = cl_size * 1024 / r->num_rmid;
+ threshold = resctrl_rmid_realloc_limit / r->num_rmid;
- /* h/w works in units of "boot_cpu_data.x86_cache_occ_scale" */
- resctrl_cqm_threshold /= hw_res->mon_scale;
+ /*
+ * Because num_rmid may not be a power of two, round the value
+ * to the nearest multiple of hw_res->mon_scale so it matches a
+ * value the hardware will measure. mon_scale may not be a power of 2.
+ */
+ resctrl_rmid_realloc_threshold = resctrl_arch_round_mon_val(threshold);
- ret = dom_data_init(r);
- if (ret)
- return ret;
+ if (rdt_cpu_has(X86_FEATURE_BMEC)) {
+ u32 eax, ebx, ecx, edx;
- l3_mon_evt_init(r);
+ /* Detect list of bandwidth sources that can be tracked */
+ cpuid_count(0x80000020, 3, &eax, &ebx, &ecx, &edx);
+ r->mbm_cfg_mask = ecx & MAX_EVT_CONFIG_BITS;
+ }
r->mon_capable = true;
- r->mon_enabled = true;
return 0;
}