diff options
Diffstat (limited to 'arch/x86/kernel/cpu/resctrl/monitor.c')
-rw-r--r-- | arch/x86/kernel/cpu/resctrl/monitor.c | 732 |
1 files changed, 199 insertions, 533 deletions
diff --git a/arch/x86/kernel/cpu/resctrl/monitor.c b/arch/x86/kernel/cpu/resctrl/monitor.c index eaf25a234ff5..c261558276cd 100644 --- a/arch/x86/kernel/cpu/resctrl/monitor.c +++ b/arch/x86/kernel/cpu/resctrl/monitor.c @@ -15,37 +15,15 @@ * Software Developer Manual June 2016, volume 3, section 17.17. */ -#include <linux/module.h> -#include <linux/slab.h> -#include <asm/cpu_device_id.h> -#include "internal.h" +#define pr_fmt(fmt) "resctrl: " fmt -struct rmid_entry { - u32 rmid; - int busy; - struct list_head list; -}; +#include <linux/cpu.h> +#include <linux/resctrl.h> -/** - * @rmid_free_lru A least recently used list of free RMIDs - * These RMIDs are guaranteed to have an occupancy less than the - * threshold occupancy - */ -static LIST_HEAD(rmid_free_lru); - -/** - * @rmid_limbo_count count of currently unused but (potentially) - * dirty RMIDs. - * This counts RMIDs that no one is currently using but that - * may have a occupancy value > intel_cqm_threshold. User can change - * the threshold occupancy value. - */ -static unsigned int rmid_limbo_count; +#include <asm/cpu_device_id.h> +#include <asm/msr.h> -/** - * @rmid_entry - The entry in the limbo and free lists. - */ -static struct rmid_entry *rmid_ptrs; +#include "internal.h" /* * Global boolean for rdt_monitor which is true if any @@ -58,16 +36,12 @@ bool rdt_mon_capable; */ unsigned int rdt_mon_features; -/* - * This is the threshold cache occupancy at which we will consider an - * RMID available for re-allocation. - */ -unsigned int resctrl_cqm_threshold; - #define CF(cf) ((unsigned long)(1048576 * (cf) + 0.5)) +static int snc_nodes_per_l3_cache = 1; + /* - * The correction factor table is documented in Documentation/x86/resctrl.rst. + * The correction factor table is documented in Documentation/filesystems/resctrl.rst. * If rmid > rmid threshold, MBM total and local values should be multiplied * by the correction factor. * @@ -116,6 +90,7 @@ static const struct mbm_correction_factor_table { }; static u32 mbm_cf_rmidthreshold __read_mostly = UINT_MAX; + static u64 mbm_cf __read_mostly; static inline u64 get_corrected_mbm_count(u32 rmid, unsigned long val) @@ -127,19 +102,45 @@ static inline u64 get_corrected_mbm_count(u32 rmid, unsigned long val) return val; } -static inline struct rmid_entry *__rmid_entry(u32 rmid) +/* + * When Sub-NUMA Cluster (SNC) mode is not enabled (as indicated by + * "snc_nodes_per_l3_cache == 1") no translation of the RMID value is + * needed. The physical RMID is the same as the logical RMID. + * + * On a platform with SNC mode enabled, Linux enables RMID sharing mode + * via MSR 0xCA0 (see the "RMID Sharing Mode" section in the "Intel + * Resource Director Technology Architecture Specification" for a full + * description of RMID sharing mode). + * + * In RMID sharing mode there are fewer "logical RMID" values available + * to accumulate data ("physical RMIDs" are divided evenly between SNC + * nodes that share an L3 cache). Linux creates an rdt_mon_domain for + * each SNC node. + * + * The value loaded into IA32_PQR_ASSOC is the "logical RMID". + * + * Data is collected independently on each SNC node and can be retrieved + * using the "physical RMID" value computed by this function and loaded + * into IA32_QM_EVTSEL. @cpu can be any CPU in the SNC node. + * + * The scope of the IA32_QM_EVTSEL and IA32_QM_CTR MSRs is at the L3 + * cache. So a "physical RMID" may be read from any CPU that shares + * the L3 cache with the desired SNC node, not just from a CPU in + * the specific SNC node. + */ +static int logical_rmid_to_physical_rmid(int cpu, int lrmid) { - struct rmid_entry *entry; + struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl; - entry = &rmid_ptrs[rmid]; - WARN_ON(entry->rmid != rmid); + if (snc_nodes_per_l3_cache == 1) + return lrmid; - return entry; + return lrmid + (cpu_to_node(cpu) % snc_nodes_per_l3_cache) * r->num_rmid; } -static u64 __rmid_read(u32 rmid, u32 eventid) +static int __rmid_read_phys(u32 prmid, enum resctrl_event_id eventid, u64 *val) { - u64 val; + u64 msr_val; /* * As per the SDM, when IA32_QM_EVTSEL.EvtID (bits 7:0) is configured @@ -149,132 +150,70 @@ static u64 __rmid_read(u32 rmid, u32 eventid) * IA32_QM_CTR.Error (bit 63) and IA32_QM_CTR.Unavailable (bit 62) * are error bits. */ - wrmsr(MSR_IA32_QM_EVTSEL, eventid, rmid); - rdmsrl(MSR_IA32_QM_CTR, val); - - return val; -} + wrmsr(MSR_IA32_QM_EVTSEL, eventid, prmid); + rdmsrq(MSR_IA32_QM_CTR, msr_val); -static bool rmid_dirty(struct rmid_entry *entry) -{ - u64 val = __rmid_read(entry->rmid, QOS_L3_OCCUP_EVENT_ID); + if (msr_val & RMID_VAL_ERROR) + return -EIO; + if (msr_val & RMID_VAL_UNAVAIL) + return -EINVAL; - return val >= resctrl_cqm_threshold; + *val = msr_val; + return 0; } -/* - * Check the RMIDs that are marked as busy for this domain. If the - * reported LLC occupancy is below the threshold clear the busy bit and - * decrement the count. If the busy count gets to zero on an RMID, we - * free the RMID - */ -void __check_limbo(struct rdt_domain *d, bool force_free) +static struct arch_mbm_state *get_arch_mbm_state(struct rdt_hw_mon_domain *hw_dom, + u32 rmid, + enum resctrl_event_id eventid) { - struct rmid_entry *entry; - struct rdt_resource *r; - u32 crmid = 1, nrmid; - - r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl; - - /* - * Skip RMID 0 and start from RMID 1 and check all the RMIDs that - * are marked as busy for occupancy < threshold. If the occupancy - * is less than the threshold decrement the busy counter of the - * RMID and move it to the free list when the counter reaches 0. - */ - for (;;) { - nrmid = find_next_bit(d->rmid_busy_llc, r->num_rmid, crmid); - if (nrmid >= r->num_rmid) - break; - - entry = __rmid_entry(nrmid); - if (force_free || !rmid_dirty(entry)) { - clear_bit(entry->rmid, d->rmid_busy_llc); - if (!--entry->busy) { - rmid_limbo_count--; - list_add_tail(&entry->list, &rmid_free_lru); - } - } - crmid = nrmid + 1; + switch (eventid) { + case QOS_L3_OCCUP_EVENT_ID: + return NULL; + case QOS_L3_MBM_TOTAL_EVENT_ID: + return &hw_dom->arch_mbm_total[rmid]; + case QOS_L3_MBM_LOCAL_EVENT_ID: + return &hw_dom->arch_mbm_local[rmid]; + default: + /* Never expect to get here */ + WARN_ON_ONCE(1); + return NULL; } } -bool has_busy_rmid(struct rdt_resource *r, struct rdt_domain *d) +void resctrl_arch_reset_rmid(struct rdt_resource *r, struct rdt_mon_domain *d, + u32 unused, u32 rmid, + enum resctrl_event_id eventid) { - return find_first_bit(d->rmid_busy_llc, r->num_rmid) != r->num_rmid; + struct rdt_hw_mon_domain *hw_dom = resctrl_to_arch_mon_dom(d); + int cpu = cpumask_any(&d->hdr.cpu_mask); + struct arch_mbm_state *am; + u32 prmid; + + am = get_arch_mbm_state(hw_dom, rmid, eventid); + if (am) { + memset(am, 0, sizeof(*am)); + + prmid = logical_rmid_to_physical_rmid(cpu, rmid); + /* Record any initial, non-zero count value. */ + __rmid_read_phys(prmid, eventid, &am->prev_msr); + } } /* - * As of now the RMIDs allocation is global. - * However we keep track of which packages the RMIDs - * are used to optimize the limbo list management. + * Assumes that hardware counters are also reset and thus that there is + * no need to record initial non-zero counts. */ -int alloc_rmid(void) +void resctrl_arch_reset_rmid_all(struct rdt_resource *r, struct rdt_mon_domain *d) { - struct rmid_entry *entry; + struct rdt_hw_mon_domain *hw_dom = resctrl_to_arch_mon_dom(d); - lockdep_assert_held(&rdtgroup_mutex); + if (resctrl_arch_is_mbm_total_enabled()) + memset(hw_dom->arch_mbm_total, 0, + sizeof(*hw_dom->arch_mbm_total) * r->num_rmid); - if (list_empty(&rmid_free_lru)) - return rmid_limbo_count ? -EBUSY : -ENOSPC; - - entry = list_first_entry(&rmid_free_lru, - struct rmid_entry, list); - list_del(&entry->list); - - return entry->rmid; -} - -static void add_rmid_to_limbo(struct rmid_entry *entry) -{ - struct rdt_resource *r; - struct rdt_domain *d; - int cpu; - u64 val; - - r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl; - - entry->busy = 0; - cpu = get_cpu(); - list_for_each_entry(d, &r->domains, list) { - if (cpumask_test_cpu(cpu, &d->cpu_mask)) { - val = __rmid_read(entry->rmid, QOS_L3_OCCUP_EVENT_ID); - if (val <= resctrl_cqm_threshold) - continue; - } - - /* - * For the first limbo RMID in the domain, - * setup up the limbo worker. - */ - if (!has_busy_rmid(r, d)) - cqm_setup_limbo_handler(d, CQM_LIMBOCHECK_INTERVAL); - set_bit(entry->rmid, d->rmid_busy_llc); - entry->busy++; - } - put_cpu(); - - if (entry->busy) - rmid_limbo_count++; - else - list_add_tail(&entry->list, &rmid_free_lru); -} - -void free_rmid(u32 rmid) -{ - struct rmid_entry *entry; - - if (!rmid) - return; - - lockdep_assert_held(&rdtgroup_mutex); - - entry = __rmid_entry(rmid); - - if (is_llc_occupancy_enabled()) - add_rmid_to_limbo(entry); - else - list_add_tail(&entry->list, &rmid_free_lru); + if (resctrl_arch_is_mbm_local_enabled()) + memset(hw_dom->arch_mbm_local, 0, + sizeof(*hw_dom->arch_mbm_local) * r->num_rmid); } static u64 mbm_overflow_count(u64 prev_msr, u64 cur_msr, unsigned int width) @@ -285,412 +224,134 @@ static u64 mbm_overflow_count(u64 prev_msr, u64 cur_msr, unsigned int width) return chunks >> shift; } -static u64 __mon_event_count(u32 rmid, struct rmid_read *rr) +int resctrl_arch_rmid_read(struct rdt_resource *r, struct rdt_mon_domain *d, + u32 unused, u32 rmid, enum resctrl_event_id eventid, + u64 *val, void *ignored) { - struct rdt_hw_resource *hw_res = resctrl_to_arch_res(rr->r); - struct mbm_state *m; - u64 chunks, tval; + struct rdt_hw_mon_domain *hw_dom = resctrl_to_arch_mon_dom(d); + struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r); + int cpu = cpumask_any(&d->hdr.cpu_mask); + struct arch_mbm_state *am; + u64 msr_val, chunks; + u32 prmid; + int ret; - tval = __rmid_read(rmid, rr->evtid); - if (tval & (RMID_VAL_ERROR | RMID_VAL_UNAVAIL)) { - return tval; - } - switch (rr->evtid) { - case QOS_L3_OCCUP_EVENT_ID: - rr->val += tval; - return 0; - case QOS_L3_MBM_TOTAL_EVENT_ID: - m = &rr->d->mbm_total[rmid]; - break; - case QOS_L3_MBM_LOCAL_EVENT_ID: - m = &rr->d->mbm_local[rmid]; - break; - default: - /* - * Code would never reach here because an invalid - * event id would fail the __rmid_read. - */ - return RMID_VAL_ERROR; - } + resctrl_arch_rmid_read_context_check(); - if (rr->first) { - memset(m, 0, sizeof(struct mbm_state)); - m->prev_bw_msr = m->prev_msr = tval; - return 0; - } + prmid = logical_rmid_to_physical_rmid(cpu, rmid); + ret = __rmid_read_phys(prmid, eventid, &msr_val); + if (ret) + return ret; - chunks = mbm_overflow_count(m->prev_msr, tval, hw_res->mbm_width); - m->chunks += chunks; - m->prev_msr = tval; + am = get_arch_mbm_state(hw_dom, rmid, eventid); + if (am) { + am->chunks += mbm_overflow_count(am->prev_msr, msr_val, + hw_res->mbm_width); + chunks = get_corrected_mbm_count(rmid, am->chunks); + am->prev_msr = msr_val; + } else { + chunks = msr_val; + } - rr->val += get_corrected_mbm_count(rmid, m->chunks); + *val = chunks * hw_res->mon_scale; return 0; } /* - * Supporting function to calculate the memory bandwidth - * and delta bandwidth in MBps. - */ -static void mbm_bw_count(u32 rmid, struct rmid_read *rr) -{ - struct rdt_hw_resource *hw_res = resctrl_to_arch_res(rr->r); - struct mbm_state *m = &rr->d->mbm_local[rmid]; - u64 tval, cur_bw, chunks; - - tval = __rmid_read(rmid, rr->evtid); - if (tval & (RMID_VAL_ERROR | RMID_VAL_UNAVAIL)) - return; - - chunks = mbm_overflow_count(m->prev_bw_msr, tval, hw_res->mbm_width); - cur_bw = (get_corrected_mbm_count(rmid, chunks) * hw_res->mon_scale) >> 20; - - if (m->delta_comp) - m->delta_bw = abs(cur_bw - m->prev_bw); - m->delta_comp = false; - m->prev_bw = cur_bw; - m->prev_bw_msr = tval; -} - -/* - * This is called via IPI to read the CQM/MBM counters - * on a domain. + * The power-on reset value of MSR_RMID_SNC_CONFIG is 0x1 + * which indicates that RMIDs are configured in legacy mode. + * This mode is incompatible with Linux resctrl semantics + * as RMIDs are partitioned between SNC nodes, which requires + * a user to know which RMID is allocated to a task. + * Clearing bit 0 reconfigures the RMID counters for use + * in RMID sharing mode. This mode is better for Linux. + * The RMID space is divided between all SNC nodes with the + * RMIDs renumbered to start from zero in each node when + * counting operations from tasks. Code to read the counters + * must adjust RMID counter numbers based on SNC node. See + * logical_rmid_to_physical_rmid() for code that does this. */ -void mon_event_count(void *info) +void arch_mon_domain_online(struct rdt_resource *r, struct rdt_mon_domain *d) { - struct rdtgroup *rdtgrp, *entry; - struct rmid_read *rr = info; - struct list_head *head; - u64 ret_val; - - rdtgrp = rr->rgrp; - - ret_val = __mon_event_count(rdtgrp->mon.rmid, rr); - - /* - * For Ctrl groups read data from child monitor groups and - * add them together. Count events which are read successfully. - * Discard the rmid_read's reporting errors. - */ - head = &rdtgrp->mon.crdtgrp_list; - - if (rdtgrp->type == RDTCTRL_GROUP) { - list_for_each_entry(entry, head, mon.crdtgrp_list) { - if (__mon_event_count(entry->mon.rmid, rr) == 0) - ret_val = 0; - } - } - - /* Report error if none of rmid_reads are successful */ - if (ret_val) - rr->val = ret_val; + if (snc_nodes_per_l3_cache > 1) + msr_clear_bit(MSR_RMID_SNC_CONFIG, 0); } -/* - * Feedback loop for MBA software controller (mba_sc) - * - * mba_sc is a feedback loop where we periodically read MBM counters and - * adjust the bandwidth percentage values via the IA32_MBA_THRTL_MSRs so - * that: - * - * current bandwidth(cur_bw) < user specified bandwidth(user_bw) - * - * This uses the MBM counters to measure the bandwidth and MBA throttle - * MSRs to control the bandwidth for a particular rdtgrp. It builds on the - * fact that resctrl rdtgroups have both monitoring and control. - * - * The frequency of the checks is 1s and we just tag along the MBM overflow - * timer. Having 1s interval makes the calculation of bandwidth simpler. - * - * Although MBA's goal is to restrict the bandwidth to a maximum, there may - * be a need to increase the bandwidth to avoid unnecessarily restricting - * the L2 <-> L3 traffic. - * - * Since MBA controls the L2 external bandwidth where as MBM measures the - * L3 external bandwidth the following sequence could lead to such a - * situation. - * - * Consider an rdtgroup which had high L3 <-> memory traffic in initial - * phases -> mba_sc kicks in and reduced bandwidth percentage values -> but - * after some time rdtgroup has mostly L2 <-> L3 traffic. - * - * In this case we may restrict the rdtgroup's L2 <-> L3 traffic as its - * throttle MSRs already have low percentage values. To avoid - * unnecessarily restricting such rdtgroups, we also increase the bandwidth. - */ -static void update_mba_bw(struct rdtgroup *rgrp, struct rdt_domain *dom_mbm) -{ - u32 closid, rmid, cur_msr, cur_msr_val, new_msr_val; - struct mbm_state *pmbm_data, *cmbm_data; - struct rdt_hw_resource *hw_r_mba; - struct rdt_hw_domain *hw_dom_mba; - u32 cur_bw, delta_bw, user_bw; - struct rdt_resource *r_mba; - struct rdt_domain *dom_mba; - struct list_head *head; - struct rdtgroup *entry; - - if (!is_mbm_local_enabled()) - return; - - hw_r_mba = &rdt_resources_all[RDT_RESOURCE_MBA]; - r_mba = &hw_r_mba->r_resctrl; - closid = rgrp->closid; - rmid = rgrp->mon.rmid; - pmbm_data = &dom_mbm->mbm_local[rmid]; - - dom_mba = get_domain_from_cpu(smp_processor_id(), r_mba); - if (!dom_mba) { - pr_warn_once("Failure to get domain for MBA update\n"); - return; - } - hw_dom_mba = resctrl_to_arch_dom(dom_mba); - - cur_bw = pmbm_data->prev_bw; - user_bw = resctrl_arch_get_config(r_mba, dom_mba, closid, CDP_NONE); - delta_bw = pmbm_data->delta_bw; - /* - * resctrl_arch_get_config() chooses the mbps/ctrl value to return - * based on is_mba_sc(). For now, reach into the hw_dom. - */ - cur_msr_val = hw_dom_mba->ctrl_val[closid]; - - /* - * For Ctrl groups read data from child monitor groups. - */ - head = &rgrp->mon.crdtgrp_list; - list_for_each_entry(entry, head, mon.crdtgrp_list) { - cmbm_data = &dom_mbm->mbm_local[entry->mon.rmid]; - cur_bw += cmbm_data->prev_bw; - delta_bw += cmbm_data->delta_bw; - } - - /* - * Scale up/down the bandwidth linearly for the ctrl group. The - * bandwidth step is the bandwidth granularity specified by the - * hardware. - * - * The delta_bw is used when increasing the bandwidth so that we - * dont alternately increase and decrease the control values - * continuously. - * - * For ex: consider cur_bw = 90MBps, user_bw = 100MBps and if - * bandwidth step is 20MBps(> user_bw - cur_bw), we would keep - * switching between 90 and 110 continuously if we only check - * cur_bw < user_bw. - */ - if (cur_msr_val > r_mba->membw.min_bw && user_bw < cur_bw) { - new_msr_val = cur_msr_val - r_mba->membw.bw_gran; - } else if (cur_msr_val < MAX_MBA_BW && - (user_bw > (cur_bw + delta_bw))) { - new_msr_val = cur_msr_val + r_mba->membw.bw_gran; - } else { - return; - } - - cur_msr = hw_r_mba->msr_base + closid; - wrmsrl(cur_msr, delay_bw_map(new_msr_val, r_mba)); - hw_dom_mba->ctrl_val[closid] = new_msr_val; - - /* - * Delta values are updated dynamically package wise for each - * rdtgrp every time the throttle MSR changes value. - * - * This is because (1)the increase in bandwidth is not perfectly - * linear and only "approximately" linear even when the hardware - * says it is linear.(2)Also since MBA is a core specific - * mechanism, the delta values vary based on number of cores used - * by the rdtgrp. - */ - pmbm_data->delta_comp = true; - list_for_each_entry(entry, head, mon.crdtgrp_list) { - cmbm_data = &dom_mbm->mbm_local[entry->mon.rmid]; - cmbm_data->delta_comp = true; - } -} - -static void mbm_update(struct rdt_resource *r, struct rdt_domain *d, int rmid) -{ - struct rmid_read rr; - - rr.first = false; - rr.r = r; - rr.d = d; - - /* - * This is protected from concurrent reads from user - * as both the user and we hold the global mutex. - */ - if (is_mbm_total_enabled()) { - rr.evtid = QOS_L3_MBM_TOTAL_EVENT_ID; - __mon_event_count(rmid, &rr); - } - if (is_mbm_local_enabled()) { - rr.evtid = QOS_L3_MBM_LOCAL_EVENT_ID; - __mon_event_count(rmid, &rr); - - /* - * Call the MBA software controller only for the - * control groups and when user has enabled - * the software controller explicitly. - */ - if (is_mba_sc(NULL)) - mbm_bw_count(rmid, &rr); - } -} +/* CPU models that support MSR_RMID_SNC_CONFIG */ +static const struct x86_cpu_id snc_cpu_ids[] __initconst = { + X86_MATCH_VFM(INTEL_ICELAKE_X, 0), + X86_MATCH_VFM(INTEL_SAPPHIRERAPIDS_X, 0), + X86_MATCH_VFM(INTEL_EMERALDRAPIDS_X, 0), + X86_MATCH_VFM(INTEL_GRANITERAPIDS_X, 0), + X86_MATCH_VFM(INTEL_ATOM_CRESTMONT_X, 0), + {} +}; /* - * Handler to scan the limbo list and move the RMIDs - * to free list whose occupancy < threshold_occupancy. + * There isn't a simple hardware bit that indicates whether a CPU is running + * in Sub-NUMA Cluster (SNC) mode. Infer the state by comparing the + * number of CPUs sharing the L3 cache with CPU0 to the number of CPUs in + * the same NUMA node as CPU0. + * It is not possible to accurately determine SNC state if the system is + * booted with a maxcpus=N parameter. That distorts the ratio of SNC nodes + * to L3 caches. It will be OK if system is booted with hyperthreading + * disabled (since this doesn't affect the ratio). */ -void cqm_handle_limbo(struct work_struct *work) -{ - unsigned long delay = msecs_to_jiffies(CQM_LIMBOCHECK_INTERVAL); - int cpu = smp_processor_id(); - struct rdt_resource *r; - struct rdt_domain *d; - - mutex_lock(&rdtgroup_mutex); - - r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl; - d = container_of(work, struct rdt_domain, cqm_limbo.work); - - __check_limbo(d, false); - - if (has_busy_rmid(r, d)) - schedule_delayed_work_on(cpu, &d->cqm_limbo, delay); - - mutex_unlock(&rdtgroup_mutex); -} - -void cqm_setup_limbo_handler(struct rdt_domain *dom, unsigned long delay_ms) +static __init int snc_get_config(void) { - unsigned long delay = msecs_to_jiffies(delay_ms); - int cpu; - - cpu = cpumask_any(&dom->cpu_mask); - dom->cqm_work_cpu = cpu; - - schedule_delayed_work_on(cpu, &dom->cqm_limbo, delay); -} - -void mbm_handle_overflow(struct work_struct *work) -{ - unsigned long delay = msecs_to_jiffies(MBM_OVERFLOW_INTERVAL); - struct rdtgroup *prgrp, *crgrp; - int cpu = smp_processor_id(); - struct list_head *head; - struct rdt_resource *r; - struct rdt_domain *d; - - mutex_lock(&rdtgroup_mutex); - - if (!static_branch_likely(&rdt_mon_enable_key)) - goto out_unlock; - - r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl; - d = container_of(work, struct rdt_domain, mbm_over.work); - - list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) { - mbm_update(r, d, prgrp->mon.rmid); - - head = &prgrp->mon.crdtgrp_list; - list_for_each_entry(crgrp, head, mon.crdtgrp_list) - mbm_update(r, d, crgrp->mon.rmid); - - if (is_mba_sc(NULL)) - update_mba_bw(prgrp, d); - } + struct cacheinfo *ci = get_cpu_cacheinfo_level(0, RESCTRL_L3_CACHE); + const cpumask_t *node0_cpumask; + int cpus_per_node, cpus_per_l3; + int ret; - schedule_delayed_work_on(cpu, &d->mbm_over, delay); + if (!x86_match_cpu(snc_cpu_ids) || !ci) + return 1; -out_unlock: - mutex_unlock(&rdtgroup_mutex); -} + cpus_read_lock(); + if (num_online_cpus() != num_present_cpus()) + pr_warn("Some CPUs offline, SNC detection may be incorrect\n"); + cpus_read_unlock(); -void mbm_setup_overflow_handler(struct rdt_domain *dom, unsigned long delay_ms) -{ - unsigned long delay = msecs_to_jiffies(delay_ms); - int cpu; + node0_cpumask = cpumask_of_node(cpu_to_node(0)); - if (!static_branch_likely(&rdt_mon_enable_key)) - return; - cpu = cpumask_any(&dom->cpu_mask); - dom->mbm_work_cpu = cpu; - schedule_delayed_work_on(cpu, &dom->mbm_over, delay); -} + cpus_per_node = cpumask_weight(node0_cpumask); + cpus_per_l3 = cpumask_weight(&ci->shared_cpu_map); -static int dom_data_init(struct rdt_resource *r) -{ - struct rmid_entry *entry = NULL; - int i, nr_rmids; + if (!cpus_per_node || !cpus_per_l3) + return 1; - nr_rmids = r->num_rmid; - rmid_ptrs = kcalloc(nr_rmids, sizeof(struct rmid_entry), GFP_KERNEL); - if (!rmid_ptrs) - return -ENOMEM; + ret = cpus_per_l3 / cpus_per_node; - for (i = 0; i < nr_rmids; i++) { - entry = &rmid_ptrs[i]; - INIT_LIST_HEAD(&entry->list); - - entry->rmid = i; - list_add_tail(&entry->list, &rmid_free_lru); + /* sanity check: Only valid results are 1, 2, 3, 4, 6 */ + switch (ret) { + case 1: + break; + case 2 ... 4: + case 6: + pr_info("Sub-NUMA Cluster mode detected with %d nodes per L3 cache\n", ret); + rdt_resources_all[RDT_RESOURCE_L3].r_resctrl.mon_scope = RESCTRL_L3_NODE; + break; + default: + pr_warn("Ignore improbable SNC node count %d\n", ret); + ret = 1; + break; } - /* - * RMID 0 is special and is always allocated. It's used for all - * tasks that are not monitored. - */ - entry = __rmid_entry(0); - list_del(&entry->list); - - return 0; + return ret; } -static struct mon_evt llc_occupancy_event = { - .name = "llc_occupancy", - .evtid = QOS_L3_OCCUP_EVENT_ID, -}; - -static struct mon_evt mbm_total_event = { - .name = "mbm_total_bytes", - .evtid = QOS_L3_MBM_TOTAL_EVENT_ID, -}; - -static struct mon_evt mbm_local_event = { - .name = "mbm_local_bytes", - .evtid = QOS_L3_MBM_LOCAL_EVENT_ID, -}; - -/* - * Initialize the event list for the resource. - * - * Note that MBM events are also part of RDT_RESOURCE_L3 resource - * because as per the SDM the total and local memory bandwidth - * are enumerated as part of L3 monitoring. - */ -static void l3_mon_evt_init(struct rdt_resource *r) -{ - INIT_LIST_HEAD(&r->evt_list); - - if (is_llc_occupancy_enabled()) - list_add_tail(&llc_occupancy_event.list, &r->evt_list); - if (is_mbm_total_enabled()) - list_add_tail(&mbm_total_event.list, &r->evt_list); - if (is_mbm_local_enabled()) - list_add_tail(&mbm_local_event.list, &r->evt_list); -} - -int rdt_get_mon_l3_config(struct rdt_resource *r) +int __init rdt_get_mon_l3_config(struct rdt_resource *r) { unsigned int mbm_offset = boot_cpu_data.x86_cache_mbm_width_offset; struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r); - unsigned int cl_size = boot_cpu_data.x86_cache_size; - int ret; + unsigned int threshold; + + snc_nodes_per_l3_cache = snc_get_config(); - hw_res->mon_scale = boot_cpu_data.x86_cache_occ_scale; - r->num_rmid = boot_cpu_data.x86_cache_max_rmid + 1; + resctrl_rmid_realloc_limit = boot_cpu_data.x86_cache_size * 1024; + hw_res->mon_scale = boot_cpu_data.x86_cache_occ_scale / snc_nodes_per_l3_cache; + r->num_rmid = (boot_cpu_data.x86_cache_max_rmid + 1) / snc_nodes_per_l3_cache; hw_res->mbm_width = MBM_CNTR_WIDTH_BASE; if (mbm_offset > 0 && mbm_offset <= MBM_CNTR_WIDTH_OFFSET_MAX) @@ -705,19 +366,24 @@ int rdt_get_mon_l3_config(struct rdt_resource *r) * * For a 35MB LLC and 56 RMIDs, this is ~1.8% of the LLC. */ - resctrl_cqm_threshold = cl_size * 1024 / r->num_rmid; + threshold = resctrl_rmid_realloc_limit / r->num_rmid; - /* h/w works in units of "boot_cpu_data.x86_cache_occ_scale" */ - resctrl_cqm_threshold /= hw_res->mon_scale; + /* + * Because num_rmid may not be a power of two, round the value + * to the nearest multiple of hw_res->mon_scale so it matches a + * value the hardware will measure. mon_scale may not be a power of 2. + */ + resctrl_rmid_realloc_threshold = resctrl_arch_round_mon_val(threshold); - ret = dom_data_init(r); - if (ret) - return ret; + if (rdt_cpu_has(X86_FEATURE_BMEC)) { + u32 eax, ebx, ecx, edx; - l3_mon_evt_init(r); + /* Detect list of bandwidth sources that can be tracked */ + cpuid_count(0x80000020, 3, &eax, &ebx, &ecx, &edx); + r->mbm_cfg_mask = ecx & MAX_EVT_CONFIG_BITS; + } r->mon_capable = true; - r->mon_enabled = true; return 0; } |