aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/drivers/accel/habanalabs/common/command_submission.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/accel/habanalabs/common/command_submission.c')
-rw-r--r--drivers/accel/habanalabs/common/command_submission.c3591
1 files changed, 3591 insertions, 0 deletions
diff --git a/drivers/accel/habanalabs/common/command_submission.c b/drivers/accel/habanalabs/common/command_submission.c
new file mode 100644
index 000000000000..8270db0a72a2
--- /dev/null
+++ b/drivers/accel/habanalabs/common/command_submission.c
@@ -0,0 +1,3591 @@
+// SPDX-License-Identifier: GPL-2.0
+
+/*
+ * Copyright 2016-2021 HabanaLabs, Ltd.
+ * All Rights Reserved.
+ */
+
+#include <uapi/drm/habanalabs_accel.h>
+#include "habanalabs.h"
+
+#include <linux/uaccess.h>
+#include <linux/slab.h>
+
+#define HL_CS_FLAGS_TYPE_MASK (HL_CS_FLAGS_SIGNAL | HL_CS_FLAGS_WAIT | \
+ HL_CS_FLAGS_COLLECTIVE_WAIT | HL_CS_FLAGS_RESERVE_SIGNALS_ONLY | \
+ HL_CS_FLAGS_UNRESERVE_SIGNALS_ONLY | HL_CS_FLAGS_ENGINE_CORE_COMMAND | \
+ HL_CS_FLAGS_FLUSH_PCI_HBW_WRITES)
+
+
+#define MAX_TS_ITER_NUM 10
+
+/**
+ * enum hl_cs_wait_status - cs wait status
+ * @CS_WAIT_STATUS_BUSY: cs was not completed yet
+ * @CS_WAIT_STATUS_COMPLETED: cs completed
+ * @CS_WAIT_STATUS_GONE: cs completed but fence is already gone
+ */
+enum hl_cs_wait_status {
+ CS_WAIT_STATUS_BUSY,
+ CS_WAIT_STATUS_COMPLETED,
+ CS_WAIT_STATUS_GONE
+};
+
+static void job_wq_completion(struct work_struct *work);
+static int _hl_cs_wait_ioctl(struct hl_device *hdev, struct hl_ctx *ctx, u64 timeout_us, u64 seq,
+ enum hl_cs_wait_status *status, s64 *timestamp);
+static void cs_do_release(struct kref *ref);
+
+static void hl_push_cs_outcome(struct hl_device *hdev,
+ struct hl_cs_outcome_store *outcome_store,
+ u64 seq, ktime_t ts, int error)
+{
+ struct hl_cs_outcome *node;
+ unsigned long flags;
+
+ /*
+ * CS outcome store supports the following operations:
+ * push outcome - store a recent CS outcome in the store
+ * pop outcome - retrieve a SPECIFIC (by seq) CS outcome from the store
+ * It uses 2 lists: used list and free list.
+ * It has a pre-allocated amount of nodes, each node stores
+ * a single CS outcome.
+ * Initially, all the nodes are in the free list.
+ * On push outcome, a node (any) is taken from the free list, its
+ * information is filled in, and the node is moved to the used list.
+ * It is possible, that there are no nodes left in the free list.
+ * In this case, we will lose some information about old outcomes. We
+ * will pop the OLDEST node from the used list, and make it free.
+ * On pop, the node is searched for in the used list (using a search
+ * index).
+ * If found, the node is then removed from the used list, and moved
+ * back to the free list. The outcome data that the node contained is
+ * returned back to the user.
+ */
+
+ spin_lock_irqsave(&outcome_store->db_lock, flags);
+
+ if (list_empty(&outcome_store->free_list)) {
+ node = list_last_entry(&outcome_store->used_list,
+ struct hl_cs_outcome, list_link);
+ hash_del(&node->map_link);
+ dev_dbg(hdev->dev, "CS %llu outcome was lost\n", node->seq);
+ } else {
+ node = list_last_entry(&outcome_store->free_list,
+ struct hl_cs_outcome, list_link);
+ }
+
+ list_del_init(&node->list_link);
+
+ node->seq = seq;
+ node->ts = ts;
+ node->error = error;
+
+ list_add(&node->list_link, &outcome_store->used_list);
+ hash_add(outcome_store->outcome_map, &node->map_link, node->seq);
+
+ spin_unlock_irqrestore(&outcome_store->db_lock, flags);
+}
+
+static bool hl_pop_cs_outcome(struct hl_cs_outcome_store *outcome_store,
+ u64 seq, ktime_t *ts, int *error)
+{
+ struct hl_cs_outcome *node;
+ unsigned long flags;
+
+ spin_lock_irqsave(&outcome_store->db_lock, flags);
+
+ hash_for_each_possible(outcome_store->outcome_map, node, map_link, seq)
+ if (node->seq == seq) {
+ *ts = node->ts;
+ *error = node->error;
+
+ hash_del(&node->map_link);
+ list_del_init(&node->list_link);
+ list_add(&node->list_link, &outcome_store->free_list);
+
+ spin_unlock_irqrestore(&outcome_store->db_lock, flags);
+
+ return true;
+ }
+
+ spin_unlock_irqrestore(&outcome_store->db_lock, flags);
+
+ return false;
+}
+
+static void hl_sob_reset(struct kref *ref)
+{
+ struct hl_hw_sob *hw_sob = container_of(ref, struct hl_hw_sob,
+ kref);
+ struct hl_device *hdev = hw_sob->hdev;
+
+ dev_dbg(hdev->dev, "reset sob id %u\n", hw_sob->sob_id);
+
+ hdev->asic_funcs->reset_sob(hdev, hw_sob);
+
+ hw_sob->need_reset = false;
+}
+
+void hl_sob_reset_error(struct kref *ref)
+{
+ struct hl_hw_sob *hw_sob = container_of(ref, struct hl_hw_sob,
+ kref);
+ struct hl_device *hdev = hw_sob->hdev;
+
+ dev_crit(hdev->dev,
+ "SOB release shouldn't be called here, q_idx: %d, sob_id: %d\n",
+ hw_sob->q_idx, hw_sob->sob_id);
+}
+
+void hw_sob_put(struct hl_hw_sob *hw_sob)
+{
+ if (hw_sob)
+ kref_put(&hw_sob->kref, hl_sob_reset);
+}
+
+static void hw_sob_put_err(struct hl_hw_sob *hw_sob)
+{
+ if (hw_sob)
+ kref_put(&hw_sob->kref, hl_sob_reset_error);
+}
+
+void hw_sob_get(struct hl_hw_sob *hw_sob)
+{
+ if (hw_sob)
+ kref_get(&hw_sob->kref);
+}
+
+/**
+ * hl_gen_sob_mask() - Generates a sob mask to be used in a monitor arm packet
+ * @sob_base: sob base id
+ * @sob_mask: sob user mask, each bit represents a sob offset from sob base
+ * @mask: generated mask
+ *
+ * Return: 0 if given parameters are valid
+ */
+int hl_gen_sob_mask(u16 sob_base, u8 sob_mask, u8 *mask)
+{
+ int i;
+
+ if (sob_mask == 0)
+ return -EINVAL;
+
+ if (sob_mask == 0x1) {
+ *mask = ~(1 << (sob_base & 0x7));
+ } else {
+ /* find msb in order to verify sob range is valid */
+ for (i = BITS_PER_BYTE - 1 ; i >= 0 ; i--)
+ if (BIT(i) & sob_mask)
+ break;
+
+ if (i > (HL_MAX_SOBS_PER_MONITOR - (sob_base & 0x7) - 1))
+ return -EINVAL;
+
+ *mask = ~sob_mask;
+ }
+
+ return 0;
+}
+
+static void hl_fence_release(struct kref *kref)
+{
+ struct hl_fence *fence =
+ container_of(kref, struct hl_fence, refcount);
+ struct hl_cs_compl *hl_cs_cmpl =
+ container_of(fence, struct hl_cs_compl, base_fence);
+
+ kfree(hl_cs_cmpl);
+}
+
+void hl_fence_put(struct hl_fence *fence)
+{
+ if (IS_ERR_OR_NULL(fence))
+ return;
+ kref_put(&fence->refcount, hl_fence_release);
+}
+
+void hl_fences_put(struct hl_fence **fence, int len)
+{
+ int i;
+
+ for (i = 0; i < len; i++, fence++)
+ hl_fence_put(*fence);
+}
+
+void hl_fence_get(struct hl_fence *fence)
+{
+ if (fence)
+ kref_get(&fence->refcount);
+}
+
+static void hl_fence_init(struct hl_fence *fence, u64 sequence)
+{
+ kref_init(&fence->refcount);
+ fence->cs_sequence = sequence;
+ fence->error = 0;
+ fence->timestamp = ktime_set(0, 0);
+ fence->mcs_handling_done = false;
+ init_completion(&fence->completion);
+}
+
+void cs_get(struct hl_cs *cs)
+{
+ kref_get(&cs->refcount);
+}
+
+static int cs_get_unless_zero(struct hl_cs *cs)
+{
+ return kref_get_unless_zero(&cs->refcount);
+}
+
+static void cs_put(struct hl_cs *cs)
+{
+ kref_put(&cs->refcount, cs_do_release);
+}
+
+static void cs_job_do_release(struct kref *ref)
+{
+ struct hl_cs_job *job = container_of(ref, struct hl_cs_job, refcount);
+
+ kfree(job);
+}
+
+static void hl_cs_job_put(struct hl_cs_job *job)
+{
+ kref_put(&job->refcount, cs_job_do_release);
+}
+
+bool cs_needs_completion(struct hl_cs *cs)
+{
+ /* In case this is a staged CS, only the last CS in sequence should
+ * get a completion, any non staged CS will always get a completion
+ */
+ if (cs->staged_cs && !cs->staged_last)
+ return false;
+
+ return true;
+}
+
+bool cs_needs_timeout(struct hl_cs *cs)
+{
+ /* In case this is a staged CS, only the first CS in sequence should
+ * get a timeout, any non staged CS will always get a timeout
+ */
+ if (cs->staged_cs && !cs->staged_first)
+ return false;
+
+ return true;
+}
+
+static bool is_cb_patched(struct hl_device *hdev, struct hl_cs_job *job)
+{
+ /*
+ * Patched CB is created for external queues jobs, and for H/W queues
+ * jobs if the user CB was allocated by driver and MMU is disabled.
+ */
+ return (job->queue_type == QUEUE_TYPE_EXT ||
+ (job->queue_type == QUEUE_TYPE_HW &&
+ job->is_kernel_allocated_cb &&
+ !hdev->mmu_enable));
+}
+
+/*
+ * cs_parser - parse the user command submission
+ *
+ * @hpriv : pointer to the private data of the fd
+ * @job : pointer to the job that holds the command submission info
+ *
+ * The function parses the command submission of the user. It calls the
+ * ASIC specific parser, which returns a list of memory blocks to send
+ * to the device as different command buffers
+ *
+ */
+static int cs_parser(struct hl_fpriv *hpriv, struct hl_cs_job *job)
+{
+ struct hl_device *hdev = hpriv->hdev;
+ struct hl_cs_parser parser;
+ int rc;
+
+ parser.ctx_id = job->cs->ctx->asid;
+ parser.cs_sequence = job->cs->sequence;
+ parser.job_id = job->id;
+
+ parser.hw_queue_id = job->hw_queue_id;
+ parser.job_userptr_list = &job->userptr_list;
+ parser.patched_cb = NULL;
+ parser.user_cb = job->user_cb;
+ parser.user_cb_size = job->user_cb_size;
+ parser.queue_type = job->queue_type;
+ parser.is_kernel_allocated_cb = job->is_kernel_allocated_cb;
+ job->patched_cb = NULL;
+ parser.completion = cs_needs_completion(job->cs);
+
+ rc = hdev->asic_funcs->cs_parser(hdev, &parser);
+
+ if (is_cb_patched(hdev, job)) {
+ if (!rc) {
+ job->patched_cb = parser.patched_cb;
+ job->job_cb_size = parser.patched_cb_size;
+ job->contains_dma_pkt = parser.contains_dma_pkt;
+ atomic_inc(&job->patched_cb->cs_cnt);
+ }
+
+ /*
+ * Whether the parsing worked or not, we don't need the
+ * original CB anymore because it was already parsed and
+ * won't be accessed again for this CS
+ */
+ atomic_dec(&job->user_cb->cs_cnt);
+ hl_cb_put(job->user_cb);
+ job->user_cb = NULL;
+ } else if (!rc) {
+ job->job_cb_size = job->user_cb_size;
+ }
+
+ return rc;
+}
+
+static void hl_complete_job(struct hl_device *hdev, struct hl_cs_job *job)
+{
+ struct hl_cs *cs = job->cs;
+
+ if (is_cb_patched(hdev, job)) {
+ hl_userptr_delete_list(hdev, &job->userptr_list);
+
+ /*
+ * We might arrive here from rollback and patched CB wasn't
+ * created, so we need to check it's not NULL
+ */
+ if (job->patched_cb) {
+ atomic_dec(&job->patched_cb->cs_cnt);
+ hl_cb_put(job->patched_cb);
+ }
+ }
+
+ /* For H/W queue jobs, if a user CB was allocated by driver and MMU is
+ * enabled, the user CB isn't released in cs_parser() and thus should be
+ * released here. This is also true for INT queues jobs which were
+ * allocated by driver.
+ */
+ if ((job->is_kernel_allocated_cb &&
+ ((job->queue_type == QUEUE_TYPE_HW && hdev->mmu_enable) ||
+ job->queue_type == QUEUE_TYPE_INT))) {
+ atomic_dec(&job->user_cb->cs_cnt);
+ hl_cb_put(job->user_cb);
+ }
+
+ /*
+ * This is the only place where there can be multiple threads
+ * modifying the list at the same time
+ */
+ spin_lock(&cs->job_lock);
+ list_del(&job->cs_node);
+ spin_unlock(&cs->job_lock);
+
+ hl_debugfs_remove_job(hdev, job);
+
+ /* We decrement reference only for a CS that gets completion
+ * because the reference was incremented only for this kind of CS
+ * right before it was scheduled.
+ *
+ * In staged submission, only the last CS marked as 'staged_last'
+ * gets completion, hence its release function will be called from here.
+ * As for all the rest CS's in the staged submission which do not get
+ * completion, their CS reference will be decremented by the
+ * 'staged_last' CS during the CS release flow.
+ * All relevant PQ CI counters will be incremented during the CS release
+ * flow by calling 'hl_hw_queue_update_ci'.
+ */
+ if (cs_needs_completion(cs) &&
+ (job->queue_type == QUEUE_TYPE_EXT || job->queue_type == QUEUE_TYPE_HW)) {
+
+ /* In CS based completions, the timestamp is already available,
+ * so no need to extract it from job
+ */
+ if (hdev->asic_prop.completion_mode == HL_COMPLETION_MODE_JOB)
+ cs->completion_timestamp = job->timestamp;
+
+ cs_put(cs);
+ }
+
+ hl_cs_job_put(job);
+}
+
+/*
+ * hl_staged_cs_find_first - locate the first CS in this staged submission
+ *
+ * @hdev: pointer to device structure
+ * @cs_seq: staged submission sequence number
+ *
+ * @note: This function must be called under 'hdev->cs_mirror_lock'
+ *
+ * Find and return a CS pointer with the given sequence
+ */
+struct hl_cs *hl_staged_cs_find_first(struct hl_device *hdev, u64 cs_seq)
+{
+ struct hl_cs *cs;
+
+ list_for_each_entry_reverse(cs, &hdev->cs_mirror_list, mirror_node)
+ if (cs->staged_cs && cs->staged_first &&
+ cs->sequence == cs_seq)
+ return cs;
+
+ return NULL;
+}
+
+/*
+ * is_staged_cs_last_exists - returns true if the last CS in sequence exists
+ *
+ * @hdev: pointer to device structure
+ * @cs: staged submission member
+ *
+ */
+bool is_staged_cs_last_exists(struct hl_device *hdev, struct hl_cs *cs)
+{
+ struct hl_cs *last_entry;
+
+ last_entry = list_last_entry(&cs->staged_cs_node, struct hl_cs,
+ staged_cs_node);
+
+ if (last_entry->staged_last)
+ return true;
+
+ return false;
+}
+
+/*
+ * staged_cs_get - get CS reference if this CS is a part of a staged CS
+ *
+ * @hdev: pointer to device structure
+ * @cs: current CS
+ * @cs_seq: staged submission sequence number
+ *
+ * Increment CS reference for every CS in this staged submission except for
+ * the CS which get completion.
+ */
+static void staged_cs_get(struct hl_device *hdev, struct hl_cs *cs)
+{
+ /* Only the last CS in this staged submission will get a completion.
+ * We must increment the reference for all other CS's in this
+ * staged submission.
+ * Once we get a completion we will release the whole staged submission.
+ */
+ if (!cs->staged_last)
+ cs_get(cs);
+}
+
+/*
+ * staged_cs_put - put a CS in case it is part of staged submission
+ *
+ * @hdev: pointer to device structure
+ * @cs: CS to put
+ *
+ * This function decrements a CS reference (for a non completion CS)
+ */
+static void staged_cs_put(struct hl_device *hdev, struct hl_cs *cs)
+{
+ /* We release all CS's in a staged submission except the last
+ * CS which we have never incremented its reference.
+ */
+ if (!cs_needs_completion(cs))
+ cs_put(cs);
+}
+
+static void cs_handle_tdr(struct hl_device *hdev, struct hl_cs *cs)
+{
+ struct hl_cs *next = NULL, *iter, *first_cs;
+
+ if (!cs_needs_timeout(cs))
+ return;
+
+ spin_lock(&hdev->cs_mirror_lock);
+
+ /* We need to handle tdr only once for the complete staged submission.
+ * Hence, we choose the CS that reaches this function first which is
+ * the CS marked as 'staged_last'.
+ * In case single staged cs was submitted which has both first and last
+ * indications, then "cs_find_first" below will return NULL, since we
+ * removed the cs node from the list before getting here,
+ * in such cases just continue with the cs to cancel it's TDR work.
+ */
+ if (cs->staged_cs && cs->staged_last) {
+ first_cs = hl_staged_cs_find_first(hdev, cs->staged_sequence);
+ if (first_cs)
+ cs = first_cs;
+ }
+
+ spin_unlock(&hdev->cs_mirror_lock);
+
+ /* Don't cancel TDR in case this CS was timedout because we might be
+ * running from the TDR context
+ */
+ if (cs->timedout || hdev->timeout_jiffies == MAX_SCHEDULE_TIMEOUT)
+ return;
+
+ if (cs->tdr_active)
+ cancel_delayed_work_sync(&cs->work_tdr);
+
+ spin_lock(&hdev->cs_mirror_lock);
+
+ /* queue TDR for next CS */
+ list_for_each_entry(iter, &hdev->cs_mirror_list, mirror_node)
+ if (cs_needs_timeout(iter)) {
+ next = iter;
+ break;
+ }
+
+ if (next && !next->tdr_active) {
+ next->tdr_active = true;
+ schedule_delayed_work(&next->work_tdr, next->timeout_jiffies);
+ }
+
+ spin_unlock(&hdev->cs_mirror_lock);
+}
+
+/*
+ * force_complete_multi_cs - complete all contexts that wait on multi-CS
+ *
+ * @hdev: pointer to habanalabs device structure
+ */
+static void force_complete_multi_cs(struct hl_device *hdev)
+{
+ int i;
+
+ for (i = 0; i < MULTI_CS_MAX_USER_CTX; i++) {
+ struct multi_cs_completion *mcs_compl;
+
+ mcs_compl = &hdev->multi_cs_completion[i];
+
+ spin_lock(&mcs_compl->lock);
+
+ if (!mcs_compl->used) {
+ spin_unlock(&mcs_compl->lock);
+ continue;
+ }
+
+ /* when calling force complete no context should be waiting on
+ * multi-cS.
+ * We are calling the function as a protection for such case
+ * to free any pending context and print error message
+ */
+ dev_err(hdev->dev,
+ "multi-CS completion context %d still waiting when calling force completion\n",
+ i);
+ complete_all(&mcs_compl->completion);
+ spin_unlock(&mcs_compl->lock);
+ }
+}
+
+/*
+ * complete_multi_cs - complete all waiting entities on multi-CS
+ *
+ * @hdev: pointer to habanalabs device structure
+ * @cs: CS structure
+ * The function signals a waiting entity that has an overlapping stream masters
+ * with the completed CS.
+ * For example:
+ * - a completed CS worked on stream master QID 4, multi CS completion
+ * is actively waiting on stream master QIDs 3, 5. don't send signal as no
+ * common stream master QID
+ * - a completed CS worked on stream master QID 4, multi CS completion
+ * is actively waiting on stream master QIDs 3, 4. send signal as stream
+ * master QID 4 is common
+ */
+static void complete_multi_cs(struct hl_device *hdev, struct hl_cs *cs)
+{
+ struct hl_fence *fence = cs->fence;
+ int i;
+
+ /* in case of multi CS check for completion only for the first CS */
+ if (cs->staged_cs && !cs->staged_first)
+ return;
+
+ for (i = 0; i < MULTI_CS_MAX_USER_CTX; i++) {
+ struct multi_cs_completion *mcs_compl;
+
+ mcs_compl = &hdev->multi_cs_completion[i];
+ if (!mcs_compl->used)
+ continue;
+
+ spin_lock(&mcs_compl->lock);
+
+ /*
+ * complete if:
+ * 1. still waiting for completion
+ * 2. the completed CS has at least one overlapping stream
+ * master with the stream masters in the completion
+ */
+ if (mcs_compl->used &&
+ (fence->stream_master_qid_map &
+ mcs_compl->stream_master_qid_map)) {
+ /* extract the timestamp only of first completed CS */
+ if (!mcs_compl->timestamp)
+ mcs_compl->timestamp = ktime_to_ns(fence->timestamp);
+
+ complete_all(&mcs_compl->completion);
+
+ /*
+ * Setting mcs_handling_done inside the lock ensures
+ * at least one fence have mcs_handling_done set to
+ * true before wait for mcs finish. This ensures at
+ * least one CS will be set as completed when polling
+ * mcs fences.
+ */
+ fence->mcs_handling_done = true;
+ }
+
+ spin_unlock(&mcs_compl->lock);
+ }
+ /* In case CS completed without mcs completion initialized */
+ fence->mcs_handling_done = true;
+}
+
+static inline void cs_release_sob_reset_handler(struct hl_device *hdev,
+ struct hl_cs *cs,
+ struct hl_cs_compl *hl_cs_cmpl)
+{
+ /* Skip this handler if the cs wasn't submitted, to avoid putting
+ * the hw_sob twice, since this case already handled at this point,
+ * also skip if the hw_sob pointer wasn't set.
+ */
+ if (!hl_cs_cmpl->hw_sob || !cs->submitted)
+ return;
+
+ spin_lock(&hl_cs_cmpl->lock);
+
+ /*
+ * we get refcount upon reservation of signals or signal/wait cs for the
+ * hw_sob object, and need to put it when the first staged cs
+ * (which cotains the encaps signals) or cs signal/wait is completed.
+ */
+ if ((hl_cs_cmpl->type == CS_TYPE_SIGNAL) ||
+ (hl_cs_cmpl->type == CS_TYPE_WAIT) ||
+ (hl_cs_cmpl->type == CS_TYPE_COLLECTIVE_WAIT) ||
+ (!!hl_cs_cmpl->encaps_signals)) {
+ dev_dbg(hdev->dev,
+ "CS 0x%llx type %d finished, sob_id: %d, sob_val: %u\n",
+ hl_cs_cmpl->cs_seq,
+ hl_cs_cmpl->type,
+ hl_cs_cmpl->hw_sob->sob_id,
+ hl_cs_cmpl->sob_val);
+
+ hw_sob_put(hl_cs_cmpl->hw_sob);
+
+ if (hl_cs_cmpl->type == CS_TYPE_COLLECTIVE_WAIT)
+ hdev->asic_funcs->reset_sob_group(hdev,
+ hl_cs_cmpl->sob_group);
+ }
+
+ spin_unlock(&hl_cs_cmpl->lock);
+}
+
+static void cs_do_release(struct kref *ref)
+{
+ struct hl_cs *cs = container_of(ref, struct hl_cs, refcount);
+ struct hl_device *hdev = cs->ctx->hdev;
+ struct hl_cs_job *job, *tmp;
+ struct hl_cs_compl *hl_cs_cmpl =
+ container_of(cs->fence, struct hl_cs_compl, base_fence);
+
+ cs->completed = true;
+
+ /*
+ * Although if we reached here it means that all external jobs have
+ * finished, because each one of them took refcnt to CS, we still
+ * need to go over the internal jobs and complete them. Otherwise, we
+ * will have leaked memory and what's worse, the CS object (and
+ * potentially the CTX object) could be released, while the JOB
+ * still holds a pointer to them (but no reference).
+ */
+ list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node)
+ hl_complete_job(hdev, job);
+
+ if (!cs->submitted) {
+ /*
+ * In case the wait for signal CS was submitted, the fence put
+ * occurs in init_signal_wait_cs() or collective_wait_init_cs()
+ * right before hanging on the PQ.
+ */
+ if (cs->type == CS_TYPE_WAIT ||
+ cs->type == CS_TYPE_COLLECTIVE_WAIT)
+ hl_fence_put(cs->signal_fence);
+
+ goto out;
+ }
+
+ /* Need to update CI for all queue jobs that does not get completion */
+ hl_hw_queue_update_ci(cs);
+
+ /* remove CS from CS mirror list */
+ spin_lock(&hdev->cs_mirror_lock);
+ list_del_init(&cs->mirror_node);
+ spin_unlock(&hdev->cs_mirror_lock);
+
+ cs_handle_tdr(hdev, cs);
+
+ if (cs->staged_cs) {
+ /* the completion CS decrements reference for the entire
+ * staged submission
+ */
+ if (cs->staged_last) {
+ struct hl_cs *staged_cs, *tmp_cs;
+
+ list_for_each_entry_safe(staged_cs, tmp_cs,
+ &cs->staged_cs_node, staged_cs_node)
+ staged_cs_put(hdev, staged_cs);
+ }
+
+ /* A staged CS will be a member in the list only after it
+ * was submitted. We used 'cs_mirror_lock' when inserting
+ * it to list so we will use it again when removing it
+ */
+ if (cs->submitted) {
+ spin_lock(&hdev->cs_mirror_lock);
+ list_del(&cs->staged_cs_node);
+ spin_unlock(&hdev->cs_mirror_lock);
+ }
+
+ /* decrement refcount to handle when first staged cs
+ * with encaps signals is completed.
+ */
+ if (hl_cs_cmpl->encaps_signals)
+ kref_put(&hl_cs_cmpl->encaps_sig_hdl->refcount,
+ hl_encaps_release_handle_and_put_ctx);
+ }
+
+ if ((cs->type == CS_TYPE_WAIT || cs->type == CS_TYPE_COLLECTIVE_WAIT) && cs->encaps_signals)
+ kref_put(&cs->encaps_sig_hdl->refcount, hl_encaps_release_handle_and_put_ctx);
+
+out:
+ /* Must be called before hl_ctx_put because inside we use ctx to get
+ * the device
+ */
+ hl_debugfs_remove_cs(cs);
+
+ hdev->shadow_cs_queue[cs->sequence & (hdev->asic_prop.max_pending_cs - 1)] = NULL;
+
+ /* We need to mark an error for not submitted because in that case
+ * the hl fence release flow is different. Mainly, we don't need
+ * to handle hw_sob for signal/wait
+ */
+ if (cs->timedout)
+ cs->fence->error = -ETIMEDOUT;
+ else if (cs->aborted)
+ cs->fence->error = -EIO;
+ else if (!cs->submitted)
+ cs->fence->error = -EBUSY;
+
+ if (unlikely(cs->skip_reset_on_timeout)) {
+ dev_err(hdev->dev,
+ "Command submission %llu completed after %llu (s)\n",
+ cs->sequence,
+ div_u64(jiffies - cs->submission_time_jiffies, HZ));
+ }
+
+ if (cs->timestamp) {
+ cs->fence->timestamp = cs->completion_timestamp;
+ hl_push_cs_outcome(hdev, &cs->ctx->outcome_store, cs->sequence,
+ cs->fence->timestamp, cs->fence->error);
+ }
+
+ hl_ctx_put(cs->ctx);
+
+ complete_all(&cs->fence->completion);
+ complete_multi_cs(hdev, cs);
+
+ cs_release_sob_reset_handler(hdev, cs, hl_cs_cmpl);
+
+ hl_fence_put(cs->fence);
+
+ kfree(cs->jobs_in_queue_cnt);
+ kfree(cs);
+}
+
+static void cs_timedout(struct work_struct *work)
+{
+ struct hl_device *hdev;
+ u64 event_mask = 0x0;
+ int rc;
+ struct hl_cs *cs = container_of(work, struct hl_cs,
+ work_tdr.work);
+ bool skip_reset_on_timeout = cs->skip_reset_on_timeout, device_reset = false;
+
+ rc = cs_get_unless_zero(cs);
+ if (!rc)
+ return;
+
+ if ((!cs->submitted) || (cs->completed)) {
+ cs_put(cs);
+ return;
+ }
+
+ hdev = cs->ctx->hdev;
+
+ if (likely(!skip_reset_on_timeout)) {
+ if (hdev->reset_on_lockup)
+ device_reset = true;
+ else
+ hdev->reset_info.needs_reset = true;
+
+ /* Mark the CS is timed out so we won't try to cancel its TDR */
+ cs->timedout = true;
+ }
+
+ /* Save only the first CS timeout parameters */
+ rc = atomic_cmpxchg(&hdev->captured_err_info.cs_timeout.write_enable, 1, 0);
+ if (rc) {
+ hdev->captured_err_info.cs_timeout.timestamp = ktime_get();
+ hdev->captured_err_info.cs_timeout.seq = cs->sequence;
+ event_mask |= HL_NOTIFIER_EVENT_CS_TIMEOUT;
+ }
+
+ switch (cs->type) {
+ case CS_TYPE_SIGNAL:
+ dev_err(hdev->dev,
+ "Signal command submission %llu has not finished in time!\n",
+ cs->sequence);
+ break;
+
+ case CS_TYPE_WAIT:
+ dev_err(hdev->dev,
+ "Wait command submission %llu has not finished in time!\n",
+ cs->sequence);
+ break;
+
+ case CS_TYPE_COLLECTIVE_WAIT:
+ dev_err(hdev->dev,
+ "Collective Wait command submission %llu has not finished in time!\n",
+ cs->sequence);
+ break;
+
+ default:
+ dev_err(hdev->dev,
+ "Command submission %llu has not finished in time!\n",
+ cs->sequence);
+ break;
+ }
+
+ rc = hl_state_dump(hdev);
+ if (rc)
+ dev_err(hdev->dev, "Error during system state dump %d\n", rc);
+
+ cs_put(cs);
+
+ if (device_reset) {
+ event_mask |= HL_NOTIFIER_EVENT_DEVICE_RESET;
+ hl_device_cond_reset(hdev, HL_DRV_RESET_TDR, event_mask);
+ } else if (event_mask) {
+ hl_notifier_event_send_all(hdev, event_mask);
+ }
+}
+
+static int allocate_cs(struct hl_device *hdev, struct hl_ctx *ctx,
+ enum hl_cs_type cs_type, u64 user_sequence,
+ struct hl_cs **cs_new, u32 flags, u32 timeout)
+{
+ struct hl_cs_counters_atomic *cntr;
+ struct hl_fence *other = NULL;
+ struct hl_cs_compl *cs_cmpl;
+ struct hl_cs *cs;
+ int rc;
+
+ cntr = &hdev->aggregated_cs_counters;
+
+ cs = kzalloc(sizeof(*cs), GFP_ATOMIC);
+ if (!cs)
+ cs = kzalloc(sizeof(*cs), GFP_KERNEL);
+
+ if (!cs) {
+ atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
+ atomic64_inc(&cntr->out_of_mem_drop_cnt);
+ return -ENOMEM;
+ }
+
+ /* increment refcnt for context */
+ hl_ctx_get(ctx);
+
+ cs->ctx = ctx;
+ cs->submitted = false;
+ cs->completed = false;
+ cs->type = cs_type;
+ cs->timestamp = !!(flags & HL_CS_FLAGS_TIMESTAMP);
+ cs->encaps_signals = !!(flags & HL_CS_FLAGS_ENCAP_SIGNALS);
+ cs->timeout_jiffies = timeout;
+ cs->skip_reset_on_timeout =
+ hdev->reset_info.skip_reset_on_timeout ||
+ !!(flags & HL_CS_FLAGS_SKIP_RESET_ON_TIMEOUT);
+ cs->submission_time_jiffies = jiffies;
+ INIT_LIST_HEAD(&cs->job_list);
+ INIT_DELAYED_WORK(&cs->work_tdr, cs_timedout);
+ kref_init(&cs->refcount);
+ spin_lock_init(&cs->job_lock);
+
+ cs_cmpl = kzalloc(sizeof(*cs_cmpl), GFP_ATOMIC);
+ if (!cs_cmpl)
+ cs_cmpl = kzalloc(sizeof(*cs_cmpl), GFP_KERNEL);
+
+ if (!cs_cmpl) {
+ atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
+ atomic64_inc(&cntr->out_of_mem_drop_cnt);
+ rc = -ENOMEM;
+ goto free_cs;
+ }
+
+ cs->jobs_in_queue_cnt = kcalloc(hdev->asic_prop.max_queues,
+ sizeof(*cs->jobs_in_queue_cnt), GFP_ATOMIC);
+ if (!cs->jobs_in_queue_cnt)
+ cs->jobs_in_queue_cnt = kcalloc(hdev->asic_prop.max_queues,
+ sizeof(*cs->jobs_in_queue_cnt), GFP_KERNEL);
+
+ if (!cs->jobs_in_queue_cnt) {
+ atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
+ atomic64_inc(&cntr->out_of_mem_drop_cnt);
+ rc = -ENOMEM;
+ goto free_cs_cmpl;
+ }
+
+ cs_cmpl->hdev = hdev;
+ cs_cmpl->type = cs->type;
+ spin_lock_init(&cs_cmpl->lock);
+ cs->fence = &cs_cmpl->base_fence;
+
+ spin_lock(&ctx->cs_lock);
+
+ cs_cmpl->cs_seq = ctx->cs_sequence;
+ other = ctx->cs_pending[cs_cmpl->cs_seq &
+ (hdev->asic_prop.max_pending_cs - 1)];
+
+ if (other && !completion_done(&other->completion)) {
+ /* If the following statement is true, it means we have reached
+ * a point in which only part of the staged submission was
+ * submitted and we don't have enough room in the 'cs_pending'
+ * array for the rest of the submission.
+ * This causes a deadlock because this CS will never be
+ * completed as it depends on future CS's for completion.
+ */
+ if (other->cs_sequence == user_sequence)
+ dev_crit_ratelimited(hdev->dev,
+ "Staged CS %llu deadlock due to lack of resources",
+ user_sequence);
+
+ dev_dbg_ratelimited(hdev->dev,
+ "Rejecting CS because of too many in-flights CS\n");
+ atomic64_inc(&ctx->cs_counters.max_cs_in_flight_drop_cnt);
+ atomic64_inc(&cntr->max_cs_in_flight_drop_cnt);
+ rc = -EAGAIN;
+ goto free_fence;
+ }
+
+ /* init hl_fence */
+ hl_fence_init(&cs_cmpl->base_fence, cs_cmpl->cs_seq);
+
+ cs->sequence = cs_cmpl->cs_seq;
+
+ ctx->cs_pending[cs_cmpl->cs_seq &
+ (hdev->asic_prop.max_pending_cs - 1)] =
+ &cs_cmpl->base_fence;
+ ctx->cs_sequence++;
+
+ hl_fence_get(&cs_cmpl->base_fence);
+
+ hl_fence_put(other);
+
+ spin_unlock(&ctx->cs_lock);
+
+ *cs_new = cs;
+
+ return 0;
+
+free_fence:
+ spin_unlock(&ctx->cs_lock);
+ kfree(cs->jobs_in_queue_cnt);
+free_cs_cmpl:
+ kfree(cs_cmpl);
+free_cs:
+ kfree(cs);
+ hl_ctx_put(ctx);
+ return rc;
+}
+
+static void cs_rollback(struct hl_device *hdev, struct hl_cs *cs)
+{
+ struct hl_cs_job *job, *tmp;
+
+ staged_cs_put(hdev, cs);
+
+ list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node)
+ hl_complete_job(hdev, job);
+}
+
+/*
+ * release_reserved_encaps_signals() - release reserved encapsulated signals.
+ * @hdev: pointer to habanalabs device structure
+ *
+ * Release reserved encapsulated signals which weren't un-reserved, or for which a CS with
+ * encapsulated signals wasn't submitted and thus weren't released as part of CS roll-back.
+ * For these signals need also to put the refcount of the H/W SOB which was taken at the
+ * reservation.
+ */
+static void release_reserved_encaps_signals(struct hl_device *hdev)
+{
+ struct hl_ctx *ctx = hl_get_compute_ctx(hdev);
+ struct hl_cs_encaps_sig_handle *handle;
+ struct hl_encaps_signals_mgr *mgr;
+ u32 id;
+
+ if (!ctx)
+ return;
+
+ mgr = &ctx->sig_mgr;
+
+ idr_for_each_entry(&mgr->handles, handle, id)
+ if (handle->cs_seq == ULLONG_MAX)
+ kref_put(&handle->refcount, hl_encaps_release_handle_and_put_sob_ctx);
+
+ hl_ctx_put(ctx);
+}
+
+void hl_cs_rollback_all(struct hl_device *hdev, bool skip_wq_flush)
+{
+ int i;
+ struct hl_cs *cs, *tmp;
+
+ if (!skip_wq_flush) {
+ flush_workqueue(hdev->ts_free_obj_wq);
+
+ /* flush all completions before iterating over the CS mirror list in
+ * order to avoid a race with the release functions
+ */
+ for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++)
+ flush_workqueue(hdev->cq_wq[i]);
+
+ flush_workqueue(hdev->cs_cmplt_wq);
+ }
+
+ /* Make sure we don't have leftovers in the CS mirror list */
+ list_for_each_entry_safe(cs, tmp, &hdev->cs_mirror_list, mirror_node) {
+ cs_get(cs);
+ cs->aborted = true;
+ dev_warn_ratelimited(hdev->dev, "Killing CS %d.%llu\n",
+ cs->ctx->asid, cs->sequence);
+ cs_rollback(hdev, cs);
+ cs_put(cs);
+ }
+
+ force_complete_multi_cs(hdev);
+
+ release_reserved_encaps_signals(hdev);
+}
+
+static void
+wake_pending_user_interrupt_threads(struct hl_user_interrupt *interrupt)
+{
+ struct hl_user_pending_interrupt *pend, *temp;
+ unsigned long flags;
+
+ spin_lock_irqsave(&interrupt->wait_list_lock, flags);
+ list_for_each_entry_safe(pend, temp, &interrupt->wait_list_head, wait_list_node) {
+ if (pend->ts_reg_info.buf) {
+ list_del(&pend->wait_list_node);
+ hl_mmap_mem_buf_put(pend->ts_reg_info.buf);
+ hl_cb_put(pend->ts_reg_info.cq_cb);
+ } else {
+ pend->fence.error = -EIO;
+ complete_all(&pend->fence.completion);
+ }
+ }
+ spin_unlock_irqrestore(&interrupt->wait_list_lock, flags);
+}
+
+void hl_release_pending_user_interrupts(struct hl_device *hdev)
+{
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ struct hl_user_interrupt *interrupt;
+ int i;
+
+ if (!prop->user_interrupt_count)
+ return;
+
+ /* We iterate through the user interrupt requests and waking up all
+ * user threads waiting for interrupt completion. We iterate the
+ * list under a lock, this is why all user threads, once awake,
+ * will wait on the same lock and will release the waiting object upon
+ * unlock.
+ */
+
+ for (i = 0 ; i < prop->user_interrupt_count ; i++) {
+ interrupt = &hdev->user_interrupt[i];
+ wake_pending_user_interrupt_threads(interrupt);
+ }
+
+ interrupt = &hdev->common_user_cq_interrupt;
+ wake_pending_user_interrupt_threads(interrupt);
+
+ interrupt = &hdev->common_decoder_interrupt;
+ wake_pending_user_interrupt_threads(interrupt);
+}
+
+static void force_complete_cs(struct hl_device *hdev)
+{
+ struct hl_cs *cs;
+
+ spin_lock(&hdev->cs_mirror_lock);
+
+ list_for_each_entry(cs, &hdev->cs_mirror_list, mirror_node) {
+ cs->fence->error = -EIO;
+ complete_all(&cs->fence->completion);
+ }
+
+ spin_unlock(&hdev->cs_mirror_lock);
+}
+
+void hl_abort_waitings_for_completion(struct hl_device *hdev)
+{
+ force_complete_cs(hdev);
+ force_complete_multi_cs(hdev);
+ hl_release_pending_user_interrupts(hdev);
+}
+
+static void job_wq_completion(struct work_struct *work)
+{
+ struct hl_cs_job *job = container_of(work, struct hl_cs_job,
+ finish_work);
+ struct hl_cs *cs = job->cs;
+ struct hl_device *hdev = cs->ctx->hdev;
+
+ /* job is no longer needed */
+ hl_complete_job(hdev, job);
+}
+
+static void cs_completion(struct work_struct *work)
+{
+ struct hl_cs *cs = container_of(work, struct hl_cs, finish_work);
+ struct hl_device *hdev = cs->ctx->hdev;
+ struct hl_cs_job *job, *tmp;
+
+ list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node)
+ hl_complete_job(hdev, job);
+}
+
+static int validate_queue_index(struct hl_device *hdev,
+ struct hl_cs_chunk *chunk,
+ enum hl_queue_type *queue_type,
+ bool *is_kernel_allocated_cb)
+{
+ struct asic_fixed_properties *asic = &hdev->asic_prop;
+ struct hw_queue_properties *hw_queue_prop;
+
+ /* This must be checked here to prevent out-of-bounds access to
+ * hw_queues_props array
+ */
+ if (chunk->queue_index >= asic->max_queues) {
+ dev_err(hdev->dev, "Queue index %d is invalid\n",
+ chunk->queue_index);
+ return -EINVAL;
+ }
+
+ hw_queue_prop = &asic->hw_queues_props[chunk->queue_index];
+
+ if (hw_queue_prop->type == QUEUE_TYPE_NA) {
+ dev_err(hdev->dev, "Queue index %d is not applicable\n",
+ chunk->queue_index);
+ return -EINVAL;
+ }
+
+ if (hw_queue_prop->binned) {
+ dev_err(hdev->dev, "Queue index %d is binned out\n",
+ chunk->queue_index);
+ return -EINVAL;
+ }
+
+ if (hw_queue_prop->driver_only) {
+ dev_err(hdev->dev,
+ "Queue index %d is restricted for the kernel driver\n",
+ chunk->queue_index);
+ return -EINVAL;
+ }
+
+ /* When hw queue type isn't QUEUE_TYPE_HW,
+ * USER_ALLOC_CB flag shall be referred as "don't care".
+ */
+ if (hw_queue_prop->type == QUEUE_TYPE_HW) {
+ if (chunk->cs_chunk_flags & HL_CS_CHUNK_FLAGS_USER_ALLOC_CB) {
+ if (!(hw_queue_prop->cb_alloc_flags & CB_ALLOC_USER)) {
+ dev_err(hdev->dev,
+ "Queue index %d doesn't support user CB\n",
+ chunk->queue_index);
+ return -EINVAL;
+ }
+
+ *is_kernel_allocated_cb = false;
+ } else {
+ if (!(hw_queue_prop->cb_alloc_flags &
+ CB_ALLOC_KERNEL)) {
+ dev_err(hdev->dev,
+ "Queue index %d doesn't support kernel CB\n",
+ chunk->queue_index);
+ return -EINVAL;
+ }
+
+ *is_kernel_allocated_cb = true;
+ }
+ } else {
+ *is_kernel_allocated_cb = !!(hw_queue_prop->cb_alloc_flags
+ & CB_ALLOC_KERNEL);
+ }
+
+ *queue_type = hw_queue_prop->type;
+ return 0;
+}
+
+static struct hl_cb *get_cb_from_cs_chunk(struct hl_device *hdev,
+ struct hl_mem_mgr *mmg,
+ struct hl_cs_chunk *chunk)
+{
+ struct hl_cb *cb;
+
+ cb = hl_cb_get(mmg, chunk->cb_handle);
+ if (!cb) {
+ dev_err(hdev->dev, "CB handle 0x%llx invalid\n", chunk->cb_handle);
+ return NULL;
+ }
+
+ if ((chunk->cb_size < 8) || (chunk->cb_size > cb->size)) {
+ dev_err(hdev->dev, "CB size %u invalid\n", chunk->cb_size);
+ goto release_cb;
+ }
+
+ atomic_inc(&cb->cs_cnt);
+
+ return cb;
+
+release_cb:
+ hl_cb_put(cb);
+ return NULL;
+}
+
+struct hl_cs_job *hl_cs_allocate_job(struct hl_device *hdev,
+ enum hl_queue_type queue_type, bool is_kernel_allocated_cb)
+{
+ struct hl_cs_job *job;
+
+ job = kzalloc(sizeof(*job), GFP_ATOMIC);
+ if (!job)
+ job = kzalloc(sizeof(*job), GFP_KERNEL);
+
+ if (!job)
+ return NULL;
+
+ kref_init(&job->refcount);
+ job->queue_type = queue_type;
+ job->is_kernel_allocated_cb = is_kernel_allocated_cb;
+
+ if (is_cb_patched(hdev, job))
+ INIT_LIST_HEAD(&job->userptr_list);
+
+ if (job->queue_type == QUEUE_TYPE_EXT)
+ INIT_WORK(&job->finish_work, job_wq_completion);
+
+ return job;
+}
+
+static enum hl_cs_type hl_cs_get_cs_type(u32 cs_type_flags)
+{
+ if (cs_type_flags & HL_CS_FLAGS_SIGNAL)
+ return CS_TYPE_SIGNAL;
+ else if (cs_type_flags & HL_CS_FLAGS_WAIT)
+ return CS_TYPE_WAIT;
+ else if (cs_type_flags & HL_CS_FLAGS_COLLECTIVE_WAIT)
+ return CS_TYPE_COLLECTIVE_WAIT;
+ else if (cs_type_flags & HL_CS_FLAGS_RESERVE_SIGNALS_ONLY)
+ return CS_RESERVE_SIGNALS;
+ else if (cs_type_flags & HL_CS_FLAGS_UNRESERVE_SIGNALS_ONLY)
+ return CS_UNRESERVE_SIGNALS;
+ else if (cs_type_flags & HL_CS_FLAGS_ENGINE_CORE_COMMAND)
+ return CS_TYPE_ENGINE_CORE;
+ else if (cs_type_flags & HL_CS_FLAGS_FLUSH_PCI_HBW_WRITES)
+ return CS_TYPE_FLUSH_PCI_HBW_WRITES;
+ else
+ return CS_TYPE_DEFAULT;
+}
+
+static int hl_cs_sanity_checks(struct hl_fpriv *hpriv, union hl_cs_args *args)
+{
+ struct hl_device *hdev = hpriv->hdev;
+ struct hl_ctx *ctx = hpriv->ctx;
+ u32 cs_type_flags, num_chunks;
+ enum hl_device_status status;
+ enum hl_cs_type cs_type;
+ bool is_sync_stream;
+ int i;
+
+ for (i = 0 ; i < sizeof(args->in.pad) ; i++)
+ if (args->in.pad[i]) {
+ dev_dbg(hdev->dev, "Padding bytes must be 0\n");
+ return -EINVAL;
+ }
+
+ if (!hl_device_operational(hdev, &status)) {
+ return -EBUSY;
+ }
+
+ if ((args->in.cs_flags & HL_CS_FLAGS_STAGED_SUBMISSION) &&
+ !hdev->supports_staged_submission) {
+ dev_err(hdev->dev, "staged submission not supported");
+ return -EPERM;
+ }
+
+ cs_type_flags = args->in.cs_flags & HL_CS_FLAGS_TYPE_MASK;
+
+ if (unlikely(cs_type_flags && !is_power_of_2(cs_type_flags))) {
+ dev_err(hdev->dev,
+ "CS type flags are mutually exclusive, context %d\n",
+ ctx->asid);
+ return -EINVAL;
+ }
+
+ cs_type = hl_cs_get_cs_type(cs_type_flags);
+ num_chunks = args->in.num_chunks_execute;
+
+ is_sync_stream = (cs_type == CS_TYPE_SIGNAL || cs_type == CS_TYPE_WAIT ||
+ cs_type == CS_TYPE_COLLECTIVE_WAIT);
+
+ if (unlikely(is_sync_stream && !hdev->supports_sync_stream)) {
+ dev_err(hdev->dev, "Sync stream CS is not supported\n");
+ return -EINVAL;
+ }
+
+ if (cs_type == CS_TYPE_DEFAULT) {
+ if (!num_chunks) {
+ dev_err(hdev->dev, "Got execute CS with 0 chunks, context %d\n", ctx->asid);
+ return -EINVAL;
+ }
+ } else if (is_sync_stream && num_chunks != 1) {
+ dev_err(hdev->dev,
+ "Sync stream CS mandates one chunk only, context %d\n",
+ ctx->asid);
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+static int hl_cs_copy_chunk_array(struct hl_device *hdev,
+ struct hl_cs_chunk **cs_chunk_array,
+ void __user *chunks, u32 num_chunks,
+ struct hl_ctx *ctx)
+{
+ u32 size_to_copy;
+
+ if (num_chunks > HL_MAX_JOBS_PER_CS) {
+ atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
+ atomic64_inc(&hdev->aggregated_cs_counters.validation_drop_cnt);
+ dev_err(hdev->dev,
+ "Number of chunks can NOT be larger than %d\n",
+ HL_MAX_JOBS_PER_CS);
+ return -EINVAL;
+ }
+
+ *cs_chunk_array = kmalloc_array(num_chunks, sizeof(**cs_chunk_array),
+ GFP_ATOMIC);
+ if (!*cs_chunk_array)
+ *cs_chunk_array = kmalloc_array(num_chunks,
+ sizeof(**cs_chunk_array), GFP_KERNEL);
+ if (!*cs_chunk_array) {
+ atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
+ atomic64_inc(&hdev->aggregated_cs_counters.out_of_mem_drop_cnt);
+ return -ENOMEM;
+ }
+
+ size_to_copy = num_chunks * sizeof(struct hl_cs_chunk);
+ if (copy_from_user(*cs_chunk_array, chunks, size_to_copy)) {
+ atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
+ atomic64_inc(&hdev->aggregated_cs_counters.validation_drop_cnt);
+ dev_err(hdev->dev, "Failed to copy cs chunk array from user\n");
+ kfree(*cs_chunk_array);
+ return -EFAULT;
+ }
+
+ return 0;
+}
+
+static int cs_staged_submission(struct hl_device *hdev, struct hl_cs *cs,
+ u64 sequence, u32 flags,
+ u32 encaps_signal_handle)
+{
+ if (!(flags & HL_CS_FLAGS_STAGED_SUBMISSION))
+ return 0;
+
+ cs->staged_last = !!(flags & HL_CS_FLAGS_STAGED_SUBMISSION_LAST);
+ cs->staged_first = !!(flags & HL_CS_FLAGS_STAGED_SUBMISSION_FIRST);
+
+ if (cs->staged_first) {
+ /* Staged CS sequence is the first CS sequence */
+ INIT_LIST_HEAD(&cs->staged_cs_node);
+ cs->staged_sequence = cs->sequence;
+
+ if (cs->encaps_signals)
+ cs->encaps_sig_hdl_id = encaps_signal_handle;
+ } else {
+ /* User sequence will be validated in 'hl_hw_queue_schedule_cs'
+ * under the cs_mirror_lock
+ */
+ cs->staged_sequence = sequence;
+ }
+
+ /* Increment CS reference if needed */
+ staged_cs_get(hdev, cs);
+
+ cs->staged_cs = true;
+
+ return 0;
+}
+
+static u32 get_stream_master_qid_mask(struct hl_device *hdev, u32 qid)
+{
+ int i;
+
+ for (i = 0; i < hdev->stream_master_qid_arr_size; i++)
+ if (qid == hdev->stream_master_qid_arr[i])
+ return BIT(i);
+
+ return 0;
+}
+
+static int cs_ioctl_default(struct hl_fpriv *hpriv, void __user *chunks,
+ u32 num_chunks, u64 *cs_seq, u32 flags,
+ u32 encaps_signals_handle, u32 timeout,
+ u16 *signal_initial_sob_count)
+{
+ bool staged_mid, int_queues_only = true, using_hw_queues = false;
+ struct hl_device *hdev = hpriv->hdev;
+ struct hl_cs_chunk *cs_chunk_array;
+ struct hl_cs_counters_atomic *cntr;
+ struct hl_ctx *ctx = hpriv->ctx;
+ struct hl_cs_job *job;
+ struct hl_cs *cs;
+ struct hl_cb *cb;
+ u64 user_sequence;
+ u8 stream_master_qid_map = 0;
+ int rc, i;
+
+ cntr = &hdev->aggregated_cs_counters;
+ user_sequence = *cs_seq;
+ *cs_seq = ULLONG_MAX;
+
+ rc = hl_cs_copy_chunk_array(hdev, &cs_chunk_array, chunks, num_chunks,
+ hpriv->ctx);
+ if (rc)
+ goto out;
+
+ if ((flags & HL_CS_FLAGS_STAGED_SUBMISSION) &&
+ !(flags & HL_CS_FLAGS_STAGED_SUBMISSION_FIRST))
+ staged_mid = true;
+ else
+ staged_mid = false;
+
+ rc = allocate_cs(hdev, hpriv->ctx, CS_TYPE_DEFAULT,
+ staged_mid ? user_sequence : ULLONG_MAX, &cs, flags,
+ timeout);
+ if (rc)
+ goto free_cs_chunk_array;
+
+ *cs_seq = cs->sequence;
+
+ hl_debugfs_add_cs(cs);
+
+ rc = cs_staged_submission(hdev, cs, user_sequence, flags,
+ encaps_signals_handle);
+ if (rc)
+ goto free_cs_object;
+
+ /* If this is a staged submission we must return the staged sequence
+ * rather than the internal CS sequence
+ */
+ if (cs->staged_cs)
+ *cs_seq = cs->staged_sequence;
+
+ /* Validate ALL the CS chunks before submitting the CS */
+ for (i = 0 ; i < num_chunks ; i++) {
+ struct hl_cs_chunk *chunk = &cs_chunk_array[i];
+ enum hl_queue_type queue_type;
+ bool is_kernel_allocated_cb;
+
+ rc = validate_queue_index(hdev, chunk, &queue_type,
+ &is_kernel_allocated_cb);
+ if (rc) {
+ atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
+ atomic64_inc(&cntr->validation_drop_cnt);
+ goto free_cs_object;
+ }
+
+ if (is_kernel_allocated_cb) {
+ cb = get_cb_from_cs_chunk(hdev, &hpriv->mem_mgr, chunk);
+ if (!cb) {
+ atomic64_inc(
+ &ctx->cs_counters.validation_drop_cnt);
+ atomic64_inc(&cntr->validation_drop_cnt);
+ rc = -EINVAL;
+ goto free_cs_object;
+ }
+ } else {
+ cb = (struct hl_cb *) (uintptr_t) chunk->cb_handle;
+ }
+
+ if (queue_type == QUEUE_TYPE_EXT ||
+ queue_type == QUEUE_TYPE_HW) {
+ int_queues_only = false;
+
+ /*
+ * store which stream are being used for external/HW
+ * queues of this CS
+ */
+ if (hdev->supports_wait_for_multi_cs)
+ stream_master_qid_map |=
+ get_stream_master_qid_mask(hdev,
+ chunk->queue_index);
+ }
+
+ if (queue_type == QUEUE_TYPE_HW)
+ using_hw_queues = true;
+
+ job = hl_cs_allocate_job(hdev, queue_type,
+ is_kernel_allocated_cb);
+ if (!job) {
+ atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
+ atomic64_inc(&cntr->out_of_mem_drop_cnt);
+ dev_err(hdev->dev, "Failed to allocate a new job\n");
+ rc = -ENOMEM;
+ if (is_kernel_allocated_cb)
+ goto release_cb;
+
+ goto free_cs_object;
+ }
+
+ job->id = i + 1;
+ job->cs = cs;
+ job->user_cb = cb;
+ job->user_cb_size = chunk->cb_size;
+ job->hw_queue_id = chunk->queue_index;
+
+ cs->jobs_in_queue_cnt[job->hw_queue_id]++;
+ cs->jobs_cnt++;
+
+ list_add_tail(&job->cs_node, &cs->job_list);
+
+ /*
+ * Increment CS reference. When CS reference is 0, CS is
+ * done and can be signaled to user and free all its resources
+ * Only increment for JOB on external or H/W queues, because
+ * only for those JOBs we get completion
+ */
+ if (cs_needs_completion(cs) &&
+ (job->queue_type == QUEUE_TYPE_EXT ||
+ job->queue_type == QUEUE_TYPE_HW))
+ cs_get(cs);
+
+ hl_debugfs_add_job(hdev, job);
+
+ rc = cs_parser(hpriv, job);
+ if (rc) {
+ atomic64_inc(&ctx->cs_counters.parsing_drop_cnt);
+ atomic64_inc(&cntr->parsing_drop_cnt);
+ dev_err(hdev->dev,
+ "Failed to parse JOB %d.%llu.%d, err %d, rejecting the CS\n",
+ cs->ctx->asid, cs->sequence, job->id, rc);
+ goto free_cs_object;
+ }
+ }
+
+ /* We allow a CS with any queue type combination as long as it does
+ * not get a completion
+ */
+ if (int_queues_only && cs_needs_completion(cs)) {
+ atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
+ atomic64_inc(&cntr->validation_drop_cnt);
+ dev_err(hdev->dev,
+ "Reject CS %d.%llu since it contains only internal queues jobs and needs completion\n",
+ cs->ctx->asid, cs->sequence);
+ rc = -EINVAL;
+ goto free_cs_object;
+ }
+
+ if (using_hw_queues)
+ INIT_WORK(&cs->finish_work, cs_completion);
+
+ /*
+ * store the (external/HW queues) streams used by the CS in the
+ * fence object for multi-CS completion
+ */
+ if (hdev->supports_wait_for_multi_cs)
+ cs->fence->stream_master_qid_map = stream_master_qid_map;
+
+ rc = hl_hw_queue_schedule_cs(cs);
+ if (rc) {
+ if (rc != -EAGAIN)
+ dev_err(hdev->dev,
+ "Failed to submit CS %d.%llu to H/W queues, error %d\n",
+ cs->ctx->asid, cs->sequence, rc);
+ goto free_cs_object;
+ }
+
+ *signal_initial_sob_count = cs->initial_sob_count;
+
+ rc = HL_CS_STATUS_SUCCESS;
+ goto put_cs;
+
+release_cb:
+ atomic_dec(&cb->cs_cnt);
+ hl_cb_put(cb);
+free_cs_object:
+ cs_rollback(hdev, cs);
+ *cs_seq = ULLONG_MAX;
+ /* The path below is both for good and erroneous exits */
+put_cs:
+ /* We finished with the CS in this function, so put the ref */
+ cs_put(cs);
+free_cs_chunk_array:
+ kfree(cs_chunk_array);
+out:
+ return rc;
+}
+
+static int hl_cs_ctx_switch(struct hl_fpriv *hpriv, union hl_cs_args *args,
+ u64 *cs_seq)
+{
+ struct hl_device *hdev = hpriv->hdev;
+ struct hl_ctx *ctx = hpriv->ctx;
+ bool need_soft_reset = false;
+ int rc = 0, do_ctx_switch = 0;
+ void __user *chunks;
+ u32 num_chunks, tmp;
+ u16 sob_count;
+ int ret;
+
+ if (hdev->supports_ctx_switch)
+ do_ctx_switch = atomic_cmpxchg(&ctx->thread_ctx_switch_token, 1, 0);
+
+ if (do_ctx_switch || (args->in.cs_flags & HL_CS_FLAGS_FORCE_RESTORE)) {
+ mutex_lock(&hpriv->restore_phase_mutex);
+
+ if (do_ctx_switch) {
+ rc = hdev->asic_funcs->context_switch(hdev, ctx->asid);
+ if (rc) {
+ dev_err_ratelimited(hdev->dev,
+ "Failed to switch to context %d, rejecting CS! %d\n",
+ ctx->asid, rc);
+ /*
+ * If we timedout, or if the device is not IDLE
+ * while we want to do context-switch (-EBUSY),
+ * we need to soft-reset because QMAN is
+ * probably stuck. However, we can't call to
+ * reset here directly because of deadlock, so
+ * need to do it at the very end of this
+ * function
+ */
+ if ((rc == -ETIMEDOUT) || (rc == -EBUSY))
+ need_soft_reset = true;
+ mutex_unlock(&hpriv->restore_phase_mutex);
+ goto out;
+ }
+ }
+
+ hdev->asic_funcs->restore_phase_topology(hdev);
+
+ chunks = (void __user *) (uintptr_t) args->in.chunks_restore;
+ num_chunks = args->in.num_chunks_restore;
+
+ if (!num_chunks) {
+ dev_dbg(hdev->dev,
+ "Need to run restore phase but restore CS is empty\n");
+ rc = 0;
+ } else {
+ rc = cs_ioctl_default(hpriv, chunks, num_chunks,
+ cs_seq, 0, 0, hdev->timeout_jiffies, &sob_count);
+ }
+
+ mutex_unlock(&hpriv->restore_phase_mutex);
+
+ if (rc) {
+ dev_err(hdev->dev,
+ "Failed to submit restore CS for context %d (%d)\n",
+ ctx->asid, rc);
+ goto out;
+ }
+
+ /* Need to wait for restore completion before execution phase */
+ if (num_chunks) {
+ enum hl_cs_wait_status status;
+wait_again:
+ ret = _hl_cs_wait_ioctl(hdev, ctx,
+ jiffies_to_usecs(hdev->timeout_jiffies),
+ *cs_seq, &status, NULL);
+ if (ret) {
+ if (ret == -ERESTARTSYS) {
+ usleep_range(100, 200);
+ goto wait_again;
+ }
+
+ dev_err(hdev->dev,
+ "Restore CS for context %d failed to complete %d\n",
+ ctx->asid, ret);
+ rc = -ENOEXEC;
+ goto out;
+ }
+ }
+
+ if (hdev->supports_ctx_switch)
+ ctx->thread_ctx_switch_wait_token = 1;
+
+ } else if (hdev->supports_ctx_switch && !ctx->thread_ctx_switch_wait_token) {
+ rc = hl_poll_timeout_memory(hdev,
+ &ctx->thread_ctx_switch_wait_token, tmp, (tmp == 1),
+ 100, jiffies_to_usecs(hdev->timeout_jiffies), false);
+
+ if (rc == -ETIMEDOUT) {
+ dev_err(hdev->dev,
+ "context switch phase timeout (%d)\n", tmp);
+ goto out;
+ }
+ }
+
+out:
+ if ((rc == -ETIMEDOUT || rc == -EBUSY) && (need_soft_reset))
+ hl_device_reset(hdev, 0);
+
+ return rc;
+}
+
+/*
+ * hl_cs_signal_sob_wraparound_handler: handle SOB value wrapaound case.
+ * if the SOB value reaches the max value move to the other SOB reserved
+ * to the queue.
+ * @hdev: pointer to device structure
+ * @q_idx: stream queue index
+ * @hw_sob: the H/W SOB used in this signal CS.
+ * @count: signals count
+ * @encaps_sig: tells whether it's reservation for encaps signals or not.
+ *
+ * Note that this function must be called while hw_queues_lock is taken.
+ */
+int hl_cs_signal_sob_wraparound_handler(struct hl_device *hdev, u32 q_idx,
+ struct hl_hw_sob **hw_sob, u32 count, bool encaps_sig)
+
+{
+ struct hl_sync_stream_properties *prop;
+ struct hl_hw_sob *sob = *hw_sob, *other_sob;
+ u8 other_sob_offset;
+
+ prop = &hdev->kernel_queues[q_idx].sync_stream_prop;
+
+ hw_sob_get(sob);
+
+ /* check for wraparound */
+ if (prop->next_sob_val + count >= HL_MAX_SOB_VAL) {
+ /*
+ * Decrement as we reached the max value.
+ * The release function won't be called here as we've
+ * just incremented the refcount right before calling this
+ * function.
+ */
+ hw_sob_put_err(sob);
+
+ /*
+ * check the other sob value, if it still in use then fail
+ * otherwise make the switch
+ */
+ other_sob_offset = (prop->curr_sob_offset + 1) % HL_RSVD_SOBS;
+ other_sob = &prop->hw_sob[other_sob_offset];
+
+ if (kref_read(&other_sob->kref) != 1) {
+ dev_err(hdev->dev, "error: Cannot switch SOBs q_idx: %d\n",
+ q_idx);
+ return -EINVAL;
+ }
+
+ /*
+ * next_sob_val always points to the next available signal
+ * in the sob, so in encaps signals it will be the next one
+ * after reserving the required amount.
+ */
+ if (encaps_sig)
+ prop->next_sob_val = count + 1;
+ else
+ prop->next_sob_val = count;
+
+ /* only two SOBs are currently in use */
+ prop->curr_sob_offset = other_sob_offset;
+ *hw_sob = other_sob;
+
+ /*
+ * check if other_sob needs reset, then do it before using it
+ * for the reservation or the next signal cs.
+ * we do it here, and for both encaps and regular signal cs
+ * cases in order to avoid possible races of two kref_put
+ * of the sob which can occur at the same time if we move the
+ * sob reset(kref_put) to cs_do_release function.
+ * in addition, if we have combination of cs signal and
+ * encaps, and at the point we need to reset the sob there was
+ * no more reservations and only signal cs keep coming,
+ * in such case we need signal_cs to put the refcount and
+ * reset the sob.
+ */
+ if (other_sob->need_reset)
+ hw_sob_put(other_sob);
+
+ if (encaps_sig) {
+ /* set reset indication for the sob */
+ sob->need_reset = true;
+ hw_sob_get(other_sob);
+ }
+
+ dev_dbg(hdev->dev, "switched to SOB %d, q_idx: %d\n",
+ prop->curr_sob_offset, q_idx);
+ } else {
+ prop->next_sob_val += count;
+ }
+
+ return 0;
+}
+
+static int cs_ioctl_extract_signal_seq(struct hl_device *hdev,
+ struct hl_cs_chunk *chunk, u64 *signal_seq, struct hl_ctx *ctx,
+ bool encaps_signals)
+{
+ u64 *signal_seq_arr = NULL;
+ u32 size_to_copy, signal_seq_arr_len;
+ int rc = 0;
+
+ if (encaps_signals) {
+ *signal_seq = chunk->encaps_signal_seq;
+ return 0;
+ }
+
+ signal_seq_arr_len = chunk->num_signal_seq_arr;
+
+ /* currently only one signal seq is supported */
+ if (signal_seq_arr_len != 1) {
+ atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
+ atomic64_inc(&hdev->aggregated_cs_counters.validation_drop_cnt);
+ dev_err(hdev->dev,
+ "Wait for signal CS supports only one signal CS seq\n");
+ return -EINVAL;
+ }
+
+ signal_seq_arr = kmalloc_array(signal_seq_arr_len,
+ sizeof(*signal_seq_arr),
+ GFP_ATOMIC);
+ if (!signal_seq_arr)
+ signal_seq_arr = kmalloc_array(signal_seq_arr_len,
+ sizeof(*signal_seq_arr),
+ GFP_KERNEL);
+ if (!signal_seq_arr) {
+ atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
+ atomic64_inc(&hdev->aggregated_cs_counters.out_of_mem_drop_cnt);
+ return -ENOMEM;
+ }
+
+ size_to_copy = signal_seq_arr_len * sizeof(*signal_seq_arr);
+ if (copy_from_user(signal_seq_arr,
+ u64_to_user_ptr(chunk->signal_seq_arr),
+ size_to_copy)) {
+ atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
+ atomic64_inc(&hdev->aggregated_cs_counters.validation_drop_cnt);
+ dev_err(hdev->dev,
+ "Failed to copy signal seq array from user\n");
+ rc = -EFAULT;
+ goto out;
+ }
+
+ /* currently it is guaranteed to have only one signal seq */
+ *signal_seq = signal_seq_arr[0];
+
+out:
+ kfree(signal_seq_arr);
+
+ return rc;
+}
+
+static int cs_ioctl_signal_wait_create_jobs(struct hl_device *hdev,
+ struct hl_ctx *ctx, struct hl_cs *cs,
+ enum hl_queue_type q_type, u32 q_idx, u32 encaps_signal_offset)
+{
+ struct hl_cs_counters_atomic *cntr;
+ struct hl_cs_job *job;
+ struct hl_cb *cb;
+ u32 cb_size;
+
+ cntr = &hdev->aggregated_cs_counters;
+
+ job = hl_cs_allocate_job(hdev, q_type, true);
+ if (!job) {
+ atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
+ atomic64_inc(&cntr->out_of_mem_drop_cnt);
+ dev_err(hdev->dev, "Failed to allocate a new job\n");
+ return -ENOMEM;
+ }
+
+ if (cs->type == CS_TYPE_WAIT)
+ cb_size = hdev->asic_funcs->get_wait_cb_size(hdev);
+ else
+ cb_size = hdev->asic_funcs->get_signal_cb_size(hdev);
+
+ cb = hl_cb_kernel_create(hdev, cb_size,
+ q_type == QUEUE_TYPE_HW && hdev->mmu_enable);
+ if (!cb) {
+ atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
+ atomic64_inc(&cntr->out_of_mem_drop_cnt);
+ kfree(job);
+ return -EFAULT;
+ }
+
+ job->id = 0;
+ job->cs = cs;
+ job->user_cb = cb;
+ atomic_inc(&job->user_cb->cs_cnt);
+ job->user_cb_size = cb_size;
+ job->hw_queue_id = q_idx;
+
+ if ((cs->type == CS_TYPE_WAIT || cs->type == CS_TYPE_COLLECTIVE_WAIT)
+ && cs->encaps_signals)
+ job->encaps_sig_wait_offset = encaps_signal_offset;
+ /*
+ * No need in parsing, user CB is the patched CB.
+ * We call hl_cb_destroy() out of two reasons - we don't need the CB in
+ * the CB idr anymore and to decrement its refcount as it was
+ * incremented inside hl_cb_kernel_create().
+ */
+ job->patched_cb = job->user_cb;
+ job->job_cb_size = job->user_cb_size;
+ hl_cb_destroy(&hdev->kernel_mem_mgr, cb->buf->handle);
+
+ /* increment refcount as for external queues we get completion */
+ cs_get(cs);
+
+ cs->jobs_in_queue_cnt[job->hw_queue_id]++;
+ cs->jobs_cnt++;
+
+ list_add_tail(&job->cs_node, &cs->job_list);
+
+ hl_debugfs_add_job(hdev, job);
+
+ return 0;
+}
+
+static int cs_ioctl_reserve_signals(struct hl_fpriv *hpriv,
+ u32 q_idx, u32 count,
+ u32 *handle_id, u32 *sob_addr,
+ u32 *signals_count)
+{
+ struct hw_queue_properties *hw_queue_prop;
+ struct hl_sync_stream_properties *prop;
+ struct hl_device *hdev = hpriv->hdev;
+ struct hl_cs_encaps_sig_handle *handle;
+ struct hl_encaps_signals_mgr *mgr;
+ struct hl_hw_sob *hw_sob;
+ int hdl_id;
+ int rc = 0;
+
+ if (count >= HL_MAX_SOB_VAL) {
+ dev_err(hdev->dev, "signals count(%u) exceeds the max SOB value\n",
+ count);
+ rc = -EINVAL;
+ goto out;
+ }
+
+ if (q_idx >= hdev->asic_prop.max_queues) {
+ dev_err(hdev->dev, "Queue index %d is invalid\n",
+ q_idx);
+ rc = -EINVAL;
+ goto out;
+ }
+
+ hw_queue_prop = &hdev->asic_prop.hw_queues_props[q_idx];
+
+ if (!hw_queue_prop->supports_sync_stream) {
+ dev_err(hdev->dev,
+ "Queue index %d does not support sync stream operations\n",
+ q_idx);
+ rc = -EINVAL;
+ goto out;
+ }
+
+ prop = &hdev->kernel_queues[q_idx].sync_stream_prop;
+
+ handle = kzalloc(sizeof(*handle), GFP_KERNEL);
+ if (!handle) {
+ rc = -ENOMEM;
+ goto out;
+ }
+
+ handle->count = count;
+
+ hl_ctx_get(hpriv->ctx);
+ handle->ctx = hpriv->ctx;
+ mgr = &hpriv->ctx->sig_mgr;
+
+ spin_lock(&mgr->lock);
+ hdl_id = idr_alloc(&mgr->handles, handle, 1, 0, GFP_ATOMIC);
+ spin_unlock(&mgr->lock);
+
+ if (hdl_id < 0) {
+ dev_err(hdev->dev, "Failed to allocate IDR for a new signal reservation\n");
+ rc = -EINVAL;
+ goto put_ctx;
+ }
+
+ handle->id = hdl_id;
+ handle->q_idx = q_idx;
+ handle->hdev = hdev;
+ kref_init(&handle->refcount);
+
+ hdev->asic_funcs->hw_queues_lock(hdev);
+
+ hw_sob = &prop->hw_sob[prop->curr_sob_offset];
+
+ /*
+ * Increment the SOB value by count by user request
+ * to reserve those signals
+ * check if the signals amount to reserve is not exceeding the max sob
+ * value, if yes then switch sob.
+ */
+ rc = hl_cs_signal_sob_wraparound_handler(hdev, q_idx, &hw_sob, count,
+ true);
+ if (rc) {
+ dev_err(hdev->dev, "Failed to switch SOB\n");
+ hdev->asic_funcs->hw_queues_unlock(hdev);
+ rc = -EINVAL;
+ goto remove_idr;
+ }
+ /* set the hw_sob to the handle after calling the sob wraparound handler
+ * since sob could have changed.
+ */
+ handle->hw_sob = hw_sob;
+
+ /* store the current sob value for unreserve validity check, and
+ * signal offset support
+ */
+ handle->pre_sob_val = prop->next_sob_val - handle->count;
+
+ handle->cs_seq = ULLONG_MAX;
+
+ *signals_count = prop->next_sob_val;
+ hdev->asic_funcs->hw_queues_unlock(hdev);
+
+ *sob_addr = handle->hw_sob->sob_addr;
+ *handle_id = hdl_id;
+
+ dev_dbg(hdev->dev,
+ "Signals reserved, sob_id: %d, sob addr: 0x%x, last sob_val: %u, q_idx: %d, hdl_id: %d\n",
+ hw_sob->sob_id, handle->hw_sob->sob_addr,
+ prop->next_sob_val - 1, q_idx, hdl_id);
+ goto out;
+
+remove_idr:
+ spin_lock(&mgr->lock);
+ idr_remove(&mgr->handles, hdl_id);
+ spin_unlock(&mgr->lock);
+
+put_ctx:
+ hl_ctx_put(handle->ctx);
+ kfree(handle);
+
+out:
+ return rc;
+}
+
+static int cs_ioctl_unreserve_signals(struct hl_fpriv *hpriv, u32 handle_id)
+{
+ struct hl_cs_encaps_sig_handle *encaps_sig_hdl;
+ struct hl_sync_stream_properties *prop;
+ struct hl_device *hdev = hpriv->hdev;
+ struct hl_encaps_signals_mgr *mgr;
+ struct hl_hw_sob *hw_sob;
+ u32 q_idx, sob_addr;
+ int rc = 0;
+
+ mgr = &hpriv->ctx->sig_mgr;
+
+ spin_lock(&mgr->lock);
+ encaps_sig_hdl = idr_find(&mgr->handles, handle_id);
+ if (encaps_sig_hdl) {
+ dev_dbg(hdev->dev, "unreserve signals, handle: %u, SOB:0x%x, count: %u\n",
+ handle_id, encaps_sig_hdl->hw_sob->sob_addr,
+ encaps_sig_hdl->count);
+
+ hdev->asic_funcs->hw_queues_lock(hdev);
+
+ q_idx = encaps_sig_hdl->q_idx;
+ prop = &hdev->kernel_queues[q_idx].sync_stream_prop;
+ hw_sob = &prop->hw_sob[prop->curr_sob_offset];
+ sob_addr = hdev->asic_funcs->get_sob_addr(hdev, hw_sob->sob_id);
+
+ /* Check if sob_val got out of sync due to other
+ * signal submission requests which were handled
+ * between the reserve-unreserve calls or SOB switch
+ * upon reaching SOB max value.
+ */
+ if (encaps_sig_hdl->pre_sob_val + encaps_sig_hdl->count
+ != prop->next_sob_val ||
+ sob_addr != encaps_sig_hdl->hw_sob->sob_addr) {
+ dev_err(hdev->dev, "Cannot unreserve signals, SOB val ran out of sync, expected: %u, actual val: %u\n",
+ encaps_sig_hdl->pre_sob_val,
+ (prop->next_sob_val - encaps_sig_hdl->count));
+
+ hdev->asic_funcs->hw_queues_unlock(hdev);
+ rc = -EINVAL;
+ goto out;
+ }
+
+ /*
+ * Decrement the SOB value by count by user request
+ * to unreserve those signals
+ */
+ prop->next_sob_val -= encaps_sig_hdl->count;
+
+ hdev->asic_funcs->hw_queues_unlock(hdev);
+
+ hw_sob_put(hw_sob);
+
+ /* Release the id and free allocated memory of the handle */
+ idr_remove(&mgr->handles, handle_id);
+ hl_ctx_put(encaps_sig_hdl->ctx);
+ kfree(encaps_sig_hdl);
+ } else {
+ rc = -EINVAL;
+ dev_err(hdev->dev, "failed to unreserve signals, cannot find handler\n");
+ }
+out:
+ spin_unlock(&mgr->lock);
+
+ return rc;
+}
+
+static int cs_ioctl_signal_wait(struct hl_fpriv *hpriv, enum hl_cs_type cs_type,
+ void __user *chunks, u32 num_chunks,
+ u64 *cs_seq, u32 flags, u32 timeout,
+ u32 *signal_sob_addr_offset, u16 *signal_initial_sob_count)
+{
+ struct hl_cs_encaps_sig_handle *encaps_sig_hdl = NULL;
+ bool handle_found = false, is_wait_cs = false,
+ wait_cs_submitted = false,
+ cs_encaps_signals = false;
+ struct hl_cs_chunk *cs_chunk_array, *chunk;
+ bool staged_cs_with_encaps_signals = false;
+ struct hw_queue_properties *hw_queue_prop;
+ struct hl_device *hdev = hpriv->hdev;
+ struct hl_cs_compl *sig_waitcs_cmpl;
+ u32 q_idx, collective_engine_id = 0;
+ struct hl_cs_counters_atomic *cntr;
+ struct hl_fence *sig_fence = NULL;
+ struct hl_ctx *ctx = hpriv->ctx;
+ enum hl_queue_type q_type;
+ struct hl_cs *cs;
+ u64 signal_seq;
+ int rc;
+
+ cntr = &hdev->aggregated_cs_counters;
+ *cs_seq = ULLONG_MAX;
+
+ rc = hl_cs_copy_chunk_array(hdev, &cs_chunk_array, chunks, num_chunks,
+ ctx);
+ if (rc)
+ goto out;
+
+ /* currently it is guaranteed to have only one chunk */
+ chunk = &cs_chunk_array[0];
+
+ if (chunk->queue_index >= hdev->asic_prop.max_queues) {
+ atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
+ atomic64_inc(&cntr->validation_drop_cnt);
+ dev_err(hdev->dev, "Queue index %d is invalid\n",
+ chunk->queue_index);
+ rc = -EINVAL;
+ goto free_cs_chunk_array;
+ }
+
+ q_idx = chunk->queue_index;
+ hw_queue_prop = &hdev->asic_prop.hw_queues_props[q_idx];
+ q_type = hw_queue_prop->type;
+
+ if (!hw_queue_prop->supports_sync_stream) {
+ atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
+ atomic64_inc(&cntr->validation_drop_cnt);
+ dev_err(hdev->dev,
+ "Queue index %d does not support sync stream operations\n",
+ q_idx);
+ rc = -EINVAL;
+ goto free_cs_chunk_array;
+ }
+
+ if (cs_type == CS_TYPE_COLLECTIVE_WAIT) {
+ if (!(hw_queue_prop->collective_mode == HL_COLLECTIVE_MASTER)) {
+ atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
+ atomic64_inc(&cntr->validation_drop_cnt);
+ dev_err(hdev->dev,
+ "Queue index %d is invalid\n", q_idx);
+ rc = -EINVAL;
+ goto free_cs_chunk_array;
+ }
+
+ if (!hdev->nic_ports_mask) {
+ atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
+ atomic64_inc(&cntr->validation_drop_cnt);
+ dev_err(hdev->dev,
+ "Collective operations not supported when NIC ports are disabled");
+ rc = -EINVAL;
+ goto free_cs_chunk_array;
+ }
+
+ collective_engine_id = chunk->collective_engine_id;
+ }
+
+ is_wait_cs = !!(cs_type == CS_TYPE_WAIT ||
+ cs_type == CS_TYPE_COLLECTIVE_WAIT);
+
+ cs_encaps_signals = !!(flags & HL_CS_FLAGS_ENCAP_SIGNALS);
+
+ if (is_wait_cs) {
+ rc = cs_ioctl_extract_signal_seq(hdev, chunk, &signal_seq,
+ ctx, cs_encaps_signals);
+ if (rc)
+ goto free_cs_chunk_array;
+
+ if (cs_encaps_signals) {
+ /* check if cs sequence has encapsulated
+ * signals handle
+ */
+ struct idr *idp;
+ u32 id;
+
+ spin_lock(&ctx->sig_mgr.lock);
+ idp = &ctx->sig_mgr.handles;
+ idr_for_each_entry(idp, encaps_sig_hdl, id) {
+ if (encaps_sig_hdl->cs_seq == signal_seq) {
+ /* get refcount to protect removing this handle from idr,
+ * needed when multiple wait cs are used with offset
+ * to wait on reserved encaps signals.
+ * Since kref_put of this handle is executed outside the
+ * current lock, it is possible that the handle refcount
+ * is 0 but it yet to be removed from the list. In this
+ * case need to consider the handle as not valid.
+ */
+ if (kref_get_unless_zero(&encaps_sig_hdl->refcount))
+ handle_found = true;
+ break;
+ }
+ }
+ spin_unlock(&ctx->sig_mgr.lock);
+
+ if (!handle_found) {
+ /* treat as signal CS already finished */
+ dev_dbg(hdev->dev, "Cannot find encapsulated signals handle for seq 0x%llx\n",
+ signal_seq);
+ rc = 0;
+ goto free_cs_chunk_array;
+ }
+
+ /* validate also the signal offset value */
+ if (chunk->encaps_signal_offset >
+ encaps_sig_hdl->count) {
+ dev_err(hdev->dev, "offset(%u) value exceed max reserved signals count(%u)!\n",
+ chunk->encaps_signal_offset,
+ encaps_sig_hdl->count);
+ rc = -EINVAL;
+ goto free_cs_chunk_array;
+ }
+ }
+
+ sig_fence = hl_ctx_get_fence(ctx, signal_seq);
+ if (IS_ERR(sig_fence)) {
+ atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
+ atomic64_inc(&cntr->validation_drop_cnt);
+ dev_err(hdev->dev,
+ "Failed to get signal CS with seq 0x%llx\n",
+ signal_seq);
+ rc = PTR_ERR(sig_fence);
+ goto free_cs_chunk_array;
+ }
+
+ if (!sig_fence) {
+ /* signal CS already finished */
+ rc = 0;
+ goto free_cs_chunk_array;
+ }
+
+ sig_waitcs_cmpl =
+ container_of(sig_fence, struct hl_cs_compl, base_fence);
+
+ staged_cs_with_encaps_signals = !!
+ (sig_waitcs_cmpl->type == CS_TYPE_DEFAULT &&
+ (flags & HL_CS_FLAGS_ENCAP_SIGNALS));
+
+ if (sig_waitcs_cmpl->type != CS_TYPE_SIGNAL &&
+ !staged_cs_with_encaps_signals) {
+ atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
+ atomic64_inc(&cntr->validation_drop_cnt);
+ dev_err(hdev->dev,
+ "CS seq 0x%llx is not of a signal/encaps-signal CS\n",
+ signal_seq);
+ hl_fence_put(sig_fence);
+ rc = -EINVAL;
+ goto free_cs_chunk_array;
+ }
+
+ if (completion_done(&sig_fence->completion)) {
+ /* signal CS already finished */
+ hl_fence_put(sig_fence);
+ rc = 0;
+ goto free_cs_chunk_array;
+ }
+ }
+
+ rc = allocate_cs(hdev, ctx, cs_type, ULLONG_MAX, &cs, flags, timeout);
+ if (rc) {
+ if (is_wait_cs)
+ hl_fence_put(sig_fence);
+
+ goto free_cs_chunk_array;
+ }
+
+ /*
+ * Save the signal CS fence for later initialization right before
+ * hanging the wait CS on the queue.
+ * for encaps signals case, we save the cs sequence and handle pointer
+ * for later initialization.
+ */
+ if (is_wait_cs) {
+ cs->signal_fence = sig_fence;
+ /* store the handle pointer, so we don't have to
+ * look for it again, later on the flow
+ * when we need to set SOB info in hw_queue.
+ */
+ if (cs->encaps_signals)
+ cs->encaps_sig_hdl = encaps_sig_hdl;
+ }
+
+ hl_debugfs_add_cs(cs);
+
+ *cs_seq = cs->sequence;
+
+ if (cs_type == CS_TYPE_WAIT || cs_type == CS_TYPE_SIGNAL)
+ rc = cs_ioctl_signal_wait_create_jobs(hdev, ctx, cs, q_type,
+ q_idx, chunk->encaps_signal_offset);
+ else if (cs_type == CS_TYPE_COLLECTIVE_WAIT)
+ rc = hdev->asic_funcs->collective_wait_create_jobs(hdev, ctx,
+ cs, q_idx, collective_engine_id,
+ chunk->encaps_signal_offset);
+ else {
+ atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
+ atomic64_inc(&cntr->validation_drop_cnt);
+ rc = -EINVAL;
+ }
+
+ if (rc)
+ goto free_cs_object;
+
+ if (q_type == QUEUE_TYPE_HW)
+ INIT_WORK(&cs->finish_work, cs_completion);
+
+ rc = hl_hw_queue_schedule_cs(cs);
+ if (rc) {
+ /* In case wait cs failed here, it means the signal cs
+ * already completed. we want to free all it's related objects
+ * but we don't want to fail the ioctl.
+ */
+ if (is_wait_cs)
+ rc = 0;
+ else if (rc != -EAGAIN)
+ dev_err(hdev->dev,
+ "Failed to submit CS %d.%llu to H/W queues, error %d\n",
+ ctx->asid, cs->sequence, rc);
+ goto free_cs_object;
+ }
+
+ *signal_sob_addr_offset = cs->sob_addr_offset;
+ *signal_initial_sob_count = cs->initial_sob_count;
+
+ rc = HL_CS_STATUS_SUCCESS;
+ if (is_wait_cs)
+ wait_cs_submitted = true;
+ goto put_cs;
+
+free_cs_object:
+ cs_rollback(hdev, cs);
+ *cs_seq = ULLONG_MAX;
+ /* The path below is both for good and erroneous exits */
+put_cs:
+ /* We finished with the CS in this function, so put the ref */
+ cs_put(cs);
+free_cs_chunk_array:
+ if (!wait_cs_submitted && cs_encaps_signals && handle_found && is_wait_cs)
+ kref_put(&encaps_sig_hdl->refcount, hl_encaps_release_handle_and_put_ctx);
+ kfree(cs_chunk_array);
+out:
+ return rc;
+}
+
+static int cs_ioctl_engine_cores(struct hl_fpriv *hpriv, u64 engine_cores,
+ u32 num_engine_cores, u32 core_command)
+{
+ int rc;
+ struct hl_device *hdev = hpriv->hdev;
+ void __user *engine_cores_arr;
+ u32 *cores;
+
+ if (!num_engine_cores || num_engine_cores > hdev->asic_prop.num_engine_cores) {
+ dev_err(hdev->dev, "Number of engine cores %d is invalid\n", num_engine_cores);
+ return -EINVAL;
+ }
+
+ if (core_command != HL_ENGINE_CORE_RUN && core_command != HL_ENGINE_CORE_HALT) {
+ dev_err(hdev->dev, "Engine core command is invalid\n");
+ return -EINVAL;
+ }
+
+ engine_cores_arr = (void __user *) (uintptr_t) engine_cores;
+ cores = kmalloc_array(num_engine_cores, sizeof(u32), GFP_KERNEL);
+ if (!cores)
+ return -ENOMEM;
+
+ if (copy_from_user(cores, engine_cores_arr, num_engine_cores * sizeof(u32))) {
+ dev_err(hdev->dev, "Failed to copy core-ids array from user\n");
+ kfree(cores);
+ return -EFAULT;
+ }
+
+ rc = hdev->asic_funcs->set_engine_cores(hdev, cores, num_engine_cores, core_command);
+ kfree(cores);
+
+ return rc;
+}
+
+static int cs_ioctl_flush_pci_hbw_writes(struct hl_fpriv *hpriv)
+{
+ struct hl_device *hdev = hpriv->hdev;
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+
+ if (!prop->hbw_flush_reg) {
+ dev_dbg(hdev->dev, "HBW flush is not supported\n");
+ return -EOPNOTSUPP;
+ }
+
+ RREG32(prop->hbw_flush_reg);
+
+ return 0;
+}
+
+int hl_cs_ioctl(struct hl_fpriv *hpriv, void *data)
+{
+ union hl_cs_args *args = data;
+ enum hl_cs_type cs_type = 0;
+ u64 cs_seq = ULONG_MAX;
+ void __user *chunks;
+ u32 num_chunks, flags, timeout,
+ signals_count = 0, sob_addr = 0, handle_id = 0;
+ u16 sob_initial_count = 0;
+ int rc;
+
+ rc = hl_cs_sanity_checks(hpriv, args);
+ if (rc)
+ goto out;
+
+ rc = hl_cs_ctx_switch(hpriv, args, &cs_seq);
+ if (rc)
+ goto out;
+
+ cs_type = hl_cs_get_cs_type(args->in.cs_flags &
+ ~HL_CS_FLAGS_FORCE_RESTORE);
+ chunks = (void __user *) (uintptr_t) args->in.chunks_execute;
+ num_chunks = args->in.num_chunks_execute;
+ flags = args->in.cs_flags;
+
+ /* In case this is a staged CS, user should supply the CS sequence */
+ if ((flags & HL_CS_FLAGS_STAGED_SUBMISSION) &&
+ !(flags & HL_CS_FLAGS_STAGED_SUBMISSION_FIRST))
+ cs_seq = args->in.seq;
+
+ timeout = flags & HL_CS_FLAGS_CUSTOM_TIMEOUT
+ ? msecs_to_jiffies(args->in.timeout * 1000)
+ : hpriv->hdev->timeout_jiffies;
+
+ switch (cs_type) {
+ case CS_TYPE_SIGNAL:
+ case CS_TYPE_WAIT:
+ case CS_TYPE_COLLECTIVE_WAIT:
+ rc = cs_ioctl_signal_wait(hpriv, cs_type, chunks, num_chunks,
+ &cs_seq, args->in.cs_flags, timeout,
+ &sob_addr, &sob_initial_count);
+ break;
+ case CS_RESERVE_SIGNALS:
+ rc = cs_ioctl_reserve_signals(hpriv,
+ args->in.encaps_signals_q_idx,
+ args->in.encaps_signals_count,
+ &handle_id, &sob_addr, &signals_count);
+ break;
+ case CS_UNRESERVE_SIGNALS:
+ rc = cs_ioctl_unreserve_signals(hpriv,
+ args->in.encaps_sig_handle_id);
+ break;
+ case CS_TYPE_ENGINE_CORE:
+ rc = cs_ioctl_engine_cores(hpriv, args->in.engine_cores,
+ args->in.num_engine_cores, args->in.core_command);
+ break;
+ case CS_TYPE_FLUSH_PCI_HBW_WRITES:
+ rc = cs_ioctl_flush_pci_hbw_writes(hpriv);
+ break;
+ default:
+ rc = cs_ioctl_default(hpriv, chunks, num_chunks, &cs_seq,
+ args->in.cs_flags,
+ args->in.encaps_sig_handle_id,
+ timeout, &sob_initial_count);
+ break;
+ }
+out:
+ if (rc != -EAGAIN) {
+ memset(args, 0, sizeof(*args));
+
+ switch (cs_type) {
+ case CS_RESERVE_SIGNALS:
+ args->out.handle_id = handle_id;
+ args->out.sob_base_addr_offset = sob_addr;
+ args->out.count = signals_count;
+ break;
+ case CS_TYPE_SIGNAL:
+ args->out.sob_base_addr_offset = sob_addr;
+ args->out.sob_count_before_submission = sob_initial_count;
+ args->out.seq = cs_seq;
+ break;
+ case CS_TYPE_DEFAULT:
+ args->out.sob_count_before_submission = sob_initial_count;
+ args->out.seq = cs_seq;
+ break;
+ default:
+ args->out.seq = cs_seq;
+ break;
+ }
+
+ args->out.status = rc;
+ }
+
+ return rc;
+}
+
+static int hl_wait_for_fence(struct hl_ctx *ctx, u64 seq, struct hl_fence *fence,
+ enum hl_cs_wait_status *status, u64 timeout_us, s64 *timestamp)
+{
+ struct hl_device *hdev = ctx->hdev;
+ ktime_t timestamp_kt;
+ long completion_rc;
+ int rc = 0, error;
+
+ if (IS_ERR(fence)) {
+ rc = PTR_ERR(fence);
+ if (rc == -EINVAL)
+ dev_notice_ratelimited(hdev->dev,
+ "Can't wait on CS %llu because current CS is at seq %llu\n",
+ seq, ctx->cs_sequence);
+ return rc;
+ }
+
+ if (!fence) {
+ if (!hl_pop_cs_outcome(&ctx->outcome_store, seq, &timestamp_kt, &error)) {
+ dev_dbg(hdev->dev,
+ "Can't wait on seq %llu because current CS is at seq %llu (Fence is gone)\n",
+ seq, ctx->cs_sequence);
+ *status = CS_WAIT_STATUS_GONE;
+ return 0;
+ }
+
+ completion_rc = 1;
+ goto report_results;
+ }
+
+ if (!timeout_us) {
+ completion_rc = completion_done(&fence->completion);
+ } else {
+ unsigned long timeout;
+
+ timeout = (timeout_us == MAX_SCHEDULE_TIMEOUT) ?
+ timeout_us : usecs_to_jiffies(timeout_us);
+ completion_rc =
+ wait_for_completion_interruptible_timeout(
+ &fence->completion, timeout);
+ }
+
+ error = fence->error;
+ timestamp_kt = fence->timestamp;
+
+report_results:
+ if (completion_rc > 0) {
+ *status = CS_WAIT_STATUS_COMPLETED;
+ if (timestamp)
+ *timestamp = ktime_to_ns(timestamp_kt);
+ } else {
+ *status = CS_WAIT_STATUS_BUSY;
+ }
+
+ if (completion_rc == -ERESTARTSYS)
+ rc = completion_rc;
+ else if (error == -ETIMEDOUT || error == -EIO)
+ rc = error;
+
+ return rc;
+}
+
+/*
+ * hl_cs_poll_fences - iterate CS fences to check for CS completion
+ *
+ * @mcs_data: multi-CS internal data
+ * @mcs_compl: multi-CS completion structure
+ *
+ * @return 0 on success, otherwise non 0 error code
+ *
+ * The function iterates on all CS sequence in the list and set bit in
+ * completion_bitmap for each completed CS.
+ * While iterating, the function sets the stream map of each fence in the fence
+ * array in the completion QID stream map to be used by CSs to perform
+ * completion to the multi-CS context.
+ * This function shall be called after taking context ref
+ */
+static int hl_cs_poll_fences(struct multi_cs_data *mcs_data, struct multi_cs_completion *mcs_compl)
+{
+ struct hl_fence **fence_ptr = mcs_data->fence_arr;
+ struct hl_device *hdev = mcs_data->ctx->hdev;
+ int i, rc, arr_len = mcs_data->arr_len;
+ u64 *seq_arr = mcs_data->seq_arr;
+ ktime_t max_ktime, first_cs_time;
+ enum hl_cs_wait_status status;
+
+ memset(fence_ptr, 0, arr_len * sizeof(struct hl_fence *));
+
+ /* get all fences under the same lock */
+ rc = hl_ctx_get_fences(mcs_data->ctx, seq_arr, fence_ptr, arr_len);
+ if (rc)
+ return rc;
+
+ /*
+ * re-initialize the completion here to handle 2 possible cases:
+ * 1. CS will complete the multi-CS prior clearing the completion. in which
+ * case the fence iteration is guaranteed to catch the CS completion.
+ * 2. the completion will occur after re-init of the completion.
+ * in which case we will wake up immediately in wait_for_completion.
+ */
+ reinit_completion(&mcs_compl->completion);
+
+ /*
+ * set to maximum time to verify timestamp is valid: if at the end
+ * this value is maintained- no timestamp was updated
+ */
+ max_ktime = ktime_set(KTIME_SEC_MAX, 0);
+ first_cs_time = max_ktime;
+
+ for (i = 0; i < arr_len; i++, fence_ptr++) {
+ struct hl_fence *fence = *fence_ptr;
+
+ /*
+ * In order to prevent case where we wait until timeout even though a CS associated
+ * with the multi-CS actually completed we do things in the below order:
+ * 1. for each fence set it's QID map in the multi-CS completion QID map. This way
+ * any CS can, potentially, complete the multi CS for the specific QID (note
+ * that once completion is initialized, calling complete* and then wait on the
+ * completion will cause it to return at once)
+ * 2. only after allowing multi-CS completion for the specific QID we check whether
+ * the specific CS already completed (and thus the wait for completion part will
+ * be skipped). if the CS not completed it is guaranteed that completing CS will
+ * wake up the completion.
+ */
+ if (fence)
+ mcs_compl->stream_master_qid_map |= fence->stream_master_qid_map;
+
+ /*
+ * function won't sleep as it is called with timeout 0 (i.e.
+ * poll the fence)
+ */
+ rc = hl_wait_for_fence(mcs_data->ctx, seq_arr[i], fence, &status, 0, NULL);
+ if (rc) {
+ dev_err(hdev->dev,
+ "wait_for_fence error :%d for CS seq %llu\n",
+ rc, seq_arr[i]);
+ break;
+ }
+
+ switch (status) {
+ case CS_WAIT_STATUS_BUSY:
+ /* CS did not finished, QID to wait on already stored */
+ break;
+ case CS_WAIT_STATUS_COMPLETED:
+ /*
+ * Using mcs_handling_done to avoid possibility of mcs_data
+ * returns to user indicating CS completed before it finished
+ * all of its mcs handling, to avoid race the next time the
+ * user waits for mcs.
+ * note: when reaching this case fence is definitely not NULL
+ * but NULL check was added to overcome static analysis
+ */
+ if (fence && !fence->mcs_handling_done) {
+ /*
+ * in case multi CS is completed but MCS handling not done
+ * we "complete" the multi CS to prevent it from waiting
+ * until time-out and the "multi-CS handling done" will have
+ * another chance at the next iteration
+ */
+ complete_all(&mcs_compl->completion);
+ break;
+ }
+
+ mcs_data->completion_bitmap |= BIT(i);
+ /*
+ * For all completed CSs we take the earliest timestamp.
+ * For this we have to validate that the timestamp is
+ * earliest of all timestamps so far.
+ */
+ if (fence && mcs_data->update_ts &&
+ (ktime_compare(fence->timestamp, first_cs_time) < 0))
+ first_cs_time = fence->timestamp;
+ break;
+ case CS_WAIT_STATUS_GONE:
+ mcs_data->update_ts = false;
+ mcs_data->gone_cs = true;
+ /*
+ * It is possible to get an old sequence numbers from user
+ * which related to already completed CSs and their fences
+ * already gone. In this case, CS set as completed but
+ * no need to consider its QID for mcs completion.
+ */
+ mcs_data->completion_bitmap |= BIT(i);
+ break;
+ default:
+ dev_err(hdev->dev, "Invalid fence status\n");
+ rc = -EINVAL;
+ break;
+ }
+
+ }
+
+ hl_fences_put(mcs_data->fence_arr, arr_len);
+
+ if (mcs_data->update_ts &&
+ (ktime_compare(first_cs_time, max_ktime) != 0))
+ mcs_data->timestamp = ktime_to_ns(first_cs_time);
+
+ return rc;
+}
+
+static int _hl_cs_wait_ioctl(struct hl_device *hdev, struct hl_ctx *ctx, u64 timeout_us, u64 seq,
+ enum hl_cs_wait_status *status, s64 *timestamp)
+{
+ struct hl_fence *fence;
+ int rc = 0;
+
+ if (timestamp)
+ *timestamp = 0;
+
+ hl_ctx_get(ctx);
+
+ fence = hl_ctx_get_fence(ctx, seq);
+
+ rc = hl_wait_for_fence(ctx, seq, fence, status, timeout_us, timestamp);
+ hl_fence_put(fence);
+ hl_ctx_put(ctx);
+
+ return rc;
+}
+
+static inline unsigned long hl_usecs64_to_jiffies(const u64 usecs)
+{
+ if (usecs <= U32_MAX)
+ return usecs_to_jiffies(usecs);
+
+ /*
+ * If the value in nanoseconds is larger than 64 bit, use the largest
+ * 64 bit value.
+ */
+ if (usecs >= ((u64)(U64_MAX / NSEC_PER_USEC)))
+ return nsecs_to_jiffies(U64_MAX);
+
+ return nsecs_to_jiffies(usecs * NSEC_PER_USEC);
+}
+
+/*
+ * hl_wait_multi_cs_completion_init - init completion structure
+ *
+ * @hdev: pointer to habanalabs device structure
+ * @stream_master_bitmap: stream master QIDs map, set bit indicates stream
+ * master QID to wait on
+ *
+ * @return valid completion struct pointer on success, otherwise error pointer
+ *
+ * up to MULTI_CS_MAX_USER_CTX calls can be done concurrently to the driver.
+ * the function gets the first available completion (by marking it "used")
+ * and initialize its values.
+ */
+static struct multi_cs_completion *hl_wait_multi_cs_completion_init(struct hl_device *hdev)
+{
+ struct multi_cs_completion *mcs_compl;
+ int i;
+
+ /* find free multi_cs completion structure */
+ for (i = 0; i < MULTI_CS_MAX_USER_CTX; i++) {
+ mcs_compl = &hdev->multi_cs_completion[i];
+ spin_lock(&mcs_compl->lock);
+ if (!mcs_compl->used) {
+ mcs_compl->used = 1;
+ mcs_compl->timestamp = 0;
+ /*
+ * init QID map to 0 to avoid completion by CSs. the actual QID map
+ * to multi-CS CSs will be set incrementally at a later stage
+ */
+ mcs_compl->stream_master_qid_map = 0;
+ spin_unlock(&mcs_compl->lock);
+ break;
+ }
+ spin_unlock(&mcs_compl->lock);
+ }
+
+ if (i == MULTI_CS_MAX_USER_CTX) {
+ dev_err(hdev->dev, "no available multi-CS completion structure\n");
+ return ERR_PTR(-ENOMEM);
+ }
+ return mcs_compl;
+}
+
+/*
+ * hl_wait_multi_cs_completion_fini - return completion structure and set as
+ * unused
+ *
+ * @mcs_compl: pointer to the completion structure
+ */
+static void hl_wait_multi_cs_completion_fini(
+ struct multi_cs_completion *mcs_compl)
+{
+ /*
+ * free completion structure, do it under lock to be in-sync with the
+ * thread that signals completion
+ */
+ spin_lock(&mcs_compl->lock);
+ mcs_compl->used = 0;
+ spin_unlock(&mcs_compl->lock);
+}
+
+/*
+ * hl_wait_multi_cs_completion - wait for first CS to complete
+ *
+ * @mcs_data: multi-CS internal data
+ *
+ * @return 0 on success, otherwise non 0 error code
+ */
+static int hl_wait_multi_cs_completion(struct multi_cs_data *mcs_data,
+ struct multi_cs_completion *mcs_compl)
+{
+ long completion_rc;
+
+ completion_rc = wait_for_completion_interruptible_timeout(&mcs_compl->completion,
+ mcs_data->timeout_jiffies);
+
+ /* update timestamp */
+ if (completion_rc > 0)
+ mcs_data->timestamp = mcs_compl->timestamp;
+
+ if (completion_rc == -ERESTARTSYS)
+ return completion_rc;
+
+ mcs_data->wait_status = completion_rc;
+
+ return 0;
+}
+
+/*
+ * hl_multi_cs_completion_init - init array of multi-CS completion structures
+ *
+ * @hdev: pointer to habanalabs device structure
+ */
+void hl_multi_cs_completion_init(struct hl_device *hdev)
+{
+ struct multi_cs_completion *mcs_cmpl;
+ int i;
+
+ for (i = 0; i < MULTI_CS_MAX_USER_CTX; i++) {
+ mcs_cmpl = &hdev->multi_cs_completion[i];
+ mcs_cmpl->used = 0;
+ spin_lock_init(&mcs_cmpl->lock);
+ init_completion(&mcs_cmpl->completion);
+ }
+}
+
+/*
+ * hl_multi_cs_wait_ioctl - implementation of the multi-CS wait ioctl
+ *
+ * @hpriv: pointer to the private data of the fd
+ * @data: pointer to multi-CS wait ioctl in/out args
+ *
+ */
+static int hl_multi_cs_wait_ioctl(struct hl_fpriv *hpriv, void *data)
+{
+ struct multi_cs_completion *mcs_compl;
+ struct hl_device *hdev = hpriv->hdev;
+ struct multi_cs_data mcs_data = {};
+ union hl_wait_cs_args *args = data;
+ struct hl_ctx *ctx = hpriv->ctx;
+ struct hl_fence **fence_arr;
+ void __user *seq_arr;
+ u32 size_to_copy;
+ u64 *cs_seq_arr;
+ u8 seq_arr_len;
+ int rc, i;
+
+ for (i = 0 ; i < sizeof(args->in.pad) ; i++)
+ if (args->in.pad[i]) {
+ dev_dbg(hdev->dev, "Padding bytes must be 0\n");
+ return -EINVAL;
+ }
+
+ if (!hdev->supports_wait_for_multi_cs) {
+ dev_err(hdev->dev, "Wait for multi CS is not supported\n");
+ return -EPERM;
+ }
+
+ seq_arr_len = args->in.seq_arr_len;
+
+ if (seq_arr_len > HL_WAIT_MULTI_CS_LIST_MAX_LEN) {
+ dev_err(hdev->dev, "Can wait only up to %d CSs, input sequence is of length %u\n",
+ HL_WAIT_MULTI_CS_LIST_MAX_LEN, seq_arr_len);
+ return -EINVAL;
+ }
+
+ /* allocate memory for sequence array */
+ cs_seq_arr =
+ kmalloc_array(seq_arr_len, sizeof(*cs_seq_arr), GFP_KERNEL);
+ if (!cs_seq_arr)
+ return -ENOMEM;
+
+ /* copy CS sequence array from user */
+ seq_arr = (void __user *) (uintptr_t) args->in.seq;
+ size_to_copy = seq_arr_len * sizeof(*cs_seq_arr);
+ if (copy_from_user(cs_seq_arr, seq_arr, size_to_copy)) {
+ dev_err(hdev->dev, "Failed to copy multi-cs sequence array from user\n");
+ rc = -EFAULT;
+ goto free_seq_arr;
+ }
+
+ /* allocate array for the fences */
+ fence_arr = kmalloc_array(seq_arr_len, sizeof(struct hl_fence *), GFP_KERNEL);
+ if (!fence_arr) {
+ rc = -ENOMEM;
+ goto free_seq_arr;
+ }
+
+ /* initialize the multi-CS internal data */
+ mcs_data.ctx = ctx;
+ mcs_data.seq_arr = cs_seq_arr;
+ mcs_data.fence_arr = fence_arr;
+ mcs_data.arr_len = seq_arr_len;
+
+ hl_ctx_get(ctx);
+
+ /* wait (with timeout) for the first CS to be completed */
+ mcs_data.timeout_jiffies = hl_usecs64_to_jiffies(args->in.timeout_us);
+ mcs_compl = hl_wait_multi_cs_completion_init(hdev);
+ if (IS_ERR(mcs_compl)) {
+ rc = PTR_ERR(mcs_compl);
+ goto put_ctx;
+ }
+
+ /* poll all CS fences, extract timestamp */
+ mcs_data.update_ts = true;
+ rc = hl_cs_poll_fences(&mcs_data, mcs_compl);
+ /*
+ * skip wait for CS completion when one of the below is true:
+ * - an error on the poll function
+ * - one or more CS in the list completed
+ * - the user called ioctl with timeout 0
+ */
+ if (rc || mcs_data.completion_bitmap || !args->in.timeout_us)
+ goto completion_fini;
+
+ while (true) {
+ rc = hl_wait_multi_cs_completion(&mcs_data, mcs_compl);
+ if (rc || (mcs_data.wait_status == 0))
+ break;
+
+ /*
+ * poll fences once again to update the CS map.
+ * no timestamp should be updated this time.
+ */
+ mcs_data.update_ts = false;
+ rc = hl_cs_poll_fences(&mcs_data, mcs_compl);
+
+ if (rc || mcs_data.completion_bitmap)
+ break;
+
+ /*
+ * if hl_wait_multi_cs_completion returned before timeout (i.e.
+ * it got a completion) it either got completed by CS in the multi CS list
+ * (in which case the indication will be non empty completion_bitmap) or it
+ * got completed by CS submitted to one of the shared stream master but
+ * not in the multi CS list (in which case we should wait again but modify
+ * the timeout and set timestamp as zero to let a CS related to the current
+ * multi-CS set a new, relevant, timestamp)
+ */
+ mcs_data.timeout_jiffies = mcs_data.wait_status;
+ mcs_compl->timestamp = 0;
+ }
+
+completion_fini:
+ hl_wait_multi_cs_completion_fini(mcs_compl);
+
+put_ctx:
+ hl_ctx_put(ctx);
+ kfree(fence_arr);
+
+free_seq_arr:
+ kfree(cs_seq_arr);
+
+ if (rc == -ERESTARTSYS) {
+ dev_err_ratelimited(hdev->dev,
+ "user process got signal while waiting for Multi-CS\n");
+ rc = -EINTR;
+ }
+
+ if (rc)
+ return rc;
+
+ /* update output args */
+ memset(args, 0, sizeof(*args));
+
+ if (mcs_data.completion_bitmap) {
+ args->out.status = HL_WAIT_CS_STATUS_COMPLETED;
+ args->out.cs_completion_map = mcs_data.completion_bitmap;
+
+ /* if timestamp not 0- it's valid */
+ if (mcs_data.timestamp) {
+ args->out.timestamp_nsec = mcs_data.timestamp;
+ args->out.flags |= HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD;
+ }
+
+ /* update if some CS was gone */
+ if (!mcs_data.timestamp)
+ args->out.flags |= HL_WAIT_CS_STATUS_FLAG_GONE;
+ } else {
+ args->out.status = HL_WAIT_CS_STATUS_BUSY;
+ }
+
+ return 0;
+}
+
+static int hl_cs_wait_ioctl(struct hl_fpriv *hpriv, void *data)
+{
+ struct hl_device *hdev = hpriv->hdev;
+ union hl_wait_cs_args *args = data;
+ enum hl_cs_wait_status status;
+ u64 seq = args->in.seq;
+ s64 timestamp;
+ int rc;
+
+ rc = _hl_cs_wait_ioctl(hdev, hpriv->ctx, args->in.timeout_us, seq, &status, &timestamp);
+
+ if (rc == -ERESTARTSYS) {
+ dev_err_ratelimited(hdev->dev,
+ "user process got signal while waiting for CS handle %llu\n",
+ seq);
+ return -EINTR;
+ }
+
+ memset(args, 0, sizeof(*args));
+
+ if (rc) {
+ if (rc == -ETIMEDOUT) {
+ dev_err_ratelimited(hdev->dev,
+ "CS %llu has timed-out while user process is waiting for it\n",
+ seq);
+ args->out.status = HL_WAIT_CS_STATUS_TIMEDOUT;
+ } else if (rc == -EIO) {
+ dev_err_ratelimited(hdev->dev,
+ "CS %llu has been aborted while user process is waiting for it\n",
+ seq);
+ args->out.status = HL_WAIT_CS_STATUS_ABORTED;
+ }
+ return rc;
+ }
+
+ if (timestamp) {
+ args->out.flags |= HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD;
+ args->out.timestamp_nsec = timestamp;
+ }
+
+ switch (status) {
+ case CS_WAIT_STATUS_GONE:
+ args->out.flags |= HL_WAIT_CS_STATUS_FLAG_GONE;
+ fallthrough;
+ case CS_WAIT_STATUS_COMPLETED:
+ args->out.status = HL_WAIT_CS_STATUS_COMPLETED;
+ break;
+ case CS_WAIT_STATUS_BUSY:
+ default:
+ args->out.status = HL_WAIT_CS_STATUS_BUSY;
+ break;
+ }
+
+ return 0;
+}
+
+static int ts_buff_get_kernel_ts_record(struct hl_mmap_mem_buf *buf,
+ struct hl_cb *cq_cb,
+ u64 ts_offset, u64 cq_offset, u64 target_value,
+ spinlock_t *wait_list_lock,
+ struct hl_user_pending_interrupt **pend)
+{
+ struct hl_ts_buff *ts_buff = buf->private;
+ struct hl_user_pending_interrupt *requested_offset_record =
+ (struct hl_user_pending_interrupt *)ts_buff->kernel_buff_address +
+ ts_offset;
+ struct hl_user_pending_interrupt *cb_last =
+ (struct hl_user_pending_interrupt *)ts_buff->kernel_buff_address +
+ (ts_buff->kernel_buff_size / sizeof(struct hl_user_pending_interrupt));
+ unsigned long flags, iter_counter = 0;
+ u64 current_cq_counter;
+
+ /* Validate ts_offset not exceeding last max */
+ if (requested_offset_record >= cb_last) {
+ dev_err(buf->mmg->dev, "Ts offset exceeds max CB offset(0x%llx)\n",
+ (u64)(uintptr_t)cb_last);
+ return -EINVAL;
+ }
+
+start_over:
+ spin_lock_irqsave(wait_list_lock, flags);
+
+ /* Unregister only if we didn't reach the target value
+ * since in this case there will be no handling in irq context
+ * and then it's safe to delete the node out of the interrupt list
+ * then re-use it on other interrupt
+ */
+ if (requested_offset_record->ts_reg_info.in_use) {
+ current_cq_counter = *requested_offset_record->cq_kernel_addr;
+ if (current_cq_counter < requested_offset_record->cq_target_value) {
+ list_del(&requested_offset_record->wait_list_node);
+ spin_unlock_irqrestore(wait_list_lock, flags);
+
+ hl_mmap_mem_buf_put(requested_offset_record->ts_reg_info.buf);
+ hl_cb_put(requested_offset_record->ts_reg_info.cq_cb);
+
+ dev_dbg(buf->mmg->dev,
+ "ts node removed from interrupt list now can re-use\n");
+ } else {
+ dev_dbg(buf->mmg->dev,
+ "ts node in middle of irq handling\n");
+
+ /* irq handling in the middle give it time to finish */
+ spin_unlock_irqrestore(wait_list_lock, flags);
+ usleep_range(1, 10);
+ if (++iter_counter == MAX_TS_ITER_NUM) {
+ dev_err(buf->mmg->dev,
+ "handling registration interrupt took too long!!\n");
+ return -EINVAL;
+ }
+
+ goto start_over;
+ }
+ } else {
+ /* Fill up the new registration node info */
+ requested_offset_record->ts_reg_info.buf = buf;
+ requested_offset_record->ts_reg_info.cq_cb = cq_cb;
+ requested_offset_record->ts_reg_info.timestamp_kernel_addr =
+ (u64 *) ts_buff->user_buff_address + ts_offset;
+ requested_offset_record->cq_kernel_addr =
+ (u64 *) cq_cb->kernel_address + cq_offset;
+ requested_offset_record->cq_target_value = target_value;
+
+ spin_unlock_irqrestore(wait_list_lock, flags);
+ }
+
+ *pend = requested_offset_record;
+
+ dev_dbg(buf->mmg->dev, "Found available node in TS kernel CB %p\n",
+ requested_offset_record);
+ return 0;
+}
+
+static int _hl_interrupt_wait_ioctl(struct hl_device *hdev, struct hl_ctx *ctx,
+ struct hl_mem_mgr *cb_mmg, struct hl_mem_mgr *mmg,
+ u64 timeout_us, u64 cq_counters_handle, u64 cq_counters_offset,
+ u64 target_value, struct hl_user_interrupt *interrupt,
+ bool register_ts_record, u64 ts_handle, u64 ts_offset,
+ u32 *status, u64 *timestamp)
+{
+ struct hl_user_pending_interrupt *pend;
+ struct hl_mmap_mem_buf *buf;
+ struct hl_cb *cq_cb;
+ unsigned long timeout, flags;
+ long completion_rc;
+ int rc = 0;
+
+ timeout = hl_usecs64_to_jiffies(timeout_us);
+
+ hl_ctx_get(ctx);
+
+ cq_cb = hl_cb_get(cb_mmg, cq_counters_handle);
+ if (!cq_cb) {
+ rc = -EINVAL;
+ goto put_ctx;
+ }
+
+ /* Validate the cq offset */
+ if (((u64 *) cq_cb->kernel_address + cq_counters_offset) >=
+ ((u64 *) cq_cb->kernel_address + (cq_cb->size / sizeof(u64)))) {
+ rc = -EINVAL;
+ goto put_cq_cb;
+ }
+
+ if (register_ts_record) {
+ dev_dbg(hdev->dev, "Timestamp registration: interrupt id: %u, ts offset: %llu, cq_offset: %llu\n",
+ interrupt->interrupt_id, ts_offset, cq_counters_offset);
+ buf = hl_mmap_mem_buf_get(mmg, ts_handle);
+ if (!buf) {
+ rc = -EINVAL;
+ goto put_cq_cb;
+ }
+
+ /* get ts buffer record */
+ rc = ts_buff_get_kernel_ts_record(buf, cq_cb, ts_offset,
+ cq_counters_offset, target_value,
+ &interrupt->wait_list_lock, &pend);
+ if (rc)
+ goto put_ts_buff;
+ } else {
+ pend = kzalloc(sizeof(*pend), GFP_KERNEL);
+ if (!pend) {
+ rc = -ENOMEM;
+ goto put_cq_cb;
+ }
+ hl_fence_init(&pend->fence, ULONG_MAX);
+ pend->cq_kernel_addr = (u64 *) cq_cb->kernel_address + cq_counters_offset;
+ pend->cq_target_value = target_value;
+ }
+
+ spin_lock_irqsave(&interrupt->wait_list_lock, flags);
+
+ /* We check for completion value as interrupt could have been received
+ * before we added the node to the wait list
+ */
+ if (*pend->cq_kernel_addr >= target_value) {
+ if (register_ts_record)
+ pend->ts_reg_info.in_use = 0;
+ spin_unlock_irqrestore(&interrupt->wait_list_lock, flags);
+
+ *status = HL_WAIT_CS_STATUS_COMPLETED;
+
+ if (register_ts_record) {
+ *pend->ts_reg_info.timestamp_kernel_addr = ktime_get_ns();
+ goto put_ts_buff;
+ } else {
+ pend->fence.timestamp = ktime_get();
+ goto set_timestamp;
+ }
+ } else if (!timeout_us) {
+ spin_unlock_irqrestore(&interrupt->wait_list_lock, flags);
+ *status = HL_WAIT_CS_STATUS_BUSY;
+ pend->fence.timestamp = ktime_get();
+ goto set_timestamp;
+ }
+
+ /* Add pending user interrupt to relevant list for the interrupt
+ * handler to monitor.
+ * Note that we cannot have sorted list by target value,
+ * in order to shorten the list pass loop, since
+ * same list could have nodes for different cq counter handle.
+ * Note:
+ * Mark ts buff offset as in use here in the spinlock protection area
+ * to avoid getting in the re-use section in ts_buff_get_kernel_ts_record
+ * before adding the node to the list. this scenario might happen when
+ * multiple threads are racing on same offset and one thread could
+ * set the ts buff in ts_buff_get_kernel_ts_record then the other thread
+ * takes over and get to ts_buff_get_kernel_ts_record and then we will try
+ * to re-use the same ts buff offset, and will try to delete a non existing
+ * node from the list.
+ */
+ if (register_ts_record)
+ pend->ts_reg_info.in_use = 1;
+
+ list_add_tail(&pend->wait_list_node, &interrupt->wait_list_head);
+ spin_unlock_irqrestore(&interrupt->wait_list_lock, flags);
+
+ if (register_ts_record) {
+ rc = *status = HL_WAIT_CS_STATUS_COMPLETED;
+ goto ts_registration_exit;
+ }
+
+ /* Wait for interrupt handler to signal completion */
+ completion_rc = wait_for_completion_interruptible_timeout(&pend->fence.completion,
+ timeout);
+ if (completion_rc > 0) {
+ *status = HL_WAIT_CS_STATUS_COMPLETED;
+ } else {
+ if (completion_rc == -ERESTARTSYS) {
+ dev_err_ratelimited(hdev->dev,
+ "user process got signal while waiting for interrupt ID %d\n",
+ interrupt->interrupt_id);
+ rc = -EINTR;
+ *status = HL_WAIT_CS_STATUS_ABORTED;
+ } else {
+ if (pend->fence.error == -EIO) {
+ dev_err_ratelimited(hdev->dev,
+ "interrupt based wait ioctl aborted(error:%d) due to a reset cycle initiated\n",
+ pend->fence.error);
+ rc = -EIO;
+ *status = HL_WAIT_CS_STATUS_ABORTED;
+ } else {
+ /* The wait has timed-out. We don't know anything beyond that
+ * because the workload wasn't submitted through the driver.
+ * Therefore, from driver's perspective, the workload is still
+ * executing.
+ */
+ rc = 0;
+ *status = HL_WAIT_CS_STATUS_BUSY;
+ }
+ }
+ }
+
+ /*
+ * We keep removing the node from list here, and not at the irq handler
+ * for completion timeout case. and if it's a registration
+ * for ts record, the node will be deleted in the irq handler after
+ * we reach the target value.
+ */
+ spin_lock_irqsave(&interrupt->wait_list_lock, flags);
+ list_del(&pend->wait_list_node);
+ spin_unlock_irqrestore(&interrupt->wait_list_lock, flags);
+
+set_timestamp:
+ *timestamp = ktime_to_ns(pend->fence.timestamp);
+ kfree(pend);
+ hl_cb_put(cq_cb);
+ts_registration_exit:
+ hl_ctx_put(ctx);
+
+ return rc;
+
+put_ts_buff:
+ hl_mmap_mem_buf_put(buf);
+put_cq_cb:
+ hl_cb_put(cq_cb);
+put_ctx:
+ hl_ctx_put(ctx);
+
+ return rc;
+}
+
+static int _hl_interrupt_wait_ioctl_user_addr(struct hl_device *hdev, struct hl_ctx *ctx,
+ u64 timeout_us, u64 user_address,
+ u64 target_value, struct hl_user_interrupt *interrupt,
+ u32 *status,
+ u64 *timestamp)
+{
+ struct hl_user_pending_interrupt *pend;
+ unsigned long timeout, flags;
+ u64 completion_value;
+ long completion_rc;
+ int rc = 0;
+
+ timeout = hl_usecs64_to_jiffies(timeout_us);
+
+ hl_ctx_get(ctx);
+
+ pend = kzalloc(sizeof(*pend), GFP_KERNEL);
+ if (!pend) {
+ hl_ctx_put(ctx);
+ return -ENOMEM;
+ }
+
+ hl_fence_init(&pend->fence, ULONG_MAX);
+
+ /* Add pending user interrupt to relevant list for the interrupt
+ * handler to monitor
+ */
+ spin_lock_irqsave(&interrupt->wait_list_lock, flags);
+ list_add_tail(&pend->wait_list_node, &interrupt->wait_list_head);
+ spin_unlock_irqrestore(&interrupt->wait_list_lock, flags);
+
+ /* We check for completion value as interrupt could have been received
+ * before we added the node to the wait list
+ */
+ if (copy_from_user(&completion_value, u64_to_user_ptr(user_address), 8)) {
+ dev_err(hdev->dev, "Failed to copy completion value from user\n");
+ rc = -EFAULT;
+ goto remove_pending_user_interrupt;
+ }
+
+ if (completion_value >= target_value) {
+ *status = HL_WAIT_CS_STATUS_COMPLETED;
+ /* There was no interrupt, we assume the completion is now. */
+ pend->fence.timestamp = ktime_get();
+ } else {
+ *status = HL_WAIT_CS_STATUS_BUSY;
+ }
+
+ if (!timeout_us || (*status == HL_WAIT_CS_STATUS_COMPLETED))
+ goto remove_pending_user_interrupt;
+
+wait_again:
+ /* Wait for interrupt handler to signal completion */
+ completion_rc = wait_for_completion_interruptible_timeout(&pend->fence.completion,
+ timeout);
+
+ /* If timeout did not expire we need to perform the comparison.
+ * If comparison fails, keep waiting until timeout expires
+ */
+ if (completion_rc > 0) {
+ spin_lock_irqsave(&interrupt->wait_list_lock, flags);
+ /* reinit_completion must be called before we check for user
+ * completion value, otherwise, if interrupt is received after
+ * the comparison and before the next wait_for_completion,
+ * we will reach timeout and fail
+ */
+ reinit_completion(&pend->fence.completion);
+ spin_unlock_irqrestore(&interrupt->wait_list_lock, flags);
+
+ if (copy_from_user(&completion_value, u64_to_user_ptr(user_address), 8)) {
+ dev_err(hdev->dev, "Failed to copy completion value from user\n");
+ rc = -EFAULT;
+
+ goto remove_pending_user_interrupt;
+ }
+
+ if (completion_value >= target_value) {
+ *status = HL_WAIT_CS_STATUS_COMPLETED;
+ } else if (pend->fence.error) {
+ dev_err_ratelimited(hdev->dev,
+ "interrupt based wait ioctl aborted(error:%d) due to a reset cycle initiated\n",
+ pend->fence.error);
+ /* set the command completion status as ABORTED */
+ *status = HL_WAIT_CS_STATUS_ABORTED;
+ } else {
+ timeout = completion_rc;
+ goto wait_again;
+ }
+ } else if (completion_rc == -ERESTARTSYS) {
+ dev_err_ratelimited(hdev->dev,
+ "user process got signal while waiting for interrupt ID %d\n",
+ interrupt->interrupt_id);
+ rc = -EINTR;
+ } else {
+ /* The wait has timed-out. We don't know anything beyond that
+ * because the workload wasn't submitted through the driver.
+ * Therefore, from driver's perspective, the workload is still
+ * executing.
+ */
+ rc = 0;
+ *status = HL_WAIT_CS_STATUS_BUSY;
+ }
+
+remove_pending_user_interrupt:
+ spin_lock_irqsave(&interrupt->wait_list_lock, flags);
+ list_del(&pend->wait_list_node);
+ spin_unlock_irqrestore(&interrupt->wait_list_lock, flags);
+
+ *timestamp = ktime_to_ns(pend->fence.timestamp);
+
+ kfree(pend);
+ hl_ctx_put(ctx);
+
+ return rc;
+}
+
+static int hl_interrupt_wait_ioctl(struct hl_fpriv *hpriv, void *data)
+{
+ u16 interrupt_id, first_interrupt, last_interrupt;
+ struct hl_device *hdev = hpriv->hdev;
+ struct asic_fixed_properties *prop;
+ struct hl_user_interrupt *interrupt;
+ union hl_wait_cs_args *args = data;
+ u32 status = HL_WAIT_CS_STATUS_BUSY;
+ u64 timestamp = 0;
+ int rc, int_idx;
+
+ prop = &hdev->asic_prop;
+
+ if (!(prop->user_interrupt_count + prop->user_dec_intr_count)) {
+ dev_err(hdev->dev, "no user interrupts allowed");
+ return -EPERM;
+ }
+
+ interrupt_id = FIELD_GET(HL_WAIT_CS_FLAGS_INTERRUPT_MASK, args->in.flags);
+
+ first_interrupt = prop->first_available_user_interrupt;
+ last_interrupt = prop->first_available_user_interrupt + prop->user_interrupt_count - 1;
+
+ if (interrupt_id < prop->user_dec_intr_count) {
+
+ /* Check if the requested core is enabled */
+ if (!(prop->decoder_enabled_mask & BIT(interrupt_id))) {
+ dev_err(hdev->dev, "interrupt on a disabled core(%u) not allowed",
+ interrupt_id);
+ return -EINVAL;
+ }
+
+ interrupt = &hdev->user_interrupt[interrupt_id];
+
+ } else if (interrupt_id >= first_interrupt && interrupt_id <= last_interrupt) {
+
+ int_idx = interrupt_id - first_interrupt + prop->user_dec_intr_count;
+ interrupt = &hdev->user_interrupt[int_idx];
+
+ } else if (interrupt_id == HL_COMMON_USER_CQ_INTERRUPT_ID) {
+ interrupt = &hdev->common_user_cq_interrupt;
+ } else if (interrupt_id == HL_COMMON_DEC_INTERRUPT_ID) {
+ interrupt = &hdev->common_decoder_interrupt;
+ } else {
+ dev_err(hdev->dev, "invalid user interrupt %u", interrupt_id);
+ return -EINVAL;
+ }
+
+ if (args->in.flags & HL_WAIT_CS_FLAGS_INTERRUPT_KERNEL_CQ)
+ rc = _hl_interrupt_wait_ioctl(hdev, hpriv->ctx, &hpriv->mem_mgr, &hpriv->mem_mgr,
+ args->in.interrupt_timeout_us, args->in.cq_counters_handle,
+ args->in.cq_counters_offset,
+ args->in.target, interrupt,
+ !!(args->in.flags & HL_WAIT_CS_FLAGS_REGISTER_INTERRUPT),
+ args->in.timestamp_handle, args->in.timestamp_offset,
+ &status, &timestamp);
+ else
+ rc = _hl_interrupt_wait_ioctl_user_addr(hdev, hpriv->ctx,
+ args->in.interrupt_timeout_us, args->in.addr,
+ args->in.target, interrupt, &status,
+ &timestamp);
+ if (rc)
+ return rc;
+
+ memset(args, 0, sizeof(*args));
+ args->out.status = status;
+
+ if (timestamp) {
+ args->out.timestamp_nsec = timestamp;
+ args->out.flags |= HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD;
+ }
+
+ return 0;
+}
+
+int hl_wait_ioctl(struct hl_fpriv *hpriv, void *data)
+{
+ struct hl_device *hdev = hpriv->hdev;
+ union hl_wait_cs_args *args = data;
+ u32 flags = args->in.flags;
+ int rc;
+
+ /* If the device is not operational, or if an error has happened and user should release the
+ * device, there is no point in waiting for any command submission or user interrupt.
+ */
+ if (!hl_device_operational(hpriv->hdev, NULL) || hdev->reset_info.watchdog_active)
+ return -EBUSY;
+
+ if (flags & HL_WAIT_CS_FLAGS_INTERRUPT)
+ rc = hl_interrupt_wait_ioctl(hpriv, data);
+ else if (flags & HL_WAIT_CS_FLAGS_MULTI_CS)
+ rc = hl_multi_cs_wait_ioctl(hpriv, data);
+ else
+ rc = hl_cs_wait_ioctl(hpriv, data);
+
+ return rc;
+}