aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/drivers/crypto/ccp
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/crypto/ccp')
-rw-r--r--drivers/crypto/ccp/Makefile1
-rw-r--r--drivers/crypto/ccp/ccp-crypto-sha.c18
-rw-r--r--drivers/crypto/ccp/ccp-dev-v3.c182
-rw-r--r--drivers/crypto/ccp/ccp-dev-v5.c1017
-rw-r--r--drivers/crypto/ccp/ccp-dev.c113
-rw-r--r--drivers/crypto/ccp/ccp-dev.h312
-rw-r--r--drivers/crypto/ccp/ccp-dmaengine.c11
-rw-r--r--drivers/crypto/ccp/ccp-ops.c576
-rw-r--r--drivers/crypto/ccp/ccp-pci.c23
9 files changed, 1823 insertions, 430 deletions
diff --git a/drivers/crypto/ccp/Makefile b/drivers/crypto/ccp/Makefile
index ee4d2741b3ab..346ceb8f17bd 100644
--- a/drivers/crypto/ccp/Makefile
+++ b/drivers/crypto/ccp/Makefile
@@ -2,6 +2,7 @@ obj-$(CONFIG_CRYPTO_DEV_CCP_DD) += ccp.o
ccp-objs := ccp-dev.o \
ccp-ops.o \
ccp-dev-v3.o \
+ ccp-dev-v5.o \
ccp-platform.o \
ccp-dmaengine.o
ccp-$(CONFIG_PCI) += ccp-pci.o
diff --git a/drivers/crypto/ccp/ccp-crypto-sha.c b/drivers/crypto/ccp/ccp-crypto-sha.c
index 8f36af62fe95..84a652be4274 100644
--- a/drivers/crypto/ccp/ccp-crypto-sha.c
+++ b/drivers/crypto/ccp/ccp-crypto-sha.c
@@ -4,6 +4,7 @@
* Copyright (C) 2013,2016 Advanced Micro Devices, Inc.
*
* Author: Tom Lendacky <thomas.lendacky@amd.com>
+ * Author: Gary R Hook <gary.hook@amd.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
@@ -134,7 +135,22 @@ static int ccp_do_sha_update(struct ahash_request *req, unsigned int nbytes,
rctx->cmd.engine = CCP_ENGINE_SHA;
rctx->cmd.u.sha.type = rctx->type;
rctx->cmd.u.sha.ctx = &rctx->ctx_sg;
- rctx->cmd.u.sha.ctx_len = sizeof(rctx->ctx);
+
+ switch (rctx->type) {
+ case CCP_SHA_TYPE_1:
+ rctx->cmd.u.sha.ctx_len = SHA1_DIGEST_SIZE;
+ break;
+ case CCP_SHA_TYPE_224:
+ rctx->cmd.u.sha.ctx_len = SHA224_DIGEST_SIZE;
+ break;
+ case CCP_SHA_TYPE_256:
+ rctx->cmd.u.sha.ctx_len = SHA256_DIGEST_SIZE;
+ break;
+ default:
+ /* Should never get here */
+ break;
+ }
+
rctx->cmd.u.sha.src = sg;
rctx->cmd.u.sha.src_len = rctx->hash_cnt;
rctx->cmd.u.sha.opad = ctx->u.sha.key_len ?
diff --git a/drivers/crypto/ccp/ccp-dev-v3.c b/drivers/crypto/ccp/ccp-dev-v3.c
index d7a710347967..8d2dbacc6161 100644
--- a/drivers/crypto/ccp/ccp-dev-v3.c
+++ b/drivers/crypto/ccp/ccp-dev-v3.c
@@ -4,6 +4,7 @@
* Copyright (C) 2013,2016 Advanced Micro Devices, Inc.
*
* Author: Tom Lendacky <thomas.lendacky@amd.com>
+ * Author: Gary R Hook <gary.hook@amd.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
@@ -19,6 +20,61 @@
#include "ccp-dev.h"
+static u32 ccp_alloc_ksb(struct ccp_cmd_queue *cmd_q, unsigned int count)
+{
+ int start;
+ struct ccp_device *ccp = cmd_q->ccp;
+
+ for (;;) {
+ mutex_lock(&ccp->sb_mutex);
+
+ start = (u32)bitmap_find_next_zero_area(ccp->sb,
+ ccp->sb_count,
+ ccp->sb_start,
+ count, 0);
+ if (start <= ccp->sb_count) {
+ bitmap_set(ccp->sb, start, count);
+
+ mutex_unlock(&ccp->sb_mutex);
+ break;
+ }
+
+ ccp->sb_avail = 0;
+
+ mutex_unlock(&ccp->sb_mutex);
+
+ /* Wait for KSB entries to become available */
+ if (wait_event_interruptible(ccp->sb_queue, ccp->sb_avail))
+ return 0;
+ }
+
+ return KSB_START + start;
+}
+
+static void ccp_free_ksb(struct ccp_cmd_queue *cmd_q, unsigned int start,
+ unsigned int count)
+{
+ struct ccp_device *ccp = cmd_q->ccp;
+
+ if (!start)
+ return;
+
+ mutex_lock(&ccp->sb_mutex);
+
+ bitmap_clear(ccp->sb, start - KSB_START, count);
+
+ ccp->sb_avail = 1;
+
+ mutex_unlock(&ccp->sb_mutex);
+
+ wake_up_interruptible_all(&ccp->sb_queue);
+}
+
+static unsigned int ccp_get_free_slots(struct ccp_cmd_queue *cmd_q)
+{
+ return CMD_Q_DEPTH(ioread32(cmd_q->reg_status));
+}
+
static int ccp_do_cmd(struct ccp_op *op, u32 *cr, unsigned int cr_count)
{
struct ccp_cmd_queue *cmd_q = op->cmd_q;
@@ -68,6 +124,9 @@ static int ccp_do_cmd(struct ccp_op *op, u32 *cr, unsigned int cr_count)
/* On error delete all related jobs from the queue */
cmd = (cmd_q->id << DEL_Q_ID_SHIFT)
| op->jobid;
+ if (cmd_q->cmd_error)
+ ccp_log_error(cmd_q->ccp,
+ cmd_q->cmd_error);
iowrite32(cmd, ccp->io_regs + DEL_CMD_Q_JOB);
@@ -99,10 +158,10 @@ static int ccp_perform_aes(struct ccp_op *op)
| (op->u.aes.type << REQ1_AES_TYPE_SHIFT)
| (op->u.aes.mode << REQ1_AES_MODE_SHIFT)
| (op->u.aes.action << REQ1_AES_ACTION_SHIFT)
- | (op->ksb_key << REQ1_KEY_KSB_SHIFT);
+ | (op->sb_key << REQ1_KEY_KSB_SHIFT);
cr[1] = op->src.u.dma.length - 1;
cr[2] = ccp_addr_lo(&op->src.u.dma);
- cr[3] = (op->ksb_ctx << REQ4_KSB_SHIFT)
+ cr[3] = (op->sb_ctx << REQ4_KSB_SHIFT)
| (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
| ccp_addr_hi(&op->src.u.dma);
cr[4] = ccp_addr_lo(&op->dst.u.dma);
@@ -129,10 +188,10 @@ static int ccp_perform_xts_aes(struct ccp_op *op)
cr[0] = (CCP_ENGINE_XTS_AES_128 << REQ1_ENGINE_SHIFT)
| (op->u.xts.action << REQ1_AES_ACTION_SHIFT)
| (op->u.xts.unit_size << REQ1_XTS_AES_SIZE_SHIFT)
- | (op->ksb_key << REQ1_KEY_KSB_SHIFT);
+ | (op->sb_key << REQ1_KEY_KSB_SHIFT);
cr[1] = op->src.u.dma.length - 1;
cr[2] = ccp_addr_lo(&op->src.u.dma);
- cr[3] = (op->ksb_ctx << REQ4_KSB_SHIFT)
+ cr[3] = (op->sb_ctx << REQ4_KSB_SHIFT)
| (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
| ccp_addr_hi(&op->src.u.dma);
cr[4] = ccp_addr_lo(&op->dst.u.dma);
@@ -158,7 +217,7 @@ static int ccp_perform_sha(struct ccp_op *op)
| REQ1_INIT;
cr[1] = op->src.u.dma.length - 1;
cr[2] = ccp_addr_lo(&op->src.u.dma);
- cr[3] = (op->ksb_ctx << REQ4_KSB_SHIFT)
+ cr[3] = (op->sb_ctx << REQ4_KSB_SHIFT)
| (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
| ccp_addr_hi(&op->src.u.dma);
@@ -181,11 +240,11 @@ static int ccp_perform_rsa(struct ccp_op *op)
/* Fill out the register contents for REQ1 through REQ6 */
cr[0] = (CCP_ENGINE_RSA << REQ1_ENGINE_SHIFT)
| (op->u.rsa.mod_size << REQ1_RSA_MOD_SIZE_SHIFT)
- | (op->ksb_key << REQ1_KEY_KSB_SHIFT)
+ | (op->sb_key << REQ1_KEY_KSB_SHIFT)
| REQ1_EOM;
cr[1] = op->u.rsa.input_len - 1;
cr[2] = ccp_addr_lo(&op->src.u.dma);
- cr[3] = (op->ksb_ctx << REQ4_KSB_SHIFT)
+ cr[3] = (op->sb_ctx << REQ4_KSB_SHIFT)
| (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
| ccp_addr_hi(&op->src.u.dma);
cr[4] = ccp_addr_lo(&op->dst.u.dma);
@@ -215,10 +274,10 @@ static int ccp_perform_passthru(struct ccp_op *op)
| ccp_addr_hi(&op->src.u.dma);
if (op->u.passthru.bit_mod != CCP_PASSTHRU_BITWISE_NOOP)
- cr[3] |= (op->ksb_key << REQ4_KSB_SHIFT);
+ cr[3] |= (op->sb_key << REQ4_KSB_SHIFT);
} else {
- cr[2] = op->src.u.ksb * CCP_KSB_BYTES;
- cr[3] = (CCP_MEMTYPE_KSB << REQ4_MEMTYPE_SHIFT);
+ cr[2] = op->src.u.sb * CCP_SB_BYTES;
+ cr[3] = (CCP_MEMTYPE_SB << REQ4_MEMTYPE_SHIFT);
}
if (op->dst.type == CCP_MEMTYPE_SYSTEM) {
@@ -226,8 +285,8 @@ static int ccp_perform_passthru(struct ccp_op *op)
cr[5] = (CCP_MEMTYPE_SYSTEM << REQ6_MEMTYPE_SHIFT)
| ccp_addr_hi(&op->dst.u.dma);
} else {
- cr[4] = op->dst.u.ksb * CCP_KSB_BYTES;
- cr[5] = (CCP_MEMTYPE_KSB << REQ6_MEMTYPE_SHIFT);
+ cr[4] = op->dst.u.sb * CCP_SB_BYTES;
+ cr[5] = (CCP_MEMTYPE_SB << REQ6_MEMTYPE_SHIFT);
}
if (op->eom)
@@ -256,35 +315,6 @@ static int ccp_perform_ecc(struct ccp_op *op)
return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
}
-static int ccp_trng_read(struct hwrng *rng, void *data, size_t max, bool wait)
-{
- struct ccp_device *ccp = container_of(rng, struct ccp_device, hwrng);
- u32 trng_value;
- int len = min_t(int, sizeof(trng_value), max);
-
- /*
- * Locking is provided by the caller so we can update device
- * hwrng-related fields safely
- */
- trng_value = ioread32(ccp->io_regs + TRNG_OUT_REG);
- if (!trng_value) {
- /* Zero is returned if not data is available or if a
- * bad-entropy error is present. Assume an error if
- * we exceed TRNG_RETRIES reads of zero.
- */
- if (ccp->hwrng_retries++ > TRNG_RETRIES)
- return -EIO;
-
- return 0;
- }
-
- /* Reset the counter and save the rng value */
- ccp->hwrng_retries = 0;
- memcpy(data, &trng_value, len);
-
- return len;
-}
-
static int ccp_init(struct ccp_device *ccp)
{
struct device *dev = ccp->dev;
@@ -321,9 +351,9 @@ static int ccp_init(struct ccp_device *ccp)
cmd_q->dma_pool = dma_pool;
/* Reserve 2 KSB regions for the queue */
- cmd_q->ksb_key = KSB_START + ccp->ksb_start++;
- cmd_q->ksb_ctx = KSB_START + ccp->ksb_start++;
- ccp->ksb_count -= 2;
+ cmd_q->sb_key = KSB_START + ccp->sb_start++;
+ cmd_q->sb_ctx = KSB_START + ccp->sb_start++;
+ ccp->sb_count -= 2;
/* Preset some register values and masks that are queue
* number dependent
@@ -335,7 +365,7 @@ static int ccp_init(struct ccp_device *ccp)
cmd_q->int_ok = 1 << (i * 2);
cmd_q->int_err = 1 << ((i * 2) + 1);
- cmd_q->free_slots = CMD_Q_DEPTH(ioread32(cmd_q->reg_status));
+ cmd_q->free_slots = ccp_get_free_slots(cmd_q);
init_waitqueue_head(&cmd_q->int_queue);
@@ -375,9 +405,10 @@ static int ccp_init(struct ccp_device *ccp)
}
/* Initialize the queues used to wait for KSB space and suspend */
- init_waitqueue_head(&ccp->ksb_queue);
+ init_waitqueue_head(&ccp->sb_queue);
init_waitqueue_head(&ccp->suspend_queue);
+ dev_dbg(dev, "Starting threads...\n");
/* Create a kthread for each queue */
for (i = 0; i < ccp->cmd_q_count; i++) {
struct task_struct *kthread;
@@ -397,29 +428,26 @@ static int ccp_init(struct ccp_device *ccp)
wake_up_process(kthread);
}
- /* Register the RNG */
- ccp->hwrng.name = ccp->rngname;
- ccp->hwrng.read = ccp_trng_read;
- ret = hwrng_register(&ccp->hwrng);
- if (ret) {
- dev_err(dev, "error registering hwrng (%d)\n", ret);
+ dev_dbg(dev, "Enabling interrupts...\n");
+ /* Enable interrupts */
+ iowrite32(qim, ccp->io_regs + IRQ_MASK_REG);
+
+ dev_dbg(dev, "Registering device...\n");
+ ccp_add_device(ccp);
+
+ ret = ccp_register_rng(ccp);
+ if (ret)
goto e_kthread;
- }
/* Register the DMA engine support */
ret = ccp_dmaengine_register(ccp);
if (ret)
goto e_hwrng;
- ccp_add_device(ccp);
-
- /* Enable interrupts */
- iowrite32(qim, ccp->io_regs + IRQ_MASK_REG);
-
return 0;
e_hwrng:
- hwrng_unregister(&ccp->hwrng);
+ ccp_unregister_rng(ccp);
e_kthread:
for (i = 0; i < ccp->cmd_q_count; i++)
@@ -441,19 +469,14 @@ static void ccp_destroy(struct ccp_device *ccp)
struct ccp_cmd *cmd;
unsigned int qim, i;
- /* Remove this device from the list of available units first */
- ccp_del_device(ccp);
-
/* Unregister the DMA engine */
ccp_dmaengine_unregister(ccp);
/* Unregister the RNG */
- hwrng_unregister(&ccp->hwrng);
+ ccp_unregister_rng(ccp);
- /* Stop the queue kthreads */
- for (i = 0; i < ccp->cmd_q_count; i++)
- if (ccp->cmd_q[i].kthread)
- kthread_stop(ccp->cmd_q[i].kthread);
+ /* Remove this device from the list of available units */
+ ccp_del_device(ccp);
/* Build queue interrupt mask (two interrupt masks per queue) */
qim = 0;
@@ -472,6 +495,11 @@ static void ccp_destroy(struct ccp_device *ccp)
}
iowrite32(qim, ccp->io_regs + IRQ_STATUS_REG);
+ /* Stop the queue kthreads */
+ for (i = 0; i < ccp->cmd_q_count; i++)
+ if (ccp->cmd_q[i].kthread)
+ kthread_stop(ccp->cmd_q[i].kthread);
+
ccp->free_irq(ccp);
for (i = 0; i < ccp->cmd_q_count; i++)
@@ -527,18 +555,24 @@ static irqreturn_t ccp_irq_handler(int irq, void *data)
}
static const struct ccp_actions ccp3_actions = {
- .perform_aes = ccp_perform_aes,
- .perform_xts_aes = ccp_perform_xts_aes,
- .perform_sha = ccp_perform_sha,
- .perform_rsa = ccp_perform_rsa,
- .perform_passthru = ccp_perform_passthru,
- .perform_ecc = ccp_perform_ecc,
+ .aes = ccp_perform_aes,
+ .xts_aes = ccp_perform_xts_aes,
+ .sha = ccp_perform_sha,
+ .rsa = ccp_perform_rsa,
+ .passthru = ccp_perform_passthru,
+ .ecc = ccp_perform_ecc,
+ .sballoc = ccp_alloc_ksb,
+ .sbfree = ccp_free_ksb,
.init = ccp_init,
.destroy = ccp_destroy,
+ .get_free_slots = ccp_get_free_slots,
.irqhandler = ccp_irq_handler,
};
-struct ccp_vdata ccpv3 = {
+const struct ccp_vdata ccpv3 = {
.version = CCP_VERSION(3, 0),
+ .setup = NULL,
.perform = &ccp3_actions,
+ .bar = 2,
+ .offset = 0x20000,
};
diff --git a/drivers/crypto/ccp/ccp-dev-v5.c b/drivers/crypto/ccp/ccp-dev-v5.c
new file mode 100644
index 000000000000..faf3cb3ddce2
--- /dev/null
+++ b/drivers/crypto/ccp/ccp-dev-v5.c
@@ -0,0 +1,1017 @@
+/*
+ * AMD Cryptographic Coprocessor (CCP) driver
+ *
+ * Copyright (C) 2016 Advanced Micro Devices, Inc.
+ *
+ * Author: Gary R Hook <gary.hook@amd.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ */
+
+#include <linux/module.h>
+#include <linux/kernel.h>
+#include <linux/pci.h>
+#include <linux/kthread.h>
+#include <linux/dma-mapping.h>
+#include <linux/interrupt.h>
+#include <linux/compiler.h>
+#include <linux/ccp.h>
+
+#include "ccp-dev.h"
+
+static u32 ccp_lsb_alloc(struct ccp_cmd_queue *cmd_q, unsigned int count)
+{
+ struct ccp_device *ccp;
+ int start;
+
+ /* First look at the map for the queue */
+ if (cmd_q->lsb >= 0) {
+ start = (u32)bitmap_find_next_zero_area(cmd_q->lsbmap,
+ LSB_SIZE,
+ 0, count, 0);
+ if (start < LSB_SIZE) {
+ bitmap_set(cmd_q->lsbmap, start, count);
+ return start + cmd_q->lsb * LSB_SIZE;
+ }
+ }
+
+ /* No joy; try to get an entry from the shared blocks */
+ ccp = cmd_q->ccp;
+ for (;;) {
+ mutex_lock(&ccp->sb_mutex);
+
+ start = (u32)bitmap_find_next_zero_area(ccp->lsbmap,
+ MAX_LSB_CNT * LSB_SIZE,
+ 0,
+ count, 0);
+ if (start <= MAX_LSB_CNT * LSB_SIZE) {
+ bitmap_set(ccp->lsbmap, start, count);
+
+ mutex_unlock(&ccp->sb_mutex);
+ return start * LSB_ITEM_SIZE;
+ }
+
+ ccp->sb_avail = 0;
+
+ mutex_unlock(&ccp->sb_mutex);
+
+ /* Wait for KSB entries to become available */
+ if (wait_event_interruptible(ccp->sb_queue, ccp->sb_avail))
+ return 0;
+ }
+}
+
+static void ccp_lsb_free(struct ccp_cmd_queue *cmd_q, unsigned int start,
+ unsigned int count)
+{
+ int lsbno = start / LSB_SIZE;
+
+ if (!start)
+ return;
+
+ if (cmd_q->lsb == lsbno) {
+ /* An entry from the private LSB */
+ bitmap_clear(cmd_q->lsbmap, start % LSB_SIZE, count);
+ } else {
+ /* From the shared LSBs */
+ struct ccp_device *ccp = cmd_q->ccp;
+
+ mutex_lock(&ccp->sb_mutex);
+ bitmap_clear(ccp->lsbmap, start, count);
+ ccp->sb_avail = 1;
+ mutex_unlock(&ccp->sb_mutex);
+ wake_up_interruptible_all(&ccp->sb_queue);
+ }
+}
+
+/* CCP version 5: Union to define the function field (cmd_reg1/dword0) */
+union ccp_function {
+ struct {
+ u16 size:7;
+ u16 encrypt:1;
+ u16 mode:5;
+ u16 type:2;
+ } aes;
+ struct {
+ u16 size:7;
+ u16 encrypt:1;
+ u16 rsvd:5;
+ u16 type:2;
+ } aes_xts;
+ struct {
+ u16 rsvd1:10;
+ u16 type:4;
+ u16 rsvd2:1;
+ } sha;
+ struct {
+ u16 mode:3;
+ u16 size:12;
+ } rsa;
+ struct {
+ u16 byteswap:2;
+ u16 bitwise:3;
+ u16 reflect:2;
+ u16 rsvd:8;
+ } pt;
+ struct {
+ u16 rsvd:13;
+ } zlib;
+ struct {
+ u16 size:10;
+ u16 type:2;
+ u16 mode:3;
+ } ecc;
+ u16 raw;
+};
+
+#define CCP_AES_SIZE(p) ((p)->aes.size)
+#define CCP_AES_ENCRYPT(p) ((p)->aes.encrypt)
+#define CCP_AES_MODE(p) ((p)->aes.mode)
+#define CCP_AES_TYPE(p) ((p)->aes.type)
+#define CCP_XTS_SIZE(p) ((p)->aes_xts.size)
+#define CCP_XTS_ENCRYPT(p) ((p)->aes_xts.encrypt)
+#define CCP_SHA_TYPE(p) ((p)->sha.type)
+#define CCP_RSA_SIZE(p) ((p)->rsa.size)
+#define CCP_PT_BYTESWAP(p) ((p)->pt.byteswap)
+#define CCP_PT_BITWISE(p) ((p)->pt.bitwise)
+#define CCP_ECC_MODE(p) ((p)->ecc.mode)
+#define CCP_ECC_AFFINE(p) ((p)->ecc.one)
+
+/* Word 0 */
+#define CCP5_CMD_DW0(p) ((p)->dw0)
+#define CCP5_CMD_SOC(p) (CCP5_CMD_DW0(p).soc)
+#define CCP5_CMD_IOC(p) (CCP5_CMD_DW0(p).ioc)
+#define CCP5_CMD_INIT(p) (CCP5_CMD_DW0(p).init)
+#define CCP5_CMD_EOM(p) (CCP5_CMD_DW0(p).eom)
+#define CCP5_CMD_FUNCTION(p) (CCP5_CMD_DW0(p).function)
+#define CCP5_CMD_ENGINE(p) (CCP5_CMD_DW0(p).engine)
+#define CCP5_CMD_PROT(p) (CCP5_CMD_DW0(p).prot)
+
+/* Word 1 */
+#define CCP5_CMD_DW1(p) ((p)->length)
+#define CCP5_CMD_LEN(p) (CCP5_CMD_DW1(p))
+
+/* Word 2 */
+#define CCP5_CMD_DW2(p) ((p)->src_lo)
+#define CCP5_CMD_SRC_LO(p) (CCP5_CMD_DW2(p))
+
+/* Word 3 */
+#define CCP5_CMD_DW3(p) ((p)->dw3)
+#define CCP5_CMD_SRC_MEM(p) ((p)->dw3.src_mem)
+#define CCP5_CMD_SRC_HI(p) ((p)->dw3.src_hi)
+#define CCP5_CMD_LSB_ID(p) ((p)->dw3.lsb_cxt_id)
+#define CCP5_CMD_FIX_SRC(p) ((p)->dw3.fixed)
+
+/* Words 4/5 */
+#define CCP5_CMD_DW4(p) ((p)->dw4)
+#define CCP5_CMD_DST_LO(p) (CCP5_CMD_DW4(p).dst_lo)
+#define CCP5_CMD_DW5(p) ((p)->dw5.fields.dst_hi)
+#define CCP5_CMD_DST_HI(p) (CCP5_CMD_DW5(p))
+#define CCP5_CMD_DST_MEM(p) ((p)->dw5.fields.dst_mem)
+#define CCP5_CMD_FIX_DST(p) ((p)->dw5.fields.fixed)
+#define CCP5_CMD_SHA_LO(p) ((p)->dw4.sha_len_lo)
+#define CCP5_CMD_SHA_HI(p) ((p)->dw5.sha_len_hi)
+
+/* Word 6/7 */
+#define CCP5_CMD_DW6(p) ((p)->key_lo)
+#define CCP5_CMD_KEY_LO(p) (CCP5_CMD_DW6(p))
+#define CCP5_CMD_DW7(p) ((p)->dw7)
+#define CCP5_CMD_KEY_HI(p) ((p)->dw7.key_hi)
+#define CCP5_CMD_KEY_MEM(p) ((p)->dw7.key_mem)
+
+static inline u32 low_address(unsigned long addr)
+{
+ return (u64)addr & 0x0ffffffff;
+}
+
+static inline u32 high_address(unsigned long addr)
+{
+ return ((u64)addr >> 32) & 0x00000ffff;
+}
+
+static unsigned int ccp5_get_free_slots(struct ccp_cmd_queue *cmd_q)
+{
+ unsigned int head_idx, n;
+ u32 head_lo, queue_start;
+
+ queue_start = low_address(cmd_q->qdma_tail);
+ head_lo = ioread32(cmd_q->reg_head_lo);
+ head_idx = (head_lo - queue_start) / sizeof(struct ccp5_desc);
+
+ n = head_idx + COMMANDS_PER_QUEUE - cmd_q->qidx - 1;
+
+ return n % COMMANDS_PER_QUEUE; /* Always one unused spot */
+}
+
+static int ccp5_do_cmd(struct ccp5_desc *desc,
+ struct ccp_cmd_queue *cmd_q)
+{
+ u32 *mP;
+ __le32 *dP;
+ u32 tail;
+ int i;
+ int ret = 0;
+
+ if (CCP5_CMD_SOC(desc)) {
+ CCP5_CMD_IOC(desc) = 1;
+ CCP5_CMD_SOC(desc) = 0;
+ }
+ mutex_lock(&cmd_q->q_mutex);
+
+ mP = (u32 *) &cmd_q->qbase[cmd_q->qidx];
+ dP = (__le32 *) desc;
+ for (i = 0; i < 8; i++)
+ mP[i] = cpu_to_le32(dP[i]); /* handle endianness */
+
+ cmd_q->qidx = (cmd_q->qidx + 1) % COMMANDS_PER_QUEUE;
+
+ /* The data used by this command must be flushed to memory */
+ wmb();
+
+ /* Write the new tail address back to the queue register */
+ tail = low_address(cmd_q->qdma_tail + cmd_q->qidx * Q_DESC_SIZE);
+ iowrite32(tail, cmd_q->reg_tail_lo);
+
+ /* Turn the queue back on using our cached control register */
+ iowrite32(cmd_q->qcontrol | CMD5_Q_RUN, cmd_q->reg_control);
+ mutex_unlock(&cmd_q->q_mutex);
+
+ if (CCP5_CMD_IOC(desc)) {
+ /* Wait for the job to complete */
+ ret = wait_event_interruptible(cmd_q->int_queue,
+ cmd_q->int_rcvd);
+ if (ret || cmd_q->cmd_error) {
+ if (cmd_q->cmd_error)
+ ccp_log_error(cmd_q->ccp,
+ cmd_q->cmd_error);
+ /* A version 5 device doesn't use Job IDs... */
+ if (!ret)
+ ret = -EIO;
+ }
+ cmd_q->int_rcvd = 0;
+ }
+
+ return 0;
+}
+
+static int ccp5_perform_aes(struct ccp_op *op)
+{
+ struct ccp5_desc desc;
+ union ccp_function function;
+ u32 key_addr = op->sb_key * LSB_ITEM_SIZE;
+
+ /* Zero out all the fields of the command desc */
+ memset(&desc, 0, Q_DESC_SIZE);
+
+ CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_AES;
+
+ CCP5_CMD_SOC(&desc) = op->soc;
+ CCP5_CMD_IOC(&desc) = 1;
+ CCP5_CMD_INIT(&desc) = op->init;
+ CCP5_CMD_EOM(&desc) = op->eom;
+ CCP5_CMD_PROT(&desc) = 0;
+
+ function.raw = 0;
+ CCP_AES_ENCRYPT(&function) = op->u.aes.action;
+ CCP_AES_MODE(&function) = op->u.aes.mode;
+ CCP_AES_TYPE(&function) = op->u.aes.type;
+ if (op->u.aes.mode == CCP_AES_MODE_CFB)
+ CCP_AES_SIZE(&function) = 0x7f;
+
+ CCP5_CMD_FUNCTION(&desc) = function.raw;
+
+ CCP5_CMD_LEN(&desc) = op->src.u.dma.length;
+
+ CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
+ CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
+ CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
+
+ CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
+ CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
+ CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
+
+ CCP5_CMD_KEY_LO(&desc) = lower_32_bits(key_addr);
+ CCP5_CMD_KEY_HI(&desc) = 0;
+ CCP5_CMD_KEY_MEM(&desc) = CCP_MEMTYPE_SB;
+ CCP5_CMD_LSB_ID(&desc) = op->sb_ctx;
+
+ return ccp5_do_cmd(&desc, op->cmd_q);
+}
+
+static int ccp5_perform_xts_aes(struct ccp_op *op)
+{
+ struct ccp5_desc desc;
+ union ccp_function function;
+ u32 key_addr = op->sb_key * LSB_ITEM_SIZE;
+
+ /* Zero out all the fields of the command desc */
+ memset(&desc, 0, Q_DESC_SIZE);
+
+ CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_XTS_AES_128;
+
+ CCP5_CMD_SOC(&desc) = op->soc;
+ CCP5_CMD_IOC(&desc) = 1;
+ CCP5_CMD_INIT(&desc) = op->init;
+ CCP5_CMD_EOM(&desc) = op->eom;
+ CCP5_CMD_PROT(&desc) = 0;
+
+ function.raw = 0;
+ CCP_XTS_ENCRYPT(&function) = op->u.xts.action;
+ CCP_XTS_SIZE(&function) = op->u.xts.unit_size;
+ CCP5_CMD_FUNCTION(&desc) = function.raw;
+
+ CCP5_CMD_LEN(&desc) = op->src.u.dma.length;
+
+ CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
+ CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
+ CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
+
+ CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
+ CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
+ CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
+
+ CCP5_CMD_KEY_LO(&desc) = lower_32_bits(key_addr);
+ CCP5_CMD_KEY_HI(&desc) = 0;
+ CCP5_CMD_KEY_MEM(&desc) = CCP_MEMTYPE_SB;
+ CCP5_CMD_LSB_ID(&desc) = op->sb_ctx;
+
+ return ccp5_do_cmd(&desc, op->cmd_q);
+}
+
+static int ccp5_perform_sha(struct ccp_op *op)
+{
+ struct ccp5_desc desc;
+ union ccp_function function;
+
+ /* Zero out all the fields of the command desc */
+ memset(&desc, 0, Q_DESC_SIZE);
+
+ CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_SHA;
+
+ CCP5_CMD_SOC(&desc) = op->soc;
+ CCP5_CMD_IOC(&desc) = 1;
+ CCP5_CMD_INIT(&desc) = 1;
+ CCP5_CMD_EOM(&desc) = op->eom;
+ CCP5_CMD_PROT(&desc) = 0;
+
+ function.raw = 0;
+ CCP_SHA_TYPE(&function) = op->u.sha.type;
+ CCP5_CMD_FUNCTION(&desc) = function.raw;
+
+ CCP5_CMD_LEN(&desc) = op->src.u.dma.length;
+
+ CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
+ CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
+ CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
+
+ CCP5_CMD_LSB_ID(&desc) = op->sb_ctx;
+
+ if (op->eom) {
+ CCP5_CMD_SHA_LO(&desc) = lower_32_bits(op->u.sha.msg_bits);
+ CCP5_CMD_SHA_HI(&desc) = upper_32_bits(op->u.sha.msg_bits);
+ } else {
+ CCP5_CMD_SHA_LO(&desc) = 0;
+ CCP5_CMD_SHA_HI(&desc) = 0;
+ }
+
+ return ccp5_do_cmd(&desc, op->cmd_q);
+}
+
+static int ccp5_perform_rsa(struct ccp_op *op)
+{
+ struct ccp5_desc desc;
+ union ccp_function function;
+
+ /* Zero out all the fields of the command desc */
+ memset(&desc, 0, Q_DESC_SIZE);
+
+ CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_RSA;
+
+ CCP5_CMD_SOC(&desc) = op->soc;
+ CCP5_CMD_IOC(&desc) = 1;
+ CCP5_CMD_INIT(&desc) = 0;
+ CCP5_CMD_EOM(&desc) = 1;
+ CCP5_CMD_PROT(&desc) = 0;
+
+ function.raw = 0;
+ CCP_RSA_SIZE(&function) = op->u.rsa.mod_size;
+ CCP5_CMD_FUNCTION(&desc) = function.raw;
+
+ CCP5_CMD_LEN(&desc) = op->u.rsa.input_len;
+
+ /* Source is from external memory */
+ CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
+ CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
+ CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
+
+ /* Destination is in external memory */
+ CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
+ CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
+ CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
+
+ /* Key (Exponent) is in external memory */
+ CCP5_CMD_KEY_LO(&desc) = ccp_addr_lo(&op->exp.u.dma);
+ CCP5_CMD_KEY_HI(&desc) = ccp_addr_hi(&op->exp.u.dma);
+ CCP5_CMD_KEY_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
+
+ return ccp5_do_cmd(&desc, op->cmd_q);
+}
+
+static int ccp5_perform_passthru(struct ccp_op *op)
+{
+ struct ccp5_desc desc;
+ union ccp_function function;
+ struct ccp_dma_info *saddr = &op->src.u.dma;
+ struct ccp_dma_info *daddr = &op->dst.u.dma;
+
+ memset(&desc, 0, Q_DESC_SIZE);
+
+ CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_PASSTHRU;
+
+ CCP5_CMD_SOC(&desc) = 0;
+ CCP5_CMD_IOC(&desc) = 1;
+ CCP5_CMD_INIT(&desc) = 0;
+ CCP5_CMD_EOM(&desc) = op->eom;
+ CCP5_CMD_PROT(&desc) = 0;
+
+ function.raw = 0;
+ CCP_PT_BYTESWAP(&function) = op->u.passthru.byte_swap;
+ CCP_PT_BITWISE(&function) = op->u.passthru.bit_mod;
+ CCP5_CMD_FUNCTION(&desc) = function.raw;
+
+ /* Length of source data is always 256 bytes */
+ if (op->src.type == CCP_MEMTYPE_SYSTEM)
+ CCP5_CMD_LEN(&desc) = saddr->length;
+ else
+ CCP5_CMD_LEN(&desc) = daddr->length;
+
+ if (op->src.type == CCP_MEMTYPE_SYSTEM) {
+ CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
+ CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
+ CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
+
+ if (op->u.passthru.bit_mod != CCP_PASSTHRU_BITWISE_NOOP)
+ CCP5_CMD_LSB_ID(&desc) = op->sb_key;
+ } else {
+ u32 key_addr = op->src.u.sb * CCP_SB_BYTES;
+
+ CCP5_CMD_SRC_LO(&desc) = lower_32_bits(key_addr);
+ CCP5_CMD_SRC_HI(&desc) = 0;
+ CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SB;
+ }
+
+ if (op->dst.type == CCP_MEMTYPE_SYSTEM) {
+ CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
+ CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
+ CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
+ } else {
+ u32 key_addr = op->dst.u.sb * CCP_SB_BYTES;
+
+ CCP5_CMD_DST_LO(&desc) = lower_32_bits(key_addr);
+ CCP5_CMD_DST_HI(&desc) = 0;
+ CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SB;
+ }
+
+ return ccp5_do_cmd(&desc, op->cmd_q);
+}
+
+static int ccp5_perform_ecc(struct ccp_op *op)
+{
+ struct ccp5_desc desc;
+ union ccp_function function;
+
+ /* Zero out all the fields of the command desc */
+ memset(&desc, 0, Q_DESC_SIZE);
+
+ CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_ECC;
+
+ CCP5_CMD_SOC(&desc) = 0;
+ CCP5_CMD_IOC(&desc) = 1;
+ CCP5_CMD_INIT(&desc) = 0;
+ CCP5_CMD_EOM(&desc) = 1;
+ CCP5_CMD_PROT(&desc) = 0;
+
+ function.raw = 0;
+ function.ecc.mode = op->u.ecc.function;
+ CCP5_CMD_FUNCTION(&desc) = function.raw;
+
+ CCP5_CMD_LEN(&desc) = op->src.u.dma.length;
+
+ CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
+ CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
+ CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
+
+ CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
+ CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
+ CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
+
+ return ccp5_do_cmd(&desc, op->cmd_q);
+}
+
+static int ccp_find_lsb_regions(struct ccp_cmd_queue *cmd_q, u64 status)
+{
+ int q_mask = 1 << cmd_q->id;
+ int queues = 0;
+ int j;
+
+ /* Build a bit mask to know which LSBs this queue has access to.
+ * Don't bother with segment 0 as it has special privileges.
+ */
+ for (j = 1; j < MAX_LSB_CNT; j++) {
+ if (status & q_mask)
+ bitmap_set(cmd_q->lsbmask, j, 1);
+ status >>= LSB_REGION_WIDTH;
+ }
+ queues = bitmap_weight(cmd_q->lsbmask, MAX_LSB_CNT);
+ dev_info(cmd_q->ccp->dev, "Queue %d can access %d LSB regions\n",
+ cmd_q->id, queues);
+
+ return queues ? 0 : -EINVAL;
+}
+
+
+static int ccp_find_and_assign_lsb_to_q(struct ccp_device *ccp,
+ int lsb_cnt, int n_lsbs,
+ unsigned long *lsb_pub)
+{
+ DECLARE_BITMAP(qlsb, MAX_LSB_CNT);
+ int bitno;
+ int qlsb_wgt;
+ int i;
+
+ /* For each queue:
+ * If the count of potential LSBs available to a queue matches the
+ * ordinal given to us in lsb_cnt:
+ * Copy the mask of possible LSBs for this queue into "qlsb";
+ * For each bit in qlsb, see if the corresponding bit in the
+ * aggregation mask is set; if so, we have a match.
+ * If we have a match, clear the bit in the aggregation to
+ * mark it as no longer available.
+ * If there is no match, clear the bit in qlsb and keep looking.
+ */
+ for (i = 0; i < ccp->cmd_q_count; i++) {
+ struct ccp_cmd_queue *cmd_q = &ccp->cmd_q[i];
+
+ qlsb_wgt = bitmap_weight(cmd_q->lsbmask, MAX_LSB_CNT);
+
+ if (qlsb_wgt == lsb_cnt) {
+ bitmap_copy(qlsb, cmd_q->lsbmask, MAX_LSB_CNT);
+
+ bitno = find_first_bit(qlsb, MAX_LSB_CNT);
+ while (bitno < MAX_LSB_CNT) {
+ if (test_bit(bitno, lsb_pub)) {
+ /* We found an available LSB
+ * that this queue can access
+ */
+ cmd_q->lsb = bitno;
+ bitmap_clear(lsb_pub, bitno, 1);
+ dev_info(ccp->dev,
+ "Queue %d gets LSB %d\n",
+ i, bitno);
+ break;
+ }
+ bitmap_clear(qlsb, bitno, 1);
+ bitno = find_first_bit(qlsb, MAX_LSB_CNT);
+ }
+ if (bitno >= MAX_LSB_CNT)
+ return -EINVAL;
+ n_lsbs--;
+ }
+ }
+ return n_lsbs;
+}
+
+/* For each queue, from the most- to least-constrained:
+ * find an LSB that can be assigned to the queue. If there are N queues that
+ * can only use M LSBs, where N > M, fail; otherwise, every queue will get a
+ * dedicated LSB. Remaining LSB regions become a shared resource.
+ * If we have fewer LSBs than queues, all LSB regions become shared resources.
+ */
+static int ccp_assign_lsbs(struct ccp_device *ccp)
+{
+ DECLARE_BITMAP(lsb_pub, MAX_LSB_CNT);
+ DECLARE_BITMAP(qlsb, MAX_LSB_CNT);
+ int n_lsbs = 0;
+ int bitno;
+ int i, lsb_cnt;
+ int rc = 0;
+
+ bitmap_zero(lsb_pub, MAX_LSB_CNT);
+
+ /* Create an aggregate bitmap to get a total count of available LSBs */
+ for (i = 0; i < ccp->cmd_q_count; i++)
+ bitmap_or(lsb_pub,
+ lsb_pub, ccp->cmd_q[i].lsbmask,
+ MAX_LSB_CNT);
+
+ n_lsbs = bitmap_weight(lsb_pub, MAX_LSB_CNT);
+
+ if (n_lsbs >= ccp->cmd_q_count) {
+ /* We have enough LSBS to give every queue a private LSB.
+ * Brute force search to start with the queues that are more
+ * constrained in LSB choice. When an LSB is privately
+ * assigned, it is removed from the public mask.
+ * This is an ugly N squared algorithm with some optimization.
+ */
+ for (lsb_cnt = 1;
+ n_lsbs && (lsb_cnt <= MAX_LSB_CNT);
+ lsb_cnt++) {
+ rc = ccp_find_and_assign_lsb_to_q(ccp, lsb_cnt, n_lsbs,
+ lsb_pub);
+ if (rc < 0)
+ return -EINVAL;
+ n_lsbs = rc;
+ }
+ }
+
+ rc = 0;
+ /* What's left of the LSBs, according to the public mask, now become
+ * shared. Any zero bits in the lsb_pub mask represent an LSB region
+ * that can't be used as a shared resource, so mark the LSB slots for
+ * them as "in use".
+ */
+ bitmap_copy(qlsb, lsb_pub, MAX_LSB_CNT);
+
+ bitno = find_first_zero_bit(qlsb, MAX_LSB_CNT);
+ while (bitno < MAX_LSB_CNT) {
+ bitmap_set(ccp->lsbmap, bitno * LSB_SIZE, LSB_SIZE);
+ bitmap_set(qlsb, bitno, 1);
+ bitno = find_first_zero_bit(qlsb, MAX_LSB_CNT);
+ }
+
+ return rc;
+}
+
+static int ccp5_init(struct ccp_device *ccp)
+{
+ struct device *dev = ccp->dev;
+ struct ccp_cmd_queue *cmd_q;
+ struct dma_pool *dma_pool;
+ char dma_pool_name[MAX_DMAPOOL_NAME_LEN];
+ unsigned int qmr, qim, i;
+ u64 status;
+ u32 status_lo, status_hi;
+ int ret;
+
+ /* Find available queues */
+ qim = 0;
+ qmr = ioread32(ccp->io_regs + Q_MASK_REG);
+ for (i = 0; i < MAX_HW_QUEUES; i++) {
+
+ if (!(qmr & (1 << i)))
+ continue;
+
+ /* Allocate a dma pool for this queue */
+ snprintf(dma_pool_name, sizeof(dma_pool_name), "%s_q%d",
+ ccp->name, i);
+ dma_pool = dma_pool_create(dma_pool_name, dev,
+ CCP_DMAPOOL_MAX_SIZE,
+ CCP_DMAPOOL_ALIGN, 0);
+ if (!dma_pool) {
+ dev_err(dev, "unable to allocate dma pool\n");
+ ret = -ENOMEM;
+ }
+
+ cmd_q = &ccp->cmd_q[ccp->cmd_q_count];
+ ccp->cmd_q_count++;
+
+ cmd_q->ccp = ccp;
+ cmd_q->id = i;
+ cmd_q->dma_pool = dma_pool;
+ mutex_init(&cmd_q->q_mutex);
+
+ /* Page alignment satisfies our needs for N <= 128 */
+ BUILD_BUG_ON(COMMANDS_PER_QUEUE > 128);
+ cmd_q->qsize = Q_SIZE(Q_DESC_SIZE);
+ cmd_q->qbase = dma_zalloc_coherent(dev, cmd_q->qsize,
+ &cmd_q->qbase_dma,
+ GFP_KERNEL);
+ if (!cmd_q->qbase) {
+ dev_err(dev, "unable to allocate command queue\n");
+ ret = -ENOMEM;
+ goto e_pool;
+ }
+
+ cmd_q->qidx = 0;
+ /* Preset some register values and masks that are queue
+ * number dependent
+ */
+ cmd_q->reg_control = ccp->io_regs +
+ CMD5_Q_STATUS_INCR * (i + 1);
+ cmd_q->reg_tail_lo = cmd_q->reg_control + CMD5_Q_TAIL_LO_BASE;
+ cmd_q->reg_head_lo = cmd_q->reg_control + CMD5_Q_HEAD_LO_BASE;
+ cmd_q->reg_int_enable = cmd_q->reg_control +
+ CMD5_Q_INT_ENABLE_BASE;
+ cmd_q->reg_interrupt_status = cmd_q->reg_control +
+ CMD5_Q_INTERRUPT_STATUS_BASE;
+ cmd_q->reg_status = cmd_q->reg_control + CMD5_Q_STATUS_BASE;
+ cmd_q->reg_int_status = cmd_q->reg_control +
+ CMD5_Q_INT_STATUS_BASE;
+ cmd_q->reg_dma_status = cmd_q->reg_control +
+ CMD5_Q_DMA_STATUS_BASE;
+ cmd_q->reg_dma_read_status = cmd_q->reg_control +
+ CMD5_Q_DMA_READ_STATUS_BASE;
+ cmd_q->reg_dma_write_status = cmd_q->reg_control +
+ CMD5_Q_DMA_WRITE_STATUS_BASE;
+
+ init_waitqueue_head(&cmd_q->int_queue);
+
+ dev_dbg(dev, "queue #%u available\n", i);
+ }
+ if (ccp->cmd_q_count == 0) {
+ dev_notice(dev, "no command queues available\n");
+ ret = -EIO;
+ goto e_pool;
+ }
+ dev_notice(dev, "%u command queues available\n", ccp->cmd_q_count);
+
+ /* Turn off the queues and disable interrupts until ready */
+ for (i = 0; i < ccp->cmd_q_count; i++) {
+ cmd_q = &ccp->cmd_q[i];
+
+ cmd_q->qcontrol = 0; /* Start with nothing */
+ iowrite32(cmd_q->qcontrol, cmd_q->reg_control);
+
+ /* Disable the interrupts */
+ iowrite32(0x00, cmd_q->reg_int_enable);
+ ioread32(cmd_q->reg_int_status);
+ ioread32(cmd_q->reg_status);
+
+ /* Clear the interrupts */
+ iowrite32(ALL_INTERRUPTS, cmd_q->reg_interrupt_status);
+ }
+
+ dev_dbg(dev, "Requesting an IRQ...\n");
+ /* Request an irq */
+ ret = ccp->get_irq(ccp);
+ if (ret) {
+ dev_err(dev, "unable to allocate an IRQ\n");
+ goto e_pool;
+ }
+
+ /* Initialize the queue used to suspend */
+ init_waitqueue_head(&ccp->suspend_queue);
+
+ dev_dbg(dev, "Loading LSB map...\n");
+ /* Copy the private LSB mask to the public registers */
+ status_lo = ioread32(ccp->io_regs + LSB_PRIVATE_MASK_LO_OFFSET);
+ status_hi = ioread32(ccp->io_regs + LSB_PRIVATE_MASK_HI_OFFSET);
+ iowrite32(status_lo, ccp->io_regs + LSB_PUBLIC_MASK_LO_OFFSET);
+ iowrite32(status_hi, ccp->io_regs + LSB_PUBLIC_MASK_HI_OFFSET);
+ status = ((u64)status_hi<<30) | (u64)status_lo;
+
+ dev_dbg(dev, "Configuring virtual queues...\n");
+ /* Configure size of each virtual queue accessible to host */
+ for (i = 0; i < ccp->cmd_q_count; i++) {
+ u32 dma_addr_lo;
+ u32 dma_addr_hi;
+
+ cmd_q = &ccp->cmd_q[i];
+
+ cmd_q->qcontrol &= ~(CMD5_Q_SIZE << CMD5_Q_SHIFT);
+ cmd_q->qcontrol |= QUEUE_SIZE_VAL << CMD5_Q_SHIFT;
+
+ cmd_q->qdma_tail = cmd_q->qbase_dma;
+ dma_addr_lo = low_address(cmd_q->qdma_tail);
+ iowrite32((u32)dma_addr_lo, cmd_q->reg_tail_lo);
+ iowrite32((u32)dma_addr_lo, cmd_q->reg_head_lo);
+
+ dma_addr_hi = high_address(cmd_q->qdma_tail);
+ cmd_q->qcontrol |= (dma_addr_hi << 16);
+ iowrite32(cmd_q->qcontrol, cmd_q->reg_control);
+
+ /* Find the LSB regions accessible to the queue */
+ ccp_find_lsb_regions(cmd_q, status);
+ cmd_q->lsb = -1; /* Unassigned value */
+ }
+
+ dev_dbg(dev, "Assigning LSBs...\n");
+ ret = ccp_assign_lsbs(ccp);
+ if (ret) {
+ dev_err(dev, "Unable to assign LSBs (%d)\n", ret);
+ goto e_irq;
+ }
+
+ /* Optimization: pre-allocate LSB slots for each queue */
+ for (i = 0; i < ccp->cmd_q_count; i++) {
+ ccp->cmd_q[i].sb_key = ccp_lsb_alloc(&ccp->cmd_q[i], 2);
+ ccp->cmd_q[i].sb_ctx = ccp_lsb_alloc(&ccp->cmd_q[i], 2);
+ }
+
+ dev_dbg(dev, "Starting threads...\n");
+ /* Create a kthread for each queue */
+ for (i = 0; i < ccp->cmd_q_count; i++) {
+ struct task_struct *kthread;
+
+ cmd_q = &ccp->cmd_q[i];
+
+ kthread = kthread_create(ccp_cmd_queue_thread, cmd_q,
+ "%s-q%u", ccp->name, cmd_q->id);
+ if (IS_ERR(kthread)) {
+ dev_err(dev, "error creating queue thread (%ld)\n",
+ PTR_ERR(kthread));
+ ret = PTR_ERR(kthread);
+ goto e_kthread;
+ }
+
+ cmd_q->kthread = kthread;
+ wake_up_process(kthread);
+ }
+
+ dev_dbg(dev, "Enabling interrupts...\n");
+ /* Enable interrupts */
+ for (i = 0; i < ccp->cmd_q_count; i++) {
+ cmd_q = &ccp->cmd_q[i];
+ iowrite32(ALL_INTERRUPTS, cmd_q->reg_int_enable);
+ }
+
+ dev_dbg(dev, "Registering device...\n");
+ /* Put this on the unit list to make it available */
+ ccp_add_device(ccp);
+
+ ret = ccp_register_rng(ccp);
+ if (ret)
+ goto e_kthread;
+
+ /* Register the DMA engine support */
+ ret = ccp_dmaengine_register(ccp);
+ if (ret)
+ goto e_hwrng;
+
+ return 0;
+
+e_hwrng:
+ ccp_unregister_rng(ccp);
+
+e_kthread:
+ for (i = 0; i < ccp->cmd_q_count; i++)
+ if (ccp->cmd_q[i].kthread)
+ kthread_stop(ccp->cmd_q[i].kthread);
+
+e_irq:
+ ccp->free_irq(ccp);
+
+e_pool:
+ for (i = 0; i < ccp->cmd_q_count; i++)
+ dma_pool_destroy(ccp->cmd_q[i].dma_pool);
+
+ return ret;
+}
+
+static void ccp5_destroy(struct ccp_device *ccp)
+{
+ struct device *dev = ccp->dev;
+ struct ccp_cmd_queue *cmd_q;
+ struct ccp_cmd *cmd;
+ unsigned int i;
+
+ /* Unregister the DMA engine */
+ ccp_dmaengine_unregister(ccp);
+
+ /* Unregister the RNG */
+ ccp_unregister_rng(ccp);
+
+ /* Remove this device from the list of available units first */
+ ccp_del_device(ccp);
+
+ /* Disable and clear interrupts */
+ for (i = 0; i < ccp->cmd_q_count; i++) {
+ cmd_q = &ccp->cmd_q[i];
+
+ /* Turn off the run bit */
+ iowrite32(cmd_q->qcontrol & ~CMD5_Q_RUN, cmd_q->reg_control);
+
+ /* Disable the interrupts */
+ iowrite32(ALL_INTERRUPTS, cmd_q->reg_interrupt_status);
+
+ /* Clear the interrupt status */
+ iowrite32(0x00, cmd_q->reg_int_enable);
+ ioread32(cmd_q->reg_int_status);
+ ioread32(cmd_q->reg_status);
+ }
+
+ /* Stop the queue kthreads */
+ for (i = 0; i < ccp->cmd_q_count; i++)
+ if (ccp->cmd_q[i].kthread)
+ kthread_stop(ccp->cmd_q[i].kthread);
+
+ ccp->free_irq(ccp);
+
+ for (i = 0; i < ccp->cmd_q_count; i++) {
+ cmd_q = &ccp->cmd_q[i];
+ dma_free_coherent(dev, cmd_q->qsize, cmd_q->qbase,
+ cmd_q->qbase_dma);
+ }
+
+ /* Flush the cmd and backlog queue */
+ while (!list_empty(&ccp->cmd)) {
+ /* Invoke the callback directly with an error code */
+ cmd = list_first_entry(&ccp->cmd, struct ccp_cmd, entry);
+ list_del(&cmd->entry);
+ cmd->callback(cmd->data, -ENODEV);
+ }
+ while (!list_empty(&ccp->backlog)) {
+ /* Invoke the callback directly with an error code */
+ cmd = list_first_entry(&ccp->backlog, struct ccp_cmd, entry);
+ list_del(&cmd->entry);
+ cmd->callback(cmd->data, -ENODEV);
+ }
+}
+
+static irqreturn_t ccp5_irq_handler(int irq, void *data)
+{
+ struct device *dev = data;
+ struct ccp_device *ccp = dev_get_drvdata(dev);
+ u32 status;
+ unsigned int i;
+
+ for (i = 0; i < ccp->cmd_q_count; i++) {
+ struct ccp_cmd_queue *cmd_q = &ccp->cmd_q[i];
+
+ status = ioread32(cmd_q->reg_interrupt_status);
+
+ if (status) {
+ cmd_q->int_status = status;
+ cmd_q->q_status = ioread32(cmd_q->reg_status);
+ cmd_q->q_int_status = ioread32(cmd_q->reg_int_status);
+
+ /* On error, only save the first error value */
+ if ((status & INT_ERROR) && !cmd_q->cmd_error)
+ cmd_q->cmd_error = CMD_Q_ERROR(cmd_q->q_status);
+
+ cmd_q->int_rcvd = 1;
+
+ /* Acknowledge the interrupt and wake the kthread */
+ iowrite32(ALL_INTERRUPTS, cmd_q->reg_interrupt_status);
+ wake_up_interruptible(&cmd_q->int_queue);
+ }
+ }
+
+ return IRQ_HANDLED;
+}
+
+static void ccp5_config(struct ccp_device *ccp)
+{
+ /* Public side */
+ iowrite32(0x00001249, ccp->io_regs + CMD5_REQID_CONFIG_OFFSET);
+}
+
+static void ccp5other_config(struct ccp_device *ccp)
+{
+ int i;
+ u32 rnd;
+
+ /* We own all of the queues on the NTB CCP */
+
+ iowrite32(0x00012D57, ccp->io_regs + CMD5_TRNG_CTL_OFFSET);
+ iowrite32(0x00000003, ccp->io_regs + CMD5_CONFIG_0_OFFSET);
+ for (i = 0; i < 12; i++) {
+ rnd = ioread32(ccp->io_regs + TRNG_OUT_REG);
+ iowrite32(rnd, ccp->io_regs + CMD5_AES_MASK_OFFSET);
+ }
+
+ iowrite32(0x0000001F, ccp->io_regs + CMD5_QUEUE_MASK_OFFSET);
+ iowrite32(0x00005B6D, ccp->io_regs + CMD5_QUEUE_PRIO_OFFSET);
+ iowrite32(0x00000000, ccp->io_regs + CMD5_CMD_TIMEOUT_OFFSET);
+
+ iowrite32(0x3FFFFFFF, ccp->io_regs + LSB_PRIVATE_MASK_LO_OFFSET);
+ iowrite32(0x000003FF, ccp->io_regs + LSB_PRIVATE_MASK_HI_OFFSET);
+
+ iowrite32(0x00108823, ccp->io_regs + CMD5_CLK_GATE_CTL_OFFSET);
+
+ ccp5_config(ccp);
+}
+
+/* Version 5 adds some function, but is essentially the same as v5 */
+static const struct ccp_actions ccp5_actions = {
+ .aes = ccp5_perform_aes,
+ .xts_aes = ccp5_perform_xts_aes,
+ .sha = ccp5_perform_sha,
+ .rsa = ccp5_perform_rsa,
+ .passthru = ccp5_perform_passthru,
+ .ecc = ccp5_perform_ecc,
+ .sballoc = ccp_lsb_alloc,
+ .sbfree = ccp_lsb_free,
+ .init = ccp5_init,
+ .destroy = ccp5_destroy,
+ .get_free_slots = ccp5_get_free_slots,
+ .irqhandler = ccp5_irq_handler,
+};
+
+const struct ccp_vdata ccpv5a = {
+ .version = CCP_VERSION(5, 0),
+ .setup = ccp5_config,
+ .perform = &ccp5_actions,
+ .bar = 2,
+ .offset = 0x0,
+};
+
+const struct ccp_vdata ccpv5b = {
+ .version = CCP_VERSION(5, 0),
+ .setup = ccp5other_config,
+ .perform = &ccp5_actions,
+ .bar = 2,
+ .offset = 0x0,
+};
diff --git a/drivers/crypto/ccp/ccp-dev.c b/drivers/crypto/ccp/ccp-dev.c
index 87b9f2bfa623..cafa633aae10 100644
--- a/drivers/crypto/ccp/ccp-dev.c
+++ b/drivers/crypto/ccp/ccp-dev.c
@@ -4,6 +4,7 @@
* Copyright (C) 2013,2016 Advanced Micro Devices, Inc.
*
* Author: Tom Lendacky <thomas.lendacky@amd.com>
+ * Author: Gary R Hook <gary.hook@amd.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
@@ -39,6 +40,59 @@ struct ccp_tasklet_data {
struct ccp_cmd *cmd;
};
+/* Human-readable error strings */
+char *ccp_error_codes[] = {
+ "",
+ "ERR 01: ILLEGAL_ENGINE",
+ "ERR 02: ILLEGAL_KEY_ID",
+ "ERR 03: ILLEGAL_FUNCTION_TYPE",
+ "ERR 04: ILLEGAL_FUNCTION_MODE",
+ "ERR 05: ILLEGAL_FUNCTION_ENCRYPT",
+ "ERR 06: ILLEGAL_FUNCTION_SIZE",
+ "ERR 07: Zlib_MISSING_INIT_EOM",
+ "ERR 08: ILLEGAL_FUNCTION_RSVD",
+ "ERR 09: ILLEGAL_BUFFER_LENGTH",
+ "ERR 10: VLSB_FAULT",
+ "ERR 11: ILLEGAL_MEM_ADDR",
+ "ERR 12: ILLEGAL_MEM_SEL",
+ "ERR 13: ILLEGAL_CONTEXT_ID",
+ "ERR 14: ILLEGAL_KEY_ADDR",
+ "ERR 15: 0xF Reserved",
+ "ERR 16: Zlib_ILLEGAL_MULTI_QUEUE",
+ "ERR 17: Zlib_ILLEGAL_JOBID_CHANGE",
+ "ERR 18: CMD_TIMEOUT",
+ "ERR 19: IDMA0_AXI_SLVERR",
+ "ERR 20: IDMA0_AXI_DECERR",
+ "ERR 21: 0x15 Reserved",
+ "ERR 22: IDMA1_AXI_SLAVE_FAULT",
+ "ERR 23: IDMA1_AIXI_DECERR",
+ "ERR 24: 0x18 Reserved",
+ "ERR 25: ZLIBVHB_AXI_SLVERR",
+ "ERR 26: ZLIBVHB_AXI_DECERR",
+ "ERR 27: 0x1B Reserved",
+ "ERR 27: ZLIB_UNEXPECTED_EOM",
+ "ERR 27: ZLIB_EXTRA_DATA",
+ "ERR 30: ZLIB_BTYPE",
+ "ERR 31: ZLIB_UNDEFINED_SYMBOL",
+ "ERR 32: ZLIB_UNDEFINED_DISTANCE_S",
+ "ERR 33: ZLIB_CODE_LENGTH_SYMBOL",
+ "ERR 34: ZLIB _VHB_ILLEGAL_FETCH",
+ "ERR 35: ZLIB_UNCOMPRESSED_LEN",
+ "ERR 36: ZLIB_LIMIT_REACHED",
+ "ERR 37: ZLIB_CHECKSUM_MISMATCH0",
+ "ERR 38: ODMA0_AXI_SLVERR",
+ "ERR 39: ODMA0_AXI_DECERR",
+ "ERR 40: 0x28 Reserved",
+ "ERR 41: ODMA1_AXI_SLVERR",
+ "ERR 42: ODMA1_AXI_DECERR",
+ "ERR 43: LSB_PARITY_ERR",
+};
+
+void ccp_log_error(struct ccp_device *d, int e)
+{
+ dev_err(d->dev, "CCP error: %s (0x%x)\n", ccp_error_codes[e], e);
+}
+
/* List of CCPs, CCP count, read-write access lock, and access functions
*
* Lock structure: get ccp_unit_lock for reading whenever we need to
@@ -58,7 +112,7 @@ static struct ccp_device *ccp_rr;
/* Ever-increasing value to produce unique unit numbers */
static atomic_t ccp_unit_ordinal;
-unsigned int ccp_increment_unit_ordinal(void)
+static unsigned int ccp_increment_unit_ordinal(void)
{
return atomic_inc_return(&ccp_unit_ordinal);
}
@@ -118,6 +172,29 @@ void ccp_del_device(struct ccp_device *ccp)
write_unlock_irqrestore(&ccp_unit_lock, flags);
}
+
+
+int ccp_register_rng(struct ccp_device *ccp)
+{
+ int ret = 0;
+
+ dev_dbg(ccp->dev, "Registering RNG...\n");
+ /* Register an RNG */
+ ccp->hwrng.name = ccp->rngname;
+ ccp->hwrng.read = ccp_trng_read;
+ ret = hwrng_register(&ccp->hwrng);
+ if (ret)
+ dev_err(ccp->dev, "error registering hwrng (%d)\n", ret);
+
+ return ret;
+}
+
+void ccp_unregister_rng(struct ccp_device *ccp)
+{
+ if (ccp->hwrng.name)
+ hwrng_unregister(&ccp->hwrng);
+}
+
static struct ccp_device *ccp_get_device(void)
{
unsigned long flags;
@@ -397,9 +474,9 @@ struct ccp_device *ccp_alloc_struct(struct device *dev)
spin_lock_init(&ccp->cmd_lock);
mutex_init(&ccp->req_mutex);
- mutex_init(&ccp->ksb_mutex);
- ccp->ksb_count = KSB_COUNT;
- ccp->ksb_start = 0;
+ mutex_init(&ccp->sb_mutex);
+ ccp->sb_count = KSB_COUNT;
+ ccp->sb_start = 0;
ccp->ord = ccp_increment_unit_ordinal();
snprintf(ccp->name, MAX_CCP_NAME_LEN, "ccp-%u", ccp->ord);
@@ -408,6 +485,34 @@ struct ccp_device *ccp_alloc_struct(struct device *dev)
return ccp;
}
+int ccp_trng_read(struct hwrng *rng, void *data, size_t max, bool wait)
+{
+ struct ccp_device *ccp = container_of(rng, struct ccp_device, hwrng);
+ u32 trng_value;
+ int len = min_t(int, sizeof(trng_value), max);
+
+ /* Locking is provided by the caller so we can update device
+ * hwrng-related fields safely
+ */
+ trng_value = ioread32(ccp->io_regs + TRNG_OUT_REG);
+ if (!trng_value) {
+ /* Zero is returned if not data is available or if a
+ * bad-entropy error is present. Assume an error if
+ * we exceed TRNG_RETRIES reads of zero.
+ */
+ if (ccp->hwrng_retries++ > TRNG_RETRIES)
+ return -EIO;
+
+ return 0;
+ }
+
+ /* Reset the counter and save the rng value */
+ ccp->hwrng_retries = 0;
+ memcpy(data, &trng_value, len);
+
+ return len;
+}
+
#ifdef CONFIG_PM
bool ccp_queues_suspended(struct ccp_device *ccp)
{
diff --git a/drivers/crypto/ccp/ccp-dev.h b/drivers/crypto/ccp/ccp-dev.h
index bd41ffceff82..da5f4a678083 100644
--- a/drivers/crypto/ccp/ccp-dev.h
+++ b/drivers/crypto/ccp/ccp-dev.h
@@ -4,6 +4,7 @@
* Copyright (C) 2013,2016 Advanced Micro Devices, Inc.
*
* Author: Tom Lendacky <thomas.lendacky@amd.com>
+ * Author: Gary R Hook <gary.hook@amd.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
@@ -60,7 +61,69 @@
#define CMD_Q_ERROR(__qs) ((__qs) & 0x0000003f)
#define CMD_Q_DEPTH(__qs) (((__qs) >> 12) & 0x0000000f)
-/****** REQ0 Related Values ******/
+/* ------------------------ CCP Version 5 Specifics ------------------------ */
+#define CMD5_QUEUE_MASK_OFFSET 0x00
+#define CMD5_QUEUE_PRIO_OFFSET 0x04
+#define CMD5_REQID_CONFIG_OFFSET 0x08
+#define CMD5_CMD_TIMEOUT_OFFSET 0x10
+#define LSB_PUBLIC_MASK_LO_OFFSET 0x18
+#define LSB_PUBLIC_MASK_HI_OFFSET 0x1C
+#define LSB_PRIVATE_MASK_LO_OFFSET 0x20
+#define LSB_PRIVATE_MASK_HI_OFFSET 0x24
+
+#define CMD5_Q_CONTROL_BASE 0x0000
+#define CMD5_Q_TAIL_LO_BASE 0x0004
+#define CMD5_Q_HEAD_LO_BASE 0x0008
+#define CMD5_Q_INT_ENABLE_BASE 0x000C
+#define CMD5_Q_INTERRUPT_STATUS_BASE 0x0010
+
+#define CMD5_Q_STATUS_BASE 0x0100
+#define CMD5_Q_INT_STATUS_BASE 0x0104
+#define CMD5_Q_DMA_STATUS_BASE 0x0108
+#define CMD5_Q_DMA_READ_STATUS_BASE 0x010C
+#define CMD5_Q_DMA_WRITE_STATUS_BASE 0x0110
+#define CMD5_Q_ABORT_BASE 0x0114
+#define CMD5_Q_AX_CACHE_BASE 0x0118
+
+#define CMD5_CONFIG_0_OFFSET 0x6000
+#define CMD5_TRNG_CTL_OFFSET 0x6008
+#define CMD5_AES_MASK_OFFSET 0x6010
+#define CMD5_CLK_GATE_CTL_OFFSET 0x603C
+
+/* Address offset between two virtual queue registers */
+#define CMD5_Q_STATUS_INCR 0x1000
+
+/* Bit masks */
+#define CMD5_Q_RUN 0x1
+#define CMD5_Q_HALT 0x2
+#define CMD5_Q_MEM_LOCATION 0x4
+#define CMD5_Q_SIZE 0x1F
+#define CMD5_Q_SHIFT 3
+#define COMMANDS_PER_QUEUE 16
+#define QUEUE_SIZE_VAL ((ffs(COMMANDS_PER_QUEUE) - 2) & \
+ CMD5_Q_SIZE)
+#define Q_PTR_MASK (2 << (QUEUE_SIZE_VAL + 5) - 1)
+#define Q_DESC_SIZE sizeof(struct ccp5_desc)
+#define Q_SIZE(n) (COMMANDS_PER_QUEUE*(n))
+
+#define INT_COMPLETION 0x1
+#define INT_ERROR 0x2
+#define INT_QUEUE_STOPPED 0x4
+#define ALL_INTERRUPTS (INT_COMPLETION| \
+ INT_ERROR| \
+ INT_QUEUE_STOPPED)
+
+#define LSB_REGION_WIDTH 5
+#define MAX_LSB_CNT 8
+
+#define LSB_SIZE 16
+#define LSB_ITEM_SIZE 32
+#define PLSB_MAP_SIZE (LSB_SIZE)
+#define SLSB_MAP_SIZE (MAX_LSB_CNT * LSB_SIZE)
+
+#define LSB_ENTRY_NUMBER(LSB_ADDR) (LSB_ADDR / LSB_ITEM_SIZE)
+
+/* ------------------------ CCP Version 3 Specifics ------------------------ */
#define REQ0_WAIT_FOR_WRITE 0x00000004
#define REQ0_INT_ON_COMPLETE 0x00000002
#define REQ0_STOP_ON_COMPLETE 0x00000001
@@ -110,29 +173,30 @@
#define KSB_START 77
#define KSB_END 127
#define KSB_COUNT (KSB_END - KSB_START + 1)
-#define CCP_KSB_BITS 256
-#define CCP_KSB_BYTES 32
+#define CCP_SB_BITS 256
#define CCP_JOBID_MASK 0x0000003f
+/* ------------------------ General CCP Defines ------------------------ */
+
#define CCP_DMAPOOL_MAX_SIZE 64
#define CCP_DMAPOOL_ALIGN BIT(5)
#define CCP_REVERSE_BUF_SIZE 64
-#define CCP_AES_KEY_KSB_COUNT 1
-#define CCP_AES_CTX_KSB_COUNT 1
+#define CCP_AES_KEY_SB_COUNT 1
+#define CCP_AES_CTX_SB_COUNT 1
-#define CCP_XTS_AES_KEY_KSB_COUNT 1
-#define CCP_XTS_AES_CTX_KSB_COUNT 1
+#define CCP_XTS_AES_KEY_SB_COUNT 1
+#define CCP_XTS_AES_CTX_SB_COUNT 1
-#define CCP_SHA_KSB_COUNT 1
+#define CCP_SHA_SB_COUNT 1
#define CCP_RSA_MAX_WIDTH 4096
#define CCP_PASSTHRU_BLOCKSIZE 256
#define CCP_PASSTHRU_MASKSIZE 32
-#define CCP_PASSTHRU_KSB_COUNT 1
+#define CCP_PASSTHRU_SB_COUNT 1
#define CCP_ECC_MODULUS_BYTES 48 /* 384-bits */
#define CCP_ECC_MAX_OPERANDS 6
@@ -144,31 +208,12 @@
#define CCP_ECC_RESULT_OFFSET 60
#define CCP_ECC_RESULT_SUCCESS 0x0001
-struct ccp_op;
-
-/* Structure for computation functions that are device-specific */
-struct ccp_actions {
- int (*perform_aes)(struct ccp_op *);
- int (*perform_xts_aes)(struct ccp_op *);
- int (*perform_sha)(struct ccp_op *);
- int (*perform_rsa)(struct ccp_op *);
- int (*perform_passthru)(struct ccp_op *);
- int (*perform_ecc)(struct ccp_op *);
- int (*init)(struct ccp_device *);
- void (*destroy)(struct ccp_device *);
- irqreturn_t (*irqhandler)(int, void *);
-};
-
-/* Structure to hold CCP version-specific values */
-struct ccp_vdata {
- unsigned int version;
- const struct ccp_actions *perform;
-};
-
-extern struct ccp_vdata ccpv3;
+#define CCP_SB_BYTES 32
+struct ccp_op;
struct ccp_device;
struct ccp_cmd;
+struct ccp_fns;
struct ccp_dma_cmd {
struct list_head entry;
@@ -212,9 +257,29 @@ struct ccp_cmd_queue {
/* Queue dma pool */
struct dma_pool *dma_pool;
- /* Queue reserved KSB regions */
- u32 ksb_key;
- u32 ksb_ctx;
+ /* Queue base address (not neccessarily aligned)*/
+ struct ccp5_desc *qbase;
+
+ /* Aligned queue start address (per requirement) */
+ struct mutex q_mutex ____cacheline_aligned;
+ unsigned int qidx;
+
+ /* Version 5 has different requirements for queue memory */
+ unsigned int qsize;
+ dma_addr_t qbase_dma;
+ dma_addr_t qdma_tail;
+
+ /* Per-queue reserved storage block(s) */
+ u32 sb_key;
+ u32 sb_ctx;
+
+ /* Bitmap of LSBs that can be accessed by this queue */
+ DECLARE_BITMAP(lsbmask, MAX_LSB_CNT);
+ /* Private LSB that is assigned to this queue, or -1 if none.
+ * Bitmap for my private LSB, unused otherwise
+ */
+ unsigned int lsb;
+ DECLARE_BITMAP(lsbmap, PLSB_MAP_SIZE);
/* Queue processing thread */
struct task_struct *kthread;
@@ -229,8 +294,17 @@ struct ccp_cmd_queue {
u32 int_err;
/* Register addresses for queue */
+ void __iomem *reg_control;
+ void __iomem *reg_tail_lo;
+ void __iomem *reg_head_lo;
+ void __iomem *reg_int_enable;
+ void __iomem *reg_interrupt_status;
void __iomem *reg_status;
void __iomem *reg_int_status;
+ void __iomem *reg_dma_status;
+ void __iomem *reg_dma_read_status;
+ void __iomem *reg_dma_write_status;
+ u32 qcontrol; /* Cached control register */
/* Status values from job */
u32 int_status;
@@ -253,16 +327,14 @@ struct ccp_device {
struct device *dev;
- /*
- * Bus specific device information
+ /* Bus specific device information
*/
void *dev_specific;
int (*get_irq)(struct ccp_device *ccp);
void (*free_irq)(struct ccp_device *ccp);
unsigned int irq;
- /*
- * I/O area used for device communication. The register mapping
+ /* I/O area used for device communication. The register mapping
* starts at an offset into the mapped bar.
* The CMD_REQx registers and the Delete_Cmd_Queue_Job register
* need to be protected while a command queue thread is accessing
@@ -272,8 +344,7 @@ struct ccp_device {
void __iomem *io_map;
void __iomem *io_regs;
- /*
- * Master lists that all cmds are queued on. Because there can be
+ /* Master lists that all cmds are queued on. Because there can be
* more than one CCP command queue that can process a cmd a separate
* backlog list is neeeded so that the backlog completion call
* completes before the cmd is available for execution.
@@ -283,47 +354,54 @@ struct ccp_device {
struct list_head cmd;
struct list_head backlog;
- /*
- * The command queues. These represent the queues available on the
+ /* The command queues. These represent the queues available on the
* CCP that are available for processing cmds
*/
struct ccp_cmd_queue cmd_q[MAX_HW_QUEUES];
unsigned int cmd_q_count;
- /*
- * Support for the CCP True RNG
+ /* Support for the CCP True RNG
*/
struct hwrng hwrng;
unsigned int hwrng_retries;
- /*
- * Support for the CCP DMA capabilities
+ /* Support for the CCP DMA capabilities
*/
struct dma_device dma_dev;
struct ccp_dma_chan *ccp_dma_chan;
struct kmem_cache *dma_cmd_cache;
struct kmem_cache *dma_desc_cache;
- /*
- * A counter used to generate job-ids for cmds submitted to the CCP
+ /* A counter used to generate job-ids for cmds submitted to the CCP
*/
atomic_t current_id ____cacheline_aligned;
- /*
- * The CCP uses key storage blocks (KSB) to maintain context for certain
- * operations. To prevent multiple cmds from using the same KSB range
- * a command queue reserves a KSB range for the duration of the cmd.
- * Each queue, will however, reserve 2 KSB blocks for operations that
- * only require single KSB entries (eg. AES context/iv and key) in order
- * to avoid allocation contention. This will reserve at most 10 KSB
- * entries, leaving 40 KSB entries available for dynamic allocation.
+ /* The v3 CCP uses key storage blocks (SB) to maintain context for
+ * certain operations. To prevent multiple cmds from using the same
+ * SB range a command queue reserves an SB range for the duration of
+ * the cmd. Each queue, will however, reserve 2 SB blocks for
+ * operations that only require single SB entries (eg. AES context/iv
+ * and key) in order to avoid allocation contention. This will reserve
+ * at most 10 SB entries, leaving 40 SB entries available for dynamic
+ * allocation.
+ *
+ * The v5 CCP Local Storage Block (LSB) is broken up into 8
+ * memrory ranges, each of which can be enabled for access by one
+ * or more queues. Device initialization takes this into account,
+ * and attempts to assign one region for exclusive use by each
+ * available queue; the rest are then aggregated as "public" use.
+ * If there are fewer regions than queues, all regions are shared
+ * amongst all queues.
*/
- struct mutex ksb_mutex ____cacheline_aligned;
- DECLARE_BITMAP(ksb, KSB_COUNT);
- wait_queue_head_t ksb_queue;
- unsigned int ksb_avail;
- unsigned int ksb_count;
- u32 ksb_start;
+ struct mutex sb_mutex ____cacheline_aligned;
+ DECLARE_BITMAP(sb, KSB_COUNT);
+ wait_queue_head_t sb_queue;
+ unsigned int sb_avail;
+ unsigned int sb_count;
+ u32 sb_start;
+
+ /* Bitmap of shared LSBs, if any */
+ DECLARE_BITMAP(lsbmap, SLSB_MAP_SIZE);
/* Suspend support */
unsigned int suspending;
@@ -335,10 +413,11 @@ struct ccp_device {
enum ccp_memtype {
CCP_MEMTYPE_SYSTEM = 0,
- CCP_MEMTYPE_KSB,
+ CCP_MEMTYPE_SB,
CCP_MEMTYPE_LOCAL,
CCP_MEMTYPE__LAST,
};
+#define CCP_MEMTYPE_LSB CCP_MEMTYPE_KSB
struct ccp_dma_info {
dma_addr_t address;
@@ -379,7 +458,7 @@ struct ccp_mem {
enum ccp_memtype type;
union {
struct ccp_dma_info dma;
- u32 ksb;
+ u32 sb;
} u;
};
@@ -419,13 +498,14 @@ struct ccp_op {
u32 jobid;
u32 ioc;
u32 soc;
- u32 ksb_key;
- u32 ksb_ctx;
+ u32 sb_key;
+ u32 sb_ctx;
u32 init;
u32 eom;
struct ccp_mem src;
struct ccp_mem dst;
+ struct ccp_mem exp;
union {
struct ccp_aes_op aes;
@@ -435,6 +515,7 @@ struct ccp_op {
struct ccp_passthru_op passthru;
struct ccp_ecc_op ecc;
} u;
+ struct ccp_mem key;
};
static inline u32 ccp_addr_lo(struct ccp_dma_info *info)
@@ -447,6 +528,70 @@ static inline u32 ccp_addr_hi(struct ccp_dma_info *info)
return upper_32_bits(info->address + info->offset) & 0x0000ffff;
}
+/**
+ * descriptor for version 5 CPP commands
+ * 8 32-bit words:
+ * word 0: function; engine; control bits
+ * word 1: length of source data
+ * word 2: low 32 bits of source pointer
+ * word 3: upper 16 bits of source pointer; source memory type
+ * word 4: low 32 bits of destination pointer
+ * word 5: upper 16 bits of destination pointer; destination memory type
+ * word 6: low 32 bits of key pointer
+ * word 7: upper 16 bits of key pointer; key memory type
+ */
+struct dword0 {
+ __le32 soc:1;
+ __le32 ioc:1;
+ __le32 rsvd1:1;
+ __le32 init:1;
+ __le32 eom:1; /* AES/SHA only */
+ __le32 function:15;
+ __le32 engine:4;
+ __le32 prot:1;
+ __le32 rsvd2:7;
+};
+
+struct dword3 {
+ __le32 src_hi:16;
+ __le32 src_mem:2;
+ __le32 lsb_cxt_id:8;
+ __le32 rsvd1:5;
+ __le32 fixed:1;
+};
+
+union dword4 {
+ __le32 dst_lo; /* NON-SHA */
+ __le32 sha_len_lo; /* SHA */
+};
+
+union dword5 {
+ struct {
+ __le32 dst_hi:16;
+ __le32 dst_mem:2;
+ __le32 rsvd1:13;
+ __le32 fixed:1;
+ } fields;
+ __le32 sha_len_hi;
+};
+
+struct dword7 {
+ __le32 key_hi:16;
+ __le32 key_mem:2;
+ __le32 rsvd1:14;
+};
+
+struct ccp5_desc {
+ struct dword0 dw0;
+ __le32 length;
+ __le32 src_lo;
+ struct dword3 dw3;
+ union dword4 dw4;
+ union dword5 dw5;
+ __le32 key_lo;
+ struct dword7 dw7;
+};
+
int ccp_pci_init(void);
void ccp_pci_exit(void);
@@ -456,13 +601,48 @@ void ccp_platform_exit(void);
void ccp_add_device(struct ccp_device *ccp);
void ccp_del_device(struct ccp_device *ccp);
+extern void ccp_log_error(struct ccp_device *, int);
+
struct ccp_device *ccp_alloc_struct(struct device *dev);
bool ccp_queues_suspended(struct ccp_device *ccp);
int ccp_cmd_queue_thread(void *data);
+int ccp_trng_read(struct hwrng *rng, void *data, size_t max, bool wait);
int ccp_run_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd);
+int ccp_register_rng(struct ccp_device *ccp);
+void ccp_unregister_rng(struct ccp_device *ccp);
int ccp_dmaengine_register(struct ccp_device *ccp);
void ccp_dmaengine_unregister(struct ccp_device *ccp);
+/* Structure for computation functions that are device-specific */
+struct ccp_actions {
+ int (*aes)(struct ccp_op *);
+ int (*xts_aes)(struct ccp_op *);
+ int (*sha)(struct ccp_op *);
+ int (*rsa)(struct ccp_op *);
+ int (*passthru)(struct ccp_op *);
+ int (*ecc)(struct ccp_op *);
+ u32 (*sballoc)(struct ccp_cmd_queue *, unsigned int);
+ void (*sbfree)(struct ccp_cmd_queue *, unsigned int,
+ unsigned int);
+ unsigned int (*get_free_slots)(struct ccp_cmd_queue *);
+ int (*init)(struct ccp_device *);
+ void (*destroy)(struct ccp_device *);
+ irqreturn_t (*irqhandler)(int, void *);
+};
+
+/* Structure to hold CCP version-specific values */
+struct ccp_vdata {
+ const unsigned int version;
+ void (*setup)(struct ccp_device *);
+ const struct ccp_actions *perform;
+ const unsigned int bar;
+ const unsigned int offset;
+};
+
+extern const struct ccp_vdata ccpv3;
+extern const struct ccp_vdata ccpv5a;
+extern const struct ccp_vdata ccpv5b;
+
#endif
diff --git a/drivers/crypto/ccp/ccp-dmaengine.c b/drivers/crypto/ccp/ccp-dmaengine.c
index 94f77b0f9ae7..6553912804f7 100644
--- a/drivers/crypto/ccp/ccp-dmaengine.c
+++ b/drivers/crypto/ccp/ccp-dmaengine.c
@@ -299,12 +299,10 @@ static struct ccp_dma_desc *ccp_alloc_dma_desc(struct ccp_dma_chan *chan,
{
struct ccp_dma_desc *desc;
- desc = kmem_cache_alloc(chan->ccp->dma_desc_cache, GFP_NOWAIT);
+ desc = kmem_cache_zalloc(chan->ccp->dma_desc_cache, GFP_NOWAIT);
if (!desc)
return NULL;
- memset(desc, 0, sizeof(*desc));
-
dma_async_tx_descriptor_init(&desc->tx_desc, &chan->dma_chan);
desc->tx_desc.flags = flags;
desc->tx_desc.tx_submit = ccp_tx_submit;
@@ -650,8 +648,11 @@ int ccp_dmaengine_register(struct ccp_device *ccp)
dma_desc_cache_name = devm_kasprintf(ccp->dev, GFP_KERNEL,
"%s-dmaengine-desc-cache",
ccp->name);
- if (!dma_cmd_cache_name)
- return -ENOMEM;
+ if (!dma_desc_cache_name) {
+ ret = -ENOMEM;
+ goto err_cache;
+ }
+
ccp->dma_desc_cache = kmem_cache_create(dma_desc_cache_name,
sizeof(struct ccp_dma_desc),
sizeof(void *),
diff --git a/drivers/crypto/ccp/ccp-ops.c b/drivers/crypto/ccp/ccp-ops.c
index ffa2891035ac..50fae4442801 100644
--- a/drivers/crypto/ccp/ccp-ops.c
+++ b/drivers/crypto/ccp/ccp-ops.c
@@ -4,6 +4,7 @@
* Copyright (C) 2013,2016 Advanced Micro Devices, Inc.
*
* Author: Tom Lendacky <thomas.lendacky@amd.com>
+ * Author: Gary R Hook <gary.hook@amd.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
@@ -20,72 +21,28 @@
#include "ccp-dev.h"
/* SHA initial context values */
-static const __be32 ccp_sha1_init[CCP_SHA_CTXSIZE / sizeof(__be32)] = {
+static const __be32 ccp_sha1_init[SHA1_DIGEST_SIZE / sizeof(__be32)] = {
cpu_to_be32(SHA1_H0), cpu_to_be32(SHA1_H1),
cpu_to_be32(SHA1_H2), cpu_to_be32(SHA1_H3),
- cpu_to_be32(SHA1_H4), 0, 0, 0,
+ cpu_to_be32(SHA1_H4),
};
-static const __be32 ccp_sha224_init[CCP_SHA_CTXSIZE / sizeof(__be32)] = {
+static const __be32 ccp_sha224_init[SHA256_DIGEST_SIZE / sizeof(__be32)] = {
cpu_to_be32(SHA224_H0), cpu_to_be32(SHA224_H1),
cpu_to_be32(SHA224_H2), cpu_to_be32(SHA224_H3),
cpu_to_be32(SHA224_H4), cpu_to_be32(SHA224_H5),
cpu_to_be32(SHA224_H6), cpu_to_be32(SHA224_H7),
};
-static const __be32 ccp_sha256_init[CCP_SHA_CTXSIZE / sizeof(__be32)] = {
+static const __be32 ccp_sha256_init[SHA256_DIGEST_SIZE / sizeof(__be32)] = {
cpu_to_be32(SHA256_H0), cpu_to_be32(SHA256_H1),
cpu_to_be32(SHA256_H2), cpu_to_be32(SHA256_H3),
cpu_to_be32(SHA256_H4), cpu_to_be32(SHA256_H5),
cpu_to_be32(SHA256_H6), cpu_to_be32(SHA256_H7),
};
-static u32 ccp_alloc_ksb(struct ccp_device *ccp, unsigned int count)
-{
- int start;
-
- for (;;) {
- mutex_lock(&ccp->ksb_mutex);
-
- start = (u32)bitmap_find_next_zero_area(ccp->ksb,
- ccp->ksb_count,
- ccp->ksb_start,
- count, 0);
- if (start <= ccp->ksb_count) {
- bitmap_set(ccp->ksb, start, count);
-
- mutex_unlock(&ccp->ksb_mutex);
- break;
- }
-
- ccp->ksb_avail = 0;
-
- mutex_unlock(&ccp->ksb_mutex);
-
- /* Wait for KSB entries to become available */
- if (wait_event_interruptible(ccp->ksb_queue, ccp->ksb_avail))
- return 0;
- }
-
- return KSB_START + start;
-}
-
-static void ccp_free_ksb(struct ccp_device *ccp, unsigned int start,
- unsigned int count)
-{
- if (!start)
- return;
-
- mutex_lock(&ccp->ksb_mutex);
-
- bitmap_clear(ccp->ksb, start - KSB_START, count);
-
- ccp->ksb_avail = 1;
-
- mutex_unlock(&ccp->ksb_mutex);
-
- wake_up_interruptible_all(&ccp->ksb_queue);
-}
+#define CCP_NEW_JOBID(ccp) ((ccp->vdata->version == CCP_VERSION(3, 0)) ? \
+ ccp_gen_jobid(ccp) : 0)
static u32 ccp_gen_jobid(struct ccp_device *ccp)
{
@@ -231,7 +188,7 @@ static int ccp_reverse_set_dm_area(struct ccp_dm_workarea *wa,
unsigned int len, unsigned int se_len,
bool sign_extend)
{
- unsigned int nbytes, sg_offset, dm_offset, ksb_len, i;
+ unsigned int nbytes, sg_offset, dm_offset, sb_len, i;
u8 buffer[CCP_REVERSE_BUF_SIZE];
if (WARN_ON(se_len > sizeof(buffer)))
@@ -241,21 +198,21 @@ static int ccp_reverse_set_dm_area(struct ccp_dm_workarea *wa,
dm_offset = 0;
nbytes = len;
while (nbytes) {
- ksb_len = min_t(unsigned int, nbytes, se_len);
- sg_offset -= ksb_len;
+ sb_len = min_t(unsigned int, nbytes, se_len);
+ sg_offset -= sb_len;
- scatterwalk_map_and_copy(buffer, sg, sg_offset, ksb_len, 0);
- for (i = 0; i < ksb_len; i++)
- wa->address[dm_offset + i] = buffer[ksb_len - i - 1];
+ scatterwalk_map_and_copy(buffer, sg, sg_offset, sb_len, 0);
+ for (i = 0; i < sb_len; i++)
+ wa->address[dm_offset + i] = buffer[sb_len - i - 1];
- dm_offset += ksb_len;
- nbytes -= ksb_len;
+ dm_offset += sb_len;
+ nbytes -= sb_len;
- if ((ksb_len != se_len) && sign_extend) {
+ if ((sb_len != se_len) && sign_extend) {
/* Must sign-extend to nearest sign-extend length */
if (wa->address[dm_offset - 1] & 0x80)
memset(wa->address + dm_offset, 0xff,
- se_len - ksb_len);
+ se_len - sb_len);
}
}
@@ -266,22 +223,22 @@ static void ccp_reverse_get_dm_area(struct ccp_dm_workarea *wa,
struct scatterlist *sg,
unsigned int len)
{
- unsigned int nbytes, sg_offset, dm_offset, ksb_len, i;
+ unsigned int nbytes, sg_offset, dm_offset, sb_len, i;
u8 buffer[CCP_REVERSE_BUF_SIZE];
sg_offset = 0;
dm_offset = len;
nbytes = len;
while (nbytes) {
- ksb_len = min_t(unsigned int, nbytes, sizeof(buffer));
- dm_offset -= ksb_len;
+ sb_len = min_t(unsigned int, nbytes, sizeof(buffer));
+ dm_offset -= sb_len;
- for (i = 0; i < ksb_len; i++)
- buffer[ksb_len - i - 1] = wa->address[dm_offset + i];
- scatterwalk_map_and_copy(buffer, sg, sg_offset, ksb_len, 1);
+ for (i = 0; i < sb_len; i++)
+ buffer[sb_len - i - 1] = wa->address[dm_offset + i];
+ scatterwalk_map_and_copy(buffer, sg, sg_offset, sb_len, 1);
- sg_offset += ksb_len;
- nbytes -= ksb_len;
+ sg_offset += sb_len;
+ nbytes -= sb_len;
}
}
@@ -449,9 +406,9 @@ static void ccp_process_data(struct ccp_data *src, struct ccp_data *dst,
}
}
-static int ccp_copy_to_from_ksb(struct ccp_cmd_queue *cmd_q,
- struct ccp_dm_workarea *wa, u32 jobid, u32 ksb,
- u32 byte_swap, bool from)
+static int ccp_copy_to_from_sb(struct ccp_cmd_queue *cmd_q,
+ struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
+ u32 byte_swap, bool from)
{
struct ccp_op op;
@@ -463,8 +420,8 @@ static int ccp_copy_to_from_ksb(struct ccp_cmd_queue *cmd_q,
if (from) {
op.soc = 1;
- op.src.type = CCP_MEMTYPE_KSB;
- op.src.u.ksb = ksb;
+ op.src.type = CCP_MEMTYPE_SB;
+ op.src.u.sb = sb;
op.dst.type = CCP_MEMTYPE_SYSTEM;
op.dst.u.dma.address = wa->dma.address;
op.dst.u.dma.length = wa->length;
@@ -472,27 +429,27 @@ static int ccp_copy_to_from_ksb(struct ccp_cmd_queue *cmd_q,
op.src.type = CCP_MEMTYPE_SYSTEM;
op.src.u.dma.address = wa->dma.address;
op.src.u.dma.length = wa->length;
- op.dst.type = CCP_MEMTYPE_KSB;
- op.dst.u.ksb = ksb;
+ op.dst.type = CCP_MEMTYPE_SB;
+ op.dst.u.sb = sb;
}
op.u.passthru.byte_swap = byte_swap;
- return cmd_q->ccp->vdata->perform->perform_passthru(&op);
+ return cmd_q->ccp->vdata->perform->passthru(&op);
}
-static int ccp_copy_to_ksb(struct ccp_cmd_queue *cmd_q,
- struct ccp_dm_workarea *wa, u32 jobid, u32 ksb,
- u32 byte_swap)
+static int ccp_copy_to_sb(struct ccp_cmd_queue *cmd_q,
+ struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
+ u32 byte_swap)
{
- return ccp_copy_to_from_ksb(cmd_q, wa, jobid, ksb, byte_swap, false);
+ return ccp_copy_to_from_sb(cmd_q, wa, jobid, sb, byte_swap, false);
}
-static int ccp_copy_from_ksb(struct ccp_cmd_queue *cmd_q,
- struct ccp_dm_workarea *wa, u32 jobid, u32 ksb,
- u32 byte_swap)
+static int ccp_copy_from_sb(struct ccp_cmd_queue *cmd_q,
+ struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
+ u32 byte_swap)
{
- return ccp_copy_to_from_ksb(cmd_q, wa, jobid, ksb, byte_swap, true);
+ return ccp_copy_to_from_sb(cmd_q, wa, jobid, sb, byte_swap, true);
}
static int ccp_run_aes_cmac_cmd(struct ccp_cmd_queue *cmd_q,
@@ -527,54 +484,54 @@ static int ccp_run_aes_cmac_cmd(struct ccp_cmd_queue *cmd_q,
return -EINVAL;
}
- BUILD_BUG_ON(CCP_AES_KEY_KSB_COUNT != 1);
- BUILD_BUG_ON(CCP_AES_CTX_KSB_COUNT != 1);
+ BUILD_BUG_ON(CCP_AES_KEY_SB_COUNT != 1);
+ BUILD_BUG_ON(CCP_AES_CTX_SB_COUNT != 1);
ret = -EIO;
memset(&op, 0, sizeof(op));
op.cmd_q = cmd_q;
- op.jobid = ccp_gen_jobid(cmd_q->ccp);
- op.ksb_key = cmd_q->ksb_key;
- op.ksb_ctx = cmd_q->ksb_ctx;
+ op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
+ op.sb_key = cmd_q->sb_key;
+ op.sb_ctx = cmd_q->sb_ctx;
op.init = 1;
op.u.aes.type = aes->type;
op.u.aes.mode = aes->mode;
op.u.aes.action = aes->action;
- /* All supported key sizes fit in a single (32-byte) KSB entry
+ /* All supported key sizes fit in a single (32-byte) SB entry
* and must be in little endian format. Use the 256-bit byte
* swap passthru option to convert from big endian to little
* endian.
*/
ret = ccp_init_dm_workarea(&key, cmd_q,
- CCP_AES_KEY_KSB_COUNT * CCP_KSB_BYTES,
+ CCP_AES_KEY_SB_COUNT * CCP_SB_BYTES,
DMA_TO_DEVICE);
if (ret)
return ret;
- dm_offset = CCP_KSB_BYTES - aes->key_len;
+ dm_offset = CCP_SB_BYTES - aes->key_len;
ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
- ret = ccp_copy_to_ksb(cmd_q, &key, op.jobid, op.ksb_key,
- CCP_PASSTHRU_BYTESWAP_256BIT);
+ ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
+ CCP_PASSTHRU_BYTESWAP_256BIT);
if (ret) {
cmd->engine_error = cmd_q->cmd_error;
goto e_key;
}
- /* The AES context fits in a single (32-byte) KSB entry and
+ /* The AES context fits in a single (32-byte) SB entry and
* must be in little endian format. Use the 256-bit byte swap
* passthru option to convert from big endian to little endian.
*/
ret = ccp_init_dm_workarea(&ctx, cmd_q,
- CCP_AES_CTX_KSB_COUNT * CCP_KSB_BYTES,
+ CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
DMA_BIDIRECTIONAL);
if (ret)
goto e_key;
- dm_offset = CCP_KSB_BYTES - AES_BLOCK_SIZE;
+ dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
- ret = ccp_copy_to_ksb(cmd_q, &ctx, op.jobid, op.ksb_ctx,
- CCP_PASSTHRU_BYTESWAP_256BIT);
+ ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
+ CCP_PASSTHRU_BYTESWAP_256BIT);
if (ret) {
cmd->engine_error = cmd_q->cmd_error;
goto e_ctx;
@@ -592,9 +549,9 @@ static int ccp_run_aes_cmac_cmd(struct ccp_cmd_queue *cmd_q,
op.eom = 1;
/* Push the K1/K2 key to the CCP now */
- ret = ccp_copy_from_ksb(cmd_q, &ctx, op.jobid,
- op.ksb_ctx,
- CCP_PASSTHRU_BYTESWAP_256BIT);
+ ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid,
+ op.sb_ctx,
+ CCP_PASSTHRU_BYTESWAP_256BIT);
if (ret) {
cmd->engine_error = cmd_q->cmd_error;
goto e_src;
@@ -602,15 +559,15 @@ static int ccp_run_aes_cmac_cmd(struct ccp_cmd_queue *cmd_q,
ccp_set_dm_area(&ctx, 0, aes->cmac_key, 0,
aes->cmac_key_len);
- ret = ccp_copy_to_ksb(cmd_q, &ctx, op.jobid, op.ksb_ctx,
- CCP_PASSTHRU_BYTESWAP_256BIT);
+ ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
+ CCP_PASSTHRU_BYTESWAP_256BIT);
if (ret) {
cmd->engine_error = cmd_q->cmd_error;
goto e_src;
}
}
- ret = cmd_q->ccp->vdata->perform->perform_aes(&op);
+ ret = cmd_q->ccp->vdata->perform->aes(&op);
if (ret) {
cmd->engine_error = cmd_q->cmd_error;
goto e_src;
@@ -622,15 +579,15 @@ static int ccp_run_aes_cmac_cmd(struct ccp_cmd_queue *cmd_q,
/* Retrieve the AES context - convert from LE to BE using
* 32-byte (256-bit) byteswapping
*/
- ret = ccp_copy_from_ksb(cmd_q, &ctx, op.jobid, op.ksb_ctx,
- CCP_PASSTHRU_BYTESWAP_256BIT);
+ ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
+ CCP_PASSTHRU_BYTESWAP_256BIT);
if (ret) {
cmd->engine_error = cmd_q->cmd_error;
goto e_src;
}
/* ...but we only need AES_BLOCK_SIZE bytes */
- dm_offset = CCP_KSB_BYTES - AES_BLOCK_SIZE;
+ dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
e_src:
@@ -680,56 +637,56 @@ static int ccp_run_aes_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
return -EINVAL;
}
- BUILD_BUG_ON(CCP_AES_KEY_KSB_COUNT != 1);
- BUILD_BUG_ON(CCP_AES_CTX_KSB_COUNT != 1);
+ BUILD_BUG_ON(CCP_AES_KEY_SB_COUNT != 1);
+ BUILD_BUG_ON(CCP_AES_CTX_SB_COUNT != 1);
ret = -EIO;
memset(&op, 0, sizeof(op));
op.cmd_q = cmd_q;
- op.jobid = ccp_gen_jobid(cmd_q->ccp);
- op.ksb_key = cmd_q->ksb_key;
- op.ksb_ctx = cmd_q->ksb_ctx;
+ op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
+ op.sb_key = cmd_q->sb_key;
+ op.sb_ctx = cmd_q->sb_ctx;
op.init = (aes->mode == CCP_AES_MODE_ECB) ? 0 : 1;
op.u.aes.type = aes->type;
op.u.aes.mode = aes->mode;
op.u.aes.action = aes->action;
- /* All supported key sizes fit in a single (32-byte) KSB entry
+ /* All supported key sizes fit in a single (32-byte) SB entry
* and must be in little endian format. Use the 256-bit byte
* swap passthru option to convert from big endian to little
* endian.
*/
ret = ccp_init_dm_workarea(&key, cmd_q,
- CCP_AES_KEY_KSB_COUNT * CCP_KSB_BYTES,
+ CCP_AES_KEY_SB_COUNT * CCP_SB_BYTES,
DMA_TO_DEVICE);
if (ret)
return ret;
- dm_offset = CCP_KSB_BYTES - aes->key_len;
+ dm_offset = CCP_SB_BYTES - aes->key_len;
ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
- ret = ccp_copy_to_ksb(cmd_q, &key, op.jobid, op.ksb_key,
- CCP_PASSTHRU_BYTESWAP_256BIT);
+ ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
+ CCP_PASSTHRU_BYTESWAP_256BIT);
if (ret) {
cmd->engine_error = cmd_q->cmd_error;
goto e_key;
}
- /* The AES context fits in a single (32-byte) KSB entry and
+ /* The AES context fits in a single (32-byte) SB entry and
* must be in little endian format. Use the 256-bit byte swap
* passthru option to convert from big endian to little endian.
*/
ret = ccp_init_dm_workarea(&ctx, cmd_q,
- CCP_AES_CTX_KSB_COUNT * CCP_KSB_BYTES,
+ CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
DMA_BIDIRECTIONAL);
if (ret)
goto e_key;
if (aes->mode != CCP_AES_MODE_ECB) {
- /* Load the AES context - conver to LE */
- dm_offset = CCP_KSB_BYTES - AES_BLOCK_SIZE;
+ /* Load the AES context - convert to LE */
+ dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
- ret = ccp_copy_to_ksb(cmd_q, &ctx, op.jobid, op.ksb_ctx,
- CCP_PASSTHRU_BYTESWAP_256BIT);
+ ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
+ CCP_PASSTHRU_BYTESWAP_256BIT);
if (ret) {
cmd->engine_error = cmd_q->cmd_error;
goto e_ctx;
@@ -772,7 +729,7 @@ static int ccp_run_aes_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
op.soc = 1;
}
- ret = cmd_q->ccp->vdata->perform->perform_aes(&op);
+ ret = cmd_q->ccp->vdata->perform->aes(&op);
if (ret) {
cmd->engine_error = cmd_q->cmd_error;
goto e_dst;
@@ -785,15 +742,15 @@ static int ccp_run_aes_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
/* Retrieve the AES context - convert from LE to BE using
* 32-byte (256-bit) byteswapping
*/
- ret = ccp_copy_from_ksb(cmd_q, &ctx, op.jobid, op.ksb_ctx,
- CCP_PASSTHRU_BYTESWAP_256BIT);
+ ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
+ CCP_PASSTHRU_BYTESWAP_256BIT);
if (ret) {
cmd->engine_error = cmd_q->cmd_error;
goto e_dst;
}
/* ...but we only need AES_BLOCK_SIZE bytes */
- dm_offset = CCP_KSB_BYTES - AES_BLOCK_SIZE;
+ dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
}
@@ -857,53 +814,53 @@ static int ccp_run_xts_aes_cmd(struct ccp_cmd_queue *cmd_q,
if (!xts->key || !xts->iv || !xts->src || !xts->dst)
return -EINVAL;
- BUILD_BUG_ON(CCP_XTS_AES_KEY_KSB_COUNT != 1);
- BUILD_BUG_ON(CCP_XTS_AES_CTX_KSB_COUNT != 1);
+ BUILD_BUG_ON(CCP_XTS_AES_KEY_SB_COUNT != 1);
+ BUILD_BUG_ON(CCP_XTS_AES_CTX_SB_COUNT != 1);
ret = -EIO;
memset(&op, 0, sizeof(op));
op.cmd_q = cmd_q;
- op.jobid = ccp_gen_jobid(cmd_q->ccp);
- op.ksb_key = cmd_q->ksb_key;
- op.ksb_ctx = cmd_q->ksb_ctx;
+ op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
+ op.sb_key = cmd_q->sb_key;
+ op.sb_ctx = cmd_q->sb_ctx;
op.init = 1;
op.u.xts.action = xts->action;
op.u.xts.unit_size = xts->unit_size;
- /* All supported key sizes fit in a single (32-byte) KSB entry
+ /* All supported key sizes fit in a single (32-byte) SB entry
* and must be in little endian format. Use the 256-bit byte
* swap passthru option to convert from big endian to little
* endian.
*/
ret = ccp_init_dm_workarea(&key, cmd_q,
- CCP_XTS_AES_KEY_KSB_COUNT * CCP_KSB_BYTES,
+ CCP_XTS_AES_KEY_SB_COUNT * CCP_SB_BYTES,
DMA_TO_DEVICE);
if (ret)
return ret;
- dm_offset = CCP_KSB_BYTES - AES_KEYSIZE_128;
+ dm_offset = CCP_SB_BYTES - AES_KEYSIZE_128;
ccp_set_dm_area(&key, dm_offset, xts->key, 0, xts->key_len);
ccp_set_dm_area(&key, 0, xts->key, dm_offset, xts->key_len);
- ret = ccp_copy_to_ksb(cmd_q, &key, op.jobid, op.ksb_key,
- CCP_PASSTHRU_BYTESWAP_256BIT);
+ ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
+ CCP_PASSTHRU_BYTESWAP_256BIT);
if (ret) {
cmd->engine_error = cmd_q->cmd_error;
goto e_key;
}
- /* The AES context fits in a single (32-byte) KSB entry and
+ /* The AES context fits in a single (32-byte) SB entry and
* for XTS is already in little endian format so no byte swapping
* is needed.
*/
ret = ccp_init_dm_workarea(&ctx, cmd_q,
- CCP_XTS_AES_CTX_KSB_COUNT * CCP_KSB_BYTES,
+ CCP_XTS_AES_CTX_SB_COUNT * CCP_SB_BYTES,
DMA_BIDIRECTIONAL);
if (ret)
goto e_key;
ccp_set_dm_area(&ctx, 0, xts->iv, 0, xts->iv_len);
- ret = ccp_copy_to_ksb(cmd_q, &ctx, op.jobid, op.ksb_ctx,
- CCP_PASSTHRU_BYTESWAP_NOOP);
+ ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
+ CCP_PASSTHRU_BYTESWAP_NOOP);
if (ret) {
cmd->engine_error = cmd_q->cmd_error;
goto e_ctx;
@@ -937,7 +894,7 @@ static int ccp_run_xts_aes_cmd(struct ccp_cmd_queue *cmd_q,
if (!src.sg_wa.bytes_left)
op.eom = 1;
- ret = cmd_q->ccp->vdata->perform->perform_xts_aes(&op);
+ ret = cmd_q->ccp->vdata->perform->xts_aes(&op);
if (ret) {
cmd->engine_error = cmd_q->cmd_error;
goto e_dst;
@@ -949,15 +906,15 @@ static int ccp_run_xts_aes_cmd(struct ccp_cmd_queue *cmd_q,
/* Retrieve the AES context - convert from LE to BE using
* 32-byte (256-bit) byteswapping
*/
- ret = ccp_copy_from_ksb(cmd_q, &ctx, op.jobid, op.ksb_ctx,
- CCP_PASSTHRU_BYTESWAP_256BIT);
+ ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
+ CCP_PASSTHRU_BYTESWAP_256BIT);
if (ret) {
cmd->engine_error = cmd_q->cmd_error;
goto e_dst;
}
/* ...but we only need AES_BLOCK_SIZE bytes */
- dm_offset = CCP_KSB_BYTES - AES_BLOCK_SIZE;
+ dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
ccp_get_dm_area(&ctx, dm_offset, xts->iv, 0, xts->iv_len);
e_dst:
@@ -982,163 +939,227 @@ static int ccp_run_sha_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
struct ccp_dm_workarea ctx;
struct ccp_data src;
struct ccp_op op;
+ unsigned int ioffset, ooffset;
+ unsigned int digest_size;
+ int sb_count;
+ const void *init;
+ u64 block_size;
+ int ctx_size;
int ret;
- if (sha->ctx_len != CCP_SHA_CTXSIZE)
+ switch (sha->type) {
+ case CCP_SHA_TYPE_1:
+ if (sha->ctx_len < SHA1_DIGEST_SIZE)
+ return -EINVAL;
+ block_size = SHA1_BLOCK_SIZE;
+ break;
+ case CCP_SHA_TYPE_224:
+ if (sha->ctx_len < SHA224_DIGEST_SIZE)
+ return -EINVAL;
+ block_size = SHA224_BLOCK_SIZE;
+ break;
+ case CCP_SHA_TYPE_256:
+ if (sha->ctx_len < SHA256_DIGEST_SIZE)
+ return -EINVAL;
+ block_size = SHA256_BLOCK_SIZE;
+ break;
+ default:
return -EINVAL;
+ }
if (!sha->ctx)
return -EINVAL;
- if (!sha->final && (sha->src_len & (CCP_SHA_BLOCKSIZE - 1)))
+ if (!sha->final && (sha->src_len & (block_size - 1)))
return -EINVAL;
- if (!sha->src_len) {
- const u8 *sha_zero;
+ /* The version 3 device can't handle zero-length input */
+ if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0)) {
- /* Not final, just return */
- if (!sha->final)
- return 0;
+ if (!sha->src_len) {
+ unsigned int digest_len;
+ const u8 *sha_zero;
- /* CCP can't do a zero length sha operation so the caller
- * must buffer the data.
- */
- if (sha->msg_bits)
- return -EINVAL;
+ /* Not final, just return */
+ if (!sha->final)
+ return 0;
- /* The CCP cannot perform zero-length sha operations so the
- * caller is required to buffer data for the final operation.
- * However, a sha operation for a message with a total length
- * of zero is valid so known values are required to supply
- * the result.
- */
- switch (sha->type) {
- case CCP_SHA_TYPE_1:
- sha_zero = sha1_zero_message_hash;
- break;
- case CCP_SHA_TYPE_224:
- sha_zero = sha224_zero_message_hash;
- break;
- case CCP_SHA_TYPE_256:
- sha_zero = sha256_zero_message_hash;
- break;
- default:
- return -EINVAL;
- }
+ /* CCP can't do a zero length sha operation so the
+ * caller must buffer the data.
+ */
+ if (sha->msg_bits)
+ return -EINVAL;
+
+ /* The CCP cannot perform zero-length sha operations
+ * so the caller is required to buffer data for the
+ * final operation. However, a sha operation for a
+ * message with a total length of zero is valid so
+ * known values are required to supply the result.
+ */
+ switch (sha->type) {
+ case CCP_SHA_TYPE_1:
+ sha_zero = sha1_zero_message_hash;
+ digest_len = SHA1_DIGEST_SIZE;
+ break;
+ case CCP_SHA_TYPE_224:
+ sha_zero = sha224_zero_message_hash;
+ digest_len = SHA224_DIGEST_SIZE;
+ break;
+ case CCP_SHA_TYPE_256:
+ sha_zero = sha256_zero_message_hash;
+ digest_len = SHA256_DIGEST_SIZE;
+ break;
+ default:
+ return -EINVAL;
+ }
- scatterwalk_map_and_copy((void *)sha_zero, sha->ctx, 0,
- sha->ctx_len, 1);
+ scatterwalk_map_and_copy((void *)sha_zero, sha->ctx, 0,
+ digest_len, 1);
- return 0;
+ return 0;
+ }
}
- if (!sha->src)
- return -EINVAL;
+ /* Set variables used throughout */
+ switch (sha->type) {
+ case CCP_SHA_TYPE_1:
+ digest_size = SHA1_DIGEST_SIZE;
+ init = (void *) ccp_sha1_init;
+ ctx_size = SHA1_DIGEST_SIZE;
+ sb_count = 1;
+ if (cmd_q->ccp->vdata->version != CCP_VERSION(3, 0))
+ ooffset = ioffset = CCP_SB_BYTES - SHA1_DIGEST_SIZE;
+ else
+ ooffset = ioffset = 0;
+ break;
+ case CCP_SHA_TYPE_224:
+ digest_size = SHA224_DIGEST_SIZE;
+ init = (void *) ccp_sha224_init;
+ ctx_size = SHA256_DIGEST_SIZE;
+ sb_count = 1;
+ ioffset = 0;
+ if (cmd_q->ccp->vdata->version != CCP_VERSION(3, 0))
+ ooffset = CCP_SB_BYTES - SHA224_DIGEST_SIZE;
+ else
+ ooffset = 0;
+ break;
+ case CCP_SHA_TYPE_256:
+ digest_size = SHA256_DIGEST_SIZE;
+ init = (void *) ccp_sha256_init;
+ ctx_size = SHA256_DIGEST_SIZE;
+ sb_count = 1;
+ ooffset = ioffset = 0;
+ break;
+ default:
+ ret = -EINVAL;
+ goto e_data;
+ }
- BUILD_BUG_ON(CCP_SHA_KSB_COUNT != 1);
+ /* For zero-length plaintext the src pointer is ignored;
+ * otherwise both parts must be valid
+ */
+ if (sha->src_len && !sha->src)
+ return -EINVAL;
memset(&op, 0, sizeof(op));
op.cmd_q = cmd_q;
- op.jobid = ccp_gen_jobid(cmd_q->ccp);
- op.ksb_ctx = cmd_q->ksb_ctx;
+ op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
+ op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */
op.u.sha.type = sha->type;
op.u.sha.msg_bits = sha->msg_bits;
- /* The SHA context fits in a single (32-byte) KSB entry and
- * must be in little endian format. Use the 256-bit byte swap
- * passthru option to convert from big endian to little endian.
- */
- ret = ccp_init_dm_workarea(&ctx, cmd_q,
- CCP_SHA_KSB_COUNT * CCP_KSB_BYTES,
+ ret = ccp_init_dm_workarea(&ctx, cmd_q, sb_count * CCP_SB_BYTES,
DMA_BIDIRECTIONAL);
if (ret)
return ret;
-
if (sha->first) {
- const __be32 *init;
-
switch (sha->type) {
case CCP_SHA_TYPE_1:
- init = ccp_sha1_init;
- break;
case CCP_SHA_TYPE_224:
- init = ccp_sha224_init;
- break;
case CCP_SHA_TYPE_256:
- init = ccp_sha256_init;
+ memcpy(ctx.address + ioffset, init, ctx_size);
break;
default:
ret = -EINVAL;
goto e_ctx;
}
- memcpy(ctx.address, init, CCP_SHA_CTXSIZE);
} else {
- ccp_set_dm_area(&ctx, 0, sha->ctx, 0, sha->ctx_len);
+ /* Restore the context */
+ ccp_set_dm_area(&ctx, 0, sha->ctx, 0,
+ sb_count * CCP_SB_BYTES);
}
- ret = ccp_copy_to_ksb(cmd_q, &ctx, op.jobid, op.ksb_ctx,
- CCP_PASSTHRU_BYTESWAP_256BIT);
+ ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
+ CCP_PASSTHRU_BYTESWAP_256BIT);
if (ret) {
cmd->engine_error = cmd_q->cmd_error;
goto e_ctx;
}
- /* Send data to the CCP SHA engine */
- ret = ccp_init_data(&src, cmd_q, sha->src, sha->src_len,
- CCP_SHA_BLOCKSIZE, DMA_TO_DEVICE);
- if (ret)
- goto e_ctx;
+ if (sha->src) {
+ /* Send data to the CCP SHA engine; block_size is set above */
+ ret = ccp_init_data(&src, cmd_q, sha->src, sha->src_len,
+ block_size, DMA_TO_DEVICE);
+ if (ret)
+ goto e_ctx;
- while (src.sg_wa.bytes_left) {
- ccp_prepare_data(&src, NULL, &op, CCP_SHA_BLOCKSIZE, false);
- if (sha->final && !src.sg_wa.bytes_left)
- op.eom = 1;
+ while (src.sg_wa.bytes_left) {
+ ccp_prepare_data(&src, NULL, &op, block_size, false);
+ if (sha->final && !src.sg_wa.bytes_left)
+ op.eom = 1;
+
+ ret = cmd_q->ccp->vdata->perform->sha(&op);
+ if (ret) {
+ cmd->engine_error = cmd_q->cmd_error;
+ goto e_data;
+ }
- ret = cmd_q->ccp->vdata->perform->perform_sha(&op);
+ ccp_process_data(&src, NULL, &op);
+ }
+ } else {
+ op.eom = 1;
+ ret = cmd_q->ccp->vdata->perform->sha(&op);
if (ret) {
cmd->engine_error = cmd_q->cmd_error;
goto e_data;
}
-
- ccp_process_data(&src, NULL, &op);
}
/* Retrieve the SHA context - convert from LE to BE using
* 32-byte (256-bit) byteswapping to BE
*/
- ret = ccp_copy_from_ksb(cmd_q, &ctx, op.jobid, op.ksb_ctx,
- CCP_PASSTHRU_BYTESWAP_256BIT);
+ ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
+ CCP_PASSTHRU_BYTESWAP_256BIT);
if (ret) {
cmd->engine_error = cmd_q->cmd_error;
goto e_data;
}
- ccp_get_dm_area(&ctx, 0, sha->ctx, 0, sha->ctx_len);
-
- if (sha->final && sha->opad) {
- /* HMAC operation, recursively perform final SHA */
- struct ccp_cmd hmac_cmd;
- struct scatterlist sg;
- u64 block_size, digest_size;
- u8 *hmac_buf;
-
+ if (sha->final) {
+ /* Finishing up, so get the digest */
switch (sha->type) {
case CCP_SHA_TYPE_1:
- block_size = SHA1_BLOCK_SIZE;
- digest_size = SHA1_DIGEST_SIZE;
- break;
case CCP_SHA_TYPE_224:
- block_size = SHA224_BLOCK_SIZE;
- digest_size = SHA224_DIGEST_SIZE;
- break;
case CCP_SHA_TYPE_256:
- block_size = SHA256_BLOCK_SIZE;
- digest_size = SHA256_DIGEST_SIZE;
+ ccp_get_dm_area(&ctx, ooffset,
+ sha->ctx, 0,
+ digest_size);
break;
default:
ret = -EINVAL;
- goto e_data;
+ goto e_ctx;
}
+ } else {
+ /* Stash the context */
+ ccp_get_dm_area(&ctx, 0, sha->ctx, 0,
+ sb_count * CCP_SB_BYTES);
+ }
+
+ if (sha->final && sha->opad) {
+ /* HMAC operation, recursively perform final SHA */
+ struct ccp_cmd hmac_cmd;
+ struct scatterlist sg;
+ u8 *hmac_buf;
if (sha->opad_len != block_size) {
ret = -EINVAL;
@@ -1153,7 +1174,18 @@ static int ccp_run_sha_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
sg_init_one(&sg, hmac_buf, block_size + digest_size);
scatterwalk_map_and_copy(hmac_buf, sha->opad, 0, block_size, 0);
- memcpy(hmac_buf + block_size, ctx.address, digest_size);
+ switch (sha->type) {
+ case CCP_SHA_TYPE_1:
+ case CCP_SHA_TYPE_224:
+ case CCP_SHA_TYPE_256:
+ memcpy(hmac_buf + block_size,
+ ctx.address + ooffset,
+ digest_size);
+ break;
+ default:
+ ret = -EINVAL;
+ goto e_ctx;
+ }
memset(&hmac_cmd, 0, sizeof(hmac_cmd));
hmac_cmd.engine = CCP_ENGINE_SHA;
@@ -1176,7 +1208,8 @@ static int ccp_run_sha_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
}
e_data:
- ccp_free_data(&src, cmd_q);
+ if (sha->src)
+ ccp_free_data(&src, cmd_q);
e_ctx:
ccp_dm_free(&ctx);
@@ -1190,7 +1223,7 @@ static int ccp_run_rsa_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
struct ccp_dm_workarea exp, src;
struct ccp_data dst;
struct ccp_op op;
- unsigned int ksb_count, i_len, o_len;
+ unsigned int sb_count, i_len, o_len;
int ret;
if (rsa->key_size > CCP_RSA_MAX_WIDTH)
@@ -1208,16 +1241,17 @@ static int ccp_run_rsa_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
o_len = ((rsa->key_size + 255) / 256) * 32;
i_len = o_len * 2;
- ksb_count = o_len / CCP_KSB_BYTES;
+ sb_count = o_len / CCP_SB_BYTES;
memset(&op, 0, sizeof(op));
op.cmd_q = cmd_q;
op.jobid = ccp_gen_jobid(cmd_q->ccp);
- op.ksb_key = ccp_alloc_ksb(cmd_q->ccp, ksb_count);
- if (!op.ksb_key)
+ op.sb_key = cmd_q->ccp->vdata->perform->sballoc(cmd_q, sb_count);
+
+ if (!op.sb_key)
return -EIO;
- /* The RSA exponent may span multiple (32-byte) KSB entries and must
+ /* The RSA exponent may span multiple (32-byte) SB entries and must
* be in little endian format. Reverse copy each 32-byte chunk
* of the exponent (En chunk to E0 chunk, E(n-1) chunk to E1 chunk)
* and each byte within that chunk and do not perform any byte swap
@@ -1225,14 +1259,14 @@ static int ccp_run_rsa_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
*/
ret = ccp_init_dm_workarea(&exp, cmd_q, o_len, DMA_TO_DEVICE);
if (ret)
- goto e_ksb;
+ goto e_sb;
ret = ccp_reverse_set_dm_area(&exp, rsa->exp, rsa->exp_len,
- CCP_KSB_BYTES, false);
+ CCP_SB_BYTES, false);
if (ret)
goto e_exp;
- ret = ccp_copy_to_ksb(cmd_q, &exp, op.jobid, op.ksb_key,
- CCP_PASSTHRU_BYTESWAP_NOOP);
+ ret = ccp_copy_to_sb(cmd_q, &exp, op.jobid, op.sb_key,
+ CCP_PASSTHRU_BYTESWAP_NOOP);
if (ret) {
cmd->engine_error = cmd_q->cmd_error;
goto e_exp;
@@ -1247,12 +1281,12 @@ static int ccp_run_rsa_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
goto e_exp;
ret = ccp_reverse_set_dm_area(&src, rsa->mod, rsa->mod_len,
- CCP_KSB_BYTES, false);
+ CCP_SB_BYTES, false);
if (ret)
goto e_src;
src.address += o_len; /* Adjust the address for the copy operation */
ret = ccp_reverse_set_dm_area(&src, rsa->src, rsa->src_len,
- CCP_KSB_BYTES, false);
+ CCP_SB_BYTES, false);
if (ret)
goto e_src;
src.address -= o_len; /* Reset the address to original value */
@@ -1274,7 +1308,7 @@ static int ccp_run_rsa_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
op.u.rsa.mod_size = rsa->key_size;
op.u.rsa.input_len = i_len;
- ret = cmd_q->ccp->vdata->perform->perform_rsa(&op);
+ ret = cmd_q->ccp->vdata->perform->rsa(&op);
if (ret) {
cmd->engine_error = cmd_q->cmd_error;
goto e_dst;
@@ -1291,8 +1325,8 @@ e_src:
e_exp:
ccp_dm_free(&exp);
-e_ksb:
- ccp_free_ksb(cmd_q->ccp, op.ksb_key, ksb_count);
+e_sb:
+ cmd_q->ccp->vdata->perform->sbfree(cmd_q, op.sb_key, sb_count);
return ret;
}
@@ -1306,7 +1340,7 @@ static int ccp_run_passthru_cmd(struct ccp_cmd_queue *cmd_q,
struct ccp_op op;
bool in_place = false;
unsigned int i;
- int ret;
+ int ret = 0;
if (!pt->final && (pt->src_len & (CCP_PASSTHRU_BLOCKSIZE - 1)))
return -EINVAL;
@@ -1321,26 +1355,26 @@ static int ccp_run_passthru_cmd(struct ccp_cmd_queue *cmd_q,
return -EINVAL;
}
- BUILD_BUG_ON(CCP_PASSTHRU_KSB_COUNT != 1);
+ BUILD_BUG_ON(CCP_PASSTHRU_SB_COUNT != 1);
memset(&op, 0, sizeof(op));
op.cmd_q = cmd_q;
- op.jobid = ccp_gen_jobid(cmd_q->ccp);
+ op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
/* Load the mask */
- op.ksb_key = cmd_q->ksb_key;
+ op.sb_key = cmd_q->sb_key;
ret = ccp_init_dm_workarea(&mask, cmd_q,
- CCP_PASSTHRU_KSB_COUNT *
- CCP_KSB_BYTES,
+ CCP_PASSTHRU_SB_COUNT *
+ CCP_SB_BYTES,
DMA_TO_DEVICE);
if (ret)
return ret;
ccp_set_dm_area(&mask, 0, pt->mask, 0, pt->mask_len);
- ret = ccp_copy_to_ksb(cmd_q, &mask, op.jobid, op.ksb_key,
- CCP_PASSTHRU_BYTESWAP_NOOP);
+ ret = ccp_copy_to_sb(cmd_q, &mask, op.jobid, op.sb_key,
+ CCP_PASSTHRU_BYTESWAP_NOOP);
if (ret) {
cmd->engine_error = cmd_q->cmd_error;
goto e_mask;
@@ -1399,7 +1433,7 @@ static int ccp_run_passthru_cmd(struct ccp_cmd_queue *cmd_q,
op.dst.u.dma.offset = dst.sg_wa.sg_used;
op.dst.u.dma.length = op.src.u.dma.length;
- ret = cmd_q->ccp->vdata->perform->perform_passthru(&op);
+ ret = cmd_q->ccp->vdata->perform->passthru(&op);
if (ret) {
cmd->engine_error = cmd_q->cmd_error;
goto e_dst;
@@ -1448,7 +1482,7 @@ static int ccp_run_passthru_nomap_cmd(struct ccp_cmd_queue *cmd_q,
return -EINVAL;
}
- BUILD_BUG_ON(CCP_PASSTHRU_KSB_COUNT != 1);
+ BUILD_BUG_ON(CCP_PASSTHRU_SB_COUNT != 1);
memset(&op, 0, sizeof(op));
op.cmd_q = cmd_q;
@@ -1456,13 +1490,13 @@ static int ccp_run_passthru_nomap_cmd(struct ccp_cmd_queue *cmd_q,
if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
/* Load the mask */
- op.ksb_key = cmd_q->ksb_key;
+ op.sb_key = cmd_q->sb_key;
mask.length = pt->mask_len;
mask.dma.address = pt->mask;
mask.dma.length = pt->mask_len;
- ret = ccp_copy_to_ksb(cmd_q, &mask, op.jobid, op.ksb_key,
+ ret = ccp_copy_to_sb(cmd_q, &mask, op.jobid, op.sb_key,
CCP_PASSTHRU_BYTESWAP_NOOP);
if (ret) {
cmd->engine_error = cmd_q->cmd_error;
@@ -1484,7 +1518,7 @@ static int ccp_run_passthru_nomap_cmd(struct ccp_cmd_queue *cmd_q,
op.dst.u.dma.offset = 0;
op.dst.u.dma.length = pt->src_len;
- ret = cmd_q->ccp->vdata->perform->perform_passthru(&op);
+ ret = cmd_q->ccp->vdata->perform->passthru(&op);
if (ret)
cmd->engine_error = cmd_q->cmd_error;
@@ -1514,7 +1548,7 @@ static int ccp_run_ecc_mm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
memset(&op, 0, sizeof(op));
op.cmd_q = cmd_q;
- op.jobid = ccp_gen_jobid(cmd_q->ccp);
+ op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
/* Concatenate the modulus and the operands. Both the modulus and
* the operands must be in little endian format. Since the input
@@ -1575,7 +1609,7 @@ static int ccp_run_ecc_mm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
op.u.ecc.function = cmd->u.ecc.function;
- ret = cmd_q->ccp->vdata->perform->perform_ecc(&op);
+ ret = cmd_q->ccp->vdata->perform->ecc(&op);
if (ret) {
cmd->engine_error = cmd_q->cmd_error;
goto e_dst;
@@ -1639,7 +1673,7 @@ static int ccp_run_ecc_pm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
memset(&op, 0, sizeof(op));
op.cmd_q = cmd_q;
- op.jobid = ccp_gen_jobid(cmd_q->ccp);
+ op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
/* Concatenate the modulus and the operands. Both the modulus and
* the operands must be in little endian format. Since the input
@@ -1677,7 +1711,7 @@ static int ccp_run_ecc_pm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
goto e_src;
src.address += CCP_ECC_OPERAND_SIZE;
- /* Set the first point Z coordianate to 1 */
+ /* Set the first point Z coordinate to 1 */
*src.address = 0x01;
src.address += CCP_ECC_OPERAND_SIZE;
@@ -1696,7 +1730,7 @@ static int ccp_run_ecc_pm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
goto e_src;
src.address += CCP_ECC_OPERAND_SIZE;
- /* Set the second point Z coordianate to 1 */
+ /* Set the second point Z coordinate to 1 */
*src.address = 0x01;
src.address += CCP_ECC_OPERAND_SIZE;
} else {
@@ -1739,7 +1773,7 @@ static int ccp_run_ecc_pm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
op.u.ecc.function = cmd->u.ecc.function;
- ret = cmd_q->ccp->vdata->perform->perform_ecc(&op);
+ ret = cmd_q->ccp->vdata->perform->ecc(&op);
if (ret) {
cmd->engine_error = cmd_q->cmd_error;
goto e_dst;
@@ -1810,7 +1844,7 @@ int ccp_run_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
cmd->engine_error = 0;
cmd_q->cmd_error = 0;
cmd_q->int_rcvd = 0;
- cmd_q->free_slots = CMD_Q_DEPTH(ioread32(cmd_q->reg_status));
+ cmd_q->free_slots = cmd_q->ccp->vdata->perform->get_free_slots(cmd_q);
switch (cmd->engine) {
case CCP_ENGINE_AES:
diff --git a/drivers/crypto/ccp/ccp-pci.c b/drivers/crypto/ccp/ccp-pci.c
index 0bf262e36b6b..28a9996c1085 100644
--- a/drivers/crypto/ccp/ccp-pci.c
+++ b/drivers/crypto/ccp/ccp-pci.c
@@ -4,6 +4,7 @@
* Copyright (C) 2013,2016 Advanced Micro Devices, Inc.
*
* Author: Tom Lendacky <thomas.lendacky@amd.com>
+ * Author: Gary R Hook <gary.hook@amd.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
@@ -25,9 +26,6 @@
#include "ccp-dev.h"
-#define IO_BAR 2
-#define IO_OFFSET 0x20000
-
#define MSIX_VECTORS 2
struct ccp_msix {
@@ -143,10 +141,11 @@ static void ccp_free_irqs(struct ccp_device *ccp)
free_irq(ccp_pci->msix[ccp_pci->msix_count].vector,
dev);
pci_disable_msix(pdev);
- } else {
+ } else if (ccp->irq) {
free_irq(ccp->irq, dev);
pci_disable_msi(pdev);
}
+ ccp->irq = 0;
}
static int ccp_find_mmio_area(struct ccp_device *ccp)
@@ -156,10 +155,11 @@ static int ccp_find_mmio_area(struct ccp_device *ccp)
resource_size_t io_len;
unsigned long io_flags;
- io_flags = pci_resource_flags(pdev, IO_BAR);
- io_len = pci_resource_len(pdev, IO_BAR);
- if ((io_flags & IORESOURCE_MEM) && (io_len >= (IO_OFFSET + 0x800)))
- return IO_BAR;
+ io_flags = pci_resource_flags(pdev, ccp->vdata->bar);
+ io_len = pci_resource_len(pdev, ccp->vdata->bar);
+ if ((io_flags & IORESOURCE_MEM) &&
+ (io_len >= (ccp->vdata->offset + 0x800)))
+ return ccp->vdata->bar;
return -EIO;
}
@@ -216,7 +216,7 @@ static int ccp_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id)
dev_err(dev, "pci_iomap failed\n");
goto e_device;
}
- ccp->io_regs = ccp->io_map + IO_OFFSET;
+ ccp->io_regs = ccp->io_map + ccp->vdata->offset;
ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(48));
if (ret) {
@@ -230,6 +230,9 @@ static int ccp_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id)
dev_set_drvdata(dev, ccp);
+ if (ccp->vdata->setup)
+ ccp->vdata->setup(ccp);
+
ret = ccp->vdata->perform->init(ccp);
if (ret)
goto e_iomap;
@@ -322,6 +325,8 @@ static int ccp_pci_resume(struct pci_dev *pdev)
static const struct pci_device_id ccp_pci_table[] = {
{ PCI_VDEVICE(AMD, 0x1537), (kernel_ulong_t)&ccpv3 },
+ { PCI_VDEVICE(AMD, 0x1456), (kernel_ulong_t)&ccpv5a },
+ { PCI_VDEVICE(AMD, 0x1468), (kernel_ulong_t)&ccpv5b },
/* Last entry must be zero */
{ 0, }
};