aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/include/linux/mm.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/linux/mm.h')
-rw-r--r--include/linux/mm.h3150
1 files changed, 2090 insertions, 1060 deletions
diff --git a/include/linux/mm.h b/include/linux/mm.h
index ef360fe70aaf..0ef2ba0c667a 100644
--- a/include/linux/mm.h
+++ b/include/linux/mm.h
@@ -3,17 +3,16 @@
#define _LINUX_MM_H
#include <linux/errno.h>
-
-#ifdef __KERNEL__
-
#include <linux/mmdebug.h>
#include <linux/gfp.h>
+#include <linux/pgalloc_tag.h>
#include <linux/bug.h>
#include <linux/list.h>
#include <linux/mmzone.h>
#include <linux/rbtree.h>
#include <linux/atomic.h>
#include <linux/debug_locks.h>
+#include <linux/compiler.h>
#include <linux/mm_types.h>
#include <linux/mmap_lock.h>
#include <linux/range.h>
@@ -26,36 +25,27 @@
#include <linux/err.h>
#include <linux/page-flags.h>
#include <linux/page_ref.h>
-#include <linux/memremap.h>
#include <linux/overflow.h>
#include <linux/sizes.h>
#include <linux/sched.h>
#include <linux/pgtable.h>
+#include <linux/kasan.h>
+#include <linux/memremap.h>
+#include <linux/slab.h>
+#include <linux/cacheinfo.h>
+#include <linux/rcuwait.h>
struct mempolicy;
struct anon_vma;
struct anon_vma_chain;
-struct file_ra_state;
struct user_struct;
-struct writeback_control;
-struct bdi_writeback;
struct pt_regs;
+struct folio_batch;
-extern int sysctl_page_lock_unfairness;
-
+void arch_mm_preinit(void);
+void mm_core_init(void);
void init_mm_internals(void);
-#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
-extern unsigned long max_mapnr;
-
-static inline void set_max_mapnr(unsigned long limit)
-{
- max_mapnr = limit;
-}
-#else
-static inline void set_max_mapnr(unsigned long limit) { }
-#endif
-
extern atomic_long_t _totalram_pages;
static inline unsigned long totalram_pages(void)
{
@@ -78,7 +68,6 @@ static inline void totalram_pages_add(long count)
}
extern void * high_memory;
-extern int page_cluster;
#ifdef CONFIG_SYSCTL
extern int sysctl_legacy_va_layout;
@@ -88,7 +77,7 @@ extern int sysctl_legacy_va_layout;
#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
extern const int mmap_rnd_bits_min;
-extern const int mmap_rnd_bits_max;
+extern int mmap_rnd_bits_max __ro_after_init;
extern int mmap_rnd_bits __read_mostly;
#endif
#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
@@ -97,20 +86,17 @@ extern const int mmap_rnd_compat_bits_max;
extern int mmap_rnd_compat_bits __read_mostly;
#endif
+#ifndef DIRECT_MAP_PHYSMEM_END
+# ifdef MAX_PHYSMEM_BITS
+# define DIRECT_MAP_PHYSMEM_END ((1ULL << MAX_PHYSMEM_BITS) - 1)
+# else
+# define DIRECT_MAP_PHYSMEM_END (((phys_addr_t)-1)&~(1ULL<<63))
+# endif
+#endif
+
#include <asm/page.h>
#include <asm/processor.h>
-/*
- * Architectures that support memory tagging (assigning tags to memory regions,
- * embedding these tags into addresses that point to these memory regions, and
- * checking that the memory and the pointer tags match on memory accesses)
- * redefine this macro to strip tags from pointers.
- * It's defined as noop for arcitectures that don't support memory tagging.
- */
-#ifndef untagged_addr
-#define untagged_addr(addr) (addr)
-#endif
-
#ifndef __pa_symbol
#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
#endif
@@ -141,10 +127,10 @@ extern int mmap_rnd_compat_bits __read_mostly;
* define their own version of this macro in <asm/pgtable.h>
*/
#if BITS_PER_LONG == 64
-/* This function must be updated when the size of struct page grows above 80
+/* This function must be updated when the size of struct page grows above 96
* or reduces below 56. The idea that compiler optimizes out switch()
* statement, and only leaves move/store instructions. Also the compiler can
- * combine write statments if they are both assignments and can be reordered,
+ * combine write statements if they are both assignments and can be reordered,
* this can result in several of the writes here being dropped.
*/
#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
@@ -152,12 +138,18 @@ static inline void __mm_zero_struct_page(struct page *page)
{
unsigned long *_pp = (void *)page;
- /* Check that struct page is either 56, 64, 72, or 80 bytes */
+ /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
BUILD_BUG_ON(sizeof(struct page) & 7);
BUILD_BUG_ON(sizeof(struct page) < 56);
- BUILD_BUG_ON(sizeof(struct page) > 80);
+ BUILD_BUG_ON(sizeof(struct page) > 96);
switch (sizeof(struct page)) {
+ case 96:
+ _pp[11] = 0;
+ fallthrough;
+ case 88:
+ _pp[10] = 0;
+ fallthrough;
case 80:
_pp[9] = 0;
fallthrough;
@@ -205,26 +197,30 @@ extern int sysctl_max_map_count;
extern unsigned long sysctl_user_reserve_kbytes;
extern unsigned long sysctl_admin_reserve_kbytes;
-extern int sysctl_overcommit_memory;
-extern int sysctl_overcommit_ratio;
-extern unsigned long sysctl_overcommit_kbytes;
-
-int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
- loff_t *);
-int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
- loff_t *);
-int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
- loff_t *);
-
+#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
+#define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio))
+#else
+#define nth_page(page,n) ((page) + (n))
+#define folio_page_idx(folio, p) ((p) - &(folio)->page)
+#endif
/* to align the pointer to the (next) page boundary */
#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
+/* to align the pointer to the (prev) page boundary */
+#define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
+
/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
-#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
+static inline struct folio *lru_to_folio(struct list_head *head)
+{
+ return list_entry((head)->prev, struct folio, lru);
+}
+
+void setup_initial_init_mm(void *start_code, void *end_code,
+ void *end_data, void *brk);
/*
* Linux kernel virtual memory manager primitives.
@@ -264,9 +260,13 @@ extern unsigned int kobjsize(const void *objp);
#define VM_MAYSHARE 0x00000080
#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
+#ifdef CONFIG_MMU
#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
+#else /* CONFIG_MMU */
+#define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
+#define VM_UFFD_MISSING 0
+#endif /* CONFIG_MMU */
#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
-#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
#define VM_LOCKED 0x00002000
@@ -304,34 +304,63 @@ extern unsigned int kobjsize(const void *objp);
#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
+#define VM_HIGH_ARCH_BIT_5 37 /* bit only usable on 64-bit architectures */
+#define VM_HIGH_ARCH_BIT_6 38 /* bit only usable on 64-bit architectures */
#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
+#define VM_HIGH_ARCH_5 BIT(VM_HIGH_ARCH_BIT_5)
+#define VM_HIGH_ARCH_6 BIT(VM_HIGH_ARCH_BIT_6)
#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
#ifdef CONFIG_ARCH_HAS_PKEYS
-# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
-# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
-# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
-# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
-# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
-#ifdef CONFIG_PPC
+# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
+# define VM_PKEY_BIT0 VM_HIGH_ARCH_0
+# define VM_PKEY_BIT1 VM_HIGH_ARCH_1
+# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
+#if CONFIG_ARCH_PKEY_BITS > 3
+# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
+#else
+# define VM_PKEY_BIT3 0
+#endif
+#if CONFIG_ARCH_PKEY_BITS > 4
# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
#else
# define VM_PKEY_BIT4 0
#endif
#endif /* CONFIG_ARCH_HAS_PKEYS */
-#if defined(CONFIG_X86)
-# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
-#elif defined(CONFIG_PPC)
+#ifdef CONFIG_X86_USER_SHADOW_STACK
+/*
+ * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of
+ * support core mm.
+ *
+ * These VMAs will get a single end guard page. This helps userspace protect
+ * itself from attacks. A single page is enough for current shadow stack archs
+ * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c
+ * for more details on the guard size.
+ */
+# define VM_SHADOW_STACK VM_HIGH_ARCH_5
+#endif
+
+#if defined(CONFIG_ARM64_GCS)
+/*
+ * arm64's Guarded Control Stack implements similar functionality and
+ * has similar constraints to shadow stacks.
+ */
+# define VM_SHADOW_STACK VM_HIGH_ARCH_6
+#endif
+
+#ifndef VM_SHADOW_STACK
+# define VM_SHADOW_STACK VM_NONE
+#endif
+
+#if defined(CONFIG_PPC64)
# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
#elif defined(CONFIG_PARISC)
# define VM_GROWSUP VM_ARCH_1
-#elif defined(CONFIG_IA64)
-# define VM_GROWSUP VM_ARCH_1
#elif defined(CONFIG_SPARC64)
# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
# define VM_ARCH_CLEAR VM_SPARC_ADI
@@ -343,8 +372,8 @@ extern unsigned int kobjsize(const void *objp);
#endif
#if defined(CONFIG_ARM64_MTE)
-# define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */
-# define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */
+# define VM_MTE VM_HIGH_ARCH_4 /* Use Tagged memory for access control */
+# define VM_MTE_ALLOWED VM_HIGH_ARCH_5 /* Tagged memory permitted */
#else
# define VM_MTE VM_NONE
# define VM_MTE_ALLOWED VM_NONE
@@ -354,8 +383,43 @@ extern unsigned int kobjsize(const void *objp);
# define VM_GROWSUP VM_NONE
#endif
+#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
+# define VM_UFFD_MINOR_BIT 41
+# define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */
+#else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
+# define VM_UFFD_MINOR VM_NONE
+#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
+
+/*
+ * This flag is used to connect VFIO to arch specific KVM code. It
+ * indicates that the memory under this VMA is safe for use with any
+ * non-cachable memory type inside KVM. Some VFIO devices, on some
+ * platforms, are thought to be unsafe and can cause machine crashes
+ * if KVM does not lock down the memory type.
+ */
+#ifdef CONFIG_64BIT
+#define VM_ALLOW_ANY_UNCACHED_BIT 39
+#define VM_ALLOW_ANY_UNCACHED BIT(VM_ALLOW_ANY_UNCACHED_BIT)
+#else
+#define VM_ALLOW_ANY_UNCACHED VM_NONE
+#endif
+
+#ifdef CONFIG_64BIT
+#define VM_DROPPABLE_BIT 40
+#define VM_DROPPABLE BIT(VM_DROPPABLE_BIT)
+#elif defined(CONFIG_PPC32)
+#define VM_DROPPABLE VM_ARCH_1
+#else
+#define VM_DROPPABLE VM_NONE
+#endif
+
+#ifdef CONFIG_64BIT
+/* VM is sealed, in vm_flags */
+#define VM_SEALED _BITUL(63)
+#endif
+
/* Bits set in the VMA until the stack is in its final location */
-#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
+#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY)
#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
@@ -375,10 +439,14 @@ extern unsigned int kobjsize(const void *objp);
#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
#endif
+#define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK)
+
#ifdef CONFIG_STACK_GROWSUP
#define VM_STACK VM_GROWSUP
+#define VM_STACK_EARLY VM_GROWSDOWN
#else
#define VM_STACK VM_GROWSDOWN
+#define VM_STACK_EARLY 0
#endif
#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
@@ -398,8 +466,8 @@ extern unsigned int kobjsize(const void *objp);
/* This mask defines which mm->def_flags a process can inherit its parent */
#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
-/* This mask is used to clear all the VMA flags used by mlock */
-#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
+/* This mask represents all the VMA flag bits used by mlock */
+#define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT)
/* Arch-specific flags to clear when updating VM flags on protection change */
#ifndef VM_ARCH_CLEAR
@@ -411,51 +479,6 @@ extern unsigned int kobjsize(const void *objp);
* mapping from the currently active vm_flags protection bits (the
* low four bits) to a page protection mask..
*/
-extern pgprot_t protection_map[16];
-
-/**
- * Fault flag definitions.
- *
- * @FAULT_FLAG_WRITE: Fault was a write fault.
- * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
- * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
- * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
- * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
- * @FAULT_FLAG_TRIED: The fault has been tried once.
- * @FAULT_FLAG_USER: The fault originated in userspace.
- * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
- * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
- * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
- *
- * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
- * whether we would allow page faults to retry by specifying these two
- * fault flags correctly. Currently there can be three legal combinations:
- *
- * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and
- * this is the first try
- *
- * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and
- * we've already tried at least once
- *
- * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
- *
- * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
- * be used. Note that page faults can be allowed to retry for multiple times,
- * in which case we'll have an initial fault with flags (a) then later on
- * continuous faults with flags (b). We should always try to detect pending
- * signals before a retry to make sure the continuous page faults can still be
- * interrupted if necessary.
- */
-#define FAULT_FLAG_WRITE 0x01
-#define FAULT_FLAG_MKWRITE 0x02
-#define FAULT_FLAG_ALLOW_RETRY 0x04
-#define FAULT_FLAG_RETRY_NOWAIT 0x08
-#define FAULT_FLAG_KILLABLE 0x10
-#define FAULT_FLAG_TRIED 0x20
-#define FAULT_FLAG_USER 0x40
-#define FAULT_FLAG_REMOTE 0x80
-#define FAULT_FLAG_INSTRUCTION 0x100
-#define FAULT_FLAG_INTERRUPTIBLE 0x200
/*
* The default fault flags that should be used by most of the
@@ -467,6 +490,7 @@ extern pgprot_t protection_map[16];
/**
* fault_flag_allow_retry_first - check ALLOW_RETRY the first time
+ * @flags: Fault flags.
*
* This is mostly used for places where we want to try to avoid taking
* the mmap_lock for too long a time when waiting for another condition
@@ -477,7 +501,7 @@ extern pgprot_t protection_map[16];
* Return: true if the page fault allows retry and this is the first
* attempt of the fault handling; false otherwise.
*/
-static inline bool fault_flag_allow_retry_first(unsigned int flags)
+static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
{
return (flags & FAULT_FLAG_ALLOW_RETRY) &&
(!(flags & FAULT_FLAG_TRIED));
@@ -493,7 +517,8 @@ static inline bool fault_flag_allow_retry_first(unsigned int flags)
{ FAULT_FLAG_USER, "USER" }, \
{ FAULT_FLAG_REMOTE, "REMOTE" }, \
{ FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
- { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }
+ { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \
+ { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" }
/*
* vm_fault is filled by the pagefault handler and passed to the vma's
@@ -506,17 +531,26 @@ static inline bool fault_flag_allow_retry_first(unsigned int flags)
* pgoff should be used in favour of virtual_address, if possible.
*/
struct vm_fault {
- struct vm_area_struct *vma; /* Target VMA */
- unsigned int flags; /* FAULT_FLAG_xxx flags */
- gfp_t gfp_mask; /* gfp mask to be used for allocations */
- pgoff_t pgoff; /* Logical page offset based on vma */
- unsigned long address; /* Faulting virtual address */
+ const struct {
+ struct vm_area_struct *vma; /* Target VMA */
+ gfp_t gfp_mask; /* gfp mask to be used for allocations */
+ pgoff_t pgoff; /* Logical page offset based on vma */
+ unsigned long address; /* Faulting virtual address - masked */
+ unsigned long real_address; /* Faulting virtual address - unmasked */
+ };
+ enum fault_flag flags; /* FAULT_FLAG_xxx flags
+ * XXX: should really be 'const' */
pmd_t *pmd; /* Pointer to pmd entry matching
* the 'address' */
pud_t *pud; /* Pointer to pud entry matching
* the 'address'
*/
- pte_t orig_pte; /* Value of PTE at the time of fault */
+ union {
+ pte_t orig_pte; /* Value of PTE at the time of fault */
+ pmd_t orig_pmd; /* Value of PMD at the time of fault,
+ * used by PMD fault only.
+ */
+ };
struct page *cow_page; /* Page handler may use for COW fault */
struct page *page; /* ->fault handlers should return a
@@ -534,21 +568,14 @@ struct vm_fault {
* is not NULL, otherwise pmd.
*/
pgtable_t prealloc_pte; /* Pre-allocated pte page table.
- * vm_ops->map_pages() calls
- * alloc_set_pte() from atomic context.
+ * vm_ops->map_pages() sets up a page
+ * table from atomic context.
* do_fault_around() pre-allocates
* page table to avoid allocation from
* atomic context.
*/
};
-/* page entry size for vm->huge_fault() */
-enum page_entry_size {
- PE_SIZE_PTE = 0,
- PE_SIZE_PMD,
- PE_SIZE_PUD,
-};
-
/*
* These are the virtual MM functions - opening of an area, closing and
* unmapping it (needed to keep files on disk up-to-date etc), pointer
@@ -556,13 +583,24 @@ enum page_entry_size {
*/
struct vm_operations_struct {
void (*open)(struct vm_area_struct * area);
+ /**
+ * @close: Called when the VMA is being removed from the MM.
+ * Context: User context. May sleep. Caller holds mmap_lock.
+ */
void (*close)(struct vm_area_struct * area);
- int (*split)(struct vm_area_struct * area, unsigned long addr);
- int (*mremap)(struct vm_area_struct * area);
+ /* Called any time before splitting to check if it's allowed */
+ int (*may_split)(struct vm_area_struct *area, unsigned long addr);
+ int (*mremap)(struct vm_area_struct *area);
+ /*
+ * Called by mprotect() to make driver-specific permission
+ * checks before mprotect() is finalised. The VMA must not
+ * be modified. Returns 0 if mprotect() can proceed.
+ */
+ int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
+ unsigned long end, unsigned long newflags);
vm_fault_t (*fault)(struct vm_fault *vmf);
- vm_fault_t (*huge_fault)(struct vm_fault *vmf,
- enum page_entry_size pe_size);
- void (*map_pages)(struct vm_fault *vmf,
+ vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order);
+ vm_fault_t (*map_pages)(struct vm_fault *vmf,
pgoff_t start_pgoff, pgoff_t end_pgoff);
unsigned long (*pagesize)(struct vm_area_struct * area);
@@ -574,7 +612,8 @@ struct vm_operations_struct {
vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
/* called by access_process_vm when get_user_pages() fails, typically
- * for use by special VMAs that can switch between memory and hardware
+ * for use by special VMAs. See also generic_access_phys() for a generic
+ * implementation useful for any iomem mapping.
*/
int (*access)(struct vm_area_struct *vma, unsigned long addr,
void *buf, int len, int write);
@@ -605,7 +644,7 @@ struct vm_operations_struct {
* policy.
*/
struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
- unsigned long addr);
+ unsigned long addr, pgoff_t *ilx);
#endif
/*
* Called by vm_normal_page() for special PTEs to find the
@@ -616,14 +655,122 @@ struct vm_operations_struct {
unsigned long addr);
};
-static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
+#ifdef CONFIG_NUMA_BALANCING
+static inline void vma_numab_state_init(struct vm_area_struct *vma)
+{
+ vma->numab_state = NULL;
+}
+static inline void vma_numab_state_free(struct vm_area_struct *vma)
{
- static const struct vm_operations_struct dummy_vm_ops = {};
+ kfree(vma->numab_state);
+}
+#else
+static inline void vma_numab_state_init(struct vm_area_struct *vma) {}
+static inline void vma_numab_state_free(struct vm_area_struct *vma) {}
+#endif /* CONFIG_NUMA_BALANCING */
+
+/*
+ * These must be here rather than mmap_lock.h as dependent on vm_fault type,
+ * declared in this header.
+ */
+#ifdef CONFIG_PER_VMA_LOCK
+static inline void release_fault_lock(struct vm_fault *vmf)
+{
+ if (vmf->flags & FAULT_FLAG_VMA_LOCK)
+ vma_end_read(vmf->vma);
+ else
+ mmap_read_unlock(vmf->vma->vm_mm);
+}
+
+static inline void assert_fault_locked(struct vm_fault *vmf)
+{
+ if (vmf->flags & FAULT_FLAG_VMA_LOCK)
+ vma_assert_locked(vmf->vma);
+ else
+ mmap_assert_locked(vmf->vma->vm_mm);
+}
+#else
+static inline void release_fault_lock(struct vm_fault *vmf)
+{
+ mmap_read_unlock(vmf->vma->vm_mm);
+}
+
+static inline void assert_fault_locked(struct vm_fault *vmf)
+{
+ mmap_assert_locked(vmf->vma->vm_mm);
+}
+#endif /* CONFIG_PER_VMA_LOCK */
+extern const struct vm_operations_struct vma_dummy_vm_ops;
+
+static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
+{
memset(vma, 0, sizeof(*vma));
vma->vm_mm = mm;
- vma->vm_ops = &dummy_vm_ops;
+ vma->vm_ops = &vma_dummy_vm_ops;
INIT_LIST_HEAD(&vma->anon_vma_chain);
+ vma_lock_init(vma, false);
+}
+
+/* Use when VMA is not part of the VMA tree and needs no locking */
+static inline void vm_flags_init(struct vm_area_struct *vma,
+ vm_flags_t flags)
+{
+ ACCESS_PRIVATE(vma, __vm_flags) = flags;
+}
+
+/*
+ * Use when VMA is part of the VMA tree and modifications need coordination
+ * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and
+ * it should be locked explicitly beforehand.
+ */
+static inline void vm_flags_reset(struct vm_area_struct *vma,
+ vm_flags_t flags)
+{
+ vma_assert_write_locked(vma);
+ vm_flags_init(vma, flags);
+}
+
+static inline void vm_flags_reset_once(struct vm_area_struct *vma,
+ vm_flags_t flags)
+{
+ vma_assert_write_locked(vma);
+ WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags);
+}
+
+static inline void vm_flags_set(struct vm_area_struct *vma,
+ vm_flags_t flags)
+{
+ vma_start_write(vma);
+ ACCESS_PRIVATE(vma, __vm_flags) |= flags;
+}
+
+static inline void vm_flags_clear(struct vm_area_struct *vma,
+ vm_flags_t flags)
+{
+ vma_start_write(vma);
+ ACCESS_PRIVATE(vma, __vm_flags) &= ~flags;
+}
+
+/*
+ * Use only if VMA is not part of the VMA tree or has no other users and
+ * therefore needs no locking.
+ */
+static inline void __vm_flags_mod(struct vm_area_struct *vma,
+ vm_flags_t set, vm_flags_t clear)
+{
+ vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
+}
+
+/*
+ * Use only when the order of set/clear operations is unimportant, otherwise
+ * use vm_flags_{set|clear} explicitly.
+ */
+static inline void vm_flags_mod(struct vm_area_struct *vma,
+ vm_flags_t set, vm_flags_t clear)
+{
+ vma_start_write(vma);
+ __vm_flags_mod(vma, set, clear);
}
static inline void vma_set_anonymous(struct vm_area_struct *vma)
@@ -636,6 +783,31 @@ static inline bool vma_is_anonymous(struct vm_area_struct *vma)
return !vma->vm_ops;
}
+/*
+ * Indicate if the VMA is a heap for the given task; for
+ * /proc/PID/maps that is the heap of the main task.
+ */
+static inline bool vma_is_initial_heap(const struct vm_area_struct *vma)
+{
+ return vma->vm_start < vma->vm_mm->brk &&
+ vma->vm_end > vma->vm_mm->start_brk;
+}
+
+/*
+ * Indicate if the VMA is a stack for the given task; for
+ * /proc/PID/maps that is the stack of the main task.
+ */
+static inline bool vma_is_initial_stack(const struct vm_area_struct *vma)
+{
+ /*
+ * We make no effort to guess what a given thread considers to be
+ * its "stack". It's not even well-defined for programs written
+ * languages like Go.
+ */
+ return vma->vm_start <= vma->vm_mm->start_stack &&
+ vma->vm_end >= vma->vm_mm->start_stack;
+}
+
static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
{
int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
@@ -666,14 +838,101 @@ static inline bool vma_is_accessible(struct vm_area_struct *vma)
return vma->vm_flags & VM_ACCESS_FLAGS;
}
+static inline bool is_shared_maywrite(vm_flags_t vm_flags)
+{
+ return (vm_flags & (VM_SHARED | VM_MAYWRITE)) ==
+ (VM_SHARED | VM_MAYWRITE);
+}
+
+static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma)
+{
+ return is_shared_maywrite(vma->vm_flags);
+}
+
+static inline
+struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
+{
+ return mas_find(&vmi->mas, max - 1);
+}
+
+static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
+{
+ /*
+ * Uses mas_find() to get the first VMA when the iterator starts.
+ * Calling mas_next() could skip the first entry.
+ */
+ return mas_find(&vmi->mas, ULONG_MAX);
+}
+
+static inline
+struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi)
+{
+ return mas_next_range(&vmi->mas, ULONG_MAX);
+}
+
+
+static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
+{
+ return mas_prev(&vmi->mas, 0);
+}
+
+static inline int vma_iter_clear_gfp(struct vma_iterator *vmi,
+ unsigned long start, unsigned long end, gfp_t gfp)
+{
+ __mas_set_range(&vmi->mas, start, end - 1);
+ mas_store_gfp(&vmi->mas, NULL, gfp);
+ if (unlikely(mas_is_err(&vmi->mas)))
+ return -ENOMEM;
+
+ return 0;
+}
+
+/* Free any unused preallocations */
+static inline void vma_iter_free(struct vma_iterator *vmi)
+{
+ mas_destroy(&vmi->mas);
+}
+
+static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
+ struct vm_area_struct *vma)
+{
+ vmi->mas.index = vma->vm_start;
+ vmi->mas.last = vma->vm_end - 1;
+ mas_store(&vmi->mas, vma);
+ if (unlikely(mas_is_err(&vmi->mas)))
+ return -ENOMEM;
+
+ vma_mark_attached(vma);
+ return 0;
+}
+
+static inline void vma_iter_invalidate(struct vma_iterator *vmi)
+{
+ mas_pause(&vmi->mas);
+}
+
+static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
+{
+ mas_set(&vmi->mas, addr);
+}
+
+#define for_each_vma(__vmi, __vma) \
+ while (((__vma) = vma_next(&(__vmi))) != NULL)
+
+/* The MM code likes to work with exclusive end addresses */
+#define for_each_vma_range(__vmi, __vma, __end) \
+ while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
+
#ifdef CONFIG_SHMEM
/*
* The vma_is_shmem is not inline because it is used only by slow
* paths in userfault.
*/
bool vma_is_shmem(struct vm_area_struct *vma);
+bool vma_is_anon_shmem(struct vm_area_struct *vma);
#else
static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
+static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
#endif
int vma_is_stack_for_current(struct vm_area_struct *vma);
@@ -684,6 +943,74 @@ int vma_is_stack_for_current(struct vm_area_struct *vma);
struct mmu_gather;
struct inode;
+extern void prep_compound_page(struct page *page, unsigned int order);
+
+static inline unsigned int folio_large_order(const struct folio *folio)
+{
+ return folio->_flags_1 & 0xff;
+}
+
+#ifdef NR_PAGES_IN_LARGE_FOLIO
+static inline long folio_large_nr_pages(const struct folio *folio)
+{
+ return folio->_nr_pages;
+}
+#else
+static inline long folio_large_nr_pages(const struct folio *folio)
+{
+ return 1L << folio_large_order(folio);
+}
+#endif
+
+/*
+ * compound_order() can be called without holding a reference, which means
+ * that niceties like page_folio() don't work. These callers should be
+ * prepared to handle wild return values. For example, PG_head may be
+ * set before the order is initialised, or this may be a tail page.
+ * See compaction.c for some good examples.
+ */
+static inline unsigned int compound_order(struct page *page)
+{
+ struct folio *folio = (struct folio *)page;
+
+ if (!test_bit(PG_head, &folio->flags))
+ return 0;
+ return folio_large_order(folio);
+}
+
+/**
+ * folio_order - The allocation order of a folio.
+ * @folio: The folio.
+ *
+ * A folio is composed of 2^order pages. See get_order() for the definition
+ * of order.
+ *
+ * Return: The order of the folio.
+ */
+static inline unsigned int folio_order(const struct folio *folio)
+{
+ if (!folio_test_large(folio))
+ return 0;
+ return folio_large_order(folio);
+}
+
+/**
+ * folio_reset_order - Reset the folio order and derived _nr_pages
+ * @folio: The folio.
+ *
+ * Reset the order and derived _nr_pages to 0. Must only be used in the
+ * process of splitting large folios.
+ */
+static inline void folio_reset_order(struct folio *folio)
+{
+ if (WARN_ON_ONCE(!folio_test_large(folio)))
+ return;
+ folio->_flags_1 &= ~0xffUL;
+#ifdef NR_PAGES_IN_LARGE_FOLIO
+ folio->_nr_pages = 0;
+#endif
+}
+
#include <linux/huge_mm.h>
/*
@@ -708,17 +1035,29 @@ static inline int put_page_testzero(struct page *page)
return page_ref_dec_and_test(page);
}
+static inline int folio_put_testzero(struct folio *folio)
+{
+ return put_page_testzero(&folio->page);
+}
+
/*
* Try to grab a ref unless the page has a refcount of zero, return false if
* that is the case.
* This can be called when MMU is off so it must not access
* any of the virtual mappings.
*/
-static inline int get_page_unless_zero(struct page *page)
+static inline bool get_page_unless_zero(struct page *page)
{
return page_ref_add_unless(page, 1, 0);
}
+static inline struct folio *folio_get_nontail_page(struct page *page)
+{
+ if (unlikely(!get_page_unless_zero(page)))
+ return NULL;
+ return (struct folio *)page;
+}
+
extern int page_is_ram(unsigned long pfn);
enum {
@@ -740,11 +1079,6 @@ unsigned long vmalloc_to_pfn(const void *addr);
* On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
* is no special casing required.
*/
-
-#ifndef is_ioremap_addr
-#define is_ioremap_addr(x) is_vmalloc_addr(x)
-#endif
-
#ifdef CONFIG_MMU
extern bool is_vmalloc_addr(const void *x);
extern int is_vmalloc_or_module_addr(const void *x);
@@ -759,99 +1093,78 @@ static inline int is_vmalloc_or_module_addr(const void *x)
}
#endif
-extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
-static inline void *kvmalloc(size_t size, gfp_t flags)
-{
- return kvmalloc_node(size, flags, NUMA_NO_NODE);
-}
-static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
-{
- return kvmalloc_node(size, flags | __GFP_ZERO, node);
-}
-static inline void *kvzalloc(size_t size, gfp_t flags)
-{
- return kvmalloc(size, flags | __GFP_ZERO);
-}
-
-static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
-{
- size_t bytes;
-
- if (unlikely(check_mul_overflow(n, size, &bytes)))
- return NULL;
-
- return kvmalloc(bytes, flags);
-}
-
-static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
+/*
+ * How many times the entire folio is mapped as a single unit (eg by a
+ * PMD or PUD entry). This is probably not what you want, except for
+ * debugging purposes or implementation of other core folio_*() primitives.
+ */
+static inline int folio_entire_mapcount(const struct folio *folio)
{
- return kvmalloc_array(n, size, flags | __GFP_ZERO);
+ VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
+ if (!IS_ENABLED(CONFIG_64BIT) && unlikely(folio_large_order(folio) == 1))
+ return 0;
+ return atomic_read(&folio->_entire_mapcount) + 1;
}
-extern void kvfree(const void *addr);
-extern void kvfree_sensitive(const void *addr, size_t len);
-
-static inline int head_compound_mapcount(struct page *head)
+static inline int folio_large_mapcount(const struct folio *folio)
{
- return atomic_read(compound_mapcount_ptr(head)) + 1;
+ VM_WARN_ON_FOLIO(!folio_test_large(folio), folio);
+ return atomic_read(&folio->_large_mapcount) + 1;
}
-/*
- * Mapcount of compound page as a whole, does not include mapped sub-pages.
+/**
+ * folio_mapcount() - Number of mappings of this folio.
+ * @folio: The folio.
+ *
+ * The folio mapcount corresponds to the number of present user page table
+ * entries that reference any part of a folio. Each such present user page
+ * table entry must be paired with exactly on folio reference.
*
- * Must be called only for compound pages or any their tail sub-pages.
+ * For ordindary folios, each user page table entry (PTE/PMD/PUD/...) counts
+ * exactly once.
+ *
+ * For hugetlb folios, each abstracted "hugetlb" user page table entry that
+ * references the entire folio counts exactly once, even when such special
+ * page table entries are comprised of multiple ordinary page table entries.
+ *
+ * Will report 0 for pages which cannot be mapped into userspace, such as
+ * slab, page tables and similar.
+ *
+ * Return: The number of times this folio is mapped.
*/
-static inline int compound_mapcount(struct page *page)
+static inline int folio_mapcount(const struct folio *folio)
{
- VM_BUG_ON_PAGE(!PageCompound(page), page);
- page = compound_head(page);
- return head_compound_mapcount(page);
-}
+ int mapcount;
-/*
- * The atomic page->_mapcount, starts from -1: so that transitions
- * both from it and to it can be tracked, using atomic_inc_and_test
- * and atomic_add_negative(-1).
- */
-static inline void page_mapcount_reset(struct page *page)
-{
- atomic_set(&(page)->_mapcount, -1);
+ if (likely(!folio_test_large(folio))) {
+ mapcount = atomic_read(&folio->_mapcount) + 1;
+ if (page_mapcount_is_type(mapcount))
+ mapcount = 0;
+ return mapcount;
+ }
+ return folio_large_mapcount(folio);
}
-int __page_mapcount(struct page *page);
-
-/*
- * Mapcount of 0-order page; when compound sub-page, includes
- * compound_mapcount().
+/**
+ * folio_mapped - Is this folio mapped into userspace?
+ * @folio: The folio.
*
- * Result is undefined for pages which cannot be mapped into userspace.
- * For example SLAB or special types of pages. See function page_has_type().
- * They use this place in struct page differently.
+ * Return: True if any page in this folio is referenced by user page tables.
*/
-static inline int page_mapcount(struct page *page)
+static inline bool folio_mapped(const struct folio *folio)
{
- if (unlikely(PageCompound(page)))
- return __page_mapcount(page);
- return atomic_read(&page->_mapcount) + 1;
+ return folio_mapcount(folio) >= 1;
}
-#ifdef CONFIG_TRANSPARENT_HUGEPAGE
-int total_mapcount(struct page *page);
-int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
-#else
-static inline int total_mapcount(struct page *page)
-{
- return page_mapcount(page);
-}
-static inline int page_trans_huge_mapcount(struct page *page,
- int *total_mapcount)
+/*
+ * Return true if this page is mapped into pagetables.
+ * For compound page it returns true if any sub-page of compound page is mapped,
+ * even if this particular sub-page is not itself mapped by any PTE or PMD.
+ */
+static inline bool page_mapped(const struct page *page)
{
- int mapcount = page_mapcount(page);
- if (total_mapcount)
- *total_mapcount = mapcount;
- return mapcount;
+ return folio_mapped(page_folio(page));
}
-#endif
static inline struct page *virt_to_head_page(const void *x)
{
@@ -860,89 +1173,20 @@ static inline struct page *virt_to_head_page(const void *x)
return compound_head(page);
}
-void __put_page(struct page *page);
-
-void put_pages_list(struct list_head *pages);
-
-void split_page(struct page *page, unsigned int order);
-
-/*
- * Compound pages have a destructor function. Provide a
- * prototype for that function and accessor functions.
- * These are _only_ valid on the head of a compound page.
- */
-typedef void compound_page_dtor(struct page *);
-
-/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
-enum compound_dtor_id {
- NULL_COMPOUND_DTOR,
- COMPOUND_PAGE_DTOR,
-#ifdef CONFIG_HUGETLB_PAGE
- HUGETLB_PAGE_DTOR,
-#endif
-#ifdef CONFIG_TRANSPARENT_HUGEPAGE
- TRANSHUGE_PAGE_DTOR,
-#endif
- NR_COMPOUND_DTORS,
-};
-extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
-
-static inline void set_compound_page_dtor(struct page *page,
- enum compound_dtor_id compound_dtor)
-{
- VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
- page[1].compound_dtor = compound_dtor;
-}
-
-static inline void destroy_compound_page(struct page *page)
+static inline struct folio *virt_to_folio(const void *x)
{
- VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
- compound_page_dtors[page[1].compound_dtor](page);
-}
-
-static inline unsigned int compound_order(struct page *page)
-{
- if (!PageHead(page))
- return 0;
- return page[1].compound_order;
-}
-
-static inline bool hpage_pincount_available(struct page *page)
-{
- /*
- * Can the page->hpage_pinned_refcount field be used? That field is in
- * the 3rd page of the compound page, so the smallest (2-page) compound
- * pages cannot support it.
- */
- page = compound_head(page);
- return PageCompound(page) && compound_order(page) > 1;
-}
+ struct page *page = virt_to_page(x);
-static inline int head_compound_pincount(struct page *head)
-{
- return atomic_read(compound_pincount_ptr(head));
+ return page_folio(page);
}
-static inline int compound_pincount(struct page *page)
-{
- VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
- page = compound_head(page);
- return head_compound_pincount(page);
-}
+void __folio_put(struct folio *folio);
-static inline void set_compound_order(struct page *page, unsigned int order)
-{
- page[1].compound_order = order;
- page[1].compound_nr = 1U << order;
-}
+void split_page(struct page *page, unsigned int order);
+void folio_copy(struct folio *dst, struct folio *src);
+int folio_mc_copy(struct folio *dst, struct folio *src);
-/* Returns the number of pages in this potentially compound page. */
-static inline unsigned long compound_nr(struct page *page)
-{
- if (!PageHead(page))
- return 1;
- return page[1].compound_nr;
-}
+unsigned long nr_free_buffer_pages(void);
/* Returns the number of bytes in this potentially compound page. */
static inline unsigned long page_size(struct page *page)
@@ -956,7 +1200,26 @@ static inline unsigned int page_shift(struct page *page)
return PAGE_SHIFT + compound_order(page);
}
-void free_compound_page(struct page *page);
+/**
+ * thp_order - Order of a transparent huge page.
+ * @page: Head page of a transparent huge page.
+ */
+static inline unsigned int thp_order(struct page *page)
+{
+ VM_BUG_ON_PGFLAGS(PageTail(page), page);
+ return compound_order(page);
+}
+
+/**
+ * thp_size - Size of a transparent huge page.
+ * @page: Head page of a transparent huge page.
+ *
+ * Return: Number of bytes in this page.
+ */
+static inline unsigned long thp_size(struct page *page)
+{
+ return PAGE_SIZE << thp_order(page);
+}
#ifdef CONFIG_MMU
/*
@@ -968,13 +1231,15 @@ void free_compound_page(struct page *page);
static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
{
if (likely(vma->vm_flags & VM_WRITE))
- pte = pte_mkwrite(pte);
+ pte = pte_mkwrite(pte, vma);
return pte;
}
-vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page);
+vm_fault_t do_set_pmd(struct vm_fault *vmf, struct folio *folio, struct page *page);
+void set_pte_range(struct vm_fault *vmf, struct folio *folio,
+ struct page *page, unsigned int nr, unsigned long addr);
+
vm_fault_t finish_fault(struct vm_fault *vmf);
-vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
#endif
/*
@@ -1011,9 +1276,9 @@ vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
* the page's disk buffers. PG_private must be set to tell the VM to call
* into the filesystem to release these pages.
*
- * A page may belong to an inode's memory mapping. In this case, page->mapping
- * is the pointer to the inode, and page->index is the file offset of the page,
- * in units of PAGE_SIZE.
+ * A folio may belong to an inode's memory mapping. In this case,
+ * folio->mapping points to the inode, and folio->index is the file
+ * offset of the folio, in units of PAGE_SIZE.
*
* If pagecache pages are not associated with an inode, they are said to be
* anonymous pages. These may become associated with the swapcache, and in that
@@ -1037,161 +1302,127 @@ vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
* back into memory.
*/
-/*
- * The zone field is never updated after free_area_init_core()
- * sets it, so none of the operations on it need to be atomic.
- */
-
-/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
-#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
-#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
-#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
-#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
-#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
+/* 127: arbitrary random number, small enough to assemble well */
+#define folio_ref_zero_or_close_to_overflow(folio) \
+ ((unsigned int) folio_ref_count(folio) + 127u <= 127u)
-/*
- * Define the bit shifts to access each section. For non-existent
- * sections we define the shift as 0; that plus a 0 mask ensures
- * the compiler will optimise away reference to them.
+/**
+ * folio_get - Increment the reference count on a folio.
+ * @folio: The folio.
+ *
+ * Context: May be called in any context, as long as you know that
+ * you have a refcount on the folio. If you do not already have one,
+ * folio_try_get() may be the right interface for you to use.
*/
-#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
-#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
-#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
-#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
-#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
-
-/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
-#ifdef NODE_NOT_IN_PAGE_FLAGS
-#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
-#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
- SECTIONS_PGOFF : ZONES_PGOFF)
-#else
-#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
-#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
- NODES_PGOFF : ZONES_PGOFF)
-#endif
-
-#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
-
-#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
-#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
-#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
-#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
-#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
-#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
-
-static inline enum zone_type page_zonenum(const struct page *page)
+static inline void folio_get(struct folio *folio)
{
- ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
- return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
+ VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
+ folio_ref_inc(folio);
}
-#ifdef CONFIG_ZONE_DEVICE
-static inline bool is_zone_device_page(const struct page *page)
-{
- return page_zonenum(page) == ZONE_DEVICE;
-}
-extern void memmap_init_zone_device(struct zone *, unsigned long,
- unsigned long, struct dev_pagemap *);
-#else
-static inline bool is_zone_device_page(const struct page *page)
+static inline void get_page(struct page *page)
{
- return false;
+ struct folio *folio = page_folio(page);
+ if (WARN_ON_ONCE(folio_test_slab(folio)))
+ return;
+ folio_get(folio);
}
-#endif
-
-#ifdef CONFIG_DEV_PAGEMAP_OPS
-void free_devmap_managed_page(struct page *page);
-DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
-static inline bool page_is_devmap_managed(struct page *page)
+static inline __must_check bool try_get_page(struct page *page)
{
- if (!static_branch_unlikely(&devmap_managed_key))
- return false;
- if (!is_zone_device_page(page))
+ page = compound_head(page);
+ if (WARN_ON_ONCE(page_ref_count(page) <= 0))
return false;
- switch (page->pgmap->type) {
- case MEMORY_DEVICE_PRIVATE:
- case MEMORY_DEVICE_FS_DAX:
- return true;
- default:
- break;
- }
- return false;
-}
-
-void put_devmap_managed_page(struct page *page);
-
-#else /* CONFIG_DEV_PAGEMAP_OPS */
-static inline bool page_is_devmap_managed(struct page *page)
-{
- return false;
-}
-
-static inline void put_devmap_managed_page(struct page *page)
-{
+ page_ref_inc(page);
+ return true;
}
-#endif /* CONFIG_DEV_PAGEMAP_OPS */
-static inline bool is_device_private_page(const struct page *page)
+/**
+ * folio_put - Decrement the reference count on a folio.
+ * @folio: The folio.
+ *
+ * If the folio's reference count reaches zero, the memory will be
+ * released back to the page allocator and may be used by another
+ * allocation immediately. Do not access the memory or the struct folio
+ * after calling folio_put() unless you can be sure that it wasn't the
+ * last reference.
+ *
+ * Context: May be called in process or interrupt context, but not in NMI
+ * context. May be called while holding a spinlock.
+ */
+static inline void folio_put(struct folio *folio)
{
- return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
- IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
- is_zone_device_page(page) &&
- page->pgmap->type == MEMORY_DEVICE_PRIVATE;
+ if (folio_put_testzero(folio))
+ __folio_put(folio);
}
-static inline bool is_pci_p2pdma_page(const struct page *page)
+/**
+ * folio_put_refs - Reduce the reference count on a folio.
+ * @folio: The folio.
+ * @refs: The amount to subtract from the folio's reference count.
+ *
+ * If the folio's reference count reaches zero, the memory will be
+ * released back to the page allocator and may be used by another
+ * allocation immediately. Do not access the memory or the struct folio
+ * after calling folio_put_refs() unless you can be sure that these weren't
+ * the last references.
+ *
+ * Context: May be called in process or interrupt context, but not in NMI
+ * context. May be called while holding a spinlock.
+ */
+static inline void folio_put_refs(struct folio *folio, int refs)
{
- return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
- IS_ENABLED(CONFIG_PCI_P2PDMA) &&
- is_zone_device_page(page) &&
- page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
+ if (folio_ref_sub_and_test(folio, refs))
+ __folio_put(folio);
}
-/* 127: arbitrary random number, small enough to assemble well */
-#define page_ref_zero_or_close_to_overflow(page) \
- ((unsigned int) page_ref_count(page) + 127u <= 127u)
+void folios_put_refs(struct folio_batch *folios, unsigned int *refs);
-static inline void get_page(struct page *page)
-{
- page = compound_head(page);
- /*
- * Getting a normal page or the head of a compound page
- * requires to already have an elevated page->_refcount.
- */
- VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
- page_ref_inc(page);
-}
+/*
+ * union release_pages_arg - an array of pages or folios
+ *
+ * release_pages() releases a simple array of multiple pages, and
+ * accepts various different forms of said page array: either
+ * a regular old boring array of pages, an array of folios, or
+ * an array of encoded page pointers.
+ *
+ * The transparent union syntax for this kind of "any of these
+ * argument types" is all kinds of ugly, so look away.
+ */
+typedef union {
+ struct page **pages;
+ struct folio **folios;
+ struct encoded_page **encoded_pages;
+} release_pages_arg __attribute__ ((__transparent_union__));
-bool __must_check try_grab_page(struct page *page, unsigned int flags);
+void release_pages(release_pages_arg, int nr);
-static inline __must_check bool try_get_page(struct page *page)
+/**
+ * folios_put - Decrement the reference count on an array of folios.
+ * @folios: The folios.
+ *
+ * Like folio_put(), but for a batch of folios. This is more efficient
+ * than writing the loop yourself as it will optimise the locks which need
+ * to be taken if the folios are freed. The folios batch is returned
+ * empty and ready to be reused for another batch; there is no need to
+ * reinitialise it.
+ *
+ * Context: May be called in process or interrupt context, but not in NMI
+ * context. May be called while holding a spinlock.
+ */
+static inline void folios_put(struct folio_batch *folios)
{
- page = compound_head(page);
- if (WARN_ON_ONCE(page_ref_count(page) <= 0))
- return false;
- page_ref_inc(page);
- return true;
+ folios_put_refs(folios, NULL);
}
static inline void put_page(struct page *page)
{
- page = compound_head(page);
+ struct folio *folio = page_folio(page);
- /*
- * For devmap managed pages we need to catch refcount transition from
- * 2 to 1, when refcount reach one it means the page is free and we
- * need to inform the device driver through callback. See
- * include/linux/memremap.h and HMM for details.
- */
- if (page_is_devmap_managed(page)) {
- put_devmap_managed_page(page);
+ if (folio_test_slab(folio))
return;
- }
- if (put_page_testzero(page))
- __put_page(page);
+ folio_put(folio);
}
/*
@@ -1220,60 +1451,41 @@ static inline void put_page(struct page *page)
* applications that don't have huge page reference counts, this won't be an
* issue.
*
- * Locking: the lockless algorithm described in page_cache_get_speculative()
- * and page_cache_gup_pin_speculative() provides safe operation for
- * get_user_pages and page_mkclean and other calls that race to set up page
- * table entries.
+ * Locking: the lockless algorithm described in folio_try_get_rcu()
+ * provides safe operation for get_user_pages(), folio_mkclean() and
+ * other calls that race to set up page table entries.
*/
#define GUP_PIN_COUNTING_BIAS (1U << 10)
void unpin_user_page(struct page *page);
+void unpin_folio(struct folio *folio);
void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
bool make_dirty);
+void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
+ bool make_dirty);
void unpin_user_pages(struct page **pages, unsigned long npages);
+void unpin_user_folio(struct folio *folio, unsigned long npages);
+void unpin_folios(struct folio **folios, unsigned long nfolios);
-/**
- * page_maybe_dma_pinned() - report if a page is pinned for DMA.
- *
- * This function checks if a page has been pinned via a call to
- * pin_user_pages*().
- *
- * For non-huge pages, the return value is partially fuzzy: false is not fuzzy,
- * because it means "definitely not pinned for DMA", but true means "probably
- * pinned for DMA, but possibly a false positive due to having at least
- * GUP_PIN_COUNTING_BIAS worth of normal page references".
- *
- * False positives are OK, because: a) it's unlikely for a page to get that many
- * refcounts, and b) all the callers of this routine are expected to be able to
- * deal gracefully with a false positive.
- *
- * For huge pages, the result will be exactly correct. That's because we have
- * more tracking data available: the 3rd struct page in the compound page is
- * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS
- * scheme).
- *
- * For more information, please see Documentation/core-api/pin_user_pages.rst.
- *
- * @page: pointer to page to be queried.
- * @Return: True, if it is likely that the page has been "dma-pinned".
- * False, if the page is definitely not dma-pinned.
- */
-static inline bool page_maybe_dma_pinned(struct page *page)
+static inline bool is_cow_mapping(vm_flags_t flags)
{
- if (hpage_pincount_available(page))
- return compound_pincount(page) > 0;
+ return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
+}
+#ifndef CONFIG_MMU
+static inline bool is_nommu_shared_mapping(vm_flags_t flags)
+{
/*
- * page_ref_count() is signed. If that refcount overflows, then
- * page_ref_count() returns a negative value, and callers will avoid
- * further incrementing the refcount.
- *
- * Here, for that overflow case, use the signed bit to count a little
- * bit higher via unsigned math, and thus still get an accurate result.
+ * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
+ * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
+ * a file mapping. R/O MAP_PRIVATE mappings might still modify
+ * underlying memory if ptrace is active, so this is only possible if
+ * ptrace does not apply. Note that there is no mprotect() to upgrade
+ * write permissions later.
*/
- return ((unsigned int)page_ref_count(compound_head(page))) >=
- GUP_PIN_COUNTING_BIAS;
+ return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
}
+#endif
#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
#define SECTION_IN_PAGE_FLAGS
@@ -1293,17 +1505,32 @@ static inline int page_zone_id(struct page *page)
}
#ifdef NODE_NOT_IN_PAGE_FLAGS
-extern int page_to_nid(const struct page *page);
+int page_to_nid(const struct page *page);
#else
static inline int page_to_nid(const struct page *page)
{
- struct page *p = (struct page *)page;
-
- return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
+ return (PF_POISONED_CHECK(page)->flags >> NODES_PGSHIFT) & NODES_MASK;
}
#endif
+static inline int folio_nid(const struct folio *folio)
+{
+ return page_to_nid(&folio->page);
+}
+
#ifdef CONFIG_NUMA_BALANCING
+/* page access time bits needs to hold at least 4 seconds */
+#define PAGE_ACCESS_TIME_MIN_BITS 12
+#if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
+#define PAGE_ACCESS_TIME_BUCKETS \
+ (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
+#else
+#define PAGE_ACCESS_TIME_BUCKETS 0
+#endif
+
+#define PAGE_ACCESS_TIME_MASK \
+ (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
+
static inline int cpu_pid_to_cpupid(int cpu, int pid)
{
return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
@@ -1341,41 +1568,67 @@ static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
-static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
+static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
{
- return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
+ return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK);
}
-static inline int page_cpupid_last(struct page *page)
+static inline int folio_last_cpupid(struct folio *folio)
{
- return page->_last_cpupid;
+ return folio->_last_cpupid;
}
static inline void page_cpupid_reset_last(struct page *page)
{
page->_last_cpupid = -1 & LAST_CPUPID_MASK;
}
#else
-static inline int page_cpupid_last(struct page *page)
+static inline int folio_last_cpupid(struct folio *folio)
{
- return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
+ return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
}
-extern int page_cpupid_xchg_last(struct page *page, int cpupid);
+int folio_xchg_last_cpupid(struct folio *folio, int cpupid);
static inline void page_cpupid_reset_last(struct page *page)
{
page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
}
#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
+
+static inline int folio_xchg_access_time(struct folio *folio, int time)
+{
+ int last_time;
+
+ last_time = folio_xchg_last_cpupid(folio,
+ time >> PAGE_ACCESS_TIME_BUCKETS);
+ return last_time << PAGE_ACCESS_TIME_BUCKETS;
+}
+
+static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
+{
+ unsigned int pid_bit;
+
+ pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG));
+ if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) {
+ __set_bit(pid_bit, &vma->numab_state->pids_active[1]);
+ }
+}
+
+bool folio_use_access_time(struct folio *folio);
#else /* !CONFIG_NUMA_BALANCING */
-static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
+static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
{
- return page_to_nid(page); /* XXX */
+ return folio_nid(folio); /* XXX */
}
-static inline int page_cpupid_last(struct page *page)
+static inline int folio_xchg_access_time(struct folio *folio, int time)
{
- return page_to_nid(page); /* XXX */
+ return 0;
+}
+
+static inline int folio_last_cpupid(struct folio *folio)
+{
+ return folio_nid(folio); /* XXX */
}
static inline int cpupid_to_nid(int cpupid)
@@ -1411,25 +1664,60 @@ static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
{
return false;
}
+
+static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
+{
+}
+static inline bool folio_use_access_time(struct folio *folio)
+{
+ return false;
+}
#endif /* CONFIG_NUMA_BALANCING */
-#ifdef CONFIG_KASAN_SW_TAGS
+#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
+
+/*
+ * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
+ * setting tags for all pages to native kernel tag value 0xff, as the default
+ * value 0x00 maps to 0xff.
+ */
+
static inline u8 page_kasan_tag(const struct page *page)
{
- return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
+ u8 tag = KASAN_TAG_KERNEL;
+
+ if (kasan_enabled()) {
+ tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
+ tag ^= 0xff;
+ }
+
+ return tag;
}
static inline void page_kasan_tag_set(struct page *page, u8 tag)
{
- page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
- page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
+ unsigned long old_flags, flags;
+
+ if (!kasan_enabled())
+ return;
+
+ tag ^= 0xff;
+ old_flags = READ_ONCE(page->flags);
+ do {
+ flags = old_flags;
+ flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
+ flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
+ } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
}
static inline void page_kasan_tag_reset(struct page *page)
{
- page_kasan_tag_set(page, 0xff);
+ if (kasan_enabled())
+ page_kasan_tag_set(page, KASAN_TAG_KERNEL);
}
-#else
+
+#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
+
static inline u8 page_kasan_tag(const struct page *page)
{
return 0xff;
@@ -1437,7 +1725,8 @@ static inline u8 page_kasan_tag(const struct page *page)
static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
static inline void page_kasan_tag_reset(struct page *page) { }
-#endif
+
+#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
static inline struct zone *page_zone(const struct page *page)
{
@@ -1449,6 +1738,16 @@ static inline pg_data_t *page_pgdat(const struct page *page)
return NODE_DATA(page_to_nid(page));
}
+static inline struct zone *folio_zone(const struct folio *folio)
+{
+ return page_zone(&folio->page);
+}
+
+static inline pg_data_t *folio_pgdat(const struct folio *folio)
+{
+ return page_pgdat(&folio->page);
+}
+
#ifdef SECTION_IN_PAGE_FLAGS
static inline void set_page_section(struct page *page, unsigned long section)
{
@@ -1462,6 +1761,188 @@ static inline unsigned long page_to_section(const struct page *page)
}
#endif
+/**
+ * folio_pfn - Return the Page Frame Number of a folio.
+ * @folio: The folio.
+ *
+ * A folio may contain multiple pages. The pages have consecutive
+ * Page Frame Numbers.
+ *
+ * Return: The Page Frame Number of the first page in the folio.
+ */
+static inline unsigned long folio_pfn(const struct folio *folio)
+{
+ return page_to_pfn(&folio->page);
+}
+
+static inline struct folio *pfn_folio(unsigned long pfn)
+{
+ return page_folio(pfn_to_page(pfn));
+}
+
+#ifdef CONFIG_MMU
+static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
+{
+ return pfn_pte(page_to_pfn(page), pgprot);
+}
+
+/**
+ * folio_mk_pte - Create a PTE for this folio
+ * @folio: The folio to create a PTE for
+ * @pgprot: The page protection bits to use
+ *
+ * Create a page table entry for the first page of this folio.
+ * This is suitable for passing to set_ptes().
+ *
+ * Return: A page table entry suitable for mapping this folio.
+ */
+static inline pte_t folio_mk_pte(struct folio *folio, pgprot_t pgprot)
+{
+ return pfn_pte(folio_pfn(folio), pgprot);
+}
+
+#ifdef CONFIG_TRANSPARENT_HUGEPAGE
+/**
+ * folio_mk_pmd - Create a PMD for this folio
+ * @folio: The folio to create a PMD for
+ * @pgprot: The page protection bits to use
+ *
+ * Create a page table entry for the first page of this folio.
+ * This is suitable for passing to set_pmd_at().
+ *
+ * Return: A page table entry suitable for mapping this folio.
+ */
+static inline pmd_t folio_mk_pmd(struct folio *folio, pgprot_t pgprot)
+{
+ return pmd_mkhuge(pfn_pmd(folio_pfn(folio), pgprot));
+}
+#endif
+#endif /* CONFIG_MMU */
+
+static inline bool folio_has_pincount(const struct folio *folio)
+{
+ if (IS_ENABLED(CONFIG_64BIT))
+ return folio_test_large(folio);
+ return folio_order(folio) > 1;
+}
+
+/**
+ * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
+ * @folio: The folio.
+ *
+ * This function checks if a folio has been pinned via a call to
+ * a function in the pin_user_pages() family.
+ *
+ * For small folios, the return value is partially fuzzy: false is not fuzzy,
+ * because it means "definitely not pinned for DMA", but true means "probably
+ * pinned for DMA, but possibly a false positive due to having at least
+ * GUP_PIN_COUNTING_BIAS worth of normal folio references".
+ *
+ * False positives are OK, because: a) it's unlikely for a folio to
+ * get that many refcounts, and b) all the callers of this routine are
+ * expected to be able to deal gracefully with a false positive.
+ *
+ * For most large folios, the result will be exactly correct. That's because
+ * we have more tracking data available: the _pincount field is used
+ * instead of the GUP_PIN_COUNTING_BIAS scheme.
+ *
+ * For more information, please see Documentation/core-api/pin_user_pages.rst.
+ *
+ * Return: True, if it is likely that the folio has been "dma-pinned".
+ * False, if the folio is definitely not dma-pinned.
+ */
+static inline bool folio_maybe_dma_pinned(struct folio *folio)
+{
+ if (folio_has_pincount(folio))
+ return atomic_read(&folio->_pincount) > 0;
+
+ /*
+ * folio_ref_count() is signed. If that refcount overflows, then
+ * folio_ref_count() returns a negative value, and callers will avoid
+ * further incrementing the refcount.
+ *
+ * Here, for that overflow case, use the sign bit to count a little
+ * bit higher via unsigned math, and thus still get an accurate result.
+ */
+ return ((unsigned int)folio_ref_count(folio)) >=
+ GUP_PIN_COUNTING_BIAS;
+}
+
+/*
+ * This should most likely only be called during fork() to see whether we
+ * should break the cow immediately for an anon page on the src mm.
+ *
+ * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
+ */
+static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma,
+ struct folio *folio)
+{
+ VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
+
+ if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
+ return false;
+
+ return folio_maybe_dma_pinned(folio);
+}
+
+/**
+ * is_zero_page - Query if a page is a zero page
+ * @page: The page to query
+ *
+ * This returns true if @page is one of the permanent zero pages.
+ */
+static inline bool is_zero_page(const struct page *page)
+{
+ return is_zero_pfn(page_to_pfn(page));
+}
+
+/**
+ * is_zero_folio - Query if a folio is a zero page
+ * @folio: The folio to query
+ *
+ * This returns true if @folio is one of the permanent zero pages.
+ */
+static inline bool is_zero_folio(const struct folio *folio)
+{
+ return is_zero_page(&folio->page);
+}
+
+/* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */
+#ifdef CONFIG_MIGRATION
+static inline bool folio_is_longterm_pinnable(struct folio *folio)
+{
+#ifdef CONFIG_CMA
+ int mt = folio_migratetype(folio);
+
+ if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
+ return false;
+#endif
+ /* The zero page can be "pinned" but gets special handling. */
+ if (is_zero_folio(folio))
+ return true;
+
+ /* Coherent device memory must always allow eviction. */
+ if (folio_is_device_coherent(folio))
+ return false;
+
+ /*
+ * Filesystems can only tolerate transient delays to truncate and
+ * hole-punch operations
+ */
+ if (folio_is_fsdax(folio))
+ return false;
+
+ /* Otherwise, non-movable zone folios can be pinned. */
+ return !folio_is_zone_movable(folio);
+
+}
+#else
+static inline bool folio_is_longterm_pinnable(struct folio *folio)
+{
+ return true;
+}
+#endif
+
static inline void set_page_zone(struct page *page, enum zone_type zone)
{
page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
@@ -1484,25 +1965,212 @@ static inline void set_page_links(struct page *page, enum zone_type zone,
#endif
}
-#ifdef CONFIG_MEMCG
-static inline struct mem_cgroup *page_memcg(struct page *page)
+/**
+ * folio_nr_pages - The number of pages in the folio.
+ * @folio: The folio.
+ *
+ * Return: A positive power of two.
+ */
+static inline long folio_nr_pages(const struct folio *folio)
{
- return page->mem_cgroup;
+ if (!folio_test_large(folio))
+ return 1;
+ return folio_large_nr_pages(folio);
}
-static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
+
+/* Only hugetlbfs can allocate folios larger than MAX_ORDER */
+#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
+#define MAX_FOLIO_NR_PAGES (1UL << PUD_ORDER)
+#else
+#define MAX_FOLIO_NR_PAGES MAX_ORDER_NR_PAGES
+#endif
+
+/*
+ * compound_nr() returns the number of pages in this potentially compound
+ * page. compound_nr() can be called on a tail page, and is defined to
+ * return 1 in that case.
+ */
+static inline long compound_nr(struct page *page)
{
- WARN_ON_ONCE(!rcu_read_lock_held());
- return READ_ONCE(page->mem_cgroup);
+ struct folio *folio = (struct folio *)page;
+
+ if (!test_bit(PG_head, &folio->flags))
+ return 1;
+ return folio_large_nr_pages(folio);
}
-#else
-static inline struct mem_cgroup *page_memcg(struct page *page)
+
+/**
+ * folio_next - Move to the next physical folio.
+ * @folio: The folio we're currently operating on.
+ *
+ * If you have physically contiguous memory which may span more than
+ * one folio (eg a &struct bio_vec), use this function to move from one
+ * folio to the next. Do not use it if the memory is only virtually
+ * contiguous as the folios are almost certainly not adjacent to each
+ * other. This is the folio equivalent to writing ``page++``.
+ *
+ * Context: We assume that the folios are refcounted and/or locked at a
+ * higher level and do not adjust the reference counts.
+ * Return: The next struct folio.
+ */
+static inline struct folio *folio_next(struct folio *folio)
{
- return NULL;
+ return (struct folio *)folio_page(folio, folio_nr_pages(folio));
}
-static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
+
+/**
+ * folio_shift - The size of the memory described by this folio.
+ * @folio: The folio.
+ *
+ * A folio represents a number of bytes which is a power-of-two in size.
+ * This function tells you which power-of-two the folio is. See also
+ * folio_size() and folio_order().
+ *
+ * Context: The caller should have a reference on the folio to prevent
+ * it from being split. It is not necessary for the folio to be locked.
+ * Return: The base-2 logarithm of the size of this folio.
+ */
+static inline unsigned int folio_shift(const struct folio *folio)
{
- WARN_ON_ONCE(!rcu_read_lock_held());
- return NULL;
+ return PAGE_SHIFT + folio_order(folio);
+}
+
+/**
+ * folio_size - The number of bytes in a folio.
+ * @folio: The folio.
+ *
+ * Context: The caller should have a reference on the folio to prevent
+ * it from being split. It is not necessary for the folio to be locked.
+ * Return: The number of bytes in this folio.
+ */
+static inline size_t folio_size(const struct folio *folio)
+{
+ return PAGE_SIZE << folio_order(folio);
+}
+
+/**
+ * folio_maybe_mapped_shared - Whether the folio is mapped into the page
+ * tables of more than one MM
+ * @folio: The folio.
+ *
+ * This function checks if the folio maybe currently mapped into more than one
+ * MM ("maybe mapped shared"), or if the folio is certainly mapped into a single
+ * MM ("mapped exclusively").
+ *
+ * For KSM folios, this function also returns "mapped shared" when a folio is
+ * mapped multiple times into the same MM, because the individual page mappings
+ * are independent.
+ *
+ * For small anonymous folios and anonymous hugetlb folios, the return
+ * value will be exactly correct: non-KSM folios can only be mapped at most once
+ * into an MM, and they cannot be partially mapped. KSM folios are
+ * considered shared even if mapped multiple times into the same MM.
+ *
+ * For other folios, the result can be fuzzy:
+ * #. For partially-mappable large folios (THP), the return value can wrongly
+ * indicate "mapped shared" (false positive) if a folio was mapped by
+ * more than two MMs at one point in time.
+ * #. For pagecache folios (including hugetlb), the return value can wrongly
+ * indicate "mapped shared" (false positive) when two VMAs in the same MM
+ * cover the same file range.
+ *
+ * Further, this function only considers current page table mappings that
+ * are tracked using the folio mapcount(s).
+ *
+ * This function does not consider:
+ * #. If the folio might get mapped in the (near) future (e.g., swapcache,
+ * pagecache, temporary unmapping for migration).
+ * #. If the folio is mapped differently (VM_PFNMAP).
+ * #. If hugetlb page table sharing applies. Callers might want to check
+ * hugetlb_pmd_shared().
+ *
+ * Return: Whether the folio is estimated to be mapped into more than one MM.
+ */
+static inline bool folio_maybe_mapped_shared(struct folio *folio)
+{
+ int mapcount = folio_mapcount(folio);
+
+ /* Only partially-mappable folios require more care. */
+ if (!folio_test_large(folio) || unlikely(folio_test_hugetlb(folio)))
+ return mapcount > 1;
+
+ /*
+ * vm_insert_page() without CONFIG_TRANSPARENT_HUGEPAGE ...
+ * simply assume "mapped shared", nobody should really care
+ * about this for arbitrary kernel allocations.
+ */
+ if (!IS_ENABLED(CONFIG_MM_ID))
+ return true;
+
+ /*
+ * A single mapping implies "mapped exclusively", even if the
+ * folio flag says something different: it's easier to handle this
+ * case here instead of on the RMAP hot path.
+ */
+ if (mapcount <= 1)
+ return false;
+ return test_bit(FOLIO_MM_IDS_SHARED_BITNUM, &folio->_mm_ids);
+}
+
+/**
+ * folio_expected_ref_count - calculate the expected folio refcount
+ * @folio: the folio
+ *
+ * Calculate the expected folio refcount, taking references from the pagecache,
+ * swapcache, PG_private and page table mappings into account. Useful in
+ * combination with folio_ref_count() to detect unexpected references (e.g.,
+ * GUP or other temporary references).
+ *
+ * Does currently not consider references from the LRU cache. If the folio
+ * was isolated from the LRU (which is the case during migration or split),
+ * the LRU cache does not apply.
+ *
+ * Calling this function on an unmapped folio -- !folio_mapped() -- that is
+ * locked will return a stable result.
+ *
+ * Calling this function on a mapped folio will not result in a stable result,
+ * because nothing stops additional page table mappings from coming (e.g.,
+ * fork()) or going (e.g., munmap()).
+ *
+ * Calling this function without the folio lock will also not result in a
+ * stable result: for example, the folio might get dropped from the swapcache
+ * concurrently.
+ *
+ * However, even when called without the folio lock or on a mapped folio,
+ * this function can be used to detect unexpected references early (for example,
+ * if it makes sense to even lock the folio and unmap it).
+ *
+ * The caller must add any reference (e.g., from folio_try_get()) it might be
+ * holding itself to the result.
+ *
+ * Returns the expected folio refcount.
+ */
+static inline int folio_expected_ref_count(const struct folio *folio)
+{
+ const int order = folio_order(folio);
+ int ref_count = 0;
+
+ if (WARN_ON_ONCE(folio_test_slab(folio)))
+ return 0;
+
+ if (folio_test_anon(folio)) {
+ /* One reference per page from the swapcache. */
+ ref_count += folio_test_swapcache(folio) << order;
+ } else if (!((unsigned long)folio->mapping & PAGE_MAPPING_FLAGS)) {
+ /* One reference per page from the pagecache. */
+ ref_count += !!folio->mapping << order;
+ /* One reference from PG_private. */
+ ref_count += folio_test_private(folio);
+ }
+
+ /* One reference per page table mapping. */
+ return ref_count + folio_mapcount(folio);
+}
+
+#ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
+static inline int arch_make_folio_accessible(struct folio *folio)
+{
+ return 0;
}
#endif
@@ -1511,11 +2179,6 @@ static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
*/
#include <linux/vmstat.h>
-static __always_inline void *lowmem_page_address(const struct page *page)
-{
- return page_to_virt(page);
-}
-
#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
#define HASHED_PAGE_VIRTUAL
#endif
@@ -1538,56 +2201,50 @@ void set_page_address(struct page *page, void *virtual);
void page_address_init(void);
#endif
+static __always_inline void *lowmem_page_address(const struct page *page)
+{
+ return page_to_virt(page);
+}
+
#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
#define page_address(page) lowmem_page_address(page)
#define set_page_address(page, address) do { } while(0)
#define page_address_init() do { } while(0)
#endif
-extern void *page_rmapping(struct page *page);
-extern struct anon_vma *page_anon_vma(struct page *page);
-extern struct address_space *page_mapping(struct page *page);
-
-extern struct address_space *__page_file_mapping(struct page *);
-
-static inline
-struct address_space *page_file_mapping(struct page *page)
+static inline void *folio_address(const struct folio *folio)
{
- if (unlikely(PageSwapCache(page)))
- return __page_file_mapping(page);
-
- return page->mapping;
+ return page_address(&folio->page);
}
-extern pgoff_t __page_file_index(struct page *page);
-
/*
- * Return the pagecache index of the passed page. Regular pagecache pages
- * use ->index whereas swapcache pages use swp_offset(->private)
+ * Return true only if the page has been allocated with
+ * ALLOC_NO_WATERMARKS and the low watermark was not
+ * met implying that the system is under some pressure.
*/
-static inline pgoff_t page_index(struct page *page)
+static inline bool page_is_pfmemalloc(const struct page *page)
{
- if (unlikely(PageSwapCache(page)))
- return __page_file_index(page);
- return page->index;
+ /*
+ * lru.next has bit 1 set if the page is allocated from the
+ * pfmemalloc reserves. Callers may simply overwrite it if
+ * they do not need to preserve that information.
+ */
+ return (uintptr_t)page->lru.next & BIT(1);
}
-bool page_mapped(struct page *page);
-struct address_space *page_mapping(struct page *page);
-struct address_space *page_mapping_file(struct page *page);
-
/*
- * Return true only if the page has been allocated with
+ * Return true only if the folio has been allocated with
* ALLOC_NO_WATERMARKS and the low watermark was not
* met implying that the system is under some pressure.
*/
-static inline bool page_is_pfmemalloc(struct page *page)
+static inline bool folio_is_pfmemalloc(const struct folio *folio)
{
/*
- * Page index cannot be this large so this must be
- * a pfmemalloc page.
+ * lru.next has bit 1 set if the page is allocated from the
+ * pfmemalloc reserves. Callers may simply overwrite it if
+ * they do not need to preserve that information.
*/
- return page->index == -1UL;
+ return (uintptr_t)folio->lru.next & BIT(1);
}
/*
@@ -1596,12 +2253,12 @@ static inline bool page_is_pfmemalloc(struct page *page)
*/
static inline void set_page_pfmemalloc(struct page *page)
{
- page->index = -1UL;
+ page->lru.next = (void *)BIT(1);
}
static inline void clear_page_pfmemalloc(struct page *page)
{
- page->index = 0;
+ page->lru.next = NULL;
}
/*
@@ -1610,44 +2267,82 @@ static inline void clear_page_pfmemalloc(struct page *page)
extern void pagefault_out_of_memory(void);
#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
-#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
+#define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
+
+/*
+ * Parameter block passed down to zap_pte_range in exceptional cases.
+ */
+struct zap_details {
+ struct folio *single_folio; /* Locked folio to be unmapped */
+ bool even_cows; /* Zap COWed private pages too? */
+ bool reclaim_pt; /* Need reclaim page tables? */
+ zap_flags_t zap_flags; /* Extra flags for zapping */
+};
/*
- * Flags passed to show_mem() and show_free_areas() to suppress output in
- * various contexts.
+ * Whether to drop the pte markers, for example, the uffd-wp information for
+ * file-backed memory. This should only be specified when we will completely
+ * drop the page in the mm, either by truncation or unmapping of the vma. By
+ * default, the flag is not set.
*/
-#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
+#define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0))
+/* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */
+#define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1))
-extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
+#ifdef CONFIG_SCHED_MM_CID
+void sched_mm_cid_before_execve(struct task_struct *t);
+void sched_mm_cid_after_execve(struct task_struct *t);
+void sched_mm_cid_fork(struct task_struct *t);
+void sched_mm_cid_exit_signals(struct task_struct *t);
+static inline int task_mm_cid(struct task_struct *t)
+{
+ return t->mm_cid;
+}
+#else
+static inline void sched_mm_cid_before_execve(struct task_struct *t) { }
+static inline void sched_mm_cid_after_execve(struct task_struct *t) { }
+static inline void sched_mm_cid_fork(struct task_struct *t) { }
+static inline void sched_mm_cid_exit_signals(struct task_struct *t) { }
+static inline int task_mm_cid(struct task_struct *t)
+{
+ /*
+ * Use the processor id as a fall-back when the mm cid feature is
+ * disabled. This provides functional per-cpu data structure accesses
+ * in user-space, althrough it won't provide the memory usage benefits.
+ */
+ return raw_smp_processor_id();
+}
+#endif
#ifdef CONFIG_MMU
extern bool can_do_mlock(void);
#else
static inline bool can_do_mlock(void) { return false; }
#endif
-extern int user_shm_lock(size_t, struct user_struct *);
-extern void user_shm_unlock(size_t, struct user_struct *);
-
-/*
- * Parameter block passed down to zap_pte_range in exceptional cases.
- */
-struct zap_details {
- struct address_space *check_mapping; /* Check page->mapping if set */
- pgoff_t first_index; /* Lowest page->index to unmap */
- pgoff_t last_index; /* Highest page->index to unmap */
-};
+extern int user_shm_lock(size_t, struct ucounts *);
+extern void user_shm_unlock(size_t, struct ucounts *);
+struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
+ pte_t pte);
struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
pte_t pte);
+struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
+ unsigned long addr, pmd_t pmd);
struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
pmd_t pmd);
void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
unsigned long size);
-void zap_page_range(struct vm_area_struct *vma, unsigned long address,
- unsigned long size);
-void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
- unsigned long start, unsigned long end);
+void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
+ unsigned long size, struct zap_details *details);
+static inline void zap_vma_pages(struct vm_area_struct *vma)
+{
+ zap_page_range_single(vma, vma->vm_start,
+ vma->vm_end - vma->vm_start, NULL);
+}
+void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
+ struct vm_area_struct *start_vma, unsigned long start,
+ unsigned long end, unsigned long tree_end, bool mm_wr_locked);
struct mmu_notifier_range;
@@ -1655,23 +2350,51 @@ void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
unsigned long end, unsigned long floor, unsigned long ceiling);
int
copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
-int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
- struct mmu_notifier_range *range,
- pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
-int follow_pfn(struct vm_area_struct *vma, unsigned long address,
- unsigned long *pfn);
-int follow_phys(struct vm_area_struct *vma, unsigned long address,
- unsigned int flags, unsigned long *prot, resource_size_t *phys);
int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
void *buf, int len, int write);
+struct follow_pfnmap_args {
+ /**
+ * Inputs:
+ * @vma: Pointer to @vm_area_struct struct
+ * @address: the virtual address to walk
+ */
+ struct vm_area_struct *vma;
+ unsigned long address;
+ /**
+ * Internals:
+ *
+ * The caller shouldn't touch any of these.
+ */
+ spinlock_t *lock;
+ pte_t *ptep;
+ /**
+ * Outputs:
+ *
+ * @pfn: the PFN of the address
+ * @addr_mask: address mask covering pfn
+ * @pgprot: the pgprot_t of the mapping
+ * @writable: whether the mapping is writable
+ * @special: whether the mapping is a special mapping (real PFN maps)
+ */
+ unsigned long pfn;
+ unsigned long addr_mask;
+ pgprot_t pgprot;
+ bool writable;
+ bool special;
+};
+int follow_pfnmap_start(struct follow_pfnmap_args *args);
+void follow_pfnmap_end(struct follow_pfnmap_args *args);
+
extern void truncate_pagecache(struct inode *inode, loff_t new);
extern void truncate_setsize(struct inode *inode, loff_t newsize);
void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
-int truncate_inode_page(struct address_space *mapping, struct page *page);
-int generic_error_remove_page(struct address_space *mapping, struct page *page);
-int invalidate_inode_page(struct page *page);
+int generic_error_remove_folio(struct address_space *mapping,
+ struct folio *folio);
+
+struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
+ unsigned long address, struct pt_regs *regs);
#ifdef CONFIG_MMU
extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
@@ -1712,131 +2435,103 @@ static inline void unmap_shared_mapping_range(struct address_space *mapping,
unmap_mapping_range(mapping, holebegin, holelen, 0);
}
+static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm,
+ unsigned long addr);
+
extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
void *buf, int len, unsigned int gup_flags);
extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
void *buf, int len, unsigned int gup_flags);
-extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
- unsigned long addr, void *buf, int len, unsigned int gup_flags);
+
+#ifdef CONFIG_BPF_SYSCALL
+extern int copy_remote_vm_str(struct task_struct *tsk, unsigned long addr,
+ void *buf, int len, unsigned int gup_flags);
+#endif
long get_user_pages_remote(struct mm_struct *mm,
- unsigned long start, unsigned long nr_pages,
- unsigned int gup_flags, struct page **pages,
- struct vm_area_struct **vmas, int *locked);
+ unsigned long start, unsigned long nr_pages,
+ unsigned int gup_flags, struct page **pages,
+ int *locked);
long pin_user_pages_remote(struct mm_struct *mm,
unsigned long start, unsigned long nr_pages,
unsigned int gup_flags, struct page **pages,
- struct vm_area_struct **vmas, int *locked);
+ int *locked);
+
+/*
+ * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT.
+ */
+static inline struct page *get_user_page_vma_remote(struct mm_struct *mm,
+ unsigned long addr,
+ int gup_flags,
+ struct vm_area_struct **vmap)
+{
+ struct page *page;
+ struct vm_area_struct *vma;
+ int got;
+
+ if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT)))
+ return ERR_PTR(-EINVAL);
+
+ got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL);
+
+ if (got < 0)
+ return ERR_PTR(got);
+
+ vma = vma_lookup(mm, addr);
+ if (WARN_ON_ONCE(!vma)) {
+ put_page(page);
+ return ERR_PTR(-EINVAL);
+ }
+
+ *vmap = vma;
+ return page;
+}
+
long get_user_pages(unsigned long start, unsigned long nr_pages,
- unsigned int gup_flags, struct page **pages,
- struct vm_area_struct **vmas);
+ unsigned int gup_flags, struct page **pages);
long pin_user_pages(unsigned long start, unsigned long nr_pages,
- unsigned int gup_flags, struct page **pages,
- struct vm_area_struct **vmas);
-long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
- unsigned int gup_flags, struct page **pages, int *locked);
-long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
- unsigned int gup_flags, struct page **pages, int *locked);
+ unsigned int gup_flags, struct page **pages);
long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
struct page **pages, unsigned int gup_flags);
long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
struct page **pages, unsigned int gup_flags);
+long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end,
+ struct folio **folios, unsigned int max_folios,
+ pgoff_t *offset);
+int folio_add_pins(struct folio *folio, unsigned int pins);
int get_user_pages_fast(unsigned long start, int nr_pages,
unsigned int gup_flags, struct page **pages);
int pin_user_pages_fast(unsigned long start, int nr_pages,
unsigned int gup_flags, struct page **pages);
+void folio_add_pin(struct folio *folio);
int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
struct task_struct *task, bool bypass_rlim);
-/* Container for pinned pfns / pages */
-struct frame_vector {
- unsigned int nr_allocated; /* Number of frames we have space for */
- unsigned int nr_frames; /* Number of frames stored in ptrs array */
- bool got_ref; /* Did we pin pages by getting page ref? */
- bool is_pfns; /* Does array contain pages or pfns? */
- void *ptrs[]; /* Array of pinned pfns / pages. Use
- * pfns_vector_pages() or pfns_vector_pfns()
- * for access */
-};
-
-struct frame_vector *frame_vector_create(unsigned int nr_frames);
-void frame_vector_destroy(struct frame_vector *vec);
-int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
- unsigned int gup_flags, struct frame_vector *vec);
-void put_vaddr_frames(struct frame_vector *vec);
-int frame_vector_to_pages(struct frame_vector *vec);
-void frame_vector_to_pfns(struct frame_vector *vec);
-
-static inline unsigned int frame_vector_count(struct frame_vector *vec)
-{
- return vec->nr_frames;
-}
-
-static inline struct page **frame_vector_pages(struct frame_vector *vec)
-{
- if (vec->is_pfns) {
- int err = frame_vector_to_pages(vec);
-
- if (err)
- return ERR_PTR(err);
- }
- return (struct page **)(vec->ptrs);
-}
-
-static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
-{
- if (!vec->is_pfns)
- frame_vector_to_pfns(vec);
- return (unsigned long *)(vec->ptrs);
-}
-
struct kvec;
-int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
- struct page **pages);
-int get_kernel_page(unsigned long start, int write, struct page **pages);
-struct page *get_dump_page(unsigned long addr);
-
-extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
-extern void do_invalidatepage(struct page *page, unsigned int offset,
- unsigned int length);
-
-void __set_page_dirty(struct page *, struct address_space *, int warn);
-int __set_page_dirty_nobuffers(struct page *page);
-int __set_page_dirty_no_writeback(struct page *page);
-int redirty_page_for_writepage(struct writeback_control *wbc,
- struct page *page);
-void account_page_dirtied(struct page *page, struct address_space *mapping);
-void account_page_cleaned(struct page *page, struct address_space *mapping,
- struct bdi_writeback *wb);
-int set_page_dirty(struct page *page);
+struct page *get_dump_page(unsigned long addr, int *locked);
+
+bool folio_mark_dirty(struct folio *folio);
+bool folio_mark_dirty_lock(struct folio *folio);
+bool set_page_dirty(struct page *page);
int set_page_dirty_lock(struct page *page);
-void __cancel_dirty_page(struct page *page);
-static inline void cancel_dirty_page(struct page *page)
-{
- /* Avoid atomic ops, locking, etc. when not actually needed. */
- if (PageDirty(page))
- __cancel_dirty_page(page);
-}
-int clear_page_dirty_for_io(struct page *page);
int get_cmdline(struct task_struct *task, char *buffer, int buflen);
-extern unsigned long move_page_tables(struct vm_area_struct *vma,
- unsigned long old_addr, struct vm_area_struct *new_vma,
- unsigned long new_addr, unsigned long len,
- bool need_rmap_locks);
-
/*
* Flags used by change_protection(). For now we make it a bitmap so
* that we can pass in multiple flags just like parameters. However
* for now all the callers are only use one of the flags at the same
* time.
*/
-/* Whether we should allow dirty bit accounting */
-#define MM_CP_DIRTY_ACCT (1UL << 0)
+/*
+ * Whether we should manually check if we can map individual PTEs writable,
+ * because something (e.g., COW, uffd-wp) blocks that from happening for all
+ * PTEs automatically in a writable mapping.
+ */
+#define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0)
/* Whether this protection change is for NUMA hints */
#define MM_CP_PROT_NUMA (1UL << 1)
/* Whether this change is for write protecting */
@@ -1845,20 +2540,20 @@ extern unsigned long move_page_tables(struct vm_area_struct *vma,
#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
MM_CP_UFFD_WP_RESOLVE)
-extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
- unsigned long end, pgprot_t newprot,
- unsigned long cp_flags);
-extern int mprotect_fixup(struct vm_area_struct *vma,
- struct vm_area_struct **pprev, unsigned long start,
- unsigned long end, unsigned long newflags);
+bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
+ pte_t pte);
+extern long change_protection(struct mmu_gather *tlb,
+ struct vm_area_struct *vma, unsigned long start,
+ unsigned long end, unsigned long cp_flags);
+extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
+ struct vm_area_struct *vma, struct vm_area_struct **pprev,
+ unsigned long start, unsigned long end, unsigned long newflags);
/*
* doesn't attempt to fault and will return short.
*/
int get_user_pages_fast_only(unsigned long start, int nr_pages,
unsigned int gup_flags, struct page **pages);
-int pin_user_pages_fast_only(unsigned long start, int nr_pages,
- unsigned int gup_flags, struct page **pages);
static inline bool get_user_page_fast_only(unsigned long addr,
unsigned int gup_flags, struct page **pagep)
@@ -1870,55 +2565,45 @@ static inline bool get_user_page_fast_only(unsigned long addr,
*/
static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
{
- long val = atomic_long_read(&mm->rss_stat.count[member]);
-
-#ifdef SPLIT_RSS_COUNTING
- /*
- * counter is updated in asynchronous manner and may go to minus.
- * But it's never be expected number for users.
- */
- if (val < 0)
- val = 0;
-#endif
- return (unsigned long)val;
+ return percpu_counter_read_positive(&mm->rss_stat[member]);
}
-void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
+void mm_trace_rss_stat(struct mm_struct *mm, int member);
static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
{
- long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
+ percpu_counter_add(&mm->rss_stat[member], value);
- mm_trace_rss_stat(mm, member, count);
+ mm_trace_rss_stat(mm, member);
}
static inline void inc_mm_counter(struct mm_struct *mm, int member)
{
- long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
+ percpu_counter_inc(&mm->rss_stat[member]);
- mm_trace_rss_stat(mm, member, count);
+ mm_trace_rss_stat(mm, member);
}
static inline void dec_mm_counter(struct mm_struct *mm, int member)
{
- long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
+ percpu_counter_dec(&mm->rss_stat[member]);
- mm_trace_rss_stat(mm, member, count);
+ mm_trace_rss_stat(mm, member);
}
-/* Optimized variant when page is already known not to be PageAnon */
-static inline int mm_counter_file(struct page *page)
+/* Optimized variant when folio is already known not to be anon */
+static inline int mm_counter_file(struct folio *folio)
{
- if (PageSwapBacked(page))
+ if (folio_test_swapbacked(folio))
return MM_SHMEMPAGES;
return MM_FILEPAGES;
}
-static inline int mm_counter(struct page *page)
+static inline int mm_counter(struct folio *folio)
{
- if (PageAnon(page))
+ if (folio_test_anon(folio))
return MM_ANONPAGES;
- return mm_counter_file(page);
+ return mm_counter_file(folio);
}
static inline unsigned long get_mm_rss(struct mm_struct *mm)
@@ -1942,7 +2627,7 @@ static inline void update_hiwater_rss(struct mm_struct *mm)
{
unsigned long _rss = get_mm_rss(mm);
- if ((mm)->hiwater_rss < _rss)
+ if (data_race(mm->hiwater_rss) < _rss)
(mm)->hiwater_rss = _rss;
}
@@ -1966,14 +2651,6 @@ static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
*maxrss = hiwater_rss;
}
-#if defined(SPLIT_RSS_COUNTING)
-void sync_mm_rss(struct mm_struct *mm);
-#else
-static inline void sync_mm_rss(struct mm_struct *mm)
-{
-}
-#endif
-
#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
static inline int pte_special(pte_t pte)
{
@@ -1986,6 +2663,30 @@ static inline pte_t pte_mkspecial(pte_t pte)
}
#endif
+#ifndef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP
+static inline bool pmd_special(pmd_t pmd)
+{
+ return false;
+}
+
+static inline pmd_t pmd_mkspecial(pmd_t pmd)
+{
+ return pmd;
+}
+#endif /* CONFIG_ARCH_SUPPORTS_PMD_PFNMAP */
+
+#ifndef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP
+static inline bool pud_special(pud_t pud)
+{
+ return false;
+}
+
+static inline pud_t pud_mkspecial(pud_t pud)
+{
+ return pud;
+}
+#endif /* CONFIG_ARCH_SUPPORTS_PUD_PFNMAP */
+
#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
static inline int pte_devmap(pte_t pte)
{
@@ -1993,8 +2694,6 @@ static inline int pte_devmap(pte_t pte)
}
#endif
-int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
-
extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
spinlock_t **ptl);
static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
@@ -2128,42 +2827,101 @@ static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long a
}
#endif /* CONFIG_MMU */
-#if USE_SPLIT_PTE_PTLOCKS
+static inline struct ptdesc *virt_to_ptdesc(const void *x)
+{
+ return page_ptdesc(virt_to_page(x));
+}
+
+static inline void *ptdesc_to_virt(const struct ptdesc *pt)
+{
+ return page_to_virt(ptdesc_page(pt));
+}
+
+static inline void *ptdesc_address(const struct ptdesc *pt)
+{
+ return folio_address(ptdesc_folio(pt));
+}
+
+static inline bool pagetable_is_reserved(struct ptdesc *pt)
+{
+ return folio_test_reserved(ptdesc_folio(pt));
+}
+
+/**
+ * pagetable_alloc - Allocate pagetables
+ * @gfp: GFP flags
+ * @order: desired pagetable order
+ *
+ * pagetable_alloc allocates memory for page tables as well as a page table
+ * descriptor to describe that memory.
+ *
+ * Return: The ptdesc describing the allocated page tables.
+ */
+static inline struct ptdesc *pagetable_alloc_noprof(gfp_t gfp, unsigned int order)
+{
+ struct page *page = alloc_pages_noprof(gfp | __GFP_COMP, order);
+
+ return page_ptdesc(page);
+}
+#define pagetable_alloc(...) alloc_hooks(pagetable_alloc_noprof(__VA_ARGS__))
+
+/**
+ * pagetable_free - Free pagetables
+ * @pt: The page table descriptor
+ *
+ * pagetable_free frees the memory of all page tables described by a page
+ * table descriptor and the memory for the descriptor itself.
+ */
+static inline void pagetable_free(struct ptdesc *pt)
+{
+ struct page *page = ptdesc_page(pt);
+
+ __free_pages(page, compound_order(page));
+}
+
+#if defined(CONFIG_SPLIT_PTE_PTLOCKS)
#if ALLOC_SPLIT_PTLOCKS
void __init ptlock_cache_init(void);
-extern bool ptlock_alloc(struct page *page);
-extern void ptlock_free(struct page *page);
+bool ptlock_alloc(struct ptdesc *ptdesc);
+void ptlock_free(struct ptdesc *ptdesc);
-static inline spinlock_t *ptlock_ptr(struct page *page)
+static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
{
- return page->ptl;
+ return ptdesc->ptl;
}
#else /* ALLOC_SPLIT_PTLOCKS */
static inline void ptlock_cache_init(void)
{
}
-static inline bool ptlock_alloc(struct page *page)
+static inline bool ptlock_alloc(struct ptdesc *ptdesc)
{
return true;
}
-static inline void ptlock_free(struct page *page)
+static inline void ptlock_free(struct ptdesc *ptdesc)
{
}
-static inline spinlock_t *ptlock_ptr(struct page *page)
+static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
{
- return &page->ptl;
+ return &ptdesc->ptl;
}
#endif /* ALLOC_SPLIT_PTLOCKS */
static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
{
- return ptlock_ptr(pmd_page(*pmd));
+ return ptlock_ptr(page_ptdesc(pmd_page(*pmd)));
+}
+
+static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
+{
+ BUILD_BUG_ON(IS_ENABLED(CONFIG_HIGHPTE));
+ BUILD_BUG_ON(MAX_PTRS_PER_PTE * sizeof(pte_t) > PAGE_SIZE);
+ return ptlock_ptr(virt_to_ptdesc(pte));
}
-static inline bool ptlock_init(struct page *page)
+static inline bool ptlock_init(struct ptdesc *ptdesc)
{
/*
* prep_new_page() initialize page->private (and therefore page->ptl)
@@ -2172,14 +2930,14 @@ static inline bool ptlock_init(struct page *page)
* It can happen if arch try to use slab for page table allocation:
* slab code uses page->slab_cache, which share storage with page->ptl.
*/
- VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
- if (!ptlock_alloc(page))
+ VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc));
+ if (!ptlock_alloc(ptdesc))
return false;
- spin_lock_init(ptlock_ptr(page));
+ spin_lock_init(ptlock_ptr(ptdesc));
return true;
}
-#else /* !USE_SPLIT_PTE_PTLOCKS */
+#else /* !defined(CONFIG_SPLIT_PTE_PTLOCKS) */
/*
* We use mm->page_table_lock to guard all pagetable pages of the mm.
*/
@@ -2187,41 +2945,78 @@ static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
{
return &mm->page_table_lock;
}
+static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
+{
+ return &mm->page_table_lock;
+}
static inline void ptlock_cache_init(void) {}
-static inline bool ptlock_init(struct page *page) { return true; }
-static inline void ptlock_free(struct page *page) {}
-#endif /* USE_SPLIT_PTE_PTLOCKS */
+static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; }
+static inline void ptlock_free(struct ptdesc *ptdesc) {}
+#endif /* defined(CONFIG_SPLIT_PTE_PTLOCKS) */
-static inline void pgtable_init(void)
+static inline void __pagetable_ctor(struct ptdesc *ptdesc)
{
- ptlock_cache_init();
- pgtable_cache_init();
+ struct folio *folio = ptdesc_folio(ptdesc);
+
+ __folio_set_pgtable(folio);
+ lruvec_stat_add_folio(folio, NR_PAGETABLE);
}
-static inline bool pgtable_pte_page_ctor(struct page *page)
+static inline void pagetable_dtor(struct ptdesc *ptdesc)
{
- if (!ptlock_init(page))
+ struct folio *folio = ptdesc_folio(ptdesc);
+
+ ptlock_free(ptdesc);
+ __folio_clear_pgtable(folio);
+ lruvec_stat_sub_folio(folio, NR_PAGETABLE);
+}
+
+static inline void pagetable_dtor_free(struct ptdesc *ptdesc)
+{
+ pagetable_dtor(ptdesc);
+ pagetable_free(ptdesc);
+}
+
+static inline bool pagetable_pte_ctor(struct mm_struct *mm,
+ struct ptdesc *ptdesc)
+{
+ if (mm != &init_mm && !ptlock_init(ptdesc))
return false;
- __SetPageTable(page);
- inc_zone_page_state(page, NR_PAGETABLE);
+ __pagetable_ctor(ptdesc);
return true;
}
-static inline void pgtable_pte_page_dtor(struct page *page)
+pte_t *___pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp);
+static inline pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr,
+ pmd_t *pmdvalp)
+{
+ pte_t *pte;
+
+ __cond_lock(RCU, pte = ___pte_offset_map(pmd, addr, pmdvalp));
+ return pte;
+}
+static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr)
+{
+ return __pte_offset_map(pmd, addr, NULL);
+}
+
+pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
+ unsigned long addr, spinlock_t **ptlp);
+static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
+ unsigned long addr, spinlock_t **ptlp)
{
- ptlock_free(page);
- __ClearPageTable(page);
- dec_zone_page_state(page, NR_PAGETABLE);
+ pte_t *pte;
+
+ __cond_lock(RCU, __cond_lock(*ptlp,
+ pte = __pte_offset_map_lock(mm, pmd, addr, ptlp)));
+ return pte;
}
-#define pte_offset_map_lock(mm, pmd, address, ptlp) \
-({ \
- spinlock_t *__ptl = pte_lockptr(mm, pmd); \
- pte_t *__pte = pte_offset_map(pmd, address); \
- *(ptlp) = __ptl; \
- spin_lock(__ptl); \
- __pte; \
-})
+pte_t *pte_offset_map_ro_nolock(struct mm_struct *mm, pmd_t *pmd,
+ unsigned long addr, spinlock_t **ptlp);
+pte_t *pte_offset_map_rw_nolock(struct mm_struct *mm, pmd_t *pmd,
+ unsigned long addr, pmd_t *pmdvalp,
+ spinlock_t **ptlp);
#define pte_unmap_unlock(pte, ptl) do { \
spin_unlock(ptl); \
@@ -2241,36 +3036,33 @@ static inline void pgtable_pte_page_dtor(struct page *page)
((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
NULL: pte_offset_kernel(pmd, address))
-#if USE_SPLIT_PMD_PTLOCKS
+#if defined(CONFIG_SPLIT_PMD_PTLOCKS)
-static struct page *pmd_to_page(pmd_t *pmd)
+static inline struct page *pmd_pgtable_page(pmd_t *pmd)
{
unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
return virt_to_page((void *)((unsigned long) pmd & mask));
}
-static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
+static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd)
{
- return ptlock_ptr(pmd_to_page(pmd));
+ return page_ptdesc(pmd_pgtable_page(pmd));
}
-static inline bool pmd_ptlock_init(struct page *page)
+static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
{
-#ifdef CONFIG_TRANSPARENT_HUGEPAGE
- page->pmd_huge_pte = NULL;
-#endif
- return ptlock_init(page);
+ return ptlock_ptr(pmd_ptdesc(pmd));
}
-static inline void pmd_ptlock_free(struct page *page)
+static inline bool pmd_ptlock_init(struct ptdesc *ptdesc)
{
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
- VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
+ ptdesc->pmd_huge_pte = NULL;
#endif
- ptlock_free(page);
+ return ptlock_init(ptdesc);
}
-#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
+#define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte)
#else
@@ -2279,8 +3071,7 @@ static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
return &mm->page_table_lock;
}
-static inline bool pmd_ptlock_init(struct page *page) { return true; }
-static inline void pmd_ptlock_free(struct page *page) {}
+static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; }
#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
@@ -2293,22 +3084,16 @@ static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
return ptl;
}
-static inline bool pgtable_pmd_page_ctor(struct page *page)
+static inline bool pagetable_pmd_ctor(struct mm_struct *mm,
+ struct ptdesc *ptdesc)
{
- if (!pmd_ptlock_init(page))
+ if (mm != &init_mm && !pmd_ptlock_init(ptdesc))
return false;
- __SetPageTable(page);
- inc_zone_page_state(page, NR_PAGETABLE);
+ ptdesc_pmd_pts_init(ptdesc);
+ __pagetable_ctor(ptdesc);
return true;
}
-static inline void pgtable_pmd_page_dtor(struct page *page)
-{
- pmd_ptlock_free(page);
- __ClearPageTable(page);
- dec_zone_page_state(page, NR_PAGETABLE);
-}
-
/*
* No scalability reason to split PUD locks yet, but follow the same pattern
* as the PMD locks to make it easier if we decide to. The VM should not be
@@ -2328,8 +3113,22 @@ static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
return ptl;
}
+static inline void pagetable_pud_ctor(struct ptdesc *ptdesc)
+{
+ __pagetable_ctor(ptdesc);
+}
+
+static inline void pagetable_p4d_ctor(struct ptdesc *ptdesc)
+{
+ __pagetable_ctor(ptdesc);
+}
+
+static inline void pagetable_pgd_ctor(struct ptdesc *ptdesc)
+{
+ __pagetable_ctor(ptdesc);
+}
+
extern void __init pagecache_init(void);
-extern void __init free_area_init_memoryless_node(int nid);
extern void free_initmem(void);
/*
@@ -2341,32 +3140,13 @@ extern void free_initmem(void);
extern unsigned long free_reserved_area(void *start, void *end,
int poison, const char *s);
-#ifdef CONFIG_HIGHMEM
-/*
- * Free a highmem page into the buddy system, adjusting totalhigh_pages
- * and totalram_pages.
- */
-extern void free_highmem_page(struct page *page);
-#endif
-
extern void adjust_managed_page_count(struct page *page, long count);
-extern void mem_init_print_info(const char *str);
-extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
+extern void reserve_bootmem_region(phys_addr_t start,
+ phys_addr_t end, int nid);
/* Free the reserved page into the buddy system, so it gets managed. */
-static inline void __free_reserved_page(struct page *page)
-{
- ClearPageReserved(page);
- init_page_count(page);
- __free_page(page);
-}
-
-static inline void free_reserved_page(struct page *page)
-{
- __free_reserved_page(page);
- adjust_managed_page_count(page, 1);
-}
+void free_reserved_page(struct page *page);
static inline void mark_page_reserved(struct page *page)
{
@@ -2374,6 +3154,11 @@ static inline void mark_page_reserved(struct page *page)
adjust_managed_page_count(page, -1);
}
+static inline void free_reserved_ptdesc(struct ptdesc *pt)
+{
+ free_reserved_page(ptdesc_page(pt));
+}
+
/*
* Default method to free all the __init memory into the buddy system.
* The freed pages will be poisoned with pattern "poison" if it's within
@@ -2385,7 +3170,7 @@ static inline unsigned long free_initmem_default(int poison)
extern char __init_begin[], __init_end[];
return free_reserved_area(&__init_begin, &__init_end,
- poison, "unused kernel");
+ poison, "unused kernel image (initmem)");
}
static inline unsigned long get_num_physpages(void)
@@ -2412,20 +3197,17 @@ static inline unsigned long get_num_physpages(void)
* unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
* max_highmem_pfn};
* for_each_valid_physical_page_range()
- * memblock_add_node(base, size, nid)
+ * memblock_add_node(base, size, nid, MEMBLOCK_NONE)
* free_area_init(max_zone_pfns);
*/
void free_area_init(unsigned long *max_zone_pfn);
unsigned long node_map_pfn_alignment(void);
-unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
- unsigned long end_pfn);
extern unsigned long absent_pages_in_range(unsigned long start_pfn,
unsigned long end_pfn);
extern void get_pfn_range_for_nid(unsigned int nid,
unsigned long *start_pfn, unsigned long *end_pfn);
-extern unsigned long find_min_pfn_with_active_regions(void);
-#ifndef CONFIG_NEED_MULTIPLE_NODES
+#ifndef CONFIG_NUMA
static inline int early_pfn_to_nid(unsigned long pfn)
{
return 0;
@@ -2433,37 +3215,25 @@ static inline int early_pfn_to_nid(unsigned long pfn)
#else
/* please see mm/page_alloc.c */
extern int __meminit early_pfn_to_nid(unsigned long pfn);
-/* there is a per-arch backend function. */
-extern int __meminit __early_pfn_to_nid(unsigned long pfn,
- struct mminit_pfnnid_cache *state);
#endif
-extern void set_dma_reserve(unsigned long new_dma_reserve);
-extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
- enum meminit_context, struct vmem_altmap *, int migratetype);
-extern void setup_per_zone_wmarks(void);
-extern int __meminit init_per_zone_wmark_min(void);
extern void mem_init(void);
extern void __init mmap_init(void);
-extern void show_mem(unsigned int flags, nodemask_t *nodemask);
+
+extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
+static inline void show_mem(void)
+{
+ __show_mem(0, NULL, MAX_NR_ZONES - 1);
+}
extern long si_mem_available(void);
extern void si_meminfo(struct sysinfo * val);
extern void si_meminfo_node(struct sysinfo *val, int nid);
-#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
-extern unsigned long arch_reserved_kernel_pages(void);
-#endif
extern __printf(3, 4)
void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
extern void setup_per_cpu_pageset(void);
-/* page_alloc.c */
-extern int min_free_kbytes;
-extern int watermark_boost_factor;
-extern int watermark_scale_factor;
-extern bool arch_has_descending_max_zone_pfns(void);
-
/* nommu.c */
extern atomic_long_t mmap_pages_allocated;
extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
@@ -2504,31 +3274,10 @@ void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
/* mmap.c */
extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
-extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
- unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
- struct vm_area_struct *expand);
-static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
- unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
-{
- return __vma_adjust(vma, start, end, pgoff, insert, NULL);
-}
-extern struct vm_area_struct *vma_merge(struct mm_struct *,
- struct vm_area_struct *prev, unsigned long addr, unsigned long end,
- unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
- struct mempolicy *, struct vm_userfaultfd_ctx);
-extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
-extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
- unsigned long addr, int new_below);
-extern int split_vma(struct mm_struct *, struct vm_area_struct *,
- unsigned long addr, int new_below);
extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
-extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
- struct rb_node **, struct rb_node *);
-extern void unlink_file_vma(struct vm_area_struct *);
-extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
- unsigned long addr, unsigned long len, pgoff_t pgoff,
- bool *need_rmap_locks);
extern void exit_mmap(struct mm_struct *);
+bool mmap_read_lock_maybe_expand(struct mm_struct *mm, struct vm_area_struct *vma,
+ unsigned long addr, bool write);
static inline int check_data_rlimit(unsigned long rlim,
unsigned long new,
@@ -2547,7 +3296,8 @@ static inline int check_data_rlimit(unsigned long rlim,
extern int mm_take_all_locks(struct mm_struct *mm);
extern void mm_drop_all_locks(struct mm_struct *mm);
-extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
+extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
+extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
extern struct file *get_mm_exe_file(struct mm_struct *mm);
extern struct file *get_task_exe_file(struct task_struct *task);
@@ -2560,23 +3310,31 @@ extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
unsigned long addr, unsigned long len,
unsigned long flags,
const struct vm_special_mapping *spec);
-/* This is an obsolete alternative to _install_special_mapping. */
-extern int install_special_mapping(struct mm_struct *mm,
- unsigned long addr, unsigned long len,
- unsigned long flags, struct page **pages);
unsigned long randomize_stack_top(unsigned long stack_top);
+unsigned long randomize_page(unsigned long start, unsigned long range);
-extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
+unsigned long
+__get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
+ unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags);
+
+static inline unsigned long
+get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
+ unsigned long pgoff, unsigned long flags)
+{
+ return __get_unmapped_area(file, addr, len, pgoff, flags, 0);
+}
-extern unsigned long mmap_region(struct file *file, unsigned long addr,
- unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
- struct list_head *uf);
extern unsigned long do_mmap(struct file *file, unsigned long addr,
unsigned long len, unsigned long prot, unsigned long flags,
- unsigned long pgoff, unsigned long *populate, struct list_head *uf);
-extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
- struct list_head *uf, bool downgrade);
+ vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
+ struct list_head *uf);
+extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
+ unsigned long start, size_t len, struct list_head *uf,
+ bool unlock);
+int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
+ struct mm_struct *mm, unsigned long start,
+ unsigned long end, struct list_head *uf, bool unlock);
extern int do_munmap(struct mm_struct *, unsigned long, size_t,
struct list_head *uf);
extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
@@ -2593,8 +3351,7 @@ static inline void mm_populate(unsigned long addr, unsigned long len)
static inline void mm_populate(unsigned long addr, unsigned long len) {}
#endif
-/* These take the mm semaphore themselves */
-extern int __must_check vm_brk(unsigned long, unsigned long);
+/* This takes the mm semaphore itself */
extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
extern int vm_munmap(unsigned long, size_t);
extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
@@ -2609,6 +3366,7 @@ struct vm_unmapped_area_info {
unsigned long high_limit;
unsigned long align_mask;
unsigned long align_offset;
+ unsigned long start_gap;
};
extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
@@ -2621,52 +3379,60 @@ extern void truncate_inode_pages_final(struct address_space *);
/* generic vm_area_ops exported for stackable file systems */
extern vm_fault_t filemap_fault(struct vm_fault *vmf);
-extern void filemap_map_pages(struct vm_fault *vmf,
+extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
pgoff_t start_pgoff, pgoff_t end_pgoff);
extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
-/* mm/page-writeback.c */
-int __must_check write_one_page(struct page *page);
-void task_dirty_inc(struct task_struct *tsk);
-
extern unsigned long stack_guard_gap;
/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
-extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
-
-/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
-extern int expand_downwards(struct vm_area_struct *vma,
- unsigned long address);
-#if VM_GROWSUP
-extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
-#else
- #define expand_upwards(vma, address) (0)
-#endif
+int expand_stack_locked(struct vm_area_struct *vma, unsigned long address);
+struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr);
/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
struct vm_area_struct **pprev);
-/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
- NULL if none. Assume start_addr < end_addr. */
-static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
+/*
+ * Look up the first VMA which intersects the interval [start_addr, end_addr)
+ * NULL if none. Assume start_addr < end_addr.
+ */
+struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
+ unsigned long start_addr, unsigned long end_addr);
+
+/**
+ * vma_lookup() - Find a VMA at a specific address
+ * @mm: The process address space.
+ * @addr: The user address.
+ *
+ * Return: The vm_area_struct at the given address, %NULL otherwise.
+ */
+static inline
+struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
+{
+ return mtree_load(&mm->mm_mt, addr);
+}
+
+static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma)
{
- struct vm_area_struct * vma = find_vma(mm,start_addr);
+ if (vma->vm_flags & VM_GROWSDOWN)
+ return stack_guard_gap;
- if (vma && end_addr <= vma->vm_start)
- vma = NULL;
- return vma;
+ /* See reasoning around the VM_SHADOW_STACK definition */
+ if (vma->vm_flags & VM_SHADOW_STACK)
+ return PAGE_SIZE;
+
+ return 0;
}
static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
{
+ unsigned long gap = stack_guard_start_gap(vma);
unsigned long vm_start = vma->vm_start;
- if (vma->vm_flags & VM_GROWSDOWN) {
- vm_start -= stack_guard_gap;
- if (vm_start > vma->vm_start)
- vm_start = 0;
- }
+ vm_start -= gap;
+ if (vm_start > vma->vm_start)
+ vm_start = 0;
return vm_start;
}
@@ -2691,7 +3457,7 @@ static inline unsigned long vma_pages(struct vm_area_struct *vma)
static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
unsigned long vm_start, unsigned long vm_end)
{
- struct vm_area_struct *vma = find_vma(mm, vm_start);
+ struct vm_area_struct *vma = vma_lookup(mm, vm_start);
if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
vma = NULL;
@@ -2719,14 +3485,19 @@ static inline void vma_set_page_prot(struct vm_area_struct *vma)
}
#endif
+void vma_set_file(struct vm_area_struct *vma, struct file *file);
+
#ifdef CONFIG_NUMA_BALANCING
unsigned long change_prot_numa(struct vm_area_struct *vma,
unsigned long start, unsigned long end);
#endif
-struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
+struct vm_area_struct *find_extend_vma_locked(struct mm_struct *,
+ unsigned long addr);
int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
unsigned long pfn, unsigned long size, pgprot_t);
+int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
+ unsigned long pfn, unsigned long size, pgprot_t prot);
int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
struct page **pages, unsigned long *num);
@@ -2734,14 +3505,14 @@ int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
unsigned long num);
int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
unsigned long num);
+vm_fault_t vmf_insert_page_mkwrite(struct vm_fault *vmf, struct page *page,
+ bool write);
vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
unsigned long pfn);
vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
unsigned long pfn, pgprot_t pgprot);
vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
pfn_t pfn);
-vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
- pfn_t pfn, pgprot_t pgprot);
vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
unsigned long addr, pfn_t pfn);
int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
@@ -2759,93 +3530,41 @@ static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
return VM_FAULT_NOPAGE;
}
+#ifndef io_remap_pfn_range
+static inline int io_remap_pfn_range(struct vm_area_struct *vma,
+ unsigned long addr, unsigned long pfn,
+ unsigned long size, pgprot_t prot)
+{
+ return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
+}
+#endif
+
static inline vm_fault_t vmf_error(int err)
{
if (err == -ENOMEM)
return VM_FAULT_OOM;
+ else if (err == -EHWPOISON)
+ return VM_FAULT_HWPOISON;
return VM_FAULT_SIGBUS;
}
-struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
- unsigned int foll_flags);
-
-#define FOLL_WRITE 0x01 /* check pte is writable */
-#define FOLL_TOUCH 0x02 /* mark page accessed */
-#define FOLL_GET 0x04 /* do get_page on page */
-#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
-#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
-#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
- * and return without waiting upon it */
-#define FOLL_POPULATE 0x40 /* fault in page */
-#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
-#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
-#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
-#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
-#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
-#define FOLL_MLOCK 0x1000 /* lock present pages */
-#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
-#define FOLL_COW 0x4000 /* internal GUP flag */
-#define FOLL_ANON 0x8000 /* don't do file mappings */
-#define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */
-#define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */
-#define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */
-#define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */
-
-/*
- * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
- * other. Here is what they mean, and how to use them:
- *
- * FOLL_LONGTERM indicates that the page will be held for an indefinite time
- * period _often_ under userspace control. This is in contrast to
- * iov_iter_get_pages(), whose usages are transient.
- *
- * FIXME: For pages which are part of a filesystem, mappings are subject to the
- * lifetime enforced by the filesystem and we need guarantees that longterm
- * users like RDMA and V4L2 only establish mappings which coordinate usage with
- * the filesystem. Ideas for this coordination include revoking the longterm
- * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was
- * added after the problem with filesystems was found FS DAX VMAs are
- * specifically failed. Filesystem pages are still subject to bugs and use of
- * FOLL_LONGTERM should be avoided on those pages.
- *
- * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
- * Currently only get_user_pages() and get_user_pages_fast() support this flag
- * and calls to get_user_pages_[un]locked are specifically not allowed. This
- * is due to an incompatibility with the FS DAX check and
- * FAULT_FLAG_ALLOW_RETRY.
- *
- * In the CMA case: long term pins in a CMA region would unnecessarily fragment
- * that region. And so, CMA attempts to migrate the page before pinning, when
- * FOLL_LONGTERM is specified.
- *
- * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
- * but an additional pin counting system) will be invoked. This is intended for
- * anything that gets a page reference and then touches page data (for example,
- * Direct IO). This lets the filesystem know that some non-file-system entity is
- * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
- * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
- * a call to unpin_user_page().
- *
- * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
- * and separate refcounting mechanisms, however, and that means that each has
- * its own acquire and release mechanisms:
- *
- * FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
- *
- * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
- *
- * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
- * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
- * calls applied to them, and that's perfectly OK. This is a constraint on the
- * callers, not on the pages.)
- *
- * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
- * directly by the caller. That's in order to help avoid mismatches when
- * releasing pages: get_user_pages*() pages must be released via put_page(),
- * while pin_user_pages*() pages must be released via unpin_user_page().
- *
- * Please see Documentation/core-api/pin_user_pages.rst for more information.
+/*
+ * Convert errno to return value for ->page_mkwrite() calls.
+ *
+ * This should eventually be merged with vmf_error() above, but will need a
+ * careful audit of all vmf_error() callers.
*/
+static inline vm_fault_t vmf_fs_error(int err)
+{
+ if (err == 0)
+ return VM_FAULT_LOCKED;
+ if (err == -EFAULT || err == -EAGAIN)
+ return VM_FAULT_NOPAGE;
+ if (err == -ENOMEM)
+ return VM_FAULT_OOM;
+ /* -ENOSPC, -EDQUOT, -EIO ... */
+ return VM_FAULT_SIGBUS;
+}
static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
{
@@ -2858,6 +3577,30 @@ static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
return 0;
}
+/*
+ * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
+ * a (NUMA hinting) fault is required.
+ */
+static inline bool gup_can_follow_protnone(struct vm_area_struct *vma,
+ unsigned int flags)
+{
+ /*
+ * If callers don't want to honor NUMA hinting faults, no need to
+ * determine if we would actually have to trigger a NUMA hinting fault.
+ */
+ if (!(flags & FOLL_HONOR_NUMA_FAULT))
+ return true;
+
+ /*
+ * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs.
+ *
+ * Requiring a fault here even for inaccessible VMAs would mean that
+ * FOLL_FORCE cannot make any progress, because handle_mm_fault()
+ * refuses to process NUMA hinting faults in inaccessible VMAs.
+ */
+ return !vma_is_accessible(vma);
+}
+
typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
unsigned long size, pte_fn_t fn, void *data);
@@ -2866,43 +3609,56 @@ extern int apply_to_existing_page_range(struct mm_struct *mm,
pte_fn_t fn, void *data);
#ifdef CONFIG_PAGE_POISONING
-extern bool page_poisoning_enabled(void);
-extern void kernel_poison_pages(struct page *page, int numpages, int enable);
+extern void __kernel_poison_pages(struct page *page, int numpages);
+extern void __kernel_unpoison_pages(struct page *page, int numpages);
+extern bool _page_poisoning_enabled_early;
+DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
+static inline bool page_poisoning_enabled(void)
+{
+ return _page_poisoning_enabled_early;
+}
+/*
+ * For use in fast paths after init_mem_debugging() has run, or when a
+ * false negative result is not harmful when called too early.
+ */
+static inline bool page_poisoning_enabled_static(void)
+{
+ return static_branch_unlikely(&_page_poisoning_enabled);
+}
+static inline void kernel_poison_pages(struct page *page, int numpages)
+{
+ if (page_poisoning_enabled_static())
+ __kernel_poison_pages(page, numpages);
+}
+static inline void kernel_unpoison_pages(struct page *page, int numpages)
+{
+ if (page_poisoning_enabled_static())
+ __kernel_unpoison_pages(page, numpages);
+}
#else
static inline bool page_poisoning_enabled(void) { return false; }
-static inline void kernel_poison_pages(struct page *page, int numpages,
- int enable) { }
+static inline bool page_poisoning_enabled_static(void) { return false; }
+static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
+static inline void kernel_poison_pages(struct page *page, int numpages) { }
+static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
#endif
-#ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
-DECLARE_STATIC_KEY_TRUE(init_on_alloc);
-#else
-DECLARE_STATIC_KEY_FALSE(init_on_alloc);
-#endif
+DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
static inline bool want_init_on_alloc(gfp_t flags)
{
- if (static_branch_unlikely(&init_on_alloc) &&
- !page_poisoning_enabled())
+ if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
+ &init_on_alloc))
return true;
return flags & __GFP_ZERO;
}
-#ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
-DECLARE_STATIC_KEY_TRUE(init_on_free);
-#else
-DECLARE_STATIC_KEY_FALSE(init_on_free);
-#endif
+DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
static inline bool want_init_on_free(void)
{
- return static_branch_unlikely(&init_on_free) &&
- !page_poisoning_enabled();
+ return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
+ &init_on_free);
}
-#ifdef CONFIG_DEBUG_PAGEALLOC
-extern void init_debug_pagealloc(void);
-#else
-static inline void init_debug_pagealloc(void) {}
-#endif
extern bool _debug_pagealloc_enabled_early;
DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
@@ -2913,8 +3669,8 @@ static inline bool debug_pagealloc_enabled(void)
}
/*
- * For use in fast paths after init_debug_pagealloc() has run, or when a
- * false negative result is not harmful when called too early.
+ * For use in fast paths after mem_debugging_and_hardening_init() has run,
+ * or when a false negative result is not harmful when called too early.
*/
static inline bool debug_pagealloc_enabled_static(void)
{
@@ -2924,28 +3680,74 @@ static inline bool debug_pagealloc_enabled_static(void)
return static_branch_unlikely(&_debug_pagealloc_enabled);
}
-#if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP)
-extern void __kernel_map_pages(struct page *page, int numpages, int enable);
-
/*
- * When called in DEBUG_PAGEALLOC context, the call should most likely be
- * guarded by debug_pagealloc_enabled() or debug_pagealloc_enabled_static()
+ * To support DEBUG_PAGEALLOC architecture must ensure that
+ * __kernel_map_pages() never fails
*/
-static inline void
-kernel_map_pages(struct page *page, int numpages, int enable)
+extern void __kernel_map_pages(struct page *page, int numpages, int enable);
+#ifdef CONFIG_DEBUG_PAGEALLOC
+static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
+{
+ if (debug_pagealloc_enabled_static())
+ __kernel_map_pages(page, numpages, 1);
+}
+
+static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
+{
+ if (debug_pagealloc_enabled_static())
+ __kernel_map_pages(page, numpages, 0);
+}
+
+extern unsigned int _debug_guardpage_minorder;
+DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
+
+static inline unsigned int debug_guardpage_minorder(void)
+{
+ return _debug_guardpage_minorder;
+}
+
+static inline bool debug_guardpage_enabled(void)
+{
+ return static_branch_unlikely(&_debug_guardpage_enabled);
+}
+
+static inline bool page_is_guard(struct page *page)
+{
+ if (!debug_guardpage_enabled())
+ return false;
+
+ return PageGuard(page);
+}
+
+bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order);
+static inline bool set_page_guard(struct zone *zone, struct page *page,
+ unsigned int order)
{
- __kernel_map_pages(page, numpages, enable);
+ if (!debug_guardpage_enabled())
+ return false;
+ return __set_page_guard(zone, page, order);
}
-#ifdef CONFIG_HIBERNATION
-extern bool kernel_page_present(struct page *page);
-#endif /* CONFIG_HIBERNATION */
-#else /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
-static inline void
-kernel_map_pages(struct page *page, int numpages, int enable) {}
-#ifdef CONFIG_HIBERNATION
-static inline bool kernel_page_present(struct page *page) { return true; }
-#endif /* CONFIG_HIBERNATION */
-#endif /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
+
+void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order);
+static inline void clear_page_guard(struct zone *zone, struct page *page,
+ unsigned int order)
+{
+ if (!debug_guardpage_enabled())
+ return;
+ __clear_page_guard(zone, page, order);
+}
+
+#else /* CONFIG_DEBUG_PAGEALLOC */
+static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
+static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
+static inline unsigned int debug_guardpage_minorder(void) { return 0; }
+static inline bool debug_guardpage_enabled(void) { return false; }
+static inline bool page_is_guard(struct page *page) { return false; }
+static inline bool set_page_guard(struct zone *zone, struct page *page,
+ unsigned int order) { return false; }
+static inline void clear_page_guard(struct zone *zone, struct page *page,
+ unsigned int order) {}
+#endif /* CONFIG_DEBUG_PAGEALLOC */
#ifdef __HAVE_ARCH_GATE_AREA
extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
@@ -2965,14 +3767,7 @@ static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
-#ifdef CONFIG_SYSCTL
-extern int sysctl_drop_caches;
-int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
- loff_t *);
-#endif
-
void drop_slab(void);
-void drop_slab_node(int nid);
#ifndef CONFIG_MMU
#define randomize_va_space 0
@@ -2990,47 +3785,177 @@ static inline void print_vma_addr(char *prefix, unsigned long rip)
#endif
void *sparse_buffer_alloc(unsigned long size);
+unsigned long section_map_size(void);
struct page * __populate_section_memmap(unsigned long pfn,
- unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
+ unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
+ struct dev_pagemap *pgmap);
pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
- struct vmem_altmap *altmap);
+ struct vmem_altmap *altmap, unsigned long ptpfn,
+ unsigned long flags);
void *vmemmap_alloc_block(unsigned long size, int node);
struct vmem_altmap;
void *vmemmap_alloc_block_buf(unsigned long size, int node,
struct vmem_altmap *altmap);
void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
+void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
+ unsigned long addr, unsigned long next);
+int vmemmap_check_pmd(pmd_t *pmd, int node,
+ unsigned long addr, unsigned long next);
int vmemmap_populate_basepages(unsigned long start, unsigned long end,
int node, struct vmem_altmap *altmap);
+int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
+ int node, struct vmem_altmap *altmap);
int vmemmap_populate(unsigned long start, unsigned long end, int node,
struct vmem_altmap *altmap);
+int vmemmap_populate_hvo(unsigned long start, unsigned long end, int node,
+ unsigned long headsize);
+int vmemmap_undo_hvo(unsigned long start, unsigned long end, int node,
+ unsigned long headsize);
+void vmemmap_wrprotect_hvo(unsigned long start, unsigned long end, int node,
+ unsigned long headsize);
void vmemmap_populate_print_last(void);
#ifdef CONFIG_MEMORY_HOTPLUG
void vmemmap_free(unsigned long start, unsigned long end,
struct vmem_altmap *altmap);
#endif
-void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
- unsigned long nr_pages);
+
+#ifdef CONFIG_SPARSEMEM_VMEMMAP
+static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
+{
+ /* number of pfns from base where pfn_to_page() is valid */
+ if (altmap)
+ return altmap->reserve + altmap->free;
+ return 0;
+}
+
+static inline void vmem_altmap_free(struct vmem_altmap *altmap,
+ unsigned long nr_pfns)
+{
+ altmap->alloc -= nr_pfns;
+}
+#else
+static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
+{
+ return 0;
+}
+
+static inline void vmem_altmap_free(struct vmem_altmap *altmap,
+ unsigned long nr_pfns)
+{
+}
+#endif
+
+#define VMEMMAP_RESERVE_NR 2
+#ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP
+static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap,
+ struct dev_pagemap *pgmap)
+{
+ unsigned long nr_pages;
+ unsigned long nr_vmemmap_pages;
+
+ if (!pgmap || !is_power_of_2(sizeof(struct page)))
+ return false;
+
+ nr_pages = pgmap_vmemmap_nr(pgmap);
+ nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT);
+ /*
+ * For vmemmap optimization with DAX we need minimum 2 vmemmap
+ * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst
+ */
+ return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR);
+}
+/*
+ * If we don't have an architecture override, use the generic rule
+ */
+#ifndef vmemmap_can_optimize
+#define vmemmap_can_optimize __vmemmap_can_optimize
+#endif
+
+#else
+static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
+ struct dev_pagemap *pgmap)
+{
+ return false;
+}
+#endif
enum mf_flags {
MF_COUNT_INCREASED = 1 << 0,
MF_ACTION_REQUIRED = 1 << 1,
MF_MUST_KILL = 1 << 2,
MF_SOFT_OFFLINE = 1 << 3,
+ MF_UNPOISON = 1 << 4,
+ MF_SW_SIMULATED = 1 << 5,
+ MF_NO_RETRY = 1 << 6,
+ MF_MEM_PRE_REMOVE = 1 << 7,
};
+int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
+ unsigned long count, int mf_flags);
extern int memory_failure(unsigned long pfn, int flags);
-extern void memory_failure_queue(unsigned long pfn, int flags);
extern void memory_failure_queue_kick(int cpu);
extern int unpoison_memory(unsigned long pfn);
-extern int sysctl_memory_failure_early_kill;
-extern int sysctl_memory_failure_recovery;
-extern void shake_page(struct page *p, int access);
extern atomic_long_t num_poisoned_pages __read_mostly;
extern int soft_offline_page(unsigned long pfn, int flags);
+#ifdef CONFIG_MEMORY_FAILURE
+/*
+ * Sysfs entries for memory failure handling statistics.
+ */
+extern const struct attribute_group memory_failure_attr_group;
+extern void memory_failure_queue(unsigned long pfn, int flags);
+extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
+ bool *migratable_cleared);
+void num_poisoned_pages_inc(unsigned long pfn);
+void num_poisoned_pages_sub(unsigned long pfn, long i);
+#else
+static inline void memory_failure_queue(unsigned long pfn, int flags)
+{
+}
+
+static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
+ bool *migratable_cleared)
+{
+ return 0;
+}
+
+static inline void num_poisoned_pages_inc(unsigned long pfn)
+{
+}
+
+static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
+{
+}
+#endif
+
+#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
+extern void memblk_nr_poison_inc(unsigned long pfn);
+extern void memblk_nr_poison_sub(unsigned long pfn, long i);
+#else
+static inline void memblk_nr_poison_inc(unsigned long pfn)
+{
+}
+static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
+{
+}
+#endif
+
+#ifndef arch_memory_failure
+static inline int arch_memory_failure(unsigned long pfn, int flags)
+{
+ return -ENXIO;
+}
+#endif
+
+#ifndef arch_is_platform_page
+static inline bool arch_is_platform_page(u64 paddr)
+{
+ return false;
+}
+#endif
/*
* Error handlers for various types of pages.
@@ -3045,12 +3970,10 @@ enum mf_result {
enum mf_action_page_type {
MF_MSG_KERNEL,
MF_MSG_KERNEL_HIGH_ORDER,
- MF_MSG_SLAB,
MF_MSG_DIFFERENT_COMPOUND,
- MF_MSG_POISONED_HUGE,
MF_MSG_HUGE,
MF_MSG_FREE_HUGE,
- MF_MSG_NON_PMD_HUGE,
+ MF_MSG_GET_HWPOISON,
MF_MSG_UNMAP_FAILED,
MF_MSG_DIRTY_SWAPCACHE,
MF_MSG_CLEAN_SWAPCACHE,
@@ -3062,24 +3985,20 @@ enum mf_action_page_type {
MF_MSG_CLEAN_LRU,
MF_MSG_TRUNCATED_LRU,
MF_MSG_BUDDY,
- MF_MSG_BUDDY_2ND,
MF_MSG_DAX,
MF_MSG_UNSPLIT_THP,
+ MF_MSG_ALREADY_POISONED,
MF_MSG_UNKNOWN,
};
#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
-extern void clear_huge_page(struct page *page,
- unsigned long addr_hint,
- unsigned int pages_per_huge_page);
-extern void copy_user_huge_page(struct page *dst, struct page *src,
- unsigned long addr_hint,
- struct vm_area_struct *vma,
- unsigned int pages_per_huge_page);
-extern long copy_huge_page_from_user(struct page *dst_page,
- const void __user *usr_src,
- unsigned int pages_per_huge_page,
- bool allow_pagefault);
+void folio_zero_user(struct folio *folio, unsigned long addr_hint);
+int copy_user_large_folio(struct folio *dst, struct folio *src,
+ unsigned long addr_hint,
+ struct vm_area_struct *vma);
+long copy_folio_from_user(struct folio *dst_folio,
+ const void __user *usr_src,
+ bool allow_pagefault);
/**
* vma_is_special_huge - Are transhuge page-table entries considered special?
@@ -3099,33 +4018,6 @@ static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
-#ifdef CONFIG_DEBUG_PAGEALLOC
-extern unsigned int _debug_guardpage_minorder;
-DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
-
-static inline unsigned int debug_guardpage_minorder(void)
-{
- return _debug_guardpage_minorder;
-}
-
-static inline bool debug_guardpage_enabled(void)
-{
- return static_branch_unlikely(&_debug_guardpage_enabled);
-}
-
-static inline bool page_is_guard(struct page *page)
-{
- if (!debug_guardpage_enabled())
- return false;
-
- return PageGuard(page);
-}
-#else
-static inline unsigned int debug_guardpage_minorder(void) { return 0; }
-static inline bool debug_guardpage_enabled(void) { return false; }
-static inline bool page_is_guard(struct page *page) { return false; }
-#endif /* CONFIG_DEBUG_PAGEALLOC */
-
#if MAX_NUMNODES > 1
void __init setup_nr_node_ids(void);
#else
@@ -3151,7 +4043,145 @@ unsigned long wp_shared_mapping_range(struct address_space *mapping,
pgoff_t first_index, pgoff_t nr);
#endif
-extern int sysctl_nr_trim_pages;
+#ifdef CONFIG_ANON_VMA_NAME
+int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
+ unsigned long len_in,
+ struct anon_vma_name *anon_name);
+#else
+static inline int
+madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
+ unsigned long len_in, struct anon_vma_name *anon_name) {
+ return 0;
+}
+#endif
+
+#ifdef CONFIG_UNACCEPTED_MEMORY
+
+bool range_contains_unaccepted_memory(phys_addr_t start, unsigned long size);
+void accept_memory(phys_addr_t start, unsigned long size);
+
+#else
+
+static inline bool range_contains_unaccepted_memory(phys_addr_t start,
+ unsigned long size)
+{
+ return false;
+}
+
+static inline void accept_memory(phys_addr_t start, unsigned long size)
+{
+}
+
+#endif
+
+static inline bool pfn_is_unaccepted_memory(unsigned long pfn)
+{
+ return range_contains_unaccepted_memory(pfn << PAGE_SHIFT, PAGE_SIZE);
+}
+
+void vma_pgtable_walk_begin(struct vm_area_struct *vma);
+void vma_pgtable_walk_end(struct vm_area_struct *vma);
+
+int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size);
+int reserve_mem_release_by_name(const char *name);
+
+#ifdef CONFIG_64BIT
+int do_mseal(unsigned long start, size_t len_in, unsigned long flags);
+#else
+static inline int do_mseal(unsigned long start, size_t len_in, unsigned long flags)
+{
+ /* noop on 32 bit */
+ return 0;
+}
+#endif
+
+/*
+ * user_alloc_needs_zeroing checks if a user folio from page allocator needs to
+ * be zeroed or not.
+ */
+static inline bool user_alloc_needs_zeroing(void)
+{
+ /*
+ * for user folios, arch with cache aliasing requires cache flush and
+ * arc changes folio->flags to make icache coherent with dcache, so
+ * always return false to make caller use
+ * clear_user_page()/clear_user_highpage().
+ */
+ return cpu_dcache_is_aliasing() || cpu_icache_is_aliasing() ||
+ !static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
+ &init_on_alloc);
+}
+
+int arch_get_shadow_stack_status(struct task_struct *t, unsigned long __user *status);
+int arch_set_shadow_stack_status(struct task_struct *t, unsigned long status);
+int arch_lock_shadow_stack_status(struct task_struct *t, unsigned long status);
+
+
+/*
+ * mseal of userspace process's system mappings.
+ */
+#ifdef CONFIG_MSEAL_SYSTEM_MAPPINGS
+#define VM_SEALED_SYSMAP VM_SEALED
+#else
+#define VM_SEALED_SYSMAP VM_NONE
+#endif
+
+/*
+ * DMA mapping IDs for page_pool
+ *
+ * When DMA-mapping a page, page_pool allocates an ID (from an xarray) and
+ * stashes it in the upper bits of page->pp_magic. We always want to be able to
+ * unambiguously identify page pool pages (using page_pool_page_is_pp()). Non-PP
+ * pages can have arbitrary kernel pointers stored in the same field as pp_magic
+ * (since it overlaps with page->lru.next), so we must ensure that we cannot
+ * mistake a valid kernel pointer with any of the values we write into this
+ * field.
+ *
+ * On architectures that set POISON_POINTER_DELTA, this is already ensured,
+ * since this value becomes part of PP_SIGNATURE; meaning we can just use the
+ * space between the PP_SIGNATURE value (without POISON_POINTER_DELTA), and the
+ * lowest bits of POISON_POINTER_DELTA. On arches where POISON_POINTER_DELTA is
+ * 0, we make sure that we leave the two topmost bits empty, as that guarantees
+ * we won't mistake a valid kernel pointer for a value we set, regardless of the
+ * VMSPLIT setting.
+ *
+ * Altogether, this means that the number of bits available is constrained by
+ * the size of an unsigned long (at the upper end, subtracting two bits per the
+ * above), and the definition of PP_SIGNATURE (with or without
+ * POISON_POINTER_DELTA).
+ */
+#define PP_DMA_INDEX_SHIFT (1 + __fls(PP_SIGNATURE - POISON_POINTER_DELTA))
+#if POISON_POINTER_DELTA > 0
+/* PP_SIGNATURE includes POISON_POINTER_DELTA, so limit the size of the DMA
+ * index to not overlap with that if set
+ */
+#define PP_DMA_INDEX_BITS MIN(32, __ffs(POISON_POINTER_DELTA) - PP_DMA_INDEX_SHIFT)
+#else
+/* Always leave out the topmost two; see above. */
+#define PP_DMA_INDEX_BITS MIN(32, BITS_PER_LONG - PP_DMA_INDEX_SHIFT - 2)
+#endif
+
+#define PP_DMA_INDEX_MASK GENMASK(PP_DMA_INDEX_BITS + PP_DMA_INDEX_SHIFT - 1, \
+ PP_DMA_INDEX_SHIFT)
+
+/* Mask used for checking in page_pool_page_is_pp() below. page->pp_magic is
+ * OR'ed with PP_SIGNATURE after the allocation in order to preserve bit 0 for
+ * the head page of compound page and bit 1 for pfmemalloc page, as well as the
+ * bits used for the DMA index. page_is_pfmemalloc() is checked in
+ * __page_pool_put_page() to avoid recycling the pfmemalloc page.
+ */
+#define PP_MAGIC_MASK ~(PP_DMA_INDEX_MASK | 0x3UL)
+
+#ifdef CONFIG_PAGE_POOL
+static inline bool page_pool_page_is_pp(struct page *page)
+{
+ return (page->pp_magic & PP_MAGIC_MASK) == PP_SIGNATURE;
+}
+#else
+static inline bool page_pool_page_is_pp(struct page *page)
+{
+ return false;
+}
+#endif
-#endif /* __KERNEL__ */
#endif /* _LINUX_MM_H */