diff options
Diffstat (limited to 'include/linux/mmzone.h')
-rw-r--r-- | include/linux/mmzone.h | 1292 |
1 files changed, 1045 insertions, 247 deletions
diff --git a/include/linux/mmzone.h b/include/linux/mmzone.h index fb3bf696c05e..283913d42d7b 100644 --- a/include/linux/mmzone.h +++ b/include/linux/mmzone.h @@ -7,6 +7,7 @@ #include <linux/spinlock.h> #include <linux/list.h> +#include <linux/list_nulls.h> #include <linux/wait.h> #include <linux/bitops.h> #include <linux/cache.h> @@ -20,15 +21,37 @@ #include <linux/atomic.h> #include <linux/mm_types.h> #include <linux/page-flags.h> +#include <linux/local_lock.h> +#include <linux/zswap.h> #include <asm/page.h> /* Free memory management - zoned buddy allocator. */ -#ifndef CONFIG_FORCE_MAX_ZONEORDER -#define MAX_ORDER 11 +#ifndef CONFIG_ARCH_FORCE_MAX_ORDER +#define MAX_PAGE_ORDER 10 #else -#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER +#define MAX_PAGE_ORDER CONFIG_ARCH_FORCE_MAX_ORDER +#endif +#define MAX_ORDER_NR_PAGES (1 << MAX_PAGE_ORDER) + +#define IS_MAX_ORDER_ALIGNED(pfn) IS_ALIGNED(pfn, MAX_ORDER_NR_PAGES) + +#define NR_PAGE_ORDERS (MAX_PAGE_ORDER + 1) + +/* Defines the order for the number of pages that have a migrate type. */ +#ifndef CONFIG_PAGE_BLOCK_ORDER +#define PAGE_BLOCK_ORDER MAX_PAGE_ORDER +#else +#define PAGE_BLOCK_ORDER CONFIG_PAGE_BLOCK_ORDER +#endif /* CONFIG_PAGE_BLOCK_ORDER */ + +/* + * The MAX_PAGE_ORDER, which defines the max order of pages to be allocated + * by the buddy allocator, has to be larger or equal to the PAGE_BLOCK_ORDER, + * which defines the order for the number of pages that can have a migrate type + */ +#if (PAGE_BLOCK_ORDER > MAX_PAGE_ORDER) +#error MAX_PAGE_ORDER must be >= PAGE_BLOCK_ORDER #endif -#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1)) /* * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed @@ -53,10 +76,7 @@ enum migratetype { * * The way to use it is to change migratetype of a range of * pageblocks to MIGRATE_CMA which can be done by - * __free_pageblock_cma() function. What is important though - * is that a range of pageblocks must be aligned to - * MAX_ORDER_NR_PAGES should biggest page be bigger then - * a single pageblock. + * __free_pageblock_cma() function. */ MIGRATE_CMA, #endif @@ -72,9 +92,12 @@ extern const char * const migratetype_names[MIGRATE_TYPES]; #ifdef CONFIG_CMA # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA) # define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA) +# define is_migrate_cma_folio(folio, pfn) (MIGRATE_CMA == \ + get_pfnblock_flags_mask(&folio->page, pfn, MIGRATETYPE_MASK)) #else # define is_migrate_cma(migratetype) false # define is_migrate_cma_page(_page) false +# define is_migrate_cma_folio(folio, pfn) false #endif static inline bool is_migrate_movable(int mt) @@ -82,8 +105,19 @@ static inline bool is_migrate_movable(int mt) return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE; } +/* + * Check whether a migratetype can be merged with another migratetype. + * + * It is only mergeable when it can fall back to other migratetypes for + * allocation. See fallbacks[MIGRATE_TYPES][3] in page_alloc.c. + */ +static inline bool migratetype_is_mergeable(int mt) +{ + return mt < MIGRATE_PCPTYPES; +} + #define for_each_migratetype_order(order, type) \ - for (order = 0; order < MAX_ORDER; order++) \ + for (order = 0; order < NR_PAGE_ORDERS; order++) \ for (type = 0; type < MIGRATE_TYPES; type++) extern int page_group_by_mobility_disabled; @@ -93,40 +127,16 @@ extern int page_group_by_mobility_disabled; #define get_pageblock_migratetype(page) \ get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK) +#define folio_migratetype(folio) \ + get_pfnblock_flags_mask(&folio->page, folio_pfn(folio), \ + MIGRATETYPE_MASK) struct free_area { struct list_head free_list[MIGRATE_TYPES]; unsigned long nr_free; }; -static inline struct page *get_page_from_free_area(struct free_area *area, - int migratetype) -{ - return list_first_entry_or_null(&area->free_list[migratetype], - struct page, lru); -} - -static inline bool free_area_empty(struct free_area *area, int migratetype) -{ - return list_empty(&area->free_list[migratetype]); -} - struct pglist_data; -/* - * zone->lock and the zone lru_lock are two of the hottest locks in the kernel. - * So add a wild amount of padding here to ensure that they fall into separate - * cachelines. There are very few zone structures in the machine, so space - * consumption is not a concern here. - */ -#if defined(CONFIG_SMP) -struct zone_padding { - char x[0]; -} ____cacheline_internodealigned_in_smp; -#define ZONE_PADDING(name) struct zone_padding name; -#else -#define ZONE_PADDING(name) -#endif - #ifdef CONFIG_NUMA enum numa_stat_item { NUMA_HIT, /* allocated in intended node */ @@ -135,15 +145,16 @@ enum numa_stat_item { NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ NUMA_LOCAL, /* allocation from local node */ NUMA_OTHER, /* allocation from other node */ - NR_VM_NUMA_STAT_ITEMS + NR_VM_NUMA_EVENT_ITEMS }; #else -#define NR_VM_NUMA_STAT_ITEMS 0 +#define NR_VM_NUMA_EVENT_ITEMS 0 #endif enum zone_stat_item { /* First 128 byte cacheline (assuming 64 bit words) */ NR_FREE_PAGES, + NR_FREE_PAGES_BLOCKS, NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */ NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE, NR_ZONE_ACTIVE_ANON, @@ -152,13 +163,14 @@ enum zone_stat_item { NR_ZONE_UNEVICTABLE, NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */ NR_MLOCK, /* mlock()ed pages found and moved off LRU */ - NR_PAGETABLE, /* used for pagetables */ /* Second 128 byte cacheline */ - NR_BOUNCE, #if IS_ENABLED(CONFIG_ZSMALLOC) NR_ZSPAGES, /* allocated in zsmalloc */ #endif NR_FREE_CMA_PAGES, +#ifdef CONFIG_UNACCEPTED_MEMORY + NR_UNACCEPTED, +#endif NR_VM_ZONE_STAT_ITEMS }; enum node_stat_item { @@ -200,6 +212,7 @@ enum node_stat_item { NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */ NR_DIRTIED, /* page dirtyings since bootup */ NR_WRITTEN, /* page writings since bootup */ + NR_THROTTLED_WRITTEN, /* NR_WRITTEN while reclaim throttled */ NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */ NR_FOLL_PIN_ACQUIRED, /* via: pin_user_page(), gup flag: FOLL_PIN */ NR_FOLL_PIN_RELEASED, /* pages returned via unpin_user_page() */ @@ -207,10 +220,48 @@ enum node_stat_item { #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK) NR_KERNEL_SCS_KB, /* measured in KiB */ #endif + NR_PAGETABLE, /* used for pagetables */ + NR_SECONDARY_PAGETABLE, /* secondary pagetables, KVM & IOMMU */ +#ifdef CONFIG_IOMMU_SUPPORT + NR_IOMMU_PAGES, /* # of pages allocated by IOMMU */ +#endif +#ifdef CONFIG_SWAP + NR_SWAPCACHE, +#endif +#ifdef CONFIG_NUMA_BALANCING + PGPROMOTE_SUCCESS, /* promote successfully */ + PGPROMOTE_CANDIDATE, /* candidate pages to promote */ +#endif + /* PGDEMOTE_*: pages demoted */ + PGDEMOTE_KSWAPD, + PGDEMOTE_DIRECT, + PGDEMOTE_KHUGEPAGED, + PGDEMOTE_PROACTIVE, +#ifdef CONFIG_HUGETLB_PAGE + NR_HUGETLB, +#endif + NR_BALLOON_PAGES, NR_VM_NODE_STAT_ITEMS }; /* + * Returns true if the item should be printed in THPs (/proc/vmstat + * currently prints number of anon, file and shmem THPs. But the item + * is charged in pages). + */ +static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item) +{ + if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) + return false; + + return item == NR_ANON_THPS || + item == NR_FILE_THPS || + item == NR_SHMEM_THPS || + item == NR_SHMEM_PMDMAPPED || + item == NR_FILE_PMDMAPPED; +} + +/* * Returns true if the value is measured in bytes (most vmstat values are * measured in pages). This defines the API part, the internal representation * might be different. @@ -252,6 +303,14 @@ enum lru_list { NR_LRU_LISTS }; +enum vmscan_throttle_state { + VMSCAN_THROTTLE_WRITEBACK, + VMSCAN_THROTTLE_ISOLATED, + VMSCAN_THROTTLE_NOPROGRESS, + VMSCAN_THROTTLE_CONGESTED, + NR_VMSCAN_THROTTLE, +}; + #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++) #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++) @@ -266,16 +325,332 @@ static inline bool is_active_lru(enum lru_list lru) return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE); } +#define WORKINGSET_ANON 0 +#define WORKINGSET_FILE 1 #define ANON_AND_FILE 2 enum lruvec_flags { - LRUVEC_CONGESTED, /* lruvec has many dirty pages - * backed by a congested BDI - */ + /* + * An lruvec has many dirty pages backed by a congested BDI: + * 1. LRUVEC_CGROUP_CONGESTED is set by cgroup-level reclaim. + * It can be cleared by cgroup reclaim or kswapd. + * 2. LRUVEC_NODE_CONGESTED is set by kswapd node-level reclaim. + * It can only be cleared by kswapd. + * + * Essentially, kswapd can unthrottle an lruvec throttled by cgroup + * reclaim, but not vice versa. This only applies to the root cgroup. + * The goal is to prevent cgroup reclaim on the root cgroup (e.g. + * memory.reclaim) to unthrottle an unbalanced node (that was throttled + * by kswapd). + */ + LRUVEC_CGROUP_CONGESTED, + LRUVEC_NODE_CONGESTED, }; +#endif /* !__GENERATING_BOUNDS_H */ + +/* + * Evictable folios are divided into multiple generations. The youngest and the + * oldest generation numbers, max_seq and min_seq, are monotonically increasing. + * They form a sliding window of a variable size [MIN_NR_GENS, MAX_NR_GENS]. An + * offset within MAX_NR_GENS, i.e., gen, indexes the LRU list of the + * corresponding generation. The gen counter in folio->flags stores gen+1 while + * a folio is on one of lrugen->folios[]. Otherwise it stores 0. + * + * After a folio is faulted in, the aging needs to check the accessed bit at + * least twice before handing this folio over to the eviction. The first check + * clears the accessed bit from the initial fault; the second check makes sure + * this folio hasn't been used since then. This process, AKA second chance, + * requires a minimum of two generations, hence MIN_NR_GENS. And to maintain ABI + * compatibility with the active/inactive LRU, e.g., /proc/vmstat, these two + * generations are considered active; the rest of generations, if they exist, + * are considered inactive. See lru_gen_is_active(). + * + * PG_active is always cleared while a folio is on one of lrugen->folios[] so + * that the sliding window needs not to worry about it. And it's set again when + * a folio considered active is isolated for non-reclaiming purposes, e.g., + * migration. See lru_gen_add_folio() and lru_gen_del_folio(). + * + * MAX_NR_GENS is set to 4 so that the multi-gen LRU can support twice the + * number of categories of the active/inactive LRU when keeping track of + * accesses through page tables. This requires order_base_2(MAX_NR_GENS+1) bits + * in folio->flags, masked by LRU_GEN_MASK. + */ +#define MIN_NR_GENS 2U +#define MAX_NR_GENS 4U + +/* + * Each generation is divided into multiple tiers. A folio accessed N times + * through file descriptors is in tier order_base_2(N). A folio in the first + * tier (N=0,1) is marked by PG_referenced unless it was faulted in through page + * tables or read ahead. A folio in the last tier (MAX_NR_TIERS-1) is marked by + * PG_workingset. A folio in any other tier (1<N<5) between the first and last + * is marked by additional bits of LRU_REFS_WIDTH in folio->flags. + * + * In contrast to moving across generations which requires the LRU lock, moving + * across tiers only involves atomic operations on folio->flags and therefore + * has a negligible cost in the buffered access path. In the eviction path, + * comparisons of refaulted/(evicted+protected) from the first tier and the rest + * infer whether folios accessed multiple times through file descriptors are + * statistically hot and thus worth protecting. + * + * MAX_NR_TIERS is set to 4 so that the multi-gen LRU can support twice the + * number of categories of the active/inactive LRU when keeping track of + * accesses through file descriptors. This uses MAX_NR_TIERS-2 spare bits in + * folio->flags, masked by LRU_REFS_MASK. + */ +#define MAX_NR_TIERS 4U + +#ifndef __GENERATING_BOUNDS_H + +#define LRU_GEN_MASK ((BIT(LRU_GEN_WIDTH) - 1) << LRU_GEN_PGOFF) +#define LRU_REFS_MASK ((BIT(LRU_REFS_WIDTH) - 1) << LRU_REFS_PGOFF) + +/* + * For folios accessed multiple times through file descriptors, + * lru_gen_inc_refs() sets additional bits of LRU_REFS_WIDTH in folio->flags + * after PG_referenced, then PG_workingset after LRU_REFS_WIDTH. After all its + * bits are set, i.e., LRU_REFS_FLAGS|BIT(PG_workingset), a folio is lazily + * promoted into the second oldest generation in the eviction path. And when + * folio_inc_gen() does that, it clears LRU_REFS_FLAGS so that + * lru_gen_inc_refs() can start over. Note that for this case, LRU_REFS_MASK is + * only valid when PG_referenced is set. + * + * For folios accessed multiple times through page tables, folio_update_gen() + * from a page table walk or lru_gen_set_refs() from a rmap walk sets + * PG_referenced after the accessed bit is cleared for the first time. + * Thereafter, those two paths set PG_workingset and promote folios to the + * youngest generation. Like folio_inc_gen(), folio_update_gen() also clears + * PG_referenced. Note that for this case, LRU_REFS_MASK is not used. + * + * For both cases above, after PG_workingset is set on a folio, it remains until + * this folio is either reclaimed, or "deactivated" by lru_gen_clear_refs(). It + * can be set again if lru_gen_test_recent() returns true upon a refault. + */ +#define LRU_REFS_FLAGS (LRU_REFS_MASK | BIT(PG_referenced)) + +struct lruvec; +struct page_vma_mapped_walk; + +#ifdef CONFIG_LRU_GEN + +enum { + LRU_GEN_ANON, + LRU_GEN_FILE, +}; + +enum { + LRU_GEN_CORE, + LRU_GEN_MM_WALK, + LRU_GEN_NONLEAF_YOUNG, + NR_LRU_GEN_CAPS +}; + +#define MIN_LRU_BATCH BITS_PER_LONG +#define MAX_LRU_BATCH (MIN_LRU_BATCH * 64) + +/* whether to keep historical stats from evicted generations */ +#ifdef CONFIG_LRU_GEN_STATS +#define NR_HIST_GENS MAX_NR_GENS +#else +#define NR_HIST_GENS 1U +#endif + +/* + * The youngest generation number is stored in max_seq for both anon and file + * types as they are aged on an equal footing. The oldest generation numbers are + * stored in min_seq[] separately for anon and file types so that they can be + * incremented independently. Ideally min_seq[] are kept in sync when both anon + * and file types are evictable. However, to adapt to situations like extreme + * swappiness, they are allowed to be out of sync by at most + * MAX_NR_GENS-MIN_NR_GENS-1. + * + * The number of pages in each generation is eventually consistent and therefore + * can be transiently negative when reset_batch_size() is pending. + */ +struct lru_gen_folio { + /* the aging increments the youngest generation number */ + unsigned long max_seq; + /* the eviction increments the oldest generation numbers */ + unsigned long min_seq[ANON_AND_FILE]; + /* the birth time of each generation in jiffies */ + unsigned long timestamps[MAX_NR_GENS]; + /* the multi-gen LRU lists, lazily sorted on eviction */ + struct list_head folios[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES]; + /* the multi-gen LRU sizes, eventually consistent */ + long nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES]; + /* the exponential moving average of refaulted */ + unsigned long avg_refaulted[ANON_AND_FILE][MAX_NR_TIERS]; + /* the exponential moving average of evicted+protected */ + unsigned long avg_total[ANON_AND_FILE][MAX_NR_TIERS]; + /* can only be modified under the LRU lock */ + unsigned long protected[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS]; + /* can be modified without holding the LRU lock */ + atomic_long_t evicted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS]; + atomic_long_t refaulted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS]; + /* whether the multi-gen LRU is enabled */ + bool enabled; + /* the memcg generation this lru_gen_folio belongs to */ + u8 gen; + /* the list segment this lru_gen_folio belongs to */ + u8 seg; + /* per-node lru_gen_folio list for global reclaim */ + struct hlist_nulls_node list; +}; + +enum { + MM_LEAF_TOTAL, /* total leaf entries */ + MM_LEAF_YOUNG, /* young leaf entries */ + MM_NONLEAF_FOUND, /* non-leaf entries found in Bloom filters */ + MM_NONLEAF_ADDED, /* non-leaf entries added to Bloom filters */ + NR_MM_STATS +}; + +/* double-buffering Bloom filters */ +#define NR_BLOOM_FILTERS 2 + +struct lru_gen_mm_state { + /* synced with max_seq after each iteration */ + unsigned long seq; + /* where the current iteration continues after */ + struct list_head *head; + /* where the last iteration ended before */ + struct list_head *tail; + /* Bloom filters flip after each iteration */ + unsigned long *filters[NR_BLOOM_FILTERS]; + /* the mm stats for debugging */ + unsigned long stats[NR_HIST_GENS][NR_MM_STATS]; +}; + +struct lru_gen_mm_walk { + /* the lruvec under reclaim */ + struct lruvec *lruvec; + /* max_seq from lru_gen_folio: can be out of date */ + unsigned long seq; + /* the next address within an mm to scan */ + unsigned long next_addr; + /* to batch promoted pages */ + int nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES]; + /* to batch the mm stats */ + int mm_stats[NR_MM_STATS]; + /* total batched items */ + int batched; + int swappiness; + bool force_scan; +}; + +/* + * For each node, memcgs are divided into two generations: the old and the + * young. For each generation, memcgs are randomly sharded into multiple bins + * to improve scalability. For each bin, the hlist_nulls is virtually divided + * into three segments: the head, the tail and the default. + * + * An onlining memcg is added to the tail of a random bin in the old generation. + * The eviction starts at the head of a random bin in the old generation. The + * per-node memcg generation counter, whose reminder (mod MEMCG_NR_GENS) indexes + * the old generation, is incremented when all its bins become empty. + * + * There are four operations: + * 1. MEMCG_LRU_HEAD, which moves a memcg to the head of a random bin in its + * current generation (old or young) and updates its "seg" to "head"; + * 2. MEMCG_LRU_TAIL, which moves a memcg to the tail of a random bin in its + * current generation (old or young) and updates its "seg" to "tail"; + * 3. MEMCG_LRU_OLD, which moves a memcg to the head of a random bin in the old + * generation, updates its "gen" to "old" and resets its "seg" to "default"; + * 4. MEMCG_LRU_YOUNG, which moves a memcg to the tail of a random bin in the + * young generation, updates its "gen" to "young" and resets its "seg" to + * "default". + * + * The events that trigger the above operations are: + * 1. Exceeding the soft limit, which triggers MEMCG_LRU_HEAD; + * 2. The first attempt to reclaim a memcg below low, which triggers + * MEMCG_LRU_TAIL; + * 3. The first attempt to reclaim a memcg offlined or below reclaimable size + * threshold, which triggers MEMCG_LRU_TAIL; + * 4. The second attempt to reclaim a memcg offlined or below reclaimable size + * threshold, which triggers MEMCG_LRU_YOUNG; + * 5. Attempting to reclaim a memcg below min, which triggers MEMCG_LRU_YOUNG; + * 6. Finishing the aging on the eviction path, which triggers MEMCG_LRU_YOUNG; + * 7. Offlining a memcg, which triggers MEMCG_LRU_OLD. + * + * Notes: + * 1. Memcg LRU only applies to global reclaim, and the round-robin incrementing + * of their max_seq counters ensures the eventual fairness to all eligible + * memcgs. For memcg reclaim, it still relies on mem_cgroup_iter(). + * 2. There are only two valid generations: old (seq) and young (seq+1). + * MEMCG_NR_GENS is set to three so that when reading the generation counter + * locklessly, a stale value (seq-1) does not wraparound to young. + */ +#define MEMCG_NR_GENS 3 +#define MEMCG_NR_BINS 8 + +struct lru_gen_memcg { + /* the per-node memcg generation counter */ + unsigned long seq; + /* each memcg has one lru_gen_folio per node */ + unsigned long nr_memcgs[MEMCG_NR_GENS]; + /* per-node lru_gen_folio list for global reclaim */ + struct hlist_nulls_head fifo[MEMCG_NR_GENS][MEMCG_NR_BINS]; + /* protects the above */ + spinlock_t lock; +}; + +void lru_gen_init_pgdat(struct pglist_data *pgdat); +void lru_gen_init_lruvec(struct lruvec *lruvec); +bool lru_gen_look_around(struct page_vma_mapped_walk *pvmw); + +void lru_gen_init_memcg(struct mem_cgroup *memcg); +void lru_gen_exit_memcg(struct mem_cgroup *memcg); +void lru_gen_online_memcg(struct mem_cgroup *memcg); +void lru_gen_offline_memcg(struct mem_cgroup *memcg); +void lru_gen_release_memcg(struct mem_cgroup *memcg); +void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid); + +#else /* !CONFIG_LRU_GEN */ + +static inline void lru_gen_init_pgdat(struct pglist_data *pgdat) +{ +} + +static inline void lru_gen_init_lruvec(struct lruvec *lruvec) +{ +} + +static inline bool lru_gen_look_around(struct page_vma_mapped_walk *pvmw) +{ + return false; +} + +static inline void lru_gen_init_memcg(struct mem_cgroup *memcg) +{ +} + +static inline void lru_gen_exit_memcg(struct mem_cgroup *memcg) +{ +} + +static inline void lru_gen_online_memcg(struct mem_cgroup *memcg) +{ +} + +static inline void lru_gen_offline_memcg(struct mem_cgroup *memcg) +{ +} + +static inline void lru_gen_release_memcg(struct mem_cgroup *memcg) +{ +} + +static inline void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid) +{ +} + +#endif /* CONFIG_LRU_GEN */ + struct lruvec { struct list_head lists[NR_LRU_LISTS]; + /* per lruvec lru_lock for memcg */ + spinlock_t lru_lock; /* * These track the cost of reclaiming one LRU - file or anon - * over the other. As the observed cost of reclaiming one LRU @@ -289,13 +664,20 @@ struct lruvec { unsigned long refaults[ANON_AND_FILE]; /* Various lruvec state flags (enum lruvec_flags) */ unsigned long flags; +#ifdef CONFIG_LRU_GEN + /* evictable pages divided into generations */ + struct lru_gen_folio lrugen; +#ifdef CONFIG_LRU_GEN_WALKS_MMU + /* to concurrently iterate lru_gen_mm_list */ + struct lru_gen_mm_state mm_state; +#endif +#endif /* CONFIG_LRU_GEN */ #ifdef CONFIG_MEMCG struct pglist_data *pgdat; #endif + struct zswap_lruvec_state zswap_lruvec_state; }; -/* Isolate unmapped pages */ -#define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2) /* Isolate for asynchronous migration */ #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4) /* Isolate unevictable pages */ @@ -308,32 +690,68 @@ enum zone_watermarks { WMARK_MIN, WMARK_LOW, WMARK_HIGH, + WMARK_PROMO, NR_WMARK }; -#define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost) -#define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost) -#define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost) -#define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost) +/* + * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER. Two additional lists + * are added for THP. One PCP list is used by GPF_MOVABLE, and the other PCP list + * is used by GFP_UNMOVABLE and GFP_RECLAIMABLE. + */ +#ifdef CONFIG_TRANSPARENT_HUGEPAGE +#define NR_PCP_THP 2 +#else +#define NR_PCP_THP 0 +#endif +#define NR_LOWORDER_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1)) +#define NR_PCP_LISTS (NR_LOWORDER_PCP_LISTS + NR_PCP_THP) + +/* + * Flags used in pcp->flags field. + * + * PCPF_PREV_FREE_HIGH_ORDER: a high-order page is freed in the + * previous page freeing. To avoid to drain PCP for an accident + * high-order page freeing. + * + * PCPF_FREE_HIGH_BATCH: preserve "pcp->batch" pages in PCP before + * draining PCP for consecutive high-order pages freeing without + * allocation if data cache slice of CPU is large enough. To reduce + * zone lock contention and keep cache-hot pages reusing. + */ +#define PCPF_PREV_FREE_HIGH_ORDER BIT(0) +#define PCPF_FREE_HIGH_BATCH BIT(1) struct per_cpu_pages { + spinlock_t lock; /* Protects lists field */ int count; /* number of pages in the list */ int high; /* high watermark, emptying needed */ + int high_min; /* min high watermark */ + int high_max; /* max high watermark */ int batch; /* chunk size for buddy add/remove */ + u8 flags; /* protected by pcp->lock */ + u8 alloc_factor; /* batch scaling factor during allocate */ +#ifdef CONFIG_NUMA + u8 expire; /* When 0, remote pagesets are drained */ +#endif + short free_count; /* consecutive free count */ /* Lists of pages, one per migrate type stored on the pcp-lists */ - struct list_head lists[MIGRATE_PCPTYPES]; -}; + struct list_head lists[NR_PCP_LISTS]; +} ____cacheline_aligned_in_smp; -struct per_cpu_pageset { - struct per_cpu_pages pcp; -#ifdef CONFIG_NUMA - s8 expire; - u16 vm_numa_stat_diff[NR_VM_NUMA_STAT_ITEMS]; -#endif +struct per_cpu_zonestat { #ifdef CONFIG_SMP - s8 stat_threshold; s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; + s8 stat_threshold; +#endif +#ifdef CONFIG_NUMA + /* + * Low priority inaccurate counters that are only folded + * on demand. Use a large type to avoid the overhead of + * folding during refresh_cpu_vm_stats. + */ + unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS]; #endif }; @@ -354,26 +772,6 @@ enum zone_type { * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit * platforms may need both zones as they support peripherals with * different DMA addressing limitations. - * - * Some examples: - * - * - i386 and x86_64 have a fixed 16M ZONE_DMA and ZONE_DMA32 for the - * rest of the lower 4G. - * - * - arm only uses ZONE_DMA, the size, up to 4G, may vary depending on - * the specific device. - * - * - arm64 has a fixed 1G ZONE_DMA and ZONE_DMA32 for the rest of the - * lower 4G. - * - * - powerpc only uses ZONE_DMA, the size, up to 2G, may vary - * depending on the specific device. - * - * - s390 uses ZONE_DMA fixed to the lower 2G. - * - * - ia64 and riscv only use ZONE_DMA32. - * - * - parisc uses neither. */ #ifdef CONFIG_ZONE_DMA ZONE_DMA, @@ -406,8 +804,13 @@ enum zone_type { * to increase the number of THP/huge pages. Notable special cases are: * * 1. Pinned pages: (long-term) pinning of movable pages might - * essentially turn such pages unmovable. Memory offlining might - * retry a long time. + * essentially turn such pages unmovable. Therefore, we do not allow + * pinning long-term pages in ZONE_MOVABLE. When pages are pinned and + * faulted, they come from the right zone right away. However, it is + * still possible that address space already has pages in + * ZONE_MOVABLE at the time when pages are pinned (i.e. user has + * touches that memory before pinning). In such case we migrate them + * to a different zone. When migration fails - pinning fails. * 2. memblock allocations: kernelcore/movablecore setups might create * situations where ZONE_MOVABLE contains unmovable allocations * after boot. Memory offlining and allocations fail early. @@ -426,6 +829,15 @@ enum zone_type { * techniques might use alloc_contig_range() to hide previously * exposed pages from the buddy again (e.g., to implement some sort * of memory unplug in virtio-mem). + * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create + * situations where ZERO_PAGE(0) which is allocated differently + * on different platforms may end up in a movable zone. ZERO_PAGE(0) + * cannot be migrated. + * 7. Memory-hotplug: when using memmap_on_memory and onlining the + * memory to the MOVABLE zone, the vmemmap pages are also placed in + * such zone. Such pages cannot be really moved around as they are + * self-stored in the range, but they are treated as movable when + * the range they describe is about to be offlined. * * In general, no unmovable allocations that degrade memory offlining * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range()) @@ -453,6 +865,7 @@ struct zone { unsigned long watermark_boost; unsigned long nr_reserved_highatomic; + unsigned long nr_free_highatomic; /* * We don't know if the memory that we're going to allocate will be @@ -469,7 +882,15 @@ struct zone { int node; #endif struct pglist_data *zone_pgdat; - struct per_cpu_pageset __percpu *pageset; + struct per_cpu_pages __percpu *per_cpu_pageset; + struct per_cpu_zonestat __percpu *per_cpu_zonestats; + /* + * the high and batch values are copied to individual pagesets for + * faster access + */ + int pageset_high_min; + int pageset_high_max; + int pageset_batch; #ifndef CONFIG_SPARSEMEM /* @@ -491,11 +912,18 @@ struct zone { * is calculated as: * present_pages = spanned_pages - absent_pages(pages in holes); * + * present_early_pages is present pages existing within the zone + * located on memory available since early boot, excluding hotplugged + * memory. + * * managed_pages is present pages managed by the buddy system, which * is calculated as (reserved_pages includes pages allocated by the * bootmem allocator): * managed_pages = present_pages - reserved_pages; * + * cma pages is present pages that are assigned for CMA use + * (MIGRATE_CMA). + * * So present_pages may be used by memory hotplug or memory power * management logic to figure out unmanaged pages by checking * (present_pages - managed_pages). And managed_pages should be used @@ -514,12 +942,18 @@ struct zone { * give them a chance of being in the same cacheline. * * Write access to present_pages at runtime should be protected by - * mem_hotplug_begin/end(). Any reader who can't tolerant drift of - * present_pages should get_online_mems() to get a stable value. + * mem_hotplug_begin/done(). Any reader who can't tolerant drift of + * present_pages should use get_online_mems() to get a stable value. */ atomic_long_t managed_pages; unsigned long spanned_pages; unsigned long present_pages; +#if defined(CONFIG_MEMORY_HOTPLUG) + unsigned long present_early_pages; +#endif +#ifdef CONFIG_CMA + unsigned long cma_pages; +#endif const char *name; @@ -540,10 +974,18 @@ struct zone { int initialized; /* Write-intensive fields used from the page allocator */ - ZONE_PADDING(_pad1_) + CACHELINE_PADDING(_pad1_); /* free areas of different sizes */ - struct free_area free_area[MAX_ORDER]; + struct free_area free_area[NR_PAGE_ORDERS]; + +#ifdef CONFIG_UNACCEPTED_MEMORY + /* Pages to be accepted. All pages on the list are MAX_PAGE_ORDER */ + struct list_head unaccepted_pages; + + /* To be called once the last page in the zone is accepted */ + struct work_struct unaccepted_cleanup; +#endif /* zone flags, see below */ unsigned long flags; @@ -551,8 +993,11 @@ struct zone { /* Primarily protects free_area */ spinlock_t lock; + /* Pages to be freed when next trylock succeeds */ + struct llist_head trylock_free_pages; + /* Write-intensive fields used by compaction and vmstats. */ - ZONE_PADDING(_pad2_) + CACHELINE_PADDING(_pad2_); /* * When free pages are below this point, additional steps are taken @@ -589,10 +1034,10 @@ struct zone { bool contiguous; - ZONE_PADDING(_pad3_) + CACHELINE_PADDING(_pad3_); /* Zone statistics */ atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; - atomic_long_t vm_numa_stat[NR_VM_NUMA_STAT_ITEMS]; + atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS]; } ____cacheline_internodealigned_in_smp; enum pgdat_flags { @@ -610,13 +1055,50 @@ enum zone_flags { ZONE_BOOSTED_WATERMARK, /* zone recently boosted watermarks. * Cleared when kswapd is woken. */ + ZONE_RECLAIM_ACTIVE, /* kswapd may be scanning the zone. */ + ZONE_BELOW_HIGH, /* zone is below high watermark. */ }; +static inline unsigned long wmark_pages(const struct zone *z, + enum zone_watermarks w) +{ + return z->_watermark[w] + z->watermark_boost; +} + +static inline unsigned long min_wmark_pages(const struct zone *z) +{ + return wmark_pages(z, WMARK_MIN); +} + +static inline unsigned long low_wmark_pages(const struct zone *z) +{ + return wmark_pages(z, WMARK_LOW); +} + +static inline unsigned long high_wmark_pages(const struct zone *z) +{ + return wmark_pages(z, WMARK_HIGH); +} + +static inline unsigned long promo_wmark_pages(const struct zone *z) +{ + return wmark_pages(z, WMARK_PROMO); +} + static inline unsigned long zone_managed_pages(struct zone *zone) { return (unsigned long)atomic_long_read(&zone->managed_pages); } +static inline unsigned long zone_cma_pages(struct zone *zone) +{ +#ifdef CONFIG_CMA + return zone->cma_pages; +#else + return 0; +#endif +} + static inline unsigned long zone_end_pfn(const struct zone *zone) { return zone->zone_start_pfn + zone->spanned_pages; @@ -637,6 +1119,127 @@ static inline bool zone_is_empty(struct zone *zone) return zone->spanned_pages == 0; } +#ifndef BUILD_VDSO32_64 +/* + * The zone field is never updated after free_area_init_core() + * sets it, so none of the operations on it need to be atomic. + */ + +/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ +#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) +#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) +#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) +#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) +#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH) +#define LRU_GEN_PGOFF (KASAN_TAG_PGOFF - LRU_GEN_WIDTH) +#define LRU_REFS_PGOFF (LRU_GEN_PGOFF - LRU_REFS_WIDTH) + +/* + * Define the bit shifts to access each section. For non-existent + * sections we define the shift as 0; that plus a 0 mask ensures + * the compiler will optimise away reference to them. + */ +#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) +#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) +#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) +#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) +#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0)) + +/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ +#ifdef NODE_NOT_IN_PAGE_FLAGS +#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) +#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF) ? \ + SECTIONS_PGOFF : ZONES_PGOFF) +#else +#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) +#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF) ? \ + NODES_PGOFF : ZONES_PGOFF) +#endif + +#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) + +#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) +#define NODES_MASK ((1UL << NODES_WIDTH) - 1) +#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) +#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) +#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1) +#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) + +static inline enum zone_type page_zonenum(const struct page *page) +{ + ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT); + return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; +} + +static inline enum zone_type folio_zonenum(const struct folio *folio) +{ + return page_zonenum(&folio->page); +} + +#ifdef CONFIG_ZONE_DEVICE +static inline bool is_zone_device_page(const struct page *page) +{ + return page_zonenum(page) == ZONE_DEVICE; +} + +static inline struct dev_pagemap *page_pgmap(const struct page *page) +{ + VM_WARN_ON_ONCE_PAGE(!is_zone_device_page(page), page); + return page_folio(page)->pgmap; +} + +/* + * Consecutive zone device pages should not be merged into the same sgl + * or bvec segment with other types of pages or if they belong to different + * pgmaps. Otherwise getting the pgmap of a given segment is not possible + * without scanning the entire segment. This helper returns true either if + * both pages are not zone device pages or both pages are zone device pages + * with the same pgmap. + */ +static inline bool zone_device_pages_have_same_pgmap(const struct page *a, + const struct page *b) +{ + if (is_zone_device_page(a) != is_zone_device_page(b)) + return false; + if (!is_zone_device_page(a)) + return true; + return page_pgmap(a) == page_pgmap(b); +} + +extern void memmap_init_zone_device(struct zone *, unsigned long, + unsigned long, struct dev_pagemap *); +#else +static inline bool is_zone_device_page(const struct page *page) +{ + return false; +} +static inline bool zone_device_pages_have_same_pgmap(const struct page *a, + const struct page *b) +{ + return true; +} +static inline struct dev_pagemap *page_pgmap(const struct page *page) +{ + return NULL; +} +#endif + +static inline bool folio_is_zone_device(const struct folio *folio) +{ + return is_zone_device_page(&folio->page); +} + +static inline bool is_zone_movable_page(const struct page *page) +{ + return page_zonenum(page) == ZONE_MOVABLE; +} + +static inline bool folio_is_zone_movable(const struct folio *folio) +{ + return folio_zonenum(folio) == ZONE_MOVABLE; +} +#endif + /* * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty * intersection with the given zone @@ -702,10 +1305,12 @@ struct zonelist { struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; }; -#ifndef CONFIG_DISCONTIGMEM -/* The array of struct pages - for discontigmem use pgdat->lmem_map */ +/* + * The array of struct pages for flatmem. + * It must be declared for SPARSEMEM as well because there are configurations + * that rely on that. + */ extern struct page *mem_map; -#endif #ifdef CONFIG_TRANSPARENT_HUGEPAGE struct deferred_split { @@ -715,6 +1320,31 @@ struct deferred_split { }; #endif +#ifdef CONFIG_MEMORY_FAILURE +/* + * Per NUMA node memory failure handling statistics. + */ +struct memory_failure_stats { + /* + * Number of raw pages poisoned. + * Cases not accounted: memory outside kernel control, offline page, + * arch-specific memory_failure (SGX), hwpoison_filter() filtered + * error events, and unpoison actions from hwpoison_unpoison. + */ + unsigned long total; + /* + * Recovery results of poisoned raw pages handled by memory_failure, + * in sync with mf_result. + * total = ignored + failed + delayed + recovered. + * total * PAGE_SIZE * #nodes = /proc/meminfo/HardwareCorrupted. + */ + unsigned long ignored; + unsigned long failed; + unsigned long delayed; + unsigned long recovered; +}; +#endif + /* * On NUMA machines, each NUMA node would have a pg_data_t to describe * it's memory layout. On UMA machines there is a single pglist_data which @@ -739,7 +1369,7 @@ typedef struct pglist_data { struct zonelist node_zonelists[MAX_ZONELISTS]; int nr_zones; /* number of populated zones in this node */ -#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */ +#ifdef CONFIG_FLATMEM /* means !SPARSEMEM */ struct page *node_mem_map; #ifdef CONFIG_PAGE_EXTENSION struct page_ext *node_page_ext; @@ -767,8 +1397,17 @@ typedef struct pglist_data { int node_id; wait_queue_head_t kswapd_wait; wait_queue_head_t pfmemalloc_wait; - struct task_struct *kswapd; /* Protected by - mem_hotplug_begin/end() */ + + /* workqueues for throttling reclaim for different reasons. */ + wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE]; + + atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */ + unsigned long nr_reclaim_start; /* nr pages written while throttled + * when throttling started. */ +#ifdef CONFIG_MEMORY_HOTPLUG + struct mutex kswapd_lock; +#endif + struct task_struct *kswapd; /* Protected by kswapd_lock */ int kswapd_order; enum zone_type kswapd_highest_zoneidx; @@ -779,6 +1418,7 @@ typedef struct pglist_data { enum zone_type kcompactd_highest_zoneidx; wait_queue_head_t kcompactd_wait; struct task_struct *kcompactd; + bool proactive_compact_trigger; #endif /* * This is a per-node reserve of pages that are not available @@ -795,8 +1435,7 @@ typedef struct pglist_data { #endif /* CONFIG_NUMA */ /* Write-intensive fields used by page reclaim */ - ZONE_PADDING(_pad1_) - spinlock_t lru_lock; + CACHELINE_PADDING(_pad1_); #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT /* @@ -810,6 +1449,21 @@ typedef struct pglist_data { struct deferred_split deferred_split_queue; #endif +#ifdef CONFIG_NUMA_BALANCING + /* start time in ms of current promote rate limit period */ + unsigned int nbp_rl_start; + /* number of promote candidate pages at start time of current rate limit period */ + unsigned long nbp_rl_nr_cand; + /* promote threshold in ms */ + unsigned int nbp_threshold; + /* start time in ms of current promote threshold adjustment period */ + unsigned int nbp_th_start; + /* + * number of promote candidate pages at start time of current promote + * threshold adjustment period + */ + unsigned long nbp_th_nr_cand; +#endif /* Fields commonly accessed by the page reclaim scanner */ /* @@ -821,21 +1475,28 @@ typedef struct pglist_data { unsigned long flags; - ZONE_PADDING(_pad2_) +#ifdef CONFIG_LRU_GEN + /* kswap mm walk data */ + struct lru_gen_mm_walk mm_walk; + /* lru_gen_folio list */ + struct lru_gen_memcg memcg_lru; +#endif + + CACHELINE_PADDING(_pad2_); /* Per-node vmstats */ struct per_cpu_nodestat __percpu *per_cpu_nodestats; atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS]; +#ifdef CONFIG_NUMA + struct memory_tier __rcu *memtier; +#endif +#ifdef CONFIG_MEMORY_FAILURE + struct memory_failure_stats mf_stats; +#endif } pg_data_t; #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) -#ifdef CONFIG_FLAT_NODE_MEM_MAP -#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr)) -#else -#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr)) -#endif -#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr)) #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn) #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid)) @@ -845,11 +1506,6 @@ static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat) return pgdat->node_start_pfn + pgdat->node_spanned_pages; } -static inline bool pgdat_is_empty(pg_data_t *pgdat) -{ - return !pgdat->node_start_pfn && !pgdat->node_spanned_pages; -} - #include <linux/memory_hotplug.h> void build_all_zonelists(pg_data_t *pgdat); @@ -861,8 +1517,6 @@ bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, int highest_zoneidx, unsigned int alloc_flags); -bool zone_watermark_ok_safe(struct zone *z, unsigned int order, - unsigned long mark, int highest_zoneidx); /* * Memory initialization context, use to differentiate memory added by * the platform statically or via memory hotplug interface. @@ -886,8 +1540,6 @@ static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec) #endif } -extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx); - #ifdef CONFIG_HAVE_MEMORYLESS_NODES int local_memory_node(int node_id); #else @@ -899,6 +1551,18 @@ static inline int local_memory_node(int node_id) { return node_id; }; */ #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) +#ifdef CONFIG_ZONE_DEVICE +static inline bool zone_is_zone_device(struct zone *zone) +{ + return zone_idx(zone) == ZONE_DEVICE; +} +#else +static inline bool zone_is_zone_device(struct zone *zone) +{ + return false; +} +#endif + /* * Returns true if a zone has pages managed by the buddy allocator. * All the reclaim decisions have to use this function rather than @@ -937,22 +1601,11 @@ static inline void zone_set_nid(struct zone *zone, int nid) {} extern int movable_zone; -#ifdef CONFIG_HIGHMEM -static inline int zone_movable_is_highmem(void) -{ -#ifdef CONFIG_NEED_MULTIPLE_NODES - return movable_zone == ZONE_HIGHMEM; -#else - return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM; -#endif -} -#endif - static inline int is_highmem_idx(enum zone_type idx) { #ifdef CONFIG_HIGHMEM return (idx == ZONE_HIGHMEM || - (idx == ZONE_MOVABLE && zone_movable_is_highmem())); + (idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM)); #else return 0; #endif @@ -962,50 +1615,37 @@ static inline int is_highmem_idx(enum zone_type idx) * is_highmem - helper function to quickly check if a struct zone is a * highmem zone or not. This is an attempt to keep references * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. - * @zone - pointer to struct zone variable + * @zone: pointer to struct zone variable + * Return: 1 for a highmem zone, 0 otherwise */ static inline int is_highmem(struct zone *zone) { -#ifdef CONFIG_HIGHMEM return is_highmem_idx(zone_idx(zone)); -#else - return 0; -#endif } -/* These two functions are used to setup the per zone pages min values */ -struct ctl_table; +#ifdef CONFIG_ZONE_DMA +bool has_managed_dma(void); +#else +static inline bool has_managed_dma(void) +{ + return false; +} +#endif -int min_free_kbytes_sysctl_handler(struct ctl_table *, int, void *, size_t *, - loff_t *); -int watermark_scale_factor_sysctl_handler(struct ctl_table *, int, void *, - size_t *, loff_t *); -extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES]; -int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, void *, - size_t *, loff_t *); -int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, - void *, size_t *, loff_t *); -int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int, - void *, size_t *, loff_t *); -int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int, - void *, size_t *, loff_t *); -int numa_zonelist_order_handler(struct ctl_table *, int, - void *, size_t *, loff_t *); -extern int percpu_pagelist_fraction; -extern char numa_zonelist_order[]; -#define NUMA_ZONELIST_ORDER_LEN 16 -#ifndef CONFIG_NEED_MULTIPLE_NODES +#ifndef CONFIG_NUMA extern struct pglist_data contig_page_data; -#define NODE_DATA(nid) (&contig_page_data) -#define NODE_MEM_MAP(nid) mem_map +static inline struct pglist_data *NODE_DATA(int nid) +{ + return &contig_page_data; +} -#else /* CONFIG_NEED_MULTIPLE_NODES */ +#else /* CONFIG_NUMA */ #include <asm/mmzone.h> -#endif /* !CONFIG_NEED_MULTIPLE_NODES */ +#endif /* !CONFIG_NUMA */ extern struct pglist_data *first_online_pgdat(void); extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); @@ -1013,7 +1653,7 @@ extern struct zone *next_zone(struct zone *zone); /** * for_each_online_pgdat - helper macro to iterate over all online nodes - * @pgdat - pointer to a pg_data_t variable + * @pgdat: pointer to a pg_data_t variable */ #define for_each_online_pgdat(pgdat) \ for (pgdat = first_online_pgdat(); \ @@ -1021,7 +1661,7 @@ extern struct zone *next_zone(struct zone *zone); pgdat = next_online_pgdat(pgdat)) /** * for_each_zone - helper macro to iterate over all memory zones - * @zone - pointer to struct zone variable + * @zone: pointer to struct zone variable * * The user only needs to declare the zone variable, for_each_zone * fills it in. @@ -1060,15 +1700,18 @@ struct zoneref *__next_zones_zonelist(struct zoneref *z, /** * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point - * @z - The cursor used as a starting point for the search - * @highest_zoneidx - The zone index of the highest zone to return - * @nodes - An optional nodemask to filter the zonelist with + * @z: The cursor used as a starting point for the search + * @highest_zoneidx: The zone index of the highest zone to return + * @nodes: An optional nodemask to filter the zonelist with * * This function returns the next zone at or below a given zone index that is * within the allowed nodemask using a cursor as the starting point for the * search. The zoneref returned is a cursor that represents the current zone * being examined. It should be advanced by one before calling * next_zones_zonelist again. + * + * Return: the next zone at or below highest_zoneidx within the allowed + * nodemask using a cursor within a zonelist as a starting point */ static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z, enum zone_type highest_zoneidx, @@ -1081,10 +1724,9 @@ static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z, /** * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist - * @zonelist - The zonelist to search for a suitable zone - * @highest_zoneidx - The zone index of the highest zone to return - * @nodes - An optional nodemask to filter the zonelist with - * @return - Zoneref pointer for the first suitable zone found (see below) + * @zonelist: The zonelist to search for a suitable zone + * @highest_zoneidx: The zone index of the highest zone to return + * @nodes: An optional nodemask to filter the zonelist with * * This function returns the first zone at or below a given zone index that is * within the allowed nodemask. The zoneref returned is a cursor that can be @@ -1094,6 +1736,8 @@ static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z, * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is * never NULL). This may happen either genuinely, or due to concurrent nodemask * update due to cpuset modification. + * + * Return: Zoneref pointer for the first suitable zone found */ static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, enum zone_type highest_zoneidx, @@ -1105,11 +1749,11 @@ static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, /** * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask - * @zone - The current zone in the iterator - * @z - The current pointer within zonelist->_zonerefs being iterated - * @zlist - The zonelist being iterated - * @highidx - The zone index of the highest zone to return - * @nodemask - Nodemask allowed by the allocator + * @zone: The current zone in the iterator + * @z: The current pointer within zonelist->_zonerefs being iterated + * @zlist: The zonelist being iterated + * @highidx: The zone index of the highest zone to return + * @nodemask: Nodemask allowed by the allocator * * This iterator iterates though all zones at or below a given zone index and * within a given nodemask @@ -1121,7 +1765,7 @@ static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, zone = zonelist_zone(z)) #define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \ - for (zone = z->zone; \ + for (zone = zonelist_zone(z); \ zone; \ z = next_zones_zonelist(++z, highidx, nodemask), \ zone = zonelist_zone(z)) @@ -1129,16 +1773,38 @@ static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, /** * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index - * @zone - The current zone in the iterator - * @z - The current pointer within zonelist->zones being iterated - * @zlist - The zonelist being iterated - * @highidx - The zone index of the highest zone to return + * @zone: The current zone in the iterator + * @z: The current pointer within zonelist->zones being iterated + * @zlist: The zonelist being iterated + * @highidx: The zone index of the highest zone to return * * This iterator iterates though all zones at or below a given zone index. */ #define for_each_zone_zonelist(zone, z, zlist, highidx) \ for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) +/* Whether the 'nodes' are all movable nodes */ +static inline bool movable_only_nodes(nodemask_t *nodes) +{ + struct zonelist *zonelist; + struct zoneref *z; + int nid; + + if (nodes_empty(*nodes)) + return false; + + /* + * We can chose arbitrary node from the nodemask to get a + * zonelist as they are interlinked. We just need to find + * at least one zone that can satisfy kernel allocations. + */ + nid = first_node(*nodes); + zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK]; + z = first_zones_zonelist(zonelist, ZONE_NORMAL, nodes); + return (!zonelist_zone(z)) ? true : false; +} + + #ifdef CONFIG_SPARSEMEM #include <asm/sparsemem.h> #endif @@ -1150,8 +1816,6 @@ static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, #ifdef CONFIG_SPARSEMEM /* - * SECTION_SHIFT #bits space required to store a section # - * * PA_SECTION_SHIFT physical address to/from section number * PFN_SECTION_SHIFT pfn to/from section number */ @@ -1166,8 +1830,8 @@ static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, #define SECTION_BLOCKFLAGS_BITS \ ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) -#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS -#error Allocator MAX_ORDER exceeds SECTION_SIZE +#if (MAX_PAGE_ORDER + PAGE_SHIFT) > SECTION_SIZE_BITS +#error Allocator MAX_PAGE_ORDER exceeds SECTION_SIZE #endif static inline unsigned long pfn_to_section_nr(unsigned long pfn) @@ -1199,6 +1863,7 @@ static inline unsigned long section_nr_to_pfn(unsigned long sec) #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK) struct mem_section_usage { + struct rcu_head rcu; #ifdef CONFIG_SPARSEMEM_VMEMMAP DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION); #endif @@ -1263,15 +1928,17 @@ static inline unsigned long *section_to_usemap(struct mem_section *ms) static inline struct mem_section *__nr_to_section(unsigned long nr) { + unsigned long root = SECTION_NR_TO_ROOT(nr); + + if (unlikely(root >= NR_SECTION_ROOTS)) + return NULL; + #ifdef CONFIG_SPARSEMEM_EXTREME - if (!mem_section) + if (!mem_section || !mem_section[root]) return NULL; #endif - if (!mem_section[SECTION_NR_TO_ROOT(nr)]) - return NULL; - return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK]; + return &mem_section[root][nr & SECTION_ROOT_MASK]; } -extern unsigned long __section_nr(struct mem_section *ms); extern size_t mem_section_usage_size(void); /* @@ -1285,15 +1952,38 @@ extern size_t mem_section_usage_size(void); * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the * worst combination is powerpc with 256k pages, * which results in PFN_SECTION_SHIFT equal 6. - * To sum it up, at least 6 bits are available. + * To sum it up, at least 6 bits are available on all architectures. + * However, we can exceed 6 bits on some other architectures except + * powerpc (e.g. 15 bits are available on x86_64, 13 bits are available + * with the worst case of 64K pages on arm64) if we make sure the + * exceeded bit is not applicable to powerpc. */ -#define SECTION_MARKED_PRESENT (1UL<<0) -#define SECTION_HAS_MEM_MAP (1UL<<1) -#define SECTION_IS_ONLINE (1UL<<2) -#define SECTION_IS_EARLY (1UL<<3) -#define SECTION_MAP_LAST_BIT (1UL<<4) -#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1)) -#define SECTION_NID_SHIFT 3 +enum { + SECTION_MARKED_PRESENT_BIT, + SECTION_HAS_MEM_MAP_BIT, + SECTION_IS_ONLINE_BIT, + SECTION_IS_EARLY_BIT, +#ifdef CONFIG_ZONE_DEVICE + SECTION_TAINT_ZONE_DEVICE_BIT, +#endif +#ifdef CONFIG_SPARSEMEM_VMEMMAP_PREINIT + SECTION_IS_VMEMMAP_PREINIT_BIT, +#endif + SECTION_MAP_LAST_BIT, +}; + +#define SECTION_MARKED_PRESENT BIT(SECTION_MARKED_PRESENT_BIT) +#define SECTION_HAS_MEM_MAP BIT(SECTION_HAS_MEM_MAP_BIT) +#define SECTION_IS_ONLINE BIT(SECTION_IS_ONLINE_BIT) +#define SECTION_IS_EARLY BIT(SECTION_IS_EARLY_BIT) +#ifdef CONFIG_ZONE_DEVICE +#define SECTION_TAINT_ZONE_DEVICE BIT(SECTION_TAINT_ZONE_DEVICE_BIT) +#endif +#ifdef CONFIG_SPARSEMEM_VMEMMAP_PREINIT +#define SECTION_IS_VMEMMAP_PREINIT BIT(SECTION_IS_VMEMMAP_PREINIT_BIT) +#endif +#define SECTION_MAP_MASK (~(BIT(SECTION_MAP_LAST_BIT) - 1)) +#define SECTION_NID_SHIFT SECTION_MAP_LAST_BIT static inline struct page *__section_mem_map_addr(struct mem_section *section) { @@ -1332,6 +2022,44 @@ static inline int online_section(struct mem_section *section) return (section && (section->section_mem_map & SECTION_IS_ONLINE)); } +#ifdef CONFIG_ZONE_DEVICE +static inline int online_device_section(struct mem_section *section) +{ + unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE; + + return section && ((section->section_mem_map & flags) == flags); +} +#else +static inline int online_device_section(struct mem_section *section) +{ + return 0; +} +#endif + +#ifdef CONFIG_SPARSEMEM_VMEMMAP_PREINIT +static inline int preinited_vmemmap_section(struct mem_section *section) +{ + return (section && + (section->section_mem_map & SECTION_IS_VMEMMAP_PREINIT)); +} + +void sparse_vmemmap_init_nid_early(int nid); +void sparse_vmemmap_init_nid_late(int nid); + +#else +static inline int preinited_vmemmap_section(struct mem_section *section) +{ + return 0; +} +static inline void sparse_vmemmap_init_nid_early(int nid) +{ +} + +static inline void sparse_vmemmap_init_nid_late(int nid) +{ +} +#endif + static inline int online_section_nr(unsigned long nr) { return online_section(__nr_to_section(nr)); @@ -1339,10 +2067,8 @@ static inline int online_section_nr(unsigned long nr) #ifdef CONFIG_MEMORY_HOTPLUG void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn); -#ifdef CONFIG_MEMORY_HOTREMOVE void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn); #endif -#endif static inline struct mem_section *__pfn_to_section(unsigned long pfn) { @@ -1360,39 +2086,148 @@ static inline int subsection_map_index(unsigned long pfn) static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) { int idx = subsection_map_index(pfn); + struct mem_section_usage *usage = READ_ONCE(ms->usage); + + return usage ? test_bit(idx, usage->subsection_map) : 0; +} + +static inline bool pfn_section_first_valid(struct mem_section *ms, unsigned long *pfn) +{ + struct mem_section_usage *usage = READ_ONCE(ms->usage); + int idx = subsection_map_index(*pfn); + unsigned long bit; + + if (!usage) + return false; + + if (test_bit(idx, usage->subsection_map)) + return true; + + /* Find the next subsection that exists */ + bit = find_next_bit(usage->subsection_map, SUBSECTIONS_PER_SECTION, idx); + if (bit == SUBSECTIONS_PER_SECTION) + return false; - return test_bit(idx, ms->usage->subsection_map); + *pfn = (*pfn & PAGE_SECTION_MASK) + (bit * PAGES_PER_SUBSECTION); + return true; } #else static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) { return 1; } + +static inline bool pfn_section_first_valid(struct mem_section *ms, unsigned long *pfn) +{ + return true; +} #endif +void sparse_init_early_section(int nid, struct page *map, unsigned long pnum, + unsigned long flags); + #ifndef CONFIG_HAVE_ARCH_PFN_VALID +/** + * pfn_valid - check if there is a valid memory map entry for a PFN + * @pfn: the page frame number to check + * + * Check if there is a valid memory map entry aka struct page for the @pfn. + * Note, that availability of the memory map entry does not imply that + * there is actual usable memory at that @pfn. The struct page may + * represent a hole or an unusable page frame. + * + * Return: 1 for PFNs that have memory map entries and 0 otherwise + */ static inline int pfn_valid(unsigned long pfn) { struct mem_section *ms; + int ret; + + /* + * Ensure the upper PAGE_SHIFT bits are clear in the + * pfn. Else it might lead to false positives when + * some of the upper bits are set, but the lower bits + * match a valid pfn. + */ + if (PHYS_PFN(PFN_PHYS(pfn)) != pfn) + return 0; if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) return 0; - ms = __nr_to_section(pfn_to_section_nr(pfn)); - if (!valid_section(ms)) + ms = __pfn_to_section(pfn); + rcu_read_lock_sched(); + if (!valid_section(ms)) { + rcu_read_unlock_sched(); return 0; + } /* * Traditionally early sections always returned pfn_valid() for * the entire section-sized span. */ - return early_section(ms) || pfn_section_valid(ms, pfn); + ret = early_section(ms) || pfn_section_valid(ms, pfn); + rcu_read_unlock_sched(); + + return ret; } + +/* Returns end_pfn or higher if no valid PFN remaining in range */ +static inline unsigned long first_valid_pfn(unsigned long pfn, unsigned long end_pfn) +{ + unsigned long nr = pfn_to_section_nr(pfn); + + rcu_read_lock_sched(); + + while (nr <= __highest_present_section_nr && pfn < end_pfn) { + struct mem_section *ms = __pfn_to_section(pfn); + + if (valid_section(ms) && + (early_section(ms) || pfn_section_first_valid(ms, &pfn))) { + rcu_read_unlock_sched(); + return pfn; + } + + /* Nothing left in this section? Skip to next section */ + nr++; + pfn = section_nr_to_pfn(nr); + } + + rcu_read_unlock_sched(); + return end_pfn; +} + +static inline unsigned long next_valid_pfn(unsigned long pfn, unsigned long end_pfn) +{ + pfn++; + + if (pfn >= end_pfn) + return end_pfn; + + /* + * Either every PFN within the section (or subsection for VMEMMAP) is + * valid, or none of them are. So there's no point repeating the check + * for every PFN; only call first_valid_pfn() again when crossing a + * (sub)section boundary (i.e. !(pfn & ~PAGE_{SUB,}SECTION_MASK)). + */ + if (pfn & ~(IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP) ? + PAGE_SUBSECTION_MASK : PAGE_SECTION_MASK)) + return pfn; + + return first_valid_pfn(pfn, end_pfn); +} + + +#define for_each_valid_pfn(_pfn, _start_pfn, _end_pfn) \ + for ((_pfn) = first_valid_pfn((_start_pfn), (_end_pfn)); \ + (_pfn) < (_end_pfn); \ + (_pfn) = next_valid_pfn((_pfn), (_end_pfn))) + #endif static inline int pfn_in_present_section(unsigned long pfn) { if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) return 0; - return present_section(__nr_to_section(pfn_to_section_nr(pfn))); + return present_section(__pfn_to_section(pfn)); } static inline unsigned long next_present_section_nr(unsigned long section_nr) @@ -1405,6 +2240,11 @@ static inline unsigned long next_present_section_nr(unsigned long section_nr) return -1; } +#define for_each_present_section_nr(start, section_nr) \ + for (section_nr = next_present_section_nr(start - 1); \ + section_nr != -1; \ + section_nr = next_present_section_nr(section_nr)) + /* * These are _only_ used during initialisation, therefore they * can use __initdata ... They could have names to indicate @@ -1424,64 +2264,22 @@ void sparse_init(void); #else #define sparse_init() do {} while (0) #define sparse_index_init(_sec, _nid) do {} while (0) +#define sparse_vmemmap_init_nid_early(_nid, _use) do {} while (0) +#define sparse_vmemmap_init_nid_late(_nid) do {} while (0) #define pfn_in_present_section pfn_valid #define subsection_map_init(_pfn, _nr_pages) do {} while (0) #endif /* CONFIG_SPARSEMEM */ /* - * During memory init memblocks map pfns to nids. The search is expensive and - * this caches recent lookups. The implementation of __early_pfn_to_nid - * may treat start/end as pfns or sections. + * Fallback case for when the architecture provides its own pfn_valid() but + * not a corresponding for_each_valid_pfn(). */ -struct mminit_pfnnid_cache { - unsigned long last_start; - unsigned long last_end; - int last_nid; -}; - -/* - * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we - * need to check pfn validity within that MAX_ORDER_NR_PAGES block. - * pfn_valid_within() should be used in this case; we optimise this away - * when we have no holes within a MAX_ORDER_NR_PAGES block. - */ -#ifdef CONFIG_HOLES_IN_ZONE -#define pfn_valid_within(pfn) pfn_valid(pfn) -#else -#define pfn_valid_within(pfn) (1) +#ifndef for_each_valid_pfn +#define for_each_valid_pfn(_pfn, _start_pfn, _end_pfn) \ + for ((_pfn) = (_start_pfn); (_pfn) < (_end_pfn); (_pfn)++) \ + if (pfn_valid(_pfn)) #endif -#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL -/* - * pfn_valid() is meant to be able to tell if a given PFN has valid memmap - * associated with it or not. This means that a struct page exists for this - * pfn. The caller cannot assume the page is fully initialized in general. - * Hotplugable pages might not have been onlined yet. pfn_to_online_page() - * will ensure the struct page is fully online and initialized. Special pages - * (e.g. ZONE_DEVICE) are never onlined and should be treated accordingly. - * - * In FLATMEM, it is expected that holes always have valid memmap as long as - * there is valid PFNs either side of the hole. In SPARSEMEM, it is assumed - * that a valid section has a memmap for the entire section. - * - * However, an ARM, and maybe other embedded architectures in the future - * free memmap backing holes to save memory on the assumption the memmap is - * never used. The page_zone linkages are then broken even though pfn_valid() - * returns true. A walker of the full memmap must then do this additional - * check to ensure the memmap they are looking at is sane by making sure - * the zone and PFN linkages are still valid. This is expensive, but walkers - * of the full memmap are extremely rare. - */ -bool memmap_valid_within(unsigned long pfn, - struct page *page, struct zone *zone); -#else -static inline bool memmap_valid_within(unsigned long pfn, - struct page *page, struct zone *zone) -{ - return true; -} -#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */ - #endif /* !__GENERATING_BOUNDS.H */ #endif /* !__ASSEMBLY__ */ #endif /* _LINUX_MMZONE_H */ |