diff options
Diffstat (limited to 'include/linux/pgtable.h')
-rw-r--r-- | include/linux/pgtable.h | 1155 |
1 files changed, 841 insertions, 314 deletions
diff --git a/include/linux/pgtable.h b/include/linux/pgtable.h index 38c33eabea89..0b6e1f781d86 100644 --- a/include/linux/pgtable.h +++ b/include/linux/pgtable.h @@ -5,6 +5,9 @@ #include <linux/pfn.h> #include <asm/pgtable.h> +#define PMD_ORDER (PMD_SHIFT - PAGE_SHIFT) +#define PUD_ORDER (PUD_SHIFT - PAGE_SHIFT) + #ifndef __ASSEMBLY__ #ifdef CONFIG_MMU @@ -12,6 +15,7 @@ #include <linux/bug.h> #include <linux/errno.h> #include <asm-generic/pgtable_uffd.h> +#include <linux/page_table_check.h> #if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \ defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS @@ -29,6 +33,26 @@ #endif /* + * This defines the first usable user address. Platforms + * can override its value with custom FIRST_USER_ADDRESS + * defined in their respective <asm/pgtable.h>. + */ +#ifndef FIRST_USER_ADDRESS +#define FIRST_USER_ADDRESS 0UL +#endif + +/* + * This defines the generic helper for accessing PMD page + * table page. Although platforms can still override this + * via their respective <asm/pgtable.h>. + */ +#ifndef pmd_pgtable +#define pmd_pgtable(pmd) pmd_page(pmd) +#endif + +#define pmd_folio(pmd) page_folio(pmd_page(pmd)) + +/* * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD] * * The pXx_index() functions return the index of the entry in the page @@ -66,6 +90,27 @@ static inline unsigned long pud_index(unsigned long address) #define pgd_index(a) (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1)) #endif +#ifndef kernel_pte_init +static inline void kernel_pte_init(void *addr) +{ +} +#define kernel_pte_init kernel_pte_init +#endif + +#ifndef pmd_init +static inline void pmd_init(void *addr) +{ +} +#define pmd_init pmd_init +#endif + +#ifndef pud_init +static inline void pud_init(void *addr) +{ +} +#define pud_init pud_init +#endif + #ifndef pte_offset_kernel static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address) { @@ -74,21 +119,31 @@ static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address) #define pte_offset_kernel pte_offset_kernel #endif -#if defined(CONFIG_HIGHPTE) -#define pte_offset_map(dir, address) \ - ((pte_t *)kmap_atomic(pmd_page(*(dir))) + \ - pte_index((address))) -#define pte_unmap(pte) kunmap_atomic((pte)) +#ifdef CONFIG_HIGHPTE +#define __pte_map(pmd, address) \ + ((pte_t *)kmap_local_page(pmd_page(*(pmd))) + pte_index((address))) +#define pte_unmap(pte) do { \ + kunmap_local((pte)); \ + rcu_read_unlock(); \ +} while (0) #else -#define pte_offset_map(dir, address) pte_offset_kernel((dir), (address)) -#define pte_unmap(pte) ((void)(pte)) /* NOP */ +static inline pte_t *__pte_map(pmd_t *pmd, unsigned long address) +{ + return pte_offset_kernel(pmd, address); +} +static inline void pte_unmap(pte_t *pte) +{ + rcu_read_unlock(); +} #endif +void pte_free_defer(struct mm_struct *mm, pgtable_t pgtable); + /* Find an entry in the second-level page table.. */ #ifndef pmd_offset static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address) { - return (pmd_t *)pud_page_vaddr(*pud) + pmd_index(address); + return pud_pgtable(*pud) + pmd_index(address); } #define pmd_offset pmd_offset #endif @@ -96,7 +151,7 @@ static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address) #ifndef pud_offset static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address) { - return (pud_t *)p4d_page_vaddr(*p4d) + pud_index(address); + return p4d_pgtable(*p4d) + pud_index(address); } #define pud_offset pud_offset #endif @@ -117,9 +172,7 @@ static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address) * a shortcut which implies the use of the kernel's pgd, instead * of a process's */ -#ifndef pgd_offset_k #define pgd_offset_k(address) pgd_offset(&init_mm, (address)) -#endif /* * In many cases it is known that a virtual address is mapped at PMD or PTE @@ -145,6 +198,110 @@ static inline pte_t *virt_to_kpte(unsigned long vaddr) return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr); } +#ifndef pmd_young +static inline int pmd_young(pmd_t pmd) +{ + return 0; +} +#endif + +#ifndef pmd_dirty +static inline int pmd_dirty(pmd_t pmd) +{ + return 0; +} +#endif + +/* + * A facility to provide lazy MMU batching. This allows PTE updates and + * page invalidations to be delayed until a call to leave lazy MMU mode + * is issued. Some architectures may benefit from doing this, and it is + * beneficial for both shadow and direct mode hypervisors, which may batch + * the PTE updates which happen during this window. Note that using this + * interface requires that read hazards be removed from the code. A read + * hazard could result in the direct mode hypervisor case, since the actual + * write to the page tables may not yet have taken place, so reads though + * a raw PTE pointer after it has been modified are not guaranteed to be + * up to date. + * + * In the general case, no lock is guaranteed to be held between entry and exit + * of the lazy mode. So the implementation must assume preemption may be enabled + * and cpu migration is possible; it must take steps to be robust against this. + * (In practice, for user PTE updates, the appropriate page table lock(s) are + * held, but for kernel PTE updates, no lock is held). Nesting is not permitted + * and the mode cannot be used in interrupt context. + */ +#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE +#define arch_enter_lazy_mmu_mode() do {} while (0) +#define arch_leave_lazy_mmu_mode() do {} while (0) +#define arch_flush_lazy_mmu_mode() do {} while (0) +#endif + +#ifndef pte_batch_hint +/** + * pte_batch_hint - Number of pages that can be added to batch without scanning. + * @ptep: Page table pointer for the entry. + * @pte: Page table entry. + * + * Some architectures know that a set of contiguous ptes all map the same + * contiguous memory with the same permissions. In this case, it can provide a + * hint to aid pte batching without the core code needing to scan every pte. + * + * An architecture implementation may ignore the PTE accessed state. Further, + * the dirty state must apply atomically to all the PTEs described by the hint. + * + * May be overridden by the architecture, else pte_batch_hint is always 1. + */ +static inline unsigned int pte_batch_hint(pte_t *ptep, pte_t pte) +{ + return 1; +} +#endif + +#ifndef pte_advance_pfn +static inline pte_t pte_advance_pfn(pte_t pte, unsigned long nr) +{ + return __pte(pte_val(pte) + (nr << PFN_PTE_SHIFT)); +} +#endif + +#define pte_next_pfn(pte) pte_advance_pfn(pte, 1) + +#ifndef set_ptes +/** + * set_ptes - Map consecutive pages to a contiguous range of addresses. + * @mm: Address space to map the pages into. + * @addr: Address to map the first page at. + * @ptep: Page table pointer for the first entry. + * @pte: Page table entry for the first page. + * @nr: Number of pages to map. + * + * When nr==1, initial state of pte may be present or not present, and new state + * may be present or not present. When nr>1, initial state of all ptes must be + * not present, and new state must be present. + * + * May be overridden by the architecture, or the architecture can define + * set_pte() and PFN_PTE_SHIFT. + * + * Context: The caller holds the page table lock. The pages all belong + * to the same folio. The PTEs are all in the same PMD. + */ +static inline void set_ptes(struct mm_struct *mm, unsigned long addr, + pte_t *ptep, pte_t pte, unsigned int nr) +{ + page_table_check_ptes_set(mm, ptep, pte, nr); + + for (;;) { + set_pte(ptep, pte); + if (--nr == 0) + break; + ptep++; + pte = pte_next_pfn(pte); + } +} +#endif +#define set_pte_at(mm, addr, ptep, pte) set_ptes(mm, addr, ptep, pte, 1) + #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS extern int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address, pte_t *ptep, @@ -177,12 +334,47 @@ static inline int pudp_set_access_flags(struct vm_area_struct *vma, #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ #endif +#ifndef ptep_get +static inline pte_t ptep_get(pte_t *ptep) +{ + return READ_ONCE(*ptep); +} +#endif + +#ifndef pmdp_get +static inline pmd_t pmdp_get(pmd_t *pmdp) +{ + return READ_ONCE(*pmdp); +} +#endif + +#ifndef pudp_get +static inline pud_t pudp_get(pud_t *pudp) +{ + return READ_ONCE(*pudp); +} +#endif + +#ifndef p4dp_get +static inline p4d_t p4dp_get(p4d_t *p4dp) +{ + return READ_ONCE(*p4dp); +} +#endif + +#ifndef pgdp_get +static inline pgd_t pgdp_get(pgd_t *pgdp) +{ + return READ_ONCE(*pgdp); +} +#endif + #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long address, pte_t *ptep) { - pte_t pte = *ptep; + pte_t pte = ptep_get(ptep); int r = 1; if (!pte_young(pte)) r = 0; @@ -193,7 +385,7 @@ static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, #endif #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG -#ifdef CONFIG_TRANSPARENT_HUGEPAGE +#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG) static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp) @@ -214,7 +406,7 @@ static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, BUILD_BUG(); return 0; } -#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ +#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG */ #endif #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH @@ -240,21 +432,199 @@ static inline int pmdp_clear_flush_young(struct vm_area_struct *vma, #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ #endif +#ifndef arch_has_hw_nonleaf_pmd_young +/* + * Return whether the accessed bit in non-leaf PMD entries is supported on the + * local CPU. + */ +static inline bool arch_has_hw_nonleaf_pmd_young(void) +{ + return IS_ENABLED(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG); +} +#endif + +#ifndef arch_has_hw_pte_young +/* + * Return whether the accessed bit is supported on the local CPU. + * + * This stub assumes accessing through an old PTE triggers a page fault. + * Architectures that automatically set the access bit should overwrite it. + */ +static inline bool arch_has_hw_pte_young(void) +{ + return IS_ENABLED(CONFIG_ARCH_HAS_HW_PTE_YOUNG); +} +#endif + +#ifndef arch_check_zapped_pte +static inline void arch_check_zapped_pte(struct vm_area_struct *vma, + pte_t pte) +{ +} +#endif + +#ifndef arch_check_zapped_pmd +static inline void arch_check_zapped_pmd(struct vm_area_struct *vma, + pmd_t pmd) +{ +} +#endif + +#ifndef arch_check_zapped_pud +static inline void arch_check_zapped_pud(struct vm_area_struct *vma, pud_t pud) +{ +} +#endif + #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long address, pte_t *ptep) { - pte_t pte = *ptep; + pte_t pte = ptep_get(ptep); pte_clear(mm, address, ptep); + page_table_check_pte_clear(mm, pte); return pte; } #endif -#ifndef __HAVE_ARCH_PTEP_GET -static inline pte_t ptep_get(pte_t *ptep) +#ifndef clear_young_dirty_ptes +/** + * clear_young_dirty_ptes - Mark PTEs that map consecutive pages of the + * same folio as old/clean. + * @mm: Address space the pages are mapped into. + * @addr: Address the first page is mapped at. + * @ptep: Page table pointer for the first entry. + * @nr: Number of entries to mark old/clean. + * @flags: Flags to modify the PTE batch semantics. + * + * May be overridden by the architecture; otherwise, implemented by + * get_and_clear/modify/set for each pte in the range. + * + * Note that PTE bits in the PTE range besides the PFN can differ. For example, + * some PTEs might be write-protected. + * + * Context: The caller holds the page table lock. The PTEs map consecutive + * pages that belong to the same folio. The PTEs are all in the same PMD. + */ +static inline void clear_young_dirty_ptes(struct vm_area_struct *vma, + unsigned long addr, pte_t *ptep, + unsigned int nr, cydp_t flags) +{ + pte_t pte; + + for (;;) { + if (flags == CYDP_CLEAR_YOUNG) + ptep_test_and_clear_young(vma, addr, ptep); + else { + pte = ptep_get_and_clear(vma->vm_mm, addr, ptep); + if (flags & CYDP_CLEAR_YOUNG) + pte = pte_mkold(pte); + if (flags & CYDP_CLEAR_DIRTY) + pte = pte_mkclean(pte); + set_pte_at(vma->vm_mm, addr, ptep, pte); + } + if (--nr == 0) + break; + ptep++; + addr += PAGE_SIZE; + } +} +#endif + +static inline void ptep_clear(struct mm_struct *mm, unsigned long addr, + pte_t *ptep) +{ + pte_t pte = ptep_get(ptep); + + pte_clear(mm, addr, ptep); + /* + * No need for ptep_get_and_clear(): page table check doesn't care about + * any bits that could have been set by HW concurrently. + */ + page_table_check_pte_clear(mm, pte); +} + +#ifdef CONFIG_GUP_GET_PXX_LOW_HIGH +/* + * For walking the pagetables without holding any locks. Some architectures + * (eg x86-32 PAE) cannot load the entries atomically without using expensive + * instructions. We are guaranteed that a PTE will only either go from not + * present to present, or present to not present -- it will not switch to a + * completely different present page without a TLB flush inbetween; which we + * are blocking by holding interrupts off. + * + * Setting ptes from not present to present goes: + * + * ptep->pte_high = h; + * smp_wmb(); + * ptep->pte_low = l; + * + * And present to not present goes: + * + * ptep->pte_low = 0; + * smp_wmb(); + * ptep->pte_high = 0; + * + * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'. + * We load pte_high *after* loading pte_low, which ensures we don't see an older + * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't + * picked up a changed pte high. We might have gotten rubbish values from + * pte_low and pte_high, but we are guaranteed that pte_low will not have the + * present bit set *unless* it is 'l'. Because get_user_pages_fast() only + * operates on present ptes we're safe. + */ +static inline pte_t ptep_get_lockless(pte_t *ptep) +{ + pte_t pte; + + do { + pte.pte_low = ptep->pte_low; + smp_rmb(); + pte.pte_high = ptep->pte_high; + smp_rmb(); + } while (unlikely(pte.pte_low != ptep->pte_low)); + + return pte; +} +#define ptep_get_lockless ptep_get_lockless + +#if CONFIG_PGTABLE_LEVELS > 2 +static inline pmd_t pmdp_get_lockless(pmd_t *pmdp) +{ + pmd_t pmd; + + do { + pmd.pmd_low = pmdp->pmd_low; + smp_rmb(); + pmd.pmd_high = pmdp->pmd_high; + smp_rmb(); + } while (unlikely(pmd.pmd_low != pmdp->pmd_low)); + + return pmd; +} +#define pmdp_get_lockless pmdp_get_lockless +#define pmdp_get_lockless_sync() tlb_remove_table_sync_one() +#endif /* CONFIG_PGTABLE_LEVELS > 2 */ +#endif /* CONFIG_GUP_GET_PXX_LOW_HIGH */ + +/* + * We require that the PTE can be read atomically. + */ +#ifndef ptep_get_lockless +static inline pte_t ptep_get_lockless(pte_t *ptep) +{ + return ptep_get(ptep); +} +#endif + +#ifndef pmdp_get_lockless +static inline pmd_t pmdp_get_lockless(pmd_t *pmdp) +{ + return pmdp_get(pmdp); +} +static inline void pmdp_get_lockless_sync(void) { - return READ_ONCE(*ptep); } #endif @@ -265,7 +635,10 @@ static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, pmd_t *pmdp) { pmd_t pmd = *pmdp; + pmd_clear(pmdp); + page_table_check_pmd_clear(mm, pmd); + return pmd; } #endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */ @@ -277,6 +650,8 @@ static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm, pud_t pud = *pudp; pud_clear(pudp); + page_table_check_pud_clear(mm, pud); + return pud; } #endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */ @@ -293,11 +668,11 @@ static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma, #endif #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL -static inline pud_t pudp_huge_get_and_clear_full(struct mm_struct *mm, +static inline pud_t pudp_huge_get_and_clear_full(struct vm_area_struct *vma, unsigned long address, pud_t *pudp, int full) { - return pudp_huge_get_and_clear(mm, address, pudp); + return pudp_huge_get_and_clear(vma->vm_mm, address, pudp); } #endif #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ @@ -307,12 +682,80 @@ static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, unsigned long address, pte_t *ptep, int full) { - pte_t pte; - pte = ptep_get_and_clear(mm, address, ptep); + return ptep_get_and_clear(mm, address, ptep); +} +#endif + +#ifndef get_and_clear_full_ptes +/** + * get_and_clear_full_ptes - Clear present PTEs that map consecutive pages of + * the same folio, collecting dirty/accessed bits. + * @mm: Address space the pages are mapped into. + * @addr: Address the first page is mapped at. + * @ptep: Page table pointer for the first entry. + * @nr: Number of entries to clear. + * @full: Whether we are clearing a full mm. + * + * May be overridden by the architecture; otherwise, implemented as a simple + * loop over ptep_get_and_clear_full(), merging dirty/accessed bits into the + * returned PTE. + * + * Note that PTE bits in the PTE range besides the PFN can differ. For example, + * some PTEs might be write-protected. + * + * Context: The caller holds the page table lock. The PTEs map consecutive + * pages that belong to the same folio. The PTEs are all in the same PMD. + */ +static inline pte_t get_and_clear_full_ptes(struct mm_struct *mm, + unsigned long addr, pte_t *ptep, unsigned int nr, int full) +{ + pte_t pte, tmp_pte; + + pte = ptep_get_and_clear_full(mm, addr, ptep, full); + while (--nr) { + ptep++; + addr += PAGE_SIZE; + tmp_pte = ptep_get_and_clear_full(mm, addr, ptep, full); + if (pte_dirty(tmp_pte)) + pte = pte_mkdirty(pte); + if (pte_young(tmp_pte)) + pte = pte_mkyoung(pte); + } return pte; } #endif +#ifndef clear_full_ptes +/** + * clear_full_ptes - Clear present PTEs that map consecutive pages of the same + * folio. + * @mm: Address space the pages are mapped into. + * @addr: Address the first page is mapped at. + * @ptep: Page table pointer for the first entry. + * @nr: Number of entries to clear. + * @full: Whether we are clearing a full mm. + * + * May be overridden by the architecture; otherwise, implemented as a simple + * loop over ptep_get_and_clear_full(). + * + * Note that PTE bits in the PTE range besides the PFN can differ. For example, + * some PTEs might be write-protected. + * + * Context: The caller holds the page table lock. The PTEs map consecutive + * pages that belong to the same folio. The PTEs are all in the same PMD. + */ +static inline void clear_full_ptes(struct mm_struct *mm, unsigned long addr, + pte_t *ptep, unsigned int nr, int full) +{ + for (;;) { + ptep_get_and_clear_full(mm, addr, ptep, full); + if (--nr == 0) + break; + ptep++; + addr += PAGE_SIZE; + } +} +#endif /* * If two threads concurrently fault at the same page, the thread that @@ -322,13 +765,18 @@ static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, * fault. This function updates TLB only, do nothing with cache or others. * It is the difference with function update_mmu_cache. */ -#ifndef __HAVE_ARCH_UPDATE_MMU_TLB +#ifndef update_mmu_tlb_range +static inline void update_mmu_tlb_range(struct vm_area_struct *vma, + unsigned long address, pte_t *ptep, unsigned int nr) +{ +} +#endif + static inline void update_mmu_tlb(struct vm_area_struct *vma, unsigned long address, pte_t *ptep) { + update_mmu_tlb_range(vma, address, ptep, 1); } -#define __HAVE_ARCH_UPDATE_MMU_TLB -#endif /* * Some architectures may be able to avoid expensive synchronization @@ -345,6 +793,35 @@ static inline void pte_clear_not_present_full(struct mm_struct *mm, } #endif +#ifndef clear_not_present_full_ptes +/** + * clear_not_present_full_ptes - Clear multiple not present PTEs which are + * consecutive in the pgtable. + * @mm: Address space the ptes represent. + * @addr: Address of the first pte. + * @ptep: Page table pointer for the first entry. + * @nr: Number of entries to clear. + * @full: Whether we are clearing a full mm. + * + * May be overridden by the architecture; otherwise, implemented as a simple + * loop over pte_clear_not_present_full(). + * + * Context: The caller holds the page table lock. The PTEs are all not present. + * The PTEs are all in the same PMD. + */ +static inline void clear_not_present_full_ptes(struct mm_struct *mm, + unsigned long addr, pte_t *ptep, unsigned int nr, int full) +{ + for (;;) { + pte_clear_not_present_full(mm, addr, ptep, full); + if (--nr == 0) + break; + ptep++; + addr += PAGE_SIZE; + } +} +#endif + #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH extern pte_t ptep_clear_flush(struct vm_area_struct *vma, unsigned long address, @@ -360,18 +837,63 @@ extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma, pud_t *pudp); #endif +#ifndef pte_mkwrite +static inline pte_t pte_mkwrite(pte_t pte, struct vm_area_struct *vma) +{ + return pte_mkwrite_novma(pte); +} +#endif + +#if defined(CONFIG_ARCH_WANT_PMD_MKWRITE) && !defined(pmd_mkwrite) +static inline pmd_t pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma) +{ + return pmd_mkwrite_novma(pmd); +} +#endif + #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT struct mm_struct; static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep) { - pte_t old_pte = *ptep; + pte_t old_pte = ptep_get(ptep); set_pte_at(mm, address, ptep, pte_wrprotect(old_pte)); } #endif +#ifndef wrprotect_ptes +/** + * wrprotect_ptes - Write-protect PTEs that map consecutive pages of the same + * folio. + * @mm: Address space the pages are mapped into. + * @addr: Address the first page is mapped at. + * @ptep: Page table pointer for the first entry. + * @nr: Number of entries to write-protect. + * + * May be overridden by the architecture; otherwise, implemented as a simple + * loop over ptep_set_wrprotect(). + * + * Note that PTE bits in the PTE range besides the PFN can differ. For example, + * some PTEs might be write-protected. + * + * Context: The caller holds the page table lock. The PTEs map consecutive + * pages that belong to the same folio. The PTEs are all in the same PMD. + */ +static inline void wrprotect_ptes(struct mm_struct *mm, unsigned long addr, + pte_t *ptep, unsigned int nr) +{ + for (;;) { + ptep_set_wrprotect(mm, addr, ptep); + if (--nr == 0) + break; + ptep++; + addr += PAGE_SIZE; + } +} +#endif + /* * On some architectures hardware does not set page access bit when accessing - * memory page, it is responsibilty of software setting this bit. It brings + * memory page, it is responsibility of software setting this bit. It brings * out extra page fault penalty to track page access bit. For optimization page * access bit can be set during all page fault flow on these arches. * To be differentiate with macro pte_mkyoung, this macro is used on platforms @@ -385,30 +907,6 @@ static inline pte_t pte_sw_mkyoung(pte_t pte) #define pte_sw_mkyoung pte_sw_mkyoung #endif -#ifndef pte_savedwrite -#define pte_savedwrite pte_write -#endif - -#ifndef pte_mk_savedwrite -#define pte_mk_savedwrite pte_mkwrite -#endif - -#ifndef pte_clear_savedwrite -#define pte_clear_savedwrite pte_wrprotect -#endif - -#ifndef pmd_savedwrite -#define pmd_savedwrite pmd_write -#endif - -#ifndef pmd_mk_savedwrite -#define pmd_mk_savedwrite pmd_mkwrite -#endif - -#ifndef pmd_clear_savedwrite -#define pmd_clear_savedwrite pmd_wrprotect -#endif - #ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT #ifdef CONFIG_TRANSPARENT_HUGEPAGE static inline void pmdp_set_wrprotect(struct mm_struct *mm, @@ -427,6 +925,7 @@ static inline void pmdp_set_wrprotect(struct mm_struct *mm, #endif #ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD +#ifdef CONFIG_TRANSPARENT_HUGEPAGE static inline void pudp_set_wrprotect(struct mm_struct *mm, unsigned long address, pud_t *pudp) { @@ -440,6 +939,7 @@ static inline void pudp_set_wrprotect(struct mm_struct *mm, { BUILD_BUG(); } +#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ #endif @@ -468,11 +968,15 @@ extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp); #endif +#ifndef arch_needs_pgtable_deposit +#define arch_needs_pgtable_deposit() (false) +#endif + #ifdef CONFIG_TRANSPARENT_HUGEPAGE /* * This is an implementation of pmdp_establish() that is only suitable for an * architecture that doesn't have hardware dirty/accessed bits. In this case we - * can't race with CPU which sets these bits and non-atomic aproach is fine. + * can't race with CPU which sets these bits and non-atomic approach is fine. */ static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp, pmd_t pmd) @@ -488,6 +992,26 @@ extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp); #endif +#ifndef __HAVE_ARCH_PMDP_INVALIDATE_AD + +/* + * pmdp_invalidate_ad() invalidates the PMD while changing a transparent + * hugepage mapping in the page tables. This function is similar to + * pmdp_invalidate(), but should only be used if the access and dirty bits would + * not be cleared by the software in the new PMD value. The function ensures + * that hardware changes of the access and dirty bits updates would not be lost. + * + * Doing so can allow in certain architectures to avoid a TLB flush in most + * cases. Yet, another TLB flush might be necessary later if the PMD update + * itself requires such flush (e.g., if protection was set to be stricter). Yet, + * even when a TLB flush is needed because of the update, the caller may be able + * to batch these TLB flushing operations, so fewer TLB flush operations are + * needed. + */ +extern pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma, + unsigned long address, pmd_t *pmdp); +#endif + #ifndef __HAVE_ARCH_PTE_SAME static inline int pte_same(pte_t pte_a, pte_t pte_b) { @@ -538,11 +1062,14 @@ static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b) { return pmd_val(pmd_a) == pmd_val(pmd_b); } +#endif +#ifndef pud_same static inline int pud_same(pud_t pud_a, pud_t pud_b) { return pud_val(pud_a) == pud_val(pud_b); } +#define pud_same pud_same #endif #ifndef __HAVE_ARCH_P4D_SAME @@ -559,45 +1086,16 @@ static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b) } #endif -/* - * Use set_p*_safe(), and elide TLB flushing, when confident that *no* - * TLB flush will be required as a result of the "set". For example, use - * in scenarios where it is known ahead of time that the routine is - * setting non-present entries, or re-setting an existing entry to the - * same value. Otherwise, use the typical "set" helpers and flush the - * TLB. - */ -#define set_pte_safe(ptep, pte) \ -({ \ - WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \ - set_pte(ptep, pte); \ -}) - -#define set_pmd_safe(pmdp, pmd) \ -({ \ - WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \ - set_pmd(pmdp, pmd); \ -}) - -#define set_pud_safe(pudp, pud) \ -({ \ - WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \ - set_pud(pudp, pud); \ -}) - -#define set_p4d_safe(p4dp, p4d) \ -({ \ - WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \ - set_p4d(p4dp, p4d); \ -}) - -#define set_pgd_safe(pgdp, pgd) \ -({ \ - WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \ - set_pgd(pgdp, pgd); \ -}) - #ifndef __HAVE_ARCH_DO_SWAP_PAGE +static inline void arch_do_swap_page_nr(struct mm_struct *mm, + struct vm_area_struct *vma, + unsigned long addr, + pte_t pte, pte_t oldpte, + int nr) +{ + +} +#else /* * Some architectures support metadata associated with a page. When a * page is being swapped out, this metadata must be saved so it can be @@ -606,12 +1104,17 @@ static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b) * page as metadata for the page. arch_do_swap_page() can restore this * metadata when a page is swapped back in. */ -static inline void arch_do_swap_page(struct mm_struct *mm, - struct vm_area_struct *vma, - unsigned long addr, - pte_t pte, pte_t oldpte) -{ - +static inline void arch_do_swap_page_nr(struct mm_struct *mm, + struct vm_area_struct *vma, + unsigned long addr, + pte_t pte, pte_t oldpte, + int nr) +{ + for (int i = 0; i < nr; i++) { + arch_do_swap_page(vma->vm_mm, vma, addr + i * PAGE_SIZE, + pte_advance_pfn(pte, i), + pte_advance_pfn(oldpte, i)); + } } #endif @@ -639,7 +1142,7 @@ static inline int arch_unmap_one(struct mm_struct *mm, * prototypes must be defined in the arch-specific asm/pgtable.h file. */ #ifndef __HAVE_ARCH_PREPARE_TO_SWAP -static inline int arch_prepare_to_swap(struct page *page) +static inline int arch_prepare_to_swap(struct folio *folio) { return 0; } @@ -656,17 +1159,13 @@ static inline void arch_swap_invalidate_area(int type) #endif #ifndef __HAVE_ARCH_SWAP_RESTORE -static inline void arch_swap_restore(swp_entry_t entry, struct page *page) +static inline void arch_swap_restore(swp_entry_t entry, struct folio *folio) { } #endif -#ifndef __HAVE_ARCH_PGD_OFFSET_GATE -#define pgd_offset_gate(mm, addr) pgd_offset(mm, addr) -#endif - #ifndef __HAVE_ARCH_MOVE_PTE -#define move_pte(pte, prot, old_addr, new_addr) (pte) +#define move_pte(pte, old_addr, new_addr) (pte) #endif #ifndef pte_accessible @@ -674,7 +1173,7 @@ static inline void arch_swap_restore(swp_entry_t entry, struct page *page) #endif #ifndef flush_tlb_fix_spurious_fault -#define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address) +#define flush_tlb_fix_spurious_fault(vma, address, ptep) flush_tlb_page(vma, address) #endif /* @@ -805,7 +1304,7 @@ static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma, * updates, but to prevent any updates it may make from being lost. * * This does not protect against other software modifications of the - * pte; the appropriate pte lock must be held over the transation. + * pte; the appropriate pte lock must be held over the transaction. * * Note that this interface is intended to be batchable, meaning that * ptep_modify_prot_commit may not actually update the pte, but merely @@ -857,6 +1356,10 @@ static inline void ptep_modify_prot_commit(struct vm_area_struct *vma, #define pgprot_device pgprot_noncached #endif +#ifndef pgprot_mhp +#define pgprot_mhp(prot) (prot) +#endif + #ifdef CONFIG_MMU #ifndef pgprot_modify #define pgprot_modify pgprot_modify @@ -882,27 +1385,6 @@ static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot) #endif /* - * A facility to provide lazy MMU batching. This allows PTE updates and - * page invalidations to be delayed until a call to leave lazy MMU mode - * is issued. Some architectures may benefit from doing this, and it is - * beneficial for both shadow and direct mode hypervisors, which may batch - * the PTE updates which happen during this window. Note that using this - * interface requires that read hazards be removed from the code. A read - * hazard could result in the direct mode hypervisor case, since the actual - * write to the page tables may not yet have taken place, so reads though - * a raw PTE pointer after it has been modified are not guaranteed to be - * up to date. This mode can only be entered and left under the protection of - * the page table locks for all page tables which may be modified. In the UP - * case, this is required so that preemption is disabled, and in the SMP case, - * it must synchronize the delayed page table writes properly on other CPUs. - */ -#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE -#define arch_enter_lazy_mmu_mode() do {} while (0) -#define arch_leave_lazy_mmu_mode() do {} while (0) -#define arch_flush_lazy_mmu_mode() do {} while (0) -#endif - -/* * A facility to provide batching of the reload of page tables and * other process state with the actual context switch code for * paravirtualized guests. By convention, only one of the batched @@ -1003,63 +1485,94 @@ static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd) * vmf_insert_pfn. */ -/* - * track_pfn_remap is called when a _new_ pfn mapping is being established - * by remap_pfn_range() for physical range indicated by pfn and size. - */ -static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, - unsigned long pfn, unsigned long addr, - unsigned long size) +static inline int pfnmap_setup_cachemode(unsigned long pfn, unsigned long size, + pgprot_t *prot) { return 0; } -/* - * track_pfn_insert is called when a _new_ single pfn is established - * by vmf_insert_pfn(). - */ -static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, - pfn_t pfn) +static inline int pfnmap_track(unsigned long pfn, unsigned long size, + pgprot_t *prot) { + return 0; } -/* - * track_pfn_copy is called when vma that is covering the pfnmap gets - * copied through copy_page_range(). - */ -static inline int track_pfn_copy(struct vm_area_struct *vma) +static inline void pfnmap_untrack(unsigned long pfn, unsigned long size) { - return 0; } +#else +/** + * pfnmap_setup_cachemode - setup the cachemode in the pgprot for a pfn range + * @pfn: the start of the pfn range + * @size: the size of the pfn range in bytes + * @prot: the pgprot to modify + * + * Lookup the cachemode for the pfn range starting at @pfn with the size + * @size and store it in @prot, leaving other data in @prot unchanged. + * + * This allows for a hardware implementation to have fine-grained control of + * memory cache behavior at page level granularity. Without a hardware + * implementation, this function does nothing. + * + * Currently there is only one implementation for this - x86 Page Attribute + * Table (PAT). See Documentation/arch/x86/pat.rst for more details. + * + * This function can fail if the pfn range spans pfns that require differing + * cachemodes. If the pfn range was previously verified to have a single + * cachemode, it is sufficient to query only a single pfn. The assumption is + * that this is the case for drivers using the vmf_insert_pfn*() interface. + * + * Returns 0 on success and -EINVAL on error. + */ +int pfnmap_setup_cachemode(unsigned long pfn, unsigned long size, + pgprot_t *prot); + +/** + * pfnmap_track - track a pfn range + * @pfn: the start of the pfn range + * @size: the size of the pfn range in bytes + * @prot: the pgprot to track + * + * Requested the pfn range to be 'tracked' by a hardware implementation and + * setup the cachemode in @prot similar to pfnmap_setup_cachemode(). + * + * This allows for fine-grained control of memory cache behaviour at page + * level granularity. Tracking memory this way is persisted across VMA splits + * (VMA merging does not apply for VM_PFNMAP). + * + * Currently, there is only one implementation for this - x86 Page Attribute + * Table (PAT). See Documentation/arch/x86/pat.rst for more details. + * + * Returns 0 on success and -EINVAL on error. + */ +int pfnmap_track(unsigned long pfn, unsigned long size, pgprot_t *prot); -/* - * untrack_pfn is called while unmapping a pfnmap for a region. - * untrack can be called for a specific region indicated by pfn and size or - * can be for the entire vma (in which case pfn, size are zero). +/** + * pfnmap_untrack - untrack a pfn range + * @pfn: the start of the pfn range + * @size: the size of the pfn range in bytes + * + * Untrack a pfn range previously tracked through pfnmap_track(). */ -static inline void untrack_pfn(struct vm_area_struct *vma, - unsigned long pfn, unsigned long size) -{ -} +void pfnmap_untrack(unsigned long pfn, unsigned long size); +#endif -/* - * untrack_pfn_moved is called while mremapping a pfnmap for a new region. +/** + * pfnmap_setup_cachemode_pfn - setup the cachemode in the pgprot for a pfn + * @pfn: the pfn + * @prot: the pgprot to modify + * + * Lookup the cachemode for @pfn and store it in @prot, leaving other + * data in @prot unchanged. + * + * See pfnmap_setup_cachemode() for details. */ -static inline void untrack_pfn_moved(struct vm_area_struct *vma) +static inline void pfnmap_setup_cachemode_pfn(unsigned long pfn, pgprot_t *prot) { + pfnmap_setup_cachemode(pfn, PAGE_SIZE, prot); } -#else -extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, - unsigned long pfn, unsigned long addr, - unsigned long size); -extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, - pfn_t pfn); -extern int track_pfn_copy(struct vm_area_struct *vma); -extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn, - unsigned long size); -extern void untrack_pfn_moved(struct vm_area_struct *vma); -#endif +#ifdef CONFIG_MMU #ifdef __HAVE_COLOR_ZERO_PAGE static inline int is_zero_pfn(unsigned long pfn) { @@ -1083,6 +1596,17 @@ static inline unsigned long my_zero_pfn(unsigned long addr) return zero_pfn; } #endif +#else +static inline int is_zero_pfn(unsigned long pfn) +{ + return 0; +} + +static inline unsigned long my_zero_pfn(unsigned long addr) +{ + return 0; +} +#endif /* CONFIG_MMU */ #ifdef CONFIG_MMU @@ -1124,17 +1648,17 @@ static inline int pgd_devmap(pgd_t pgd) #endif #if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \ - (defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ - !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)) + !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) static inline int pud_trans_huge(pud_t pud) { return 0; } #endif -/* See pmd_none_or_trans_huge_or_clear_bad for discussion. */ -static inline int pud_none_or_trans_huge_or_dev_or_clear_bad(pud_t *pud) +static inline int pud_trans_unstable(pud_t *pud) { +#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ + defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) pud_t pudval = READ_ONCE(*pud); if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval)) @@ -1143,130 +1667,22 @@ static inline int pud_none_or_trans_huge_or_dev_or_clear_bad(pud_t *pud) pud_clear_bad(pud); return 1; } - return 0; -} - -/* See pmd_trans_unstable for discussion. */ -static inline int pud_trans_unstable(pud_t *pud) -{ -#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ - defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) - return pud_none_or_trans_huge_or_dev_or_clear_bad(pud); -#else - return 0; -#endif -} - -#ifndef pmd_read_atomic -static inline pmd_t pmd_read_atomic(pmd_t *pmdp) -{ - /* - * Depend on compiler for an atomic pmd read. NOTE: this is - * only going to work, if the pmdval_t isn't larger than - * an unsigned long. - */ - return *pmdp; -} -#endif - -#ifndef arch_needs_pgtable_deposit -#define arch_needs_pgtable_deposit() (false) -#endif -/* - * This function is meant to be used by sites walking pagetables with - * the mmap_lock held in read mode to protect against MADV_DONTNEED and - * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd - * into a null pmd and the transhuge page fault can convert a null pmd - * into an hugepmd or into a regular pmd (if the hugepage allocation - * fails). While holding the mmap_lock in read mode the pmd becomes - * stable and stops changing under us only if it's not null and not a - * transhuge pmd. When those races occurs and this function makes a - * difference vs the standard pmd_none_or_clear_bad, the result is - * undefined so behaving like if the pmd was none is safe (because it - * can return none anyway). The compiler level barrier() is critically - * important to compute the two checks atomically on the same pmdval. - * - * For 32bit kernels with a 64bit large pmd_t this automatically takes - * care of reading the pmd atomically to avoid SMP race conditions - * against pmd_populate() when the mmap_lock is hold for reading by the - * caller (a special atomic read not done by "gcc" as in the generic - * version above, is also needed when THP is disabled because the page - * fault can populate the pmd from under us). - */ -static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd) -{ - pmd_t pmdval = pmd_read_atomic(pmd); - /* - * The barrier will stabilize the pmdval in a register or on - * the stack so that it will stop changing under the code. - * - * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE, - * pmd_read_atomic is allowed to return a not atomic pmdval - * (for example pointing to an hugepage that has never been - * mapped in the pmd). The below checks will only care about - * the low part of the pmd with 32bit PAE x86 anyway, with the - * exception of pmd_none(). So the important thing is that if - * the low part of the pmd is found null, the high part will - * be also null or the pmd_none() check below would be - * confused. - */ -#ifdef CONFIG_TRANSPARENT_HUGEPAGE - barrier(); #endif - /* - * !pmd_present() checks for pmd migration entries - * - * The complete check uses is_pmd_migration_entry() in linux/swapops.h - * But using that requires moving current function and pmd_trans_unstable() - * to linux/swapops.h to resovle dependency, which is too much code move. - * - * !pmd_present() is equivalent to is_pmd_migration_entry() currently, - * because !pmd_present() pages can only be under migration not swapped - * out. - * - * pmd_none() is preseved for future condition checks on pmd migration - * entries and not confusing with this function name, although it is - * redundant with !pmd_present(). - */ - if (pmd_none(pmdval) || pmd_trans_huge(pmdval) || - (IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION) && !pmd_present(pmdval))) - return 1; - if (unlikely(pmd_bad(pmdval))) { - pmd_clear_bad(pmd); - return 1; - } return 0; } -/* - * This is a noop if Transparent Hugepage Support is not built into - * the kernel. Otherwise it is equivalent to - * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in - * places that already verified the pmd is not none and they want to - * walk ptes while holding the mmap sem in read mode (write mode don't - * need this). If THP is not enabled, the pmd can't go away under the - * code even if MADV_DONTNEED runs, but if THP is enabled we need to - * run a pmd_trans_unstable before walking the ptes after - * split_huge_pmd returns (because it may have run when the pmd become - * null, but then a page fault can map in a THP and not a regular page). - */ -static inline int pmd_trans_unstable(pmd_t *pmd) -{ -#ifdef CONFIG_TRANSPARENT_HUGEPAGE - return pmd_none_or_trans_huge_or_clear_bad(pmd); -#else - return 0; -#endif -} - #ifndef CONFIG_NUMA_BALANCING /* - * Technically a PTE can be PROTNONE even when not doing NUMA balancing but - * the only case the kernel cares is for NUMA balancing and is only ever set - * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked - * _PAGE_PROTNONE so by default, implement the helper as "always no". It - * is the responsibility of the caller to distinguish between PROT_NONE - * protections and NUMA hinting fault protections. + * In an inaccessible (PROT_NONE) VMA, pte_protnone() may indicate "yes". It is + * perfectly valid to indicate "no" in that case, which is why our default + * implementation defaults to "always no". + * + * In an accessible VMA, however, pte_protnone() reliably indicates PROT_NONE + * page protection due to NUMA hinting. NUMA hinting faults only apply in + * accessible VMAs. + * + * So, to reliably identify PROT_NONE PTEs that require a NUMA hinting fault, + * looking at the VMA accessibility is sufficient. */ static inline int pte_protnone(pte_t pte) { @@ -1285,16 +1701,13 @@ static inline int pmd_protnone(pmd_t pmd) #ifndef __PAGETABLE_P4D_FOLDED int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot); -int p4d_clear_huge(p4d_t *p4d); +void p4d_clear_huge(p4d_t *p4d); #else static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot) { return 0; } -static inline int p4d_clear_huge(p4d_t *p4d) -{ - return 0; -} +static inline void p4d_clear_huge(p4d_t *p4d) { } #endif /* !__PAGETABLE_P4D_FOLDED */ int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot); @@ -1317,10 +1730,7 @@ static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot) { return 0; } -static inline int p4d_clear_huge(p4d_t *p4d) -{ - return 0; -} +static inline void p4d_clear_huge(p4d_t *p4d) { } static inline int pud_clear_huge(pud_t *pud) { return 0; @@ -1427,18 +1837,26 @@ typedef unsigned int pgtbl_mod_mask; #endif /* !__ASSEMBLY__ */ -#ifndef io_remap_pfn_range -#define io_remap_pfn_range remap_pfn_range +#if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT) +#ifdef CONFIG_PHYS_ADDR_T_64BIT +/* + * ZSMALLOC needs to know the highest PFN on 32-bit architectures + * with physical address space extension, but falls back to + * BITS_PER_LONG otherwise. + */ +#error Missing MAX_POSSIBLE_PHYSMEM_BITS definition +#else +#define MAX_POSSIBLE_PHYSMEM_BITS 32 +#endif #endif #ifndef has_transparent_hugepage -#ifdef CONFIG_TRANSPARENT_HUGEPAGE -#define has_transparent_hugepage() 1 -#else -#define has_transparent_hugepage() 0 -#endif +#define has_transparent_hugepage() IS_BUILTIN(CONFIG_TRANSPARENT_HUGEPAGE) #endif +#ifndef has_transparent_pud_hugepage +#define has_transparent_pud_hugepage() IS_BUILTIN(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) +#endif /* * On some architectures it depends on the mm if the p4d/pud or pmd * layer of the page table hierarchy is folded or not. @@ -1466,23 +1884,132 @@ typedef unsigned int pgtbl_mod_mask; #endif /* - * p?d_leaf() - true if this entry is a final mapping to a physical address. - * This differs from p?d_huge() by the fact that they are always available (if - * the architecture supports large pages at the appropriate level) even - * if CONFIG_HUGETLB_PAGE is not defined. - * Only meaningful when called on a valid entry. + * pXd_leaf() is the API to check whether a pgtable entry is a huge page + * mapping. It should work globally across all archs, without any + * dependency on CONFIG_* options. For architectures that do not support + * huge mappings on specific levels, below fallbacks will be used. + * + * A leaf pgtable entry should always imply the following: + * + * - It is a "present" entry. IOW, before using this API, please check it + * with pXd_present() first. NOTE: it may not always mean the "present + * bit" is set. For example, PROT_NONE entries are always "present". + * + * - It should _never_ be a swap entry of any type. Above "present" check + * should have guarded this, but let's be crystal clear on this. + * + * - It should contain a huge PFN, which points to a huge page larger than + * PAGE_SIZE of the platform. The PFN format isn't important here. + * + * - It should cover all kinds of huge mappings (e.g., pXd_trans_huge(), + * pXd_devmap(), or hugetlb mappings). */ #ifndef pgd_leaf -#define pgd_leaf(x) 0 +#define pgd_leaf(x) false #endif #ifndef p4d_leaf -#define p4d_leaf(x) 0 +#define p4d_leaf(x) false #endif #ifndef pud_leaf -#define pud_leaf(x) 0 +#define pud_leaf(x) false #endif #ifndef pmd_leaf -#define pmd_leaf(x) 0 +#define pmd_leaf(x) false +#endif + +#ifndef pgd_leaf_size +#define pgd_leaf_size(x) (1ULL << PGDIR_SHIFT) +#endif +#ifndef p4d_leaf_size +#define p4d_leaf_size(x) P4D_SIZE +#endif +#ifndef pud_leaf_size +#define pud_leaf_size(x) PUD_SIZE +#endif +#ifndef pmd_leaf_size +#define pmd_leaf_size(x) PMD_SIZE +#endif +#ifndef __pte_leaf_size +#ifndef pte_leaf_size +#define pte_leaf_size(x) PAGE_SIZE +#endif +#define __pte_leaf_size(x,y) pte_leaf_size(y) #endif +/* + * We always define pmd_pfn for all archs as it's used in lots of generic + * code. Now it happens too for pud_pfn (and can happen for larger + * mappings too in the future; we're not there yet). Instead of defining + * it for all archs (like pmd_pfn), provide a fallback. + * + * Note that returning 0 here means any arch that didn't define this can + * get severely wrong when it hits a real pud leaf. It's arch's + * responsibility to properly define it when a huge pud is possible. + */ +#ifndef pud_pfn +#define pud_pfn(x) 0 +#endif + +/* + * Some architectures have MMUs that are configurable or selectable at boot + * time. These lead to variable PTRS_PER_x. For statically allocated arrays it + * helps to have a static maximum value. + */ + +#ifndef MAX_PTRS_PER_PTE +#define MAX_PTRS_PER_PTE PTRS_PER_PTE +#endif + +#ifndef MAX_PTRS_PER_PMD +#define MAX_PTRS_PER_PMD PTRS_PER_PMD +#endif + +#ifndef MAX_PTRS_PER_PUD +#define MAX_PTRS_PER_PUD PTRS_PER_PUD +#endif + +#ifndef MAX_PTRS_PER_P4D +#define MAX_PTRS_PER_P4D PTRS_PER_P4D +#endif + +#ifndef pte_pgprot +#define pte_pgprot(x) ((pgprot_t) {0}) +#endif + +#ifndef pmd_pgprot +#define pmd_pgprot(x) ((pgprot_t) {0}) +#endif + +#ifndef pud_pgprot +#define pud_pgprot(x) ((pgprot_t) {0}) +#endif + +/* description of effects of mapping type and prot in current implementation. + * this is due to the limited x86 page protection hardware. The expected + * behavior is in parens: + * + * map_type prot + * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC + * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes + * w: (no) no w: (no) no w: (yes) yes w: (no) no + * x: (no) no x: (no) yes x: (no) yes x: (yes) yes + * + * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes + * w: (no) no w: (no) no w: (copy) copy w: (no) no + * x: (no) no x: (no) yes x: (no) yes x: (yes) yes + * + * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and + * MAP_PRIVATE (with Enhanced PAN supported): + * r: (no) no + * w: (no) no + * x: (yes) yes + */ +#define DECLARE_VM_GET_PAGE_PROT \ +pgprot_t vm_get_page_prot(unsigned long vm_flags) \ +{ \ + return protection_map[vm_flags & \ + (VM_READ | VM_WRITE | VM_EXEC | VM_SHARED)]; \ +} \ +EXPORT_SYMBOL(vm_get_page_prot); + #endif /* _LINUX_PGTABLE_H */ |