diff options
Diffstat (limited to 'include/linux/seqlock.h')
-rw-r--r-- | include/linux/seqlock.h | 616 |
1 files changed, 348 insertions, 268 deletions
diff --git a/include/linux/seqlock.h b/include/linux/seqlock.h index 962d9768945f..5ce48eab7a2a 100644 --- a/include/linux/seqlock.h +++ b/include/linux/seqlock.h @@ -18,6 +18,7 @@ #include <linux/lockdep.h> #include <linux/mutex.h> #include <linux/preempt.h> +#include <linux/seqlock_types.h> #include <linux/spinlock.h> #include <asm/processor.h> @@ -37,37 +38,6 @@ */ #define KCSAN_SEQLOCK_REGION_MAX 1000 -/* - * Sequence counters (seqcount_t) - * - * This is the raw counting mechanism, without any writer protection. - * - * Write side critical sections must be serialized and non-preemptible. - * - * If readers can be invoked from hardirq or softirq contexts, - * interrupts or bottom halves must also be respectively disabled before - * entering the write section. - * - * This mechanism can't be used if the protected data contains pointers, - * as the writer can invalidate a pointer that a reader is following. - * - * If the write serialization mechanism is one of the common kernel - * locking primitives, use a sequence counter with associated lock - * (seqcount_LOCKTYPE_t) instead. - * - * If it's desired to automatically handle the sequence counter writer - * serialization and non-preemptibility requirements, use a sequential - * lock (seqlock_t) instead. - * - * See Documentation/locking/seqlock.rst - */ -typedef struct seqcount { - unsigned sequence; -#ifdef CONFIG_DEBUG_LOCK_ALLOC - struct lockdep_map dep_map; -#endif -} seqcount_t; - static inline void __seqcount_init(seqcount_t *s, const char *name, struct lock_class_key *key) { @@ -117,7 +87,7 @@ static inline void seqcount_lockdep_reader_access(const seqcount_t *s) #define SEQCNT_ZERO(name) { .sequence = 0, SEQCOUNT_DEP_MAP_INIT(name) } /* - * Sequence counters with associated locks (seqcount_LOCKTYPE_t) + * Sequence counters with associated locks (seqcount_LOCKNAME_t) * * A sequence counter which associates the lock used for writer * serialization at initialization time. This enables lockdep to validate @@ -131,190 +101,207 @@ static inline void seqcount_lockdep_reader_access(const seqcount_t *s) * See Documentation/locking/seqlock.rst */ -#ifdef CONFIG_LOCKDEP -#define __SEQ_LOCK(expr) expr -#else -#define __SEQ_LOCK(expr) -#endif - -/** - * typedef seqcount_LOCKNAME_t - sequence counter with LOCKTYPR associated +/* + * typedef seqcount_LOCKNAME_t - sequence counter with LOCKNAME associated * @seqcount: The real sequence counter - * @lock: Pointer to the associated spinlock + * @lock: Pointer to the associated lock * - * A plain sequence counter with external writer synchronization by a - * spinlock. The spinlock is associated to the sequence count in the + * A plain sequence counter with external writer synchronization by + * LOCKNAME @lock. The lock is associated to the sequence counter in the * static initializer or init function. This enables lockdep to validate * that the write side critical section is properly serialized. + * + * LOCKNAME: raw_spinlock, spinlock, rwlock or mutex */ -/** +/* * seqcount_LOCKNAME_init() - runtime initializer for seqcount_LOCKNAME_t * @s: Pointer to the seqcount_LOCKNAME_t instance - * @lock: Pointer to the associated LOCKTYPE + * @lock: Pointer to the associated lock */ +#define seqcount_LOCKNAME_init(s, _lock, lockname) \ + do { \ + seqcount_##lockname##_t *____s = (s); \ + seqcount_init(&____s->seqcount); \ + __SEQ_LOCK(____s->lock = (_lock)); \ + } while (0) + +#define seqcount_raw_spinlock_init(s, lock) seqcount_LOCKNAME_init(s, lock, raw_spinlock) +#define seqcount_spinlock_init(s, lock) seqcount_LOCKNAME_init(s, lock, spinlock) +#define seqcount_rwlock_init(s, lock) seqcount_LOCKNAME_init(s, lock, rwlock) +#define seqcount_mutex_init(s, lock) seqcount_LOCKNAME_init(s, lock, mutex) + /* - * SEQCOUNT_LOCKTYPE() - Instantiate seqcount_LOCKNAME_t and helpers - * @locktype: actual typename - * @lockname: name + * SEQCOUNT_LOCKNAME() - Instantiate seqcount_LOCKNAME_t and helpers + * seqprop_LOCKNAME_*() - Property accessors for seqcount_LOCKNAME_t + * + * @lockname: "LOCKNAME" part of seqcount_LOCKNAME_t + * @locktype: LOCKNAME canonical C data type * @preemptible: preemptibility of above locktype - * @lockmember: argument for lockdep_assert_held() + * @lockbase: prefix for associated lock/unlock */ -#define SEQCOUNT_LOCKTYPE(locktype, lockname, preemptible, lockmember) \ -typedef struct seqcount_##lockname { \ - seqcount_t seqcount; \ - __SEQ_LOCK(locktype *lock); \ -} seqcount_##lockname##_t; \ - \ -static __always_inline void \ -seqcount_##lockname##_init(seqcount_##lockname##_t *s, locktype *lock) \ +#define SEQCOUNT_LOCKNAME(lockname, locktype, preemptible, lockbase) \ +static __always_inline seqcount_t * \ +__seqprop_##lockname##_ptr(seqcount_##lockname##_t *s) \ { \ - seqcount_init(&s->seqcount); \ - __SEQ_LOCK(s->lock = lock); \ + return &s->seqcount; \ } \ \ -static __always_inline seqcount_t * \ -__seqcount_##lockname##_ptr(seqcount_##lockname##_t *s) \ +static __always_inline const seqcount_t * \ +__seqprop_##lockname##_const_ptr(const seqcount_##lockname##_t *s) \ { \ return &s->seqcount; \ } \ \ +static __always_inline unsigned \ +__seqprop_##lockname##_sequence(const seqcount_##lockname##_t *s) \ +{ \ + unsigned seq = smp_load_acquire(&s->seqcount.sequence); \ + \ + if (!IS_ENABLED(CONFIG_PREEMPT_RT)) \ + return seq; \ + \ + if (preemptible && unlikely(seq & 1)) { \ + __SEQ_LOCK(lockbase##_lock(s->lock)); \ + __SEQ_LOCK(lockbase##_unlock(s->lock)); \ + \ + /* \ + * Re-read the sequence counter since the (possibly \ + * preempted) writer made progress. \ + */ \ + seq = smp_load_acquire(&s->seqcount.sequence); \ + } \ + \ + return seq; \ +} \ + \ static __always_inline bool \ -__seqcount_##lockname##_preemptible(seqcount_##lockname##_t *s) \ +__seqprop_##lockname##_preemptible(const seqcount_##lockname##_t *s) \ { \ - return preemptible; \ + if (!IS_ENABLED(CONFIG_PREEMPT_RT)) \ + return preemptible; \ + \ + /* PREEMPT_RT relies on the above LOCK+UNLOCK */ \ + return false; \ } \ \ static __always_inline void \ -__seqcount_##lockname##_assert(seqcount_##lockname##_t *s) \ +__seqprop_##lockname##_assert(const seqcount_##lockname##_t *s) \ { \ - __SEQ_LOCK(lockdep_assert_held(lockmember)); \ + __SEQ_LOCK(lockdep_assert_held(s->lock)); \ } /* * __seqprop() for seqcount_t */ -static inline seqcount_t *__seqcount_ptr(seqcount_t *s) +static inline seqcount_t *__seqprop_ptr(seqcount_t *s) { return s; } -static inline bool __seqcount_preemptible(seqcount_t *s) +static inline const seqcount_t *__seqprop_const_ptr(const seqcount_t *s) +{ + return s; +} + +static inline unsigned __seqprop_sequence(const seqcount_t *s) +{ + return smp_load_acquire(&s->sequence); +} + +static inline bool __seqprop_preemptible(const seqcount_t *s) { return false; } -static inline void __seqcount_assert(seqcount_t *s) +static inline void __seqprop_assert(const seqcount_t *s) { lockdep_assert_preemption_disabled(); } -SEQCOUNT_LOCKTYPE(raw_spinlock_t, raw_spinlock, false, s->lock) -SEQCOUNT_LOCKTYPE(spinlock_t, spinlock, false, s->lock) -SEQCOUNT_LOCKTYPE(rwlock_t, rwlock, false, s->lock) -SEQCOUNT_LOCKTYPE(struct mutex, mutex, true, s->lock) -SEQCOUNT_LOCKTYPE(struct ww_mutex, ww_mutex, true, &s->lock->base) +#define __SEQ_RT IS_ENABLED(CONFIG_PREEMPT_RT) -/** +SEQCOUNT_LOCKNAME(raw_spinlock, raw_spinlock_t, false, raw_spin) +SEQCOUNT_LOCKNAME(spinlock, spinlock_t, __SEQ_RT, spin) +SEQCOUNT_LOCKNAME(rwlock, rwlock_t, __SEQ_RT, read) +SEQCOUNT_LOCKNAME(mutex, struct mutex, true, mutex) +#undef SEQCOUNT_LOCKNAME + +/* * SEQCNT_LOCKNAME_ZERO - static initializer for seqcount_LOCKNAME_t * @name: Name of the seqcount_LOCKNAME_t instance - * @lock: Pointer to the associated LOCKTYPE + * @lock: Pointer to the associated LOCKNAME */ -#define SEQCOUNT_LOCKTYPE_ZERO(seq_name, assoc_lock) { \ +#define SEQCOUNT_LOCKNAME_ZERO(seq_name, assoc_lock) { \ .seqcount = SEQCNT_ZERO(seq_name.seqcount), \ __SEQ_LOCK(.lock = (assoc_lock)) \ } -#define SEQCNT_SPINLOCK_ZERO(name, lock) SEQCOUNT_LOCKTYPE_ZERO(name, lock) -#define SEQCNT_RAW_SPINLOCK_ZERO(name, lock) SEQCOUNT_LOCKTYPE_ZERO(name, lock) -#define SEQCNT_RWLOCK_ZERO(name, lock) SEQCOUNT_LOCKTYPE_ZERO(name, lock) -#define SEQCNT_MUTEX_ZERO(name, lock) SEQCOUNT_LOCKTYPE_ZERO(name, lock) -#define SEQCNT_WW_MUTEX_ZERO(name, lock) SEQCOUNT_LOCKTYPE_ZERO(name, lock) - +#define SEQCNT_RAW_SPINLOCK_ZERO(name, lock) SEQCOUNT_LOCKNAME_ZERO(name, lock) +#define SEQCNT_SPINLOCK_ZERO(name, lock) SEQCOUNT_LOCKNAME_ZERO(name, lock) +#define SEQCNT_RWLOCK_ZERO(name, lock) SEQCOUNT_LOCKNAME_ZERO(name, lock) +#define SEQCNT_MUTEX_ZERO(name, lock) SEQCOUNT_LOCKNAME_ZERO(name, lock) +#define SEQCNT_WW_MUTEX_ZERO(name, lock) SEQCOUNT_LOCKNAME_ZERO(name, lock) #define __seqprop_case(s, lockname, prop) \ - seqcount_##lockname##_t: __seqcount_##lockname##_##prop((void *)(s)) + seqcount_##lockname##_t: __seqprop_##lockname##_##prop #define __seqprop(s, prop) _Generic(*(s), \ - seqcount_t: __seqcount_##prop((void *)(s)), \ + seqcount_t: __seqprop_##prop, \ __seqprop_case((s), raw_spinlock, prop), \ __seqprop_case((s), spinlock, prop), \ __seqprop_case((s), rwlock, prop), \ - __seqprop_case((s), mutex, prop), \ - __seqprop_case((s), ww_mutex, prop)) + __seqprop_case((s), mutex, prop)) -#define __seqcount_ptr(s) __seqprop(s, ptr) -#define __seqcount_lock_preemptible(s) __seqprop(s, preemptible) -#define __seqcount_assert_lock_held(s) __seqprop(s, assert) +#define seqprop_ptr(s) __seqprop(s, ptr)(s) +#define seqprop_const_ptr(s) __seqprop(s, const_ptr)(s) +#define seqprop_sequence(s) __seqprop(s, sequence)(s) +#define seqprop_preemptible(s) __seqprop(s, preemptible)(s) +#define seqprop_assert(s) __seqprop(s, assert)(s) /** - * __read_seqcount_begin() - begin a seqcount_t read section w/o barrier - * @s: Pointer to seqcount_t or any of the seqcount_locktype_t variants - * - * __read_seqcount_begin is like read_seqcount_begin, but has no smp_rmb() - * barrier. Callers should ensure that smp_rmb() or equivalent ordering is - * provided before actually loading any of the variables that are to be - * protected in this critical section. - * - * Use carefully, only in critical code, and comment how the barrier is - * provided. + * __read_seqcount_begin() - begin a seqcount_t read section + * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants * * Return: count to be passed to read_seqcount_retry() */ #define __read_seqcount_begin(s) \ - __read_seqcount_t_begin(__seqcount_ptr(s)) - -static inline unsigned __read_seqcount_t_begin(const seqcount_t *s) -{ - unsigned ret; - -repeat: - ret = READ_ONCE(s->sequence); - if (unlikely(ret & 1)) { - cpu_relax(); - goto repeat; - } - kcsan_atomic_next(KCSAN_SEQLOCK_REGION_MAX); - return ret; -} +({ \ + unsigned __seq; \ + \ + while (unlikely((__seq = seqprop_sequence(s)) & 1)) \ + cpu_relax(); \ + \ + kcsan_atomic_next(KCSAN_SEQLOCK_REGION_MAX); \ + __seq; \ +}) /** * raw_read_seqcount_begin() - begin a seqcount_t read section w/o lockdep - * @s: Pointer to seqcount_t or any of the seqcount_locktype_t variants + * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants * * Return: count to be passed to read_seqcount_retry() */ -#define raw_read_seqcount_begin(s) \ - raw_read_seqcount_t_begin(__seqcount_ptr(s)) - -static inline unsigned raw_read_seqcount_t_begin(const seqcount_t *s) -{ - unsigned ret = __read_seqcount_t_begin(s); - smp_rmb(); - return ret; -} +#define raw_read_seqcount_begin(s) __read_seqcount_begin(s) /** * read_seqcount_begin() - begin a seqcount_t read critical section - * @s: Pointer to seqcount_t or any of the seqcount_locktype_t variants + * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants * * Return: count to be passed to read_seqcount_retry() */ #define read_seqcount_begin(s) \ - read_seqcount_t_begin(__seqcount_ptr(s)) - -static inline unsigned read_seqcount_t_begin(const seqcount_t *s) -{ - seqcount_lockdep_reader_access(s); - return raw_read_seqcount_t_begin(s); -} +({ \ + seqcount_lockdep_reader_access(seqprop_const_ptr(s)); \ + raw_read_seqcount_begin(s); \ +}) /** * raw_read_seqcount() - read the raw seqcount_t counter value - * @s: Pointer to seqcount_t or any of the seqcount_locktype_t variants + * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants * * raw_read_seqcount opens a read critical section of the given * seqcount_t, without any lockdep checking, and without checking or @@ -324,20 +311,40 @@ static inline unsigned read_seqcount_t_begin(const seqcount_t *s) * Return: count to be passed to read_seqcount_retry() */ #define raw_read_seqcount(s) \ - raw_read_seqcount_t(__seqcount_ptr(s)) +({ \ + unsigned __seq = seqprop_sequence(s); \ + \ + kcsan_atomic_next(KCSAN_SEQLOCK_REGION_MAX); \ + __seq; \ +}) -static inline unsigned raw_read_seqcount_t(const seqcount_t *s) -{ - unsigned ret = READ_ONCE(s->sequence); - smp_rmb(); - kcsan_atomic_next(KCSAN_SEQLOCK_REGION_MAX); - return ret; -} +/** + * raw_seqcount_try_begin() - begin a seqcount_t read critical section + * w/o lockdep and w/o counter stabilization + * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants + * @start: count to be passed to read_seqcount_retry() + * + * Similar to raw_seqcount_begin(), except it enables eliding the critical + * section entirely if odd, instead of doing the speculation knowing it will + * fail. + * + * Useful when counter stabilization is more or less equivalent to taking + * the lock and there is a slowpath that does that. + * + * If true, start will be set to the (even) sequence count read. + * + * Return: true when a read critical section is started. + */ +#define raw_seqcount_try_begin(s, start) \ +({ \ + start = raw_read_seqcount(s); \ + !(start & 1); \ +}) /** * raw_seqcount_begin() - begin a seqcount_t read critical section w/o * lockdep and w/o counter stabilization - * @s: Pointer to seqcount_t or any of the seqcount_locktype_t variants + * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants * * raw_seqcount_begin opens a read critical section of the given * seqcount_t. Unlike read_seqcount_begin(), this function will not wait @@ -352,20 +359,17 @@ static inline unsigned raw_read_seqcount_t(const seqcount_t *s) * Return: count to be passed to read_seqcount_retry() */ #define raw_seqcount_begin(s) \ - raw_seqcount_t_begin(__seqcount_ptr(s)) - -static inline unsigned raw_seqcount_t_begin(const seqcount_t *s) -{ - /* - * If the counter is odd, let read_seqcount_retry() fail - * by decrementing the counter. - */ - return raw_read_seqcount_t(s) & ~1; -} +({ \ + /* \ + * If the counter is odd, let read_seqcount_retry() fail \ + * by decrementing the counter. \ + */ \ + raw_read_seqcount(s) & ~1; \ +}) /** * __read_seqcount_retry() - end a seqcount_t read section w/o barrier - * @s: Pointer to seqcount_t or any of the seqcount_locktype_t variants + * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants * @start: count, from read_seqcount_begin() * * __read_seqcount_retry is like read_seqcount_retry, but has no smp_rmb() @@ -379,9 +383,9 @@ static inline unsigned raw_seqcount_t_begin(const seqcount_t *s) * Return: true if a read section retry is required, else false */ #define __read_seqcount_retry(s, start) \ - __read_seqcount_t_retry(__seqcount_ptr(s), start) + do___read_seqcount_retry(seqprop_const_ptr(s), start) -static inline int __read_seqcount_t_retry(const seqcount_t *s, unsigned start) +static inline int do___read_seqcount_retry(const seqcount_t *s, unsigned start) { kcsan_atomic_next(0); return unlikely(READ_ONCE(s->sequence) != start); @@ -389,7 +393,7 @@ static inline int __read_seqcount_t_retry(const seqcount_t *s, unsigned start) /** * read_seqcount_retry() - end a seqcount_t read critical section - * @s: Pointer to seqcount_t or any of the seqcount_locktype_t variants + * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants * @start: count, from read_seqcount_begin() * * read_seqcount_retry closes the read critical section of given @@ -399,27 +403,29 @@ static inline int __read_seqcount_t_retry(const seqcount_t *s, unsigned start) * Return: true if a read section retry is required, else false */ #define read_seqcount_retry(s, start) \ - read_seqcount_t_retry(__seqcount_ptr(s), start) + do_read_seqcount_retry(seqprop_const_ptr(s), start) -static inline int read_seqcount_t_retry(const seqcount_t *s, unsigned start) +static inline int do_read_seqcount_retry(const seqcount_t *s, unsigned start) { smp_rmb(); - return __read_seqcount_t_retry(s, start); + return do___read_seqcount_retry(s, start); } /** * raw_write_seqcount_begin() - start a seqcount_t write section w/o lockdep - * @s: Pointer to seqcount_t or any of the seqcount_locktype_t variants + * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants + * + * Context: check write_seqcount_begin() */ #define raw_write_seqcount_begin(s) \ do { \ - if (__seqcount_lock_preemptible(s)) \ + if (seqprop_preemptible(s)) \ preempt_disable(); \ \ - raw_write_seqcount_t_begin(__seqcount_ptr(s)); \ + do_raw_write_seqcount_begin(seqprop_ptr(s)); \ } while (0) -static inline void raw_write_seqcount_t_begin(seqcount_t *s) +static inline void do_raw_write_seqcount_begin(seqcount_t *s) { kcsan_nestable_atomic_begin(); s->sequence++; @@ -428,17 +434,19 @@ static inline void raw_write_seqcount_t_begin(seqcount_t *s) /** * raw_write_seqcount_end() - end a seqcount_t write section w/o lockdep - * @s: Pointer to seqcount_t or any of the seqcount_locktype_t variants + * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants + * + * Context: check write_seqcount_end() */ #define raw_write_seqcount_end(s) \ do { \ - raw_write_seqcount_t_end(__seqcount_ptr(s)); \ + do_raw_write_seqcount_end(seqprop_ptr(s)); \ \ - if (__seqcount_lock_preemptible(s)) \ + if (seqprop_preemptible(s)) \ preempt_enable(); \ } while (0) -static inline void raw_write_seqcount_t_end(seqcount_t *s) +static inline void do_raw_write_seqcount_end(seqcount_t *s) { smp_wmb(); s->sequence++; @@ -448,76 +456,77 @@ static inline void raw_write_seqcount_t_end(seqcount_t *s) /** * write_seqcount_begin_nested() - start a seqcount_t write section with * custom lockdep nesting level - * @s: Pointer to seqcount_t or any of the seqcount_locktype_t variants + * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants * @subclass: lockdep nesting level * * See Documentation/locking/lockdep-design.rst + * Context: check write_seqcount_begin() */ #define write_seqcount_begin_nested(s, subclass) \ do { \ - __seqcount_assert_lock_held(s); \ + seqprop_assert(s); \ \ - if (__seqcount_lock_preemptible(s)) \ + if (seqprop_preemptible(s)) \ preempt_disable(); \ \ - write_seqcount_t_begin_nested(__seqcount_ptr(s), subclass); \ + do_write_seqcount_begin_nested(seqprop_ptr(s), subclass); \ } while (0) -static inline void write_seqcount_t_begin_nested(seqcount_t *s, int subclass) +static inline void do_write_seqcount_begin_nested(seqcount_t *s, int subclass) { - raw_write_seqcount_t_begin(s); seqcount_acquire(&s->dep_map, subclass, 0, _RET_IP_); + do_raw_write_seqcount_begin(s); } /** * write_seqcount_begin() - start a seqcount_t write side critical section - * @s: Pointer to seqcount_t or any of the seqcount_locktype_t variants - * - * write_seqcount_begin opens a write side critical section of the given - * seqcount_t. + * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants * - * Context: seqcount_t write side critical sections must be serialized and - * non-preemptible. If readers can be invoked from hardirq or softirq + * Context: sequence counter write side sections must be serialized and + * non-preemptible. Preemption will be automatically disabled if and + * only if the seqcount write serialization lock is associated, and + * preemptible. If readers can be invoked from hardirq or softirq * context, interrupts or bottom halves must be respectively disabled. */ #define write_seqcount_begin(s) \ do { \ - __seqcount_assert_lock_held(s); \ + seqprop_assert(s); \ \ - if (__seqcount_lock_preemptible(s)) \ + if (seqprop_preemptible(s)) \ preempt_disable(); \ \ - write_seqcount_t_begin(__seqcount_ptr(s)); \ + do_write_seqcount_begin(seqprop_ptr(s)); \ } while (0) -static inline void write_seqcount_t_begin(seqcount_t *s) +static inline void do_write_seqcount_begin(seqcount_t *s) { - write_seqcount_t_begin_nested(s, 0); + do_write_seqcount_begin_nested(s, 0); } /** * write_seqcount_end() - end a seqcount_t write side critical section - * @s: Pointer to seqcount_t or any of the seqcount_locktype_t variants + * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants * - * The write section must've been opened with write_seqcount_begin(). + * Context: Preemption will be automatically re-enabled if and only if + * the seqcount write serialization lock is associated, and preemptible. */ #define write_seqcount_end(s) \ do { \ - write_seqcount_t_end(__seqcount_ptr(s)); \ + do_write_seqcount_end(seqprop_ptr(s)); \ \ - if (__seqcount_lock_preemptible(s)) \ + if (seqprop_preemptible(s)) \ preempt_enable(); \ } while (0) -static inline void write_seqcount_t_end(seqcount_t *s) +static inline void do_write_seqcount_end(seqcount_t *s) { seqcount_release(&s->dep_map, _RET_IP_); - raw_write_seqcount_t_end(s); + do_raw_write_seqcount_end(s); } /** * raw_write_seqcount_barrier() - do a seqcount_t write barrier - * @s: Pointer to seqcount_t or any of the seqcount_locktype_t variants + * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants * * This can be used to provide an ordering guarantee instead of the usual * consistency guarantee. It is one wmb cheaper, because it can collapse @@ -527,7 +536,7 @@ static inline void write_seqcount_t_end(seqcount_t *s) * via WRITE_ONCE): a) to ensure the writes become visible to other threads * atomically, avoiding compiler optimizations; b) to document which writes are * meant to propagate to the reader critical section. This is necessary because - * neither writes before and after the barrier are enclosed in a seq-writer + * neither writes before nor after the barrier are enclosed in a seq-writer * critical section that would ensure readers are aware of ongoing writes:: * * seqcount_t seq; @@ -557,9 +566,9 @@ static inline void write_seqcount_t_end(seqcount_t *s) * } */ #define raw_write_seqcount_barrier(s) \ - raw_write_seqcount_t_barrier(__seqcount_ptr(s)) + do_raw_write_seqcount_barrier(seqprop_ptr(s)) -static inline void raw_write_seqcount_t_barrier(seqcount_t *s) +static inline void do_raw_write_seqcount_barrier(seqcount_t *s) { kcsan_nestable_atomic_begin(); s->sequence++; @@ -571,15 +580,15 @@ static inline void raw_write_seqcount_t_barrier(seqcount_t *s) /** * write_seqcount_invalidate() - invalidate in-progress seqcount_t read * side operations - * @s: Pointer to seqcount_t or any of the seqcount_locktype_t variants + * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants * * After write_seqcount_invalidate, no seqcount_t read side operations * will complete successfully and see data older than this. */ #define write_seqcount_invalidate(s) \ - write_seqcount_t_invalidate(__seqcount_ptr(s)) + do_write_seqcount_invalidate(seqprop_ptr(s)) -static inline void write_seqcount_t_invalidate(seqcount_t *s) +static inline void do_write_seqcount_invalidate(seqcount_t *s) { smp_wmb(); kcsan_nestable_atomic_begin(); @@ -587,34 +596,113 @@ static inline void write_seqcount_t_invalidate(seqcount_t *s) kcsan_nestable_atomic_end(); } +/* + * Latch sequence counters (seqcount_latch_t) + * + * A sequence counter variant where the counter even/odd value is used to + * switch between two copies of protected data. This allows the read path, + * typically NMIs, to safely interrupt the write side critical section. + * + * As the write sections are fully preemptible, no special handling for + * PREEMPT_RT is needed. + */ +typedef struct { + seqcount_t seqcount; +} seqcount_latch_t; + +/** + * SEQCNT_LATCH_ZERO() - static initializer for seqcount_latch_t + * @seq_name: Name of the seqcount_latch_t instance + */ +#define SEQCNT_LATCH_ZERO(seq_name) { \ + .seqcount = SEQCNT_ZERO(seq_name.seqcount), \ +} + +/** + * seqcount_latch_init() - runtime initializer for seqcount_latch_t + * @s: Pointer to the seqcount_latch_t instance + */ +#define seqcount_latch_init(s) seqcount_init(&(s)->seqcount) + /** - * raw_read_seqcount_latch() - pick even/odd seqcount_t latch data copy - * @s: Pointer to seqcount_t or any of the seqcount_locktype_t variants + * raw_read_seqcount_latch() - pick even/odd latch data copy + * @s: Pointer to seqcount_latch_t + * + * See raw_write_seqcount_latch() for details and a full reader/writer + * usage example. * - * Use seqcount_t latching to switch between two storage places protected - * by a sequence counter. Doing so allows having interruptible, preemptible, - * seqcount_t write side critical sections. + * Return: sequence counter raw value. Use the lowest bit as an index for + * picking which data copy to read. The full counter must then be checked + * with raw_read_seqcount_latch_retry(). + */ +static __always_inline unsigned raw_read_seqcount_latch(const seqcount_latch_t *s) +{ + /* + * Pairs with the first smp_wmb() in raw_write_seqcount_latch(). + * Due to the dependent load, a full smp_rmb() is not needed. + */ + return READ_ONCE(s->seqcount.sequence); +} + +/** + * read_seqcount_latch() - pick even/odd latch data copy + * @s: Pointer to seqcount_latch_t * - * Check raw_write_seqcount_latch() for more details and a full reader and - * writer usage example. + * See write_seqcount_latch() for details and a full reader/writer usage + * example. * * Return: sequence counter raw value. Use the lowest bit as an index for - * picking which data copy to read. The full counter value must then be - * checked with read_seqcount_retry(). + * picking which data copy to read. The full counter must then be checked + * with read_seqcount_latch_retry(). */ -#define raw_read_seqcount_latch(s) \ - raw_read_seqcount_t_latch(__seqcount_ptr(s)) +static __always_inline unsigned read_seqcount_latch(const seqcount_latch_t *s) +{ + kcsan_atomic_next(KCSAN_SEQLOCK_REGION_MAX); + return raw_read_seqcount_latch(s); +} -static inline int raw_read_seqcount_t_latch(seqcount_t *s) +/** + * raw_read_seqcount_latch_retry() - end a seqcount_latch_t read section + * @s: Pointer to seqcount_latch_t + * @start: count, from raw_read_seqcount_latch() + * + * Return: true if a read section retry is required, else false + */ +static __always_inline int +raw_read_seqcount_latch_retry(const seqcount_latch_t *s, unsigned start) +{ + smp_rmb(); + return unlikely(READ_ONCE(s->seqcount.sequence) != start); +} + +/** + * read_seqcount_latch_retry() - end a seqcount_latch_t read section + * @s: Pointer to seqcount_latch_t + * @start: count, from read_seqcount_latch() + * + * Return: true if a read section retry is required, else false + */ +static __always_inline int +read_seqcount_latch_retry(const seqcount_latch_t *s, unsigned start) { - /* Pairs with the first smp_wmb() in raw_write_seqcount_latch() */ - int seq = READ_ONCE(s->sequence); /* ^^^ */ - return seq; + kcsan_atomic_next(0); + return raw_read_seqcount_latch_retry(s, start); +} + +/** + * raw_write_seqcount_latch() - redirect latch readers to even/odd copy + * @s: Pointer to seqcount_latch_t + */ +static __always_inline void raw_write_seqcount_latch(seqcount_latch_t *s) +{ + smp_wmb(); /* prior stores before incrementing "sequence" */ + s->seqcount.sequence++; + smp_wmb(); /* increment "sequence" before following stores */ } /** - * raw_write_seqcount_latch() - redirect readers to even/odd copy - * @s: Pointer to seqcount_t or any of the seqcount_locktype_t variants + * write_seqcount_latch_begin() - redirect latch readers to odd copy + * @s: Pointer to seqcount_latch_t * * The latch technique is a multiversion concurrency control method that allows * queries during non-atomic modifications. If you can guarantee queries never @@ -633,7 +721,7 @@ static inline int raw_read_seqcount_t_latch(seqcount_t *s) * The basic form is a data structure like:: * * struct latch_struct { - * seqcount_t seq; + * seqcount_latch_t seq; * struct data_struct data[2]; * }; * @@ -642,17 +730,11 @@ static inline int raw_read_seqcount_t_latch(seqcount_t *s) * * void latch_modify(struct latch_struct *latch, ...) * { - * smp_wmb(); // Ensure that the last data[1] update is visible - * latch->seq++; - * smp_wmb(); // Ensure that the seqcount update is visible - * + * write_seqcount_latch_begin(&latch->seq); * modify(latch->data[0], ...); - * - * smp_wmb(); // Ensure that the data[0] update is visible - * latch->seq++; - * smp_wmb(); // Ensure that the seqcount update is visible - * + * write_seqcount_latch(&latch->seq); * modify(latch->data[1], ...); + * write_seqcount_latch_end(&latch->seq); * } * * The query will have a form like:: @@ -663,13 +745,13 @@ static inline int raw_read_seqcount_t_latch(seqcount_t *s) * unsigned seq, idx; * * do { - * seq = raw_read_seqcount_latch(&latch->seq); + * seq = read_seqcount_latch(&latch->seq); * * idx = seq & 0x01; * entry = data_query(latch->data[idx], ...); * - * // read_seqcount_retry() includes needed smp_rmb() - * } while (read_seqcount_retry(&latch->seq, seq)); + * // This includes needed smp_rmb() + * } while (read_seqcount_latch_retry(&latch->seq, seq)); * * return entry; * } @@ -688,39 +770,41 @@ static inline int raw_read_seqcount_t_latch(seqcount_t *s) * to miss an entire modification sequence, once it resumes it might * observe the new entry. * - * NOTE: + * NOTE2: * * When data is a dynamic data structure; one should use regular RCU * patterns to manage the lifetimes of the objects within. */ -#define raw_write_seqcount_latch(s) \ - raw_write_seqcount_t_latch(__seqcount_ptr(s)) +static __always_inline void write_seqcount_latch_begin(seqcount_latch_t *s) +{ + kcsan_nestable_atomic_begin(); + raw_write_seqcount_latch(s); +} -static inline void raw_write_seqcount_t_latch(seqcount_t *s) +/** + * write_seqcount_latch() - redirect latch readers to even copy + * @s: Pointer to seqcount_latch_t + */ +static __always_inline void write_seqcount_latch(seqcount_latch_t *s) { - smp_wmb(); /* prior stores before incrementing "sequence" */ - s->sequence++; - smp_wmb(); /* increment "sequence" before following stores */ + raw_write_seqcount_latch(s); } -/* - * Sequential locks (seqlock_t) - * - * Sequence counters with an embedded spinlock for writer serialization - * and non-preemptibility. +/** + * write_seqcount_latch_end() - end a seqcount_latch_t write section + * @s: Pointer to seqcount_latch_t * - * For more info, see: - * - Comments on top of seqcount_t - * - Documentation/locking/seqlock.rst + * Marks the end of a seqcount_latch_t writer section, after all copies of the + * latch-protected data have been updated. */ -typedef struct { - struct seqcount seqcount; - spinlock_t lock; -} seqlock_t; +static __always_inline void write_seqcount_latch_end(seqcount_latch_t *s) +{ + kcsan_nestable_atomic_end(); +} #define __SEQLOCK_UNLOCKED(lockname) \ { \ - .seqcount = SEQCNT_ZERO(lockname), \ + .seqcount = SEQCNT_SPINLOCK_ZERO(lockname, &(lockname).lock), \ .lock = __SPIN_LOCK_UNLOCKED(lockname) \ } @@ -730,12 +814,12 @@ typedef struct { */ #define seqlock_init(sl) \ do { \ - seqcount_init(&(sl)->seqcount); \ spin_lock_init(&(sl)->lock); \ + seqcount_spinlock_init(&(sl)->seqcount, &(sl)->lock); \ } while (0) /** - * DEFINE_SEQLOCK() - Define a statically allocated seqlock_t + * DEFINE_SEQLOCK(sl) - Define a statically allocated seqlock_t * @sl: Name of the seqlock_t instance */ #define DEFINE_SEQLOCK(sl) \ @@ -749,11 +833,7 @@ typedef struct { */ static inline unsigned read_seqbegin(const seqlock_t *sl) { - unsigned ret = read_seqcount_begin(&sl->seqcount); - - kcsan_atomic_next(0); /* non-raw usage, assume closing read_seqretry() */ - kcsan_flat_atomic_begin(); - return ret; + return read_seqcount_begin(&sl->seqcount); } /** @@ -769,15 +849,15 @@ static inline unsigned read_seqbegin(const seqlock_t *sl) */ static inline unsigned read_seqretry(const seqlock_t *sl, unsigned start) { - /* - * Assume not nested: read_seqretry() may be called multiple times when - * completing read critical section. - */ - kcsan_flat_atomic_end(); - return read_seqcount_retry(&sl->seqcount, start); } +/* + * For all seqlock_t write side functions, use the internal + * do_write_seqcount_begin() instead of generic write_seqcount_begin(). + * This way, no redundant lockdep_assert_held() checks are added. + */ + /** * write_seqlock() - start a seqlock_t write side critical section * @sl: Pointer to seqlock_t @@ -794,7 +874,7 @@ static inline unsigned read_seqretry(const seqlock_t *sl, unsigned start) static inline void write_seqlock(seqlock_t *sl) { spin_lock(&sl->lock); - write_seqcount_t_begin(&sl->seqcount); + do_write_seqcount_begin(&sl->seqcount.seqcount); } /** @@ -806,7 +886,7 @@ static inline void write_seqlock(seqlock_t *sl) */ static inline void write_sequnlock(seqlock_t *sl) { - write_seqcount_t_end(&sl->seqcount); + do_write_seqcount_end(&sl->seqcount.seqcount); spin_unlock(&sl->lock); } @@ -820,7 +900,7 @@ static inline void write_sequnlock(seqlock_t *sl) static inline void write_seqlock_bh(seqlock_t *sl) { spin_lock_bh(&sl->lock); - write_seqcount_t_begin(&sl->seqcount); + do_write_seqcount_begin(&sl->seqcount.seqcount); } /** @@ -833,7 +913,7 @@ static inline void write_seqlock_bh(seqlock_t *sl) */ static inline void write_sequnlock_bh(seqlock_t *sl) { - write_seqcount_t_end(&sl->seqcount); + do_write_seqcount_end(&sl->seqcount.seqcount); spin_unlock_bh(&sl->lock); } @@ -847,7 +927,7 @@ static inline void write_sequnlock_bh(seqlock_t *sl) static inline void write_seqlock_irq(seqlock_t *sl) { spin_lock_irq(&sl->lock); - write_seqcount_t_begin(&sl->seqcount); + do_write_seqcount_begin(&sl->seqcount.seqcount); } /** @@ -859,7 +939,7 @@ static inline void write_seqlock_irq(seqlock_t *sl) */ static inline void write_sequnlock_irq(seqlock_t *sl) { - write_seqcount_t_end(&sl->seqcount); + do_write_seqcount_end(&sl->seqcount.seqcount); spin_unlock_irq(&sl->lock); } @@ -868,7 +948,7 @@ static inline unsigned long __write_seqlock_irqsave(seqlock_t *sl) unsigned long flags; spin_lock_irqsave(&sl->lock, flags); - write_seqcount_t_begin(&sl->seqcount); + do_write_seqcount_begin(&sl->seqcount.seqcount); return flags; } @@ -897,7 +977,7 @@ static inline unsigned long __write_seqlock_irqsave(seqlock_t *sl) static inline void write_sequnlock_irqrestore(seqlock_t *sl, unsigned long flags) { - write_seqcount_t_end(&sl->seqcount); + do_write_seqcount_end(&sl->seqcount.seqcount); spin_unlock_irqrestore(&sl->lock, flags); } |