aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/tools/memory-model/linux-kernel.cat
diff options
context:
space:
mode:
Diffstat (limited to 'tools/memory-model/linux-kernel.cat')
-rw-r--r--tools/memory-model/linux-kernel.cat37
1 files changed, 30 insertions, 7 deletions
diff --git a/tools/memory-model/linux-kernel.cat b/tools/memory-model/linux-kernel.cat
index 2a9b4fe4a84e..d7e7bf13c831 100644
--- a/tools/memory-model/linux-kernel.cat
+++ b/tools/memory-model/linux-kernel.cat
@@ -27,18 +27,40 @@ include "lock.cat"
(* Release Acquire *)
let acq-po = [Acquire] ; po ; [M]
let po-rel = [M] ; po ; [Release]
-let po-unlock-rf-lock-po = po ; [UL] ; rf ; [LKR] ; po
+let po-unlock-lock-po = po ; [UL] ; (po|rf) ; [LKR] ; po
(* Fences *)
let R4rmb = R \ Noreturn (* Reads for which rmb works *)
let rmb = [R4rmb] ; fencerel(Rmb) ; [R4rmb]
let wmb = [W] ; fencerel(Wmb) ; [W]
let mb = ([M] ; fencerel(Mb) ; [M]) |
+ (*
+ * full-barrier RMWs (successful cmpxchg(), xchg(), etc.) act as
+ * though there were enclosed by smp_mb().
+ * The effect of these virtual smp_mb() is formalized by adding
+ * Mb tags to the read and write of the operation, and providing
+ * the same ordering as though there were additional po edges
+ * between the Mb tag and the read resp. write.
+ *)
+ ([M] ; po ; [Mb & R]) |
+ ([Mb & W] ; po ; [M]) |
([M] ; fencerel(Before-atomic) ; [RMW] ; po? ; [M]) |
([M] ; po? ; [RMW] ; fencerel(After-atomic) ; [M]) |
([M] ; po? ; [LKW] ; fencerel(After-spinlock) ; [M]) |
- ([M] ; po ; [UL] ; (co | po) ; [LKW] ;
- fencerel(After-unlock-lock) ; [M])
+(*
+ * Note: The po-unlock-lock-po relation only passes the lock to the direct
+ * successor, perhaps giving the impression that the ordering of the
+ * smp_mb__after_unlock_lock() fence only affects a single lock handover.
+ * However, in a longer sequence of lock handovers, the implicit
+ * A-cumulative release fences of lock-release ensure that any stores that
+ * propagate to one of the involved CPUs before it hands over the lock to
+ * the next CPU will also propagate to the final CPU handing over the lock
+ * to the CPU that executes the fence. Therefore, all those stores are
+ * also affected by the fence.
+ *)
+ ([M] ; po-unlock-lock-po ;
+ [After-unlock-lock] ; po ; [M]) |
+ ([M] ; po? ; [Srcu-unlock] ; fencerel(After-srcu-read-unlock) ; [M])
let gp = po ; [Sync-rcu | Sync-srcu] ; po?
let strong-fence = mb | gp
@@ -69,13 +91,14 @@ let dep = addr | data
let rwdep = (dep | ctrl) ; [W]
let overwrite = co | fr
let to-w = rwdep | (overwrite & int) | (addr ; [Plain] ; wmb)
-let to-r = addr | (dep ; [Marked] ; rfi)
-let ppo = to-r | to-w | fence | (po-unlock-rf-lock-po & int)
+let to-r = (addr ; [R]) | (dep ; [Marked] ; rfi)
+let ppo = to-r | to-w | (fence & int) | (po-unlock-lock-po & int)
(* Propagation: Ordering from release operations and strong fences. *)
let A-cumul(r) = (rfe ; [Marked])? ; r
+let rmw-sequence = (rf ; rmw)*
let cumul-fence = [Marked] ; (A-cumul(strong-fence | po-rel) | wmb |
- po-unlock-rf-lock-po) ; [Marked]
+ po-unlock-lock-po) ; [Marked] ; rmw-sequence
let prop = [Marked] ; (overwrite & ext)? ; cumul-fence* ;
[Marked] ; rfe? ; [Marked]
@@ -174,7 +197,7 @@ let vis = cumul-fence* ; rfe? ; [Marked] ;
let w-pre-bounded = [Marked] ; (addr | fence)?
let r-pre-bounded = [Marked] ; (addr | nonrw-fence |
([R4rmb] ; fencerel(Rmb) ; [~Noreturn]))?
-let w-post-bounded = fence? ; [Marked]
+let w-post-bounded = fence? ; [Marked] ; rmw-sequence
let r-post-bounded = (nonrw-fence | ([~Noreturn] ; fencerel(Rmb) ; [R4rmb]))? ;
[Marked]