diff options
Diffstat (limited to 'tools/perf/tests/shell/lib/perf_metric_validation.py')
-rw-r--r-- | tools/perf/tests/shell/lib/perf_metric_validation.py | 603 |
1 files changed, 603 insertions, 0 deletions
diff --git a/tools/perf/tests/shell/lib/perf_metric_validation.py b/tools/perf/tests/shell/lib/perf_metric_validation.py new file mode 100644 index 000000000000..dea8ef1977bf --- /dev/null +++ b/tools/perf/tests/shell/lib/perf_metric_validation.py @@ -0,0 +1,603 @@ +# SPDX-License-Identifier: GPL-2.0 +import re +import csv +import json +import argparse +from pathlib import Path +import subprocess + + +class TestError: + def __init__(self, metric: list[str], wl: str, value: list[float], low: float, up=float('nan'), description=str()): + self.metric: list = metric # multiple metrics in relationship type tests + self.workloads = [wl] # multiple workloads possible + self.collectedValue: list = value + self.valueLowBound = low + self.valueUpBound = up + self.description = description + + def __repr__(self) -> str: + if len(self.metric) > 1: + return "\nMetric Relationship Error: \tThe collected value of metric {0}\n\ + \tis {1} in workload(s): {2} \n\ + \tbut expected value range is [{3}, {4}]\n\ + \tRelationship rule description: \'{5}\'".format(self.metric, self.collectedValue, self.workloads, + self.valueLowBound, self.valueUpBound, self.description) + elif len(self.collectedValue) == 0: + return "\nNo Metric Value Error: \tMetric {0} returns with no value \n\ + \tworkload(s): {1}".format(self.metric, self.workloads) + else: + return "\nWrong Metric Value Error: \tThe collected value of metric {0}\n\ + \tis {1} in workload(s): {2}\n\ + \tbut expected value range is [{3}, {4}]"\ + .format(self.metric, self.collectedValue, self.workloads, + self.valueLowBound, self.valueUpBound) + + +class Validator: + def __init__(self, rulefname, reportfname='', t=5, debug=False, datafname='', fullrulefname='', + workload='true', metrics='', cputype='cpu'): + self.rulefname = rulefname + self.reportfname = reportfname + self.rules = None + self.collectlist: str = metrics + self.metrics = self.__set_metrics(metrics) + self.skiplist = set() + self.tolerance = t + self.cputype = cputype + + self.workloads = [x for x in workload.split(",") if x] + self.wlidx = 0 # idx of current workloads + self.allresults = dict() # metric results of all workload + self.alltotalcnt = dict() + self.allpassedcnt = dict() + + self.results = dict() # metric results of current workload + # vars for test pass/failure statistics + # metrics with no results or negative results, neg result counts failed tests + self.ignoremetrics = set() + self.totalcnt = 0 + self.passedcnt = 0 + # vars for errors + self.errlist = list() + + # vars for Rule Generator + self.pctgmetrics = set() # Percentage rule + + # vars for debug + self.datafname = datafname + self.debug = debug + self.fullrulefname = fullrulefname + + def __set_metrics(self, metrics=''): + if metrics != '': + return set(metrics.split(",")) + else: + return set() + + def read_json(self, filename: str) -> dict: + try: + with open(Path(filename).resolve(), "r") as f: + data = json.loads(f.read()) + except OSError as e: + print(f"Error when reading file {e}") + sys.exit() + + return data + + def json_dump(self, data, output_file): + parent = Path(output_file).parent + if not parent.exists(): + parent.mkdir(parents=True) + + with open(output_file, "w+") as output_file: + json.dump(data, + output_file, + ensure_ascii=True, + indent=4) + + def get_results(self, idx: int = 0): + return self.results.get(idx) + + def get_bounds(self, lb, ub, error, alias={}, ridx: int = 0) -> list: + """ + Get bounds and tolerance from lb, ub, and error. + If missing lb, use 0.0; missing ub, use float('inf); missing error, use self.tolerance. + + @param lb: str/float, lower bound + @param ub: str/float, upper bound + @param error: float/str, error tolerance + @returns: lower bound, return inf if the lower bound is a metric value and is not collected + upper bound, return -1 if the upper bound is a metric value and is not collected + tolerance, denormalized base on upper bound value + """ + # init ubv and lbv to invalid values + def get_bound_value(bound, initval, ridx): + val = initval + if isinstance(bound, int) or isinstance(bound, float): + val = bound + elif isinstance(bound, str): + if bound == '': + val = float("inf") + elif bound in alias: + vall = self.get_value(alias[ub], ridx) + if vall: + val = vall[0] + elif bound.replace('.', '1').isdigit(): + val = float(bound) + else: + print("Wrong bound: {0}".format(bound)) + else: + print("Wrong bound: {0}".format(bound)) + return val + + ubv = get_bound_value(ub, -1, ridx) + lbv = get_bound_value(lb, float('inf'), ridx) + t = get_bound_value(error, self.tolerance, ridx) + + # denormalize error threshold + denormerr = t * ubv / 100 if ubv != 100 and ubv > 0 else t + + return lbv, ubv, denormerr + + def get_value(self, name: str, ridx: int = 0) -> list: + """ + Get value of the metric from self.results. + If result of this metric is not provided, the metric name will be added into self.ignoremetics. + All future test(s) on this metric will fail. + + @param name: name of the metric + @returns: list with value found in self.results; list is empty when value is not found. + """ + results = [] + data = self.results[ridx] if ridx in self.results else self.results[0] + if name not in self.ignoremetrics: + if name in data: + results.append(data[name]) + elif name.replace('.', '1').isdigit(): + results.append(float(name)) + else: + self.ignoremetrics.add(name) + return results + + def check_bound(self, val, lb, ub, err): + return True if val <= ub + err and val >= lb - err else False + + # Positive Value Sanity check + def pos_val_test(self): + """ + Check if metrics value are non-negative. + One metric is counted as one test. + Failure: when metric value is negative or not provided. + Metrics with negative value will be added into self.ignoremetrics. + """ + negmetric = dict() + pcnt = 0 + tcnt = 0 + rerun = list() + results = self.get_results() + if not results: + return + for name, val in results.items(): + if val < 0: + negmetric[name] = val + rerun.append(name) + else: + pcnt += 1 + tcnt += 1 + # The first round collect_perf() run these metrics with simple workload + # "true". We give metrics a second chance with a longer workload if less + # than 20 metrics failed positive test. + if len(rerun) > 0 and len(rerun) < 20: + second_results = dict() + self.second_test(rerun, second_results) + for name, val in second_results.items(): + if name not in negmetric: + continue + if val >= 0: + del negmetric[name] + pcnt += 1 + + if len(negmetric.keys()): + self.ignoremetrics.update(negmetric.keys()) + self.errlist.extend( + [TestError([m], self.workloads[self.wlidx], negmetric[m], 0) for m in negmetric.keys()]) + + return + + def evaluate_formula(self, formula: str, alias: dict, ridx: int = 0): + """ + Evaluate the value of formula. + + @param formula: the formula to be evaluated + @param alias: the dict has alias to metric name mapping + @returns: value of the formula is success; -1 if the one or more metric value not provided + """ + stack = [] + b = 0 + errs = [] + sign = "+" + f = str() + + # TODO: support parenthesis? + for i in range(len(formula)): + if i+1 == len(formula) or formula[i] in ('+', '-', '*', '/'): + s = alias[formula[b:i]] if i + \ + 1 < len(formula) else alias[formula[b:]] + v = self.get_value(s, ridx) + if not v: + errs.append(s) + else: + f = f + "{0}(={1:.4f})".format(s, v[0]) + if sign == "*": + stack[-1] = stack[-1] * v + elif sign == "/": + stack[-1] = stack[-1] / v + elif sign == '-': + stack.append(-v[0]) + else: + stack.append(v[0]) + if i + 1 < len(formula): + sign = formula[i] + f += sign + b = i + 1 + + if len(errs) > 0: + return -1, "Metric value missing: "+','.join(errs) + + val = sum(stack) + return val, f + + # Relationships Tests + def relationship_test(self, rule: dict): + """ + Validate if the metrics follow the required relationship in the rule. + eg. lower_bound <= eval(formula)<= upper_bound + One rule is counted as ont test. + Failure: when one or more metric result(s) not provided, or when formula evaluated outside of upper/lower bounds. + + @param rule: dict with metric name(+alias), formula, and required upper and lower bounds. + """ + alias = dict() + for m in rule['Metrics']: + alias[m['Alias']] = m['Name'] + lbv, ubv, t = self.get_bounds( + rule['RangeLower'], rule['RangeUpper'], rule['ErrorThreshold'], alias, ridx=rule['RuleIndex']) + val, f = self.evaluate_formula( + rule['Formula'], alias, ridx=rule['RuleIndex']) + + lb = rule['RangeLower'] + ub = rule['RangeUpper'] + if isinstance(lb, str): + if lb in alias: + lb = alias[lb] + if isinstance(ub, str): + if ub in alias: + ub = alias[ub] + + if val == -1: + self.errlist.append(TestError([m['Name'] for m in rule['Metrics']], self.workloads[self.wlidx], [], + lb, ub, rule['Description'])) + elif not self.check_bound(val, lbv, ubv, t): + self.errlist.append(TestError([m['Name'] for m in rule['Metrics']], self.workloads[self.wlidx], [val], + lb, ub, rule['Description'])) + else: + self.passedcnt += 1 + self.totalcnt += 1 + + return + + # Single Metric Test + def single_test(self, rule: dict): + """ + Validate if the metrics are in the required value range. + eg. lower_bound <= metrics_value <= upper_bound + One metric is counted as one test in this type of test. + One rule may include one or more metrics. + Failure: when the metric value not provided or the value is outside the bounds. + This test updates self.total_cnt. + + @param rule: dict with metrics to validate and the value range requirement + """ + lbv, ubv, t = self.get_bounds( + rule['RangeLower'], rule['RangeUpper'], rule['ErrorThreshold']) + metrics = rule['Metrics'] + passcnt = 0 + totalcnt = 0 + failures = dict() + rerun = list() + for m in metrics: + totalcnt += 1 + result = self.get_value(m['Name']) + if len(result) > 0 and self.check_bound(result[0], lbv, ubv, t) or m['Name'] in self.skiplist: + passcnt += 1 + else: + failures[m['Name']] = result + rerun.append(m['Name']) + + if len(rerun) > 0 and len(rerun) < 20: + second_results = dict() + self.second_test(rerun, second_results) + for name, val in second_results.items(): + if name not in failures: + continue + if self.check_bound(val, lbv, ubv, t): + passcnt += 1 + del failures[name] + else: + failures[name] = [val] + self.results[0][name] = val + + self.totalcnt += totalcnt + self.passedcnt += passcnt + if len(failures.keys()) != 0: + self.errlist.extend([TestError([name], self.workloads[self.wlidx], val, + rule['RangeLower'], rule['RangeUpper']) for name, val in failures.items()]) + + return + + def create_report(self): + """ + Create final report and write into a JSON file. + """ + print(self.errlist) + + if self.debug: + allres = [{"Workload": self.workloads[i], "Results": self.allresults[i]} + for i in range(0, len(self.workloads))] + self.json_dump(allres, self.datafname) + + def check_rule(self, testtype, metric_list): + """ + Check if the rule uses metric(s) that not exist in current platform. + + @param metric_list: list of metrics from the rule. + @return: False when find one metric out in Metric file. (This rule should not skipped.) + True when all metrics used in the rule are found in Metric file. + """ + if testtype == "RelationshipTest": + for m in metric_list: + if m['Name'] not in self.metrics: + return False + return True + + # Start of Collector and Converter + def convert(self, data: list, metricvalues: dict): + """ + Convert collected metric data from the -j output to dict of {metric_name:value}. + """ + for json_string in data: + try: + result = json.loads(json_string) + if "metric-unit" in result and result["metric-unit"] != "(null)" and result["metric-unit"] != "": + name = result["metric-unit"].split(" ")[1] if len(result["metric-unit"].split(" ")) > 1 \ + else result["metric-unit"] + metricvalues[name.lower()] = float(result["metric-value"]) + except ValueError as error: + continue + return + + def _run_perf(self, metric, workload: str): + tool = 'perf' + command = [tool, 'stat', '--cputype', self.cputype, '-j', '-M', f"{metric}", "-a"] + wl = workload.split() + command.extend(wl) + print(" ".join(command)) + cmd = subprocess.run(command, stderr=subprocess.PIPE, encoding='utf-8') + data = [x+'}' for x in cmd.stderr.split('}\n') if x] + if data[0][0] != '{': + data[0] = data[0][data[0].find('{'):] + return data + + def collect_perf(self, workload: str): + """ + Collect metric data with "perf stat -M" on given workload with -a and -j. + """ + self.results = dict() + print(f"Starting perf collection") + print(f"Long workload: {workload}") + collectlist = dict() + if self.collectlist != "": + collectlist[0] = {x for x in self.collectlist.split(",")} + else: + collectlist[0] = set(list(self.metrics)) + # Create metric set for relationship rules + for rule in self.rules: + if rule["TestType"] == "RelationshipTest": + metrics = [m["Name"] for m in rule["Metrics"]] + if not any(m not in collectlist[0] for m in metrics): + collectlist[rule["RuleIndex"]] = [ + ",".join(list(set(metrics)))] + + for idx, metrics in collectlist.items(): + if idx == 0: + wl = "true" + else: + wl = workload + for metric in metrics: + data = self._run_perf(metric, wl) + if idx not in self.results: + self.results[idx] = dict() + self.convert(data, self.results[idx]) + return + + def second_test(self, collectlist, second_results): + workload = self.workloads[self.wlidx] + for metric in collectlist: + data = self._run_perf(metric, workload) + self.convert(data, second_results) + + # End of Collector and Converter + + # Start of Rule Generator + def parse_perf_metrics(self): + """ + Read and parse perf metric file: + 1) find metrics with '1%' or '100%' as ScaleUnit for Percent check + 2) create metric name list + """ + command = ['perf', 'list', '-j', '--details', 'metrics'] + cmd = subprocess.run(command, stdout=subprocess.PIPE, + stderr=subprocess.PIPE, encoding='utf-8') + try: + data = json.loads(cmd.stdout) + for m in data: + if 'MetricName' not in m: + print("Warning: no metric name") + continue + if 'Unit' in m and m['Unit'] != self.cputype: + continue + name = m['MetricName'].lower() + self.metrics.add(name) + if 'ScaleUnit' in m and (m['ScaleUnit'] == '1%' or m['ScaleUnit'] == '100%'): + self.pctgmetrics.add(name.lower()) + except ValueError as error: + print(f"Error when parsing metric data") + sys.exit() + + return + + def remove_unsupported_rules(self, rules): + new_rules = [] + for rule in rules: + add_rule = True + for m in rule["Metrics"]: + if m["Name"] in self.skiplist or m["Name"] not in self.metrics: + add_rule = False + break + if add_rule: + new_rules.append(rule) + return new_rules + + def create_rules(self): + """ + Create full rules which includes: + 1) All the rules from the "relationshi_rules" file + 2) SingleMetric rule for all the 'percent' metrics + + Reindex all the rules to avoid repeated RuleIndex + """ + data = self.read_json(self.rulefname) + rules = data['RelationshipRules'] + self.skiplist = set([name.lower() for name in data['SkipList']]) + self.rules = self.remove_unsupported_rules(rules) + pctgrule = {'RuleIndex': 0, + 'TestType': 'SingleMetricTest', + 'RangeLower': '0', + 'RangeUpper': '100', + 'ErrorThreshold': self.tolerance, + 'Description': 'Metrics in percent unit have value with in [0, 100]', + 'Metrics': [{'Name': m.lower()} for m in self.pctgmetrics]} + self.rules.append(pctgrule) + + # Re-index all rules to avoid repeated RuleIndex + idx = 1 + for r in self.rules: + r['RuleIndex'] = idx + idx += 1 + + if self.debug: + # TODO: need to test and generate file name correctly + data = {'RelationshipRules': self.rules, 'SupportedMetrics': [ + {"MetricName": name} for name in self.metrics]} + self.json_dump(data, self.fullrulefname) + + return + # End of Rule Generator + + def _storewldata(self, key): + ''' + Store all the data of one workload into the corresponding data structure for all workloads. + @param key: key to the dictionaries (index of self.workloads). + ''' + self.allresults[key] = self.results + self.alltotalcnt[key] = self.totalcnt + self.allpassedcnt[key] = self.passedcnt + + # Initialize data structures before data validation of each workload + def _init_data(self): + + testtypes = ['PositiveValueTest', + 'RelationshipTest', 'SingleMetricTest'] + self.results = dict() + self.ignoremetrics = set() + self.errlist = list() + self.totalcnt = 0 + self.passedcnt = 0 + + def test(self): + ''' + The real entry point of the test framework. + This function loads the validation rule JSON file and Standard Metric file to create rules for + testing and namemap dictionaries. + It also reads in result JSON file for testing. + + In the test process, it passes through each rule and launch correct test function bases on the + 'TestType' field of the rule. + + The final report is written into a JSON file. + ''' + if not self.collectlist: + self.parse_perf_metrics() + if not self.metrics: + print("No metric found for testing") + return 0 + self.create_rules() + for i in range(0, len(self.workloads)): + self.wlidx = i + self._init_data() + self.collect_perf(self.workloads[i]) + # Run positive value test + self.pos_val_test() + for r in self.rules: + # skip rules that uses metrics not exist in this platform + testtype = r['TestType'] + if not self.check_rule(testtype, r['Metrics']): + continue + if testtype == 'RelationshipTest': + self.relationship_test(r) + elif testtype == 'SingleMetricTest': + self.single_test(r) + else: + print("Unsupported Test Type: ", testtype) + print("Workload: ", self.workloads[i]) + print("Total Test Count: ", self.totalcnt) + print("Passed Test Count: ", self.passedcnt) + self._storewldata(i) + self.create_report() + return len(self.errlist) > 0 +# End of Class Validator + + +def main() -> None: + parser = argparse.ArgumentParser( + description="Launch metric value validation") + + parser.add_argument( + "-rule", help="Base validation rule file", required=True) + parser.add_argument( + "-output_dir", help="Path for validator output file, report file", required=True) + parser.add_argument("-debug", help="Debug run, save intermediate data to files", + action="store_true", default=False) + parser.add_argument( + "-wl", help="Workload to run while data collection", default="true") + parser.add_argument("-m", help="Metric list to validate", default="") + parser.add_argument("-cputype", help="Only test metrics for the given CPU/PMU type", + default="cpu") + args = parser.parse_args() + outpath = Path(args.output_dir) + reportf = Path.joinpath(outpath, 'perf_report.json') + fullrule = Path.joinpath(outpath, 'full_rule.json') + datafile = Path.joinpath(outpath, 'perf_data.json') + + validator = Validator(args.rule, reportf, debug=args.debug, + datafname=datafile, fullrulefname=fullrule, workload=args.wl, + metrics=args.m, cputype=args.cputype) + ret = validator.test() + + return ret + + +if __name__ == "__main__": + import sys + sys.exit(main()) |