aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/tools/testing/selftests/bpf/prog_tests/reg_bounds.c
diff options
context:
space:
mode:
Diffstat (limited to 'tools/testing/selftests/bpf/prog_tests/reg_bounds.c')
-rw-r--r--tools/testing/selftests/bpf/prog_tests/reg_bounds.c2131
1 files changed, 2131 insertions, 0 deletions
diff --git a/tools/testing/selftests/bpf/prog_tests/reg_bounds.c b/tools/testing/selftests/bpf/prog_tests/reg_bounds.c
new file mode 100644
index 000000000000..eb74363f9f70
--- /dev/null
+++ b/tools/testing/selftests/bpf/prog_tests/reg_bounds.c
@@ -0,0 +1,2131 @@
+// SPDX-License-Identifier: GPL-2.0
+/* Copyright (c) 2023 Meta Platforms, Inc. and affiliates. */
+
+#define _GNU_SOURCE
+#include <limits.h>
+#include <test_progs.h>
+#include <linux/filter.h>
+#include <linux/bpf.h>
+
+/* =================================
+ * SHORT AND CONSISTENT NUMBER TYPES
+ * =================================
+ */
+#define U64_MAX ((u64)UINT64_MAX)
+#define U32_MAX ((u32)UINT_MAX)
+#define U16_MAX ((u32)UINT_MAX)
+#define S64_MIN ((s64)INT64_MIN)
+#define S64_MAX ((s64)INT64_MAX)
+#define S32_MIN ((s32)INT_MIN)
+#define S32_MAX ((s32)INT_MAX)
+#define S16_MIN ((s16)0x80000000)
+#define S16_MAX ((s16)0x7fffffff)
+
+typedef unsigned long long ___u64;
+typedef unsigned int ___u32;
+typedef long long ___s64;
+typedef int ___s32;
+
+/* avoid conflicts with already defined types in kernel headers */
+#define u64 ___u64
+#define u32 ___u32
+#define s64 ___s64
+#define s32 ___s32
+
+/* ==================================
+ * STRING BUF ABSTRACTION AND HELPERS
+ * ==================================
+ */
+struct strbuf {
+ size_t buf_sz;
+ int pos;
+ char buf[0];
+};
+
+#define DEFINE_STRBUF(name, N) \
+ struct { struct strbuf buf; char data[(N)]; } ___##name; \
+ struct strbuf *name = (___##name.buf.buf_sz = (N), ___##name.buf.pos = 0, &___##name.buf)
+
+__printf(2, 3)
+static inline void snappendf(struct strbuf *s, const char *fmt, ...)
+{
+ va_list args;
+
+ va_start(args, fmt);
+ s->pos += vsnprintf(s->buf + s->pos,
+ s->pos < s->buf_sz ? s->buf_sz - s->pos : 0,
+ fmt, args);
+ va_end(args);
+}
+
+/* ==================================
+ * GENERIC NUMBER TYPE AND OPERATIONS
+ * ==================================
+ */
+enum num_t { U64, first_t = U64, U32, S64, S32, last_t = S32 };
+
+static __always_inline u64 min_t(enum num_t t, u64 x, u64 y)
+{
+ switch (t) {
+ case U64: return (u64)x < (u64)y ? (u64)x : (u64)y;
+ case U32: return (u32)x < (u32)y ? (u32)x : (u32)y;
+ case S64: return (s64)x < (s64)y ? (s64)x : (s64)y;
+ case S32: return (s32)x < (s32)y ? (s32)x : (s32)y;
+ default: printf("min_t!\n"); exit(1);
+ }
+}
+
+static __always_inline u64 max_t(enum num_t t, u64 x, u64 y)
+{
+ switch (t) {
+ case U64: return (u64)x > (u64)y ? (u64)x : (u64)y;
+ case U32: return (u32)x > (u32)y ? (u32)x : (u32)y;
+ case S64: return (s64)x > (s64)y ? (s64)x : (s64)y;
+ case S32: return (s32)x > (s32)y ? (u32)(s32)x : (u32)(s32)y;
+ default: printf("max_t!\n"); exit(1);
+ }
+}
+
+static __always_inline u64 cast_t(enum num_t t, u64 x)
+{
+ switch (t) {
+ case U64: return (u64)x;
+ case U32: return (u32)x;
+ case S64: return (s64)x;
+ case S32: return (u32)(s32)x;
+ default: printf("cast_t!\n"); exit(1);
+ }
+}
+
+static const char *t_str(enum num_t t)
+{
+ switch (t) {
+ case U64: return "u64";
+ case U32: return "u32";
+ case S64: return "s64";
+ case S32: return "s32";
+ default: printf("t_str!\n"); exit(1);
+ }
+}
+
+static enum num_t t_is_32(enum num_t t)
+{
+ switch (t) {
+ case U64: return false;
+ case U32: return true;
+ case S64: return false;
+ case S32: return true;
+ default: printf("t_is_32!\n"); exit(1);
+ }
+}
+
+static enum num_t t_signed(enum num_t t)
+{
+ switch (t) {
+ case U64: return S64;
+ case U32: return S32;
+ case S64: return S64;
+ case S32: return S32;
+ default: printf("t_signed!\n"); exit(1);
+ }
+}
+
+static enum num_t t_unsigned(enum num_t t)
+{
+ switch (t) {
+ case U64: return U64;
+ case U32: return U32;
+ case S64: return U64;
+ case S32: return U32;
+ default: printf("t_unsigned!\n"); exit(1);
+ }
+}
+
+#define UNUM_MAX_DECIMAL U16_MAX
+#define SNUM_MAX_DECIMAL S16_MAX
+#define SNUM_MIN_DECIMAL S16_MIN
+
+static bool num_is_small(enum num_t t, u64 x)
+{
+ switch (t) {
+ case U64: return (u64)x <= UNUM_MAX_DECIMAL;
+ case U32: return (u32)x <= UNUM_MAX_DECIMAL;
+ case S64: return (s64)x >= SNUM_MIN_DECIMAL && (s64)x <= SNUM_MAX_DECIMAL;
+ case S32: return (s32)x >= SNUM_MIN_DECIMAL && (s32)x <= SNUM_MAX_DECIMAL;
+ default: printf("num_is_small!\n"); exit(1);
+ }
+}
+
+static void snprintf_num(enum num_t t, struct strbuf *sb, u64 x)
+{
+ bool is_small = num_is_small(t, x);
+
+ if (is_small) {
+ switch (t) {
+ case U64: return snappendf(sb, "%llu", (u64)x);
+ case U32: return snappendf(sb, "%u", (u32)x);
+ case S64: return snappendf(sb, "%lld", (s64)x);
+ case S32: return snappendf(sb, "%d", (s32)x);
+ default: printf("snprintf_num!\n"); exit(1);
+ }
+ } else {
+ switch (t) {
+ case U64:
+ if (x == U64_MAX)
+ return snappendf(sb, "U64_MAX");
+ else if (x >= U64_MAX - 256)
+ return snappendf(sb, "U64_MAX-%llu", U64_MAX - x);
+ else
+ return snappendf(sb, "%#llx", (u64)x);
+ case U32:
+ if ((u32)x == U32_MAX)
+ return snappendf(sb, "U32_MAX");
+ else if ((u32)x >= U32_MAX - 256)
+ return snappendf(sb, "U32_MAX-%u", U32_MAX - (u32)x);
+ else
+ return snappendf(sb, "%#x", (u32)x);
+ case S64:
+ if ((s64)x == S64_MAX)
+ return snappendf(sb, "S64_MAX");
+ else if ((s64)x >= S64_MAX - 256)
+ return snappendf(sb, "S64_MAX-%lld", S64_MAX - (s64)x);
+ else if ((s64)x == S64_MIN)
+ return snappendf(sb, "S64_MIN");
+ else if ((s64)x <= S64_MIN + 256)
+ return snappendf(sb, "S64_MIN+%lld", (s64)x - S64_MIN);
+ else
+ return snappendf(sb, "%#llx", (s64)x);
+ case S32:
+ if ((s32)x == S32_MAX)
+ return snappendf(sb, "S32_MAX");
+ else if ((s32)x >= S32_MAX - 256)
+ return snappendf(sb, "S32_MAX-%d", S32_MAX - (s32)x);
+ else if ((s32)x == S32_MIN)
+ return snappendf(sb, "S32_MIN");
+ else if ((s32)x <= S32_MIN + 256)
+ return snappendf(sb, "S32_MIN+%d", (s32)x - S32_MIN);
+ else
+ return snappendf(sb, "%#x", (s32)x);
+ default: printf("snprintf_num!\n"); exit(1);
+ }
+ }
+}
+
+/* ===================================
+ * GENERIC RANGE STRUCT AND OPERATIONS
+ * ===================================
+ */
+struct range {
+ u64 a, b;
+};
+
+static void snprintf_range(enum num_t t, struct strbuf *sb, struct range x)
+{
+ if (x.a == x.b)
+ return snprintf_num(t, sb, x.a);
+
+ snappendf(sb, "[");
+ snprintf_num(t, sb, x.a);
+ snappendf(sb, "; ");
+ snprintf_num(t, sb, x.b);
+ snappendf(sb, "]");
+}
+
+static void print_range(enum num_t t, struct range x, const char *sfx)
+{
+ DEFINE_STRBUF(sb, 128);
+
+ snprintf_range(t, sb, x);
+ printf("%s%s", sb->buf, sfx);
+}
+
+static const struct range unkn[] = {
+ [U64] = { 0, U64_MAX },
+ [U32] = { 0, U32_MAX },
+ [S64] = { (u64)S64_MIN, (u64)S64_MAX },
+ [S32] = { (u64)(u32)S32_MIN, (u64)(u32)S32_MAX },
+};
+
+static struct range unkn_subreg(enum num_t t)
+{
+ switch (t) {
+ case U64: return unkn[U32];
+ case U32: return unkn[U32];
+ case S64: return unkn[U32];
+ case S32: return unkn[S32];
+ default: printf("unkn_subreg!\n"); exit(1);
+ }
+}
+
+static struct range range(enum num_t t, u64 a, u64 b)
+{
+ switch (t) {
+ case U64: return (struct range){ (u64)a, (u64)b };
+ case U32: return (struct range){ (u32)a, (u32)b };
+ case S64: return (struct range){ (s64)a, (s64)b };
+ case S32: return (struct range){ (u32)(s32)a, (u32)(s32)b };
+ default: printf("range!\n"); exit(1);
+ }
+}
+
+static __always_inline u32 sign64(u64 x) { return (x >> 63) & 1; }
+static __always_inline u32 sign32(u64 x) { return ((u32)x >> 31) & 1; }
+static __always_inline u32 upper32(u64 x) { return (u32)(x >> 32); }
+static __always_inline u64 swap_low32(u64 x, u32 y) { return (x & 0xffffffff00000000ULL) | y; }
+
+static bool range_eq(struct range x, struct range y)
+{
+ return x.a == y.a && x.b == y.b;
+}
+
+static struct range range_cast_to_s32(struct range x)
+{
+ u64 a = x.a, b = x.b;
+
+ /* if upper 32 bits are constant, lower 32 bits should form a proper
+ * s32 range to be correct
+ */
+ if (upper32(a) == upper32(b) && (s32)a <= (s32)b)
+ return range(S32, a, b);
+
+ /* Special case where upper bits form a small sequence of two
+ * sequential numbers (in 32-bit unsigned space, so 0xffffffff to
+ * 0x00000000 is also valid), while lower bits form a proper s32 range
+ * going from negative numbers to positive numbers.
+ *
+ * E.g.: [0xfffffff0ffffff00; 0xfffffff100000010]. Iterating
+ * over full 64-bit numbers range will form a proper [-16, 16]
+ * ([0xffffff00; 0x00000010]) range in its lower 32 bits.
+ */
+ if (upper32(a) + 1 == upper32(b) && (s32)a < 0 && (s32)b >= 0)
+ return range(S32, a, b);
+
+ /* otherwise we can't derive much meaningful information */
+ return unkn[S32];
+}
+
+static struct range range_cast_u64(enum num_t to_t, struct range x)
+{
+ u64 a = (u64)x.a, b = (u64)x.b;
+
+ switch (to_t) {
+ case U64:
+ return x;
+ case U32:
+ if (upper32(a) != upper32(b))
+ return unkn[U32];
+ return range(U32, a, b);
+ case S64:
+ if (sign64(a) != sign64(b))
+ return unkn[S64];
+ return range(S64, a, b);
+ case S32:
+ return range_cast_to_s32(x);
+ default: printf("range_cast_u64!\n"); exit(1);
+ }
+}
+
+static struct range range_cast_s64(enum num_t to_t, struct range x)
+{
+ s64 a = (s64)x.a, b = (s64)x.b;
+
+ switch (to_t) {
+ case U64:
+ /* equivalent to (s64)a <= (s64)b check */
+ if (sign64(a) != sign64(b))
+ return unkn[U64];
+ return range(U64, a, b);
+ case U32:
+ if (upper32(a) != upper32(b) || sign32(a) != sign32(b))
+ return unkn[U32];
+ return range(U32, a, b);
+ case S64:
+ return x;
+ case S32:
+ return range_cast_to_s32(x);
+ default: printf("range_cast_s64!\n"); exit(1);
+ }
+}
+
+static struct range range_cast_u32(enum num_t to_t, struct range x)
+{
+ u32 a = (u32)x.a, b = (u32)x.b;
+
+ switch (to_t) {
+ case U64:
+ case S64:
+ /* u32 is always a valid zero-extended u64/s64 */
+ return range(to_t, a, b);
+ case U32:
+ return x;
+ case S32:
+ return range_cast_to_s32(range(U32, a, b));
+ default: printf("range_cast_u32!\n"); exit(1);
+ }
+}
+
+static struct range range_cast_s32(enum num_t to_t, struct range x)
+{
+ s32 a = (s32)x.a, b = (s32)x.b;
+
+ switch (to_t) {
+ case U64:
+ case U32:
+ case S64:
+ if (sign32(a) != sign32(b))
+ return unkn[to_t];
+ return range(to_t, a, b);
+ case S32:
+ return x;
+ default: printf("range_cast_s32!\n"); exit(1);
+ }
+}
+
+/* Reinterpret range in *from_t* domain as a range in *to_t* domain preserving
+ * all possible information. Worst case, it will be unknown range within
+ * *to_t* domain, if nothing more specific can be guaranteed during the
+ * conversion
+ */
+static struct range range_cast(enum num_t from_t, enum num_t to_t, struct range from)
+{
+ switch (from_t) {
+ case U64: return range_cast_u64(to_t, from);
+ case U32: return range_cast_u32(to_t, from);
+ case S64: return range_cast_s64(to_t, from);
+ case S32: return range_cast_s32(to_t, from);
+ default: printf("range_cast!\n"); exit(1);
+ }
+}
+
+static bool is_valid_num(enum num_t t, u64 x)
+{
+ switch (t) {
+ case U64: return true;
+ case U32: return upper32(x) == 0;
+ case S64: return true;
+ case S32: return upper32(x) == 0;
+ default: printf("is_valid_num!\n"); exit(1);
+ }
+}
+
+static bool is_valid_range(enum num_t t, struct range x)
+{
+ if (!is_valid_num(t, x.a) || !is_valid_num(t, x.b))
+ return false;
+
+ switch (t) {
+ case U64: return (u64)x.a <= (u64)x.b;
+ case U32: return (u32)x.a <= (u32)x.b;
+ case S64: return (s64)x.a <= (s64)x.b;
+ case S32: return (s32)x.a <= (s32)x.b;
+ default: printf("is_valid_range!\n"); exit(1);
+ }
+}
+
+static struct range range_improve(enum num_t t, struct range old, struct range new)
+{
+ return range(t, max_t(t, old.a, new.a), min_t(t, old.b, new.b));
+}
+
+static struct range range_refine(enum num_t x_t, struct range x, enum num_t y_t, struct range y)
+{
+ struct range y_cast;
+
+ y_cast = range_cast(y_t, x_t, y);
+
+ /* the case when new range knowledge, *y*, is a 32-bit subregister
+ * range, while previous range knowledge, *x*, is a full register
+ * 64-bit range, needs special treatment to take into account upper 32
+ * bits of full register range
+ */
+ if (t_is_32(y_t) && !t_is_32(x_t)) {
+ struct range x_swap;
+
+ /* some combinations of upper 32 bits and sign bit can lead to
+ * invalid ranges, in such cases it's easier to detect them
+ * after cast/swap than try to enumerate all the conditions
+ * under which transformation and knowledge transfer is valid
+ */
+ x_swap = range(x_t, swap_low32(x.a, y_cast.a), swap_low32(x.b, y_cast.b));
+ if (!is_valid_range(x_t, x_swap))
+ return x;
+ return range_improve(x_t, x, x_swap);
+ }
+
+ /* otherwise, plain range cast and intersection works */
+ return range_improve(x_t, x, y_cast);
+}
+
+/* =======================
+ * GENERIC CONDITIONAL OPS
+ * =======================
+ */
+enum op { OP_LT, OP_LE, OP_GT, OP_GE, OP_EQ, OP_NE, first_op = OP_LT, last_op = OP_NE };
+
+static enum op complement_op(enum op op)
+{
+ switch (op) {
+ case OP_LT: return OP_GE;
+ case OP_LE: return OP_GT;
+ case OP_GT: return OP_LE;
+ case OP_GE: return OP_LT;
+ case OP_EQ: return OP_NE;
+ case OP_NE: return OP_EQ;
+ default: printf("complement_op!\n"); exit(1);
+ }
+}
+
+static const char *op_str(enum op op)
+{
+ switch (op) {
+ case OP_LT: return "<";
+ case OP_LE: return "<=";
+ case OP_GT: return ">";
+ case OP_GE: return ">=";
+ case OP_EQ: return "==";
+ case OP_NE: return "!=";
+ default: printf("op_str!\n"); exit(1);
+ }
+}
+
+/* Can register with range [x.a, x.b] *EVER* satisfy
+ * OP (<, <=, >, >=, ==, !=) relation to
+ * a regsiter with range [y.a, y.b]
+ * _in *num_t* domain_
+ */
+static bool range_canbe_op(enum num_t t, struct range x, struct range y, enum op op)
+{
+#define range_canbe(T) do { \
+ switch (op) { \
+ case OP_LT: return (T)x.a < (T)y.b; \
+ case OP_LE: return (T)x.a <= (T)y.b; \
+ case OP_GT: return (T)x.b > (T)y.a; \
+ case OP_GE: return (T)x.b >= (T)y.a; \
+ case OP_EQ: return (T)max_t(t, x.a, y.a) <= (T)min_t(t, x.b, y.b); \
+ case OP_NE: return !((T)x.a == (T)x.b && (T)y.a == (T)y.b && (T)x.a == (T)y.a); \
+ default: printf("range_canbe op %d\n", op); exit(1); \
+ } \
+} while (0)
+
+ switch (t) {
+ case U64: { range_canbe(u64); }
+ case U32: { range_canbe(u32); }
+ case S64: { range_canbe(s64); }
+ case S32: { range_canbe(s32); }
+ default: printf("range_canbe!\n"); exit(1);
+ }
+#undef range_canbe
+}
+
+/* Does register with range [x.a, x.b] *ALWAYS* satisfy
+ * OP (<, <=, >, >=, ==, !=) relation to
+ * a regsiter with range [y.a, y.b]
+ * _in *num_t* domain_
+ */
+static bool range_always_op(enum num_t t, struct range x, struct range y, enum op op)
+{
+ /* always op <=> ! canbe complement(op) */
+ return !range_canbe_op(t, x, y, complement_op(op));
+}
+
+/* Does register with range [x.a, x.b] *NEVER* satisfy
+ * OP (<, <=, >, >=, ==, !=) relation to
+ * a regsiter with range [y.a, y.b]
+ * _in *num_t* domain_
+ */
+static bool range_never_op(enum num_t t, struct range x, struct range y, enum op op)
+{
+ return !range_canbe_op(t, x, y, op);
+}
+
+/* similar to verifier's is_branch_taken():
+ * 1 - always taken;
+ * 0 - never taken,
+ * -1 - unsure.
+ */
+static int range_branch_taken_op(enum num_t t, struct range x, struct range y, enum op op)
+{
+ if (range_always_op(t, x, y, op))
+ return 1;
+ if (range_never_op(t, x, y, op))
+ return 0;
+ return -1;
+}
+
+/* What would be the new estimates for register x and y ranges assuming truthful
+ * OP comparison between them. I.e., (x OP y == true) => x <- newx, y <- newy.
+ *
+ * We assume "interesting" cases where ranges overlap. Cases where it's
+ * obvious that (x OP y) is either always true or false should be filtered with
+ * range_never and range_always checks.
+ */
+static void range_cond(enum num_t t, struct range x, struct range y,
+ enum op op, struct range *newx, struct range *newy)
+{
+ if (!range_canbe_op(t, x, y, op)) {
+ /* nothing to adjust, can't happen, return original values */
+ *newx = x;
+ *newy = y;
+ return;
+ }
+ switch (op) {
+ case OP_LT:
+ *newx = range(t, x.a, min_t(t, x.b, y.b - 1));
+ *newy = range(t, max_t(t, x.a + 1, y.a), y.b);
+ break;
+ case OP_LE:
+ *newx = range(t, x.a, min_t(t, x.b, y.b));
+ *newy = range(t, max_t(t, x.a, y.a), y.b);
+ break;
+ case OP_GT:
+ *newx = range(t, max_t(t, x.a, y.a + 1), x.b);
+ *newy = range(t, y.a, min_t(t, x.b - 1, y.b));
+ break;
+ case OP_GE:
+ *newx = range(t, max_t(t, x.a, y.a), x.b);
+ *newy = range(t, y.a, min_t(t, x.b, y.b));
+ break;
+ case OP_EQ:
+ *newx = range(t, max_t(t, x.a, y.a), min_t(t, x.b, y.b));
+ *newy = range(t, max_t(t, x.a, y.a), min_t(t, x.b, y.b));
+ break;
+ case OP_NE:
+ /* below logic is supported by the verifier now */
+ if (x.a == x.b && x.a == y.a) {
+ /* X is a constant matching left side of Y */
+ *newx = range(t, x.a, x.b);
+ *newy = range(t, y.a + 1, y.b);
+ } else if (x.a == x.b && x.b == y.b) {
+ /* X is a constant matching rigth side of Y */
+ *newx = range(t, x.a, x.b);
+ *newy = range(t, y.a, y.b - 1);
+ } else if (y.a == y.b && x.a == y.a) {
+ /* Y is a constant matching left side of X */
+ *newx = range(t, x.a + 1, x.b);
+ *newy = range(t, y.a, y.b);
+ } else if (y.a == y.b && x.b == y.b) {
+ /* Y is a constant matching rigth side of X */
+ *newx = range(t, x.a, x.b - 1);
+ *newy = range(t, y.a, y.b);
+ } else {
+ /* generic case, can't derive more information */
+ *newx = range(t, x.a, x.b);
+ *newy = range(t, y.a, y.b);
+ }
+
+ break;
+ default:
+ break;
+ }
+}
+
+/* =======================
+ * REGISTER STATE HANDLING
+ * =======================
+ */
+struct reg_state {
+ struct range r[4]; /* indexed by enum num_t: U64, U32, S64, S32 */
+ bool valid;
+};
+
+static void print_reg_state(struct reg_state *r, const char *sfx)
+{
+ DEFINE_STRBUF(sb, 512);
+ enum num_t t;
+ int cnt = 0;
+
+ if (!r->valid) {
+ printf("<not found>%s", sfx);
+ return;
+ }
+
+ snappendf(sb, "scalar(");
+ for (t = first_t; t <= last_t; t++) {
+ snappendf(sb, "%s%s=", cnt++ ? "," : "", t_str(t));
+ snprintf_range(t, sb, r->r[t]);
+ }
+ snappendf(sb, ")");
+
+ printf("%s%s", sb->buf, sfx);
+}
+
+static void print_refinement(enum num_t s_t, struct range src,
+ enum num_t d_t, struct range old, struct range new,
+ const char *ctx)
+{
+ printf("REFINING (%s) (%s)SRC=", ctx, t_str(s_t));
+ print_range(s_t, src, "");
+ printf(" (%s)DST_OLD=", t_str(d_t));
+ print_range(d_t, old, "");
+ printf(" (%s)DST_NEW=", t_str(d_t));
+ print_range(d_t, new, "\n");
+}
+
+static void reg_state_refine(struct reg_state *r, enum num_t t, struct range x, const char *ctx)
+{
+ enum num_t d_t, s_t;
+ struct range old;
+ bool keep_going = false;
+
+again:
+ /* try to derive new knowledge from just learned range x of type t */
+ for (d_t = first_t; d_t <= last_t; d_t++) {
+ old = r->r[d_t];
+ r->r[d_t] = range_refine(d_t, r->r[d_t], t, x);
+ if (!range_eq(r->r[d_t], old)) {
+ keep_going = true;
+ if (env.verbosity >= VERBOSE_VERY)
+ print_refinement(t, x, d_t, old, r->r[d_t], ctx);
+ }
+ }
+
+ /* now see if we can derive anything new from updated reg_state's ranges */
+ for (s_t = first_t; s_t <= last_t; s_t++) {
+ for (d_t = first_t; d_t <= last_t; d_t++) {
+ old = r->r[d_t];
+ r->r[d_t] = range_refine(d_t, r->r[d_t], s_t, r->r[s_t]);
+ if (!range_eq(r->r[d_t], old)) {
+ keep_going = true;
+ if (env.verbosity >= VERBOSE_VERY)
+ print_refinement(s_t, r->r[s_t], d_t, old, r->r[d_t], ctx);
+ }
+ }
+ }
+
+ /* keep refining until we converge */
+ if (keep_going) {
+ keep_going = false;
+ goto again;
+ }
+}
+
+static void reg_state_set_const(struct reg_state *rs, enum num_t t, u64 val)
+{
+ enum num_t tt;
+
+ rs->valid = true;
+ for (tt = first_t; tt <= last_t; tt++)
+ rs->r[tt] = tt == t ? range(t, val, val) : unkn[tt];
+
+ reg_state_refine(rs, t, rs->r[t], "CONST");
+}
+
+static void reg_state_cond(enum num_t t, struct reg_state *x, struct reg_state *y, enum op op,
+ struct reg_state *newx, struct reg_state *newy, const char *ctx)
+{
+ char buf[32];
+ enum num_t ts[2];
+ struct reg_state xx = *x, yy = *y;
+ int i, t_cnt;
+ struct range z1, z2;
+
+ if (op == OP_EQ || op == OP_NE) {
+ /* OP_EQ and OP_NE are sign-agnostic, so we need to process
+ * both signed and unsigned domains at the same time
+ */
+ ts[0] = t_unsigned(t);
+ ts[1] = t_signed(t);
+ t_cnt = 2;
+ } else {
+ ts[0] = t;
+ t_cnt = 1;
+ }
+
+ for (i = 0; i < t_cnt; i++) {
+ t = ts[i];
+ z1 = x->r[t];
+ z2 = y->r[t];
+
+ range_cond(t, z1, z2, op, &z1, &z2);
+
+ if (newx) {
+ snprintf(buf, sizeof(buf), "%s R1", ctx);
+ reg_state_refine(&xx, t, z1, buf);
+ }
+ if (newy) {
+ snprintf(buf, sizeof(buf), "%s R2", ctx);
+ reg_state_refine(&yy, t, z2, buf);
+ }
+ }
+
+ if (newx)
+ *newx = xx;
+ if (newy)
+ *newy = yy;
+}
+
+static int reg_state_branch_taken_op(enum num_t t, struct reg_state *x, struct reg_state *y,
+ enum op op)
+{
+ if (op == OP_EQ || op == OP_NE) {
+ /* OP_EQ and OP_NE are sign-agnostic */
+ enum num_t tu = t_unsigned(t);
+ enum num_t ts = t_signed(t);
+ int br_u, br_s, br;
+
+ br_u = range_branch_taken_op(tu, x->r[tu], y->r[tu], op);
+ br_s = range_branch_taken_op(ts, x->r[ts], y->r[ts], op);
+
+ if (br_u >= 0 && br_s >= 0 && br_u != br_s)
+ ASSERT_FALSE(true, "branch taken inconsistency!\n");
+
+ /* if 64-bit ranges are indecisive, use 32-bit subranges to
+ * eliminate always/never taken branches, if possible
+ */
+ if (br_u == -1 && (t == U64 || t == S64)) {
+ br = range_branch_taken_op(U32, x->r[U32], y->r[U32], op);
+ /* we can only reject for OP_EQ, never take branch
+ * based on lower 32 bits
+ */
+ if (op == OP_EQ && br == 0)
+ return 0;
+ /* for OP_NEQ we can be conclusive only if lower 32 bits
+ * differ and thus inequality branch is always taken
+ */
+ if (op == OP_NE && br == 1)
+ return 1;
+
+ br = range_branch_taken_op(S32, x->r[S32], y->r[S32], op);
+ if (op == OP_EQ && br == 0)
+ return 0;
+ if (op == OP_NE && br == 1)
+ return 1;
+ }
+
+ return br_u >= 0 ? br_u : br_s;
+ }
+ return range_branch_taken_op(t, x->r[t], y->r[t], op);
+}
+
+/* =====================================
+ * BPF PROGS GENERATION AND VERIFICATION
+ * =====================================
+ */
+struct case_spec {
+ /* whether to init full register (r1) or sub-register (w1) */
+ bool init_subregs;
+ /* whether to establish initial value range on full register (r1) or
+ * sub-register (w1)
+ */
+ bool setup_subregs;
+ /* whether to establish initial value range using signed or unsigned
+ * comparisons (i.e., initialize umin/umax or smin/smax directly)
+ */
+ bool setup_signed;
+ /* whether to perform comparison on full registers or sub-registers */
+ bool compare_subregs;
+ /* whether to perform comparison using signed or unsigned operations */
+ bool compare_signed;
+};
+
+/* Generate test BPF program based on provided test ranges, operation, and
+ * specifications about register bitness and signedness.
+ */
+static int load_range_cmp_prog(struct range x, struct range y, enum op op,
+ int branch_taken, struct case_spec spec,
+ char *log_buf, size_t log_sz,
+ int *false_pos, int *true_pos)
+{
+#define emit(insn) ({ \
+ struct bpf_insn __insns[] = { insn }; \
+ int __i; \
+ for (__i = 0; __i < ARRAY_SIZE(__insns); __i++) \
+ insns[cur_pos + __i] = __insns[__i]; \
+ cur_pos += __i; \
+})
+#define JMP_TO(target) (target - cur_pos - 1)
+ int cur_pos = 0, exit_pos, fd, op_code;
+ struct bpf_insn insns[64];
+ LIBBPF_OPTS(bpf_prog_load_opts, opts,
+ .log_level = 2,
+ .log_buf = log_buf,
+ .log_size = log_sz,
+ .prog_flags = testing_prog_flags(),
+ );
+
+ /* ; skip exit block below
+ * goto +2;
+ */
+ emit(BPF_JMP_A(2));
+ exit_pos = cur_pos;
+ /* ; exit block for all the preparatory conditionals
+ * out:
+ * r0 = 0;
+ * exit;
+ */
+ emit(BPF_MOV64_IMM(BPF_REG_0, 0));
+ emit(BPF_EXIT_INSN());
+ /*
+ * ; assign r6/w6 and r7/w7 unpredictable u64/u32 value
+ * call bpf_get_current_pid_tgid;
+ * r6 = r0; | w6 = w0;
+ * call bpf_get_current_pid_tgid;
+ * r7 = r0; | w7 = w0;
+ */
+ emit(BPF_EMIT_CALL(BPF_FUNC_get_current_pid_tgid));
+ if (spec.init_subregs)
+ emit(BPF_MOV32_REG(BPF_REG_6, BPF_REG_0));
+ else
+ emit(BPF_MOV64_REG(BPF_REG_6, BPF_REG_0));
+ emit(BPF_EMIT_CALL(BPF_FUNC_get_current_pid_tgid));
+ if (spec.init_subregs)
+ emit(BPF_MOV32_REG(BPF_REG_7, BPF_REG_0));
+ else
+ emit(BPF_MOV64_REG(BPF_REG_7, BPF_REG_0));
+ /* ; setup initial r6/w6 possible value range ([x.a, x.b])
+ * r1 = %[x.a] ll; | w1 = %[x.a];
+ * r2 = %[x.b] ll; | w2 = %[x.b];
+ * if r6 < r1 goto out; | if w6 < w1 goto out;
+ * if r6 > r2 goto out; | if w6 > w2 goto out;
+ */
+ if (spec.setup_subregs) {
+ emit(BPF_MOV32_IMM(BPF_REG_1, (s32)x.a));
+ emit(BPF_MOV32_IMM(BPF_REG_2, (s32)x.b));
+ emit(BPF_JMP32_REG(spec.setup_signed ? BPF_JSLT : BPF_JLT,
+ BPF_REG_6, BPF_REG_1, JMP_TO(exit_pos)));
+ emit(BPF_JMP32_REG(spec.setup_signed ? BPF_JSGT : BPF_JGT,
+ BPF_REG_6, BPF_REG_2, JMP_TO(exit_pos)));
+ } else {
+ emit(BPF_LD_IMM64(BPF_REG_1, x.a));
+ emit(BPF_LD_IMM64(BPF_REG_2, x.b));
+ emit(BPF_JMP_REG(spec.setup_signed ? BPF_JSLT : BPF_JLT,
+ BPF_REG_6, BPF_REG_1, JMP_TO(exit_pos)));
+ emit(BPF_JMP_REG(spec.setup_signed ? BPF_JSGT : BPF_JGT,
+ BPF_REG_6, BPF_REG_2, JMP_TO(exit_pos)));
+ }
+ /* ; setup initial r7/w7 possible value range ([y.a, y.b])
+ * r1 = %[y.a] ll; | w1 = %[y.a];
+ * r2 = %[y.b] ll; | w2 = %[y.b];
+ * if r7 < r1 goto out; | if w7 < w1 goto out;
+ * if r7 > r2 goto out; | if w7 > w2 goto out;
+ */
+ if (spec.setup_subregs) {
+ emit(BPF_MOV32_IMM(BPF_REG_1, (s32)y.a));
+ emit(BPF_MOV32_IMM(BPF_REG_2, (s32)y.b));
+ emit(BPF_JMP32_REG(spec.setup_signed ? BPF_JSLT : BPF_JLT,
+ BPF_REG_7, BPF_REG_1, JMP_TO(exit_pos)));
+ emit(BPF_JMP32_REG(spec.setup_signed ? BPF_JSGT : BPF_JGT,
+ BPF_REG_7, BPF_REG_2, JMP_TO(exit_pos)));
+ } else {
+ emit(BPF_LD_IMM64(BPF_REG_1, y.a));
+ emit(BPF_LD_IMM64(BPF_REG_2, y.b));
+ emit(BPF_JMP_REG(spec.setup_signed ? BPF_JSLT : BPF_JLT,
+ BPF_REG_7, BPF_REG_1, JMP_TO(exit_pos)));
+ emit(BPF_JMP_REG(spec.setup_signed ? BPF_JSGT : BPF_JGT,
+ BPF_REG_7, BPF_REG_2, JMP_TO(exit_pos)));
+ }
+ /* ; range test instruction
+ * if r6 <op> r7 goto +3; | if w6 <op> w7 goto +3;
+ */
+ switch (op) {
+ case OP_LT: op_code = spec.compare_signed ? BPF_JSLT : BPF_JLT; break;
+ case OP_LE: op_code = spec.compare_signed ? BPF_JSLE : BPF_JLE; break;
+ case OP_GT: op_code = spec.compare_signed ? BPF_JSGT : BPF_JGT; break;
+ case OP_GE: op_code = spec.compare_signed ? BPF_JSGE : BPF_JGE; break;
+ case OP_EQ: op_code = BPF_JEQ; break;
+ case OP_NE: op_code = BPF_JNE; break;
+ default:
+ printf("unrecognized op %d\n", op);
+ return -ENOTSUP;
+ }
+ /* ; BEFORE conditional, r0/w0 = {r6/w6,r7/w7} is to extract verifier state reliably
+ * ; this is used for debugging, as verifier doesn't always print
+ * ; registers states as of condition jump instruction (e.g., when
+ * ; precision marking happens)
+ * r0 = r6; | w0 = w6;
+ * r0 = r7; | w0 = w7;
+ */
+ if (spec.compare_subregs) {
+ emit(BPF_MOV32_REG(BPF_REG_0, BPF_REG_6));
+ emit(BPF_MOV32_REG(BPF_REG_0, BPF_REG_7));
+ } else {
+ emit(BPF_MOV64_REG(BPF_REG_0, BPF_REG_6));
+ emit(BPF_MOV64_REG(BPF_REG_0, BPF_REG_7));
+ }
+ if (spec.compare_subregs)
+ emit(BPF_JMP32_REG(op_code, BPF_REG_6, BPF_REG_7, 3));
+ else
+ emit(BPF_JMP_REG(op_code, BPF_REG_6, BPF_REG_7, 3));
+ /* ; FALSE branch, r0/w0 = {r6/w6,r7/w7} is to extract verifier state reliably
+ * r0 = r6; | w0 = w6;
+ * r0 = r7; | w0 = w7;
+ * exit;
+ */
+ *false_pos = cur_pos;
+ if (spec.compare_subregs) {
+ emit(BPF_MOV32_REG(BPF_REG_0, BPF_REG_6));
+ emit(BPF_MOV32_REG(BPF_REG_0, BPF_REG_7));
+ } else {
+ emit(BPF_MOV64_REG(BPF_REG_0, BPF_REG_6));
+ emit(BPF_MOV64_REG(BPF_REG_0, BPF_REG_7));
+ }
+ if (branch_taken == 1) /* false branch is never taken */
+ emit(BPF_EMIT_CALL(0xDEAD)); /* poison this branch */
+ else
+ emit(BPF_EXIT_INSN());
+ /* ; TRUE branch, r0/w0 = {r6/w6,r7/w7} is to extract verifier state reliably
+ * r0 = r6; | w0 = w6;
+ * r0 = r7; | w0 = w7;
+ * exit;
+ */
+ *true_pos = cur_pos;
+ if (spec.compare_subregs) {
+ emit(BPF_MOV32_REG(BPF_REG_0, BPF_REG_6));
+ emit(BPF_MOV32_REG(BPF_REG_0, BPF_REG_7));
+ } else {
+ emit(BPF_MOV64_REG(BPF_REG_0, BPF_REG_6));
+ emit(BPF_MOV64_REG(BPF_REG_0, BPF_REG_7));
+ }
+ if (branch_taken == 0) /* true branch is never taken */
+ emit(BPF_EMIT_CALL(0xDEAD)); /* poison this branch */
+ emit(BPF_EXIT_INSN()); /* last instruction has to be exit */
+
+ fd = bpf_prog_load(BPF_PROG_TYPE_RAW_TRACEPOINT, "reg_bounds_test",
+ "GPL", insns, cur_pos, &opts);
+ if (fd < 0)
+ return fd;
+
+ close(fd);
+ return 0;
+#undef emit
+#undef JMP_TO
+}
+
+#define str_has_pfx(str, pfx) (strncmp(str, pfx, strlen(pfx)) == 0)
+
+/* Parse register state from verifier log.
+ * `s` should point to the start of "Rx = ..." substring in the verifier log.
+ */
+static int parse_reg_state(const char *s, struct reg_state *reg)
+{
+ /* There are two generic forms for SCALAR register:
+ * - known constant: R6_rwD=P%lld
+ * - range: R6_rwD=scalar(id=1,...), where "..." is a comma-separated
+ * list of optional range specifiers:
+ * - umin=%llu, if missing, assumed 0;
+ * - umax=%llu, if missing, assumed U64_MAX;
+ * - smin=%lld, if missing, assumed S64_MIN;
+ * - smax=%lld, if missing, assummed S64_MAX;
+ * - umin32=%d, if missing, assumed 0;
+ * - umax32=%d, if missing, assumed U32_MAX;
+ * - smin32=%d, if missing, assumed S32_MIN;
+ * - smax32=%d, if missing, assummed S32_MAX;
+ * - var_off=(%#llx; %#llx), tnum part, we don't care about it.
+ *
+ * If some of the values are equal, they will be grouped (but min/max
+ * are not mixed together, and similarly negative values are not
+ * grouped with non-negative ones). E.g.:
+ *
+ * R6_w=Pscalar(smin=smin32=0, smax=umax=umax32=1000)
+ *
+ * _rwD part is optional (and any of the letters can be missing).
+ * P (precision mark) is optional as well.
+ *
+ * Anything inside scalar() is optional, including id, of course.
+ */
+ struct {
+ const char *pfx;
+ u64 *dst, def;
+ bool is_32, is_set;
+ } *f, fields[8] = {
+ {"smin=", &reg->r[S64].a, S64_MIN},
+ {"smax=", &reg->r[S64].b, S64_MAX},
+ {"umin=", &reg->r[U64].a, 0},
+ {"umax=", &reg->r[U64].b, U64_MAX},
+ {"smin32=", &reg->r[S32].a, (u32)S32_MIN, true},
+ {"smax32=", &reg->r[S32].b, (u32)S32_MAX, true},
+ {"umin32=", &reg->r[U32].a, 0, true},
+ {"umax32=", &reg->r[U32].b, U32_MAX, true},
+ };
+ const char *p;
+ int i;
+
+ p = strchr(s, '=');
+ if (!p)
+ return -EINVAL;
+ p++;
+ if (*p == 'P')
+ p++;
+
+ if (!str_has_pfx(p, "scalar(")) {
+ long long sval;
+ enum num_t t;
+
+ if (p[0] == '0' && p[1] == 'x') {
+ if (sscanf(p, "%llx", &sval) != 1)
+ return -EINVAL;
+ } else {
+ if (sscanf(p, "%lld", &sval) != 1)
+ return -EINVAL;
+ }
+
+ reg->valid = true;
+ for (t = first_t; t <= last_t; t++) {
+ reg->r[t] = range(t, sval, sval);
+ }
+ return 0;
+ }
+
+ p += sizeof("scalar");
+ while (p) {
+ int midxs[ARRAY_SIZE(fields)], mcnt = 0;
+ u64 val;
+
+ for (i = 0; i < ARRAY_SIZE(fields); i++) {
+ f = &fields[i];
+ if (!str_has_pfx(p, f->pfx))
+ continue;
+ midxs[mcnt++] = i;
+ p += strlen(f->pfx);
+ }
+
+ if (mcnt) {
+ /* populate all matched fields */
+ if (p[0] == '0' && p[1] == 'x') {
+ if (sscanf(p, "%llx", &val) != 1)
+ return -EINVAL;
+ } else {
+ if (sscanf(p, "%lld", &val) != 1)
+ return -EINVAL;
+ }
+
+ for (i = 0; i < mcnt; i++) {
+ f = &fields[midxs[i]];
+ f->is_set = true;
+ *f->dst = f->is_32 ? (u64)(u32)val : val;
+ }
+ } else if (str_has_pfx(p, "var_off")) {
+ /* skip "var_off=(0x0; 0x3f)" part completely */
+ p = strchr(p, ')');
+ if (!p)
+ return -EINVAL;
+ p++;
+ }
+
+ p = strpbrk(p, ",)");
+ if (*p == ')')
+ break;
+ if (p)
+ p++;
+ }
+
+ reg->valid = true;
+
+ for (i = 0; i < ARRAY_SIZE(fields); i++) {
+ f = &fields[i];
+ if (!f->is_set)
+ *f->dst = f->def;
+ }
+
+ return 0;
+}
+
+
+/* Parse all register states (TRUE/FALSE branches and DST/SRC registers)
+ * out of the verifier log for a corresponding test case BPF program.
+ */
+static int parse_range_cmp_log(const char *log_buf, struct case_spec spec,
+ int false_pos, int true_pos,
+ struct reg_state *false1_reg, struct reg_state *false2_reg,
+ struct reg_state *true1_reg, struct reg_state *true2_reg)
+{
+ struct {
+ int insn_idx;
+ int reg_idx;
+ const char *reg_upper;
+ struct reg_state *state;
+ } specs[] = {
+ {false_pos, 6, "R6=", false1_reg},
+ {false_pos + 1, 7, "R7=", false2_reg},
+ {true_pos, 6, "R6=", true1_reg},
+ {true_pos + 1, 7, "R7=", true2_reg},
+ };
+ char buf[32];
+ const char *p = log_buf, *q;
+ int i, err;
+
+ for (i = 0; i < 4; i++) {
+ sprintf(buf, "%d: (%s) %s = %s%d", specs[i].insn_idx,
+ spec.compare_subregs ? "bc" : "bf",
+ spec.compare_subregs ? "w0" : "r0",
+ spec.compare_subregs ? "w" : "r", specs[i].reg_idx);
+
+ q = strstr(p, buf);
+ if (!q) {
+ *specs[i].state = (struct reg_state){.valid = false};
+ continue;
+ }
+ p = strstr(q, specs[i].reg_upper);
+ if (!p)
+ return -EINVAL;
+ err = parse_reg_state(p, specs[i].state);
+ if (err)
+ return -EINVAL;
+ }
+ return 0;
+}
+
+/* Validate ranges match, and print details if they don't */
+static bool assert_range_eq(enum num_t t, struct range x, struct range y,
+ const char *ctx1, const char *ctx2)
+{
+ DEFINE_STRBUF(sb, 512);
+
+ if (range_eq(x, y))
+ return true;
+
+ snappendf(sb, "MISMATCH %s.%s: ", ctx1, ctx2);
+ snprintf_range(t, sb, x);
+ snappendf(sb, " != ");
+ snprintf_range(t, sb, y);
+
+ printf("%s\n", sb->buf);
+
+ return false;
+}
+
+/* Validate that register states match, and print details if they don't */
+static bool assert_reg_state_eq(struct reg_state *r, struct reg_state *e, const char *ctx)
+{
+ bool ok = true;
+ enum num_t t;
+
+ if (r->valid != e->valid) {
+ printf("MISMATCH %s: actual %s != expected %s\n", ctx,
+ r->valid ? "<valid>" : "<invalid>",
+ e->valid ? "<valid>" : "<invalid>");
+ return false;
+ }
+
+ if (!r->valid)
+ return true;
+
+ for (t = first_t; t <= last_t; t++) {
+ if (!assert_range_eq(t, r->r[t], e->r[t], ctx, t_str(t)))
+ ok = false;
+ }
+
+ return ok;
+}
+
+/* Printf verifier log, filtering out irrelevant noise */
+static void print_verifier_log(const char *buf)
+{
+ const char *p;
+
+ while (buf[0]) {
+ p = strchrnul(buf, '\n');
+
+ /* filter out irrelevant precision backtracking logs */
+ if (str_has_pfx(buf, "mark_precise: "))
+ goto skip_line;
+
+ printf("%.*s\n", (int)(p - buf), buf);
+
+skip_line:
+ buf = *p == '\0' ? p : p + 1;
+ }
+}
+
+/* Simulate provided test case purely with our own range-based logic.
+ * This is done to set up expectations for verifier's branch_taken logic and
+ * verifier's register states in the verifier log.
+ */
+static void sim_case(enum num_t init_t, enum num_t cond_t,
+ struct range x, struct range y, enum op op,
+ struct reg_state *fr1, struct reg_state *fr2,
+ struct reg_state *tr1, struct reg_state *tr2,
+ int *branch_taken)
+{
+ const u64 A = x.a;
+ const u64 B = x.b;
+ const u64 C = y.a;
+ const u64 D = y.b;
+ struct reg_state rc;
+ enum op rev_op = complement_op(op);
+ enum num_t t;
+
+ fr1->valid = fr2->valid = true;
+ tr1->valid = tr2->valid = true;
+ for (t = first_t; t <= last_t; t++) {
+ /* if we are initializing using 32-bit subregisters,
+ * full registers get upper 32 bits zeroed automatically
+ */
+ struct range z = t_is_32(init_t) ? unkn_subreg(t) : unkn[t];
+
+ fr1->r[t] = fr2->r[t] = tr1->r[t] = tr2->r[t] = z;
+ }
+
+ /* step 1: r1 >= A, r2 >= C */
+ reg_state_set_const(&rc, init_t, A);
+ reg_state_cond(init_t, fr1, &rc, OP_GE, fr1, NULL, "r1>=A");
+ reg_state_set_const(&rc, init_t, C);
+ reg_state_cond(init_t, fr2, &rc, OP_GE, fr2, NULL, "r2>=C");
+ *tr1 = *fr1;
+ *tr2 = *fr2;
+ if (env.verbosity >= VERBOSE_VERY) {
+ printf("STEP1 (%s) R1: ", t_str(init_t)); print_reg_state(fr1, "\n");
+ printf("STEP1 (%s) R2: ", t_str(init_t)); print_reg_state(fr2, "\n");
+ }
+
+ /* step 2: r1 <= B, r2 <= D */
+ reg_state_set_const(&rc, init_t, B);
+ reg_state_cond(init_t, fr1, &rc, OP_LE, fr1, NULL, "r1<=B");
+ reg_state_set_const(&rc, init_t, D);
+ reg_state_cond(init_t, fr2, &rc, OP_LE, fr2, NULL, "r2<=D");
+ *tr1 = *fr1;
+ *tr2 = *fr2;
+ if (env.verbosity >= VERBOSE_VERY) {
+ printf("STEP2 (%s) R1: ", t_str(init_t)); print_reg_state(fr1, "\n");
+ printf("STEP2 (%s) R2: ", t_str(init_t)); print_reg_state(fr2, "\n");
+ }
+
+ /* step 3: r1 <op> r2 */
+ *branch_taken = reg_state_branch_taken_op(cond_t, fr1, fr2, op);
+ fr1->valid = fr2->valid = false;
+ tr1->valid = tr2->valid = false;
+ if (*branch_taken != 1) { /* FALSE is possible */
+ fr1->valid = fr2->valid = true;
+ reg_state_cond(cond_t, fr1, fr2, rev_op, fr1, fr2, "FALSE");
+ }
+ if (*branch_taken != 0) { /* TRUE is possible */
+ tr1->valid = tr2->valid = true;
+ reg_state_cond(cond_t, tr1, tr2, op, tr1, tr2, "TRUE");
+ }
+ if (env.verbosity >= VERBOSE_VERY) {
+ printf("STEP3 (%s) FALSE R1:", t_str(cond_t)); print_reg_state(fr1, "\n");
+ printf("STEP3 (%s) FALSE R2:", t_str(cond_t)); print_reg_state(fr2, "\n");
+ printf("STEP3 (%s) TRUE R1:", t_str(cond_t)); print_reg_state(tr1, "\n");
+ printf("STEP3 (%s) TRUE R2:", t_str(cond_t)); print_reg_state(tr2, "\n");
+ }
+}
+
+/* ===============================
+ * HIGH-LEVEL TEST CASE VALIDATION
+ * ===============================
+ */
+static u32 upper_seeds[] = {
+ 0,
+ 1,
+ U32_MAX,
+ U32_MAX - 1,
+ S32_MAX,
+ (u32)S32_MIN,
+};
+
+static u32 lower_seeds[] = {
+ 0,
+ 1,
+ 2, (u32)-2,
+ 255, (u32)-255,
+ UINT_MAX,
+ UINT_MAX - 1,
+ INT_MAX,
+ (u32)INT_MIN,
+};
+
+struct ctx {
+ int val_cnt, subval_cnt, range_cnt, subrange_cnt;
+ u64 uvals[ARRAY_SIZE(upper_seeds) * ARRAY_SIZE(lower_seeds)];
+ s64 svals[ARRAY_SIZE(upper_seeds) * ARRAY_SIZE(lower_seeds)];
+ u32 usubvals[ARRAY_SIZE(lower_seeds)];
+ s32 ssubvals[ARRAY_SIZE(lower_seeds)];
+ struct range *uranges, *sranges;
+ struct range *usubranges, *ssubranges;
+ int max_failure_cnt, cur_failure_cnt;
+ int total_case_cnt, case_cnt;
+ int rand_case_cnt;
+ unsigned rand_seed;
+ __u64 start_ns;
+ char progress_ctx[64];
+};
+
+static void cleanup_ctx(struct ctx *ctx)
+{
+ free(ctx->uranges);
+ free(ctx->sranges);
+ free(ctx->usubranges);
+ free(ctx->ssubranges);
+}
+
+struct subtest_case {
+ enum num_t init_t;
+ enum num_t cond_t;
+ struct range x;
+ struct range y;
+ enum op op;
+};
+
+static void subtest_case_str(struct strbuf *sb, struct subtest_case *t, bool use_op)
+{
+ snappendf(sb, "(%s)", t_str(t->init_t));
+ snprintf_range(t->init_t, sb, t->x);
+ snappendf(sb, " (%s)%s ", t_str(t->cond_t), use_op ? op_str(t->op) : "<op>");
+ snprintf_range(t->init_t, sb, t->y);
+}
+
+/* Generate and validate test case based on specific combination of setup
+ * register ranges (including their expected num_t domain), and conditional
+ * operation to perform (including num_t domain in which it has to be
+ * performed)
+ */
+static int verify_case_op(enum num_t init_t, enum num_t cond_t,
+ struct range x, struct range y, enum op op)
+{
+ char log_buf[256 * 1024];
+ size_t log_sz = sizeof(log_buf);
+ int err, false_pos = 0, true_pos = 0, branch_taken;
+ struct reg_state fr1, fr2, tr1, tr2;
+ struct reg_state fe1, fe2, te1, te2;
+ bool failed = false;
+ struct case_spec spec = {
+ .init_subregs = (init_t == U32 || init_t == S32),
+ .setup_subregs = (init_t == U32 || init_t == S32),
+ .setup_signed = (init_t == S64 || init_t == S32),
+ .compare_subregs = (cond_t == U32 || cond_t == S32),
+ .compare_signed = (cond_t == S64 || cond_t == S32),
+ };
+
+ log_buf[0] = '\0';
+
+ sim_case(init_t, cond_t, x, y, op, &fe1, &fe2, &te1, &te2, &branch_taken);
+
+ err = load_range_cmp_prog(x, y, op, branch_taken, spec,
+ log_buf, log_sz, &false_pos, &true_pos);
+ if (err) {
+ ASSERT_OK(err, "load_range_cmp_prog");
+ failed = true;
+ }
+
+ err = parse_range_cmp_log(log_buf, spec, false_pos, true_pos,
+ &fr1, &fr2, &tr1, &tr2);
+ if (err) {
+ ASSERT_OK(err, "parse_range_cmp_log");
+ failed = true;
+ }
+
+ if (!assert_reg_state_eq(&fr1, &fe1, "false_reg1") ||
+ !assert_reg_state_eq(&fr2, &fe2, "false_reg2") ||
+ !assert_reg_state_eq(&tr1, &te1, "true_reg1") ||
+ !assert_reg_state_eq(&tr2, &te2, "true_reg2")) {
+ failed = true;
+ }
+
+ if (failed || env.verbosity >= VERBOSE_NORMAL) {
+ if (failed || env.verbosity >= VERBOSE_VERY) {
+ printf("VERIFIER LOG:\n========================\n");
+ print_verifier_log(log_buf);
+ printf("=====================\n");
+ }
+ printf("ACTUAL FALSE1: "); print_reg_state(&fr1, "\n");
+ printf("EXPECTED FALSE1: "); print_reg_state(&fe1, "\n");
+ printf("ACTUAL FALSE2: "); print_reg_state(&fr2, "\n");
+ printf("EXPECTED FALSE2: "); print_reg_state(&fe2, "\n");
+ printf("ACTUAL TRUE1: "); print_reg_state(&tr1, "\n");
+ printf("EXPECTED TRUE1: "); print_reg_state(&te1, "\n");
+ printf("ACTUAL TRUE2: "); print_reg_state(&tr2, "\n");
+ printf("EXPECTED TRUE2: "); print_reg_state(&te2, "\n");
+
+ return failed ? -EINVAL : 0;
+ }
+
+ return 0;
+}
+
+/* Given setup ranges and number types, go over all supported operations,
+ * generating individual subtest for each allowed combination
+ */
+static int verify_case_opt(struct ctx *ctx, enum num_t init_t, enum num_t cond_t,
+ struct range x, struct range y, bool is_subtest)
+{
+ DEFINE_STRBUF(sb, 256);
+ int err;
+ struct subtest_case sub = {
+ .init_t = init_t,
+ .cond_t = cond_t,
+ .x = x,
+ .y = y,
+ };
+
+ sb->pos = 0; /* reset position in strbuf */
+ subtest_case_str(sb, &sub, false /* ignore op */);
+ if (is_subtest && !test__start_subtest(sb->buf))
+ return 0;
+
+ for (sub.op = first_op; sub.op <= last_op; sub.op++) {
+ sb->pos = 0; /* reset position in strbuf */
+ subtest_case_str(sb, &sub, true /* print op */);
+
+ if (env.verbosity >= VERBOSE_NORMAL) /* this speeds up debugging */
+ printf("TEST CASE: %s\n", sb->buf);
+
+ err = verify_case_op(init_t, cond_t, x, y, sub.op);
+ if (err || env.verbosity >= VERBOSE_NORMAL)
+ ASSERT_OK(err, sb->buf);
+ if (err) {
+ ctx->cur_failure_cnt++;
+ if (ctx->cur_failure_cnt > ctx->max_failure_cnt)
+ return err;
+ return 0; /* keep testing other cases */
+ }
+ ctx->case_cnt++;
+ if ((ctx->case_cnt % 10000) == 0) {
+ double progress = (ctx->case_cnt + 0.0) / ctx->total_case_cnt;
+ u64 elapsed_ns = get_time_ns() - ctx->start_ns;
+ double remain_ns = elapsed_ns / progress * (1 - progress);
+
+ fprintf(env.stderr, "PROGRESS (%s): %d/%d (%.2lf%%), "
+ "elapsed %llu mins (%.2lf hrs), "
+ "ETA %.0lf mins (%.2lf hrs)\n",
+ ctx->progress_ctx,
+ ctx->case_cnt, ctx->total_case_cnt, 100.0 * progress,
+ elapsed_ns / 1000000000 / 60,
+ elapsed_ns / 1000000000.0 / 3600,
+ remain_ns / 1000000000.0 / 60,
+ remain_ns / 1000000000.0 / 3600);
+ }
+ }
+
+ return 0;
+}
+
+static int verify_case(struct ctx *ctx, enum num_t init_t, enum num_t cond_t,
+ struct range x, struct range y)
+{
+ return verify_case_opt(ctx, init_t, cond_t, x, y, true /* is_subtest */);
+}
+
+/* ================================
+ * GENERATED CASES FROM SEED VALUES
+ * ================================
+ */
+static int u64_cmp(const void *p1, const void *p2)
+{
+ u64 x1 = *(const u64 *)p1, x2 = *(const u64 *)p2;
+
+ return x1 != x2 ? (x1 < x2 ? -1 : 1) : 0;
+}
+
+static int u32_cmp(const void *p1, const void *p2)
+{
+ u32 x1 = *(const u32 *)p1, x2 = *(const u32 *)p2;
+
+ return x1 != x2 ? (x1 < x2 ? -1 : 1) : 0;
+}
+
+static int s64_cmp(const void *p1, const void *p2)
+{
+ s64 x1 = *(const s64 *)p1, x2 = *(const s64 *)p2;
+
+ return x1 != x2 ? (x1 < x2 ? -1 : 1) : 0;
+}
+
+static int s32_cmp(const void *p1, const void *p2)
+{
+ s32 x1 = *(const s32 *)p1, x2 = *(const s32 *)p2;
+
+ return x1 != x2 ? (x1 < x2 ? -1 : 1) : 0;
+}
+
+/* Generate valid unique constants from seeds, both signed and unsigned */
+static void gen_vals(struct ctx *ctx)
+{
+ int i, j, cnt = 0;
+
+ for (i = 0; i < ARRAY_SIZE(upper_seeds); i++) {
+ for (j = 0; j < ARRAY_SIZE(lower_seeds); j++) {
+ ctx->uvals[cnt++] = (((u64)upper_seeds[i]) << 32) | lower_seeds[j];
+ }
+ }
+
+ /* sort and compact uvals (i.e., it's `sort | uniq`) */
+ qsort(ctx->uvals, cnt, sizeof(*ctx->uvals), u64_cmp);
+ for (i = 1, j = 0; i < cnt; i++) {
+ if (ctx->uvals[j] == ctx->uvals[i])
+ continue;
+ j++;
+ ctx->uvals[j] = ctx->uvals[i];
+ }
+ ctx->val_cnt = j + 1;
+
+ /* we have exactly the same number of s64 values, they are just in
+ * a different order than u64s, so just sort them differently
+ */
+ for (i = 0; i < ctx->val_cnt; i++)
+ ctx->svals[i] = ctx->uvals[i];
+ qsort(ctx->svals, ctx->val_cnt, sizeof(*ctx->svals), s64_cmp);
+
+ if (env.verbosity >= VERBOSE_SUPER) {
+ DEFINE_STRBUF(sb1, 256);
+ DEFINE_STRBUF(sb2, 256);
+
+ for (i = 0; i < ctx->val_cnt; i++) {
+ sb1->pos = sb2->pos = 0;
+ snprintf_num(U64, sb1, ctx->uvals[i]);
+ snprintf_num(S64, sb2, ctx->svals[i]);
+ printf("SEED #%d: u64=%-20s s64=%-20s\n", i, sb1->buf, sb2->buf);
+ }
+ }
+
+ /* 32-bit values are generated separately */
+ cnt = 0;
+ for (i = 0; i < ARRAY_SIZE(lower_seeds); i++) {
+ ctx->usubvals[cnt++] = lower_seeds[i];
+ }
+
+ /* sort and compact usubvals (i.e., it's `sort | uniq`) */
+ qsort(ctx->usubvals, cnt, sizeof(*ctx->usubvals), u32_cmp);
+ for (i = 1, j = 0; i < cnt; i++) {
+ if (ctx->usubvals[j] == ctx->usubvals[i])
+ continue;
+ j++;
+ ctx->usubvals[j] = ctx->usubvals[i];
+ }
+ ctx->subval_cnt = j + 1;
+
+ for (i = 0; i < ctx->subval_cnt; i++)
+ ctx->ssubvals[i] = ctx->usubvals[i];
+ qsort(ctx->ssubvals, ctx->subval_cnt, sizeof(*ctx->ssubvals), s32_cmp);
+
+ if (env.verbosity >= VERBOSE_SUPER) {
+ DEFINE_STRBUF(sb1, 256);
+ DEFINE_STRBUF(sb2, 256);
+
+ for (i = 0; i < ctx->subval_cnt; i++) {
+ sb1->pos = sb2->pos = 0;
+ snprintf_num(U32, sb1, ctx->usubvals[i]);
+ snprintf_num(S32, sb2, ctx->ssubvals[i]);
+ printf("SUBSEED #%d: u32=%-10s s32=%-10s\n", i, sb1->buf, sb2->buf);
+ }
+ }
+}
+
+/* Generate valid ranges from upper/lower seeds */
+static int gen_ranges(struct ctx *ctx)
+{
+ int i, j, cnt = 0;
+
+ for (i = 0; i < ctx->val_cnt; i++) {
+ for (j = i; j < ctx->val_cnt; j++) {
+ if (env.verbosity >= VERBOSE_SUPER) {
+ DEFINE_STRBUF(sb1, 256);
+ DEFINE_STRBUF(sb2, 256);
+
+ sb1->pos = sb2->pos = 0;
+ snprintf_range(U64, sb1, range(U64, ctx->uvals[i], ctx->uvals[j]));
+ snprintf_range(S64, sb2, range(S64, ctx->svals[i], ctx->svals[j]));
+ printf("RANGE #%d: u64=%-40s s64=%-40s\n", cnt, sb1->buf, sb2->buf);
+ }
+ cnt++;
+ }
+ }
+ ctx->range_cnt = cnt;
+
+ ctx->uranges = calloc(ctx->range_cnt, sizeof(*ctx->uranges));
+ if (!ASSERT_OK_PTR(ctx->uranges, "uranges_calloc"))
+ return -EINVAL;
+ ctx->sranges = calloc(ctx->range_cnt, sizeof(*ctx->sranges));
+ if (!ASSERT_OK_PTR(ctx->sranges, "sranges_calloc"))
+ return -EINVAL;
+
+ cnt = 0;
+ for (i = 0; i < ctx->val_cnt; i++) {
+ for (j = i; j < ctx->val_cnt; j++) {
+ ctx->uranges[cnt] = range(U64, ctx->uvals[i], ctx->uvals[j]);
+ ctx->sranges[cnt] = range(S64, ctx->svals[i], ctx->svals[j]);
+ cnt++;
+ }
+ }
+
+ cnt = 0;
+ for (i = 0; i < ctx->subval_cnt; i++) {
+ for (j = i; j < ctx->subval_cnt; j++) {
+ if (env.verbosity >= VERBOSE_SUPER) {
+ DEFINE_STRBUF(sb1, 256);
+ DEFINE_STRBUF(sb2, 256);
+
+ sb1->pos = sb2->pos = 0;
+ snprintf_range(U32, sb1, range(U32, ctx->usubvals[i], ctx->usubvals[j]));
+ snprintf_range(S32, sb2, range(S32, ctx->ssubvals[i], ctx->ssubvals[j]));
+ printf("SUBRANGE #%d: u32=%-20s s32=%-20s\n", cnt, sb1->buf, sb2->buf);
+ }
+ cnt++;
+ }
+ }
+ ctx->subrange_cnt = cnt;
+
+ ctx->usubranges = calloc(ctx->subrange_cnt, sizeof(*ctx->usubranges));
+ if (!ASSERT_OK_PTR(ctx->usubranges, "usubranges_calloc"))
+ return -EINVAL;
+ ctx->ssubranges = calloc(ctx->subrange_cnt, sizeof(*ctx->ssubranges));
+ if (!ASSERT_OK_PTR(ctx->ssubranges, "ssubranges_calloc"))
+ return -EINVAL;
+
+ cnt = 0;
+ for (i = 0; i < ctx->subval_cnt; i++) {
+ for (j = i; j < ctx->subval_cnt; j++) {
+ ctx->usubranges[cnt] = range(U32, ctx->usubvals[i], ctx->usubvals[j]);
+ ctx->ssubranges[cnt] = range(S32, ctx->ssubvals[i], ctx->ssubvals[j]);
+ cnt++;
+ }
+ }
+
+ return 0;
+}
+
+static int parse_env_vars(struct ctx *ctx)
+{
+ const char *s;
+
+ if ((s = getenv("REG_BOUNDS_MAX_FAILURE_CNT"))) {
+ errno = 0;
+ ctx->max_failure_cnt = strtol(s, NULL, 10);
+ if (errno || ctx->max_failure_cnt < 0) {
+ ASSERT_OK(-errno, "REG_BOUNDS_MAX_FAILURE_CNT");
+ return -EINVAL;
+ }
+ }
+
+ if ((s = getenv("REG_BOUNDS_RAND_CASE_CNT"))) {
+ errno = 0;
+ ctx->rand_case_cnt = strtol(s, NULL, 10);
+ if (errno || ctx->rand_case_cnt < 0) {
+ ASSERT_OK(-errno, "REG_BOUNDS_RAND_CASE_CNT");
+ return -EINVAL;
+ }
+ }
+
+ if ((s = getenv("REG_BOUNDS_RAND_SEED"))) {
+ errno = 0;
+ ctx->rand_seed = strtoul(s, NULL, 10);
+ if (errno) {
+ ASSERT_OK(-errno, "REG_BOUNDS_RAND_SEED");
+ return -EINVAL;
+ }
+ }
+
+ return 0;
+}
+
+static int prepare_gen_tests(struct ctx *ctx)
+{
+ const char *s;
+ int err;
+
+ if (!(s = getenv("SLOW_TESTS")) || strcmp(s, "1") != 0) {
+ test__skip();
+ return -ENOTSUP;
+ }
+
+ err = parse_env_vars(ctx);
+ if (err)
+ return err;
+
+ gen_vals(ctx);
+ err = gen_ranges(ctx);
+ if (err) {
+ ASSERT_OK(err, "gen_ranges");
+ return err;
+ }
+
+ return 0;
+}
+
+/* Go over generated constants and ranges and validate various supported
+ * combinations of them
+ */
+static void validate_gen_range_vs_const_64(enum num_t init_t, enum num_t cond_t)
+{
+ struct ctx ctx;
+ struct range rconst;
+ const struct range *ranges;
+ const u64 *vals;
+ int i, j;
+
+ memset(&ctx, 0, sizeof(ctx));
+
+ if (prepare_gen_tests(&ctx))
+ goto cleanup;
+
+ ranges = init_t == U64 ? ctx.uranges : ctx.sranges;
+ vals = init_t == U64 ? ctx.uvals : (const u64 *)ctx.svals;
+
+ ctx.total_case_cnt = (last_op - first_op + 1) * (2 * ctx.range_cnt * ctx.val_cnt);
+ ctx.start_ns = get_time_ns();
+ snprintf(ctx.progress_ctx, sizeof(ctx.progress_ctx),
+ "RANGE x CONST, %s -> %s",
+ t_str(init_t), t_str(cond_t));
+
+ for (i = 0; i < ctx.val_cnt; i++) {
+ for (j = 0; j < ctx.range_cnt; j++) {
+ rconst = range(init_t, vals[i], vals[i]);
+
+ /* (u64|s64)(<range> x <const>) */
+ if (verify_case(&ctx, init_t, cond_t, ranges[j], rconst))
+ goto cleanup;
+ /* (u64|s64)(<const> x <range>) */
+ if (verify_case(&ctx, init_t, cond_t, rconst, ranges[j]))
+ goto cleanup;
+ }
+ }
+
+cleanup:
+ cleanup_ctx(&ctx);
+}
+
+static void validate_gen_range_vs_const_32(enum num_t init_t, enum num_t cond_t)
+{
+ struct ctx ctx;
+ struct range rconst;
+ const struct range *ranges;
+ const u32 *vals;
+ int i, j;
+
+ memset(&ctx, 0, sizeof(ctx));
+
+ if (prepare_gen_tests(&ctx))
+ goto cleanup;
+
+ ranges = init_t == U32 ? ctx.usubranges : ctx.ssubranges;
+ vals = init_t == U32 ? ctx.usubvals : (const u32 *)ctx.ssubvals;
+
+ ctx.total_case_cnt = (last_op - first_op + 1) * (2 * ctx.subrange_cnt * ctx.subval_cnt);
+ ctx.start_ns = get_time_ns();
+ snprintf(ctx.progress_ctx, sizeof(ctx.progress_ctx),
+ "RANGE x CONST, %s -> %s",
+ t_str(init_t), t_str(cond_t));
+
+ for (i = 0; i < ctx.subval_cnt; i++) {
+ for (j = 0; j < ctx.subrange_cnt; j++) {
+ rconst = range(init_t, vals[i], vals[i]);
+
+ /* (u32|s32)(<range> x <const>) */
+ if (verify_case(&ctx, init_t, cond_t, ranges[j], rconst))
+ goto cleanup;
+ /* (u32|s32)(<const> x <range>) */
+ if (verify_case(&ctx, init_t, cond_t, rconst, ranges[j]))
+ goto cleanup;
+ }
+ }
+
+cleanup:
+ cleanup_ctx(&ctx);
+}
+
+static void validate_gen_range_vs_range(enum num_t init_t, enum num_t cond_t)
+{
+ struct ctx ctx;
+ const struct range *ranges;
+ int i, j, rcnt;
+
+ memset(&ctx, 0, sizeof(ctx));
+
+ if (prepare_gen_tests(&ctx))
+ goto cleanup;
+
+ switch (init_t)
+ {
+ case U64:
+ ranges = ctx.uranges;
+ rcnt = ctx.range_cnt;
+ break;
+ case U32:
+ ranges = ctx.usubranges;
+ rcnt = ctx.subrange_cnt;
+ break;
+ case S64:
+ ranges = ctx.sranges;
+ rcnt = ctx.range_cnt;
+ break;
+ case S32:
+ ranges = ctx.ssubranges;
+ rcnt = ctx.subrange_cnt;
+ break;
+ default:
+ printf("validate_gen_range_vs_range!\n");
+ exit(1);
+ }
+
+ ctx.total_case_cnt = (last_op - first_op + 1) * (2 * rcnt * (rcnt + 1) / 2);
+ ctx.start_ns = get_time_ns();
+ snprintf(ctx.progress_ctx, sizeof(ctx.progress_ctx),
+ "RANGE x RANGE, %s -> %s",
+ t_str(init_t), t_str(cond_t));
+
+ for (i = 0; i < rcnt; i++) {
+ for (j = i; j < rcnt; j++) {
+ /* (<range> x <range>) */
+ if (verify_case(&ctx, init_t, cond_t, ranges[i], ranges[j]))
+ goto cleanup;
+ if (verify_case(&ctx, init_t, cond_t, ranges[j], ranges[i]))
+ goto cleanup;
+ }
+ }
+
+cleanup:
+ cleanup_ctx(&ctx);
+}
+
+/* Go over thousands of test cases generated from initial seed values.
+ * Given this take a long time, guard this begind SLOW_TESTS=1 envvar. If
+ * envvar is not set, this test is skipped during test_progs testing.
+ *
+ * We split this up into smaller subsets based on initialization and
+ * conditiona numeric domains to get an easy parallelization with test_progs'
+ * -j argument.
+ */
+
+/* RANGE x CONST, U64 initial range */
+void test_reg_bounds_gen_consts_u64_u64(void) { validate_gen_range_vs_const_64(U64, U64); }
+void test_reg_bounds_gen_consts_u64_s64(void) { validate_gen_range_vs_const_64(U64, S64); }
+void test_reg_bounds_gen_consts_u64_u32(void) { validate_gen_range_vs_const_64(U64, U32); }
+void test_reg_bounds_gen_consts_u64_s32(void) { validate_gen_range_vs_const_64(U64, S32); }
+/* RANGE x CONST, S64 initial range */
+void test_reg_bounds_gen_consts_s64_u64(void) { validate_gen_range_vs_const_64(S64, U64); }
+void test_reg_bounds_gen_consts_s64_s64(void) { validate_gen_range_vs_const_64(S64, S64); }
+void test_reg_bounds_gen_consts_s64_u32(void) { validate_gen_range_vs_const_64(S64, U32); }
+void test_reg_bounds_gen_consts_s64_s32(void) { validate_gen_range_vs_const_64(S64, S32); }
+/* RANGE x CONST, U32 initial range */
+void test_reg_bounds_gen_consts_u32_u64(void) { validate_gen_range_vs_const_32(U32, U64); }
+void test_reg_bounds_gen_consts_u32_s64(void) { validate_gen_range_vs_const_32(U32, S64); }
+void test_reg_bounds_gen_consts_u32_u32(void) { validate_gen_range_vs_const_32(U32, U32); }
+void test_reg_bounds_gen_consts_u32_s32(void) { validate_gen_range_vs_const_32(U32, S32); }
+/* RANGE x CONST, S32 initial range */
+void test_reg_bounds_gen_consts_s32_u64(void) { validate_gen_range_vs_const_32(S32, U64); }
+void test_reg_bounds_gen_consts_s32_s64(void) { validate_gen_range_vs_const_32(S32, S64); }
+void test_reg_bounds_gen_consts_s32_u32(void) { validate_gen_range_vs_const_32(S32, U32); }
+void test_reg_bounds_gen_consts_s32_s32(void) { validate_gen_range_vs_const_32(S32, S32); }
+
+/* RANGE x RANGE, U64 initial range */
+void test_reg_bounds_gen_ranges_u64_u64(void) { validate_gen_range_vs_range(U64, U64); }
+void test_reg_bounds_gen_ranges_u64_s64(void) { validate_gen_range_vs_range(U64, S64); }
+void test_reg_bounds_gen_ranges_u64_u32(void) { validate_gen_range_vs_range(U64, U32); }
+void test_reg_bounds_gen_ranges_u64_s32(void) { validate_gen_range_vs_range(U64, S32); }
+/* RANGE x RANGE, S64 initial range */
+void test_reg_bounds_gen_ranges_s64_u64(void) { validate_gen_range_vs_range(S64, U64); }
+void test_reg_bounds_gen_ranges_s64_s64(void) { validate_gen_range_vs_range(S64, S64); }
+void test_reg_bounds_gen_ranges_s64_u32(void) { validate_gen_range_vs_range(S64, U32); }
+void test_reg_bounds_gen_ranges_s64_s32(void) { validate_gen_range_vs_range(S64, S32); }
+/* RANGE x RANGE, U32 initial range */
+void test_reg_bounds_gen_ranges_u32_u64(void) { validate_gen_range_vs_range(U32, U64); }
+void test_reg_bounds_gen_ranges_u32_s64(void) { validate_gen_range_vs_range(U32, S64); }
+void test_reg_bounds_gen_ranges_u32_u32(void) { validate_gen_range_vs_range(U32, U32); }
+void test_reg_bounds_gen_ranges_u32_s32(void) { validate_gen_range_vs_range(U32, S32); }
+/* RANGE x RANGE, S32 initial range */
+void test_reg_bounds_gen_ranges_s32_u64(void) { validate_gen_range_vs_range(S32, U64); }
+void test_reg_bounds_gen_ranges_s32_s64(void) { validate_gen_range_vs_range(S32, S64); }
+void test_reg_bounds_gen_ranges_s32_u32(void) { validate_gen_range_vs_range(S32, U32); }
+void test_reg_bounds_gen_ranges_s32_s32(void) { validate_gen_range_vs_range(S32, S32); }
+
+#define DEFAULT_RAND_CASE_CNT 100
+
+#define RAND_21BIT_MASK ((1 << 22) - 1)
+
+static u64 rand_u64()
+{
+ /* RAND_MAX is guaranteed to be at least 1<<15, but in practice it
+ * seems to be 1<<31, so we need to call it thrice to get full u64;
+ * we'll use rougly equal split: 22 + 21 + 21 bits
+ */
+ return ((u64)random() << 42) |
+ (((u64)random() & RAND_21BIT_MASK) << 21) |
+ (random() & RAND_21BIT_MASK);
+}
+
+static u64 rand_const(enum num_t t)
+{
+ return cast_t(t, rand_u64());
+}
+
+static struct range rand_range(enum num_t t)
+{
+ u64 x = rand_const(t), y = rand_const(t);
+
+ return range(t, min_t(t, x, y), max_t(t, x, y));
+}
+
+static void validate_rand_ranges(enum num_t init_t, enum num_t cond_t, bool const_range)
+{
+ struct ctx ctx;
+ struct range range1, range2;
+ int err, i;
+ u64 t;
+
+ memset(&ctx, 0, sizeof(ctx));
+
+ err = parse_env_vars(&ctx);
+ if (err) {
+ ASSERT_OK(err, "parse_env_vars");
+ return;
+ }
+
+ if (ctx.rand_case_cnt == 0)
+ ctx.rand_case_cnt = DEFAULT_RAND_CASE_CNT;
+ if (ctx.rand_seed == 0)
+ ctx.rand_seed = (unsigned)get_time_ns();
+
+ srandom(ctx.rand_seed);
+
+ ctx.total_case_cnt = (last_op - first_op + 1) * (2 * ctx.rand_case_cnt);
+ ctx.start_ns = get_time_ns();
+ snprintf(ctx.progress_ctx, sizeof(ctx.progress_ctx),
+ "[RANDOM SEED %u] RANGE x %s, %s -> %s",
+ ctx.rand_seed, const_range ? "CONST" : "RANGE",
+ t_str(init_t), t_str(cond_t));
+
+ for (i = 0; i < ctx.rand_case_cnt; i++) {
+ range1 = rand_range(init_t);
+ if (const_range) {
+ t = rand_const(init_t);
+ range2 = range(init_t, t, t);
+ } else {
+ range2 = rand_range(init_t);
+ }
+
+ /* <range1> x <range2> */
+ if (verify_case_opt(&ctx, init_t, cond_t, range1, range2, false /* !is_subtest */))
+ goto cleanup;
+ /* <range2> x <range1> */
+ if (verify_case_opt(&ctx, init_t, cond_t, range2, range1, false /* !is_subtest */))
+ goto cleanup;
+ }
+
+cleanup:
+ /* make sure we report random seed for reproducing */
+ ASSERT_TRUE(true, ctx.progress_ctx);
+ cleanup_ctx(&ctx);
+}
+
+/* [RANDOM] RANGE x CONST, U64 initial range */
+void test_reg_bounds_rand_consts_u64_u64(void) { validate_rand_ranges(U64, U64, true /* const */); }
+void test_reg_bounds_rand_consts_u64_s64(void) { validate_rand_ranges(U64, S64, true /* const */); }
+void test_reg_bounds_rand_consts_u64_u32(void) { validate_rand_ranges(U64, U32, true /* const */); }
+void test_reg_bounds_rand_consts_u64_s32(void) { validate_rand_ranges(U64, S32, true /* const */); }
+/* [RANDOM] RANGE x CONST, S64 initial range */
+void test_reg_bounds_rand_consts_s64_u64(void) { validate_rand_ranges(S64, U64, true /* const */); }
+void test_reg_bounds_rand_consts_s64_s64(void) { validate_rand_ranges(S64, S64, true /* const */); }
+void test_reg_bounds_rand_consts_s64_u32(void) { validate_rand_ranges(S64, U32, true /* const */); }
+void test_reg_bounds_rand_consts_s64_s32(void) { validate_rand_ranges(S64, S32, true /* const */); }
+/* [RANDOM] RANGE x CONST, U32 initial range */
+void test_reg_bounds_rand_consts_u32_u64(void) { validate_rand_ranges(U32, U64, true /* const */); }
+void test_reg_bounds_rand_consts_u32_s64(void) { validate_rand_ranges(U32, S64, true /* const */); }
+void test_reg_bounds_rand_consts_u32_u32(void) { validate_rand_ranges(U32, U32, true /* const */); }
+void test_reg_bounds_rand_consts_u32_s32(void) { validate_rand_ranges(U32, S32, true /* const */); }
+/* [RANDOM] RANGE x CONST, S32 initial range */
+void test_reg_bounds_rand_consts_s32_u64(void) { validate_rand_ranges(S32, U64, true /* const */); }
+void test_reg_bounds_rand_consts_s32_s64(void) { validate_rand_ranges(S32, S64, true /* const */); }
+void test_reg_bounds_rand_consts_s32_u32(void) { validate_rand_ranges(S32, U32, true /* const */); }
+void test_reg_bounds_rand_consts_s32_s32(void) { validate_rand_ranges(S32, S32, true /* const */); }
+
+/* [RANDOM] RANGE x RANGE, U64 initial range */
+void test_reg_bounds_rand_ranges_u64_u64(void) { validate_rand_ranges(U64, U64, false /* range */); }
+void test_reg_bounds_rand_ranges_u64_s64(void) { validate_rand_ranges(U64, S64, false /* range */); }
+void test_reg_bounds_rand_ranges_u64_u32(void) { validate_rand_ranges(U64, U32, false /* range */); }
+void test_reg_bounds_rand_ranges_u64_s32(void) { validate_rand_ranges(U64, S32, false /* range */); }
+/* [RANDOM] RANGE x RANGE, S64 initial range */
+void test_reg_bounds_rand_ranges_s64_u64(void) { validate_rand_ranges(S64, U64, false /* range */); }
+void test_reg_bounds_rand_ranges_s64_s64(void) { validate_rand_ranges(S64, S64, false /* range */); }
+void test_reg_bounds_rand_ranges_s64_u32(void) { validate_rand_ranges(S64, U32, false /* range */); }
+void test_reg_bounds_rand_ranges_s64_s32(void) { validate_rand_ranges(S64, S32, false /* range */); }
+/* [RANDOM] RANGE x RANGE, U32 initial range */
+void test_reg_bounds_rand_ranges_u32_u64(void) { validate_rand_ranges(U32, U64, false /* range */); }
+void test_reg_bounds_rand_ranges_u32_s64(void) { validate_rand_ranges(U32, S64, false /* range */); }
+void test_reg_bounds_rand_ranges_u32_u32(void) { validate_rand_ranges(U32, U32, false /* range */); }
+void test_reg_bounds_rand_ranges_u32_s32(void) { validate_rand_ranges(U32, S32, false /* range */); }
+/* [RANDOM] RANGE x RANGE, S32 initial range */
+void test_reg_bounds_rand_ranges_s32_u64(void) { validate_rand_ranges(S32, U64, false /* range */); }
+void test_reg_bounds_rand_ranges_s32_s64(void) { validate_rand_ranges(S32, S64, false /* range */); }
+void test_reg_bounds_rand_ranges_s32_u32(void) { validate_rand_ranges(S32, U32, false /* range */); }
+void test_reg_bounds_rand_ranges_s32_s32(void) { validate_rand_ranges(S32, S32, false /* range */); }
+
+/* A set of hard-coded "interesting" cases to validate as part of normal
+ * test_progs test runs
+ */
+static struct subtest_case crafted_cases[] = {
+ {U64, U64, {0, 0xffffffff}, {0, 0}},
+ {U64, U64, {0, 0x80000000}, {0, 0}},
+ {U64, U64, {0x100000000ULL, 0x100000100ULL}, {0, 0}},
+ {U64, U64, {0x100000000ULL, 0x180000000ULL}, {0, 0}},
+ {U64, U64, {0x100000000ULL, 0x1ffffff00ULL}, {0, 0}},
+ {U64, U64, {0x100000000ULL, 0x1ffffff01ULL}, {0, 0}},
+ {U64, U64, {0x100000000ULL, 0x1fffffffeULL}, {0, 0}},
+ {U64, U64, {0x100000001ULL, 0x1000000ffULL}, {0, 0}},
+
+ /* single point overlap, interesting BPF_EQ and BPF_NE interactions */
+ {U64, U64, {0, 1}, {1, 0x80000000}},
+ {U64, S64, {0, 1}, {1, 0x80000000}},
+ {U64, U32, {0, 1}, {1, 0x80000000}},
+ {U64, S32, {0, 1}, {1, 0x80000000}},
+
+ {U64, S64, {0, 0xffffffff00000000ULL}, {0, 0}},
+ {U64, S64, {0x7fffffffffffffffULL, 0xffffffff00000000ULL}, {0, 0}},
+ {U64, S64, {0x7fffffff00000001ULL, 0xffffffff00000000ULL}, {0, 0}},
+ {U64, S64, {0, 0xffffffffULL}, {1, 1}},
+ {U64, S64, {0, 0xffffffffULL}, {0x7fffffff, 0x7fffffff}},
+
+ {U64, U32, {0, 0x100000000}, {0, 0}},
+ {U64, U32, {0xfffffffe, 0x100000000}, {0x80000000, 0x80000000}},
+
+ {U64, S32, {0, 0xffffffff00000000ULL}, {0, 0}},
+ /* these are tricky cases where lower 32 bits allow to tighten 64
+ * bit boundaries based on tightened lower 32 bit boundaries
+ */
+ {U64, S32, {0, 0x0ffffffffULL}, {0, 0}},
+ {U64, S32, {0, 0x100000000ULL}, {0, 0}},
+ {U64, S32, {0, 0x100000001ULL}, {0, 0}},
+ {U64, S32, {0, 0x180000000ULL}, {0, 0}},
+ {U64, S32, {0, 0x17fffffffULL}, {0, 0}},
+ {U64, S32, {0, 0x180000001ULL}, {0, 0}},
+
+ /* verifier knows about [-1, 0] range for s32 for this case already */
+ {S64, S64, {0xffffffffffffffffULL, 0}, {0xffffffff00000000ULL, 0xffffffff00000000ULL}},
+ /* but didn't know about these cases initially */
+ {U64, U64, {0xffffffff, 0x100000000ULL}, {0, 0}}, /* s32: [-1, 0] */
+ {U64, U64, {0xffffffff, 0x100000001ULL}, {0, 0}}, /* s32: [-1, 1] */
+
+ /* longer convergence case: learning from u64 -> s64 -> u64 -> u32,
+ * arriving at u32: [1, U32_MAX] (instead of more pessimistic [0, U32_MAX])
+ */
+ {S64, U64, {0xffffffff00000001ULL, 0}, {0xffffffff00000000ULL, 0xffffffff00000000ULL}},
+
+ {U32, U32, {1, U32_MAX}, {0, 0}},
+
+ {U32, S32, {0, U32_MAX}, {U32_MAX, U32_MAX}},
+
+ {S32, U64, {(u32)S32_MIN, (u32)S32_MIN}, {(u32)(s32)-255, 0}},
+ {S32, S64, {(u32)S32_MIN, (u32)(s32)-255}, {(u32)(s32)-2, 0}},
+ {S32, S64, {0, 1}, {(u32)S32_MIN, (u32)S32_MIN}},
+ {S32, U32, {(u32)S32_MIN, (u32)S32_MIN}, {(u32)S32_MIN, (u32)S32_MIN}},
+
+ /* edge overlap testings for BPF_NE */
+ {U64, U64, {0, U64_MAX}, {U64_MAX, U64_MAX}},
+ {U64, U64, {0, U64_MAX}, {0, 0}},
+ {S64, U64, {S64_MIN, 0}, {S64_MIN, S64_MIN}},
+ {S64, U64, {S64_MIN, 0}, {0, 0}},
+ {S64, U64, {S64_MIN, S64_MAX}, {S64_MAX, S64_MAX}},
+ {U32, U32, {0, U32_MAX}, {0, 0}},
+ {U32, U32, {0, U32_MAX}, {U32_MAX, U32_MAX}},
+ {S32, U32, {(u32)S32_MIN, 0}, {0, 0}},
+ {S32, U32, {(u32)S32_MIN, 0}, {(u32)S32_MIN, (u32)S32_MIN}},
+ {S32, U32, {(u32)S32_MIN, S32_MAX}, {S32_MAX, S32_MAX}},
+};
+
+/* Go over crafted hard-coded cases. This is fast, so we do it as part of
+ * normal test_progs run.
+ */
+void test_reg_bounds_crafted(void)
+{
+ struct ctx ctx;
+ int i;
+
+ memset(&ctx, 0, sizeof(ctx));
+
+ for (i = 0; i < ARRAY_SIZE(crafted_cases); i++) {
+ struct subtest_case *c = &crafted_cases[i];
+
+ verify_case(&ctx, c->init_t, c->cond_t, c->x, c->y);
+ verify_case(&ctx, c->init_t, c->cond_t, c->y, c->x);
+ }
+
+ cleanup_ctx(&ctx);
+}