aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/tools/testing/selftests/cgroup/test_memcontrol.c
diff options
context:
space:
mode:
Diffstat (limited to 'tools/testing/selftests/cgroup/test_memcontrol.c')
-rw-r--r--tools/testing/selftests/cgroup/test_memcontrol.c865
1 files changed, 666 insertions, 199 deletions
diff --git a/tools/testing/selftests/cgroup/test_memcontrol.c b/tools/testing/selftests/cgroup/test_memcontrol.c
index c19a97dd02d4..a680f773f2d5 100644
--- a/tools/testing/selftests/cgroup/test_memcontrol.c
+++ b/tools/testing/selftests/cgroup/test_memcontrol.c
@@ -16,10 +16,92 @@
#include <netinet/in.h>
#include <netdb.h>
#include <errno.h>
+#include <sys/mman.h>
#include "../kselftest.h"
#include "cgroup_util.h"
+static bool has_localevents;
+static bool has_recursiveprot;
+
+int get_temp_fd(void)
+{
+ return open(".", O_TMPFILE | O_RDWR | O_EXCL);
+}
+
+int alloc_pagecache(int fd, size_t size)
+{
+ char buf[PAGE_SIZE];
+ struct stat st;
+ int i;
+
+ if (fstat(fd, &st))
+ goto cleanup;
+
+ size += st.st_size;
+
+ if (ftruncate(fd, size))
+ goto cleanup;
+
+ for (i = 0; i < size; i += sizeof(buf))
+ read(fd, buf, sizeof(buf));
+
+ return 0;
+
+cleanup:
+ return -1;
+}
+
+int alloc_anon(const char *cgroup, void *arg)
+{
+ size_t size = (unsigned long)arg;
+ char *buf, *ptr;
+
+ buf = malloc(size);
+ for (ptr = buf; ptr < buf + size; ptr += PAGE_SIZE)
+ *ptr = 0;
+
+ free(buf);
+ return 0;
+}
+
+int is_swap_enabled(void)
+{
+ char buf[PAGE_SIZE];
+ const char delim[] = "\n";
+ int cnt = 0;
+ char *line;
+
+ if (read_text("/proc/swaps", buf, sizeof(buf)) <= 0)
+ return -1;
+
+ for (line = strtok(buf, delim); line; line = strtok(NULL, delim))
+ cnt++;
+
+ return cnt > 1;
+}
+
+int set_oom_adj_score(int pid, int score)
+{
+ char path[PATH_MAX];
+ int fd, len;
+
+ sprintf(path, "/proc/%d/oom_score_adj", pid);
+
+ fd = open(path, O_WRONLY | O_APPEND);
+ if (fd < 0)
+ return fd;
+
+ len = dprintf(fd, "%d", score);
+ if (len < 0) {
+ close(fd);
+ return len;
+ }
+
+ close(fd);
+ return 0;
+}
+
/*
* This test creates two nested cgroups with and without enabling
* the memory controller.
@@ -94,6 +176,11 @@ static int alloc_anon_50M_check(const char *cgroup, void *arg)
int ret = -1;
buf = malloc(size);
+ if (buf == NULL) {
+ fprintf(stderr, "malloc() failed\n");
+ return -1;
+ }
+
for (ptr = buf; ptr < buf + size; ptr += PAGE_SIZE)
*ptr = 0;
@@ -152,13 +239,16 @@ cleanup:
/*
* This test create a memory cgroup, allocates
* some anonymous memory and some pagecache
- * and check memory.current and some memory.stat values.
+ * and checks memory.current, memory.peak, and some memory.stat values.
*/
-static int test_memcg_current(const char *root)
+static int test_memcg_current_peak(const char *root)
{
int ret = KSFT_FAIL;
- long current;
+ long current, peak, peak_reset;
char *memcg;
+ bool fd2_closed = false, fd3_closed = false, fd4_closed = false;
+ int peak_fd = -1, peak_fd2 = -1, peak_fd3 = -1, peak_fd4 = -1;
+ struct stat ss;
memcg = cg_name(root, "memcg_test");
if (!memcg)
@@ -171,28 +261,130 @@ static int test_memcg_current(const char *root)
if (current != 0)
goto cleanup;
+ peak = cg_read_long(memcg, "memory.peak");
+ if (peak != 0)
+ goto cleanup;
+
if (cg_run(memcg, alloc_anon_50M_check, NULL))
goto cleanup;
+ peak = cg_read_long(memcg, "memory.peak");
+ if (peak < MB(50))
+ goto cleanup;
+
+ /*
+ * We'll open a few FDs for the same memory.peak file to exercise the free-path
+ * We need at least three to be closed in a different order than writes occurred to test
+ * the linked-list handling.
+ */
+ peak_fd = cg_open(memcg, "memory.peak", O_RDWR | O_APPEND | O_CLOEXEC);
+
+ if (peak_fd == -1) {
+ if (errno == ENOENT)
+ ret = KSFT_SKIP;
+ goto cleanup;
+ }
+
+ /*
+ * Before we try to use memory.peak's fd, try to figure out whether
+ * this kernel supports writing to that file in the first place. (by
+ * checking the writable bit on the file's st_mode)
+ */
+ if (fstat(peak_fd, &ss))
+ goto cleanup;
+
+ if ((ss.st_mode & S_IWUSR) == 0) {
+ ret = KSFT_SKIP;
+ goto cleanup;
+ }
+
+ peak_fd2 = cg_open(memcg, "memory.peak", O_RDWR | O_APPEND | O_CLOEXEC);
+
+ if (peak_fd2 == -1)
+ goto cleanup;
+
+ peak_fd3 = cg_open(memcg, "memory.peak", O_RDWR | O_APPEND | O_CLOEXEC);
+
+ if (peak_fd3 == -1)
+ goto cleanup;
+
+ /* any non-empty string resets, but make it clear */
+ static const char reset_string[] = "reset\n";
+
+ peak_reset = write(peak_fd, reset_string, sizeof(reset_string));
+ if (peak_reset != sizeof(reset_string))
+ goto cleanup;
+
+ peak_reset = write(peak_fd2, reset_string, sizeof(reset_string));
+ if (peak_reset != sizeof(reset_string))
+ goto cleanup;
+
+ peak_reset = write(peak_fd3, reset_string, sizeof(reset_string));
+ if (peak_reset != sizeof(reset_string))
+ goto cleanup;
+
+ /* Make sure a completely independent read isn't affected by our FD-local reset above*/
+ peak = cg_read_long(memcg, "memory.peak");
+ if (peak < MB(50))
+ goto cleanup;
+
+ fd2_closed = true;
+ if (close(peak_fd2))
+ goto cleanup;
+
+ peak_fd4 = cg_open(memcg, "memory.peak", O_RDWR | O_APPEND | O_CLOEXEC);
+
+ if (peak_fd4 == -1)
+ goto cleanup;
+
+ peak_reset = write(peak_fd4, reset_string, sizeof(reset_string));
+ if (peak_reset != sizeof(reset_string))
+ goto cleanup;
+
+ peak = cg_read_long_fd(peak_fd);
+ if (peak > MB(30) || peak < 0)
+ goto cleanup;
+
if (cg_run(memcg, alloc_pagecache_50M_check, NULL))
goto cleanup;
+ peak = cg_read_long(memcg, "memory.peak");
+ if (peak < MB(50))
+ goto cleanup;
+
+ /* Make sure everything is back to normal */
+ peak = cg_read_long_fd(peak_fd);
+ if (peak < MB(50))
+ goto cleanup;
+
+ peak = cg_read_long_fd(peak_fd4);
+ if (peak < MB(50))
+ goto cleanup;
+
+ fd3_closed = true;
+ if (close(peak_fd3))
+ goto cleanup;
+
+ fd4_closed = true;
+ if (close(peak_fd4))
+ goto cleanup;
+
ret = KSFT_PASS;
cleanup:
+ close(peak_fd);
+ if (!fd2_closed)
+ close(peak_fd2);
+ if (!fd3_closed)
+ close(peak_fd3);
+ if (!fd4_closed)
+ close(peak_fd4);
cg_destroy(memcg);
free(memcg);
return ret;
}
-static int alloc_pagecache_50M(const char *cgroup, void *arg)
-{
- int fd = (long)arg;
-
- return alloc_pagecache(fd, MB(50));
-}
-
static int alloc_pagecache_50M_noexit(const char *cgroup, void *arg)
{
int fd = (long)arg;
@@ -210,13 +402,22 @@ static int alloc_pagecache_50M_noexit(const char *cgroup, void *arg)
static int alloc_anon_noexit(const char *cgroup, void *arg)
{
int ppid = getppid();
+ size_t size = (unsigned long)arg;
+ char *buf, *ptr;
- if (alloc_anon(cgroup, arg))
+ buf = malloc(size);
+ if (buf == NULL) {
+ fprintf(stderr, "malloc() failed\n");
return -1;
+ }
+
+ for (ptr = buf; ptr < buf + size; ptr += PAGE_SIZE)
+ *ptr = 0;
while (getppid() == ppid)
sleep(1);
+ free(buf);
return 0;
}
@@ -237,36 +438,52 @@ static int cg_test_proc_killed(const char *cgroup)
return -1;
}
+static bool reclaim_until(const char *memcg, long goal);
+
/*
* First, this test creates the following hierarchy:
- * A memory.min = 50M, memory.max = 200M
- * A/B memory.min = 50M, memory.current = 50M
+ * A memory.min = 0, memory.max = 200M
+ * A/B memory.min = 50M
* A/B/C memory.min = 75M, memory.current = 50M
* A/B/D memory.min = 25M, memory.current = 50M
- * A/B/E memory.min = 500M, memory.current = 0
- * A/B/F memory.min = 0, memory.current = 50M
+ * A/B/E memory.min = 0, memory.current = 50M
+ * A/B/F memory.min = 500M, memory.current = 0
*
- * Usages are pagecache, but the test keeps a running
+ * (or memory.low if we test soft protection)
+ *
+ * Usages are pagecache and the test keeps a running
* process in every leaf cgroup.
* Then it creates A/G and creates a significant
- * memory pressure in it.
+ * memory pressure in A.
*
+ * Then it checks actual memory usages and expects that:
* A/B memory.current ~= 50M
- * A/B/C memory.current ~= 33M
- * A/B/D memory.current ~= 17M
- * A/B/E memory.current ~= 0
+ * A/B/C memory.current ~= 29M [memory.events:low > 0]
+ * A/B/D memory.current ~= 21M [memory.events:low > 0]
+ * A/B/E memory.current ~= 0 [memory.events:low == 0 if !memory_recursiveprot,
+ * undefined otherwise]
+ * A/B/F memory.current = 0 [memory.events:low == 0]
+ * (for origin of the numbers, see model in memcg_protection.m.)
*
* After that it tries to allocate more than there is
- * unprotected memory in A available, and checks
- * checks that memory.min protects pagecache even
- * in this case.
+ * unprotected memory in A available, and checks that:
+ * a) memory.min protects pagecache even in this case,
+ * b) memory.low allows reclaiming page cache with low events.
+ *
+ * Then we try to reclaim from A/B/C using memory.reclaim until its
+ * usage reaches 10M.
+ * This makes sure that:
+ * (a) We ignore the protection of the reclaim target memcg.
+ * (b) The previously calculated emin value (~29M) should be dismissed.
*/
-static int test_memcg_min(const char *root)
+static int test_memcg_protection(const char *root, bool min)
{
- int ret = KSFT_FAIL;
+ int ret = KSFT_FAIL, rc;
char *parent[3] = {NULL};
char *children[4] = {NULL};
+ const char *attribute = min ? "memory.min" : "memory.low";
long c[4];
+ long current;
int i, attempts;
int fd;
@@ -289,8 +506,10 @@ static int test_memcg_min(const char *root)
if (cg_create(parent[0]))
goto cleanup;
- if (cg_read_long(parent[0], "memory.min")) {
- ret = KSFT_SKIP;
+ if (cg_read_long(parent[0], attribute)) {
+ /* No memory.min on older kernels is fine */
+ if (min)
+ ret = KSFT_SKIP;
goto cleanup;
}
@@ -320,24 +539,22 @@ static int test_memcg_min(const char *root)
if (cg_create(children[i]))
goto cleanup;
- if (i == 2)
+ if (i > 2)
continue;
cg_run_nowait(children[i], alloc_pagecache_50M_noexit,
(void *)(long)fd);
}
- if (cg_write(parent[0], "memory.min", "50M"))
+ if (cg_write(parent[1], attribute, "50M"))
goto cleanup;
- if (cg_write(parent[1], "memory.min", "50M"))
+ if (cg_write(children[0], attribute, "75M"))
goto cleanup;
- if (cg_write(children[0], "memory.min", "75M"))
+ if (cg_write(children[1], attribute, "25M"))
goto cleanup;
- if (cg_write(children[1], "memory.min", "25M"))
+ if (cg_write(children[2], attribute, "0"))
goto cleanup;
- if (cg_write(children[2], "memory.min", "500M"))
- goto cleanup;
- if (cg_write(children[3], "memory.min", "0"))
+ if (cg_write(children[3], attribute, "500M"))
goto cleanup;
attempts = 0;
@@ -357,178 +574,59 @@ static int test_memcg_min(const char *root)
for (i = 0; i < ARRAY_SIZE(children); i++)
c[i] = cg_read_long(children[i], "memory.current");
- if (!values_close(c[0], MB(33), 10))
+ if (!values_close(c[0], MB(29), 15))
goto cleanup;
- if (!values_close(c[1], MB(17), 10))
+ if (!values_close(c[1], MB(21), 20))
goto cleanup;
- if (!values_close(c[2], 0, 1))
+ if (c[3] != 0)
goto cleanup;
- if (!cg_run(parent[2], alloc_anon, (void *)MB(170)))
+ rc = cg_run(parent[2], alloc_anon, (void *)MB(170));
+ if (min && !rc)
goto cleanup;
-
- if (!values_close(cg_read_long(parent[1], "memory.current"), MB(50), 3))
+ else if (!min && rc) {
+ fprintf(stderr,
+ "memory.low prevents from allocating anon memory\n");
goto cleanup;
-
- ret = KSFT_PASS;
-
-cleanup:
- for (i = ARRAY_SIZE(children) - 1; i >= 0; i--) {
- if (!children[i])
- continue;
-
- cg_destroy(children[i]);
- free(children[i]);
- }
-
- for (i = ARRAY_SIZE(parent) - 1; i >= 0; i--) {
- if (!parent[i])
- continue;
-
- cg_destroy(parent[i]);
- free(parent[i]);
}
- close(fd);
- return ret;
-}
-/*
- * First, this test creates the following hierarchy:
- * A memory.low = 50M, memory.max = 200M
- * A/B memory.low = 50M, memory.current = 50M
- * A/B/C memory.low = 75M, memory.current = 50M
- * A/B/D memory.low = 25M, memory.current = 50M
- * A/B/E memory.low = 500M, memory.current = 0
- * A/B/F memory.low = 0, memory.current = 50M
- *
- * Usages are pagecache.
- * Then it creates A/G an creates a significant
- * memory pressure in it.
- *
- * Then it checks actual memory usages and expects that:
- * A/B memory.current ~= 50M
- * A/B/ memory.current ~= 33M
- * A/B/D memory.current ~= 17M
- * A/B/E memory.current ~= 0
- *
- * After that it tries to allocate more than there is
- * unprotected memory in A available,
- * and checks low and oom events in memory.events.
- */
-static int test_memcg_low(const char *root)
-{
- int ret = KSFT_FAIL;
- char *parent[3] = {NULL};
- char *children[4] = {NULL};
- long low, oom;
- long c[4];
- int i;
- int fd;
-
- fd = get_temp_fd();
- if (fd < 0)
- goto cleanup;
-
- parent[0] = cg_name(root, "memcg_test_0");
- if (!parent[0])
- goto cleanup;
-
- parent[1] = cg_name(parent[0], "memcg_test_1");
- if (!parent[1])
- goto cleanup;
-
- parent[2] = cg_name(parent[0], "memcg_test_2");
- if (!parent[2])
- goto cleanup;
-
- if (cg_create(parent[0]))
- goto cleanup;
-
- if (cg_read_long(parent[0], "memory.low"))
+ current = min ? MB(50) : MB(30);
+ if (!values_close(cg_read_long(parent[1], "memory.current"), current, 3))
goto cleanup;
- if (cg_write(parent[0], "cgroup.subtree_control", "+memory"))
+ if (!reclaim_until(children[0], MB(10)))
goto cleanup;
- if (cg_write(parent[0], "memory.max", "200M"))
- goto cleanup;
-
- if (cg_write(parent[0], "memory.swap.max", "0"))
- goto cleanup;
-
- if (cg_create(parent[1]))
- goto cleanup;
-
- if (cg_write(parent[1], "cgroup.subtree_control", "+memory"))
- goto cleanup;
-
- if (cg_create(parent[2]))
- goto cleanup;
-
- for (i = 0; i < ARRAY_SIZE(children); i++) {
- children[i] = cg_name_indexed(parent[1], "child_memcg", i);
- if (!children[i])
- goto cleanup;
-
- if (cg_create(children[i]))
- goto cleanup;
-
- if (i == 2)
- continue;
-
- if (cg_run(children[i], alloc_pagecache_50M, (void *)(long)fd))
- goto cleanup;
- }
-
- if (cg_write(parent[0], "memory.low", "50M"))
- goto cleanup;
- if (cg_write(parent[1], "memory.low", "50M"))
- goto cleanup;
- if (cg_write(children[0], "memory.low", "75M"))
- goto cleanup;
- if (cg_write(children[1], "memory.low", "25M"))
- goto cleanup;
- if (cg_write(children[2], "memory.low", "500M"))
- goto cleanup;
- if (cg_write(children[3], "memory.low", "0"))
- goto cleanup;
-
- if (cg_run(parent[2], alloc_anon, (void *)MB(148)))
- goto cleanup;
-
- if (!values_close(cg_read_long(parent[1], "memory.current"), MB(50), 3))
- goto cleanup;
-
- for (i = 0; i < ARRAY_SIZE(children); i++)
- c[i] = cg_read_long(children[i], "memory.current");
-
- if (!values_close(c[0], MB(33), 10))
- goto cleanup;
-
- if (!values_close(c[1], MB(17), 10))
- goto cleanup;
-
- if (!values_close(c[2], 0, 1))
- goto cleanup;
-
- if (cg_run(parent[2], alloc_anon, (void *)MB(166))) {
- fprintf(stderr,
- "memory.low prevents from allocating anon memory\n");
+ if (min) {
+ ret = KSFT_PASS;
goto cleanup;
}
+ /*
+ * Child 2 has memory.low=0, but some low protection may still be
+ * distributed down from its parent with memory.low=50M if cgroup2
+ * memory_recursiveprot mount option is enabled. Ignore the low
+ * event count in this case.
+ */
for (i = 0; i < ARRAY_SIZE(children); i++) {
+ int ignore_low_events_index = has_recursiveprot ? 2 : -1;
+ int no_low_events_index = 1;
+ long low, oom;
+
oom = cg_read_key_long(children[i], "memory.events", "oom ");
low = cg_read_key_long(children[i], "memory.events", "low ");
if (oom)
goto cleanup;
- if (i < 2 && low <= 0)
+ if (i == ignore_low_events_index)
+ continue;
+ if (i <= no_low_events_index && low <= 0)
goto cleanup;
- if (i >= 2 && low)
+ if (i > no_low_events_index && low)
goto cleanup;
+
}
ret = KSFT_PASS;
@@ -553,13 +651,28 @@ cleanup:
return ret;
}
+static int test_memcg_min(const char *root)
+{
+ return test_memcg_protection(root, true);
+}
+
+static int test_memcg_low(const char *root)
+{
+ return test_memcg_protection(root, false);
+}
+
static int alloc_pagecache_max_30M(const char *cgroup, void *arg)
{
size_t size = MB(50);
int ret = -1;
- long current;
+ long current, high, max;
int fd;
+ high = cg_read_long(cgroup, "memory.high");
+ max = cg_read_long(cgroup, "memory.max");
+ if (high != MB(30) && max != MB(30))
+ return -1;
+
fd = get_temp_fd();
if (fd < 0)
return -1;
@@ -568,7 +681,7 @@ static int alloc_pagecache_max_30M(const char *cgroup, void *arg)
goto cleanup;
current = cg_read_long(cgroup, "memory.current");
- if (current <= MB(29) || current > MB(30))
+ if (!values_close(current, MB(30), 5))
goto cleanup;
ret = 0;
@@ -606,7 +719,7 @@ static int test_memcg_high(const char *root)
if (cg_write(memcg, "memory.high", "30M"))
goto cleanup;
- if (cg_run(memcg, alloc_anon, (void *)MB(100)))
+ if (cg_run(memcg, alloc_anon, (void *)MB(31)))
goto cleanup;
if (!cg_run(memcg, alloc_pagecache_50M_check, NULL))
@@ -628,6 +741,82 @@ cleanup:
return ret;
}
+static int alloc_anon_mlock(const char *cgroup, void *arg)
+{
+ size_t size = (size_t)arg;
+ void *buf;
+
+ buf = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON,
+ 0, 0);
+ if (buf == MAP_FAILED)
+ return -1;
+
+ mlock(buf, size);
+ munmap(buf, size);
+ return 0;
+}
+
+/*
+ * This test checks that memory.high is able to throttle big single shot
+ * allocation i.e. large allocation within one kernel entry.
+ */
+static int test_memcg_high_sync(const char *root)
+{
+ int ret = KSFT_FAIL, pid, fd = -1;
+ char *memcg;
+ long pre_high, pre_max;
+ long post_high, post_max;
+
+ memcg = cg_name(root, "memcg_test");
+ if (!memcg)
+ goto cleanup;
+
+ if (cg_create(memcg))
+ goto cleanup;
+
+ pre_high = cg_read_key_long(memcg, "memory.events", "high ");
+ pre_max = cg_read_key_long(memcg, "memory.events", "max ");
+ if (pre_high < 0 || pre_max < 0)
+ goto cleanup;
+
+ if (cg_write(memcg, "memory.swap.max", "0"))
+ goto cleanup;
+
+ if (cg_write(memcg, "memory.high", "30M"))
+ goto cleanup;
+
+ if (cg_write(memcg, "memory.max", "140M"))
+ goto cleanup;
+
+ fd = memcg_prepare_for_wait(memcg);
+ if (fd < 0)
+ goto cleanup;
+
+ pid = cg_run_nowait(memcg, alloc_anon_mlock, (void *)MB(200));
+ if (pid < 0)
+ goto cleanup;
+
+ cg_wait_for(fd);
+
+ post_high = cg_read_key_long(memcg, "memory.events", "high ");
+ post_max = cg_read_key_long(memcg, "memory.events", "max ");
+ if (post_high < 0 || post_max < 0)
+ goto cleanup;
+
+ if (pre_high == post_high || pre_max != post_max)
+ goto cleanup;
+
+ ret = KSFT_PASS;
+
+cleanup:
+ if (fd >= 0)
+ close(fd);
+ cg_destroy(memcg);
+ free(memcg);
+
+ return ret;
+}
+
/*
* This test checks that memory.max limits the amount of
* memory which can be consumed by either anonymous memory
@@ -679,6 +868,121 @@ cleanup:
return ret;
}
+/*
+ * Reclaim from @memcg until usage reaches @goal by writing to
+ * memory.reclaim.
+ *
+ * This function will return false if the usage is already below the
+ * goal.
+ *
+ * This function assumes that writing to memory.reclaim is the only
+ * source of change in memory.current (no concurrent allocations or
+ * reclaim).
+ *
+ * This function makes sure memory.reclaim is sane. It will return
+ * false if memory.reclaim's error codes do not make sense, even if
+ * the usage goal was satisfied.
+ */
+static bool reclaim_until(const char *memcg, long goal)
+{
+ char buf[64];
+ int retries, err;
+ long current, to_reclaim;
+ bool reclaimed = false;
+
+ for (retries = 5; retries > 0; retries--) {
+ current = cg_read_long(memcg, "memory.current");
+
+ if (current < goal || values_close(current, goal, 3))
+ break;
+ /* Did memory.reclaim return 0 incorrectly? */
+ else if (reclaimed)
+ return false;
+
+ to_reclaim = current - goal;
+ snprintf(buf, sizeof(buf), "%ld", to_reclaim);
+ err = cg_write(memcg, "memory.reclaim", buf);
+ if (!err)
+ reclaimed = true;
+ else if (err != -EAGAIN)
+ return false;
+ }
+ return reclaimed;
+}
+
+/*
+ * This test checks that memory.reclaim reclaims the given
+ * amount of memory (from both anon and file, if possible).
+ */
+static int test_memcg_reclaim(const char *root)
+{
+ int ret = KSFT_FAIL;
+ int fd = -1;
+ int retries;
+ char *memcg;
+ long current, expected_usage;
+
+ memcg = cg_name(root, "memcg_test");
+ if (!memcg)
+ goto cleanup;
+
+ if (cg_create(memcg))
+ goto cleanup;
+
+ current = cg_read_long(memcg, "memory.current");
+ if (current != 0)
+ goto cleanup;
+
+ fd = get_temp_fd();
+ if (fd < 0)
+ goto cleanup;
+
+ cg_run_nowait(memcg, alloc_pagecache_50M_noexit, (void *)(long)fd);
+
+ /*
+ * If swap is enabled, try to reclaim from both anon and file, else try
+ * to reclaim from file only.
+ */
+ if (is_swap_enabled()) {
+ cg_run_nowait(memcg, alloc_anon_noexit, (void *) MB(50));
+ expected_usage = MB(100);
+ } else
+ expected_usage = MB(50);
+
+ /*
+ * Wait until current usage reaches the expected usage (or we run out of
+ * retries).
+ */
+ retries = 5;
+ while (!values_close(cg_read_long(memcg, "memory.current"),
+ expected_usage, 10)) {
+ if (retries--) {
+ sleep(1);
+ continue;
+ } else {
+ fprintf(stderr,
+ "failed to allocate %ld for memcg reclaim test\n",
+ expected_usage);
+ goto cleanup;
+ }
+ }
+
+ /*
+ * Reclaim until current reaches 30M, this makes sure we hit both anon
+ * and file if swap is enabled.
+ */
+ if (!reclaim_until(memcg, MB(30)))
+ goto cleanup;
+
+ ret = KSFT_PASS;
+cleanup:
+ cg_destroy(memcg);
+ free(memcg);
+ close(fd);
+
+ return ret;
+}
+
static int alloc_anon_50M_check_swap(const char *cgroup, void *arg)
{
long mem_max = (long)arg;
@@ -688,6 +992,11 @@ static int alloc_anon_50M_check_swap(const char *cgroup, void *arg)
int ret = -1;
buf = malloc(size);
+ if (buf == NULL) {
+ fprintf(stderr, "malloc() failed\n");
+ return -1;
+ }
+
for (ptr = buf; ptr < buf + size; ptr += PAGE_SIZE)
*ptr = 0;
@@ -708,13 +1017,19 @@ cleanup:
/*
* This test checks that memory.swap.max limits the amount of
- * anonymous memory which can be swapped out.
+ * anonymous memory which can be swapped out. Additionally, it verifies that
+ * memory.swap.peak reflects the high watermark and can be reset.
*/
-static int test_memcg_swap_max(const char *root)
+static int test_memcg_swap_max_peak(const char *root)
{
int ret = KSFT_FAIL;
char *memcg;
- long max;
+ long max, peak;
+ struct stat ss;
+ int swap_peak_fd = -1, mem_peak_fd = -1;
+
+ /* any non-empty string resets */
+ static const char reset_string[] = "foobarbaz";
if (!is_swap_enabled())
return KSFT_SKIP;
@@ -731,6 +1046,61 @@ static int test_memcg_swap_max(const char *root)
goto cleanup;
}
+ swap_peak_fd = cg_open(memcg, "memory.swap.peak",
+ O_RDWR | O_APPEND | O_CLOEXEC);
+
+ if (swap_peak_fd == -1) {
+ if (errno == ENOENT)
+ ret = KSFT_SKIP;
+ goto cleanup;
+ }
+
+ /*
+ * Before we try to use memory.swap.peak's fd, try to figure out
+ * whether this kernel supports writing to that file in the first
+ * place. (by checking the writable bit on the file's st_mode)
+ */
+ if (fstat(swap_peak_fd, &ss))
+ goto cleanup;
+
+ if ((ss.st_mode & S_IWUSR) == 0) {
+ ret = KSFT_SKIP;
+ goto cleanup;
+ }
+
+ mem_peak_fd = cg_open(memcg, "memory.peak", O_RDWR | O_APPEND | O_CLOEXEC);
+
+ if (mem_peak_fd == -1)
+ goto cleanup;
+
+ if (cg_read_long(memcg, "memory.swap.peak"))
+ goto cleanup;
+
+ if (cg_read_long_fd(swap_peak_fd))
+ goto cleanup;
+
+ /* switch the swap and mem fds into local-peak tracking mode*/
+ int peak_reset = write(swap_peak_fd, reset_string, sizeof(reset_string));
+
+ if (peak_reset != sizeof(reset_string))
+ goto cleanup;
+
+ if (cg_read_long_fd(swap_peak_fd))
+ goto cleanup;
+
+ if (cg_read_long(memcg, "memory.peak"))
+ goto cleanup;
+
+ if (cg_read_long_fd(mem_peak_fd))
+ goto cleanup;
+
+ peak_reset = write(mem_peak_fd, reset_string, sizeof(reset_string));
+ if (peak_reset != sizeof(reset_string))
+ goto cleanup;
+
+ if (cg_read_long_fd(mem_peak_fd))
+ goto cleanup;
+
if (cg_read_strcmp(memcg, "memory.max", "max\n"))
goto cleanup;
@@ -753,6 +1123,61 @@ static int test_memcg_swap_max(const char *root)
if (cg_read_key_long(memcg, "memory.events", "oom_kill ") != 1)
goto cleanup;
+ peak = cg_read_long(memcg, "memory.peak");
+ if (peak < MB(29))
+ goto cleanup;
+
+ peak = cg_read_long(memcg, "memory.swap.peak");
+ if (peak < MB(29))
+ goto cleanup;
+
+ peak = cg_read_long_fd(mem_peak_fd);
+ if (peak < MB(29))
+ goto cleanup;
+
+ peak = cg_read_long_fd(swap_peak_fd);
+ if (peak < MB(29))
+ goto cleanup;
+
+ /*
+ * open, reset and close the peak swap on another FD to make sure
+ * multiple extant fds don't corrupt the linked-list
+ */
+ peak_reset = cg_write(memcg, "memory.swap.peak", (char *)reset_string);
+ if (peak_reset)
+ goto cleanup;
+
+ peak_reset = cg_write(memcg, "memory.peak", (char *)reset_string);
+ if (peak_reset)
+ goto cleanup;
+
+ /* actually reset on the fds */
+ peak_reset = write(swap_peak_fd, reset_string, sizeof(reset_string));
+ if (peak_reset != sizeof(reset_string))
+ goto cleanup;
+
+ peak_reset = write(mem_peak_fd, reset_string, sizeof(reset_string));
+ if (peak_reset != sizeof(reset_string))
+ goto cleanup;
+
+ peak = cg_read_long_fd(swap_peak_fd);
+ if (peak > MB(10))
+ goto cleanup;
+
+ /*
+ * The cgroup is now empty, but there may be a page or two associated
+ * with the open FD accounted to it.
+ */
+ peak = cg_read_long_fd(mem_peak_fd);
+ if (peak > MB(1))
+ goto cleanup;
+
+ if (cg_read_long(memcg, "memory.peak") < MB(29))
+ goto cleanup;
+
+ if (cg_read_long(memcg, "memory.swap.peak") < MB(29))
+ goto cleanup;
+
if (cg_run(memcg, alloc_anon_50M_check_swap, (void *)MB(30)))
goto cleanup;
@@ -760,9 +1185,29 @@ static int test_memcg_swap_max(const char *root)
if (max <= 0)
goto cleanup;
+ peak = cg_read_long(memcg, "memory.peak");
+ if (peak < MB(29))
+ goto cleanup;
+
+ peak = cg_read_long(memcg, "memory.swap.peak");
+ if (peak < MB(29))
+ goto cleanup;
+
+ peak = cg_read_long_fd(mem_peak_fd);
+ if (peak < MB(29))
+ goto cleanup;
+
+ peak = cg_read_long_fd(swap_peak_fd);
+ if (peak < MB(19))
+ goto cleanup;
+
ret = KSFT_PASS;
cleanup:
+ if (mem_peak_fd != -1 && close(mem_peak_fd))
+ ret = KSFT_FAIL;
+ if (swap_peak_fd != -1 && close(swap_peak_fd))
+ ret = KSFT_FAIL;
cg_destroy(memcg);
free(memcg);
@@ -882,7 +1327,9 @@ static int tcp_client(const char *cgroup, unsigned short port)
char servport[6];
int retries = 0x10; /* nice round number */
int sk, ret;
+ long allocated;
+ allocated = cg_read_long(cgroup, "memory.current");
snprintf(servport, sizeof(servport), "%hd", port);
ret = getaddrinfo(server, servport, NULL, &ai);
if (ret)
@@ -910,10 +1357,8 @@ static int tcp_client(const char *cgroup, unsigned short port)
if (current < 0 || sock < 0)
goto close_sk;
- if (current < sock)
- goto close_sk;
-
- if (values_close(current, sock, 10)) {
+ /* exclude the memory not related to socket connection */
+ if (values_close(current - allocated, sock, 10)) {
ret = KSFT_PASS;
break;
}
@@ -1002,12 +1447,14 @@ cleanup:
/*
* This test disables swapping and tries to allocate anonymous memory
* up to OOM with memory.group.oom set. Then it checks that all
- * processes in the leaf (but not the parent) were killed.
+ * processes in the leaf were killed. It also checks that oom_events
+ * were propagated to the parent level.
*/
static int test_memcg_oom_group_leaf_events(const char *root)
{
int ret = KSFT_FAIL;
char *parent, *child;
+ long parent_oom_events;
parent = cg_name(root, "memcg_test_0");
child = cg_name(root, "memcg_test_0/memcg_test_1");
@@ -1045,7 +1492,16 @@ static int test_memcg_oom_group_leaf_events(const char *root)
if (cg_read_key_long(child, "memory.events", "oom_kill ") <= 0)
goto cleanup;
- if (cg_read_key_long(parent, "memory.events", "oom_kill ") != 0)
+ parent_oom_events = cg_read_key_long(
+ parent, "memory.events", "oom_kill ");
+ /*
+ * If memory_localevents is not enabled (the default), the parent should
+ * count OOM events in its children groups. Otherwise, it should not
+ * have observed any events.
+ */
+ if (has_localevents && parent_oom_events != 0)
+ goto cleanup;
+ else if (!has_localevents && parent_oom_events <= 0)
goto cleanup;
ret = KSFT_PASS;
@@ -1169,20 +1625,21 @@ cleanup:
return ret;
}
-
#define T(x) { x, #x }
struct memcg_test {
int (*fn)(const char *root);
const char *name;
} tests[] = {
T(test_memcg_subtree_control),
- T(test_memcg_current),
+ T(test_memcg_current_peak),
T(test_memcg_min),
T(test_memcg_low),
T(test_memcg_high),
+ T(test_memcg_high_sync),
T(test_memcg_max),
+ T(test_memcg_reclaim),
T(test_memcg_oom_events),
- T(test_memcg_swap_max),
+ T(test_memcg_swap_max_peak),
T(test_memcg_sock),
T(test_memcg_oom_group_leaf_events),
T(test_memcg_oom_group_parent_events),
@@ -1193,9 +1650,9 @@ struct memcg_test {
int main(int argc, char **argv)
{
char root[PATH_MAX];
- int i, ret = EXIT_SUCCESS;
+ int i, proc_status, ret = EXIT_SUCCESS;
- if (cg_find_unified_root(root, sizeof(root)))
+ if (cg_find_unified_root(root, sizeof(root), NULL))
ksft_exit_skip("cgroup v2 isn't mounted\n");
/*
@@ -1209,6 +1666,16 @@ int main(int argc, char **argv)
if (cg_write(root, "cgroup.subtree_control", "+memory"))
ksft_exit_skip("Failed to set memory controller\n");
+ proc_status = proc_mount_contains("memory_recursiveprot");
+ if (proc_status < 0)
+ ksft_exit_skip("Failed to query cgroup mount option\n");
+ has_recursiveprot = proc_status;
+
+ proc_status = proc_mount_contains("memory_localevents");
+ if (proc_status < 0)
+ ksft_exit_skip("Failed to query cgroup mount option\n");
+ has_localevents = proc_status;
+
for (i = 0; i < ARRAY_SIZE(tests); i++) {
switch (tests[i].fn(root)) {
case KSFT_PASS: