aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/tools (unfollow)
AgeCommit message (Collapse)AuthorFilesLines
2020-10-30wireguard: selftests: check that route_me_harder packets use the right skJason A. Donenfeld2-0/+10
If netfilter changes the packet mark, the packet is rerouted. The ip_route_me_harder family of functions fails to use the right sk, opting to instead use skb->sk, resulting in a routing loop when used with tunnels. With the next change fixing this issue in netfilter, test for the relevant condition inside our test suite, since wireguard was where the bug was discovered. Reported-by: Chen Minqiang <ptpt52@gmail.com> Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com> Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2020-10-25treewide: Convert macro and uses of __section(foo) to __section("foo")Joe Perches1-1/+1
Use a more generic form for __section that requires quotes to avoid complications with clang and gcc differences. Remove the quote operator # from compiler_attributes.h __section macro. Convert all unquoted __section(foo) uses to quoted __section("foo"). Also convert __attribute__((section("foo"))) uses to __section("foo") even if the __attribute__ has multiple list entry forms. Conversion done using the script at: https://lore.kernel.org/lkml/75393e5ddc272dc7403de74d645e6c6e0f4e70eb.camel@perches.com/2-convert_section.pl Signed-off-by: Joe Perches <joe@perches.com> Reviewed-by: Nick Desaulniers <ndesaulniers@gooogle.com> Reviewed-by: Miguel Ojeda <ojeda@kernel.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-21selftests: mptcp: depends on built-in IPv6Matthieu Baerts1-0/+1
Recently, CONFIG_MPTCP_IPV6 no longer selects CONFIG_IPV6. As a consequence, if CONFIG_MPTCP_IPV6=y is added to the kconfig, it will no longer ensure CONFIG_IPV6=y. If it is not enabled, CONFIG_MPTCP_IPV6 will stay disabled and selftests will fail. We also need CONFIG_IPV6 to be built-in. For more details, please see commit 0ed37ac586c0 ("mptcp: depends on IPV6 but not as a module"). Note that 'make kselftest-merge' will take all 'config' files found in 'tools/testsing/selftests'. Because some of them already set CONFIG_IPV6=y, MPTCP selftests were still passing. But they will fail if MPTCP selftests are launched manually after having executed this command to prepare the kernel config: ./scripts/kconfig/merge_config.sh -m .config \ ./tools/testing/selftests/net/mptcp/config Fixes: 010b430d5df5 ("mptcp: MPTCP_IPV6 should depend on IPV6 instead of selecting it") Signed-off-by: Matthieu Baerts <matthieu.baerts@tessares.net> Reviewed-by: Mat Martineau <mathew.j.martineau@linux.intel.com> Link: https://lore.kernel.org/r/20201021155549.933731-1-matthieu.baerts@tessares.net Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2020-10-22bpf, libbpf: Guard bpf inline asm from bpf_tail_call_staticDaniel Borkmann1-0/+2
Yaniv reported a compilation error after pulling latest libbpf: [...] ../libbpf/src/root/usr/include/bpf/bpf_helpers.h:99:10: error: unknown register name 'r0' in asm : "r0", "r1", "r2", "r3", "r4", "r5"); [...] The issue got triggered given Yaniv was compiling tracing programs with native target (e.g. x86) instead of BPF target, hence no BTF generated vmlinux.h nor CO-RE used, and later llc with -march=bpf was invoked to compile from LLVM IR to BPF object file. Given that clang was expecting x86 inline asm and not BPF one the error complained that these regs don't exist on the former. Guard bpf_tail_call_static() with defined(__bpf__) where BPF inline asm is valid to use. BPF tracing programs on more modern kernels use BPF target anyway and thus the bpf_tail_call_static() function will be available for them. BPF inline asm is supported since clang 7 (clang <= 6 otherwise throws same above error), and __bpf_unreachable() since clang 8, therefore include the latter condition in order to prevent compilation errors for older clang versions. Given even an old Ubuntu 18.04 LTS has official LLVM packages all the way up to llvm-10, I did not bother to special case the __bpf_unreachable() inside bpf_tail_call_static() further. Also, undo the sockex3_kern's use of bpf_tail_call_static() sample given they still have the old hacky way to even compile networking progs with native instead of BPF target so bpf_tail_call_static() won't be defined there anymore. Fixes: 0e9f6841f664 ("bpf, libbpf: Add bpf_tail_call_static helper for bpf programs") Reported-by: Yaniv Agman <yanivagman@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Yonghong Song <yhs@fb.com> Tested-by: Yaniv Agman <yanivagman@gmail.com> Link: https://lore.kernel.org/bpf/CAMy7=ZUk08w5Gc2Z-EKi4JFtuUCaZYmE4yzhJjrExXpYKR4L8w@mail.gmail.com Link: https://lore.kernel.org/bpf/20201021203257.26223-1-daniel@iogearbox.net
2020-10-22bpf, selftests: Extend test_tc_redirect to use modified bpf_redirect_neigh()Toke Høiland-Jørgensen3-5/+173
This updates the test_tc_neigh prog in selftests to use the new syntax of bpf_redirect_neigh(). To exercise the helper both with and without the optional parameter, add an additional test_tc_neigh_fib test program, which does a bpf_fib_lookup() followed by a call to bpf_redirect_neigh() instead of looking up the ifindex in a map. Update the test_tc_redirect.sh script to run both versions of the test, and while we're add it, fix it to work on systems that have a consolidated dual-stack 'ping' binary instead of separate ping/ping6 versions. Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/160322915724.32199.17530068594636950447.stgit@toke.dk
2020-10-22bpf: Fix bpf_redirect_neigh helper api to support supplying nexthopToke Høiland-Jørgensen1-4/+18
Based on the discussion in [0], update the bpf_redirect_neigh() helper to accept an optional parameter specifying the nexthop information. This makes it possible to combine bpf_fib_lookup() and bpf_redirect_neigh() without incurring a duplicate FIB lookup - since the FIB lookup helper will return the nexthop information even if no neighbour is present, this can simply be passed on to bpf_redirect_neigh() if bpf_fib_lookup() returns BPF_FIB_LKUP_RET_NO_NEIGH. Thus fix & extend it before helper API is frozen. [0] https://lore.kernel.org/bpf/393e17fc-d187-3a8d-2f0d-a627c7c63fca@iogearbox.net/ Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: David Ahern <dsahern@kernel.org> Link: https://lore.kernel.org/bpf/160322915615.32199.1187570224032024535.stgit@toke.dk
2020-10-20selftests/timens: Add a test for futex()Andrei Vagin2-1/+111
Output on success: 1..2 ok 1 futex with the 0 clockid ok 2 futex with the 1 clockid # Totals: pass:2 fail:0 xfail:0 xpass:0 skip:0 error:0 Signed-off-by: Andrei Vagin <avagin@gmail.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/20201015160020.293748-2-avagin@gmail.com
2020-10-19selftests: rtnetlink: load fou module for kci_test_encap_fou() testPo-Hsu Lin2-0/+6
The kci_test_encap_fou() test from kci_test_encap() in rtnetlink.sh needs the fou module to work. Otherwise it will fail with: $ ip netns exec "$testns" ip fou add port 7777 ipproto 47 RTNETLINK answers: No such file or directory Error talking to the kernel Add the CONFIG_NET_FOU into the config file as well. Which needs at least to be set as a loadable module. Fixes: 6227efc1a20b ("selftests: rtnetlink.sh: add vxlan and fou test cases") Signed-off-by: Po-Hsu Lin <po-hsu.lin@canonical.com> Link: https://lore.kernel.org/r/20201019030928.9859-1-po-hsu.lin@canonical.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2020-10-19bpf: selftest: Ensure the return value of the bpf_per_cpu_ptr() must be checkedMartin KaFai Lau2-18/+70
This patch tests all pointers returned by bpf_per_cpu_ptr() must be tested for NULL first before it can be accessed. This patch adds a subtest "null_check", so it moves the ".data..percpu" existence check to the very beginning and before doing any subtest. Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20201019194225.1051596-1-kafai@fb.com
2020-10-19bpf: selftest: Ensure the return value of bpf_skc_to helpers must be checkedMartin KaFai Lau1-0/+25
This patch tests: int bpf_cls(struct __sk_buff *skb) { /* REG_6: sk * REG_7: tp * REG_8: req_sk */ sk = skb->sk; if (!sk) return 0; tp = bpf_skc_to_tcp_sock(sk); req_sk = bpf_skc_to_tcp_request_sock(sk); if (!req_sk) return 0; /* !tp has not been tested, so verifier should reject. */ return *(__u8 *)tp; } Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20201019194219.1051314-1-kafai@fb.com
2020-10-20selftests/powerpc: Make alignment handler test P9N DD2.1 vector CI load workaroundMichael Neuling1-2/+6
alignment_handler currently only tests the unaligned cases but it can also be useful for testing the workaround for the P9N DD2.1 vector CI load issue fixed by p9_hmi_special_emu(). This workaround was introduced in 5080332c2c89 ("powerpc/64s: Add workaround for P9 vector CI load issue"). This changes the loop to start from offset 0 rather than 1 so that we test the kernel emulation in p9_hmi_special_emu(). Signed-off-by: Michael Neuling <mikey@neuling.org> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20201013043741.743413-2-mikey@neuling.org
2020-10-18selftests: forwarding: Add missing 'rp_filter' configurationIdo Schimmel2-0/+20
When 'rp_filter' is configured in strict mode (1) the tests fail because packets received from the macvlan netdevs would not be forwarded through them on the reverse path. Fix this by disabling the 'rp_filter', meaning no source validation is performed. Fixes: 1538812e0880 ("selftests: forwarding: Add a test for VXLAN asymmetric routing") Fixes: 438a4f5665b2 ("selftests: forwarding: Add a test for VXLAN symmetric routing") Signed-off-by: Ido Schimmel <idosch@nvidia.com> Reported-by: Hangbin Liu <liuhangbin@gmail.com> Tested-by: Hangbin Liu <liuhangbin@gmail.com> Link: https://lore.kernel.org/r/20201015084525.135121-1-idosch@idosch.org Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2020-10-18selftests/vm: 10x speedup for hmm-testsJohn Hubbard1-1/+1
This patch reduces the running time for hmm-tests from about 10+ seconds, to just under 1.0 second, for an approximately 10x speedup. That brings it in line with most of the other tests in selftests/vm, which mostly run in < 1 sec. This is done with a one-line change that simply reduces the number of iterations of several tests, from 256, to 10. Thanks to Ralph Campbell for suggesting changing NTIMES as a way to get the speedup. Suggested-by: Ralph Campbell <rcampbell@nvidia.com> Signed-off-by: John Hubbard <jhubbard@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: SeongJae Park <sj38.park@gmail.com> Cc: Shuah Khan <shuah@kernel.org> Link: https://lkml.kernel.org/r/20201003011721.44238-1-jhubbard@nvidia.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-16tools/testing/selftests: add self-test for verifying load alignmentChris Kennelly3-2/+76
This produces a PIE binary with a variety of p_align requirements, suitable for verifying that the load address meets that alignment requirement. Signed-off-by: Chris Kennelly <ckennelly@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Shuah Khan <shuah@kernel.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: David Rientjes <rientjes@google.com> Cc: Fangrui Song <maskray@google.com> Cc: Hugh Dickens <hughd@google.com> Cc: Ian Rogers <irogers@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Nick Desaulniers <ndesaulniers@google.com> Cc: Sandeep Patil <sspatil@google.com> Cc: Song Liu <songliubraving@fb.com> Cc: Suren Baghdasaryan <surenb@google.com> Link: https://lkml.kernel.org/r/20200820170541.1132271-3-ckennelly@google.com Link: https://lkml.kernel.org/r/20200821233848.3904680-3-ckennelly@google.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-15bpf, selftest: Fix flaky tcp_hdr_options test when adding addr to loMartin KaFai Lau2-26/+2
The tcp_hdr_options test adds a "::eB9F" addr to the lo dev. However, this non loopback address will have a race on ipv6 dad which may lead to EADDRNOTAVAIL error from time to time. Even nodad is used in the iproute2 command, there is still a race in when the route will be added. This will then lead to ENETUNREACH from time to time. To avoid the above, this patch uses the default loopback address "::1" to do the test. Fixes: ad2f8eb0095e ("bpf: selftests: Tcp header options") Reported-by: Andrii Nakryiko <andriin@fb.com> Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20201012234940.1707941-1-kafai@fb.com
2020-10-15selftests/ftrace: Add test case for synthetic event syntax errorsTom Zanussi1-0/+19
Add a selftest that verifies that the syntax error messages and caret positions are correct for most of the possible synthetic event syntax error cases. Link: https://lkml.kernel.org/r/af611928ce79f86eaf0af8654f1d7802d5cc21ff.1602598160.git.zanussi@kernel.org Tested-by: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Tom Zanussi <zanussi@kernel.org> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2020-10-15selftests/ftrace: Change synthetic event name for inter-event-combined testTom Zanussi1-4/+4
This test uses waking+wakeup_latency as an event name, which doesn't make sense since it includes an operator. Illegal names are now detected by the synthetic event command parsing, which causes this test to fail. Change the name to 'waking_plus_wakeup_latency' to prevent this. Link: https://lkml.kernel.org/r/a1ee2f76ff28ef7166fb788ca8be968887808920.1602598160.git.zanussi@kernel.org Fixes: f06eec4d0f2c (selftests: ftrace: Add inter-event hist triggers testcases) Acked-by: Masami Hiramatsu <mhiramat@kernel.org> Tested-by: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Tom Zanussi <zanussi@kernel.org> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2020-10-15perf c2c: Update documentation for metrics reorganizationLeo Yan1-16/+18
The output format for metrics has been reorganized, update documentation to reflect the changes for it. Signed-off-by: Leo Yan <leo.yan@linaro.org> Cc: Al Grant <al.grant@arm.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: David Ahern <dsahern@gmail.com> Cc: Don Zickus <dzickus@redhat.com> Cc: Ian Rogers <irogers@google.com> Cc: James Clark <james.clark@arm.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Joe Mario <jmario@redhat.com> Cc: Kan Liang <kan.liang@linux.intel.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lore.kernel.org/lkml/20201015144548.18482-10-leo.yan@linaro.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-10-15bpf: Fix register equivalence tracking.Alexei Starovoitov1-0/+26
The 64-bit JEQ/JNE handling in reg_set_min_max() was clearing reg->id in either true or false branch. In the case 'if (reg->id)' check was done on the other branch the counter part register would have reg->id == 0 when called into find_equal_scalars(). In such case the helper would incorrectly identify other registers with id == 0 as equivalent and propagate the state incorrectly. Fix it by preserving ID across reg_set_min_max(). In other words any kind of comparison operator on the scalar register should preserve its ID to recognize: r1 = r2 if (r1 == 20) { #1 here both r1 and r2 == 20 } else if (r2 < 20) { #2 here both r1 and r2 < 20 } The patch is addressing #1 case. The #2 was working correctly already. Fixes: 75748837b7e5 ("bpf: Propagate scalar ranges through register assignments.") Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: John Fastabend <john.fastabend@gmail.com> Tested-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20201014175608.1416-1-alexei.starovoitov@gmail.com
2020-10-15perf c2c: Add metrics "RMT Load Hit"Leo Yan1-50/+2
The metrics "LLC Ld Miss" and "Load Dram" overlap with each other for accouting items: "LLC Ld Miss" = "lcl_dram" + "rmt_dram" + "rmt_hit" + "rmt_hitm" "Load Dram" = "lcl_dram" + "rmt_dram" Furthermore, the metrics "LLC Ld Miss" is not directive to show statistics due to it contains summary value and cannot give out breakdown details. For this reason, add a new metrics "RMT Load Hit" which is used to present the remote cache hit; it contains two items: "RMT Load Hit" = remote hit ("rmt_hit") + remote hitm ("rmt_hitm") As result, the metrics "LLC Ld Miss" is perfectly divided into two metrics "RMT Load Hit" and "Load Dram". It's not necessary to keep metrics "LLC Ld Miss", so remove it. Before: # ----------- Cacheline ---------- Tot ------- Load Hitm ------- Total Total Total ---- Stores ---- ----- Core Load Hit ----- - LLC Load Hit -- LLC --- Load Dram ---- # Index Address Node PA cnt Hitm Total LclHitm RmtHitm records Loads Stores L1Hit L1Miss FB L1 L2 LclHit LclHitm Ld Miss Lcl Rmt # ..... .................. .... ...... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ........ ....... ....... ........ ........ # 0 0x55f07d580100 0 1499 85.89% 481 481 0 7243 3879 3364 2599 765 548 2615 66 169 481 0 0 0 1 0x55f07d580080 0 1 13.93% 78 78 0 664 664 0 0 0 187 361 27 11 78 0 0 0 2 0x55f07d5800c0 0 1 0.18% 1 1 0 405 405 0 0 0 131 0 10 263 1 0 0 0 After: # ----------- Cacheline ---------- Tot ------- Load Hitm ------- Total Total Total ---- Stores ---- ----- Core Load Hit ----- - LLC Load Hit -- - RMT Load Hit -- --- Load Dram ---- # Index Address Node PA cnt Hitm Total LclHitm RmtHitm records Loads Stores L1Hit L1Miss FB L1 L2 LclHit LclHitm RmtHit RmtHitm Lcl Rmt # ..... .................. .... ...... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ........ ....... ........ ....... ........ ........ # 0 0x55f07d580100 0 1499 85.89% 481 481 0 7243 3879 3364 2599 765 548 2615 66 169 481 0 0 0 0 1 0x55f07d580080 0 1 13.93% 78 78 0 664 664 0 0 0 187 361 27 11 78 0 0 0 0 2 0x55f07d5800c0 0 1 0.18% 1 1 0 405 405 0 0 0 131 0 10 263 1 0 0 0 0 Signed-off-by: Leo Yan <leo.yan@linaro.org> Tested-by: Joe Mario <jmario@redhat.com> Acked-by: Jiri Olsa <jolsa@redhat.com> Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> Link: https://lore.kernel.org/r/20201014050921.5591-9-leo.yan@linaro.org
2020-10-15perf c2c: Correct LLC load hit metricsLeo Yan1-2/+2
"rmt_hit" is accounted into two metrics: one is accounted into the metrics "LLC Ld Miss" (see the function llc_miss() for calculation "llcmiss"); and it's accounted into metrics "LLC Load Hit". Thus, for the literal meaning, it is contradictory that "rmt_hit" is accounted for both "LLC Ld Miss" (LLC miss) and "LLC Load Hit" (LLC hit). Thus this is easily to introduce confusion: "LLC Load Hit" gives impression that all items belong to it are LLC hit; in fact "rmt_hit" is LLC miss and remote cache hit. To give out clear semantics for metric "LLC Load Hit", "rmt_hit" is moved out from it and changes "LLC Load Hit" to contain two items: LLC Load Hit = LLC's hit ("ld_llchit") + LLC's hitm ("lcl_hitm") For output alignment, adjusts the header for "LLC Load Hit". Signed-off-by: Leo Yan <leo.yan@linaro.org> Tested-by: Joe Mario <jmario@redhat.com> Acked-by: Jiri Olsa <jolsa@redhat.com> Link: https://lore.kernel.org/r/20201014050921.5591-8-leo.yan@linaro.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-10-15perf c2c: Change header for LLC local hitLeo Yan1-1/+1
Replace the header string "Lcl" with "LclHit", which is more explicit to express the event type is LLC local hit. Signed-off-by: Leo Yan <leo.yan@linaro.org> Tested-by: Joe Mario <jmario@redhat.com> Acked-by: Jiri Olsa <jolsa@redhat.com> Link: https://lore.kernel.org/r/20201014050921.5591-7-leo.yan@linaro.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-10-15perf c2c: Use more explicit headers for HITMLeo Yan1-4/+4
Local and remote HITM use the headers 'Lcl' and 'Rmt' respectively, suppose if we want to extend the tool to display these two dimensions under any one metrics, users cannot understand the semantics if only based on the header string 'Lcl' or 'Rmt'. To explicit express the meaning for HITM items, this patch changes the headers string as "LclHitm" and "RmtHitm", the strings are more readable and this allows to extend metrics for using HITM items. Signed-off-by: Leo Yan <leo.yan@linaro.org> Tested-by: Joe Mario <jmario@redhat.com> Acked-by: Jiri Olsa <jolsa@redhat.com> Link: https://lore.kernel.org/r/20201014050921.5591-6-leo.yan@linaro.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-10-15perf c2c: Change header from "LLC Load Hitm" to "Load Hitm"Leo Yan1-1/+1
The metrics "LLC Load Hitm" contains two items: one is "local Hitm" and another is "remote Hitm". "local Hitm" means: L3 HIT and was serviced by another processor core with a cross core snoop where modified copies were found; it's no doubt that "local Hitm" belongs to LLC access. But for "remote Hitm", based on the code in util/mem-events, it's the event for remote cache HIT and was serviced by another processor core with modified copies. Thus the remote Hitm is a remote cache's hit and actually it's LLC load miss. Now the display format gives users the impression that "local Hitm" and "remote Hitm" both belong to the LLC load, but this is not the fact as described. This patch changes the header from "LLC Load Hitm" to "Load Hitm", this can avoid the give the wrong impression that all Hitm belong to LLC. Signed-off-by: Leo Yan <leo.yan@linaro.org> Tested-by: Joe Mario <jmario@redhat.com> Acked-by: Jiri Olsa <jolsa@redhat.com> Link: https://lore.kernel.org/r/20201014050921.5591-5-leo.yan@linaro.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-10-15perf c2c: Organize metrics based on memory hierarchyLeo Yan1-3/+3
The metrics are not organized based on memory hierarchy, e.g. the tool doesn't organize the metrics order based on memory nodes from the close node (e.g. L1/L2 cache) to far node (e.g. L3 cache and DRAM). To output metrics with more friendly form, this patch refines the metrics order based on memory hierarchy: "Core Load Hit" => "LLC Load Hit" => "LLC Ld Miss" => "Load Dram" Signed-off-by: Leo Yan <leo.yan@linaro.org> Tested-by: Joe Mario <jmario@redhat.com> Acked-by: Jiri Olsa <jolsa@redhat.com> Link: https://lore.kernel.org/r/20201014050921.5591-4-leo.yan@linaro.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-10-15perf c2c: Display "Total Stores" as a standalone metricsLeo Yan1-6/+7
The total stores is displayed under the metrics "Store Reference", to output the same format with total records and all loads, extract the total stores number as a standalone metrics "Total Stores". After this patch, the tool shows the summary numbers ("Total records", "Total loads", "Total Stores") in the unified form. Before: # ----------- Cacheline ---------- Tot ----- LLC Load Hitm ----- Total Total ---- Store Reference ---- --- Load Dram ---- LLC ----- Core Load Hit ----- -- LLC Load Hit -- # Index Address Node PA cnt Hitm Total Lcl Rmt records Loads Total L1Hit L1Miss Lcl Rmt Ld Miss FB L1 L2 Llc Rmt # ..... .................. .... ...... ....... ....... ....... ....... ....... ....... ....... ....... ....... ........ ........ ....... ....... ....... ....... ........ ........ # 0 0x55f07d580100 0 1499 85.89% 481 481 0 7243 3879 3364 2599 765 0 0 0 548 2615 66 169 0 1 0x55f07d580080 0 1 13.93% 78 78 0 664 664 0 0 0 0 0 0 187 361 27 11 0 2 0x55f07d5800c0 0 1 0.18% 1 1 0 405 405 0 0 0 0 0 0 131 0 10 263 0 After: # ----------- Cacheline ---------- Tot ----- LLC Load Hitm ----- Total Total Total ---- Stores ---- --- Load Dram ---- LLC ----- Core Load Hit ----- -- LLC Load Hit -- # Index Address Node PA cnt Hitm Total Lcl Rmt records Loads Stores L1Hit L1Miss Lcl Rmt Ld Miss FB L1 L2 Llc Rmt # ..... .................. .... ...... ....... ....... ....... ....... ....... ....... ....... ....... ....... ........ ........ ....... ....... ....... ....... ........ ........ # 0 0x55f07d580100 0 1499 85.89% 481 481 0 7243 3879 3364 2599 765 0 0 0 548 2615 66 169 0 1 0x55f07d580080 0 1 13.93% 78 78 0 664 664 0 0 0 0 0 0 187 361 27 11 0 2 0x55f07d5800c0 0 1 0.18% 1 1 0 405 405 0 0 0 0 0 0 131 0 10 263 0 Signed-off-by: Leo Yan <leo.yan@linaro.org> Tested-by: Joe Mario <jmario@redhat.com> Acked-by: Jiri Olsa <jolsa@redhat.com> Link: https://lore.kernel.org/r/20201014050921.5591-3-leo.yan@linaro.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-10-15perf c2c: Display the total numbers continuouslyLeo Yan1-2/+2
To view the statistics with "breakdown" mode, it's good to show the summary numbers for the total records, all stores and all loads, then the sequential conlumns can be used to break into more detailed items. To achieve this purpose, this patch displays the summary numbers for records/stores/loads continuously and places them before breakdown items, this can allow uses to easily read the summarized statistics. Signed-off-by: Leo Yan <leo.yan@linaro.org> Tested-by: Joe Mario <jmario@redhat.com> Acked-by: Jiri Olsa <jolsa@redhat.com> Link: https://lore.kernel.org/r/20201014050921.5591-2-leo.yan@linaro.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-10-15parisc: Add MAP_UNINITIALIZED defineHelge Deller1-1/+0
We will not allow unitialized anon mmaps, but we need this define to prevent build errors, e.g. the debian foot package. Suggested-by: John David Anglin <dave.anglin@bell.net> Signed-off-by: Helge Deller <deller@gmx.de>
2020-10-14selftests: Add VRF route leaking testsMichael Jeanson2-0/+627
The objective of the tests is to check that ICMP errors generated while crossing between VRFs are properly routed back to the source host. The first ttl test sends a ping with a ttl of 1 from h1 to h2 and parses the output of the command to check that a ttl expired error is received. The second ttl test runs traceroute from h1 to h2 and parses the output to check for a hop on r1. The mtu test sends a ping with a payload of 1450 from h1 to h2, through r1 which has an interface with a mtu of 1400 and parses the output of the command to check that a fragmentation needed error is received. [ The IPv6 MTU test still fails with the symmetric routing setup. It appears to be caused by source address selection picking ::1. Fixing this is beyond the scope of this series. ] Signed-off-by: Michael Jeanson <mjeanson@efficios.com> Reviewed-by: David Ahern <dsahern@gmail.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2020-10-14perf bench: Use condition variables in numa.Ian Rogers1-21/+46
The existing approach to synchronization between threads in the numa benchmark is unbalanced mutexes. This synchronization causes thread sanitizer to warn of locks being taken twice on a thread without an unlock, as well as unlocks with no corresponding locks. This change replaces the synchronization with more regular condition variables. While this fixes one class of thread sanitizer warnings, there still remain warnings of data races due to threads reading and writing shared memory without any atomics. Committer testing: Basic run on a non-NUMA machine. # perf bench numa # List of available benchmarks for collection 'numa': mem: Benchmark for NUMA workloads all: Run all NUMA benchmarks # perf bench numa all # Running numa/mem benchmark... # Running main, "perf bench numa numa-mem" # # Running test on: Linux five 5.8.12-200.fc32.x86_64 #1 SMP Mon Sep 28 12:17:31 UTC 2020 x86_64 x86_64 x86_64 GNU/Linux # # Running RAM-bw-local, "perf bench numa mem -p 1 -t 1 -P 1024 -C 0 -M 0 -s 20 -zZq --thp 1 --no-data_rand_walk" 20.076 secs slowest (max) thread-runtime 20.000 secs fastest (min) thread-runtime 20.073 secs average thread-runtime 0.190 % difference between max/avg runtime 241.828 GB data processed, per thread 241.828 GB data processed, total 0.083 nsecs/byte/thread runtime 12.045 GB/sec/thread speed 12.045 GB/sec total speed # Running RAM-bw-local-NOTHP, "perf bench numa mem -p 1 -t 1 -P 1024 -C 0 -M 0 -s 20 -zZq --thp 1 --no-data_rand_walk --thp -1" 20.045 secs slowest (max) thread-runtime 20.000 secs fastest (min) thread-runtime 20.014 secs average thread-runtime 0.111 % difference between max/avg runtime 234.304 GB data processed, per thread 234.304 GB data processed, total 0.086 nsecs/byte/thread runtime 11.689 GB/sec/thread speed 11.689 GB/sec total speed # Running RAM-bw-remote, "perf bench numa mem -p 1 -t 1 -P 1024 -C 0 -M 1 -s 20 -zZq --thp 1 --no-data_rand_walk" Test not applicable, system has only 1 nodes. # Running RAM-bw-local-2x, "perf bench numa mem -p 2 -t 1 -P 1024 -C 0,2 -M 0x2 -s 20 -zZq --thp 1 --no-data_rand_walk" 20.138 secs slowest (max) thread-runtime 20.000 secs fastest (min) thread-runtime 20.121 secs average thread-runtime 0.342 % difference between max/avg runtime 135.961 GB data processed, per thread 271.922 GB data processed, total 0.148 nsecs/byte/thread runtime 6.752 GB/sec/thread speed 13.503 GB/sec total speed # Running RAM-bw-remote-2x, "perf bench numa mem -p 2 -t 1 -P 1024 -C 0,2 -M 1x2 -s 20 -zZq --thp 1 --no-data_rand_walk" Test not applicable, system has only 1 nodes. # Running RAM-bw-cross, "perf bench numa mem -p 2 -t 1 -P 1024 -C 0,8 -M 1,0 -s 20 -zZq --thp 1 --no-data_rand_walk" Test not applicable, system has only 1 nodes. # Running 1x3-convergence, "perf bench numa mem -p 1 -t 3 -P 512 -s 100 -zZ0qcm --thp 1" 0.747 secs latency to NUMA-converge 0.747 secs slowest (max) thread-runtime 0.000 secs fastest (min) thread-runtime 0.714 secs average thread-runtime 50.000 % difference between max/avg runtime 3.228 GB data processed, per thread 9.683 GB data processed, total 0.231 nsecs/byte/thread runtime 4.321 GB/sec/thread speed 12.964 GB/sec total speed # Running 1x4-convergence, "perf bench numa mem -p 1 -t 4 -P 512 -s 100 -zZ0qcm --thp 1" 1.127 secs latency to NUMA-converge 1.127 secs slowest (max) thread-runtime 1.000 secs fastest (min) thread-runtime 1.089 secs average thread-runtime 5.624 % difference between max/avg runtime 3.765 GB data processed, per thread 15.062 GB data processed, total 0.299 nsecs/byte/thread runtime 3.342 GB/sec/thread speed 13.368 GB/sec total speed # Running 1x6-convergence, "perf bench numa mem -p 1 -t 6 -P 1020 -s 100 -zZ0qcm --thp 1" 1.003 secs latency to NUMA-converge 1.003 secs slowest (max) thread-runtime 0.000 secs fastest (min) thread-runtime 0.889 secs average thread-runtime 50.000 % difference between max/avg runtime 2.141 GB data processed, per thread 12.847 GB data processed, total 0.469 nsecs/byte/thread runtime 2.134 GB/sec/thread speed 12.805 GB/sec total speed # Running 2x3-convergence, "perf bench numa mem -p 2 -t 3 -P 1020 -s 100 -zZ0qcm --thp 1" 1.814 secs latency to NUMA-converge 1.814 secs slowest (max) thread-runtime 1.000 secs fastest (min) thread-runtime 1.716 secs average thread-runtime 22.440 % difference between max/avg runtime 3.747 GB data processed, per thread 22.483 GB data processed, total 0.484 nsecs/byte/thread runtime 2.065 GB/sec/thread speed 12.393 GB/sec total speed # Running 3x3-convergence, "perf bench numa mem -p 3 -t 3 -P 1020 -s 100 -zZ0qcm --thp 1" 2.065 secs latency to NUMA-converge 2.065 secs slowest (max) thread-runtime 1.000 secs fastest (min) thread-runtime 1.947 secs average thread-runtime 25.788 % difference between max/avg runtime 2.855 GB data processed, per thread 25.694 GB data processed, total 0.723 nsecs/byte/thread runtime 1.382 GB/sec/thread speed 12.442 GB/sec total speed # Running 4x4-convergence, "perf bench numa mem -p 4 -t 4 -P 512 -s 100 -zZ0qcm --thp 1" 1.912 secs latency to NUMA-converge 1.912 secs slowest (max) thread-runtime 1.000 secs fastest (min) thread-runtime 1.775 secs average thread-runtime 23.852 % difference between max/avg runtime 1.479 GB data processed, per thread 23.668 GB data processed, total 1.293 nsecs/byte/thread runtime 0.774 GB/sec/thread speed 12.378 GB/sec total speed # Running 4x4-convergence-NOTHP, "perf bench numa mem -p 4 -t 4 -P 512 -s 100 -zZ0qcm --thp 1 --thp -1" 1.783 secs latency to NUMA-converge 1.783 secs slowest (max) thread-runtime 1.000 secs fastest (min) thread-runtime 1.633 secs average thread-runtime 21.960 % difference between max/avg runtime 1.345 GB data processed, per thread 21.517 GB data processed, total 1.326 nsecs/byte/thread runtime 0.754 GB/sec/thread speed 12.067 GB/sec total speed # Running 4x6-convergence, "perf bench numa mem -p 4 -t 6 -P 1020 -s 100 -zZ0qcm --thp 1" 5.396 secs latency to NUMA-converge 5.396 secs slowest (max) thread-runtime 4.000 secs fastest (min) thread-runtime 4.928 secs average thread-runtime 12.937 % difference between max/avg runtime 2.721 GB data processed, per thread 65.306 GB data processed, total 1.983 nsecs/byte/thread runtime 0.504 GB/sec/thread speed 12.102 GB/sec total speed # Running 4x8-convergence, "perf bench numa mem -p 4 -t 8 -P 512 -s 100 -zZ0qcm --thp 1" 3.121 secs latency to NUMA-converge 3.121 secs slowest (max) thread-runtime 2.000 secs fastest (min) thread-runtime 2.836 secs average thread-runtime 17.962 % difference between max/avg runtime 1.194 GB data processed, per thread 38.192 GB data processed, total 2.615 nsecs/byte/thread runtime 0.382 GB/sec/thread speed 12.236 GB/sec total speed # Running 8x4-convergence, "perf bench numa mem -p 8 -t 4 -P 512 -s 100 -zZ0qcm --thp 1" 4.302 secs latency to NUMA-converge 4.302 secs slowest (max) thread-runtime 3.000 secs fastest (min) thread-runtime 4.045 secs average thread-runtime 15.133 % difference between max/avg runtime 1.631 GB data processed, per thread 52.178 GB data processed, total 2.638 nsecs/byte/thread runtime 0.379 GB/sec/thread speed 12.128 GB/sec total speed # Running 8x4-convergence-NOTHP, "perf bench numa mem -p 8 -t 4 -P 512 -s 100 -zZ0qcm --thp 1 --thp -1" 4.418 secs latency to NUMA-converge 4.418 secs slowest (max) thread-runtime 3.000 secs fastest (min) thread-runtime 4.104 secs average thread-runtime 16.045 % difference between max/avg runtime 1.664 GB data processed, per thread 53.254 GB data processed, total 2.655 nsecs/byte/thread runtime 0.377 GB/sec/thread speed 12.055 GB/sec total speed # Running 3x1-convergence, "perf bench numa mem -p 3 -t 1 -P 512 -s 100 -zZ0qcm --thp 1" 0.973 secs latency to NUMA-converge 0.973 secs slowest (max) thread-runtime 0.000 secs fastest (min) thread-runtime 0.955 secs average thread-runtime 50.000 % difference between max/avg runtime 4.124 GB data processed, per thread 12.372 GB data processed, total 0.236 nsecs/byte/thread runtime 4.238 GB/sec/thread speed 12.715 GB/sec total speed # Running 4x1-convergence, "perf bench numa mem -p 4 -t 1 -P 512 -s 100 -zZ0qcm --thp 1" 0.820 secs latency to NUMA-converge 0.820 secs slowest (max) thread-runtime 0.000 secs fastest (min) thread-runtime 0.808 secs average thread-runtime 50.000 % difference between max/avg runtime 2.555 GB data processed, per thread 10.220 GB data processed, total 0.321 nsecs/byte/thread runtime 3.117 GB/sec/thread speed 12.468 GB/sec total speed # Running 8x1-convergence, "perf bench numa mem -p 8 -t 1 -P 512 -s 100 -zZ0qcm --thp 1" 0.667 secs latency to NUMA-converge 0.667 secs slowest (max) thread-runtime 0.000 secs fastest (min) thread-runtime 0.607 secs average thread-runtime 50.000 % difference between max/avg runtime 1.009 GB data processed, per thread 8.069 GB data processed, total 0.661 nsecs/byte/thread runtime 1.512 GB/sec/thread speed 12.095 GB/sec total speed # Running 16x1-convergence, "perf bench numa mem -p 16 -t 1 -P 256 -s 100 -zZ0qcm --thp 1" 1.546 secs latency to NUMA-converge 1.546 secs slowest (max) thread-runtime 1.000 secs fastest (min) thread-runtime 1.485 secs average thread-runtime 17.664 % difference between max/avg runtime 1.162 GB data processed, per thread 18.594 GB data processed, total 1.331 nsecs/byte/thread runtime 0.752 GB/sec/thread speed 12.025 GB/sec total speed # Running 32x1-convergence, "perf bench numa mem -p 32 -t 1 -P 128 -s 100 -zZ0qcm --thp 1" 0.812 secs latency to NUMA-converge 0.812 secs slowest (max) thread-runtime 0.000 secs fastest (min) thread-runtime 0.739 secs average thread-runtime 50.000 % difference between max/avg runtime 0.309 GB data processed, per thread 9.874 GB data processed, total 2.630 nsecs/byte/thread runtime 0.380 GB/sec/thread speed 12.166 GB/sec total speed # Running 2x1-bw-process, "perf bench numa mem -p 2 -t 1 -P 1024 -s 20 -zZ0q --thp 1" 20.044 secs slowest (max) thread-runtime 20.000 secs fastest (min) thread-runtime 20.020 secs average thread-runtime 0.109 % difference between max/avg runtime 125.750 GB data processed, per thread 251.501 GB data processed, total 0.159 nsecs/byte/thread runtime 6.274 GB/sec/thread speed 12.548 GB/sec total speed # Running 3x1-bw-process, "perf bench numa mem -p 3 -t 1 -P 1024 -s 20 -zZ0q --thp 1" 20.148 secs slowest (max) thread-runtime 20.000 secs fastest (min) thread-runtime 20.090 secs average thread-runtime 0.367 % difference between max/avg runtime 85.267 GB data processed, per thread 255.800 GB data processed, total 0.236 nsecs/byte/thread runtime 4.232 GB/sec/thread speed 12.696 GB/sec total speed # Running 4x1-bw-process, "perf bench numa mem -p 4 -t 1 -P 1024 -s 20 -zZ0q --thp 1" 20.169 secs slowest (max) thread-runtime 20.000 secs fastest (min) thread-runtime 20.100 secs average thread-runtime 0.419 % difference between max/avg runtime 63.144 GB data processed, per thread 252.576 GB data processed, total 0.319 nsecs/byte/thread runtime 3.131 GB/sec/thread speed 12.523 GB/sec total speed # Running 8x1-bw-process, "perf bench numa mem -p 8 -t 1 -P 512 -s 20 -zZ0q --thp 1" 20.175 secs slowest (max) thread-runtime 20.000 secs fastest (min) thread-runtime 20.107 secs average thread-runtime 0.433 % difference between max/avg runtime 31.267 GB data processed, per thread 250.133 GB data processed, total 0.645 nsecs/byte/thread runtime 1.550 GB/sec/thread speed 12.398 GB/sec total speed # Running 8x1-bw-process-NOTHP, "perf bench numa mem -p 8 -t 1 -P 512 -s 20 -zZ0q --thp 1 --thp -1" 20.216 secs slowest (max) thread-runtime 20.000 secs fastest (min) thread-runtime 20.113 secs average thread-runtime 0.535 % difference between max/avg runtime 30.998 GB data processed, per thread 247.981 GB data processed, total 0.652 nsecs/byte/thread runtime 1.533 GB/sec/thread speed 12.266 GB/sec total speed # Running 16x1-bw-process, "perf bench numa mem -p 16 -t 1 -P 256 -s 20 -zZ0q --thp 1" 20.234 secs slowest (max) thread-runtime 20.000 secs fastest (min) thread-runtime 20.174 secs average thread-runtime 0.577 % difference between max/avg runtime 15.377 GB data processed, per thread 246.039 GB data processed, total 1.316 nsecs/byte/thread runtime 0.760 GB/sec/thread speed 12.160 GB/sec total speed # Running 1x4-bw-thread, "perf bench numa mem -p 1 -t 4 -T 256 -s 20 -zZ0q --thp 1" 20.040 secs slowest (max) thread-runtime 20.000 secs fastest (min) thread-runtime 20.028 secs average thread-runtime 0.099 % difference between max/avg runtime 66.832 GB data processed, per thread 267.328 GB data processed, total 0.300 nsecs/byte/thread runtime 3.335 GB/sec/thread speed 13.340 GB/sec total speed # Running 1x8-bw-thread, "perf bench numa mem -p 1 -t 8 -T 256 -s 20 -zZ0q --thp 1" 20.064 secs slowest (max) thread-runtime 20.000 secs fastest (min) thread-runtime 20.034 secs average thread-runtime 0.160 % difference between max/avg runtime 32.911 GB data processed, per thread 263.286 GB data processed, total 0.610 nsecs/byte/thread runtime 1.640 GB/sec/thread speed 13.122 GB/sec total speed # Running 1x16-bw-thread, "perf bench numa mem -p 1 -t 16 -T 128 -s 20 -zZ0q --thp 1" 20.092 secs slowest (max) thread-runtime 20.000 secs fastest (min) thread-runtime 20.052 secs average thread-runtime 0.230 % difference between max/avg runtime 16.131 GB data processed, per thread 258.088 GB data processed, total 1.246 nsecs/byte/thread runtime 0.803 GB/sec/thread speed 12.845 GB/sec total speed # Running 1x32-bw-thread, "perf bench numa mem -p 1 -t 32 -T 64 -s 20 -zZ0q --thp 1" 20.099 secs slowest (max) thread-runtime 20.000 secs fastest (min) thread-runtime 20.063 secs average thread-runtime 0.247 % difference between max/avg runtime 7.962 GB data processed, per thread 254.773 GB data processed, total 2.525 nsecs/byte/thread runtime 0.396 GB/sec/thread speed 12.676 GB/sec total speed # Running 2x3-bw-process, "perf bench numa mem -p 2 -t 3 -P 512 -s 20 -zZ0q --thp 1" 20.150 secs slowest (max) thread-runtime 20.000 secs fastest (min) thread-runtime 20.120 secs average thread-runtime 0.372 % difference between max/avg runtime 44.827 GB data processed, per thread 268.960 GB data processed, total 0.450 nsecs/byte/thread runtime 2.225 GB/sec/thread speed 13.348 GB/sec total speed # Running 4x4-bw-process, "perf bench numa mem -p 4 -t 4 -P 512 -s 20 -zZ0q --thp 1" 20.258 secs slowest (max) thread-runtime 20.000 secs fastest (min) thread-runtime 20.168 secs average thread-runtime 0.636 % difference between max/avg runtime 17.079 GB data processed, per thread 273.263 GB data processed, total 1.186 nsecs/byte/thread runtime 0.843 GB/sec/thread speed 13.489 GB/sec total speed # Running 4x6-bw-process, "perf bench numa mem -p 4 -t 6 -P 512 -s 20 -zZ0q --thp 1" 20.559 secs slowest (max) thread-runtime 20.000 secs fastest (min) thread-runtime 20.382 secs average thread-runtime 1.359 % difference between max/avg runtime 10.758 GB data processed, per thread 258.201 GB data processed, total 1.911 nsecs/byte/thread runtime 0.523 GB/sec/thread speed 12.559 GB/sec total speed # Running 4x8-bw-process, "perf bench numa mem -p 4 -t 8 -P 512 -s 20 -zZ0q --thp 1" 20.744 secs slowest (max) thread-runtime 20.000 secs fastest (min) thread-runtime 20.516 secs average thread-runtime 1.792 % difference between max/avg runtime 8.069 GB data processed, per thread 258.201 GB data processed, total 2.571 nsecs/byte/thread runtime 0.389 GB/sec/thread speed 12.447 GB/sec total speed # Running 4x8-bw-process-NOTHP, "perf bench numa mem -p 4 -t 8 -P 512 -s 20 -zZ0q --thp 1 --thp -1" 20.855 secs slowest (max) thread-runtime 20.000 secs fastest (min) thread-runtime 20.561 secs average thread-runtime 2.050 % difference between max/avg runtime 8.069 GB data processed, per thread 258.201 GB data processed, total 2.585 nsecs/byte/thread runtime 0.387 GB/sec/thread speed 12.381 GB/sec total speed # Running 3x3-bw-process, "perf bench numa mem -p 3 -t 3 -P 512 -s 20 -zZ0q --thp 1" 20.134 secs slowest (max) thread-runtime 20.000 secs fastest (min) thread-runtime 20.077 secs average thread-runtime 0.333 % difference between max/avg runtime 28.091 GB data processed, per thread 252.822 GB data processed, total 0.717 nsecs/byte/thread runtime 1.395 GB/sec/thread speed 12.557 GB/sec total speed # Running 5x5-bw-process, "perf bench numa mem -p 5 -t 5 -P 512 -s 20 -zZ0q --thp 1" 20.588 secs slowest (max) thread-runtime 20.000 secs fastest (min) thread-runtime 20.375 secs average thread-runtime 1.427 % difference between max/avg runtime 10.177 GB data processed, per thread 254.436 GB data processed, total 2.023 nsecs/byte/thread runtime 0.494 GB/sec/thread speed 12.359 GB/sec total speed # Running 2x16-bw-process, "perf bench numa mem -p 2 -t 16 -P 512 -s 20 -zZ0q --thp 1" 20.657 secs slowest (max) thread-runtime 20.000 secs fastest (min) thread-runtime 20.429 secs average thread-runtime 1.589 % difference between max/avg runtime 8.170 GB data processed, per thread 261.429 GB data processed, total 2.528 nsecs/byte/thread runtime 0.395 GB/sec/thread speed 12.656 GB/sec total speed # Running 1x32-bw-process, "perf bench numa mem -p 1 -t 32 -P 2048 -s 20 -zZ0q --thp 1" 22.981 secs slowest (max) thread-runtime 20.000 secs fastest (min) thread-runtime 21.996 secs average thread-runtime 6.486 % difference between max/avg runtime 8.863 GB data processed, per thread 283.606 GB data processed, total 2.593 nsecs/byte/thread runtime 0.386 GB/sec/thread speed 12.341 GB/sec total speed # Running numa02-bw, "perf bench numa mem -p 1 -t 32 -T 32 -s 20 -zZ0q --thp 1" 20.047 secs slowest (max) thread-runtime 19.000 secs fastest (min) thread-runtime 20.026 secs average thread-runtime 2.611 % difference between max/avg runtime 8.441 GB data processed, per thread 270.111 GB data processed, total 2.375 nsecs/byte/thread runtime 0.421 GB/sec/thread speed 13.474 GB/sec total speed # Running numa02-bw-NOTHP, "perf bench numa mem -p 1 -t 32 -T 32 -s 20 -zZ0q --thp 1 --thp -1" 20.088 secs slowest (max) thread-runtime 19.000 secs fastest (min) thread-runtime 20.025 secs average thread-runtime 2.709 % difference between max/avg runtime 8.411 GB data processed, per thread 269.142 GB data processed, total 2.388 nsecs/byte/thread runtime 0.419 GB/sec/thread speed 13.398 GB/sec total speed # Running numa01-bw-thread, "perf bench numa mem -p 2 -t 16 -T 192 -s 20 -zZ0q --thp 1" 20.293 secs slowest (max) thread-runtime 20.000 secs fastest (min) thread-runtime 20.175 secs average thread-runtime 0.721 % difference between max/avg runtime 7.918 GB data processed, per thread 253.374 GB data processed, total 2.563 nsecs/byte/thread runtime 0.390 GB/sec/thread speed 12.486 GB/sec total speed # Running numa01-bw-thread-NOTHP, "perf bench numa mem -p 2 -t 16 -T 192 -s 20 -zZ0q --thp 1 --thp -1" 20.411 secs slowest (max) thread-runtime 20.000 secs fastest (min) thread-runtime 20.226 secs average thread-runtime 1.006 % difference between max/avg runtime 7.931 GB data processed, per thread 253.778 GB data processed, total 2.574 nsecs/byte/thread runtime 0.389 GB/sec/thread speed 12.434 GB/sec total speed # Signed-off-by: Ian Rogers <irogers@google.com> Acked-by: Jiri Olsa <jolsa@redhat.com> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Link: https://lore.kernel.org/r/20201012161611.366482-1-irogers@google.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-10-14perf jevents: Fix event code for events referencing std arch eventsJohn Garry1-8/+3
The event code for events referencing std arch events is incorrectly evaluated in json_events(). The issue is that je.event is evaluated properly from try_fixup(), but later NULLified from the real_event() call, as "event" may be NULL. Fix by setting "event" same je.event in try_fixup(). Also remove support for overwriting event code for events using std arch events, as it is not used. Signed-off-by: John Garry <john.garry@huawei.com> Reviewed-By: Kajol Jain<kjain@linux.ibm.com> Acked-by: Jiri Olsa <jolsa@redhat.com> Link: https://lore.kernel.org/r/1602170368-11892-1-git-send-email-john.garry@huawei.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-10-14perf diff: Support hot streams comparisonJin Yao2-13/+110
This patch enables perf-diff with "--stream" option. "--stream": Enable hot streams comparison Now let's see example. perf record -b ... Generate perf.data.old with branch data perf record -b ... Generate perf.data with branch data perf diff --stream [ Matched hot streams ] hot chain pair 1: cycles: 1, hits: 27.77% cycles: 1, hits: 9.24% --------------------------- -------------------------- main div.c:39 main div.c:39 main div.c:44 main div.c:44 hot chain pair 2: cycles: 34, hits: 20.06% cycles: 27, hits: 16.98% --------------------------- -------------------------- __random_r random_r.c:360 __random_r random_r.c:360 __random_r random_r.c:388 __random_r random_r.c:388 __random_r random_r.c:388 __random_r random_r.c:388 __random_r random_r.c:380 __random_r random_r.c:380 __random_r random_r.c:357 __random_r random_r.c:357 __random random.c:293 __random random.c:293 __random random.c:293 __random random.c:293 __random random.c:291 __random random.c:291 __random random.c:291 __random random.c:291 __random random.c:291 __random random.c:291 __random random.c:288 __random random.c:288 rand rand.c:27 rand rand.c:27 rand rand.c:26 rand rand.c:26 rand@plt rand@plt rand@plt rand@plt compute_flag div.c:25 compute_flag div.c:25 compute_flag div.c:22 compute_flag div.c:22 main div.c:40 main div.c:40 main div.c:40 main div.c:40 main div.c:39 main div.c:39 hot chain pair 3: cycles: 9, hits: 4.48% cycles: 6, hits: 4.51% --------------------------- -------------------------- __random_r random_r.c:360 __random_r random_r.c:360 __random_r random_r.c:388 __random_r random_r.c:388 __random_r random_r.c:388 __random_r random_r.c:388 __random_r random_r.c:380 __random_r random_r.c:380 [ Hot streams in old perf data only ] hot chain 1: cycles: 18, hits: 6.75% -------------------------- __random_r random_r.c:360 __random_r random_r.c:388 __random_r random_r.c:388 __random_r random_r.c:380 __random_r random_r.c:357 __random random.c:293 __random random.c:293 __random random.c:291 __random random.c:291 __random random.c:291 __random random.c:288 rand rand.c:27 rand rand.c:26 rand@plt rand@plt compute_flag div.c:25 compute_flag div.c:22 main div.c:40 hot chain 2: cycles: 29, hits: 2.78% -------------------------- compute_flag div.c:22 main div.c:40 main div.c:40 main div.c:39 [ Hot streams in new perf data only ] hot chain 1: cycles: 4, hits: 4.54% -------------------------- main div.c:42 compute_flag div.c:28 hot chain 2: cycles: 5, hits: 3.51% -------------------------- main div.c:39 main div.c:44 main div.c:42 compute_flag div.c:28 Signed-off-by: Jin Yao <yao.jin@linux.intel.com> Acked-by: Jiri Olsa <jolsa@kernel.org> Link: https://lore.kernel.org/r/20201009022845.13141-8-yao.jin@linux.intel.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-10-14perf streams: Report hot streamsJin Yao4-0/+141
We show the streams separately. They are divided into different sections. 1. "Matched hot streams" 2. "Hot streams in old perf data only" 3. "Hot streams in new perf data only". For each stream, we report the cycles and hot percent (hits%). For example, cycles: 2, hits: 4.08% -------------------------- main div.c:42 compute_flag div.c:28 Signed-off-by: Jin Yao <yao.jin@linux.intel.com> Acked-by: Jiri Olsa <jolsa@kernel.org> Link: https://lore.kernel.org/r/20201009022845.13141-7-yao.jin@linux.intel.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-10-14perf streams: Calculate the sum of total streams hitsJin Yao4-0/+38
We have used callchain_node->hit to measure the hot level of one stream. This patch calculates the sum of hits of total streams. Thus in next patch, we can use following formula to report hot percent for one stream. hot percent = callchain_node->hit / sum of total hits Signed-off-by: Jin Yao <yao.jin@linux.intel.com> Acked-by: Jiri Olsa <jolsa@kernel.org> Link: https://lore.kernel.org/r/20201009022845.13141-6-yao.jin@linux.intel.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-10-14perf streams: Link stream pairJin Yao2-0/+44
In previous patch, we have created an evsel_streams for one event, and top N hottest streams will be saved in a stream array in evsel_streams. This patch compares total streams among two evsel_streams. Once two streams are fully matched, they will be linked as a pair. From the pair, we can know which streams are matched. Signed-off-by: Jin Yao <yao.jin@linux.intel.com> Acked-by: Jiri Olsa <jolsa@kernel.org> Link: https://lore.kernel.org/r/20201009022845.13141-5-yao.jin@linux.intel.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-10-14perf streams: Compare two streamsJin Yao2-0/+58
Stream is the branch history which is aggregated by the branch records from perf samples. Now we support the callchain as stream. If the callchain entries of one stream are fully matched with the callchain entries of another stream, we think two streams are matched. For example, cycles: 1, hits: 26.80% cycles: 1, hits: 27.30% ----------------------- ----------------------- main div.c:39 main div.c:39 main div.c:44 main div.c:44 Above two streams are matched (we don't consider the case that source code is changed). The matching logic is, compare the chain string first. If it's not matched, fallback to dso address comparison. Signed-off-by: Jin Yao <yao.jin@linux.intel.com> Acked-by: Jiri Olsa <jolsa@kernel.org> Link: https://lore.kernel.org/r/20201009022845.13141-4-yao.jin@linux.intel.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-10-14perf streams: Get the evsel_streams by evsel_idxJin Yao2-0/+16
In previous patch, we have created evsel_streams array. This patch returns the specified evsel_streams according to the evsel_idx. Signed-off-by: Jin Yao <yao.jin@linux.intel.com> Acked-by: Jiri Olsa <jolsa@kernel.org> Link: https://lore.kernel.org/r/20201009022845.13141-3-yao.jin@linux.intel.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-10-14perf streams: Introduce branch history "streams"Jin Yao3-0/+195
We define a stream as the branch history which is aggregated by the branch records from perf samples. For example, the callchains aggregated from the branch records are considered as streams. By browsing the hot stream, we can understand the hot code path. Now we only support the callchain for stream. For measuring the hot level for a stream, we use the callchain_node->hit, higher is hotter. There may be many callchains sampled so we only focus on the top N hottest callchains. N is a user defined parameter or predefined default value (nr_streams_max). This patch creates an evsel_streams array per event, and saves the top N hottest streams in a stream array. So now we can get the per-event top N hottest streams. Signed-off-by: Jin Yao <yao.jin@linux.intel.com> Acked-by: Jiri Olsa <jolsa@kernel.org> Link: https://lore.kernel.org/r/20201009022845.13141-2-yao.jin@linux.intel.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-10-14perf intel-pt: Improve PT documentation slightlyAndi Kleen1-0/+30
Document the higher level --insn-trace etc. perf script options. Include the howto how to build xed into the manpage Signed-off-by: Andi Kleen <ak@linux.intel.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Jiri Olsa <jolsa@kernel.org> Link: http://lore.kernel.org/lkml/20201014035346.4772-1-andi@firstfloor.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-10-14perf tools: Add support for exclusive groups/eventsAndi Kleen4-4/+68
Peter suggested that using the exclusive mode in perf could avoid some problems with bad scheduling of groups. Exclusive is implemented in the kernel, but wasn't exposed by the perf tool, so hard to use without custom low level API users. Add support for marking groups or events with :e for exclusive in the perf tool. The implementation is basically the same as the existing pinned attribute. Committer testing: # perf test "parse event" 6: Parse event definition strings : Ok # perf test -v "parse event" |& grep :u*e running test 56 'instructions:uep' running test 57 '{cycles,cache-misses,branch-misses}:e' # # # grep "model name" -m1 /proc/cpuinfo model name : AMD Ryzen 9 3900X 12-Core Processor # # perf stat -a -e '{cycles,cache-misses,branch-misses}:e' sleep 1 Performance counter stats for 'system wide': <not counted> cycles (0.00%) <not counted> cache-misses (0.00%) <not counted> branch-misses (0.00%) 1.001269893 seconds time elapsed Some events weren't counted. Try disabling the NMI watchdog: echo 0 > /proc/sys/kernel/nmi_watchdog perf stat ... echo 1 > /proc/sys/kernel/nmi_watchdog # echo 0 > /proc/sys/kernel/nmi_watchdog # perf stat -a -e '{cycles,cache-misses,branch-misses}:e' sleep 1 Performance counter stats for 'system wide': 1,298,663,141 cycles 30,962,215 cache-misses 5,325,150 branch-misses 1.001474934 seconds time elapsed # # The output for asking for precise events on AMD needs to improve, it # supposedly works only for system wide or per CPU # # perf stat -a -e '{cycles,cache-misses,branch-misses}:uep' sleep 1 Error: The sys_perf_event_open() syscall returned with 22 (Invalid argument) for event (cycles). /bin/dmesg | grep -i perf may provide additional information. # perf stat -a -e '{cycles,cache-misses,branch-misses}:ue' sleep 1 Performance counter stats for 'system wide': 746,363,126 cycles 16,881,611 cache-misses 2,871,259 branch-misses 1.001636066 seconds time elapsed # Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Jiri Olsa <jolsa@kernel.org> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lore.kernel.org/lkml/20201014144255.22699-1-andi@firstfloor.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-10-14perf test: Add build id shell testJiri Olsa1-0/+101
Add a test for the build id cache that adds a binary with sha1 and md5 build ids and verifies it's added properly. The test updates build id cache with 'perf record' and 'perf buildid-cache -a'. Committer testing: # perf test "build id" 82: build id cache operations : Ok # # perf test -v "build id" 82: build id cache operations : --- start --- test child forked, pid 447218 test binaries: /tmp/perf.ex.SHA1.B8I /tmp/perf.ex.MD5.7Nv Adding d1abc1eb7568358cf23c959566f23462461834d1 /tmp/perf.ex.SHA1.B8I: Ok build id: d1abc1eb7568358cf23c959566f23462461834d1 link: /tmp/perf.debug.sS2/.build-id/d1/abc1eb7568358cf23c959566f23462461834d1 file: /tmp/perf.debug.sS2/.build-id/d1/../../tmp/perf.ex.SHA1.B8I/d1abc1eb7568358cf23c959566f23462461834d1/elf OK for /tmp/perf.ex.SHA1.B8I Adding a50e350e97c43b4708d09bcd85ebfff7 /tmp/perf.ex.MD5.7Nv: Ok build id: a50e350e97c43b4708d09bcd85ebfff7 link: /tmp/perf.debug.IuW/.build-id/a5/0e350e97c43b4708d09bcd85ebfff7 file: /tmp/perf.debug.IuW/.build-id/a5/../../tmp/perf.ex.MD5.7Nv/a50e350e97c43b4708d09bcd85ebfff7/elf OK for /tmp/perf.ex.MD5.7Nv [ perf record: Woken up 1 times to write data ] [ perf record: Captured and wrote 0.034 MB /tmp/perf.data.xrH ] build id: d1abc1eb7568358cf23c959566f23462461834d1 link: /tmp/perf.debug.eGR/.build-id/d1/abc1eb7568358cf23c959566f23462461834d1 file: /tmp/perf.debug.eGR/.build-id/d1/../../tmp/perf.ex.SHA1.B8I/d1abc1eb7568358cf23c959566f23462461834d1/elf OK for /tmp/perf.ex.SHA1.B8I [ perf record: Woken up 2 times to write data ] [ perf record: Captured and wrote 0.034 MB /tmp/perf.data.cbE ] build id: a50e350e97c43b4708d09bcd85ebfff7 link: /tmp/perf.debug.82t/.build-id/a5/0e350e97c43b4708d09bcd85ebfff7 file: /tmp/perf.debug.82t/.build-id/a5/../../tmp/perf.ex.MD5.7Nv/a50e350e97c43b4708d09bcd85ebfff7/elf OK for /tmp/perf.ex.MD5.7Nv test child finished with 0 ---- end ---- build id cache operations: Ok # Signed-off-by: Jiri Olsa <jolsa@kernel.org> Acked-by: Ian Rogers <irogers@google.com> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Link: https://lore.kernel.org/r/20201013192441.1299447-10-jolsa@kernel.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-10-14perf tools: Align buildid list output for short build idsJiri Olsa3-4/+5
With shorter md5 build ids we need to align their paths properly with other build ids: $ perf buildid-list 17f4e448cc746582ea1881528deb549f7fdb3fd5 [kernel.kallsyms] a50e350e97c43b4708d09bcd85ebfff7 .../tools/perf/buildid-ex-md5 1805c738c8f3ec0f47b7ea09080c28f34d18a82b /usr/lib64/ld-2.31.so $ Signed-off-by: Jiri Olsa <jolsa@kernel.org> Acked-by: Ian Rogers <irogers@google.com> Link: https://lore.kernel.org/r/20201013192441.1299447-9-jolsa@kernel.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-10-14perf tools: Add size to 'struct perf_record_header_build_id'Jiri Olsa3-7/+23
We do not store size with build ids in perf data, but there's enough space to do it. Adding misc bit PERF_RECORD_MISC_BUILD_ID_SIZE to mark build id event with size. With this fix the dso with md5 build id will have correct build id data and will be usable for debuginfod processing if needed (coming in following patches). Committer notes: Use %zu with size_t to fix this error on 32-bit arches: util/header.c: In function '__event_process_build_id': util/header.c:2105:3: error: format '%lu' expects argument of type 'long unsigned int', but argument 6 has type 'size_t' [-Werror=format=] pr_debug("build id event received for %s: %s [%lu]\n", ^ Signed-off-by: Jiri Olsa <jolsa@kernel.org> Acked-by: Ian Rogers <irogers@google.com> Link: https://lore.kernel.org/r/20201013192441.1299447-8-jolsa@kernel.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-10-14perf tools: Pass build_id object to dso__build_id_equal()Jiri Olsa4-6/+11
Passing build_id object to dso__build_id_equal(), so we can properly check build id with different size than sha1. Signed-off-by: Jiri Olsa <jolsa@kernel.org> Acked-by: Ian Rogers <irogers@google.com> Link: https://lore.kernel.org/r/20201013192441.1299447-7-jolsa@kernel.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-10-14perf tools: Pass build_id object to dso__set_build_id()Jiri Olsa5-6/+8
Passing build_id object to dso__set_build_id(), so it's easier to initialize dos's build id object. Signed-off-by: Jiri Olsa <jolsa@kernel.org> Acked-by: Ian Rogers <irogers@google.com> Link: https://lore.kernel.org/r/20201013192441.1299447-6-jolsa@kernel.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-10-14perf tools: Pass build_id object to build_id__sprintf()Jiri Olsa12-35/+43
Passing build_id object to build_id__sprintf function, so it can operate with the proper size of build id. This will create proper md5 build id readable names, like following: a50e350e97c43b4708d09bcd85ebfff7 instead of: a50e350e97c43b4708d09bcd85ebfff700000000 Signed-off-by: Jiri Olsa <jolsa@kernel.org> Acked-by: Ian Rogers <irogers@google.com> Link: https://lore.kernel.org/r/20201013192441.1299447-5-jolsa@kernel.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-10-14perf tools: Pass build id object to sysfs__read_build_id()Jiri Olsa6-23/+16
Passing build id object to sysfs__read_build_id function, so it can populate the size of the build_id object. Signed-off-by: Jiri Olsa <jolsa@kernel.org> Acked-by: Ian Rogers <irogers@google.com> Link: https://lore.kernel.org/r/20201013192441.1299447-4-jolsa@kernel.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-10-14perf tools: Pass build_id object to filename__read_build_id()Jiri Olsa11-57/+60
Pass a build_id object to filename__read_build_id function, so it can populate the size of the build_id object. Changing filename__read_build_id() code for both ELF/non-ELF code. Signed-off-by: Jiri Olsa <jolsa@kernel.org> Acked-by: Ian Rogers <irogers@google.com> Link: https://lore.kernel.org/r/20201013192441.1299447-3-jolsa@kernel.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-10-14perf tools: Use build_id object in dsoJiri Olsa15-29/+34
Replace build_id byte array with struct build_id object and all the code that references it. The objective is to carry size together with build id array, so it's better to keep both together. This is preparatory change for following patches, and there's no functional change. Signed-off-by: Jiri Olsa <jolsa@kernel.org> Acked-by: Ian Rogers <irogers@google.com> Link: https://lore.kernel.org/r/20201013192441.1299447-2-jolsa@kernel.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-10-14selftests/powerpc: Fix eeh-basic.sh exit codesOliver O'Halloran1-3/+6
The kselftests test running infrastructure expects tests to finish with an exit code of 4 if the test decided it should be skipped. Currently eeh-basic.sh exits with the number of devices that failed to recover, so if four devices didn't recover we'll report a skip instead of a fail. Fix this by checking if the return code is non-zero and report success and failure by returning 0 or 1 respectively. For the cases where should actually skip return 4. Fixes: 85d86c8aa52e ("selftests/powerpc: Add basic EEH selftest") Signed-off-by: Oliver O'Halloran <oohall@gmail.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20201014024711.1138386-1-oohall@gmail.com