aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/arch/arm/crypto/ghash-ce-glue.c
blob: 3ddf05b4234d8e5c6540edf087906507769ac242 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Accelerated GHASH implementation with ARMv8 vmull.p64 instructions.
 *
 * Copyright (C) 2015 - 2018 Linaro Ltd.
 * Copyright (C) 2023 Google LLC.
 */

#include <asm/hwcap.h>
#include <asm/neon.h>
#include <asm/simd.h>
#include <asm/unaligned.h>
#include <crypto/aes.h>
#include <crypto/gcm.h>
#include <crypto/b128ops.h>
#include <crypto/cryptd.h>
#include <crypto/internal/aead.h>
#include <crypto/internal/hash.h>
#include <crypto/internal/simd.h>
#include <crypto/internal/skcipher.h>
#include <crypto/gf128mul.h>
#include <crypto/scatterwalk.h>
#include <linux/cpufeature.h>
#include <linux/crypto.h>
#include <linux/jump_label.h>
#include <linux/module.h>

MODULE_DESCRIPTION("GHASH hash function using ARMv8 Crypto Extensions");
MODULE_AUTHOR("Ard Biesheuvel <ardb@kernel.org>");
MODULE_LICENSE("GPL");
MODULE_ALIAS_CRYPTO("ghash");
MODULE_ALIAS_CRYPTO("gcm(aes)");
MODULE_ALIAS_CRYPTO("rfc4106(gcm(aes))");

#define GHASH_BLOCK_SIZE	16
#define GHASH_DIGEST_SIZE	16

#define RFC4106_NONCE_SIZE	4

struct ghash_key {
	be128	k;
	u64	h[][2];
};

struct gcm_key {
	u64	h[4][2];
	u32	rk[AES_MAX_KEYLENGTH_U32];
	int	rounds;
	u8	nonce[];	// for RFC4106 nonce
};

struct ghash_desc_ctx {
	u64 digest[GHASH_DIGEST_SIZE/sizeof(u64)];
	u8 buf[GHASH_BLOCK_SIZE];
	u32 count;
};

struct ghash_async_ctx {
	struct cryptd_ahash *cryptd_tfm;
};

asmlinkage void pmull_ghash_update_p64(int blocks, u64 dg[], const char *src,
				       u64 const h[][2], const char *head);

asmlinkage void pmull_ghash_update_p8(int blocks, u64 dg[], const char *src,
				      u64 const h[][2], const char *head);

static __ro_after_init DEFINE_STATIC_KEY_FALSE(use_p64);

static int ghash_init(struct shash_desc *desc)
{
	struct ghash_desc_ctx *ctx = shash_desc_ctx(desc);

	*ctx = (struct ghash_desc_ctx){};
	return 0;
}

static void ghash_do_update(int blocks, u64 dg[], const char *src,
			    struct ghash_key *key, const char *head)
{
	if (likely(crypto_simd_usable())) {
		kernel_neon_begin();
		if (static_branch_likely(&use_p64))
			pmull_ghash_update_p64(blocks, dg, src, key->h, head);
		else
			pmull_ghash_update_p8(blocks, dg, src, key->h, head);
		kernel_neon_end();
	} else {
		be128 dst = { cpu_to_be64(dg[1]), cpu_to_be64(dg[0]) };

		do {
			const u8 *in = src;

			if (head) {
				in = head;
				blocks++;
				head = NULL;
			} else {
				src += GHASH_BLOCK_SIZE;
			}

			crypto_xor((u8 *)&dst, in, GHASH_BLOCK_SIZE);
			gf128mul_lle(&dst, &key->k);
		} while (--blocks);

		dg[0] = be64_to_cpu(dst.b);
		dg[1] = be64_to_cpu(dst.a);
	}
}

static int ghash_update(struct shash_desc *desc, const u8 *src,
			unsigned int len)
{
	struct ghash_desc_ctx *ctx = shash_desc_ctx(desc);
	unsigned int partial = ctx->count % GHASH_BLOCK_SIZE;

	ctx->count += len;

	if ((partial + len) >= GHASH_BLOCK_SIZE) {
		struct ghash_key *key = crypto_shash_ctx(desc->tfm);
		int blocks;

		if (partial) {
			int p = GHASH_BLOCK_SIZE - partial;

			memcpy(ctx->buf + partial, src, p);
			src += p;
			len -= p;
		}

		blocks = len / GHASH_BLOCK_SIZE;
		len %= GHASH_BLOCK_SIZE;

		ghash_do_update(blocks, ctx->digest, src, key,
				partial ? ctx->buf : NULL);
		src += blocks * GHASH_BLOCK_SIZE;
		partial = 0;
	}
	if (len)
		memcpy(ctx->buf + partial, src, len);
	return 0;
}

static int ghash_final(struct shash_desc *desc, u8 *dst)
{
	struct ghash_desc_ctx *ctx = shash_desc_ctx(desc);
	unsigned int partial = ctx->count % GHASH_BLOCK_SIZE;

	if (partial) {
		struct ghash_key *key = crypto_shash_ctx(desc->tfm);

		memset(ctx->buf + partial, 0, GHASH_BLOCK_SIZE - partial);
		ghash_do_update(1, ctx->digest, ctx->buf, key, NULL);
	}
	put_unaligned_be64(ctx->digest[1], dst);
	put_unaligned_be64(ctx->digest[0], dst + 8);

	*ctx = (struct ghash_desc_ctx){};
	return 0;
}

static void ghash_reflect(u64 h[], const be128 *k)
{
	u64 carry = be64_to_cpu(k->a) >> 63;

	h[0] = (be64_to_cpu(k->b) << 1) | carry;
	h[1] = (be64_to_cpu(k->a) << 1) | (be64_to_cpu(k->b) >> 63);

	if (carry)
		h[1] ^= 0xc200000000000000UL;
}

static int ghash_setkey(struct crypto_shash *tfm,
			const u8 *inkey, unsigned int keylen)
{
	struct ghash_key *key = crypto_shash_ctx(tfm);

	if (keylen != GHASH_BLOCK_SIZE)
		return -EINVAL;

	/* needed for the fallback */
	memcpy(&key->k, inkey, GHASH_BLOCK_SIZE);
	ghash_reflect(key->h[0], &key->k);

	if (static_branch_likely(&use_p64)) {
		be128 h = key->k;

		gf128mul_lle(&h, &key->k);
		ghash_reflect(key->h[1], &h);

		gf128mul_lle(&h, &key->k);
		ghash_reflect(key->h[2], &h);

		gf128mul_lle(&h, &key->k);
		ghash_reflect(key->h[3], &h);
	}
	return 0;
}

static struct shash_alg ghash_alg = {
	.digestsize		= GHASH_DIGEST_SIZE,
	.init			= ghash_init,
	.update			= ghash_update,
	.final			= ghash_final,
	.setkey			= ghash_setkey,
	.descsize		= sizeof(struct ghash_desc_ctx),

	.base.cra_name		= "ghash",
	.base.cra_driver_name	= "ghash-ce-sync",
	.base.cra_priority	= 300 - 1,
	.base.cra_blocksize	= GHASH_BLOCK_SIZE,
	.base.cra_ctxsize	= sizeof(struct ghash_key) + sizeof(u64[2]),
	.base.cra_module	= THIS_MODULE,
};

static int ghash_async_init(struct ahash_request *req)
{
	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
	struct ghash_async_ctx *ctx = crypto_ahash_ctx(tfm);
	struct ahash_request *cryptd_req = ahash_request_ctx(req);
	struct cryptd_ahash *cryptd_tfm = ctx->cryptd_tfm;
	struct shash_desc *desc = cryptd_shash_desc(cryptd_req);
	struct crypto_shash *child = cryptd_ahash_child(cryptd_tfm);

	desc->tfm = child;
	return crypto_shash_init(desc);
}

static int ghash_async_update(struct ahash_request *req)
{
	struct ahash_request *cryptd_req = ahash_request_ctx(req);
	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
	struct ghash_async_ctx *ctx = crypto_ahash_ctx(tfm);
	struct cryptd_ahash *cryptd_tfm = ctx->cryptd_tfm;

	if (!crypto_simd_usable() ||
	    (in_atomic() && cryptd_ahash_queued(cryptd_tfm))) {
		memcpy(cryptd_req, req, sizeof(*req));
		ahash_request_set_tfm(cryptd_req, &cryptd_tfm->base);
		return crypto_ahash_update(cryptd_req);
	} else {
		struct shash_desc *desc = cryptd_shash_desc(cryptd_req);
		return shash_ahash_update(req, desc);
	}
}

static int ghash_async_final(struct ahash_request *req)
{
	struct ahash_request *cryptd_req = ahash_request_ctx(req);
	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
	struct ghash_async_ctx *ctx = crypto_ahash_ctx(tfm);
	struct cryptd_ahash *cryptd_tfm = ctx->cryptd_tfm;

	if (!crypto_simd_usable() ||
	    (in_atomic() && cryptd_ahash_queued(cryptd_tfm))) {
		memcpy(cryptd_req, req, sizeof(*req));
		ahash_request_set_tfm(cryptd_req, &cryptd_tfm->base);
		return crypto_ahash_final(cryptd_req);
	} else {
		struct shash_desc *desc = cryptd_shash_desc(cryptd_req);
		return crypto_shash_final(desc, req->result);
	}
}

static int ghash_async_digest(struct ahash_request *req)
{
	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
	struct ghash_async_ctx *ctx = crypto_ahash_ctx(tfm);
	struct ahash_request *cryptd_req = ahash_request_ctx(req);
	struct cryptd_ahash *cryptd_tfm = ctx->cryptd_tfm;

	if (!crypto_simd_usable() ||
	    (in_atomic() && cryptd_ahash_queued(cryptd_tfm))) {
		memcpy(cryptd_req, req, sizeof(*req));
		ahash_request_set_tfm(cryptd_req, &cryptd_tfm->base);
		return crypto_ahash_digest(cryptd_req);
	} else {
		struct shash_desc *desc = cryptd_shash_desc(cryptd_req);
		struct crypto_shash *child = cryptd_ahash_child(cryptd_tfm);

		desc->tfm = child;
		return shash_ahash_digest(req, desc);
	}
}

static int ghash_async_import(struct ahash_request *req, const void *in)
{
	struct ahash_request *cryptd_req = ahash_request_ctx(req);
	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
	struct ghash_async_ctx *ctx = crypto_ahash_ctx(tfm);
	struct shash_desc *desc = cryptd_shash_desc(cryptd_req);

	desc->tfm = cryptd_ahash_child(ctx->cryptd_tfm);

	return crypto_shash_import(desc, in);
}

static int ghash_async_export(struct ahash_request *req, void *out)
{
	struct ahash_request *cryptd_req = ahash_request_ctx(req);
	struct shash_desc *desc = cryptd_shash_desc(cryptd_req);

	return crypto_shash_export(desc, out);
}

static int ghash_async_setkey(struct crypto_ahash *tfm, const u8 *key,
			      unsigned int keylen)
{
	struct ghash_async_ctx *ctx = crypto_ahash_ctx(tfm);
	struct crypto_ahash *child = &ctx->cryptd_tfm->base;

	crypto_ahash_clear_flags(child, CRYPTO_TFM_REQ_MASK);
	crypto_ahash_set_flags(child, crypto_ahash_get_flags(tfm)
			       & CRYPTO_TFM_REQ_MASK);
	return crypto_ahash_setkey(child, key, keylen);
}

static int ghash_async_init_tfm(struct crypto_tfm *tfm)
{
	struct cryptd_ahash *cryptd_tfm;
	struct ghash_async_ctx *ctx = crypto_tfm_ctx(tfm);

	cryptd_tfm = cryptd_alloc_ahash("ghash-ce-sync", 0, 0);
	if (IS_ERR(cryptd_tfm))
		return PTR_ERR(cryptd_tfm);
	ctx->cryptd_tfm = cryptd_tfm;
	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
				 sizeof(struct ahash_request) +
				 crypto_ahash_reqsize(&cryptd_tfm->base));

	return 0;
}

static void ghash_async_exit_tfm(struct crypto_tfm *tfm)
{
	struct ghash_async_ctx *ctx = crypto_tfm_ctx(tfm);

	cryptd_free_ahash(ctx->cryptd_tfm);
}

static struct ahash_alg ghash_async_alg = {
	.init			= ghash_async_init,
	.update			= ghash_async_update,
	.final			= ghash_async_final,
	.setkey			= ghash_async_setkey,
	.digest			= ghash_async_digest,
	.import			= ghash_async_import,
	.export			= ghash_async_export,
	.halg.digestsize	= GHASH_DIGEST_SIZE,
	.halg.statesize		= sizeof(struct ghash_desc_ctx),
	.halg.base		= {
		.cra_name	= "ghash",
		.cra_driver_name = "ghash-ce",
		.cra_priority	= 300,
		.cra_flags	= CRYPTO_ALG_ASYNC,
		.cra_blocksize	= GHASH_BLOCK_SIZE,
		.cra_ctxsize	= sizeof(struct ghash_async_ctx),
		.cra_module	= THIS_MODULE,
		.cra_init	= ghash_async_init_tfm,
		.cra_exit	= ghash_async_exit_tfm,
	},
};


void pmull_gcm_encrypt(int blocks, u64 dg[], const char *src,
		       struct gcm_key const *k, char *dst,
		       const char *iv, int rounds, u32 counter);

void pmull_gcm_enc_final(int blocks, u64 dg[], char *tag,
			 struct gcm_key const *k, char *head,
			 const char *iv, int rounds, u32 counter);

void pmull_gcm_decrypt(int bytes, u64 dg[], const char *src,
		       struct gcm_key const *k, char *dst,
		       const char *iv, int rounds, u32 counter);

int pmull_gcm_dec_final(int bytes, u64 dg[], char *tag,
			struct gcm_key const *k, char *head,
			const char *iv, int rounds, u32 counter,
			const char *otag, int authsize);

static int gcm_aes_setkey(struct crypto_aead *tfm, const u8 *inkey,
			  unsigned int keylen)
{
	struct gcm_key *ctx = crypto_aead_ctx(tfm);
	struct crypto_aes_ctx aes_ctx;
	be128 h, k;
	int ret;

	ret = aes_expandkey(&aes_ctx, inkey, keylen);
	if (ret)
		return -EINVAL;

	aes_encrypt(&aes_ctx, (u8 *)&k, (u8[AES_BLOCK_SIZE]){});

	memcpy(ctx->rk, aes_ctx.key_enc, sizeof(ctx->rk));
	ctx->rounds = 6 + keylen / 4;

	memzero_explicit(&aes_ctx, sizeof(aes_ctx));

	ghash_reflect(ctx->h[0], &k);

	h = k;
	gf128mul_lle(&h, &k);
	ghash_reflect(ctx->h[1], &h);

	gf128mul_lle(&h, &k);
	ghash_reflect(ctx->h[2], &h);

	gf128mul_lle(&h, &k);
	ghash_reflect(ctx->h[3], &h);

	return 0;
}

static int gcm_aes_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
{
	return crypto_gcm_check_authsize(authsize);
}

static void gcm_update_mac(u64 dg[], const u8 *src, int count, u8 buf[],
			   int *buf_count, struct gcm_key *ctx)
{
	if (*buf_count > 0) {
		int buf_added = min(count, GHASH_BLOCK_SIZE - *buf_count);

		memcpy(&buf[*buf_count], src, buf_added);

		*buf_count += buf_added;
		src += buf_added;
		count -= buf_added;
	}

	if (count >= GHASH_BLOCK_SIZE || *buf_count == GHASH_BLOCK_SIZE) {
		int blocks = count / GHASH_BLOCK_SIZE;

		pmull_ghash_update_p64(blocks, dg, src, ctx->h,
				       *buf_count ? buf : NULL);

		src += blocks * GHASH_BLOCK_SIZE;
		count %= GHASH_BLOCK_SIZE;
		*buf_count = 0;
	}

	if (count > 0) {
		memcpy(buf, src, count);
		*buf_count = count;
	}
}

static void gcm_calculate_auth_mac(struct aead_request *req, u64 dg[], u32 len)
{
	struct crypto_aead *aead = crypto_aead_reqtfm(req);
	struct gcm_key *ctx = crypto_aead_ctx(aead);
	u8 buf[GHASH_BLOCK_SIZE];
	struct scatter_walk walk;
	int buf_count = 0;

	scatterwalk_start(&walk, req->src);

	do {
		u32 n = scatterwalk_clamp(&walk, len);
		u8 *p;

		if (!n) {
			scatterwalk_start(&walk, sg_next(walk.sg));
			n = scatterwalk_clamp(&walk, len);
		}

		p = scatterwalk_map(&walk);
		gcm_update_mac(dg, p, n, buf, &buf_count, ctx);
		scatterwalk_unmap(p);

		if (unlikely(len / SZ_4K > (len - n) / SZ_4K)) {
			kernel_neon_end();
			kernel_neon_begin();
		}

		len -= n;
		scatterwalk_advance(&walk, n);
		scatterwalk_done(&walk, 0, len);
	} while (len);

	if (buf_count) {
		memset(&buf[buf_count], 0, GHASH_BLOCK_SIZE - buf_count);
		pmull_ghash_update_p64(1, dg, buf, ctx->h, NULL);
	}
}

static int gcm_encrypt(struct aead_request *req, const u8 *iv, u32 assoclen)
{
	struct crypto_aead *aead = crypto_aead_reqtfm(req);
	struct gcm_key *ctx = crypto_aead_ctx(aead);
	struct skcipher_walk walk;
	u8 buf[AES_BLOCK_SIZE];
	u32 counter = 2;
	u64 dg[2] = {};
	be128 lengths;
	const u8 *src;
	u8 *tag, *dst;
	int tail, err;

	if (WARN_ON_ONCE(!may_use_simd()))
		return -EBUSY;

	err = skcipher_walk_aead_encrypt(&walk, req, false);

	kernel_neon_begin();

	if (assoclen)
		gcm_calculate_auth_mac(req, dg, assoclen);

	src = walk.src.virt.addr;
	dst = walk.dst.virt.addr;

	while (walk.nbytes >= AES_BLOCK_SIZE) {
		int nblocks = walk.nbytes / AES_BLOCK_SIZE;

		pmull_gcm_encrypt(nblocks, dg, src, ctx, dst, iv,
				  ctx->rounds, counter);
		counter += nblocks;

		if (walk.nbytes == walk.total) {
			src += nblocks * AES_BLOCK_SIZE;
			dst += nblocks * AES_BLOCK_SIZE;
			break;
		}

		kernel_neon_end();

		err = skcipher_walk_done(&walk,
					 walk.nbytes % AES_BLOCK_SIZE);
		if (err)
			return err;

		src = walk.src.virt.addr;
		dst = walk.dst.virt.addr;

		kernel_neon_begin();
	}


	lengths.a = cpu_to_be64(assoclen * 8);
	lengths.b = cpu_to_be64(req->cryptlen * 8);

	tag = (u8 *)&lengths;
	tail = walk.nbytes % AES_BLOCK_SIZE;

	/*
	 * Bounce via a buffer unless we are encrypting in place and src/dst
	 * are not pointing to the start of the walk buffer. In that case, we
	 * can do a NEON load/xor/store sequence in place as long as we move
	 * the plain/ciphertext and keystream to the start of the register. If
	 * not, do a memcpy() to the end of the buffer so we can reuse the same
	 * logic.
	 */
	if (unlikely(tail && (tail == walk.nbytes || src != dst)))
		src = memcpy(buf + sizeof(buf) - tail, src, tail);

	pmull_gcm_enc_final(tail, dg, tag, ctx, (u8 *)src, iv,
			    ctx->rounds, counter);
	kernel_neon_end();

	if (unlikely(tail && src != dst))
		memcpy(dst, src, tail);

	if (walk.nbytes) {
		err = skcipher_walk_done(&walk, 0);
		if (err)
			return err;
	}

	/* copy authtag to end of dst */
	scatterwalk_map_and_copy(tag, req->dst, req->assoclen + req->cryptlen,
				 crypto_aead_authsize(aead), 1);

	return 0;
}

static int gcm_decrypt(struct aead_request *req, const u8 *iv, u32 assoclen)
{
	struct crypto_aead *aead = crypto_aead_reqtfm(req);
	struct gcm_key *ctx = crypto_aead_ctx(aead);
	int authsize = crypto_aead_authsize(aead);
	struct skcipher_walk walk;
	u8 otag[AES_BLOCK_SIZE];
	u8 buf[AES_BLOCK_SIZE];
	u32 counter = 2;
	u64 dg[2] = {};
	be128 lengths;
	const u8 *src;
	u8 *tag, *dst;
	int tail, err, ret;

	if (WARN_ON_ONCE(!may_use_simd()))
		return -EBUSY;

	scatterwalk_map_and_copy(otag, req->src,
				 req->assoclen + req->cryptlen - authsize,
				 authsize, 0);

	err = skcipher_walk_aead_decrypt(&walk, req, false);

	kernel_neon_begin();

	if (assoclen)
		gcm_calculate_auth_mac(req, dg, assoclen);

	src = walk.src.virt.addr;
	dst = walk.dst.virt.addr;

	while (walk.nbytes >= AES_BLOCK_SIZE) {
		int nblocks = walk.nbytes / AES_BLOCK_SIZE;

		pmull_gcm_decrypt(nblocks, dg, src, ctx, dst, iv,
				  ctx->rounds, counter);
		counter += nblocks;

		if (walk.nbytes == walk.total) {
			src += nblocks * AES_BLOCK_SIZE;
			dst += nblocks * AES_BLOCK_SIZE;
			break;
		}

		kernel_neon_end();

		err = skcipher_walk_done(&walk,
					 walk.nbytes % AES_BLOCK_SIZE);
		if (err)
			return err;

		src = walk.src.virt.addr;
		dst = walk.dst.virt.addr;

		kernel_neon_begin();
	}

	lengths.a = cpu_to_be64(assoclen * 8);
	lengths.b = cpu_to_be64((req->cryptlen - authsize) * 8);

	tag = (u8 *)&lengths;
	tail = walk.nbytes % AES_BLOCK_SIZE;

	if (unlikely(tail && (tail == walk.nbytes || src != dst)))
		src = memcpy(buf + sizeof(buf) - tail, src, tail);

	ret = pmull_gcm_dec_final(tail, dg, tag, ctx, (u8 *)src, iv,
				  ctx->rounds, counter, otag, authsize);
	kernel_neon_end();

	if (unlikely(tail && src != dst))
		memcpy(dst, src, tail);

	if (walk.nbytes) {
		err = skcipher_walk_done(&walk, 0);
		if (err)
			return err;
	}

	return ret ? -EBADMSG : 0;
}

static int gcm_aes_encrypt(struct aead_request *req)
{
	return gcm_encrypt(req, req->iv, req->assoclen);
}

static int gcm_aes_decrypt(struct aead_request *req)
{
	return gcm_decrypt(req, req->iv, req->assoclen);
}

static int rfc4106_setkey(struct crypto_aead *tfm, const u8 *inkey,
			  unsigned int keylen)
{
	struct gcm_key *ctx = crypto_aead_ctx(tfm);
	int err;

	keylen -= RFC4106_NONCE_SIZE;
	err = gcm_aes_setkey(tfm, inkey, keylen);
	if (err)
		return err;

	memcpy(ctx->nonce, inkey + keylen, RFC4106_NONCE_SIZE);
	return 0;
}

static int rfc4106_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
{
	return crypto_rfc4106_check_authsize(authsize);
}

static int rfc4106_encrypt(struct aead_request *req)
{
	struct crypto_aead *aead = crypto_aead_reqtfm(req);
	struct gcm_key *ctx = crypto_aead_ctx(aead);
	u8 iv[GCM_AES_IV_SIZE];

	memcpy(iv, ctx->nonce, RFC4106_NONCE_SIZE);
	memcpy(iv + RFC4106_NONCE_SIZE, req->iv, GCM_RFC4106_IV_SIZE);

	return crypto_ipsec_check_assoclen(req->assoclen) ?:
	       gcm_encrypt(req, iv, req->assoclen - GCM_RFC4106_IV_SIZE);
}

static int rfc4106_decrypt(struct aead_request *req)
{
	struct crypto_aead *aead = crypto_aead_reqtfm(req);
	struct gcm_key *ctx = crypto_aead_ctx(aead);
	u8 iv[GCM_AES_IV_SIZE];

	memcpy(iv, ctx->nonce, RFC4106_NONCE_SIZE);
	memcpy(iv + RFC4106_NONCE_SIZE, req->iv, GCM_RFC4106_IV_SIZE);

	return crypto_ipsec_check_assoclen(req->assoclen) ?:
	       gcm_decrypt(req, iv, req->assoclen - GCM_RFC4106_IV_SIZE);
}

static struct aead_alg gcm_aes_algs[] = {{
	.ivsize			= GCM_AES_IV_SIZE,
	.chunksize		= AES_BLOCK_SIZE,
	.maxauthsize		= AES_BLOCK_SIZE,
	.setkey			= gcm_aes_setkey,
	.setauthsize		= gcm_aes_setauthsize,
	.encrypt		= gcm_aes_encrypt,
	.decrypt		= gcm_aes_decrypt,

	.base.cra_name		= "gcm(aes)",
	.base.cra_driver_name	= "gcm-aes-ce",
	.base.cra_priority	= 400,
	.base.cra_blocksize	= 1,
	.base.cra_ctxsize	= sizeof(struct gcm_key),
	.base.cra_module	= THIS_MODULE,
}, {
	.ivsize			= GCM_RFC4106_IV_SIZE,
	.chunksize		= AES_BLOCK_SIZE,
	.maxauthsize		= AES_BLOCK_SIZE,
	.setkey			= rfc4106_setkey,
	.setauthsize		= rfc4106_setauthsize,
	.encrypt		= rfc4106_encrypt,
	.decrypt		= rfc4106_decrypt,

	.base.cra_name		= "rfc4106(gcm(aes))",
	.base.cra_driver_name	= "rfc4106-gcm-aes-ce",
	.base.cra_priority	= 400,
	.base.cra_blocksize	= 1,
	.base.cra_ctxsize	= sizeof(struct gcm_key) + RFC4106_NONCE_SIZE,
	.base.cra_module	= THIS_MODULE,
}};

static int __init ghash_ce_mod_init(void)
{
	int err;

	if (!(elf_hwcap & HWCAP_NEON))
		return -ENODEV;

	if (elf_hwcap2 & HWCAP2_PMULL) {
		err = crypto_register_aeads(gcm_aes_algs,
					    ARRAY_SIZE(gcm_aes_algs));
		if (err)
			return err;
		ghash_alg.base.cra_ctxsize += 3 * sizeof(u64[2]);
		static_branch_enable(&use_p64);
	}

	err = crypto_register_shash(&ghash_alg);
	if (err)
		goto err_aead;
	err = crypto_register_ahash(&ghash_async_alg);
	if (err)
		goto err_shash;

	return 0;

err_shash:
	crypto_unregister_shash(&ghash_alg);
err_aead:
	if (elf_hwcap2 & HWCAP2_PMULL)
		crypto_unregister_aeads(gcm_aes_algs,
					ARRAY_SIZE(gcm_aes_algs));
	return err;
}

static void __exit ghash_ce_mod_exit(void)
{
	crypto_unregister_ahash(&ghash_async_alg);
	crypto_unregister_shash(&ghash_alg);
	if (elf_hwcap2 & HWCAP2_PMULL)
		crypto_unregister_aeads(gcm_aes_algs,
					ARRAY_SIZE(gcm_aes_algs));
}

module_init(ghash_ce_mod_init);
module_exit(ghash_ce_mod_exit);