aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/drivers/clk/clk-fractional-divider.c
blob: da057172cc90f145743a4f7dfd71870bd63b564b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright (C) 2014 Intel Corporation
 *
 * Adjustable fractional divider clock implementation.
 * Uses rational best approximation algorithm.
 *
 * Output is calculated as
 *
 *	rate = (m / n) * parent_rate				(1)
 *
 * This is useful when we have a prescaler block which asks for
 * m (numerator) and n (denominator) values to be provided to satisfy
 * the (1) as much as possible.
 *
 * Since m and n have the limitation by a range, e.g.
 *
 *	n >= 1, n < N_width, where N_width = 2^nwidth		(2)
 *
 * for some cases the output may be saturated. Hence, from (1) and (2),
 * assuming the worst case when m = 1, the inequality
 *
 *	floor(log2(parent_rate / rate)) <= nwidth		(3)
 *
 * may be derived. Thus, in cases when
 *
 *	(parent_rate / rate) >> N_width				(4)
 *
 * we might scale up the rate by 2^scale (see the description of
 * CLK_FRAC_DIVIDER_POWER_OF_TWO_PS for additional information), where
 *
 *	scale = floor(log2(parent_rate / rate)) - nwidth	(5)
 *
 * and assume that the IP, that needs m and n, has also its own
 * prescaler, which is capable to divide by 2^scale. In this way
 * we get the denominator to satisfy the desired range (2) and
 * at the same time a much better result of m and n than simple
 * saturated values.
 */

#include <linux/debugfs.h>
#include <linux/device.h>
#include <linux/io.h>
#include <linux/math.h>
#include <linux/module.h>
#include <linux/rational.h>
#include <linux/slab.h>

#include <linux/clk-provider.h>

#include "clk-fractional-divider.h"

static inline u32 clk_fd_readl(struct clk_fractional_divider *fd)
{
	if (fd->flags & CLK_FRAC_DIVIDER_BIG_ENDIAN)
		return ioread32be(fd->reg);

	return readl(fd->reg);
}

static inline void clk_fd_writel(struct clk_fractional_divider *fd, u32 val)
{
	if (fd->flags & CLK_FRAC_DIVIDER_BIG_ENDIAN)
		iowrite32be(val, fd->reg);
	else
		writel(val, fd->reg);
}

static void clk_fd_get_div(struct clk_hw *hw, struct u32_fract *fract)
{
	struct clk_fractional_divider *fd = to_clk_fd(hw);
	unsigned long flags = 0;
	unsigned long m, n;
	u32 mmask, nmask;
	u32 val;

	if (fd->lock)
		spin_lock_irqsave(fd->lock, flags);
	else
		__acquire(fd->lock);

	val = clk_fd_readl(fd);

	if (fd->lock)
		spin_unlock_irqrestore(fd->lock, flags);
	else
		__release(fd->lock);

	mmask = GENMASK(fd->mwidth - 1, 0) << fd->mshift;
	nmask = GENMASK(fd->nwidth - 1, 0) << fd->nshift;

	m = (val & mmask) >> fd->mshift;
	n = (val & nmask) >> fd->nshift;

	if (fd->flags & CLK_FRAC_DIVIDER_ZERO_BASED) {
		m++;
		n++;
	}

	fract->numerator = m;
	fract->denominator = n;
}

static unsigned long clk_fd_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
{
	struct u32_fract fract;
	u64 ret;

	clk_fd_get_div(hw, &fract);

	if (!fract.numerator || !fract.denominator)
		return parent_rate;

	ret = (u64)parent_rate * fract.numerator;
	do_div(ret, fract.denominator);

	return ret;
}

void clk_fractional_divider_general_approximation(struct clk_hw *hw,
						  unsigned long rate,
						  unsigned long *parent_rate,
						  unsigned long *m, unsigned long *n)
{
	struct clk_fractional_divider *fd = to_clk_fd(hw);
	unsigned long max_m, max_n;

	/*
	 * Get rate closer to *parent_rate to guarantee there is no overflow
	 * for m and n. In the result it will be the nearest rate left shifted
	 * by (scale - fd->nwidth) bits.
	 *
	 * For the detailed explanation see the top comment in this file.
	 */
	if (fd->flags & CLK_FRAC_DIVIDER_POWER_OF_TWO_PS) {
		unsigned long scale = fls_long(*parent_rate / rate - 1);

		if (scale > fd->nwidth)
			rate <<= scale - fd->nwidth;
	}

	if (fd->flags & CLK_FRAC_DIVIDER_ZERO_BASED) {
		max_m = BIT(fd->mwidth);
		max_n = BIT(fd->nwidth);
	} else {
		max_m = GENMASK(fd->mwidth - 1, 0);
		max_n = GENMASK(fd->nwidth - 1, 0);
	}

	rational_best_approximation(rate, *parent_rate, max_m, max_n, m, n);
}
EXPORT_SYMBOL_GPL(clk_fractional_divider_general_approximation);

static long clk_fd_round_rate(struct clk_hw *hw, unsigned long rate,
			      unsigned long *parent_rate)
{
	struct clk_fractional_divider *fd = to_clk_fd(hw);
	unsigned long m, n;
	u64 ret;

	if (!rate || (!clk_hw_can_set_rate_parent(hw) && rate >= *parent_rate))
		return *parent_rate;

	if (fd->approximation)
		fd->approximation(hw, rate, parent_rate, &m, &n);
	else
		clk_fractional_divider_general_approximation(hw, rate, parent_rate, &m, &n);

	ret = (u64)*parent_rate * m;
	do_div(ret, n);

	return ret;
}

static int clk_fd_set_rate(struct clk_hw *hw, unsigned long rate,
			   unsigned long parent_rate)
{
	struct clk_fractional_divider *fd = to_clk_fd(hw);
	unsigned long flags = 0;
	unsigned long m, n, max_m, max_n;
	u32 mmask, nmask;
	u32 val;

	if (fd->flags & CLK_FRAC_DIVIDER_ZERO_BASED) {
		max_m = BIT(fd->mwidth);
		max_n = BIT(fd->nwidth);
	} else {
		max_m = GENMASK(fd->mwidth - 1, 0);
		max_n = GENMASK(fd->nwidth - 1, 0);
	}
	rational_best_approximation(rate, parent_rate, max_m, max_n, &m, &n);

	if (fd->flags & CLK_FRAC_DIVIDER_ZERO_BASED) {
		m--;
		n--;
	}

	mmask = GENMASK(fd->mwidth - 1, 0) << fd->mshift;
	nmask = GENMASK(fd->nwidth - 1, 0) << fd->nshift;

	if (fd->lock)
		spin_lock_irqsave(fd->lock, flags);
	else
		__acquire(fd->lock);

	val = clk_fd_readl(fd);
	val &= ~(mmask | nmask);
	val |= (m << fd->mshift) | (n << fd->nshift);
	clk_fd_writel(fd, val);

	if (fd->lock)
		spin_unlock_irqrestore(fd->lock, flags);
	else
		__release(fd->lock);

	return 0;
}

#ifdef CONFIG_DEBUG_FS
static int clk_fd_numerator_get(void *hw, u64 *val)
{
	struct u32_fract fract;

	clk_fd_get_div(hw, &fract);

	*val = fract.numerator;

	return 0;
}
DEFINE_DEBUGFS_ATTRIBUTE(clk_fd_numerator_fops, clk_fd_numerator_get, NULL, "%llu\n");

static int clk_fd_denominator_get(void *hw, u64 *val)
{
	struct u32_fract fract;

	clk_fd_get_div(hw, &fract);

	*val = fract.denominator;

	return 0;
}
DEFINE_DEBUGFS_ATTRIBUTE(clk_fd_denominator_fops, clk_fd_denominator_get, NULL, "%llu\n");

static void clk_fd_debug_init(struct clk_hw *hw, struct dentry *dentry)
{
	debugfs_create_file("numerator", 0444, dentry, hw, &clk_fd_numerator_fops);
	debugfs_create_file("denominator", 0444, dentry, hw, &clk_fd_denominator_fops);
}
#endif

const struct clk_ops clk_fractional_divider_ops = {
	.recalc_rate = clk_fd_recalc_rate,
	.round_rate = clk_fd_round_rate,
	.set_rate = clk_fd_set_rate,
#ifdef CONFIG_DEBUG_FS
	.debug_init = clk_fd_debug_init,
#endif
};
EXPORT_SYMBOL_GPL(clk_fractional_divider_ops);

struct clk_hw *clk_hw_register_fractional_divider(struct device *dev,
		const char *name, const char *parent_name, unsigned long flags,
		void __iomem *reg, u8 mshift, u8 mwidth, u8 nshift, u8 nwidth,
		u8 clk_divider_flags, spinlock_t *lock)
{
	struct clk_fractional_divider *fd;
	struct clk_init_data init;
	struct clk_hw *hw;
	int ret;

	fd = kzalloc(sizeof(*fd), GFP_KERNEL);
	if (!fd)
		return ERR_PTR(-ENOMEM);

	init.name = name;
	init.ops = &clk_fractional_divider_ops;
	init.flags = flags;
	init.parent_names = parent_name ? &parent_name : NULL;
	init.num_parents = parent_name ? 1 : 0;

	fd->reg = reg;
	fd->mshift = mshift;
	fd->mwidth = mwidth;
	fd->nshift = nshift;
	fd->nwidth = nwidth;
	fd->flags = clk_divider_flags;
	fd->lock = lock;
	fd->hw.init = &init;

	hw = &fd->hw;
	ret = clk_hw_register(dev, hw);
	if (ret) {
		kfree(fd);
		hw = ERR_PTR(ret);
	}

	return hw;
}
EXPORT_SYMBOL_GPL(clk_hw_register_fractional_divider);

struct clk *clk_register_fractional_divider(struct device *dev,
		const char *name, const char *parent_name, unsigned long flags,
		void __iomem *reg, u8 mshift, u8 mwidth, u8 nshift, u8 nwidth,
		u8 clk_divider_flags, spinlock_t *lock)
{
	struct clk_hw *hw;

	hw = clk_hw_register_fractional_divider(dev, name, parent_name, flags,
			reg, mshift, mwidth, nshift, nwidth, clk_divider_flags,
			lock);
	if (IS_ERR(hw))
		return ERR_CAST(hw);
	return hw->clk;
}
EXPORT_SYMBOL_GPL(clk_register_fractional_divider);

void clk_hw_unregister_fractional_divider(struct clk_hw *hw)
{
	struct clk_fractional_divider *fd;

	fd = to_clk_fd(hw);

	clk_hw_unregister(hw);
	kfree(fd);
}