aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/tools/perf/pmu-events/arch/x86/jaketown/uncore-interconnect.json
blob: 0fc907e5cf3c98f005c44ee21b323c7db835aad3 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
[
    {
        "BriefDescription": "Address Match (Conflict) Count; Conflict Merges",
        "EventCode": "0x17",
        "EventName": "UNC_I_ADDRESS_MATCH.MERGE_COUNT",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of times when an inbound write (from a device to memory or another device) had an address match with another request in the write cache.",
        "UMask": "0x2",
        "Unit": "IRP"
    },
    {
        "BriefDescription": "Address Match (Conflict) Count; Conflict Stalls",
        "EventCode": "0x17",
        "EventName": "UNC_I_ADDRESS_MATCH.STALL_COUNT",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of times when an inbound write (from a device to memory or another device) had an address match with another request in the write cache.",
        "UMask": "0x1",
        "Unit": "IRP"
    },
    {
        "BriefDescription": "Write Ack Pending Occupancy; Any Source",
        "EventCode": "0x14",
        "EventName": "UNC_I_CACHE_ACK_PENDING_OCCUPANCY.ANY",
        "PerPkg": "1",
        "PublicDescription": "Accumulates the number of writes that have acquired ownership but have not yet returned their data to the uncore.  These writes are generally queued up in the switch trying to get to the head of their queues so that they can post their data.  The queue occuapancy increments when the ACK is received, and decrements when either the data is returned OR a tickle is received and ownership is released.  Note that a single tickle can result in multiple decrements.",
        "UMask": "0x1",
        "Unit": "IRP"
    },
    {
        "BriefDescription": "Write Ack Pending Occupancy; Select Source",
        "EventCode": "0x14",
        "EventName": "UNC_I_CACHE_ACK_PENDING_OCCUPANCY.SOURCE",
        "PerPkg": "1",
        "PublicDescription": "Accumulates the number of writes that have acquired ownership but have not yet returned their data to the uncore.  These writes are generally queued up in the switch trying to get to the head of their queues so that they can post their data.  The queue occuapancy increments when the ACK is received, and decrements when either the data is returned OR a tickle is received and ownership is released.  Note that a single tickle can result in multiple decrements.",
        "UMask": "0x2",
        "Unit": "IRP"
    },
    {
        "BriefDescription": "Outstanding Write Ownership Occupancy; Any Source",
        "EventCode": "0x13",
        "EventName": "UNC_I_CACHE_OWN_OCCUPANCY.ANY",
        "PerPkg": "1",
        "PublicDescription": "Accumulates the number of writes (and write prefetches) that are outstanding in the uncore trying to acquire ownership in each cycle.  This can be used with the write transaction count to calculate the average write latency in the uncore.  The occupancy increments when a write request is issued, and decrements when the data is returned.",
        "UMask": "0x1",
        "Unit": "IRP"
    },
    {
        "BriefDescription": "Outstanding Write Ownership Occupancy; Select Source",
        "EventCode": "0x13",
        "EventName": "UNC_I_CACHE_OWN_OCCUPANCY.SOURCE",
        "PerPkg": "1",
        "PublicDescription": "Accumulates the number of writes (and write prefetches) that are outstanding in the uncore trying to acquire ownership in each cycle.  This can be used with the write transaction count to calculate the average write latency in the uncore.  The occupancy increments when a write request is issued, and decrements when the data is returned.",
        "UMask": "0x2",
        "Unit": "IRP"
    },
    {
        "BriefDescription": "Outstanding Read Occupancy; Any Source",
        "EventCode": "0x10",
        "EventName": "UNC_I_CACHE_READ_OCCUPANCY.ANY",
        "PerPkg": "1",
        "PublicDescription": "Accumulates the number of reads that are outstanding in the uncore in each cycle.  This can be used with the read transaction count to calculate the average read latency in the uncore.  The occupancy increments when a read request is issued, and decrements when the data is returned.",
        "UMask": "0x1",
        "Unit": "IRP"
    },
    {
        "BriefDescription": "Outstanding Read Occupancy; Select Source",
        "EventCode": "0x10",
        "EventName": "UNC_I_CACHE_READ_OCCUPANCY.SOURCE",
        "PerPkg": "1",
        "PublicDescription": "Accumulates the number of reads that are outstanding in the uncore in each cycle.  This can be used with the read transaction count to calculate the average read latency in the uncore.  The occupancy increments when a read request is issued, and decrements when the data is returned.",
        "UMask": "0x2",
        "Unit": "IRP"
    },
    {
        "BriefDescription": "Total Write Cache Occupancy; Any Source",
        "EventCode": "0x12",
        "EventName": "UNC_I_CACHE_TOTAL_OCCUPANCY.ANY",
        "PerPkg": "1",
        "PublicDescription": "Accumulates the number of reads and writes that are outstanding in the uncore in each cycle.  This is effectively the sum of the READ_OCCUPANCY and WRITE_OCCUPANCY events.",
        "UMask": "0x1",
        "Unit": "IRP"
    },
    {
        "BriefDescription": "Total Write Cache Occupancy; Select Source",
        "EventCode": "0x12",
        "EventName": "UNC_I_CACHE_TOTAL_OCCUPANCY.SOURCE",
        "PerPkg": "1",
        "PublicDescription": "Accumulates the number of reads and writes that are outstanding in the uncore in each cycle.  This is effectively the sum of the READ_OCCUPANCY and WRITE_OCCUPANCY events.",
        "UMask": "0x2",
        "Unit": "IRP"
    },
    {
        "BriefDescription": "Outstanding Write Occupancy; Any Source",
        "EventCode": "0x11",
        "EventName": "UNC_I_CACHE_WRITE_OCCUPANCY.ANY",
        "PerPkg": "1",
        "PublicDescription": "Accumulates the number of writes (and write prefetches)  that are outstanding in the uncore in each cycle.  This can be used with the transaction count event to calculate the average latency in the uncore.  The occupancy increments when the ownership fetch/prefetch is issued, and decrements the data is returned to the uncore.",
        "UMask": "0x1",
        "Unit": "IRP"
    },
    {
        "BriefDescription": "Outstanding Write Occupancy; Select Source",
        "EventCode": "0x11",
        "EventName": "UNC_I_CACHE_WRITE_OCCUPANCY.SOURCE",
        "PerPkg": "1",
        "PublicDescription": "Accumulates the number of writes (and write prefetches)  that are outstanding in the uncore in each cycle.  This can be used with the transaction count event to calculate the average latency in the uncore.  The occupancy increments when the ownership fetch/prefetch is issued, and decrements the data is returned to the uncore.",
        "UMask": "0x2",
        "Unit": "IRP"
    },
    {
        "BriefDescription": "Clocks in the IRP",
        "EventName": "UNC_I_CLOCKTICKS",
        "PerPkg": "1",
        "PublicDescription": "Number of clocks in the IRP.",
        "Unit": "IRP"
    },
    {
        "EventCode": "0xB",
        "EventName": "UNC_I_RxR_AK_CYCLES_FULL",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of cycles when the AK Ingress is full.  This queue is where the IRP receives responses from R2PCIe (the ring).",
        "Unit": "IRP"
    },
    {
        "BriefDescription": "AK Ingress Occupancy",
        "EventCode": "0xA",
        "EventName": "UNC_I_RxR_AK_INSERTS",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of allocations into the AK Ingress.  This queue is where the IRP receives responses from R2PCIe (the ring).",
        "Unit": "IRP"
    },
    {
        "EventCode": "0xC",
        "EventName": "UNC_I_RxR_AK_OCCUPANCY",
        "PerPkg": "1",
        "PublicDescription": "Accumulates the occupancy of the AK Ingress in each cycles.  This queue is where the IRP receives responses from R2PCIe (the ring).",
        "Unit": "IRP"
    },
    {
        "EventCode": "0x4",
        "EventName": "UNC_I_RxR_BL_DRS_CYCLES_FULL",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of cycles when the BL Ingress is full.  This queue is where the IRP receives data from R2PCIe (the ring).  It is used for data returns from read requests as well as outbound MMIO writes.",
        "Unit": "IRP"
    },
    {
        "BriefDescription": "BL Ingress Occupancy - DRS",
        "EventCode": "0x1",
        "EventName": "UNC_I_RxR_BL_DRS_INSERTS",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of allocations into the BL Ingress.  This queue is where the IRP receives data from R2PCIe (the ring).  It is used for data returns from read requests as well as outbound MMIO writes.",
        "Unit": "IRP"
    },
    {
        "EventCode": "0x7",
        "EventName": "UNC_I_RxR_BL_DRS_OCCUPANCY",
        "PerPkg": "1",
        "PublicDescription": "Accumulates the occupancy of the BL Ingress in each cycles.  This queue is where the IRP receives data from R2PCIe (the ring).  It is used for data returns from read requests as well as outbound MMIO writes.",
        "Unit": "IRP"
    },
    {
        "EventCode": "0x5",
        "EventName": "UNC_I_RxR_BL_NCB_CYCLES_FULL",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of cycles when the BL Ingress is full.  This queue is where the IRP receives data from R2PCIe (the ring).  It is used for data returns from read requests as well as outbound MMIO writes.",
        "Unit": "IRP"
    },
    {
        "BriefDescription": "BL Ingress Occupancy - NCB",
        "EventCode": "0x2",
        "EventName": "UNC_I_RxR_BL_NCB_INSERTS",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of allocations into the BL Ingress.  This queue is where the IRP receives data from R2PCIe (the ring).  It is used for data returns from read requests as well as outbound MMIO writes.",
        "Unit": "IRP"
    },
    {
        "EventCode": "0x8",
        "EventName": "UNC_I_RxR_BL_NCB_OCCUPANCY",
        "PerPkg": "1",
        "PublicDescription": "Accumulates the occupancy of the BL Ingress in each cycles.  This queue is where the IRP receives data from R2PCIe (the ring).  It is used for data returns from read requests as well as outbound MMIO writes.",
        "Unit": "IRP"
    },
    {
        "EventCode": "0x6",
        "EventName": "UNC_I_RxR_BL_NCS_CYCLES_FULL",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of cycles when the BL Ingress is full.  This queue is where the IRP receives data from R2PCIe (the ring).  It is used for data returns from read requests as well as outbound MMIO writes.",
        "Unit": "IRP"
    },
    {
        "BriefDescription": "BL Ingress Occupancy - NCS",
        "EventCode": "0x3",
        "EventName": "UNC_I_RxR_BL_NCS_INSERTS",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of allocations into the BL Ingress.  This queue is where the IRP receives data from R2PCIe (the ring).  It is used for data returns from read requests as well as outbound MMIO writes.",
        "Unit": "IRP"
    },
    {
        "EventCode": "0x9",
        "EventName": "UNC_I_RxR_BL_NCS_OCCUPANCY",
        "PerPkg": "1",
        "PublicDescription": "Accumulates the occupancy of the BL Ingress in each cycles.  This queue is where the IRP receives data from R2PCIe (the ring).  It is used for data returns from read requests as well as outbound MMIO writes.",
        "Unit": "IRP"
    },
    {
        "BriefDescription": "Tickle Count; Ownership Lost",
        "EventCode": "0x16",
        "EventName": "UNC_I_TICKLES.LOST_OWNERSHIP",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of tickles that are received.  This is for both explicit (from Cbo) and implicit (internal conflict) tickles.",
        "UMask": "0x1",
        "Unit": "IRP"
    },
    {
        "BriefDescription": "Tickle Count; Data Returned",
        "EventCode": "0x16",
        "EventName": "UNC_I_TICKLES.TOP_OF_QUEUE",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of tickles that are received.  This is for both explicit (from Cbo) and implicit (internal conflict) tickles.",
        "UMask": "0x2",
        "Unit": "IRP"
    },
    {
        "BriefDescription": "Inbound Transaction Count; Read Prefetches",
        "EventCode": "0x15",
        "EventName": "UNC_I_TRANSACTIONS.PD_PREFETCHES",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of 'Inbound' transactions from the IRP to the Uncore.  This can be filtered based on request type in addition to the source queue.  Note the special filtering equation.  We do OR-reduction on the request type.  If the SOURCE bit is set, then we also do AND qualification based on the source portID.",
        "UMask": "0x4",
        "Unit": "IRP"
    },
    {
        "BriefDescription": "Inbound Transaction Count; Reads",
        "EventCode": "0x15",
        "EventName": "UNC_I_TRANSACTIONS.READS",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of 'Inbound' transactions from the IRP to the Uncore.  This can be filtered based on request type in addition to the source queue.  Note the special filtering equation.  We do OR-reduction on the request type.  If the SOURCE bit is set, then we also do AND qualification based on the source portID.",
        "UMask": "0x1",
        "Unit": "IRP"
    },
    {
        "BriefDescription": "Inbound Transaction Count; Writes",
        "EventCode": "0x15",
        "EventName": "UNC_I_TRANSACTIONS.WRITES",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of 'Inbound' transactions from the IRP to the Uncore.  This can be filtered based on request type in addition to the source queue.  Note the special filtering equation.  We do OR-reduction on the request type.  If the SOURCE bit is set, then we also do AND qualification based on the source portID.",
        "UMask": "0x2",
        "Unit": "IRP"
    },
    {
        "BriefDescription": "No AD Egress Credit Stalls",
        "EventCode": "0x18",
        "EventName": "UNC_I_TxR_AD_STALL_CREDIT_CYCLES",
        "PerPkg": "1",
        "PublicDescription": "Counts the number times when it is not possible to issue a request to the R2PCIe because there are no AD Egress Credits available.",
        "Unit": "IRP"
    },
    {
        "BriefDescription": "No BL Egress Credit Stalls",
        "EventCode": "0x19",
        "EventName": "UNC_I_TxR_BL_STALL_CREDIT_CYCLES",
        "PerPkg": "1",
        "PublicDescription": "Counts the number times when it is not possible to issue data to the R2PCIe because there are no BL Egress Credits available.",
        "Unit": "IRP"
    },
    {
        "BriefDescription": "Outbound Read Requests",
        "EventCode": "0xE",
        "EventName": "UNC_I_TxR_DATA_INSERTS_NCB",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of requests issued to the switch (towards the devices).",
        "Unit": "IRP"
    },
    {
        "BriefDescription": "Outbound Read Requests",
        "EventCode": "0xF",
        "EventName": "UNC_I_TxR_DATA_INSERTS_NCS",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of requests issued to the switch (towards the devices).",
        "Unit": "IRP"
    },
    {
        "BriefDescription": "Outbound Request Queue Occupancy",
        "EventCode": "0xD",
        "EventName": "UNC_I_TxR_REQUEST_OCCUPANCY",
        "PerPkg": "1",
        "PublicDescription": "Accumulates the number of outstanding outbound requests from the IRP to the switch (towards the devices).  This can be used in conjunction with the allocations event in order to calculate average latency of outbound requests.",
        "Unit": "IRP"
    },
    {
        "BriefDescription": "Write Ordering Stalls",
        "EventCode": "0x1A",
        "EventName": "UNC_I_WRITE_ORDERING_STALL_CYCLES",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of cycles when there are pending write ACK's in the switch but the switch->IRP pipeline is not utilized.",
        "Unit": "IRP"
    },
    {
        "BriefDescription": "Number of qfclks",
        "EventCode": "0x14",
        "EventName": "UNC_Q_CLOCKTICKS",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of clocks in the QPI LL.  This clock runs at 1/8th the 'GT/s' speed of the QPI link.  For example, a 8GT/s link will have qfclk or 1GHz.  JKT does not support dynamic link speeds, so this frequency is fixed.",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "Count of CTO Events",
        "EventCode": "0x38",
        "EventName": "UNC_Q_CTO_COUNT",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of CTO (cluster trigger outs) events that were asserted across the two slots.  If both slots trigger in a given cycle, the event will increment by 2.  You can use edge detect to count the number of cases when both events triggered.",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "Direct 2 Core Spawning; Spawn Failure - Egress Credits",
        "EventCode": "0x13",
        "EventName": "UNC_Q_DIRECT2CORE.FAILURE_CREDITS",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of DRS packets that we attempted to do direct2core on.  There are 4 mutually exclusive filters.  Filter [0] can be used to get successful spawns, while [1:3] provide the different failure cases.  Note that this does not count packets that are not candidates for Direct2Core.  The only candidates for Direct2Core are DRS packets destined for Cbos.",
        "UMask": "0x2",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "Direct 2 Core Spawning; Spawn Failure - Egress and RBT",
        "EventCode": "0x13",
        "EventName": "UNC_Q_DIRECT2CORE.FAILURE_CREDITS_RBT",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of DRS packets that we attempted to do direct2core on.  There are 4 mutually exclusive filters.  Filter [0] can be used to get successful spawns, while [1:3] provide the different failure cases.  Note that this does not count packets that are not candidates for Direct2Core.  The only candidates for Direct2Core are DRS packets destined for Cbos.",
        "UMask": "0x8",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "Direct 2 Core Spawning; Spawn Failure - RBT Not Set",
        "EventCode": "0x13",
        "EventName": "UNC_Q_DIRECT2CORE.FAILURE_RBT",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of DRS packets that we attempted to do direct2core on.  There are 4 mutually exclusive filters.  Filter [0] can be used to get successful spawns, while [1:3] provide the different failure cases.  Note that this does not count packets that are not candidates for Direct2Core.  The only candidates for Direct2Core are DRS packets destined for Cbos.",
        "UMask": "0x4",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "Direct 2 Core Spawning; Spawn Success",
        "EventCode": "0x13",
        "EventName": "UNC_Q_DIRECT2CORE.SUCCESS",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of DRS packets that we attempted to do direct2core on.  There are 4 mutually exclusive filters.  Filter [0] can be used to get successful spawns, while [1:3] provide the different failure cases.  Note that this does not count packets that are not candidates for Direct2Core.  The only candidates for Direct2Core are DRS packets destined for Cbos.",
        "UMask": "0x1",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "Cycles in L1",
        "EventCode": "0x12",
        "EventName": "UNC_Q_L1_POWER_CYCLES",
        "PerPkg": "1",
        "PublicDescription": "Number of QPI qfclk cycles spent in L1 power mode.  L1 is a mode that totally shuts down a QPI link.  Use edge detect to count the number of instances when the QPI link entered L1.  Link power states are per link and per direction, so for example the Tx direction could be in one state while Rx was in another. Because L1 totally shuts down the link, it takes a good amount of time to exit this mode.",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "Cycles in L0p",
        "EventCode": "0x10",
        "EventName": "UNC_Q_RxL0P_POWER_CYCLES",
        "PerPkg": "1",
        "PublicDescription": "Number of QPI qfclk cycles spent in L0p power mode.  L0p is a mode where we disable 1/2 of the QPI lanes, decreasing our bandwidth in order to save power.  It increases snoop and data transfer latencies and decreases overall bandwidth.  This mode can be very useful in NUMA optimized workloads that largely only utilize QPI for snoops and their responses.  Use edge detect to count the number of instances when the QPI link entered L0p.  Link power states are per link and per direction, so for example the Tx direction could be in one state while Rx was in another.",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "Cycles in L0",
        "EventCode": "0xf",
        "EventName": "UNC_Q_RxL0_POWER_CYCLES",
        "PerPkg": "1",
        "PublicDescription": "Number of QPI qfclk cycles spent in L0 power mode in the Link Layer.  L0 is the default mode which provides the highest performance with the most power.  Use edge detect to count the number of instances that the link entered L0.  Link power states are per link and per direction, so for example the Tx direction could be in one state while Rx was in another.  The phy layer  sometimes leaves L0 for training, which will not be captured by this event.",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "Rx Flit Buffer Bypassed",
        "EventCode": "0x9",
        "EventName": "UNC_Q_RxL_BYPASSED",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of times that an incoming flit was able to bypass the flit buffer and pass directly across the BGF and into the Egress.  This is a latency optimization, and should generally be the common case.  If this value is less than the number of flits transferred, it implies that there was queueing getting onto the ring, and thus the transactions saw higher latency.",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "CRC Errors Detected; LinkInit",
        "EventCode": "0x3",
        "EventName": "UNC_Q_RxL_CRC_ERRORS.LINK_INIT",
        "PerPkg": "1",
        "PublicDescription": "Number of CRC errors detected in the QPI Agent.  Each QPI flit incorporates 8 bits of CRC for error detection.  This counts the number of flits where the CRC was able to detect an error.  After an error has been detected, the QPI agent will send a request to the transmitting socket to resend the flit (as well as any flits that came after it).",
        "UMask": "0x1",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "CRC Errors Detected; Normal Operations",
        "EventCode": "0x3",
        "EventName": "UNC_Q_RxL_CRC_ERRORS.NORMAL_OP",
        "PerPkg": "1",
        "PublicDescription": "Number of CRC errors detected in the QPI Agent.  Each QPI flit incorporates 8 bits of CRC for error detection.  This counts the number of flits where the CRC was able to detect an error.  After an error has been detected, the QPI agent will send a request to the transmitting socket to resend the flit (as well as any flits that came after it).",
        "UMask": "0x2",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "VN0 Credit Consumed; DRS",
        "EventCode": "0x1e",
        "EventName": "UNC_Q_RxL_CREDITS_CONSUMED_VN0.DRS",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of times that an RxQ VN0 credit was consumed (i.e. message uses a VN0 credit for the Rx Buffer).  This includes packets that went through the RxQ and those that were bypasssed.",
        "UMask": "0x1",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "VN0 Credit Consumed; HOM",
        "EventCode": "0x1e",
        "EventName": "UNC_Q_RxL_CREDITS_CONSUMED_VN0.HOM",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of times that an RxQ VN0 credit was consumed (i.e. message uses a VN0 credit for the Rx Buffer).  This includes packets that went through the RxQ and those that were bypasssed.",
        "UMask": "0x8",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "VN0 Credit Consumed; NCB",
        "EventCode": "0x1e",
        "EventName": "UNC_Q_RxL_CREDITS_CONSUMED_VN0.NCB",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of times that an RxQ VN0 credit was consumed (i.e. message uses a VN0 credit for the Rx Buffer).  This includes packets that went through the RxQ and those that were bypasssed.",
        "UMask": "0x2",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "VN0 Credit Consumed; NCS",
        "EventCode": "0x1e",
        "EventName": "UNC_Q_RxL_CREDITS_CONSUMED_VN0.NCS",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of times that an RxQ VN0 credit was consumed (i.e. message uses a VN0 credit for the Rx Buffer).  This includes packets that went through the RxQ and those that were bypasssed.",
        "UMask": "0x4",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "VN0 Credit Consumed; NDR",
        "EventCode": "0x1e",
        "EventName": "UNC_Q_RxL_CREDITS_CONSUMED_VN0.NDR",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of times that an RxQ VN0 credit was consumed (i.e. message uses a VN0 credit for the Rx Buffer).  This includes packets that went through the RxQ and those that were bypasssed.",
        "UMask": "0x20",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "VN0 Credit Consumed; SNP",
        "EventCode": "0x1e",
        "EventName": "UNC_Q_RxL_CREDITS_CONSUMED_VN0.SNP",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of times that an RxQ VN0 credit was consumed (i.e. message uses a VN0 credit for the Rx Buffer).  This includes packets that went through the RxQ and those that were bypasssed.",
        "UMask": "0x10",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "VNA Credit Consumed",
        "EventCode": "0x1d",
        "EventName": "UNC_Q_RxL_CREDITS_CONSUMED_VNA",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of times that an RxQ VNA credit was consumed (i.e. message uses a VNA credit for the Rx Buffer).  This includes packets that went through the RxQ and those that were bypasssed.",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "RxQ Cycles Not Empty",
        "EventCode": "0xa",
        "EventName": "UNC_Q_RxL_CYCLES_NE",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of cycles that the QPI RxQ was not empty.  Generally, when data is transmitted across QPI, it will bypass the RxQ and pass directly to the ring interface.  If things back up getting transmitted onto the ring, however, it may need to allocate into this buffer, thus increasing the latency.  This event can be used in conjunction with the Flit Buffer Occupancy Accumulator event to calculate the average occupancy.",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "Flits Received - Group 0; Data Tx Flits",
        "EventCode": "0x1",
        "EventName": "UNC_Q_RxL_FLITS_G0.DATA",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of flits received from the QPI Link.  It includes filters for Idle, protocol, and Data Flits.  Each 'flit' is made up of 80 bits of information (in addition to some ECC data).  In full-width (L0) mode, flits are made up of four 'fits', each of which contains 20 bits of data (along with some additional ECC data).   In half-width (L0p) mode, the fits are only 10 bits, and therefore it takes twice as many fits to transmit a flit.  When one talks about QPI 'speed' (for example, 8.0 GT/s), the 'transfers' here refer to 'fits'.  Therefore, in L0, the system will transfer 1 'flit' at the rate of 1/4th the QPI speed.  One can calculate the bandwidth of the link by taking: flits*80b/time.  Note that this is not the same as 'data' bandwidth.  For example, when we are transferring a 64B cacheline across QPI, we will break it into 9 flits -- 1 with header information and 8 with 64 bits of actual 'data' and an additional 16 bits of other information.  To calculate 'data' bandwidth, one should therefore do: data flits * 8B / time (for L0) or 4B instead of 8B for L0p.",
        "UMask": "0x2",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "Flits Received - Group 0; Idle and Null Flits",
        "EventCode": "0x1",
        "EventName": "UNC_Q_RxL_FLITS_G0.IDLE",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of flits received from the QPI Link.  It includes filters for Idle, protocol, and Data Flits.  Each 'flit' is made up of 80 bits of information (in addition to some ECC data).  In full-width (L0) mode, flits are made up of four 'fits', each of which contains 20 bits of data (along with some additional ECC data).   In half-width (L0p) mode, the fits are only 10 bits, and therefore it takes twice as many fits to transmit a flit.  When one talks about QPI 'speed' (for example, 8.0 GT/s), the 'transfers' here refer to 'fits'.  Therefore, in L0, the system will transfer 1 'flit' at the rate of 1/4th the QPI speed.  One can calculate the bandwidth of the link by taking: flits*80b/time.  Note that this is not the same as 'data' bandwidth.  For example, when we are transferring a 64B cacheline across QPI, we will break it into 9 flits -- 1 with header information and 8 with 64 bits of actual 'data' and an additional 16 bits of other information.  To calculate 'data' bandwidth, one should therefore do: data flits * 8B / time (for L0) or 4B instead of 8B for L0p.",
        "UMask": "0x1",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "Flits Received - Group 0; Non-Data protocol Tx Flits",
        "EventCode": "0x1",
        "EventName": "UNC_Q_RxL_FLITS_G0.NON_DATA",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of flits received from the QPI Link.  It includes filters for Idle, protocol, and Data Flits.  Each 'flit' is made up of 80 bits of information (in addition to some ECC data).  In full-width (L0) mode, flits are made up of four 'fits', each of which contains 20 bits of data (along with some additional ECC data).   In half-width (L0p) mode, the fits are only 10 bits, and therefore it takes twice as many fits to transmit a flit.  When one talks about QPI 'speed' (for example, 8.0 GT/s), the 'transfers' here refer to 'fits'.  Therefore, in L0, the system will transfer 1 'flit' at the rate of 1/4th the QPI speed.  One can calculate the bandwidth of the link by taking: flits*80b/time.  Note that this is not the same as 'data' bandwidth.  For example, when we are transferring a 64B cacheline across QPI, we will break it into 9 flits -- 1 with header information and 8 with 64 bits of actual 'data' and an additional 16 bits of other information.  To calculate 'data' bandwidth, one should therefore do: data flits * 8B / time (for L0) or 4B instead of 8B for L0p.",
        "UMask": "0x4",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "Flits Received - Group 1; DRS Flits (both Header and Data)",
        "EventCode": "0x2",
        "EventName": "UNC_Q_RxL_FLITS_G1.DRS",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of flits received from the QPI Link.  This is one of three 'groups' that allow us to track flits.  It includes filters for SNP, HOM, and DRS message classes.  Each 'flit' is made up of 80 bits of information (in addition to some ECC data).  In full-width (L0) mode, flits are made up of four 'fits', each of which contains 20 bits of data (along with some additional ECC data).   In half-width (L0p) mode, the fits are only 10 bits, and therefore it takes twice as many fits to transmit a flit.  When one talks about QPI 'speed' (for example, 8.0 GT/s), the 'transfers' here refer to 'fits'.  Therefore, in L0, the system will transfer 1 'flit' at the rate of 1/4th the QPI speed.  One can calculate the bandwidth of the link by taking: flits*80b/time.  Note that this is not the same as 'data' bandwidth.  For example, when we are transferring a 64B cacheline across QPI, we will break it into 9 flits -- 1 with header information and 8 with 64 bits of actual 'data' and an additional 16 bits of other information.  To calculate 'data' bandwidth, one should therefore do: data flits * 8B / time.",
        "UMask": "0x18",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "Flits Received - Group 1; DRS Data Flits",
        "EventCode": "0x2",
        "EventName": "UNC_Q_RxL_FLITS_G1.DRS_DATA",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of flits received from the QPI Link.  This is one of three 'groups' that allow us to track flits.  It includes filters for SNP, HOM, and DRS message classes.  Each 'flit' is made up of 80 bits of information (in addition to some ECC data).  In full-width (L0) mode, flits are made up of four 'fits', each of which contains 20 bits of data (along with some additional ECC data).   In half-width (L0p) mode, the fits are only 10 bits, and therefore it takes twice as many fits to transmit a flit.  When one talks about QPI 'speed' (for example, 8.0 GT/s), the 'transfers' here refer to 'fits'.  Therefore, in L0, the system will transfer 1 'flit' at the rate of 1/4th the QPI speed.  One can calculate the bandwidth of the link by taking: flits*80b/time.  Note that this is not the same as 'data' bandwidth.  For example, when we are transferring a 64B cacheline across QPI, we will break it into 9 flits -- 1 with header information and 8 with 64 bits of actual 'data' and an additional 16 bits of other information.  To calculate 'data' bandwidth, one should therefore do: data flits * 8B / time.",
        "UMask": "0x8",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "Flits Received - Group 1; DRS Header Flits",
        "EventCode": "0x2",
        "EventName": "UNC_Q_RxL_FLITS_G1.DRS_NONDATA",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of flits received from the QPI Link.  This is one of three 'groups' that allow us to track flits.  It includes filters for SNP, HOM, and DRS message classes.  Each 'flit' is made up of 80 bits of information (in addition to some ECC data).  In full-width (L0) mode, flits are made up of four 'fits', each of which contains 20 bits of data (along with some additional ECC data).   In half-width (L0p) mode, the fits are only 10 bits, and therefore it takes twice as many fits to transmit a flit.  When one talks about QPI 'speed' (for example, 8.0 GT/s), the 'transfers' here refer to 'fits'.  Therefore, in L0, the system will transfer 1 'flit' at the rate of 1/4th the QPI speed.  One can calculate the bandwidth of the link by taking: flits*80b/time.  Note that this is not the same as 'data' bandwidth.  For example, when we are transferring a 64B cacheline across QPI, we will break it into 9 flits -- 1 with header information and 8 with 64 bits of actual 'data' and an additional 16 bits of other information.  To calculate 'data' bandwidth, one should therefore do: data flits * 8B / time.",
        "UMask": "0x10",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "Flits Received - Group 1; HOM Flits",
        "EventCode": "0x2",
        "EventName": "UNC_Q_RxL_FLITS_G1.HOM",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of flits received from the QPI Link.  This is one of three 'groups' that allow us to track flits.  It includes filters for SNP, HOM, and DRS message classes.  Each 'flit' is made up of 80 bits of information (in addition to some ECC data).  In full-width (L0) mode, flits are made up of four 'fits', each of which contains 20 bits of data (along with some additional ECC data).   In half-width (L0p) mode, the fits are only 10 bits, and therefore it takes twice as many fits to transmit a flit.  When one talks about QPI 'speed' (for example, 8.0 GT/s), the 'transfers' here refer to 'fits'.  Therefore, in L0, the system will transfer 1 'flit' at the rate of 1/4th the QPI speed.  One can calculate the bandwidth of the link by taking: flits*80b/time.  Note that this is not the same as 'data' bandwidth.  For example, when we are transferring a 64B cacheline across QPI, we will break it into 9 flits -- 1 with header information and 8 with 64 bits of actual 'data' and an additional 16 bits of other information.  To calculate 'data' bandwidth, one should therefore do: data flits * 8B / time.",
        "UMask": "0x6",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "Flits Received - Group 1; HOM Non-Request Flits",
        "EventCode": "0x2",
        "EventName": "UNC_Q_RxL_FLITS_G1.HOM_NONREQ",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of flits received from the QPI Link.  This is one of three 'groups' that allow us to track flits.  It includes filters for SNP, HOM, and DRS message classes.  Each 'flit' is made up of 80 bits of information (in addition to some ECC data).  In full-width (L0) mode, flits are made up of four 'fits', each of which contains 20 bits of data (along with some additional ECC data).   In half-width (L0p) mode, the fits are only 10 bits, and therefore it takes twice as many fits to transmit a flit.  When one talks about QPI 'speed' (for example, 8.0 GT/s), the 'transfers' here refer to 'fits'.  Therefore, in L0, the system will transfer 1 'flit' at the rate of 1/4th the QPI speed.  One can calculate the bandwidth of the link by taking: flits*80b/time.  Note that this is not the same as 'data' bandwidth.  For example, when we are transferring a 64B cacheline across QPI, we will break it into 9 flits -- 1 with header information and 8 with 64 bits of actual 'data' and an additional 16 bits of other information.  To calculate 'data' bandwidth, one should therefore do: data flits * 8B / time.",
        "UMask": "0x4",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "Flits Received - Group 1; HOM Request Flits",
        "EventCode": "0x2",
        "EventName": "UNC_Q_RxL_FLITS_G1.HOM_REQ",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of flits received from the QPI Link.  This is one of three 'groups' that allow us to track flits.  It includes filters for SNP, HOM, and DRS message classes.  Each 'flit' is made up of 80 bits of information (in addition to some ECC data).  In full-width (L0) mode, flits are made up of four 'fits', each of which contains 20 bits of data (along with some additional ECC data).   In half-width (L0p) mode, the fits are only 10 bits, and therefore it takes twice as many fits to transmit a flit.  When one talks about QPI 'speed' (for example, 8.0 GT/s), the 'transfers' here refer to 'fits'.  Therefore, in L0, the system will transfer 1 'flit' at the rate of 1/4th the QPI speed.  One can calculate the bandwidth of the link by taking: flits*80b/time.  Note that this is not the same as 'data' bandwidth.  For example, when we are transferring a 64B cacheline across QPI, we will break it into 9 flits -- 1 with header information and 8 with 64 bits of actual 'data' and an additional 16 bits of other information.  To calculate 'data' bandwidth, one should therefore do: data flits * 8B / time.",
        "UMask": "0x2",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "Flits Received - Group 1; SNP Flits",
        "EventCode": "0x2",
        "EventName": "UNC_Q_RxL_FLITS_G1.SNP",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of flits received from the QPI Link.  This is one of three 'groups' that allow us to track flits.  It includes filters for SNP, HOM, and DRS message classes.  Each 'flit' is made up of 80 bits of information (in addition to some ECC data).  In full-width (L0) mode, flits are made up of four 'fits', each of which contains 20 bits of data (along with some additional ECC data).   In half-width (L0p) mode, the fits are only 10 bits, and therefore it takes twice as many fits to transmit a flit.  When one talks about QPI 'speed' (for example, 8.0 GT/s), the 'transfers' here refer to 'fits'.  Therefore, in L0, the system will transfer 1 'flit' at the rate of 1/4th the QPI speed.  One can calculate the bandwidth of the link by taking: flits*80b/time.  Note that this is not the same as 'data' bandwidth.  For example, when we are transferring a 64B cacheline across QPI, we will break it into 9 flits -- 1 with header information and 8 with 64 bits of actual 'data' and an additional 16 bits of other information.  To calculate 'data' bandwidth, one should therefore do: data flits * 8B / time.",
        "UMask": "0x1",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "Flits Received - Group 2; Non-Coherent Rx Flits",
        "EventCode": "0x3",
        "EventName": "UNC_Q_RxL_FLITS_G2.NCB",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of flits received from the QPI Link.  This is one of three 'groups' that allow us to track flits.  It includes filters for NDR, NCB, and NCS message classes.  Each 'flit' is made up of 80 bits of information (in addition to some ECC data).  In full-width (L0) mode, flits are made up of four 'fits', each of which contains 20 bits of data (along with some additional ECC data).   In half-width (L0p) mode, the fits are only 10 bits, and therefore it takes twice as many fits to transmit a flit.  When one talks about QPI 'speed' (for example, 8.0 GT/s), the 'transfers' here refer to 'fits'.  Therefore, in L0, the system will transfer 1 'flit' at the rate of 1/4th the QPI speed.  One can calculate the bandwidth of the link by taking: flits*80b/time.  Note that this is not the same as 'data' bandwidth.  For example, when we are transferring a 64B cacheline across QPI, we will break it into 9 flits -- 1 with header information and 8 with 64 bits of actual 'data' and an additional 16 bits of other information.  To calculate 'data' bandwidth, one should therefore do: data flits * 8B / time.",
        "UMask": "0xc",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "Flits Received - Group 2; Non-Coherent data Rx Flits",
        "EventCode": "0x3",
        "EventName": "UNC_Q_RxL_FLITS_G2.NCB_DATA",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of flits received from the QPI Link.  This is one of three 'groups' that allow us to track flits.  It includes filters for NDR, NCB, and NCS message classes.  Each 'flit' is made up of 80 bits of information (in addition to some ECC data).  In full-width (L0) mode, flits are made up of four 'fits', each of which contains 20 bits of data (along with some additional ECC data).   In half-width (L0p) mode, the fits are only 10 bits, and therefore it takes twice as many fits to transmit a flit.  When one talks about QPI 'speed' (for example, 8.0 GT/s), the 'transfers' here refer to 'fits'.  Therefore, in L0, the system will transfer 1 'flit' at the rate of 1/4th the QPI speed.  One can calculate the bandwidth of the link by taking: flits*80b/time.  Note that this is not the same as 'data' bandwidth.  For example, when we are transferring a 64B cacheline across QPI, we will break it into 9 flits -- 1 with header information and 8 with 64 bits of actual 'data' and an additional 16 bits of other information.  To calculate 'data' bandwidth, one should therefore do: data flits * 8B / time.",
        "UMask": "0x4",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "Flits Received - Group 2; Non-Coherent non-data Rx Flits",
        "EventCode": "0x3",
        "EventName": "UNC_Q_RxL_FLITS_G2.NCB_NONDATA",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of flits received from the QPI Link.  This is one of three 'groups' that allow us to track flits.  It includes filters for NDR, NCB, and NCS message classes.  Each 'flit' is made up of 80 bits of information (in addition to some ECC data).  In full-width (L0) mode, flits are made up of four 'fits', each of which contains 20 bits of data (along with some additional ECC data).   In half-width (L0p) mode, the fits are only 10 bits, and therefore it takes twice as many fits to transmit a flit.  When one talks about QPI 'speed' (for example, 8.0 GT/s), the 'transfers' here refer to 'fits'.  Therefore, in L0, the system will transfer 1 'flit' at the rate of 1/4th the QPI speed.  One can calculate the bandwidth of the link by taking: flits*80b/time.  Note that this is not the same as 'data' bandwidth.  For example, when we are transferring a 64B cacheline across QPI, we will break it into 9 flits -- 1 with header information and 8 with 64 bits of actual 'data' and an additional 16 bits of other information.  To calculate 'data' bandwidth, one should therefore do: data flits * 8B / time.",
        "UMask": "0x8",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "Flits Received - Group 2; Non-Coherent standard Rx Flits",
        "EventCode": "0x3",
        "EventName": "UNC_Q_RxL_FLITS_G2.NCS",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of flits received from the QPI Link.  This is one of three 'groups' that allow us to track flits.  It includes filters for NDR, NCB, and NCS message classes.  Each 'flit' is made up of 80 bits of information (in addition to some ECC data).  In full-width (L0) mode, flits are made up of four 'fits', each of which contains 20 bits of data (along with some additional ECC data).   In half-width (L0p) mode, the fits are only 10 bits, and therefore it takes twice as many fits to transmit a flit.  When one talks about QPI 'speed' (for example, 8.0 GT/s), the 'transfers' here refer to 'fits'.  Therefore, in L0, the system will transfer 1 'flit' at the rate of 1/4th the QPI speed.  One can calculate the bandwidth of the link by taking: flits*80b/time.  Note that this is not the same as 'data' bandwidth.  For example, when we are transferring a 64B cacheline across QPI, we will break it into 9 flits -- 1 with header information and 8 with 64 bits of actual 'data' and an additional 16 bits of other information.  To calculate 'data' bandwidth, one should therefore do: data flits * 8B / time.",
        "UMask": "0x10",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "Flits Received - Group 2; Non-Data Response Rx Flits - AD",
        "EventCode": "0x3",
        "EventName": "UNC_Q_RxL_FLITS_G2.NDR_AD",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of flits received from the QPI Link.  This is one of three 'groups' that allow us to track flits.  It includes filters for NDR, NCB, and NCS message classes.  Each 'flit' is made up of 80 bits of information (in addition to some ECC data).  In full-width (L0) mode, flits are made up of four 'fits', each of which contains 20 bits of data (along with some additional ECC data).   In half-width (L0p) mode, the fits are only 10 bits, and therefore it takes twice as many fits to transmit a flit.  When one talks about QPI 'speed' (for example, 8.0 GT/s), the 'transfers' here refer to 'fits'.  Therefore, in L0, the system will transfer 1 'flit' at the rate of 1/4th the QPI speed.  One can calculate the bandwidth of the link by taking: flits*80b/time.  Note that this is not the same as 'data' bandwidth.  For example, when we are transferring a 64B cacheline across QPI, we will break it into 9 flits -- 1 with header information and 8 with 64 bits of actual 'data' and an additional 16 bits of other information.  To calculate 'data' bandwidth, one should therefore do: data flits * 8B / time.",
        "UMask": "0x1",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "Flits Received - Group 2; Non-Data Response Rx Flits - AK",
        "EventCode": "0x3",
        "EventName": "UNC_Q_RxL_FLITS_G2.NDR_AK",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of flits received from the QPI Link.  This is one of three 'groups' that allow us to track flits.  It includes filters for NDR, NCB, and NCS message classes.  Each 'flit' is made up of 80 bits of information (in addition to some ECC data).  In full-width (L0) mode, flits are made up of four 'fits', each of which contains 20 bits of data (along with some additional ECC data).   In half-width (L0p) mode, the fits are only 10 bits, and therefore it takes twice as many fits to transmit a flit.  When one talks about QPI 'speed' (for example, 8.0 GT/s), the 'transfers' here refer to 'fits'.  Therefore, in L0, the system will transfer 1 'flit' at the rate of 1/4th the QPI speed.  One can calculate the bandwidth of the link by taking: flits*80b/time.  Note that this is not the same as 'data' bandwidth.  For example, when we are transferring a 64B cacheline across QPI, we will break it into 9 flits -- 1 with header information and 8 with 64 bits of actual 'data' and an additional 16 bits of other information.  To calculate 'data' bandwidth, one should therefore do: data flits * 8B / time.",
        "UMask": "0x2",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "Rx Flit Buffer Allocations",
        "EventCode": "0x8",
        "EventName": "UNC_Q_RxL_INSERTS",
        "PerPkg": "1",
        "PublicDescription": "Number of allocations into the QPI Rx Flit Buffer.  Generally, when data is transmitted across QPI, it will bypass the RxQ and pass directly to the ring interface.  If things back up getting transmitted onto the ring, however, it may need to allocate into this buffer, thus increasing the latency.  This event can be used in conjunction with the Flit Buffer Occupancy event in order to calculate the average flit buffer lifetime.",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "Rx Flit Buffer Allocations - DRS",
        "EventCode": "0x9",
        "EventName": "UNC_Q_RxL_INSERTS_DRS",
        "PerPkg": "1",
        "PublicDescription": "Number of allocations into the QPI Rx Flit Buffer.  Generally, when data is transmitted across QPI, it will bypass the RxQ and pass directly to the ring interface.  If things back up getting transmitted onto the ring, however, it may need to allocate into this buffer, thus increasing the latency.  This event can be used in conjunction with the Flit Buffer Occupancy event in order to calculate the average flit buffer lifetime.  This monitors only DRS flits.",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "Rx Flit Buffer Allocations - HOM",
        "EventCode": "0xc",
        "EventName": "UNC_Q_RxL_INSERTS_HOM",
        "PerPkg": "1",
        "PublicDescription": "Number of allocations into the QPI Rx Flit Buffer.  Generally, when data is transmitted across QPI, it will bypass the RxQ and pass directly to the ring interface.  If things back up getting transmitted onto the ring, however, it may need to allocate into this buffer, thus increasing the latency.  This event can be used in conjunction with the Flit Buffer Occupancy event in order to calculate the average flit buffer lifetime.  This monitors only HOM flits.",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "Rx Flit Buffer Allocations - NCB",
        "EventCode": "0xa",
        "EventName": "UNC_Q_RxL_INSERTS_NCB",
        "PerPkg": "1",
        "PublicDescription": "Number of allocations into the QPI Rx Flit Buffer.  Generally, when data is transmitted across QPI, it will bypass the RxQ and pass directly to the ring interface.  If things back up getting transmitted onto the ring, however, it may need to allocate into this buffer, thus increasing the latency.  This event can be used in conjunction with the Flit Buffer Occupancy event in order to calculate the average flit buffer lifetime.  This monitors only NCB flits.",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "Rx Flit Buffer Allocations - NCS",
        "EventCode": "0xb",
        "EventName": "UNC_Q_RxL_INSERTS_NCS",
        "PerPkg": "1",
        "PublicDescription": "Number of allocations into the QPI Rx Flit Buffer.  Generally, when data is transmitted across QPI, it will bypass the RxQ and pass directly to the ring interface.  If things back up getting transmitted onto the ring, however, it may need to allocate into this buffer, thus increasing the latency.  This event can be used in conjunction with the Flit Buffer Occupancy event in order to calculate the average flit buffer lifetime.  This monitors only NCS flits.",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "Rx Flit Buffer Allocations - NDR",
        "EventCode": "0xe",
        "EventName": "UNC_Q_RxL_INSERTS_NDR",
        "PerPkg": "1",
        "PublicDescription": "Number of allocations into the QPI Rx Flit Buffer.  Generally, when data is transmitted across QPI, it will bypass the RxQ and pass directly to the ring interface.  If things back up getting transmitted onto the ring, however, it may need to allocate into this buffer, thus increasing the latency.  This event can be used in conjunction with the Flit Buffer Occupancy event in order to calculate the average flit buffer lifetime.  This monitors only NDR flits.",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "Rx Flit Buffer Allocations - SNP",
        "EventCode": "0xd",
        "EventName": "UNC_Q_RxL_INSERTS_SNP",
        "PerPkg": "1",
        "PublicDescription": "Number of allocations into the QPI Rx Flit Buffer.  Generally, when data is transmitted across QPI, it will bypass the RxQ and pass directly to the ring interface.  If things back up getting transmitted onto the ring, however, it may need to allocate into this buffer, thus increasing the latency.  This event can be used in conjunction with the Flit Buffer Occupancy event in order to calculate the average flit buffer lifetime.  This monitors only SNP flits.",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "RxQ Occupancy - All Packets",
        "EventCode": "0xb",
        "EventName": "UNC_Q_RxL_OCCUPANCY",
        "PerPkg": "1",
        "PublicDescription": "Accumulates the number of elements in the QPI RxQ in each cycle.  Generally, when data is transmitted across QPI, it will bypass the RxQ and pass directly to the ring interface.  If things back up getting transmitted onto the ring, however, it may need to allocate into this buffer, thus increasing the latency.  This event can be used in conjunction with the Flit Buffer Not Empty event to calculate average occupancy, or with the Flit Buffer Allocations event to track average lifetime.",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "RxQ Occupancy - DRS",
        "EventCode": "0x15",
        "EventName": "UNC_Q_RxL_OCCUPANCY_DRS",
        "PerPkg": "1",
        "PublicDescription": "Accumulates the number of elements in the QPI RxQ in each cycle.  Generally, when data is transmitted across QPI, it will bypass the RxQ and pass directly to the ring interface.  If things back up getting transmitted onto the ring, however, it may need to allocate into this buffer, thus increasing the latency.  This event can be used in conjunction with the Flit Buffer Not Empty event to calculate average occupancy, or with the Flit Buffer Allocations event to track average lifetime.  This monitors DRS flits only.",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "RxQ Occupancy - HOM",
        "EventCode": "0x18",
        "EventName": "UNC_Q_RxL_OCCUPANCY_HOM",
        "PerPkg": "1",
        "PublicDescription": "Accumulates the number of elements in the QPI RxQ in each cycle.  Generally, when data is transmitted across QPI, it will bypass the RxQ and pass directly to the ring interface.  If things back up getting transmitted onto the ring, however, it may need to allocate into this buffer, thus increasing the latency.  This event can be used in conjunction with the Flit Buffer Not Empty event to calculate average occupancy, or with the Flit Buffer Allocations event to track average lifetime.  This monitors HOM flits only.",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "RxQ Occupancy - NCB",
        "EventCode": "0x16",
        "EventName": "UNC_Q_RxL_OCCUPANCY_NCB",
        "PerPkg": "1",
        "PublicDescription": "Accumulates the number of elements in the QPI RxQ in each cycle.  Generally, when data is transmitted across QPI, it will bypass the RxQ and pass directly to the ring interface.  If things back up getting transmitted onto the ring, however, it may need to allocate into this buffer, thus increasing the latency.  This event can be used in conjunction with the Flit Buffer Not Empty event to calculate average occupancy, or with the Flit Buffer Allocations event to track average lifetime.  This monitors NCB flits only.",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "RxQ Occupancy - NCS",
        "EventCode": "0x17",
        "EventName": "UNC_Q_RxL_OCCUPANCY_NCS",
        "PerPkg": "1",
        "PublicDescription": "Accumulates the number of elements in the QPI RxQ in each cycle.  Generally, when data is transmitted across QPI, it will bypass the RxQ and pass directly to the ring interface.  If things back up getting transmitted onto the ring, however, it may need to allocate into this buffer, thus increasing the latency.  This event can be used in conjunction with the Flit Buffer Not Empty event to calculate average occupancy, or with the Flit Buffer Allocations event to track average lifetime.  This monitors NCS flits only.",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "RxQ Occupancy - NDR",
        "EventCode": "0x1a",
        "EventName": "UNC_Q_RxL_OCCUPANCY_NDR",
        "PerPkg": "1",
        "PublicDescription": "Accumulates the number of elements in the QPI RxQ in each cycle.  Generally, when data is transmitted across QPI, it will bypass the RxQ and pass directly to the ring interface.  If things back up getting transmitted onto the ring, however, it may need to allocate into this buffer, thus increasing the latency.  This event can be used in conjunction with the Flit Buffer Not Empty event to calculate average occupancy, or with the Flit Buffer Allocations event to track average lifetime.  This monitors NDR flits only.",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "RxQ Occupancy - SNP",
        "EventCode": "0x19",
        "EventName": "UNC_Q_RxL_OCCUPANCY_SNP",
        "PerPkg": "1",
        "PublicDescription": "Accumulates the number of elements in the QPI RxQ in each cycle.  Generally, when data is transmitted across QPI, it will bypass the RxQ and pass directly to the ring interface.  If things back up getting transmitted onto the ring, however, it may need to allocate into this buffer, thus increasing the latency.  This event can be used in conjunction with the Flit Buffer Not Empty event to calculate average occupancy, or with the Flit Buffer Allocations event to track average lifetime.  This monitors SNP flits only.",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "Stalls Sending to R3QPI; BGF Stall - HOM",
        "EventCode": "0x35",
        "EventName": "UNC_Q_RxL_STALLS.BGF_DRS",
        "PerPkg": "1",
        "PublicDescription": "Number of stalls trying to send to R3QPI.",
        "UMask": "0x1",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "Stalls Sending to R3QPI; BGF Stall - DRS",
        "EventCode": "0x35",
        "EventName": "UNC_Q_RxL_STALLS.BGF_HOM",
        "PerPkg": "1",
        "PublicDescription": "Number of stalls trying to send to R3QPI.",
        "UMask": "0x8",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "Stalls Sending to R3QPI; BGF Stall - SNP",
        "EventCode": "0x35",
        "EventName": "UNC_Q_RxL_STALLS.BGF_NCB",
        "PerPkg": "1",
        "PublicDescription": "Number of stalls trying to send to R3QPI.",
        "UMask": "0x2",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "Stalls Sending to R3QPI; BGF Stall - NDR",
        "EventCode": "0x35",
        "EventName": "UNC_Q_RxL_STALLS.BGF_NCS",
        "PerPkg": "1",
        "PublicDescription": "Number of stalls trying to send to R3QPI.",
        "UMask": "0x4",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "Stalls Sending to R3QPI; BGF Stall - NCS",
        "EventCode": "0x35",
        "EventName": "UNC_Q_RxL_STALLS.BGF_NDR",
        "PerPkg": "1",
        "PublicDescription": "Number of stalls trying to send to R3QPI.",
        "UMask": "0x20",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "Stalls Sending to R3QPI; BGF Stall - NCB",
        "EventCode": "0x35",
        "EventName": "UNC_Q_RxL_STALLS.BGF_SNP",
        "PerPkg": "1",
        "PublicDescription": "Number of stalls trying to send to R3QPI.",
        "UMask": "0x10",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "Stalls Sending to R3QPI; Egress Credits",
        "EventCode": "0x35",
        "EventName": "UNC_Q_RxL_STALLS.EGRESS_CREDITS",
        "PerPkg": "1",
        "PublicDescription": "Number of stalls trying to send to R3QPI.",
        "UMask": "0x40",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "Stalls Sending to R3QPI; GV",
        "EventCode": "0x35",
        "EventName": "UNC_Q_RxL_STALLS.GV",
        "PerPkg": "1",
        "PublicDescription": "Number of stalls trying to send to R3QPI.",
        "UMask": "0x80",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "Cycles in L0p",
        "EventCode": "0xd",
        "EventName": "UNC_Q_TxL0P_POWER_CYCLES",
        "PerPkg": "1",
        "PublicDescription": "Number of QPI qfclk cycles spent in L0p power mode.  L0p is a mode where we disable 1/2 of the QPI lanes, decreasing our bandwidth in order to save power.  It increases snoop and data transfer latencies and decreases overall bandwidth.  This mode can be very useful in NUMA optimized workloads that largely only utilize QPI for snoops and their responses.  Use edge detect to count the number of instances when the QPI link entered L0p.  Link power states are per link and per direction, so for example the Tx direction could be in one state while Rx was in another.",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "Cycles in L0",
        "EventCode": "0xc",
        "EventName": "UNC_Q_TxL0_POWER_CYCLES",
        "PerPkg": "1",
        "PublicDescription": "Number of QPI qfclk cycles spent in L0 power mode in the Link Layer.  L0 is the default mode which provides the highest performance with the most power.  Use edge detect to count the number of instances that the link entered L0.  Link power states are per link and per direction, so for example the Tx direction could be in one state while Rx was in another.  The phy layer  sometimes leaves L0 for training, which will not be captured by this event.",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "Tx Flit Buffer Bypassed",
        "EventCode": "0x5",
        "EventName": "UNC_Q_TxL_BYPASSED",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of times that an incoming flit was able to bypass the Tx flit buffer and pass directly out the QPI Link. Generally, when data is transmitted across QPI, it will bypass the TxQ and pass directly to the link.  However, the TxQ will be used with L0p and when LLR occurs, increasing latency to transfer out to the link.",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "Cycles Stalled with no LLR Credits; LLR is almost full",
        "EventCode": "0x2",
        "EventName": "UNC_Q_TxL_CRC_NO_CREDITS.ALMOST_FULL",
        "PerPkg": "1",
        "PublicDescription": "Number of cycles when the Tx side ran out of Link Layer Retry credits, causing the Tx to stall.",
        "UMask": "0x2",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "Cycles Stalled with no LLR Credits; LLR is full",
        "EventCode": "0x2",
        "EventName": "UNC_Q_TxL_CRC_NO_CREDITS.FULL",
        "PerPkg": "1",
        "PublicDescription": "Number of cycles when the Tx side ran out of Link Layer Retry credits, causing the Tx to stall.",
        "UMask": "0x1",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "Tx Flit Buffer Cycles not Empty",
        "EventCode": "0x6",
        "EventName": "UNC_Q_TxL_CYCLES_NE",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of cycles when the TxQ is not empty. Generally, when data is transmitted across QPI, it will bypass the TxQ and pass directly to the link.  However, the TxQ will be used with L0p and when LLR occurs, increasing latency to transfer out to the link.",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "Flits Transferred - Group 0; Data Tx Flits",
        "EventName": "UNC_Q_TxL_FLITS_G0.DATA",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of flits transmitted across the QPI Link.  It includes filters for Idle, protocol, and Data Flits.  Each 'flit' is made up of 80 bits of information (in addition to some ECC data).  In full-width (L0) mode, flits are made up of four 'fits', each of which contains 20 bits of data (along with some additional ECC data).   In half-width (L0p) mode, the fits are only 10 bits, and therefore it takes twice as many fits to transmit a flit.  When one talks about QPI 'speed' (for example, 8.0 GT/s), the 'transfers' here refer to 'fits'.  Therefore, in L0, the system will transfer 1 'flit' at the rate of 1/4th the QPI speed.  One can calculate the bandwidth of the link by taking: flits*80b/time.  Note that this is not the same as 'data' bandwidth.  For example, when we are transferring a 64B cacheline across QPI, we will break it into 9 flits -- 1 with header information and 8 with 64 bits of actual 'data' and an additional 16 bits of other information.  To calculate 'data' bandwidth, one should therefore do: data flits * 8B / time (for L0) or 4B instead of 8B for L0p.",
        "UMask": "0x2",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "Flits Transferred - Group 0; Idle and Null Flits",
        "EventName": "UNC_Q_TxL_FLITS_G0.IDLE",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of flits transmitted across the QPI Link.  It includes filters for Idle, protocol, and Data Flits.  Each 'flit' is made up of 80 bits of information (in addition to some ECC data).  In full-width (L0) mode, flits are made up of four 'fits', each of which contains 20 bits of data (along with some additional ECC data).   In half-width (L0p) mode, the fits are only 10 bits, and therefore it takes twice as many fits to transmit a flit.  When one talks about QPI 'speed' (for example, 8.0 GT/s), the 'transfers' here refer to 'fits'.  Therefore, in L0, the system will transfer 1 'flit' at the rate of 1/4th the QPI speed.  One can calculate the bandwidth of the link by taking: flits*80b/time.  Note that this is not the same as 'data' bandwidth.  For example, when we are transferring a 64B cacheline across QPI, we will break it into 9 flits -- 1 with header information and 8 with 64 bits of actual 'data' and an additional 16 bits of other information.  To calculate 'data' bandwidth, one should therefore do: data flits * 8B / time (for L0) or 4B instead of 8B for L0p.",
        "UMask": "0x1",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "Flits Transferred - Group 0; Non-Data protocol Tx Flits",
        "EventName": "UNC_Q_TxL_FLITS_G0.NON_DATA",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of flits transmitted across the QPI Link.  It includes filters for Idle, protocol, and Data Flits.  Each 'flit' is made up of 80 bits of information (in addition to some ECC data).  In full-width (L0) mode, flits are made up of four 'fits', each of which contains 20 bits of data (along with some additional ECC data).   In half-width (L0p) mode, the fits are only 10 bits, and therefore it takes twice as many fits to transmit a flit.  When one talks about QPI 'speed' (for example, 8.0 GT/s), the 'transfers' here refer to 'fits'.  Therefore, in L0, the system will transfer 1 'flit' at the rate of 1/4th the QPI speed.  One can calculate the bandwidth of the link by taking: flits*80b/time.  Note that this is not the same as 'data' bandwidth.  For example, when we are transferring a 64B cacheline across QPI, we will break it into 9 flits -- 1 with header information and 8 with 64 bits of actual 'data' and an additional 16 bits of other information.  To calculate 'data' bandwidth, one should therefore do: data flits * 8B / time (for L0) or 4B instead of 8B for L0p.",
        "UMask": "0x4",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "Flits Transferred - Group 1; DRS Flits (both Header and Data)",
        "EventName": "UNC_Q_TxL_FLITS_G1.DRS",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of flits transmitted across the QPI Link.  This is one of three 'groups' that allow us to track flits.  It includes filters for SNP, HOM, and DRS message classes.  Each 'flit' is made up of 80 bits of information (in addition to some ECC data).  In full-width (L0) mode, flits are made up of four 'fits', each of which contains 20 bits of data (along with some additional ECC data).   In half-width (L0p) mode, the fits are only 10 bits, and therefore it takes twice as many fits to transmit a flit.  When one talks about QPI 'speed' (for example, 8.0 GT/s), the 'transfers' here refer to 'fits'.  Therefore, in L0, the system will transfer 1 'flit' at the rate of 1/4th the QPI speed.  One can calculate the bandwidth of the link by taking: flits*80b/time.  Note that this is not the same as 'data' bandwidth.  For example, when we are transferring a 64B cacheline across QPI, we will break it into 9 flits -- 1 with header information and 8 with 64 bits of actual 'data' and an additional 16 bits of other information.  To calculate 'data' bandwidth, one should therefore do: data flits * 8B / time.",
        "UMask": "0x18",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "Flits Transferred - Group 1; DRS Data Flits",
        "EventName": "UNC_Q_TxL_FLITS_G1.DRS_DATA",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of flits transmitted across the QPI Link.  This is one of three 'groups' that allow us to track flits.  It includes filters for SNP, HOM, and DRS message classes.  Each 'flit' is made up of 80 bits of information (in addition to some ECC data).  In full-width (L0) mode, flits are made up of four 'fits', each of which contains 20 bits of data (along with some additional ECC data).   In half-width (L0p) mode, the fits are only 10 bits, and therefore it takes twice as many fits to transmit a flit.  When one talks about QPI 'speed' (for example, 8.0 GT/s), the 'transfers' here refer to 'fits'.  Therefore, in L0, the system will transfer 1 'flit' at the rate of 1/4th the QPI speed.  One can calculate the bandwidth of the link by taking: flits*80b/time.  Note that this is not the same as 'data' bandwidth.  For example, when we are transferring a 64B cacheline across QPI, we will break it into 9 flits -- 1 with header information and 8 with 64 bits of actual 'data' and an additional 16 bits of other information.  To calculate 'data' bandwidth, one should therefore do: data flits * 8B / time.",
        "UMask": "0x8",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "Flits Transferred - Group 1; DRS Header Flits",
        "EventName": "UNC_Q_TxL_FLITS_G1.DRS_NONDATA",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of flits transmitted across the QPI Link.  This is one of three 'groups' that allow us to track flits.  It includes filters for SNP, HOM, and DRS message classes.  Each 'flit' is made up of 80 bits of information (in addition to some ECC data).  In full-width (L0) mode, flits are made up of four 'fits', each of which contains 20 bits of data (along with some additional ECC data).   In half-width (L0p) mode, the fits are only 10 bits, and therefore it takes twice as many fits to transmit a flit.  When one talks about QPI 'speed' (for example, 8.0 GT/s), the 'transfers' here refer to 'fits'.  Therefore, in L0, the system will transfer 1 'flit' at the rate of 1/4th the QPI speed.  One can calculate the bandwidth of the link by taking: flits*80b/time.  Note that this is not the same as 'data' bandwidth.  For example, when we are transferring a 64B cacheline across QPI, we will break it into 9 flits -- 1 with header information and 8 with 64 bits of actual 'data' and an additional 16 bits of other information.  To calculate 'data' bandwidth, one should therefore do: data flits * 8B / time.",
        "UMask": "0x10",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "Flits Transferred - Group 1; HOM Flits",
        "EventName": "UNC_Q_TxL_FLITS_G1.HOM",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of flits transmitted across the QPI Link.  This is one of three 'groups' that allow us to track flits.  It includes filters for SNP, HOM, and DRS message classes.  Each 'flit' is made up of 80 bits of information (in addition to some ECC data).  In full-width (L0) mode, flits are made up of four 'fits', each of which contains 20 bits of data (along with some additional ECC data).   In half-width (L0p) mode, the fits are only 10 bits, and therefore it takes twice as many fits to transmit a flit.  When one talks about QPI 'speed' (for example, 8.0 GT/s), the 'transfers' here refer to 'fits'.  Therefore, in L0, the system will transfer 1 'flit' at the rate of 1/4th the QPI speed.  One can calculate the bandwidth of the link by taking: flits*80b/time.  Note that this is not the same as 'data' bandwidth.  For example, when we are transferring a 64B cacheline across QPI, we will break it into 9 flits -- 1 with header information and 8 with 64 bits of actual 'data' and an additional 16 bits of other information.  To calculate 'data' bandwidth, one should therefore do: data flits * 8B / time.",
        "UMask": "0x6",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "Flits Transferred - Group 1; HOM Non-Request Flits",
        "EventName": "UNC_Q_TxL_FLITS_G1.HOM_NONREQ",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of flits transmitted across the QPI Link.  This is one of three 'groups' that allow us to track flits.  It includes filters for SNP, HOM, and DRS message classes.  Each 'flit' is made up of 80 bits of information (in addition to some ECC data).  In full-width (L0) mode, flits are made up of four 'fits', each of which contains 20 bits of data (along with some additional ECC data).   In half-width (L0p) mode, the fits are only 10 bits, and therefore it takes twice as many fits to transmit a flit.  When one talks about QPI 'speed' (for example, 8.0 GT/s), the 'transfers' here refer to 'fits'.  Therefore, in L0, the system will transfer 1 'flit' at the rate of 1/4th the QPI speed.  One can calculate the bandwidth of the link by taking: flits*80b/time.  Note that this is not the same as 'data' bandwidth.  For example, when we are transferring a 64B cacheline across QPI, we will break it into 9 flits -- 1 with header information and 8 with 64 bits of actual 'data' and an additional 16 bits of other information.  To calculate 'data' bandwidth, one should therefore do: data flits * 8B / time.",
        "UMask": "0x4",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "Flits Transferred - Group 1; HOM Request Flits",
        "EventName": "UNC_Q_TxL_FLITS_G1.HOM_REQ",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of flits transmitted across the QPI Link.  This is one of three 'groups' that allow us to track flits.  It includes filters for SNP, HOM, and DRS message classes.  Each 'flit' is made up of 80 bits of information (in addition to some ECC data).  In full-width (L0) mode, flits are made up of four 'fits', each of which contains 20 bits of data (along with some additional ECC data).   In half-width (L0p) mode, the fits are only 10 bits, and therefore it takes twice as many fits to transmit a flit.  When one talks about QPI 'speed' (for example, 8.0 GT/s), the 'transfers' here refer to 'fits'.  Therefore, in L0, the system will transfer 1 'flit' at the rate of 1/4th the QPI speed.  One can calculate the bandwidth of the link by taking: flits*80b/time.  Note that this is not the same as 'data' bandwidth.  For example, when we are transferring a 64B cacheline across QPI, we will break it into 9 flits -- 1 with header information and 8 with 64 bits of actual 'data' and an additional 16 bits of other information.  To calculate 'data' bandwidth, one should therefore do: data flits * 8B / time.",
        "UMask": "0x2",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "Flits Transferred - Group 1; SNP Flits",
        "EventName": "UNC_Q_TxL_FLITS_G1.SNP",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of flits transmitted across the QPI Link.  This is one of three 'groups' that allow us to track flits.  It includes filters for SNP, HOM, and DRS message classes.  Each 'flit' is made up of 80 bits of information (in addition to some ECC data).  In full-width (L0) mode, flits are made up of four 'fits', each of which contains 20 bits of data (along with some additional ECC data).   In half-width (L0p) mode, the fits are only 10 bits, and therefore it takes twice as many fits to transmit a flit.  When one talks about QPI 'speed' (for example, 8.0 GT/s), the 'transfers' here refer to 'fits'.  Therefore, in L0, the system will transfer 1 'flit' at the rate of 1/4th the QPI speed.  One can calculate the bandwidth of the link by taking: flits*80b/time.  Note that this is not the same as 'data' bandwidth.  For example, when we are transferring a 64B cacheline across QPI, we will break it into 9 flits -- 1 with header information and 8 with 64 bits of actual 'data' and an additional 16 bits of other information.  To calculate 'data' bandwidth, one should therefore do: data flits * 8B / time.",
        "UMask": "0x1",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "Flits Transferred - Group 2; Non-Coherent Bypass Tx Flits",
        "EventCode": "0x1",
        "EventName": "UNC_Q_TxL_FLITS_G2.NCB",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of flits transmitted across the QPI Link.  This is one of three 'groups' that allow us to track flits.  It includes filters for NDR, NCB, and NCS message classes.  Each 'flit' is made up of 80 bits of information (in addition to some ECC data).  In full-width (L0) mode, flits are made up of four 'fits', each of which contains 20 bits of data (along with some additional ECC data).   In half-width (L0p) mode, the fits are only 10 bits, and therefore it takes twice as many fits to transmit a flit.  When one talks about QPI 'speed' (for example, 8.0 GT/s), the 'transfers' here refer to 'fits'.  Therefore, in L0, the system will transfer 1 'flit' at the rate of 1/4th the QPI speed.  One can calculate the bandwidth of the link by taking: flits*80b/time.  Note that this is not the same as 'data' bandwidth.  For example, when we are transferring a 64B cacheline across QPI, we will break it into 9 flits -- 1 with header information and 8 with 64 bits of actual 'data' and an additional 16 bits of other information.  To calculate 'data' bandwidth, one should therefore do: data flits * 8B / time.",
        "UMask": "0xc",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "Flits Transferred - Group 2; Non-Coherent data Tx Flits",
        "EventCode": "0x1",
        "EventName": "UNC_Q_TxL_FLITS_G2.NCB_DATA",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of flits transmitted across the QPI Link.  This is one of three 'groups' that allow us to track flits.  It includes filters for NDR, NCB, and NCS message classes.  Each 'flit' is made up of 80 bits of information (in addition to some ECC data).  In full-width (L0) mode, flits are made up of four 'fits', each of which contains 20 bits of data (along with some additional ECC data).   In half-width (L0p) mode, the fits are only 10 bits, and therefore it takes twice as many fits to transmit a flit.  When one talks about QPI 'speed' (for example, 8.0 GT/s), the 'transfers' here refer to 'fits'.  Therefore, in L0, the system will transfer 1 'flit' at the rate of 1/4th the QPI speed.  One can calculate the bandwidth of the link by taking: flits*80b/time.  Note that this is not the same as 'data' bandwidth.  For example, when we are transferring a 64B cacheline across QPI, we will break it into 9 flits -- 1 with header information and 8 with 64 bits of actual 'data' and an additional 16 bits of other information.  To calculate 'data' bandwidth, one should therefore do: data flits * 8B / time.",
        "UMask": "0x4",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "Flits Transferred - Group 2; Non-Coherent non-data Tx Flits",
        "EventCode": "0x1",
        "EventName": "UNC_Q_TxL_FLITS_G2.NCB_NONDATA",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of flits transmitted across the QPI Link.  This is one of three 'groups' that allow us to track flits.  It includes filters for NDR, NCB, and NCS message classes.  Each 'flit' is made up of 80 bits of information (in addition to some ECC data).  In full-width (L0) mode, flits are made up of four 'fits', each of which contains 20 bits of data (along with some additional ECC data).   In half-width (L0p) mode, the fits are only 10 bits, and therefore it takes twice as many fits to transmit a flit.  When one talks about QPI 'speed' (for example, 8.0 GT/s), the 'transfers' here refer to 'fits'.  Therefore, in L0, the system will transfer 1 'flit' at the rate of 1/4th the QPI speed.  One can calculate the bandwidth of the link by taking: flits*80b/time.  Note that this is not the same as 'data' bandwidth.  For example, when we are transferring a 64B cacheline across QPI, we will break it into 9 flits -- 1 with header information and 8 with 64 bits of actual 'data' and an additional 16 bits of other information.  To calculate 'data' bandwidth, one should therefore do: data flits * 8B / time.",
        "UMask": "0x8",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "Flits Transferred - Group 2; Non-Coherent standard Tx Flits",
        "EventCode": "0x1",
        "EventName": "UNC_Q_TxL_FLITS_G2.NCS",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of flits transmitted across the QPI Link.  This is one of three 'groups' that allow us to track flits.  It includes filters for NDR, NCB, and NCS message classes.  Each 'flit' is made up of 80 bits of information (in addition to some ECC data).  In full-width (L0) mode, flits are made up of four 'fits', each of which contains 20 bits of data (along with some additional ECC data).   In half-width (L0p) mode, the fits are only 10 bits, and therefore it takes twice as many fits to transmit a flit.  When one talks about QPI 'speed' (for example, 8.0 GT/s), the 'transfers' here refer to 'fits'.  Therefore, in L0, the system will transfer 1 'flit' at the rate of 1/4th the QPI speed.  One can calculate the bandwidth of the link by taking: flits*80b/time.  Note that this is not the same as 'data' bandwidth.  For example, when we are transferring a 64B cacheline across QPI, we will break it into 9 flits -- 1 with header information and 8 with 64 bits of actual 'data' and an additional 16 bits of other information.  To calculate 'data' bandwidth, one should therefore do: data flits * 8B / time.",
        "UMask": "0x10",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "Flits Transferred - Group 2; Non-Data Response Tx Flits - AD",
        "EventCode": "0x1",
        "EventName": "UNC_Q_TxL_FLITS_G2.NDR_AD",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of flits transmitted across the QPI Link.  This is one of three 'groups' that allow us to track flits.  It includes filters for NDR, NCB, and NCS message classes.  Each 'flit' is made up of 80 bits of information (in addition to some ECC data).  In full-width (L0) mode, flits are made up of four 'fits', each of which contains 20 bits of data (along with some additional ECC data).   In half-width (L0p) mode, the fits are only 10 bits, and therefore it takes twice as many fits to transmit a flit.  When one talks about QPI 'speed' (for example, 8.0 GT/s), the 'transfers' here refer to 'fits'.  Therefore, in L0, the system will transfer 1 'flit' at the rate of 1/4th the QPI speed.  One can calculate the bandwidth of the link by taking: flits*80b/time.  Note that this is not the same as 'data' bandwidth.  For example, when we are transferring a 64B cacheline across QPI, we will break it into 9 flits -- 1 with header information and 8 with 64 bits of actual 'data' and an additional 16 bits of other information.  To calculate 'data' bandwidth, one should therefore do: data flits * 8B / time.",
        "UMask": "0x1",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "Flits Transferred - Group 2; Non-Data Response Tx Flits - AK",
        "EventCode": "0x1",
        "EventName": "UNC_Q_TxL_FLITS_G2.NDR_AK",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of flits transmitted across the QPI Link.  This is one of three 'groups' that allow us to track flits.  It includes filters for NDR, NCB, and NCS message classes.  Each 'flit' is made up of 80 bits of information (in addition to some ECC data).  In full-width (L0) mode, flits are made up of four 'fits', each of which contains 20 bits of data (along with some additional ECC data).   In half-width (L0p) mode, the fits are only 10 bits, and therefore it takes twice as many fits to transmit a flit.  When one talks about QPI 'speed' (for example, 8.0 GT/s), the 'transfers' here refer to 'fits'.  Therefore, in L0, the system will transfer 1 'flit' at the rate of 1/4th the QPI speed.  One can calculate the bandwidth of the link by taking: flits*80b/time.  Note that this is not the same as 'data' bandwidth.  For example, when we are transferring a 64B cacheline across QPI, we will break it into 9 flits -- 1 with header information and 8 with 64 bits of actual 'data' and an additional 16 bits of other information.  To calculate 'data' bandwidth, one should therefore do: data flits * 8B / time.",
        "UMask": "0x2",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "Tx Flit Buffer Allocations",
        "EventCode": "0x4",
        "EventName": "UNC_Q_TxL_INSERTS",
        "PerPkg": "1",
        "PublicDescription": "Number of allocations into the QPI Tx Flit Buffer.  Generally, when data is transmitted across QPI, it will bypass the TxQ and pass directly to the link.  However, the TxQ will be used with L0p and when LLR occurs, increasing latency to transfer out to the link.  This event can be used in conjunction with the Flit Buffer Occupancy event in order to calculate the average flit buffer lifetime.",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "Tx Flit Buffer Occupancy",
        "EventCode": "0x7",
        "EventName": "UNC_Q_TxL_OCCUPANCY",
        "PerPkg": "1",
        "PublicDescription": "Accumulates the number of flits in the TxQ.  Generally, when data is transmitted across QPI, it will bypass the TxQ and pass directly to the link.  However, the TxQ will be used with L0p and when LLR occurs, increasing latency to transfer out to the link. This can be used with the cycles not empty event to track average occupancy, or the allocations event to track average lifetime in the TxQ.",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "VNA Credits Returned",
        "EventCode": "0x1c",
        "EventName": "UNC_Q_VNA_CREDIT_RETURNS",
        "PerPkg": "1",
        "PublicDescription": "Number of VNA credits returned.",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "VNA Credits Pending Return - Occupancy",
        "EventCode": "0x1b",
        "EventName": "UNC_Q_VNA_CREDIT_RETURN_OCCUPANCY",
        "PerPkg": "1",
        "PublicDescription": "Number of VNA credits in the Rx side that are waitng to be returned back across the link.",
        "Unit": "QPI"
    },
    {
        "BriefDescription": "Number of uclks in domain",
        "EventCode": "0x1",
        "EventName": "UNC_R3_CLOCKTICKS",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of uclks in the QPI uclk domain.  This could be slightly different than the count in the Ubox because of enable/freeze delays.  However, because the QPI Agent is close to the Ubox, they generally should not diverge by more than a handful of cycles.",
        "Unit": "R3QPI"
    },
    {
        "BriefDescription": "to IIO BL Credit Acquired",
        "EventCode": "0x20",
        "EventName": "UNC_R3_IIO_CREDITS_ACQUIRED.DRS",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of times the NCS/NCB/DRS credit is acquired in the QPI for sending messages on BL to the IIO.  There is one credit for each of these three message classes (three credits total).  NCS is used for reads to PCIe space, NCB is used for transferring data without coherency, and DRS is used for transferring data with coherency (cacheable PCI transactions).  This event can only track one message class at a time.",
        "UMask": "0x8",
        "Unit": "R3QPI"
    },
    {
        "BriefDescription": "to IIO BL Credit Acquired",
        "EventCode": "0x20",
        "EventName": "UNC_R3_IIO_CREDITS_ACQUIRED.NCB",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of times the NCS/NCB/DRS credit is acquired in the QPI for sending messages on BL to the IIO.  There is one credit for each of these three message classes (three credits total).  NCS is used for reads to PCIe space, NCB is used for transferring data without coherency, and DRS is used for transferring data with coherency (cacheable PCI transactions).  This event can only track one message class at a time.",
        "UMask": "0x10",
        "Unit": "R3QPI"
    },
    {
        "BriefDescription": "to IIO BL Credit Acquired",
        "EventCode": "0x20",
        "EventName": "UNC_R3_IIO_CREDITS_ACQUIRED.NCS",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of times the NCS/NCB/DRS credit is acquired in the QPI for sending messages on BL to the IIO.  There is one credit for each of these three message classes (three credits total).  NCS is used for reads to PCIe space, NCB is used for transferring data without coherency, and DRS is used for transferring data with coherency (cacheable PCI transactions).  This event can only track one message class at a time.",
        "UMask": "0x20",
        "Unit": "R3QPI"
    },
    {
        "BriefDescription": "to IIO BL Credit Rejected",
        "EventCode": "0x21",
        "EventName": "UNC_R3_IIO_CREDITS_REJECT.DRS",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of times that a request attempted to acquire an NCS/NCB/DRS credit in the QPI for sending messages on BL to the IIO but was rejected because no credit was available.  There is one credit for each of these three message classes (three credits total).  NCS is used for reads to PCIe space, NCB is used for transferring data without coherency, and DRS is used for transferring data with coherency (cacheable PCI transactions).  This event can only track one message class at a time.",
        "UMask": "0x8",
        "Unit": "R3QPI"
    },
    {
        "BriefDescription": "to IIO BL Credit Rejected",
        "EventCode": "0x21",
        "EventName": "UNC_R3_IIO_CREDITS_REJECT.NCB",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of times that a request attempted to acquire an NCS/NCB/DRS credit in the QPI for sending messages on BL to the IIO but was rejected because no credit was available.  There is one credit for each of these three message classes (three credits total).  NCS is used for reads to PCIe space, NCB is used for transferring data without coherency, and DRS is used for transferring data with coherency (cacheable PCI transactions).  This event can only track one message class at a time.",
        "UMask": "0x10",
        "Unit": "R3QPI"
    },
    {
        "BriefDescription": "to IIO BL Credit Rejected",
        "EventCode": "0x21",
        "EventName": "UNC_R3_IIO_CREDITS_REJECT.NCS",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of times that a request attempted to acquire an NCS/NCB/DRS credit in the QPI for sending messages on BL to the IIO but was rejected because no credit was available.  There is one credit for each of these three message classes (three credits total).  NCS is used for reads to PCIe space, NCB is used for transferring data without coherency, and DRS is used for transferring data with coherency (cacheable PCI transactions).  This event can only track one message class at a time.",
        "UMask": "0x20",
        "Unit": "R3QPI"
    },
    {
        "BriefDescription": "to IIO BL Credit In Use",
        "EventCode": "0x22",
        "EventName": "UNC_R3_IIO_CREDITS_USED.DRS",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of cycles when the NCS/NCB/DRS credit is in use in the QPI for sending messages on BL to the IIO.  There is one credit for each of these three message classes (three credits total).  NCS is used for reads to PCIe space, NCB is used for transferring data without coherency, and DRS is used for transferring data with coherency (cacheable PCI transactions).  This event can only track one message class at a time.",
        "UMask": "0x8",
        "Unit": "R3QPI"
    },
    {
        "BriefDescription": "to IIO BL Credit In Use",
        "EventCode": "0x22",
        "EventName": "UNC_R3_IIO_CREDITS_USED.NCB",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of cycles when the NCS/NCB/DRS credit is in use in the QPI for sending messages on BL to the IIO.  There is one credit for each of these three message classes (three credits total).  NCS is used for reads to PCIe space, NCB is used for transferring data without coherency, and DRS is used for transferring data with coherency (cacheable PCI transactions).  This event can only track one message class at a time.",
        "UMask": "0x10",
        "Unit": "R3QPI"
    },
    {
        "BriefDescription": "to IIO BL Credit In Use",
        "EventCode": "0x22",
        "EventName": "UNC_R3_IIO_CREDITS_USED.NCS",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of cycles when the NCS/NCB/DRS credit is in use in the QPI for sending messages on BL to the IIO.  There is one credit for each of these three message classes (three credits total).  NCS is used for reads to PCIe space, NCB is used for transferring data without coherency, and DRS is used for transferring data with coherency (cacheable PCI transactions).  This event can only track one message class at a time.",
        "UMask": "0x20",
        "Unit": "R3QPI"
    },
    {
        "BriefDescription": "R3 AD Ring in Use; Counterclockwise and Even",
        "EventCode": "0x7",
        "EventName": "UNC_R3_RING_AD_USED.CCW_EVEN",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of cycles that the AD ring is being used at this ring stop.  This includes when packets are passing by and when packets are being sunk, but does not include when packets are being sent from the ring stop.",
        "UMask": "0x4",
        "Unit": "R3QPI"
    },
    {
        "BriefDescription": "R3 AD Ring in Use; Counterclockwise and Odd",
        "EventCode": "0x7",
        "EventName": "UNC_R3_RING_AD_USED.CCW_ODD",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of cycles that the AD ring is being used at this ring stop.  This includes when packets are passing by and when packets are being sunk, but does not include when packets are being sent from the ring stop.",
        "UMask": "0x8",
        "Unit": "R3QPI"
    },
    {
        "BriefDescription": "R3 AD Ring in Use; Clockwise and Even",
        "EventCode": "0x7",
        "EventName": "UNC_R3_RING_AD_USED.CW_EVEN",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of cycles that the AD ring is being used at this ring stop.  This includes when packets are passing by and when packets are being sunk, but does not include when packets are being sent from the ring stop.",
        "UMask": "0x1",
        "Unit": "R3QPI"
    },
    {
        "BriefDescription": "R3 AD Ring in Use; Clockwise and Odd",
        "EventCode": "0x7",
        "EventName": "UNC_R3_RING_AD_USED.CW_ODD",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of cycles that the AD ring is being used at this ring stop.  This includes when packets are passing by and when packets are being sunk, but does not include when packets are being sent from the ring stop.",
        "UMask": "0x2",
        "Unit": "R3QPI"
    },
    {
        "BriefDescription": "R3 AK Ring in Use; Counterclockwise and Even",
        "EventCode": "0x8",
        "EventName": "UNC_R3_RING_AK_USED.CCW_EVEN",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of cycles that the AK ring is being used at this ring stop.  This includes when packets are passing by and when packets are being sent, but does not include when packets are being sunk into the ring stop.",
        "UMask": "0x4",
        "Unit": "R3QPI"
    },
    {
        "BriefDescription": "R3 AK Ring in Use; Counterclockwise and Odd",
        "EventCode": "0x8",
        "EventName": "UNC_R3_RING_AK_USED.CCW_ODD",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of cycles that the AK ring is being used at this ring stop.  This includes when packets are passing by and when packets are being sent, but does not include when packets are being sunk into the ring stop.",
        "UMask": "0x8",
        "Unit": "R3QPI"
    },
    {
        "BriefDescription": "R3 AK Ring in Use; Clockwise and Even",
        "EventCode": "0x8",
        "EventName": "UNC_R3_RING_AK_USED.CW_EVEN",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of cycles that the AK ring is being used at this ring stop.  This includes when packets are passing by and when packets are being sent, but does not include when packets are being sunk into the ring stop.",
        "UMask": "0x1",
        "Unit": "R3QPI"
    },
    {
        "BriefDescription": "R3 AK Ring in Use; Clockwise and Odd",
        "EventCode": "0x8",
        "EventName": "UNC_R3_RING_AK_USED.CW_ODD",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of cycles that the AK ring is being used at this ring stop.  This includes when packets are passing by and when packets are being sent, but does not include when packets are being sunk into the ring stop.",
        "UMask": "0x2",
        "Unit": "R3QPI"
    },
    {
        "BriefDescription": "R3 BL Ring in Use; Counterclockwise and Even",
        "EventCode": "0x9",
        "EventName": "UNC_R3_RING_BL_USED.CCW_EVEN",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of cycles that the BL ring is being used at this ring stop.  This includes when packets are passing by and when packets are being sunk, but does not include when packets are being sent from the ring stop.",
        "UMask": "0x4",
        "Unit": "R3QPI"
    },
    {
        "BriefDescription": "R3 BL Ring in Use; Counterclockwise and Odd",
        "EventCode": "0x9",
        "EventName": "UNC_R3_RING_BL_USED.CCW_ODD",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of cycles that the BL ring is being used at this ring stop.  This includes when packets are passing by and when packets are being sunk, but does not include when packets are being sent from the ring stop.",
        "UMask": "0x8",
        "Unit": "R3QPI"
    },
    {
        "BriefDescription": "R3 BL Ring in Use; Clockwise and Even",
        "EventCode": "0x9",
        "EventName": "UNC_R3_RING_BL_USED.CW_EVEN",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of cycles that the BL ring is being used at this ring stop.  This includes when packets are passing by and when packets are being sunk, but does not include when packets are being sent from the ring stop.",
        "UMask": "0x1",
        "Unit": "R3QPI"
    },
    {
        "BriefDescription": "R3 BL Ring in Use; Clockwise and Odd",
        "EventCode": "0x9",
        "EventName": "UNC_R3_RING_BL_USED.CW_ODD",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of cycles that the BL ring is being used at this ring stop.  This includes when packets are passing by and when packets are being sunk, but does not include when packets are being sent from the ring stop.",
        "UMask": "0x2",
        "Unit": "R3QPI"
    },
    {
        "BriefDescription": "R3 IV Ring in Use; Any",
        "EventCode": "0xa",
        "EventName": "UNC_R3_RING_IV_USED.ANY",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of cycles that the IV ring is being used at this ring stop.  This includes when packets are passing by and when packets are being sent, but does not include when packets are being sunk into the ring stop.  The IV ring is unidirectional.  Whether UP or DN is used is dependent on the system programming.  Thereofore, one should generally set both the UP and DN bits for a given polarity (or both) at a given time.",
        "UMask": "0xf",
        "Unit": "R3QPI"
    },
    {
        "BriefDescription": "Ingress Bypassed",
        "EventCode": "0x12",
        "EventName": "UNC_R3_RxR_BYPASSED.AD",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of times when the Ingress was bypassed and an incoming transaction was bypassed directly across the BGF and into the qfclk domain.",
        "UMask": "0x1",
        "Unit": "R3QPI"
    },
    {
        "BriefDescription": "Ingress Cycles Not Empty; DRS",
        "EventCode": "0x10",
        "EventName": "UNC_R3_RxR_CYCLES_NE.DRS",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of cycles when the QPI Ingress is not empty.  This tracks one of the three rings that are used by the QPI agent.  This can be used in conjunction with the QPI Ingress Occupancy Accumulator event in order to calculate average queue occupancy.  Multiple ingress buffers can be tracked at a given time using multiple counters.",
        "UMask": "0x8",
        "Unit": "R3QPI"
    },
    {
        "BriefDescription": "Ingress Cycles Not Empty; HOM",
        "EventCode": "0x10",
        "EventName": "UNC_R3_RxR_CYCLES_NE.HOM",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of cycles when the QPI Ingress is not empty.  This tracks one of the three rings that are used by the QPI agent.  This can be used in conjunction with the QPI Ingress Occupancy Accumulator event in order to calculate average queue occupancy.  Multiple ingress buffers can be tracked at a given time using multiple counters.",
        "UMask": "0x1",
        "Unit": "R3QPI"
    },
    {
        "BriefDescription": "Ingress Cycles Not Empty; NCB",
        "EventCode": "0x10",
        "EventName": "UNC_R3_RxR_CYCLES_NE.NCB",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of cycles when the QPI Ingress is not empty.  This tracks one of the three rings that are used by the QPI agent.  This can be used in conjunction with the QPI Ingress Occupancy Accumulator event in order to calculate average queue occupancy.  Multiple ingress buffers can be tracked at a given time using multiple counters.",
        "UMask": "0x10",
        "Unit": "R3QPI"
    },
    {
        "BriefDescription": "Ingress Cycles Not Empty; NCS",
        "EventCode": "0x10",
        "EventName": "UNC_R3_RxR_CYCLES_NE.NCS",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of cycles when the QPI Ingress is not empty.  This tracks one of the three rings that are used by the QPI agent.  This can be used in conjunction with the QPI Ingress Occupancy Accumulator event in order to calculate average queue occupancy.  Multiple ingress buffers can be tracked at a given time using multiple counters.",
        "UMask": "0x20",
        "Unit": "R3QPI"
    },
    {
        "BriefDescription": "Ingress Cycles Not Empty; NDR",
        "EventCode": "0x10",
        "EventName": "UNC_R3_RxR_CYCLES_NE.NDR",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of cycles when the QPI Ingress is not empty.  This tracks one of the three rings that are used by the QPI agent.  This can be used in conjunction with the QPI Ingress Occupancy Accumulator event in order to calculate average queue occupancy.  Multiple ingress buffers can be tracked at a given time using multiple counters.",
        "UMask": "0x4",
        "Unit": "R3QPI"
    },
    {
        "BriefDescription": "Ingress Cycles Not Empty; SNP",
        "EventCode": "0x10",
        "EventName": "UNC_R3_RxR_CYCLES_NE.SNP",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of cycles when the QPI Ingress is not empty.  This tracks one of the three rings that are used by the QPI agent.  This can be used in conjunction with the QPI Ingress Occupancy Accumulator event in order to calculate average queue occupancy.  Multiple ingress buffers can be tracked at a given time using multiple counters.",
        "UMask": "0x2",
        "Unit": "R3QPI"
    },
    {
        "BriefDescription": "Ingress Allocations; DRS",
        "EventCode": "0x11",
        "EventName": "UNC_R3_RxR_INSERTS.DRS",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of allocations into the QPI Ingress.  This tracks one of the three rings that are used by the QPI agent.  This can be used in conjunction with the QPI Ingress Occupancy Accumulator event in order to calculate average queue latency.  Multiple ingress buffers can be tracked at a given time using multiple counters.",
        "UMask": "0x8",
        "Unit": "R3QPI"
    },
    {
        "BriefDescription": "Ingress Allocations; HOM",
        "EventCode": "0x11",
        "EventName": "UNC_R3_RxR_INSERTS.HOM",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of allocations into the QPI Ingress.  This tracks one of the three rings that are used by the QPI agent.  This can be used in conjunction with the QPI Ingress Occupancy Accumulator event in order to calculate average queue latency.  Multiple ingress buffers can be tracked at a given time using multiple counters.",
        "UMask": "0x1",
        "Unit": "R3QPI"
    },
    {
        "BriefDescription": "Ingress Allocations; NCB",
        "EventCode": "0x11",
        "EventName": "UNC_R3_RxR_INSERTS.NCB",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of allocations into the QPI Ingress.  This tracks one of the three rings that are used by the QPI agent.  This can be used in conjunction with the QPI Ingress Occupancy Accumulator event in order to calculate average queue latency.  Multiple ingress buffers can be tracked at a given time using multiple counters.",
        "UMask": "0x10",
        "Unit": "R3QPI"
    },
    {
        "BriefDescription": "Ingress Allocations; NCS",
        "EventCode": "0x11",
        "EventName": "UNC_R3_RxR_INSERTS.NCS",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of allocations into the QPI Ingress.  This tracks one of the three rings that are used by the QPI agent.  This can be used in conjunction with the QPI Ingress Occupancy Accumulator event in order to calculate average queue latency.  Multiple ingress buffers can be tracked at a given time using multiple counters.",
        "UMask": "0x20",
        "Unit": "R3QPI"
    },
    {
        "BriefDescription": "Ingress Allocations; NDR",
        "EventCode": "0x11",
        "EventName": "UNC_R3_RxR_INSERTS.NDR",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of allocations into the QPI Ingress.  This tracks one of the three rings that are used by the QPI agent.  This can be used in conjunction with the QPI Ingress Occupancy Accumulator event in order to calculate average queue latency.  Multiple ingress buffers can be tracked at a given time using multiple counters.",
        "UMask": "0x4",
        "Unit": "R3QPI"
    },
    {
        "BriefDescription": "Ingress Allocations; SNP",
        "EventCode": "0x11",
        "EventName": "UNC_R3_RxR_INSERTS.SNP",
        "PerPkg": "1",
        "PublicDescription": "Counts the number of allocations into the QPI Ingress.  This tracks one of the three rings that are used by the QPI agent.  This can be used in conjunction with the QPI Ingress Occupancy Accumulator event in order to calculate average queue latency.  Multiple ingress buffers can be tracked at a given time using multiple counters.",
        "UMask": "0x2",
        "Unit": "R3QPI"
    },
    {
        "BriefDescription": "Ingress Occupancy Accumulator; DRS",
        "EventCode": "0x13",
        "EventName": "UNC_R3_RxR_OCCUPANCY.DRS",
        "PerPkg": "1",
        "PublicDescription": "Accumulates the occupancy of a given QPI Ingress queue in each cycles.  This tracks one of the three ring Ingress buffers.  This can be used with the QPI Ingress Not Empty event to calculate average occupancy or the QPI Ingress Allocations event in order to calculate average queuing latency.",
        "UMask": "0x8",
        "Unit": "R3QPI"
    },
    {
        "BriefDescription": "Ingress Occupancy Accumulator; HOM",
        "EventCode": "0x13",
        "EventName": "UNC_R3_RxR_OCCUPANCY.HOM",
        "PerPkg": "1",
        "PublicDescription": "Accumulates the occupancy of a given QPI Ingress queue in each cycles.  This tracks one of the three ring Ingress buffers.  This can be used with the QPI Ingress Not Empty event to calculate average occupancy or the QPI Ingress Allocations event in order to calculate average queuing latency.",
        "UMask": "0x1",
        "Unit": "R3QPI"
    },
    {
        "BriefDescription": "Ingress Occupancy Accumulator; NCB",
        "EventCode": "0x13",
        "EventName": "UNC_R3_RxR_OCCUPANCY.NCB",
        "PerPkg": "1",
        "PublicDescription": "Accumulates the occupancy of a given QPI Ingress queue in each cycles.  This tracks one of the three ring Ingress buffers.  This can be used with the QPI Ingress Not Empty event to calculate average occupancy or the QPI Ingress Allocations event in order to calculate average queuing latency.",
        "UMask": "0x10",
        "Unit": "R3QPI"
    },
    {
        "BriefDescription": "Ingress Occupancy Accumulator; NCS",
        "EventCode": "0x13",
        "EventName": "UNC_R3_RxR_OCCUPANCY.NCS",
        "PerPkg": "1",
        "PublicDescription": "Accumulates the occupancy of a given QPI Ingress queue in each cycles.  This tracks one of the three ring Ingress buffers.  This can be used with the QPI Ingress Not Empty event to calculate average occupancy or the QPI Ingress Allocations event in order to calculate average queuing latency.",
        "UMask": "0x20",
        "Unit": "R3QPI"
    },
    {
        "BriefDescription": "Ingress Occupancy Accumulator; NDR",
        "EventCode": "0x13",
        "EventName": "UNC_R3_RxR_OCCUPANCY.NDR",
        "PerPkg": "1",
        "PublicDescription": "Accumulates the occupancy of a given QPI Ingress queue in each cycles.  This tracks one of the three ring Ingress buffers.  This can be used with the QPI Ingress Not Empty event to calculate average occupancy or the QPI Ingress Allocations event in order to calculate average queuing latency.",
        "UMask": "0x4",
        "Unit": "R3QPI"
    },
    {
        "BriefDescription": "Ingress Occupancy Accumulator; SNP",
        "EventCode": "0x13",
        "EventName": "UNC_R3_RxR_OCCUPANCY.SNP",
        "PerPkg": "1",
        "PublicDescription": "Accumulates the occupancy of a given QPI Ingress queue in each cycles.  This tracks one of the three ring Ingress buffers.  This can be used with the QPI Ingress Not Empty event to calculate average occupancy or the QPI Ingress Allocations event in order to calculate average queuing latency.",
        "UMask": "0x2",
        "Unit": "R3QPI"
    },
    {
        "BriefDescription": "VN0 Credit Acquisition Failed on DRS; DRS Message Class",
        "EventCode": "0x37",
        "EventName": "UNC_R3_VN0_CREDITS_REJECT.DRS",
        "PerPkg": "1",
        "PublicDescription": "Number of times a request failed to acquire a DRS VN0 credit.  In order for a request to be transferred across QPI, it must be guaranteed to have a flit buffer on the remote socket to sink into.  There are two credit pools, VNA and VN0.  VNA is a shared pool used to achieve high performance.  The VN0 pool has reserved entries for each message class and is used to prevent deadlock.  Requests first attempt to acquire a VNA credit, and then fall back to VN0 if they fail.  This therefore counts the number of times when a request failed to acquire either a VNA or VN0 credit and is delayed.  This should generally be a rare situation.",
        "UMask": "0x8",
        "Unit": "R3QPI"
    },
    {
        "BriefDescription": "VN0 Credit Acquisition Failed on DRS; HOM Message Class",
        "EventCode": "0x37",
        "EventName": "UNC_R3_VN0_CREDITS_REJECT.HOM",
        "PerPkg": "1",
        "PublicDescription": "Number of times a request failed to acquire a DRS VN0 credit.  In order for a request to be transferred across QPI, it must be guaranteed to have a flit buffer on the remote socket to sink into.  There are two credit pools, VNA and VN0.  VNA is a shared pool used to achieve high performance.  The VN0 pool has reserved entries for each message class and is used to prevent deadlock.  Requests first attempt to acquire a VNA credit, and then fall back to VN0 if they fail.  This therefore counts the number of times when a request failed to acquire either a VNA or VN0 credit and is delayed.  This should generally be a rare situation.",
        "UMask": "0x1",
        "Unit": "R3QPI"
    },
    {
        "BriefDescription": "VN0 Credit Acquisition Failed on DRS; NCB Message Class",
        "EventCode": "0x37",
        "EventName": "UNC_R3_VN0_CREDITS_REJECT.NCB",
        "PerPkg": "1",
        "PublicDescription": "Number of times a request failed to acquire a DRS VN0 credit.  In order for a request to be transferred across QPI, it must be guaranteed to have a flit buffer on the remote socket to sink into.  There are two credit pools, VNA and VN0.  VNA is a shared pool used to achieve high performance.  The VN0 pool has reserved entries for each message class and is used to prevent deadlock.  Requests first attempt to acquire a VNA credit, and then fall back to VN0 if they fail.  This therefore counts the number of times when a request failed to acquire either a VNA or VN0 credit and is delayed.  This should generally be a rare situation.",
        "UMask": "0x10",
        "Unit": "R3QPI"
    },
    {
        "BriefDescription": "VN0 Credit Acquisition Failed on DRS; NCS Message Class",
        "EventCode": "0x37",
        "EventName": "UNC_R3_VN0_CREDITS_REJECT.NCS",
        "PerPkg": "1",
        "PublicDescription": "Number of times a request failed to acquire a DRS VN0 credit.  In order for a request to be transferred across QPI, it must be guaranteed to have a flit buffer on the remote socket to sink into.  There are two credit pools, VNA and VN0.  VNA is a shared pool used to achieve high performance.  The VN0 pool has reserved entries for each message class and is used to prevent deadlock.  Requests first attempt to acquire a VNA credit, and then fall back to VN0 if they fail.  This therefore counts the number of times when a request failed to acquire either a VNA or VN0 credit and is delayed.  This should generally be a rare situation.",
        "UMask": "0x20",
        "Unit": "R3QPI"
    },
    {
        "BriefDescription": "VN0 Credit Acquisition Failed on DRS; NDR Message Class",
        "EventCode": "0x37",
        "EventName": "UNC_R3_VN0_CREDITS_REJECT.NDR",
        "PerPkg": "1",
        "PublicDescription": "Number of times a request failed to acquire a DRS VN0 credit.  In order for a request to be transferred across QPI, it must be guaranteed to have a flit buffer on the remote socket to sink into.  There are two credit pools, VNA and VN0.  VNA is a shared pool used to achieve high performance.  The VN0 pool has reserved entries for each message class and is used to prevent deadlock.  Requests first attempt to acquire a VNA credit, and then fall back to VN0 if they fail.  This therefore counts the number of times when a request failed to acquire either a VNA or VN0 credit and is delayed.  This should generally be a rare situation.",
        "UMask": "0x4",
        "Unit": "R3QPI"
    },
    {
        "BriefDescription": "VN0 Credit Acquisition Failed on DRS; SNP Message Class",
        "EventCode": "0x37",
        "EventName": "UNC_R3_VN0_CREDITS_REJECT.SNP",
        "PerPkg": "1",
        "PublicDescription": "Number of times a request failed to acquire a DRS VN0 credit.  In order for a request to be transferred across QPI, it must be guaranteed to have a flit buffer on the remote socket to sink into.  There are two credit pools, VNA and VN0.  VNA is a shared pool used to achieve high performance.  The VN0 pool has reserved entries for each message class and is used to prevent deadlock.  Requests first attempt to acquire a VNA credit, and then fall back to VN0 if they fail.  This therefore counts the number of times when a request failed to acquire either a VNA or VN0 credit and is delayed.  This should generally be a rare situation.",
        "UMask": "0x2",
        "Unit": "R3QPI"
    },
    {
        "BriefDescription": "VN0 Credit Used; DRS Message Class",
        "EventCode": "0x36",
        "EventName": "UNC_R3_VN0_CREDITS_USED.DRS",
        "PerPkg": "1",
        "PublicDescription": "Number of times a VN0 credit was used on the DRS message channel.  In order for a request to be transferred across QPI, it must be guaranteed to have a flit buffer on the remote socket to sink into.  There are two credit pools, VNA and VN0.  VNA is a shared pool used to achieve high performance.  The VN0 pool has reserved entries for each message class and is used to prevent deadlock.  Requests first attempt to acquire a VNA credit, and then fall back to VN0 if they fail.  This counts the number of times a VN0 credit was used.  Note that a single VN0 credit holds access to potentially multiple flit buffers.  For example, a transfer that uses VNA could use 9 flit buffers and in that case uses 9 credits.  A transfer on VN0 will only count a single credit even though it may use multiple buffers.",
        "UMask": "0x8",
        "Unit": "R3QPI"
    },
    {
        "BriefDescription": "VN0 Credit Used; HOM Message Class",
        "EventCode": "0x36",
        "EventName": "UNC_R3_VN0_CREDITS_USED.HOM",
        "PerPkg": "1",
        "PublicDescription": "Number of times a VN0 credit was used on the DRS message channel.  In order for a request to be transferred across QPI, it must be guaranteed to have a flit buffer on the remote socket to sink into.  There are two credit pools, VNA and VN0.  VNA is a shared pool used to achieve high performance.  The VN0 pool has reserved entries for each message class and is used to prevent deadlock.  Requests first attempt to acquire a VNA credit, and then fall back to VN0 if they fail.  This counts the number of times a VN0 credit was used.  Note that a single VN0 credit holds access to potentially multiple flit buffers.  For example, a transfer that uses VNA could use 9 flit buffers and in that case uses 9 credits.  A transfer on VN0 will only count a single credit even though it may use multiple buffers.",
        "UMask": "0x1",
        "Unit": "R3QPI"
    },
    {
        "BriefDescription": "VN0 Credit Used; NCB Message Class",
        "EventCode": "0x36",
        "EventName": "UNC_R3_VN0_CREDITS_USED.NCB",
        "PerPkg": "1",
        "PublicDescription": "Number of times a VN0 credit was used on the DRS message channel.  In order for a request to be transferred across QPI, it must be guaranteed to have a flit buffer on the remote socket to sink into.  There are two credit pools, VNA and VN0.  VNA is a shared pool used to achieve high performance.  The VN0 pool has reserved entries for each message class and is used to prevent deadlock.  Requests first attempt to acquire a VNA credit, and then fall back to VN0 if they fail.  This counts the number of times a VN0 credit was used.  Note that a single VN0 credit holds access to potentially multiple flit buffers.  For example, a transfer that uses VNA could use 9 flit buffers and in that case uses 9 credits.  A transfer on VN0 will only count a single credit even though it may use multiple buffers.",
        "UMask": "0x10",
        "Unit": "R3QPI"
    },
    {
        "BriefDescription": "VN0 Credit Used; NCS Message Class",
        "EventCode": "0x36",
        "EventName": "UNC_R3_VN0_CREDITS_USED.NCS",
        "PerPkg": "1",
        "PublicDescription": "Number of times a VN0 credit was used on the DRS message channel.  In order for a request to be transferred across QPI, it must be guaranteed to have a flit buffer on the remote socket to sink into.  There are two credit pools, VNA and VN0.  VNA is a shared pool used to achieve high performance.  The VN0 pool has reserved entries for each message class and is used to prevent deadlock.  Requests first attempt to acquire a VNA credit, and then fall back to VN0 if they fail.  This counts the number of times a VN0 credit was used.  Note that a single VN0 credit holds access to potentially multiple flit buffers.  For example, a transfer that uses VNA could use 9 flit buffers and in that case uses 9 credits.  A transfer on VN0 will only count a single credit even though it may use multiple buffers.",
        "UMask": "0x20",
        "Unit": "R3QPI"
    },
    {
        "BriefDescription": "VN0 Credit Used; NDR Message Class",
        "EventCode": "0x36",
        "EventName": "UNC_R3_VN0_CREDITS_USED.NDR",
        "PerPkg": "1",
        "PublicDescription": "Number of times a VN0 credit was used on the DRS message channel.  In order for a request to be transferred across QPI, it must be guaranteed to have a flit buffer on the remote socket to sink into.  There are two credit pools, VNA and VN0.  VNA is a shared pool used to achieve high performance.  The VN0 pool has reserved entries for each message class and is used to prevent deadlock.  Requests first attempt to acquire a VNA credit, and then fall back to VN0 if they fail.  This counts the number of times a VN0 credit was used.  Note that a single VN0 credit holds access to potentially multiple flit buffers.  For example, a transfer that uses VNA could use 9 flit buffers and in that case uses 9 credits.  A transfer on VN0 will only count a single credit even though it may use multiple buffers.",
        "UMask": "0x4",
        "Unit": "R3QPI"
    },
    {
        "BriefDescription": "VN0 Credit Used; SNP Message Class",
        "EventCode": "0x36",
        "EventName": "UNC_R3_VN0_CREDITS_USED.SNP",
        "PerPkg": "1",
        "PublicDescription": "Number of times a VN0 credit was used on the DRS message channel.  In order for a request to be transferred across QPI, it must be guaranteed to have a flit buffer on the remote socket to sink into.  There are two credit pools, VNA and VN0.  VNA is a shared pool used to achieve high performance.  The VN0 pool has reserved entries for each message class and is used to prevent deadlock.  Requests first attempt to acquire a VNA credit, and then fall back to VN0 if they fail.  This counts the number of times a VN0 credit was used.  Note that a single VN0 credit holds access to potentially multiple flit buffers.  For example, a transfer that uses VNA could use 9 flit buffers and in that case uses 9 credits.  A transfer on VN0 will only count a single credit even though it may use multiple buffers.",
        "UMask": "0x2",
        "Unit": "R3QPI"
    },
    {
        "BriefDescription": "VNA credit Acquisitions",
        "EventCode": "0x33",
        "EventName": "UNC_R3_VNA_CREDITS_ACQUIRED",
        "PerPkg": "1",
        "PublicDescription": "Number of QPI VNA Credit acquisitions.  This event can be used in conjunction with the VNA In-Use Accumulator to calculate the average lifetime of a credit holder.  VNA credits are used by all message classes in order to communicate across QPI.  If a packet is unable to acquire credits, it will then attempt to use credits from the VN0 pool.  Note that a single packet may require multiple flit buffers (i.e. when data is being transferred).  Therefore, this event will increment by the number of credits acquired in each cycle.  Filtering based on message class is not provided.  One can count the number of packets transferred in a given message class using an qfclk event.",
        "Unit": "R3QPI"
    },
    {
        "BriefDescription": "VNA Credit Reject; DRS Message Class",
        "EventCode": "0x34",
        "EventName": "UNC_R3_VNA_CREDITS_REJECT.DRS",
        "PerPkg": "1",
        "PublicDescription": "Number of attempted VNA credit acquisitions that were rejected because the VNA credit pool was full (or almost full).  It is possible to filter this event by message class.  Some packets use more than one flit buffer, and therefore must acquire multiple credits.  Therefore, one could get a reject even if the VNA credits were not fully used up.  The VNA pool is generally used to provide the bulk of the QPI bandwidth (as opposed to the VN0 pool which is used to guarantee forward progress).  VNA credits can run out if the flit buffer on the receiving side starts to queue up substantially.  This can happen if the rest of the uncore is unable to drain the requests fast enough.",
        "UMask": "0x8",
        "Unit": "R3QPI"
    },
    {
        "BriefDescription": "VNA Credit Reject; HOM Message Class",
        "EventCode": "0x34",
        "EventName": "UNC_R3_VNA_CREDITS_REJECT.HOM",
        "PerPkg": "1",
        "PublicDescription": "Number of attempted VNA credit acquisitions that were rejected because the VNA credit pool was full (or almost full).  It is possible to filter this event by message class.  Some packets use more than one flit buffer, and therefore must acquire multiple credits.  Therefore, one could get a reject even if the VNA credits were not fully used up.  The VNA pool is generally used to provide the bulk of the QPI bandwidth (as opposed to the VN0 pool which is used to guarantee forward progress).  VNA credits can run out if the flit buffer on the receiving side starts to queue up substantially.  This can happen if the rest of the uncore is unable to drain the requests fast enough.",
        "UMask": "0x1",
        "Unit": "R3QPI"
    },
    {
        "BriefDescription": "VNA Credit Reject; NCB Message Class",
        "EventCode": "0x34",
        "EventName": "UNC_R3_VNA_CREDITS_REJECT.NCB",
        "PerPkg": "1",
        "PublicDescription": "Number of attempted VNA credit acquisitions that were rejected because the VNA credit pool was full (or almost full).  It is possible to filter this event by message class.  Some packets use more than one flit buffer, and therefore must acquire multiple credits.  Therefore, one could get a reject even if the VNA credits were not fully used up.  The VNA pool is generally used to provide the bulk of the QPI bandwidth (as opposed to the VN0 pool which is used to guarantee forward progress).  VNA credits can run out if the flit buffer on the receiving side starts to queue up substantially.  This can happen if the rest of the uncore is unable to drain the requests fast enough.",
        "UMask": "0x10",
        "Unit": "R3QPI"
    },
    {
        "BriefDescription": "VNA Credit Reject; NCS Message Class",
        "EventCode": "0x34",
        "EventName": "UNC_R3_VNA_CREDITS_REJECT.NCS",
        "PerPkg": "1",
        "PublicDescription": "Number of attempted VNA credit acquisitions that were rejected because the VNA credit pool was full (or almost full).  It is possible to filter this event by message class.  Some packets use more than one flit buffer, and therefore must acquire multiple credits.  Therefore, one could get a reject even if the VNA credits were not fully used up.  The VNA pool is generally used to provide the bulk of the QPI bandwidth (as opposed to the VN0 pool which is used to guarantee forward progress).  VNA credits can run out if the flit buffer on the receiving side starts to queue up substantially.  This can happen if the rest of the uncore is unable to drain the requests fast enough.",
        "UMask": "0x20",
        "Unit": "R3QPI"
    },
    {
        "BriefDescription": "VNA Credit Reject; NDR Message Class",
        "EventCode": "0x34",
        "EventName": "UNC_R3_VNA_CREDITS_REJECT.NDR",
        "PerPkg": "1",
        "PublicDescription": "Number of attempted VNA credit acquisitions that were rejected because the VNA credit pool was full (or almost full).  It is possible to filter this event by message class.  Some packets use more than one flit buffer, and therefore must acquire multiple credits.  Therefore, one could get a reject even if the VNA credits were not fully used up.  The VNA pool is generally used to provide the bulk of the QPI bandwidth (as opposed to the VN0 pool which is used to guarantee forward progress).  VNA credits can run out if the flit buffer on the receiving side starts to queue up substantially.  This can happen if the rest of the uncore is unable to drain the requests fast enough.",
        "UMask": "0x4",
        "Unit": "R3QPI"
    },
    {
        "BriefDescription": "VNA Credit Reject; SNP Message Class",
        "EventCode": "0x34",
        "EventName": "UNC_R3_VNA_CREDITS_REJECT.SNP",
        "PerPkg": "1",
        "PublicDescription": "Number of attempted VNA credit acquisitions that were rejected because the VNA credit pool was full (or almost full).  It is possible to filter this event by message class.  Some packets use more than one flit buffer, and therefore must acquire multiple credits.  Therefore, one could get a reject even if the VNA credits were not fully used up.  The VNA pool is generally used to provide the bulk of the QPI bandwidth (as opposed to the VN0 pool which is used to guarantee forward progress).  VNA credits can run out if the flit buffer on the receiving side starts to queue up substantially.  This can happen if the rest of the uncore is unable to drain the requests fast enough.",
        "UMask": "0x2",
        "Unit": "R3QPI"
    },
    {
        "BriefDescription": "Cycles with no VNA credits available",
        "EventCode": "0x31",
        "EventName": "UNC_R3_VNA_CREDIT_CYCLES_OUT",
        "PerPkg": "1",
        "PublicDescription": "Number of QPI uclk cycles when the transmitted has no VNA credits available and therefore cannot send any requests on this channel.  Note that this does not mean that no flits can be transmitted, as those holding VN0 credits will still (potentially) be able to transmit.  Generally it is the goal of the uncore that VNA credits should not run out, as this can substantially throttle back useful QPI bandwidth.",
        "Unit": "R3QPI"
    },
    {
        "BriefDescription": "Cycles with 1 or more VNA credits in use",
        "EventCode": "0x32",
        "EventName": "UNC_R3_VNA_CREDIT_CYCLES_USED",
        "PerPkg": "1",
        "PublicDescription": "Number of QPI uclk cycles with one or more VNA credits in use.  This event can be used in conjunction with the VNA In-Use Accumulator to calculate the average number of used VNA credits.",
        "Unit": "R3QPI"
    },
    {
        "EventName": "UNC_U_CLOCKTICKS",
        "PerPkg": "1",
        "Unit": "UBOX"
    },
    {
        "BriefDescription": "VLW Received",
        "EventCode": "0x42",
        "EventName": "UNC_U_EVENT_MSG.DOORBELL_RCVD",
        "PerPkg": "1",
        "PublicDescription": "Virtual Logical Wire (legacy) message were received from Uncore.   Specify the thread to filter on using NCUPMONCTRLGLCTR.ThreadID.",
        "UMask": "0x8",
        "Unit": "UBOX"
    },
    {
        "BriefDescription": "VLW Received",
        "EventCode": "0x42",
        "EventName": "UNC_U_EVENT_MSG.INT_PRIO",
        "PerPkg": "1",
        "PublicDescription": "Virtual Logical Wire (legacy) message were received from Uncore.   Specify the thread to filter on using NCUPMONCTRLGLCTR.ThreadID.",
        "UMask": "0x10",
        "Unit": "UBOX"
    },
    {
        "BriefDescription": "VLW Received",
        "EventCode": "0x42",
        "EventName": "UNC_U_EVENT_MSG.IPI_RCVD",
        "PerPkg": "1",
        "PublicDescription": "Virtual Logical Wire (legacy) message were received from Uncore.   Specify the thread to filter on using NCUPMONCTRLGLCTR.ThreadID.",
        "UMask": "0x4",
        "Unit": "UBOX"
    },
    {
        "BriefDescription": "VLW Received",
        "EventCode": "0x42",
        "EventName": "UNC_U_EVENT_MSG.MSI_RCVD",
        "PerPkg": "1",
        "PublicDescription": "Virtual Logical Wire (legacy) message were received from Uncore.   Specify the thread to filter on using NCUPMONCTRLGLCTR.ThreadID.",
        "UMask": "0x2",
        "Unit": "UBOX"
    },
    {
        "BriefDescription": "VLW Received",
        "EventCode": "0x42",
        "EventName": "UNC_U_EVENT_MSG.VLW_RCVD",
        "PerPkg": "1",
        "PublicDescription": "Virtual Logical Wire (legacy) message were received from Uncore.   Specify the thread to filter on using NCUPMONCTRLGLCTR.ThreadID.",
        "UMask": "0x1",
        "Unit": "UBOX"
    },
    {
        "BriefDescription": "Filter Match",
        "EventCode": "0x41",
        "EventName": "UNC_U_FILTER_MATCH.DISABLE",
        "PerPkg": "1",
        "PublicDescription": "Filter match per thread (w/ or w/o Filter Enable).  Specify the thread to filter on using NCUPMONCTRLGLCTR.ThreadID.",
        "UMask": "0x2",
        "Unit": "UBOX"
    },
    {
        "BriefDescription": "Filter Match",
        "EventCode": "0x41",
        "EventName": "UNC_U_FILTER_MATCH.ENABLE",
        "PerPkg": "1",
        "PublicDescription": "Filter match per thread (w/ or w/o Filter Enable).  Specify the thread to filter on using NCUPMONCTRLGLCTR.ThreadID.",
        "UMask": "0x1",
        "Unit": "UBOX"
    },
    {
        "BriefDescription": "Filter Match",
        "EventCode": "0x41",
        "EventName": "UNC_U_FILTER_MATCH.U2C_DISABLE",
        "PerPkg": "1",
        "PublicDescription": "Filter match per thread (w/ or w/o Filter Enable).  Specify the thread to filter on using NCUPMONCTRLGLCTR.ThreadID.",
        "UMask": "0x8",
        "Unit": "UBOX"
    },
    {
        "BriefDescription": "Filter Match",
        "EventCode": "0x41",
        "EventName": "UNC_U_FILTER_MATCH.U2C_ENABLE",
        "PerPkg": "1",
        "PublicDescription": "Filter match per thread (w/ or w/o Filter Enable).  Specify the thread to filter on using NCUPMONCTRLGLCTR.ThreadID.",
        "UMask": "0x4",
        "Unit": "UBOX"
    },
    {
        "BriefDescription": "IDI Lock/SplitLock Cycles",
        "EventCode": "0x44",
        "EventName": "UNC_U_LOCK_CYCLES",
        "PerPkg": "1",
        "PublicDescription": "Number of times an IDI Lock/SplitLock sequence was started",
        "Unit": "UBOX"
    },
    {
        "BriefDescription": "MsgCh Requests by Size; 4B Requests",
        "EventCode": "0x47",
        "EventName": "UNC_U_MSG_CHNL_SIZE_COUNT.4B",
        "PerPkg": "1",
        "PublicDescription": "Number of transactions on the message channel filtered by request size.  This includes both reads and writes.",
        "UMask": "0x1",
        "Unit": "UBOX"
    },
    {
        "BriefDescription": "MsgCh Requests by Size; 8B Requests",
        "EventCode": "0x47",
        "EventName": "UNC_U_MSG_CHNL_SIZE_COUNT.8B",
        "PerPkg": "1",
        "PublicDescription": "Number of transactions on the message channel filtered by request size.  This includes both reads and writes.",
        "UMask": "0x2",
        "Unit": "UBOX"
    },
    {
        "BriefDescription": "Cycles PHOLD Assert to Ack; ACK to Deassert",
        "EventCode": "0x45",
        "EventName": "UNC_U_PHOLD_CYCLES.ACK_TO_DEASSERT",
        "PerPkg": "1",
        "PublicDescription": "PHOLD cycles.  Filter from source CoreID.",
        "UMask": "0x2",
        "Unit": "UBOX"
    },
    {
        "BriefDescription": "Cycles PHOLD Assert to Ack; Assert to ACK",
        "EventCode": "0x45",
        "EventName": "UNC_U_PHOLD_CYCLES.ASSERT_TO_ACK",
        "PerPkg": "1",
        "PublicDescription": "PHOLD cycles.  Filter from source CoreID.",
        "UMask": "0x1",
        "Unit": "UBOX"
    },
    {
        "BriefDescription": "RACU Request",
        "EventCode": "0x46",
        "EventName": "UNC_U_RACU_REQUESTS.COUNT",
        "PerPkg": "1",
        "UMask": "0x1",
        "Unit": "UBOX"
    },
    {
        "BriefDescription": "Monitor Sent to T0; Correctable Machine Check",
        "EventCode": "0x43",
        "EventName": "UNC_U_U2C_EVENTS.CMC",
        "PerPkg": "1",
        "PublicDescription": "Events coming from Uncore can be sent to one or all cores",
        "UMask": "0x10",
        "Unit": "UBOX"
    },
    {
        "BriefDescription": "Monitor Sent to T0; Livelock",
        "EventCode": "0x43",
        "EventName": "UNC_U_U2C_EVENTS.LIVELOCK",
        "PerPkg": "1",
        "PublicDescription": "Events coming from Uncore can be sent to one or all cores",
        "UMask": "0x4",
        "Unit": "UBOX"
    },
    {
        "BriefDescription": "Monitor Sent to T0; LTError",
        "EventCode": "0x43",
        "EventName": "UNC_U_U2C_EVENTS.LTERROR",
        "PerPkg": "1",
        "PublicDescription": "Events coming from Uncore can be sent to one or all cores",
        "UMask": "0x8",
        "Unit": "UBOX"
    },
    {
        "BriefDescription": "Monitor Sent to T0; Monitor T0",
        "EventCode": "0x43",
        "EventName": "UNC_U_U2C_EVENTS.MONITOR_T0",
        "PerPkg": "1",
        "PublicDescription": "Events coming from Uncore can be sent to one or all cores",
        "UMask": "0x1",
        "Unit": "UBOX"
    },
    {
        "BriefDescription": "Monitor Sent to T0; Monitor T1",
        "EventCode": "0x43",
        "EventName": "UNC_U_U2C_EVENTS.MONITOR_T1",
        "PerPkg": "1",
        "PublicDescription": "Events coming from Uncore can be sent to one or all cores",
        "UMask": "0x2",
        "Unit": "UBOX"
    },
    {
        "BriefDescription": "Monitor Sent to T0; Other",
        "EventCode": "0x43",
        "EventName": "UNC_U_U2C_EVENTS.OTHER",
        "PerPkg": "1",
        "PublicDescription": "Events coming from Uncore can be sent to one or all cores",
        "UMask": "0x80",
        "Unit": "UBOX"
    },
    {
        "BriefDescription": "Monitor Sent to T0; Trap",
        "EventCode": "0x43",
        "EventName": "UNC_U_U2C_EVENTS.TRAP",
        "PerPkg": "1",
        "PublicDescription": "Events coming from Uncore can be sent to one or all cores",
        "UMask": "0x40",
        "Unit": "UBOX"
    },
    {
        "BriefDescription": "Monitor Sent to T0; Uncorrectable Machine Check",
        "EventCode": "0x43",
        "EventName": "UNC_U_U2C_EVENTS.UMC",
        "PerPkg": "1",
        "PublicDescription": "Events coming from Uncore can be sent to one or all cores",
        "UMask": "0x20",
        "Unit": "UBOX"
    }
]