aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/tools/testing/selftests/bpf/progs/test_cls_redirect.c
blob: f0b72e86bee58b99284c0f378dab56b67c811466 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
// Copyright (c) 2019, 2020 Cloudflare

#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#include <string.h>

#include <linux/bpf.h>
#include <linux/icmp.h>
#include <linux/icmpv6.h>
#include <linux/if_ether.h>
#include <linux/in.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/pkt_cls.h>
#include <linux/tcp.h>
#include <linux/udp.h>

#include <bpf/bpf_helpers.h>
#include <bpf/bpf_endian.h>

#include "test_cls_redirect.h"

#define offsetofend(TYPE, MEMBER) \
	(offsetof(TYPE, MEMBER) + sizeof((((TYPE *)0)->MEMBER)))

#define IP_OFFSET_MASK (0x1FFF)
#define IP_MF (0x2000)

char _license[] SEC("license") = "Dual BSD/GPL";

/**
 * Destination port and IP used for UDP encapsulation.
 */
static volatile const __be16 ENCAPSULATION_PORT;
static volatile const __be32 ENCAPSULATION_IP;

typedef struct {
	uint64_t processed_packets_total;
	uint64_t l3_protocol_packets_total_ipv4;
	uint64_t l3_protocol_packets_total_ipv6;
	uint64_t l4_protocol_packets_total_tcp;
	uint64_t l4_protocol_packets_total_udp;
	uint64_t accepted_packets_total_syn;
	uint64_t accepted_packets_total_syn_cookies;
	uint64_t accepted_packets_total_last_hop;
	uint64_t accepted_packets_total_icmp_echo_request;
	uint64_t accepted_packets_total_established;
	uint64_t forwarded_packets_total_gue;
	uint64_t forwarded_packets_total_gre;

	uint64_t errors_total_unknown_l3_proto;
	uint64_t errors_total_unknown_l4_proto;
	uint64_t errors_total_malformed_ip;
	uint64_t errors_total_fragmented_ip;
	uint64_t errors_total_malformed_icmp;
	uint64_t errors_total_unwanted_icmp;
	uint64_t errors_total_malformed_icmp_pkt_too_big;
	uint64_t errors_total_malformed_tcp;
	uint64_t errors_total_malformed_udp;
	uint64_t errors_total_icmp_echo_replies;
	uint64_t errors_total_malformed_encapsulation;
	uint64_t errors_total_encap_adjust_failed;
	uint64_t errors_total_encap_buffer_too_small;
	uint64_t errors_total_redirect_loop;
} metrics_t;

typedef enum {
	INVALID = 0,
	UNKNOWN,
	ECHO_REQUEST,
	SYN,
	SYN_COOKIE,
	ESTABLISHED,
} verdict_t;

typedef struct {
	uint16_t src, dst;
} flow_ports_t;

_Static_assert(
	sizeof(flow_ports_t) !=
		offsetofend(struct bpf_sock_tuple, ipv4.dport) -
			offsetof(struct bpf_sock_tuple, ipv4.sport) - 1,
	"flow_ports_t must match sport and dport in struct bpf_sock_tuple");
_Static_assert(
	sizeof(flow_ports_t) !=
		offsetofend(struct bpf_sock_tuple, ipv6.dport) -
			offsetof(struct bpf_sock_tuple, ipv6.sport) - 1,
	"flow_ports_t must match sport and dport in struct bpf_sock_tuple");

typedef int ret_t;

/* This is a bit of a hack. We need a return value which allows us to
 * indicate that the regular flow of the program should continue,
 * while allowing functions to use XDP_PASS and XDP_DROP, etc.
 */
static const ret_t CONTINUE_PROCESSING = -1;

/* Convenience macro to call functions which return ret_t.
 */
#define MAYBE_RETURN(x)                           \
	do {                                      \
		ret_t __ret = x;                  \
		if (__ret != CONTINUE_PROCESSING) \
			return __ret;             \
	} while (0)

/* Linux packet pointers are either aligned to NET_IP_ALIGN (aka 2 bytes),
 * or not aligned if the arch supports efficient unaligned access.
 *
 * Since the verifier ensures that eBPF packet accesses follow these rules,
 * we can tell LLVM to emit code as if we always had a larger alignment.
 * It will yell at us if we end up on a platform where this is not valid.
 */
typedef uint8_t *net_ptr __attribute__((align_value(8)));

typedef struct buf {
	struct __sk_buff *skb;
	net_ptr head;
	/* NB: tail musn't have alignment other than 1, otherwise
	* LLVM will go and eliminate code, e.g. when checking packet lengths.
	*/
	uint8_t *const tail;
} buf_t;

static size_t buf_off(const buf_t *buf)
{
	/* Clang seems to optimize constructs like
	 *    a - b + c
	 * if c is known:
	 *    r? = c
	 *    r? -= b
	 *    r? += a
	 *
	 * This is a problem if a and b are packet pointers,
	 * since the verifier allows subtracting two pointers to
	 * get a scalar, but not a scalar and a pointer.
	 *
	 * Use inline asm to break this optimization.
	 */
	size_t off = (size_t)buf->head;
	asm("%0 -= %1" : "+r"(off) : "r"(buf->skb->data));
	return off;
}

static bool buf_copy(buf_t *buf, void *dst, size_t len)
{
	if (bpf_skb_load_bytes(buf->skb, buf_off(buf), dst, len)) {
		return false;
	}

	buf->head += len;
	return true;
}

static bool buf_skip(buf_t *buf, const size_t len)
{
	/* Check whether off + len is valid in the non-linear part. */
	if (buf_off(buf) + len > buf->skb->len) {
		return false;
	}

	buf->head += len;
	return true;
}

/* Returns a pointer to the start of buf, or NULL if len is
 * larger than the remaining data. Consumes len bytes on a successful
 * call.
 *
 * If scratch is not NULL, the function will attempt to load non-linear
 * data via bpf_skb_load_bytes. On success, scratch is returned.
 */
static void *buf_assign(buf_t *buf, const size_t len, void *scratch)
{
	if (buf->head + len > buf->tail) {
		if (scratch == NULL) {
			return NULL;
		}

		return buf_copy(buf, scratch, len) ? scratch : NULL;
	}

	void *ptr = buf->head;
	buf->head += len;
	return ptr;
}

static bool pkt_skip_ipv4_options(buf_t *buf, const struct iphdr *ipv4)
{
	if (ipv4->ihl <= 5) {
		return true;
	}

	return buf_skip(buf, (ipv4->ihl - 5) * 4);
}

static bool ipv4_is_fragment(const struct iphdr *ip)
{
	uint16_t frag_off = ip->frag_off & bpf_htons(IP_OFFSET_MASK);
	return (ip->frag_off & bpf_htons(IP_MF)) != 0 || frag_off > 0;
}

static struct iphdr *pkt_parse_ipv4(buf_t *pkt, struct iphdr *scratch)
{
	struct iphdr *ipv4 = buf_assign(pkt, sizeof(*ipv4), scratch);
	if (ipv4 == NULL) {
		return NULL;
	}

	if (ipv4->ihl < 5) {
		return NULL;
	}

	if (!pkt_skip_ipv4_options(pkt, ipv4)) {
		return NULL;
	}

	return ipv4;
}

/* Parse the L4 ports from a packet, assuming a layout like TCP or UDP. */
static bool pkt_parse_icmp_l4_ports(buf_t *pkt, flow_ports_t *ports)
{
	if (!buf_copy(pkt, ports, sizeof(*ports))) {
		return false;
	}

	/* Ports in the L4 headers are reversed, since we are parsing an ICMP
	 * payload which is going towards the eyeball.
	 */
	uint16_t dst = ports->src;
	ports->src = ports->dst;
	ports->dst = dst;
	return true;
}

static uint16_t pkt_checksum_fold(uint32_t csum)
{
	/* The highest reasonable value for an IPv4 header
	 * checksum requires two folds, so we just do that always.
	 */
	csum = (csum & 0xffff) + (csum >> 16);
	csum = (csum & 0xffff) + (csum >> 16);
	return (uint16_t)~csum;
}

static void pkt_ipv4_checksum(struct iphdr *iph)
{
	iph->check = 0;

	/* An IP header without options is 20 bytes. Two of those
	 * are the checksum, which we always set to zero. Hence,
	 * the maximum accumulated value is 18 / 2 * 0xffff = 0x8fff7,
	 * which fits in 32 bit.
	 */
	_Static_assert(sizeof(struct iphdr) == 20, "iphdr must be 20 bytes");
	uint32_t acc = 0;
	uint16_t *ipw = (uint16_t *)iph;

#pragma clang loop unroll(full)
	for (size_t i = 0; i < sizeof(struct iphdr) / 2; i++) {
		acc += ipw[i];
	}

	iph->check = pkt_checksum_fold(acc);
}

static bool pkt_skip_ipv6_extension_headers(buf_t *pkt,
					    const struct ipv6hdr *ipv6,
					    uint8_t *upper_proto,
					    bool *is_fragment)
{
	/* We understand five extension headers.
	 * https://tools.ietf.org/html/rfc8200#section-4.1 states that all
	 * headers should occur once, except Destination Options, which may
	 * occur twice. Hence we give up after 6 headers.
	 */
	struct {
		uint8_t next;
		uint8_t len;
	} exthdr = {
		.next = ipv6->nexthdr,
	};
	*is_fragment = false;

#pragma clang loop unroll(full)
	for (int i = 0; i < 6; i++) {
		switch (exthdr.next) {
		case IPPROTO_FRAGMENT:
			*is_fragment = true;
			/* NB: We don't check that hdrlen == 0 as per spec. */
			/* fallthrough; */

		case IPPROTO_HOPOPTS:
		case IPPROTO_ROUTING:
		case IPPROTO_DSTOPTS:
		case IPPROTO_MH:
			if (!buf_copy(pkt, &exthdr, sizeof(exthdr))) {
				return false;
			}

			/* hdrlen is in 8-octet units, and excludes the first 8 octets. */
			if (!buf_skip(pkt,
				      (exthdr.len + 1) * 8 - sizeof(exthdr))) {
				return false;
			}

			/* Decode next header */
			break;

		default:
			/* The next header is not one of the known extension
			 * headers, treat it as the upper layer header.
			 *
			 * This handles IPPROTO_NONE.
			 *
			 * Encapsulating Security Payload (50) and Authentication
			 * Header (51) also end up here (and will trigger an
			 * unknown proto error later). They have a custom header
			 * format and seem too esoteric to care about.
			 */
			*upper_proto = exthdr.next;
			return true;
		}
	}

	/* We never found an upper layer header. */
	return false;
}

/* This function has to be inlined, because the verifier otherwise rejects it
 * due to returning a pointer to the stack. This is technically correct, since
 * scratch is allocated on the stack. However, this usage should be safe since
 * it's the callers stack after all.
 */
static inline __attribute__((__always_inline__)) struct ipv6hdr *
pkt_parse_ipv6(buf_t *pkt, struct ipv6hdr *scratch, uint8_t *proto,
	       bool *is_fragment)
{
	struct ipv6hdr *ipv6 = buf_assign(pkt, sizeof(*ipv6), scratch);
	if (ipv6 == NULL) {
		return NULL;
	}

	if (!pkt_skip_ipv6_extension_headers(pkt, ipv6, proto, is_fragment)) {
		return NULL;
	}

	return ipv6;
}

/* Global metrics, per CPU
 */
struct bpf_map_def metrics_map SEC("maps") = {
	.type = BPF_MAP_TYPE_PERCPU_ARRAY,
	.key_size = sizeof(unsigned int),
	.value_size = sizeof(metrics_t),
	.max_entries = 1,
};

static metrics_t *get_global_metrics(void)
{
	uint64_t key = 0;
	return bpf_map_lookup_elem(&metrics_map, &key);
}

static ret_t accept_locally(struct __sk_buff *skb, encap_headers_t *encap)
{
	const int payload_off =
		sizeof(*encap) +
		sizeof(struct in_addr) * encap->unigue.hop_count;
	int32_t encap_overhead = payload_off - sizeof(struct ethhdr);

	// Changing the ethertype if the encapsulated packet is ipv6
	if (encap->gue.proto_ctype == IPPROTO_IPV6) {
		encap->eth.h_proto = bpf_htons(ETH_P_IPV6);
	}

	if (bpf_skb_adjust_room(skb, -encap_overhead, BPF_ADJ_ROOM_MAC,
				BPF_F_ADJ_ROOM_FIXED_GSO |
				BPF_F_ADJ_ROOM_NO_CSUM_RESET) ||
	    bpf_csum_level(skb, BPF_CSUM_LEVEL_DEC))
		return TC_ACT_SHOT;

	return bpf_redirect(skb->ifindex, BPF_F_INGRESS);
}

static ret_t forward_with_gre(struct __sk_buff *skb, encap_headers_t *encap,
			      struct in_addr *next_hop, metrics_t *metrics)
{
	metrics->forwarded_packets_total_gre++;

	const int payload_off =
		sizeof(*encap) +
		sizeof(struct in_addr) * encap->unigue.hop_count;
	int32_t encap_overhead =
		payload_off - sizeof(struct ethhdr) - sizeof(struct iphdr);
	int32_t delta = sizeof(struct gre_base_hdr) - encap_overhead;
	uint16_t proto = ETH_P_IP;

	/* Loop protection: the inner packet's TTL is decremented as a safeguard
	 * against any forwarding loop. As the only interesting field is the TTL
	 * hop limit for IPv6, it is easier to use bpf_skb_load_bytes/bpf_skb_store_bytes
	 * as they handle the split packets if needed (no need for the data to be
	 * in the linear section).
	 */
	if (encap->gue.proto_ctype == IPPROTO_IPV6) {
		proto = ETH_P_IPV6;
		uint8_t ttl;
		int rc;

		rc = bpf_skb_load_bytes(
			skb, payload_off + offsetof(struct ipv6hdr, hop_limit),
			&ttl, 1);
		if (rc != 0) {
			metrics->errors_total_malformed_encapsulation++;
			return TC_ACT_SHOT;
		}

		if (ttl == 0) {
			metrics->errors_total_redirect_loop++;
			return TC_ACT_SHOT;
		}

		ttl--;
		rc = bpf_skb_store_bytes(
			skb, payload_off + offsetof(struct ipv6hdr, hop_limit),
			&ttl, 1, 0);
		if (rc != 0) {
			metrics->errors_total_malformed_encapsulation++;
			return TC_ACT_SHOT;
		}
	} else {
		uint8_t ttl;
		int rc;

		rc = bpf_skb_load_bytes(
			skb, payload_off + offsetof(struct iphdr, ttl), &ttl,
			1);
		if (rc != 0) {
			metrics->errors_total_malformed_encapsulation++;
			return TC_ACT_SHOT;
		}

		if (ttl == 0) {
			metrics->errors_total_redirect_loop++;
			return TC_ACT_SHOT;
		}

		/* IPv4 also has a checksum to patch. While the TTL is only one byte,
		 * this function only works for 2 and 4 bytes arguments (the result is
		 * the same).
		 */
		rc = bpf_l3_csum_replace(
			skb, payload_off + offsetof(struct iphdr, check), ttl,
			ttl - 1, 2);
		if (rc != 0) {
			metrics->errors_total_malformed_encapsulation++;
			return TC_ACT_SHOT;
		}

		ttl--;
		rc = bpf_skb_store_bytes(
			skb, payload_off + offsetof(struct iphdr, ttl), &ttl, 1,
			0);
		if (rc != 0) {
			metrics->errors_total_malformed_encapsulation++;
			return TC_ACT_SHOT;
		}
	}

	if (bpf_skb_adjust_room(skb, delta, BPF_ADJ_ROOM_NET,
				BPF_F_ADJ_ROOM_FIXED_GSO |
				BPF_F_ADJ_ROOM_NO_CSUM_RESET) ||
	    bpf_csum_level(skb, BPF_CSUM_LEVEL_INC)) {
		metrics->errors_total_encap_adjust_failed++;
		return TC_ACT_SHOT;
	}

	if (bpf_skb_pull_data(skb, sizeof(encap_gre_t))) {
		metrics->errors_total_encap_buffer_too_small++;
		return TC_ACT_SHOT;
	}

	buf_t pkt = {
		.skb = skb,
		.head = (uint8_t *)(long)skb->data,
		.tail = (uint8_t *)(long)skb->data_end,
	};

	encap_gre_t *encap_gre = buf_assign(&pkt, sizeof(encap_gre_t), NULL);
	if (encap_gre == NULL) {
		metrics->errors_total_encap_buffer_too_small++;
		return TC_ACT_SHOT;
	}

	encap_gre->ip.protocol = IPPROTO_GRE;
	encap_gre->ip.daddr = next_hop->s_addr;
	encap_gre->ip.saddr = ENCAPSULATION_IP;
	encap_gre->ip.tot_len =
		bpf_htons(bpf_ntohs(encap_gre->ip.tot_len) + delta);
	encap_gre->gre.flags = 0;
	encap_gre->gre.protocol = bpf_htons(proto);
	pkt_ipv4_checksum((void *)&encap_gre->ip);

	return bpf_redirect(skb->ifindex, 0);
}

static ret_t forward_to_next_hop(struct __sk_buff *skb, encap_headers_t *encap,
				 struct in_addr *next_hop, metrics_t *metrics)
{
	/* swap L2 addresses */
	/* This assumes that packets are received from a router.
	 * So just swapping the MAC addresses here will make the packet go back to
	 * the router, which will send it to the appropriate machine.
	 */
	unsigned char temp[ETH_ALEN];
	memcpy(temp, encap->eth.h_dest, sizeof(temp));
	memcpy(encap->eth.h_dest, encap->eth.h_source,
	       sizeof(encap->eth.h_dest));
	memcpy(encap->eth.h_source, temp, sizeof(encap->eth.h_source));

	if (encap->unigue.next_hop == encap->unigue.hop_count - 1 &&
	    encap->unigue.last_hop_gre) {
		return forward_with_gre(skb, encap, next_hop, metrics);
	}

	metrics->forwarded_packets_total_gue++;
	uint32_t old_saddr = encap->ip.saddr;
	encap->ip.saddr = encap->ip.daddr;
	encap->ip.daddr = next_hop->s_addr;
	if (encap->unigue.next_hop < encap->unigue.hop_count) {
		encap->unigue.next_hop++;
	}

	/* Remove ip->saddr, add next_hop->s_addr */
	const uint64_t off = offsetof(typeof(*encap), ip.check);
	int ret = bpf_l3_csum_replace(skb, off, old_saddr, next_hop->s_addr, 4);
	if (ret < 0) {
		return TC_ACT_SHOT;
	}

	return bpf_redirect(skb->ifindex, 0);
}

static ret_t skip_next_hops(buf_t *pkt, int n)
{
	switch (n) {
	case 1:
		if (!buf_skip(pkt, sizeof(struct in_addr)))
			return TC_ACT_SHOT;
	case 0:
		return CONTINUE_PROCESSING;

	default:
		return TC_ACT_SHOT;
	}
}

/* Get the next hop from the GLB header.
 *
 * Sets next_hop->s_addr to 0 if there are no more hops left.
 * pkt is positioned just after the variable length GLB header
 * iff the call is successful.
 */
static ret_t get_next_hop(buf_t *pkt, encap_headers_t *encap,
			  struct in_addr *next_hop)
{
	if (encap->unigue.next_hop > encap->unigue.hop_count) {
		return TC_ACT_SHOT;
	}

	/* Skip "used" next hops. */
	MAYBE_RETURN(skip_next_hops(pkt, encap->unigue.next_hop));

	if (encap->unigue.next_hop == encap->unigue.hop_count) {
		/* No more next hops, we are at the end of the GLB header. */
		next_hop->s_addr = 0;
		return CONTINUE_PROCESSING;
	}

	if (!buf_copy(pkt, next_hop, sizeof(*next_hop))) {
		return TC_ACT_SHOT;
	}

	/* Skip the remainig next hops (may be zero). */
	return skip_next_hops(pkt, encap->unigue.hop_count -
					   encap->unigue.next_hop - 1);
}

/* Fill a bpf_sock_tuple to be used with the socket lookup functions.
 * This is a kludge that let's us work around verifier limitations:
 *
 *    fill_tuple(&t, foo, sizeof(struct iphdr), 123, 321)
 *
 * clang will substitue a costant for sizeof, which allows the verifier
 * to track it's value. Based on this, it can figure out the constant
 * return value, and calling code works while still being "generic" to
 * IPv4 and IPv6.
 */
static uint64_t fill_tuple(struct bpf_sock_tuple *tuple, void *iph,
			   uint64_t iphlen, uint16_t sport, uint16_t dport)
{
	switch (iphlen) {
	case sizeof(struct iphdr): {
		struct iphdr *ipv4 = (struct iphdr *)iph;
		tuple->ipv4.daddr = ipv4->daddr;
		tuple->ipv4.saddr = ipv4->saddr;
		tuple->ipv4.sport = sport;
		tuple->ipv4.dport = dport;
		return sizeof(tuple->ipv4);
	}

	case sizeof(struct ipv6hdr): {
		struct ipv6hdr *ipv6 = (struct ipv6hdr *)iph;
		memcpy(&tuple->ipv6.daddr, &ipv6->daddr,
		       sizeof(tuple->ipv6.daddr));
		memcpy(&tuple->ipv6.saddr, &ipv6->saddr,
		       sizeof(tuple->ipv6.saddr));
		tuple->ipv6.sport = sport;
		tuple->ipv6.dport = dport;
		return sizeof(tuple->ipv6);
	}

	default:
		return 0;
	}
}

static verdict_t classify_tcp(struct __sk_buff *skb,
			      struct bpf_sock_tuple *tuple, uint64_t tuplen,
			      void *iph, struct tcphdr *tcp)
{
	struct bpf_sock *sk =
		bpf_skc_lookup_tcp(skb, tuple, tuplen, BPF_F_CURRENT_NETNS, 0);
	if (sk == NULL) {
		return UNKNOWN;
	}

	if (sk->state != BPF_TCP_LISTEN) {
		bpf_sk_release(sk);
		return ESTABLISHED;
	}

	if (iph != NULL && tcp != NULL) {
		/* Kludge: we've run out of arguments, but need the length of the ip header. */
		uint64_t iphlen = sizeof(struct iphdr);
		if (tuplen == sizeof(tuple->ipv6)) {
			iphlen = sizeof(struct ipv6hdr);
		}

		if (bpf_tcp_check_syncookie(sk, iph, iphlen, tcp,
					    sizeof(*tcp)) == 0) {
			bpf_sk_release(sk);
			return SYN_COOKIE;
		}
	}

	bpf_sk_release(sk);
	return UNKNOWN;
}

static verdict_t classify_udp(struct __sk_buff *skb,
			      struct bpf_sock_tuple *tuple, uint64_t tuplen)
{
	struct bpf_sock *sk =
		bpf_sk_lookup_udp(skb, tuple, tuplen, BPF_F_CURRENT_NETNS, 0);
	if (sk == NULL) {
		return UNKNOWN;
	}

	if (sk->state == BPF_TCP_ESTABLISHED) {
		bpf_sk_release(sk);
		return ESTABLISHED;
	}

	bpf_sk_release(sk);
	return UNKNOWN;
}

static verdict_t classify_icmp(struct __sk_buff *skb, uint8_t proto,
			       struct bpf_sock_tuple *tuple, uint64_t tuplen,
			       metrics_t *metrics)
{
	switch (proto) {
	case IPPROTO_TCP:
		return classify_tcp(skb, tuple, tuplen, NULL, NULL);

	case IPPROTO_UDP:
		return classify_udp(skb, tuple, tuplen);

	default:
		metrics->errors_total_malformed_icmp++;
		return INVALID;
	}
}

static verdict_t process_icmpv4(buf_t *pkt, metrics_t *metrics)
{
	struct icmphdr icmp;
	if (!buf_copy(pkt, &icmp, sizeof(icmp))) {
		metrics->errors_total_malformed_icmp++;
		return INVALID;
	}

	/* We should never receive encapsulated echo replies. */
	if (icmp.type == ICMP_ECHOREPLY) {
		metrics->errors_total_icmp_echo_replies++;
		return INVALID;
	}

	if (icmp.type == ICMP_ECHO) {
		return ECHO_REQUEST;
	}

	if (icmp.type != ICMP_DEST_UNREACH || icmp.code != ICMP_FRAG_NEEDED) {
		metrics->errors_total_unwanted_icmp++;
		return INVALID;
	}

	struct iphdr _ip4;
	const struct iphdr *ipv4 = pkt_parse_ipv4(pkt, &_ip4);
	if (ipv4 == NULL) {
		metrics->errors_total_malformed_icmp_pkt_too_big++;
		return INVALID;
	}

	/* The source address in the outer IP header is from the entity that
	 * originated the ICMP message. Use the original IP header to restore
	 * the correct flow tuple.
	 */
	struct bpf_sock_tuple tuple;
	tuple.ipv4.saddr = ipv4->daddr;
	tuple.ipv4.daddr = ipv4->saddr;

	if (!pkt_parse_icmp_l4_ports(pkt, (flow_ports_t *)&tuple.ipv4.sport)) {
		metrics->errors_total_malformed_icmp_pkt_too_big++;
		return INVALID;
	}

	return classify_icmp(pkt->skb, ipv4->protocol, &tuple,
			     sizeof(tuple.ipv4), metrics);
}

static verdict_t process_icmpv6(buf_t *pkt, metrics_t *metrics)
{
	struct icmp6hdr icmp6;
	if (!buf_copy(pkt, &icmp6, sizeof(icmp6))) {
		metrics->errors_total_malformed_icmp++;
		return INVALID;
	}

	/* We should never receive encapsulated echo replies. */
	if (icmp6.icmp6_type == ICMPV6_ECHO_REPLY) {
		metrics->errors_total_icmp_echo_replies++;
		return INVALID;
	}

	if (icmp6.icmp6_type == ICMPV6_ECHO_REQUEST) {
		return ECHO_REQUEST;
	}

	if (icmp6.icmp6_type != ICMPV6_PKT_TOOBIG) {
		metrics->errors_total_unwanted_icmp++;
		return INVALID;
	}

	bool is_fragment;
	uint8_t l4_proto;
	struct ipv6hdr _ipv6;
	const struct ipv6hdr *ipv6 =
		pkt_parse_ipv6(pkt, &_ipv6, &l4_proto, &is_fragment);
	if (ipv6 == NULL) {
		metrics->errors_total_malformed_icmp_pkt_too_big++;
		return INVALID;
	}

	if (is_fragment) {
		metrics->errors_total_fragmented_ip++;
		return INVALID;
	}

	/* Swap source and dest addresses. */
	struct bpf_sock_tuple tuple;
	memcpy(&tuple.ipv6.saddr, &ipv6->daddr, sizeof(tuple.ipv6.saddr));
	memcpy(&tuple.ipv6.daddr, &ipv6->saddr, sizeof(tuple.ipv6.daddr));

	if (!pkt_parse_icmp_l4_ports(pkt, (flow_ports_t *)&tuple.ipv6.sport)) {
		metrics->errors_total_malformed_icmp_pkt_too_big++;
		return INVALID;
	}

	return classify_icmp(pkt->skb, l4_proto, &tuple, sizeof(tuple.ipv6),
			     metrics);
}

static verdict_t process_tcp(buf_t *pkt, void *iph, uint64_t iphlen,
			     metrics_t *metrics)
{
	metrics->l4_protocol_packets_total_tcp++;

	struct tcphdr _tcp;
	struct tcphdr *tcp = buf_assign(pkt, sizeof(_tcp), &_tcp);
	if (tcp == NULL) {
		metrics->errors_total_malformed_tcp++;
		return INVALID;
	}

	if (tcp->syn) {
		return SYN;
	}

	struct bpf_sock_tuple tuple;
	uint64_t tuplen =
		fill_tuple(&tuple, iph, iphlen, tcp->source, tcp->dest);
	return classify_tcp(pkt->skb, &tuple, tuplen, iph, tcp);
}

static verdict_t process_udp(buf_t *pkt, void *iph, uint64_t iphlen,
			     metrics_t *metrics)
{
	metrics->l4_protocol_packets_total_udp++;

	struct udphdr _udp;
	struct udphdr *udph = buf_assign(pkt, sizeof(_udp), &_udp);
	if (udph == NULL) {
		metrics->errors_total_malformed_udp++;
		return INVALID;
	}

	struct bpf_sock_tuple tuple;
	uint64_t tuplen =
		fill_tuple(&tuple, iph, iphlen, udph->source, udph->dest);
	return classify_udp(pkt->skb, &tuple, tuplen);
}

static verdict_t process_ipv4(buf_t *pkt, metrics_t *metrics)
{
	metrics->l3_protocol_packets_total_ipv4++;

	struct iphdr _ip4;
	struct iphdr *ipv4 = pkt_parse_ipv4(pkt, &_ip4);
	if (ipv4 == NULL) {
		metrics->errors_total_malformed_ip++;
		return INVALID;
	}

	if (ipv4->version != 4) {
		metrics->errors_total_malformed_ip++;
		return INVALID;
	}

	if (ipv4_is_fragment(ipv4)) {
		metrics->errors_total_fragmented_ip++;
		return INVALID;
	}

	switch (ipv4->protocol) {
	case IPPROTO_ICMP:
		return process_icmpv4(pkt, metrics);

	case IPPROTO_TCP:
		return process_tcp(pkt, ipv4, sizeof(*ipv4), metrics);

	case IPPROTO_UDP:
		return process_udp(pkt, ipv4, sizeof(*ipv4), metrics);

	default:
		metrics->errors_total_unknown_l4_proto++;
		return INVALID;
	}
}

static verdict_t process_ipv6(buf_t *pkt, metrics_t *metrics)
{
	metrics->l3_protocol_packets_total_ipv6++;

	uint8_t l4_proto;
	bool is_fragment;
	struct ipv6hdr _ipv6;
	struct ipv6hdr *ipv6 =
		pkt_parse_ipv6(pkt, &_ipv6, &l4_proto, &is_fragment);
	if (ipv6 == NULL) {
		metrics->errors_total_malformed_ip++;
		return INVALID;
	}

	if (ipv6->version != 6) {
		metrics->errors_total_malformed_ip++;
		return INVALID;
	}

	if (is_fragment) {
		metrics->errors_total_fragmented_ip++;
		return INVALID;
	}

	switch (l4_proto) {
	case IPPROTO_ICMPV6:
		return process_icmpv6(pkt, metrics);

	case IPPROTO_TCP:
		return process_tcp(pkt, ipv6, sizeof(*ipv6), metrics);

	case IPPROTO_UDP:
		return process_udp(pkt, ipv6, sizeof(*ipv6), metrics);

	default:
		metrics->errors_total_unknown_l4_proto++;
		return INVALID;
	}
}

SEC("classifier/cls_redirect")
int cls_redirect(struct __sk_buff *skb)
{
	metrics_t *metrics = get_global_metrics();
	if (metrics == NULL) {
		return TC_ACT_SHOT;
	}

	metrics->processed_packets_total++;

	/* Pass bogus packets as long as we're not sure they're
	 * destined for us.
	 */
	if (skb->protocol != bpf_htons(ETH_P_IP)) {
		return TC_ACT_OK;
	}

	encap_headers_t *encap;

	/* Make sure that all encapsulation headers are available in
	 * the linear portion of the skb. This makes it easy to manipulate them.
	 */
	if (bpf_skb_pull_data(skb, sizeof(*encap))) {
		return TC_ACT_OK;
	}

	buf_t pkt = {
		.skb = skb,
		.head = (uint8_t *)(long)skb->data,
		.tail = (uint8_t *)(long)skb->data_end,
	};

	encap = buf_assign(&pkt, sizeof(*encap), NULL);
	if (encap == NULL) {
		return TC_ACT_OK;
	}

	if (encap->ip.ihl != 5) {
		/* We never have any options. */
		return TC_ACT_OK;
	}

	if (encap->ip.daddr != ENCAPSULATION_IP ||
	    encap->ip.protocol != IPPROTO_UDP) {
		return TC_ACT_OK;
	}

	/* TODO Check UDP length? */
	if (encap->udp.dest != ENCAPSULATION_PORT) {
		return TC_ACT_OK;
	}

	/* We now know that the packet is destined to us, we can
	 * drop bogus ones.
	 */
	if (ipv4_is_fragment((void *)&encap->ip)) {
		metrics->errors_total_fragmented_ip++;
		return TC_ACT_SHOT;
	}

	if (encap->gue.variant != 0) {
		metrics->errors_total_malformed_encapsulation++;
		return TC_ACT_SHOT;
	}

	if (encap->gue.control != 0) {
		metrics->errors_total_malformed_encapsulation++;
		return TC_ACT_SHOT;
	}

	if (encap->gue.flags != 0) {
		metrics->errors_total_malformed_encapsulation++;
		return TC_ACT_SHOT;
	}

	if (encap->gue.hlen !=
	    sizeof(encap->unigue) / 4 + encap->unigue.hop_count) {
		metrics->errors_total_malformed_encapsulation++;
		return TC_ACT_SHOT;
	}

	if (encap->unigue.version != 0) {
		metrics->errors_total_malformed_encapsulation++;
		return TC_ACT_SHOT;
	}

	if (encap->unigue.reserved != 0) {
		return TC_ACT_SHOT;
	}

	struct in_addr next_hop;
	MAYBE_RETURN(get_next_hop(&pkt, encap, &next_hop));

	if (next_hop.s_addr == 0) {
		metrics->accepted_packets_total_last_hop++;
		return accept_locally(skb, encap);
	}

	verdict_t verdict;
	switch (encap->gue.proto_ctype) {
	case IPPROTO_IPIP:
		verdict = process_ipv4(&pkt, metrics);
		break;

	case IPPROTO_IPV6:
		verdict = process_ipv6(&pkt, metrics);
		break;

	default:
		metrics->errors_total_unknown_l3_proto++;
		return TC_ACT_SHOT;
	}

	switch (verdict) {
	case INVALID:
		/* metrics have already been bumped */
		return TC_ACT_SHOT;

	case UNKNOWN:
		return forward_to_next_hop(skb, encap, &next_hop, metrics);

	case ECHO_REQUEST:
		metrics->accepted_packets_total_icmp_echo_request++;
		break;

	case SYN:
		if (encap->unigue.forward_syn) {
			return forward_to_next_hop(skb, encap, &next_hop,
						   metrics);
		}

		metrics->accepted_packets_total_syn++;
		break;

	case SYN_COOKIE:
		metrics->accepted_packets_total_syn_cookies++;
		break;

	case ESTABLISHED:
		metrics->accepted_packets_total_established++;
		break;
	}

	return accept_locally(skb, encap);
}