diff options
Diffstat (limited to 'gnu/llvm/lib/Analysis/MemoryDependenceAnalysis.cpp')
| -rw-r--r-- | gnu/llvm/lib/Analysis/MemoryDependenceAnalysis.cpp | 1817 |
1 files changed, 0 insertions, 1817 deletions
diff --git a/gnu/llvm/lib/Analysis/MemoryDependenceAnalysis.cpp b/gnu/llvm/lib/Analysis/MemoryDependenceAnalysis.cpp deleted file mode 100644 index e22182b99e1..00000000000 --- a/gnu/llvm/lib/Analysis/MemoryDependenceAnalysis.cpp +++ /dev/null @@ -1,1817 +0,0 @@ -//===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation -------------===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file implements an analysis that determines, for a given memory -// operation, what preceding memory operations it depends on. It builds on -// alias analysis information, and tries to provide a lazy, caching interface to -// a common kind of alias information query. -// -//===----------------------------------------------------------------------===// - -#include "llvm/Analysis/MemoryDependenceAnalysis.h" -#include "llvm/ADT/DenseMap.h" -#include "llvm/ADT/STLExtras.h" -#include "llvm/ADT/SmallPtrSet.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/ADT/Statistic.h" -#include "llvm/Analysis/AliasAnalysis.h" -#include "llvm/Analysis/AssumptionCache.h" -#include "llvm/Analysis/MemoryBuiltins.h" -#include "llvm/Analysis/MemoryLocation.h" -#include "llvm/Analysis/OrderedBasicBlock.h" -#include "llvm/Analysis/PHITransAddr.h" -#include "llvm/Analysis/PhiValues.h" -#include "llvm/Analysis/TargetLibraryInfo.h" -#include "llvm/Analysis/ValueTracking.h" -#include "llvm/IR/Attributes.h" -#include "llvm/IR/BasicBlock.h" -#include "llvm/IR/Constants.h" -#include "llvm/IR/DataLayout.h" -#include "llvm/IR/DerivedTypes.h" -#include "llvm/IR/Dominators.h" -#include "llvm/IR/Function.h" -#include "llvm/IR/InstrTypes.h" -#include "llvm/IR/Instruction.h" -#include "llvm/IR/Instructions.h" -#include "llvm/IR/IntrinsicInst.h" -#include "llvm/IR/LLVMContext.h" -#include "llvm/IR/Metadata.h" -#include "llvm/IR/Module.h" -#include "llvm/IR/PredIteratorCache.h" -#include "llvm/IR/Type.h" -#include "llvm/IR/Use.h" -#include "llvm/IR/User.h" -#include "llvm/IR/Value.h" -#include "llvm/Pass.h" -#include "llvm/Support/AtomicOrdering.h" -#include "llvm/Support/Casting.h" -#include "llvm/Support/CommandLine.h" -#include "llvm/Support/Compiler.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/MathExtras.h" -#include <algorithm> -#include <cassert> -#include <cstdint> -#include <iterator> -#include <utility> - -using namespace llvm; - -#define DEBUG_TYPE "memdep" - -STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses"); -STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses"); -STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses"); - -STATISTIC(NumCacheNonLocalPtr, - "Number of fully cached non-local ptr responses"); -STATISTIC(NumCacheDirtyNonLocalPtr, - "Number of cached, but dirty, non-local ptr responses"); -STATISTIC(NumUncacheNonLocalPtr, "Number of uncached non-local ptr responses"); -STATISTIC(NumCacheCompleteNonLocalPtr, - "Number of block queries that were completely cached"); - -// Limit for the number of instructions to scan in a block. - -static cl::opt<unsigned> BlockScanLimit( - "memdep-block-scan-limit", cl::Hidden, cl::init(100), - cl::desc("The number of instructions to scan in a block in memory " - "dependency analysis (default = 100)")); - -static cl::opt<unsigned> - BlockNumberLimit("memdep-block-number-limit", cl::Hidden, cl::init(1000), - cl::desc("The number of blocks to scan during memory " - "dependency analysis (default = 1000)")); - -// Limit on the number of memdep results to process. -static const unsigned int NumResultsLimit = 100; - -/// This is a helper function that removes Val from 'Inst's set in ReverseMap. -/// -/// If the set becomes empty, remove Inst's entry. -template <typename KeyTy> -static void -RemoveFromReverseMap(DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>> &ReverseMap, - Instruction *Inst, KeyTy Val) { - typename DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>>::iterator InstIt = - ReverseMap.find(Inst); - assert(InstIt != ReverseMap.end() && "Reverse map out of sync?"); - bool Found = InstIt->second.erase(Val); - assert(Found && "Invalid reverse map!"); - (void)Found; - if (InstIt->second.empty()) - ReverseMap.erase(InstIt); -} - -/// If the given instruction references a specific memory location, fill in Loc -/// with the details, otherwise set Loc.Ptr to null. -/// -/// Returns a ModRefInfo value describing the general behavior of the -/// instruction. -static ModRefInfo GetLocation(const Instruction *Inst, MemoryLocation &Loc, - const TargetLibraryInfo &TLI) { - if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { - if (LI->isUnordered()) { - Loc = MemoryLocation::get(LI); - return ModRefInfo::Ref; - } - if (LI->getOrdering() == AtomicOrdering::Monotonic) { - Loc = MemoryLocation::get(LI); - return ModRefInfo::ModRef; - } - Loc = MemoryLocation(); - return ModRefInfo::ModRef; - } - - if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { - if (SI->isUnordered()) { - Loc = MemoryLocation::get(SI); - return ModRefInfo::Mod; - } - if (SI->getOrdering() == AtomicOrdering::Monotonic) { - Loc = MemoryLocation::get(SI); - return ModRefInfo::ModRef; - } - Loc = MemoryLocation(); - return ModRefInfo::ModRef; - } - - if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) { - Loc = MemoryLocation::get(V); - return ModRefInfo::ModRef; - } - - if (const CallInst *CI = isFreeCall(Inst, &TLI)) { - // calls to free() deallocate the entire structure - Loc = MemoryLocation(CI->getArgOperand(0)); - return ModRefInfo::Mod; - } - - if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { - switch (II->getIntrinsicID()) { - case Intrinsic::lifetime_start: - case Intrinsic::lifetime_end: - case Intrinsic::invariant_start: - Loc = MemoryLocation::getForArgument(II, 1, TLI); - // These intrinsics don't really modify the memory, but returning Mod - // will allow them to be handled conservatively. - return ModRefInfo::Mod; - case Intrinsic::invariant_end: - Loc = MemoryLocation::getForArgument(II, 2, TLI); - // These intrinsics don't really modify the memory, but returning Mod - // will allow them to be handled conservatively. - return ModRefInfo::Mod; - default: - break; - } - } - - // Otherwise, just do the coarse-grained thing that always works. - if (Inst->mayWriteToMemory()) - return ModRefInfo::ModRef; - if (Inst->mayReadFromMemory()) - return ModRefInfo::Ref; - return ModRefInfo::NoModRef; -} - -/// Private helper for finding the local dependencies of a call site. -MemDepResult MemoryDependenceResults::getCallDependencyFrom( - CallBase *Call, bool isReadOnlyCall, BasicBlock::iterator ScanIt, - BasicBlock *BB) { - unsigned Limit = BlockScanLimit; - - // Walk backwards through the block, looking for dependencies. - while (ScanIt != BB->begin()) { - Instruction *Inst = &*--ScanIt; - // Debug intrinsics don't cause dependences and should not affect Limit - if (isa<DbgInfoIntrinsic>(Inst)) - continue; - - // Limit the amount of scanning we do so we don't end up with quadratic - // running time on extreme testcases. - --Limit; - if (!Limit) - return MemDepResult::getUnknown(); - - // If this inst is a memory op, get the pointer it accessed - MemoryLocation Loc; - ModRefInfo MR = GetLocation(Inst, Loc, TLI); - if (Loc.Ptr) { - // A simple instruction. - if (isModOrRefSet(AA.getModRefInfo(Call, Loc))) - return MemDepResult::getClobber(Inst); - continue; - } - - if (auto *CallB = dyn_cast<CallBase>(Inst)) { - // If these two calls do not interfere, look past it. - if (isNoModRef(AA.getModRefInfo(Call, CallB))) { - // If the two calls are the same, return Inst as a Def, so that - // Call can be found redundant and eliminated. - if (isReadOnlyCall && !isModSet(MR) && - Call->isIdenticalToWhenDefined(CallB)) - return MemDepResult::getDef(Inst); - - // Otherwise if the two calls don't interact (e.g. CallB is readnone) - // keep scanning. - continue; - } else - return MemDepResult::getClobber(Inst); - } - - // If we could not obtain a pointer for the instruction and the instruction - // touches memory then assume that this is a dependency. - if (isModOrRefSet(MR)) - return MemDepResult::getClobber(Inst); - } - - // No dependence found. If this is the entry block of the function, it is - // unknown, otherwise it is non-local. - if (BB != &BB->getParent()->getEntryBlock()) - return MemDepResult::getNonLocal(); - return MemDepResult::getNonFuncLocal(); -} - -unsigned MemoryDependenceResults::getLoadLoadClobberFullWidthSize( - const Value *MemLocBase, int64_t MemLocOffs, unsigned MemLocSize, - const LoadInst *LI) { - // We can only extend simple integer loads. - if (!isa<IntegerType>(LI->getType()) || !LI->isSimple()) - return 0; - - // Load widening is hostile to ThreadSanitizer: it may cause false positives - // or make the reports more cryptic (access sizes are wrong). - if (LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread)) - return 0; - - const DataLayout &DL = LI->getModule()->getDataLayout(); - - // Get the base of this load. - int64_t LIOffs = 0; - const Value *LIBase = - GetPointerBaseWithConstantOffset(LI->getPointerOperand(), LIOffs, DL); - - // If the two pointers are not based on the same pointer, we can't tell that - // they are related. - if (LIBase != MemLocBase) - return 0; - - // Okay, the two values are based on the same pointer, but returned as - // no-alias. This happens when we have things like two byte loads at "P+1" - // and "P+3". Check to see if increasing the size of the "LI" load up to its - // alignment (or the largest native integer type) will allow us to load all - // the bits required by MemLoc. - - // If MemLoc is before LI, then no widening of LI will help us out. - if (MemLocOffs < LIOffs) - return 0; - - // Get the alignment of the load in bytes. We assume that it is safe to load - // any legal integer up to this size without a problem. For example, if we're - // looking at an i8 load on x86-32 that is known 1024 byte aligned, we can - // widen it up to an i32 load. If it is known 2-byte aligned, we can widen it - // to i16. - unsigned LoadAlign = LI->getAlignment(); - - int64_t MemLocEnd = MemLocOffs + MemLocSize; - - // If no amount of rounding up will let MemLoc fit into LI, then bail out. - if (LIOffs + LoadAlign < MemLocEnd) - return 0; - - // This is the size of the load to try. Start with the next larger power of - // two. - unsigned NewLoadByteSize = LI->getType()->getPrimitiveSizeInBits() / 8U; - NewLoadByteSize = NextPowerOf2(NewLoadByteSize); - - while (true) { - // If this load size is bigger than our known alignment or would not fit - // into a native integer register, then we fail. - if (NewLoadByteSize > LoadAlign || - !DL.fitsInLegalInteger(NewLoadByteSize * 8)) - return 0; - - if (LIOffs + NewLoadByteSize > MemLocEnd && - (LI->getParent()->getParent()->hasFnAttribute( - Attribute::SanitizeAddress) || - LI->getParent()->getParent()->hasFnAttribute( - Attribute::SanitizeHWAddress))) - // We will be reading past the location accessed by the original program. - // While this is safe in a regular build, Address Safety analysis tools - // may start reporting false warnings. So, don't do widening. - return 0; - - // If a load of this width would include all of MemLoc, then we succeed. - if (LIOffs + NewLoadByteSize >= MemLocEnd) - return NewLoadByteSize; - - NewLoadByteSize <<= 1; - } -} - -static bool isVolatile(Instruction *Inst) { - if (auto *LI = dyn_cast<LoadInst>(Inst)) - return LI->isVolatile(); - if (auto *SI = dyn_cast<StoreInst>(Inst)) - return SI->isVolatile(); - if (auto *AI = dyn_cast<AtomicCmpXchgInst>(Inst)) - return AI->isVolatile(); - return false; -} - -MemDepResult MemoryDependenceResults::getPointerDependencyFrom( - const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt, - BasicBlock *BB, Instruction *QueryInst, unsigned *Limit) { - MemDepResult InvariantGroupDependency = MemDepResult::getUnknown(); - if (QueryInst != nullptr) { - if (auto *LI = dyn_cast<LoadInst>(QueryInst)) { - InvariantGroupDependency = getInvariantGroupPointerDependency(LI, BB); - - if (InvariantGroupDependency.isDef()) - return InvariantGroupDependency; - } - } - MemDepResult SimpleDep = getSimplePointerDependencyFrom( - MemLoc, isLoad, ScanIt, BB, QueryInst, Limit); - if (SimpleDep.isDef()) - return SimpleDep; - // Non-local invariant group dependency indicates there is non local Def - // (it only returns nonLocal if it finds nonLocal def), which is better than - // local clobber and everything else. - if (InvariantGroupDependency.isNonLocal()) - return InvariantGroupDependency; - - assert(InvariantGroupDependency.isUnknown() && - "InvariantGroupDependency should be only unknown at this point"); - return SimpleDep; -} - -MemDepResult -MemoryDependenceResults::getInvariantGroupPointerDependency(LoadInst *LI, - BasicBlock *BB) { - - if (!LI->getMetadata(LLVMContext::MD_invariant_group)) - return MemDepResult::getUnknown(); - - // Take the ptr operand after all casts and geps 0. This way we can search - // cast graph down only. - Value *LoadOperand = LI->getPointerOperand()->stripPointerCasts(); - - // It's is not safe to walk the use list of global value, because function - // passes aren't allowed to look outside their functions. - // FIXME: this could be fixed by filtering instructions from outside - // of current function. - if (isa<GlobalValue>(LoadOperand)) - return MemDepResult::getUnknown(); - - // Queue to process all pointers that are equivalent to load operand. - SmallVector<const Value *, 8> LoadOperandsQueue; - LoadOperandsQueue.push_back(LoadOperand); - - Instruction *ClosestDependency = nullptr; - // Order of instructions in uses list is unpredictible. In order to always - // get the same result, we will look for the closest dominance. - auto GetClosestDependency = [this](Instruction *Best, Instruction *Other) { - assert(Other && "Must call it with not null instruction"); - if (Best == nullptr || DT.dominates(Best, Other)) - return Other; - return Best; - }; - - // FIXME: This loop is O(N^2) because dominates can be O(n) and in worst case - // we will see all the instructions. This should be fixed in MSSA. - while (!LoadOperandsQueue.empty()) { - const Value *Ptr = LoadOperandsQueue.pop_back_val(); - assert(Ptr && !isa<GlobalValue>(Ptr) && - "Null or GlobalValue should not be inserted"); - - for (const Use &Us : Ptr->uses()) { - auto *U = dyn_cast<Instruction>(Us.getUser()); - if (!U || U == LI || !DT.dominates(U, LI)) - continue; - - // Bitcast or gep with zeros are using Ptr. Add to queue to check it's - // users. U = bitcast Ptr - if (isa<BitCastInst>(U)) { - LoadOperandsQueue.push_back(U); - continue; - } - // Gep with zeros is equivalent to bitcast. - // FIXME: we are not sure if some bitcast should be canonicalized to gep 0 - // or gep 0 to bitcast because of SROA, so there are 2 forms. When - // typeless pointers will be ready then both cases will be gone - // (and this BFS also won't be needed). - if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) - if (GEP->hasAllZeroIndices()) { - LoadOperandsQueue.push_back(U); - continue; - } - - // If we hit load/store with the same invariant.group metadata (and the - // same pointer operand) we can assume that value pointed by pointer - // operand didn't change. - if ((isa<LoadInst>(U) || isa<StoreInst>(U)) && - U->getMetadata(LLVMContext::MD_invariant_group) != nullptr) - ClosestDependency = GetClosestDependency(ClosestDependency, U); - } - } - - if (!ClosestDependency) - return MemDepResult::getUnknown(); - if (ClosestDependency->getParent() == BB) - return MemDepResult::getDef(ClosestDependency); - // Def(U) can't be returned here because it is non-local. If local - // dependency won't be found then return nonLocal counting that the - // user will call getNonLocalPointerDependency, which will return cached - // result. - NonLocalDefsCache.try_emplace( - LI, NonLocalDepResult(ClosestDependency->getParent(), - MemDepResult::getDef(ClosestDependency), nullptr)); - ReverseNonLocalDefsCache[ClosestDependency].insert(LI); - return MemDepResult::getNonLocal(); -} - -MemDepResult MemoryDependenceResults::getSimplePointerDependencyFrom( - const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt, - BasicBlock *BB, Instruction *QueryInst, unsigned *Limit) { - bool isInvariantLoad = false; - - if (!Limit) { - unsigned DefaultLimit = BlockScanLimit; - return getSimplePointerDependencyFrom(MemLoc, isLoad, ScanIt, BB, QueryInst, - &DefaultLimit); - } - - // We must be careful with atomic accesses, as they may allow another thread - // to touch this location, clobbering it. We are conservative: if the - // QueryInst is not a simple (non-atomic) memory access, we automatically - // return getClobber. - // If it is simple, we know based on the results of - // "Compiler testing via a theory of sound optimisations in the C11/C++11 - // memory model" in PLDI 2013, that a non-atomic location can only be - // clobbered between a pair of a release and an acquire action, with no - // access to the location in between. - // Here is an example for giving the general intuition behind this rule. - // In the following code: - // store x 0; - // release action; [1] - // acquire action; [4] - // %val = load x; - // It is unsafe to replace %val by 0 because another thread may be running: - // acquire action; [2] - // store x 42; - // release action; [3] - // with synchronization from 1 to 2 and from 3 to 4, resulting in %val - // being 42. A key property of this program however is that if either - // 1 or 4 were missing, there would be a race between the store of 42 - // either the store of 0 or the load (making the whole program racy). - // The paper mentioned above shows that the same property is respected - // by every program that can detect any optimization of that kind: either - // it is racy (undefined) or there is a release followed by an acquire - // between the pair of accesses under consideration. - - // If the load is invariant, we "know" that it doesn't alias *any* write. We - // do want to respect mustalias results since defs are useful for value - // forwarding, but any mayalias write can be assumed to be noalias. - // Arguably, this logic should be pushed inside AliasAnalysis itself. - if (isLoad && QueryInst) { - LoadInst *LI = dyn_cast<LoadInst>(QueryInst); - if (LI && LI->getMetadata(LLVMContext::MD_invariant_load) != nullptr) - isInvariantLoad = true; - } - - const DataLayout &DL = BB->getModule()->getDataLayout(); - - // Create a numbered basic block to lazily compute and cache instruction - // positions inside a BB. This is used to provide fast queries for relative - // position between two instructions in a BB and can be used by - // AliasAnalysis::callCapturesBefore. - OrderedBasicBlock OBB(BB); - - // Return "true" if and only if the instruction I is either a non-simple - // load or a non-simple store. - auto isNonSimpleLoadOrStore = [](Instruction *I) -> bool { - if (auto *LI = dyn_cast<LoadInst>(I)) - return !LI->isSimple(); - if (auto *SI = dyn_cast<StoreInst>(I)) - return !SI->isSimple(); - return false; - }; - - // Return "true" if I is not a load and not a store, but it does access - // memory. - auto isOtherMemAccess = [](Instruction *I) -> bool { - return !isa<LoadInst>(I) && !isa<StoreInst>(I) && I->mayReadOrWriteMemory(); - }; - - // Walk backwards through the basic block, looking for dependencies. - while (ScanIt != BB->begin()) { - Instruction *Inst = &*--ScanIt; - - if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) - // Debug intrinsics don't (and can't) cause dependencies. - if (isa<DbgInfoIntrinsic>(II)) - continue; - - // Limit the amount of scanning we do so we don't end up with quadratic - // running time on extreme testcases. - --*Limit; - if (!*Limit) - return MemDepResult::getUnknown(); - - if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { - // If we reach a lifetime begin or end marker, then the query ends here - // because the value is undefined. - if (II->getIntrinsicID() == Intrinsic::lifetime_start) { - // FIXME: This only considers queries directly on the invariant-tagged - // pointer, not on query pointers that are indexed off of them. It'd - // be nice to handle that at some point (the right approach is to use - // GetPointerBaseWithConstantOffset). - if (AA.isMustAlias(MemoryLocation(II->getArgOperand(1)), MemLoc)) - return MemDepResult::getDef(II); - continue; - } - } - - // Values depend on loads if the pointers are must aliased. This means - // that a load depends on another must aliased load from the same value. - // One exception is atomic loads: a value can depend on an atomic load that - // it does not alias with when this atomic load indicates that another - // thread may be accessing the location. - if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { - // While volatile access cannot be eliminated, they do not have to clobber - // non-aliasing locations, as normal accesses, for example, can be safely - // reordered with volatile accesses. - if (LI->isVolatile()) { - if (!QueryInst) - // Original QueryInst *may* be volatile - return MemDepResult::getClobber(LI); - if (isVolatile(QueryInst)) - // Ordering required if QueryInst is itself volatile - return MemDepResult::getClobber(LI); - // Otherwise, volatile doesn't imply any special ordering - } - - // Atomic loads have complications involved. - // A Monotonic (or higher) load is OK if the query inst is itself not - // atomic. - // FIXME: This is overly conservative. - if (LI->isAtomic() && isStrongerThanUnordered(LI->getOrdering())) { - if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) || - isOtherMemAccess(QueryInst)) - return MemDepResult::getClobber(LI); - if (LI->getOrdering() != AtomicOrdering::Monotonic) - return MemDepResult::getClobber(LI); - } - - MemoryLocation LoadLoc = MemoryLocation::get(LI); - - // If we found a pointer, check if it could be the same as our pointer. - AliasResult R = AA.alias(LoadLoc, MemLoc); - - if (isLoad) { - if (R == NoAlias) - continue; - - // Must aliased loads are defs of each other. - if (R == MustAlias) - return MemDepResult::getDef(Inst); - -#if 0 // FIXME: Temporarily disabled. GVN is cleverly rewriting loads - // in terms of clobbering loads, but since it does this by looking - // at the clobbering load directly, it doesn't know about any - // phi translation that may have happened along the way. - - // If we have a partial alias, then return this as a clobber for the - // client to handle. - if (R == PartialAlias) - return MemDepResult::getClobber(Inst); -#endif - - // Random may-alias loads don't depend on each other without a - // dependence. - continue; - } - - // Stores don't depend on other no-aliased accesses. - if (R == NoAlias) - continue; - - // Stores don't alias loads from read-only memory. - if (AA.pointsToConstantMemory(LoadLoc)) - continue; - - // Stores depend on may/must aliased loads. - return MemDepResult::getDef(Inst); - } - - if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { - // Atomic stores have complications involved. - // A Monotonic store is OK if the query inst is itself not atomic. - // FIXME: This is overly conservative. - if (!SI->isUnordered() && SI->isAtomic()) { - if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) || - isOtherMemAccess(QueryInst)) - return MemDepResult::getClobber(SI); - if (SI->getOrdering() != AtomicOrdering::Monotonic) - return MemDepResult::getClobber(SI); - } - - // FIXME: this is overly conservative. - // While volatile access cannot be eliminated, they do not have to clobber - // non-aliasing locations, as normal accesses can for example be reordered - // with volatile accesses. - if (SI->isVolatile()) - if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) || - isOtherMemAccess(QueryInst)) - return MemDepResult::getClobber(SI); - - // If alias analysis can tell that this store is guaranteed to not modify - // the query pointer, ignore it. Use getModRefInfo to handle cases where - // the query pointer points to constant memory etc. - if (!isModOrRefSet(AA.getModRefInfo(SI, MemLoc))) - continue; - - // Ok, this store might clobber the query pointer. Check to see if it is - // a must alias: in this case, we want to return this as a def. - // FIXME: Use ModRefInfo::Must bit from getModRefInfo call above. - MemoryLocation StoreLoc = MemoryLocation::get(SI); - - // If we found a pointer, check if it could be the same as our pointer. - AliasResult R = AA.alias(StoreLoc, MemLoc); - - if (R == NoAlias) - continue; - if (R == MustAlias) - return MemDepResult::getDef(Inst); - if (isInvariantLoad) - continue; - return MemDepResult::getClobber(Inst); - } - - // If this is an allocation, and if we know that the accessed pointer is to - // the allocation, return Def. This means that there is no dependence and - // the access can be optimized based on that. For example, a load could - // turn into undef. Note that we can bypass the allocation itself when - // looking for a clobber in many cases; that's an alias property and is - // handled by BasicAA. - if (isa<AllocaInst>(Inst) || isNoAliasFn(Inst, &TLI)) { - const Value *AccessPtr = GetUnderlyingObject(MemLoc.Ptr, DL); - if (AccessPtr == Inst || AA.isMustAlias(Inst, AccessPtr)) - return MemDepResult::getDef(Inst); - } - - if (isInvariantLoad) - continue; - - // A release fence requires that all stores complete before it, but does - // not prevent the reordering of following loads or stores 'before' the - // fence. As a result, we look past it when finding a dependency for - // loads. DSE uses this to find preceeding stores to delete and thus we - // can't bypass the fence if the query instruction is a store. - if (FenceInst *FI = dyn_cast<FenceInst>(Inst)) - if (isLoad && FI->getOrdering() == AtomicOrdering::Release) - continue; - - // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer. - ModRefInfo MR = AA.getModRefInfo(Inst, MemLoc); - // If necessary, perform additional analysis. - if (isModAndRefSet(MR)) - MR = AA.callCapturesBefore(Inst, MemLoc, &DT, &OBB); - switch (clearMust(MR)) { - case ModRefInfo::NoModRef: - // If the call has no effect on the queried pointer, just ignore it. - continue; - case ModRefInfo::Mod: - return MemDepResult::getClobber(Inst); - case ModRefInfo::Ref: - // If the call is known to never store to the pointer, and if this is a - // load query, we can safely ignore it (scan past it). - if (isLoad) - continue; - LLVM_FALLTHROUGH; - default: - // Otherwise, there is a potential dependence. Return a clobber. - return MemDepResult::getClobber(Inst); - } - } - - // No dependence found. If this is the entry block of the function, it is - // unknown, otherwise it is non-local. - if (BB != &BB->getParent()->getEntryBlock()) - return MemDepResult::getNonLocal(); - return MemDepResult::getNonFuncLocal(); -} - -MemDepResult MemoryDependenceResults::getDependency(Instruction *QueryInst) { - Instruction *ScanPos = QueryInst; - - // Check for a cached result - MemDepResult &LocalCache = LocalDeps[QueryInst]; - - // If the cached entry is non-dirty, just return it. Note that this depends - // on MemDepResult's default constructing to 'dirty'. - if (!LocalCache.isDirty()) - return LocalCache; - - // Otherwise, if we have a dirty entry, we know we can start the scan at that - // instruction, which may save us some work. - if (Instruction *Inst = LocalCache.getInst()) { - ScanPos = Inst; - - RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst); - } - - BasicBlock *QueryParent = QueryInst->getParent(); - - // Do the scan. - if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) { - // No dependence found. If this is the entry block of the function, it is - // unknown, otherwise it is non-local. - if (QueryParent != &QueryParent->getParent()->getEntryBlock()) - LocalCache = MemDepResult::getNonLocal(); - else - LocalCache = MemDepResult::getNonFuncLocal(); - } else { - MemoryLocation MemLoc; - ModRefInfo MR = GetLocation(QueryInst, MemLoc, TLI); - if (MemLoc.Ptr) { - // If we can do a pointer scan, make it happen. - bool isLoad = !isModSet(MR); - if (auto *II = dyn_cast<IntrinsicInst>(QueryInst)) - isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start; - - LocalCache = getPointerDependencyFrom( - MemLoc, isLoad, ScanPos->getIterator(), QueryParent, QueryInst); - } else if (auto *QueryCall = dyn_cast<CallBase>(QueryInst)) { - bool isReadOnly = AA.onlyReadsMemory(QueryCall); - LocalCache = getCallDependencyFrom(QueryCall, isReadOnly, - ScanPos->getIterator(), QueryParent); - } else - // Non-memory instruction. - LocalCache = MemDepResult::getUnknown(); - } - - // Remember the result! - if (Instruction *I = LocalCache.getInst()) - ReverseLocalDeps[I].insert(QueryInst); - - return LocalCache; -} - -#ifndef NDEBUG -/// This method is used when -debug is specified to verify that cache arrays -/// are properly kept sorted. -static void AssertSorted(MemoryDependenceResults::NonLocalDepInfo &Cache, - int Count = -1) { - if (Count == -1) - Count = Cache.size(); - assert(std::is_sorted(Cache.begin(), Cache.begin() + Count) && - "Cache isn't sorted!"); -} -#endif - -const MemoryDependenceResults::NonLocalDepInfo & -MemoryDependenceResults::getNonLocalCallDependency(CallBase *QueryCall) { - assert(getDependency(QueryCall).isNonLocal() && - "getNonLocalCallDependency should only be used on calls with " - "non-local deps!"); - PerInstNLInfo &CacheP = NonLocalDeps[QueryCall]; - NonLocalDepInfo &Cache = CacheP.first; - - // This is the set of blocks that need to be recomputed. In the cached case, - // this can happen due to instructions being deleted etc. In the uncached - // case, this starts out as the set of predecessors we care about. - SmallVector<BasicBlock *, 32> DirtyBlocks; - - if (!Cache.empty()) { - // Okay, we have a cache entry. If we know it is not dirty, just return it - // with no computation. - if (!CacheP.second) { - ++NumCacheNonLocal; - return Cache; - } - - // If we already have a partially computed set of results, scan them to - // determine what is dirty, seeding our initial DirtyBlocks worklist. - for (auto &Entry : Cache) - if (Entry.getResult().isDirty()) - DirtyBlocks.push_back(Entry.getBB()); - - // Sort the cache so that we can do fast binary search lookups below. - llvm::sort(Cache); - - ++NumCacheDirtyNonLocal; - // cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: " - // << Cache.size() << " cached: " << *QueryInst; - } else { - // Seed DirtyBlocks with each of the preds of QueryInst's block. - BasicBlock *QueryBB = QueryCall->getParent(); - for (BasicBlock *Pred : PredCache.get(QueryBB)) - DirtyBlocks.push_back(Pred); - ++NumUncacheNonLocal; - } - - // isReadonlyCall - If this is a read-only call, we can be more aggressive. - bool isReadonlyCall = AA.onlyReadsMemory(QueryCall); - - SmallPtrSet<BasicBlock *, 32> Visited; - - unsigned NumSortedEntries = Cache.size(); - LLVM_DEBUG(AssertSorted(Cache)); - - // Iterate while we still have blocks to update. - while (!DirtyBlocks.empty()) { - BasicBlock *DirtyBB = DirtyBlocks.back(); - DirtyBlocks.pop_back(); - - // Already processed this block? - if (!Visited.insert(DirtyBB).second) - continue; - - // Do a binary search to see if we already have an entry for this block in - // the cache set. If so, find it. - LLVM_DEBUG(AssertSorted(Cache, NumSortedEntries)); - NonLocalDepInfo::iterator Entry = - std::upper_bound(Cache.begin(), Cache.begin() + NumSortedEntries, - NonLocalDepEntry(DirtyBB)); - if (Entry != Cache.begin() && std::prev(Entry)->getBB() == DirtyBB) - --Entry; - - NonLocalDepEntry *ExistingResult = nullptr; - if (Entry != Cache.begin() + NumSortedEntries && - Entry->getBB() == DirtyBB) { - // If we already have an entry, and if it isn't already dirty, the block - // is done. - if (!Entry->getResult().isDirty()) - continue; - - // Otherwise, remember this slot so we can update the value. - ExistingResult = &*Entry; - } - - // If the dirty entry has a pointer, start scanning from it so we don't have - // to rescan the entire block. - BasicBlock::iterator ScanPos = DirtyBB->end(); - if (ExistingResult) { - if (Instruction *Inst = ExistingResult->getResult().getInst()) { - ScanPos = Inst->getIterator(); - // We're removing QueryInst's use of Inst. - RemoveFromReverseMap<Instruction *>(ReverseNonLocalDeps, Inst, - QueryCall); - } - } - - // Find out if this block has a local dependency for QueryInst. - MemDepResult Dep; - - if (ScanPos != DirtyBB->begin()) { - Dep = getCallDependencyFrom(QueryCall, isReadonlyCall, ScanPos, DirtyBB); - } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) { - // No dependence found. If this is the entry block of the function, it is - // a clobber, otherwise it is unknown. - Dep = MemDepResult::getNonLocal(); - } else { - Dep = MemDepResult::getNonFuncLocal(); - } - - // If we had a dirty entry for the block, update it. Otherwise, just add - // a new entry. - if (ExistingResult) - ExistingResult->setResult(Dep); - else - Cache.push_back(NonLocalDepEntry(DirtyBB, Dep)); - - // If the block has a dependency (i.e. it isn't completely transparent to - // the value), remember the association! - if (!Dep.isNonLocal()) { - // Keep the ReverseNonLocalDeps map up to date so we can efficiently - // update this when we remove instructions. - if (Instruction *Inst = Dep.getInst()) - ReverseNonLocalDeps[Inst].insert(QueryCall); - } else { - - // If the block *is* completely transparent to the load, we need to check - // the predecessors of this block. Add them to our worklist. - for (BasicBlock *Pred : PredCache.get(DirtyBB)) - DirtyBlocks.push_back(Pred); - } - } - - return Cache; -} - -void MemoryDependenceResults::getNonLocalPointerDependency( - Instruction *QueryInst, SmallVectorImpl<NonLocalDepResult> &Result) { - const MemoryLocation Loc = MemoryLocation::get(QueryInst); - bool isLoad = isa<LoadInst>(QueryInst); - BasicBlock *FromBB = QueryInst->getParent(); - assert(FromBB); - - assert(Loc.Ptr->getType()->isPointerTy() && - "Can't get pointer deps of a non-pointer!"); - Result.clear(); - { - // Check if there is cached Def with invariant.group. - auto NonLocalDefIt = NonLocalDefsCache.find(QueryInst); - if (NonLocalDefIt != NonLocalDefsCache.end()) { - Result.push_back(NonLocalDefIt->second); - ReverseNonLocalDefsCache[NonLocalDefIt->second.getResult().getInst()] - .erase(QueryInst); - NonLocalDefsCache.erase(NonLocalDefIt); - return; - } - } - // This routine does not expect to deal with volatile instructions. - // Doing so would require piping through the QueryInst all the way through. - // TODO: volatiles can't be elided, but they can be reordered with other - // non-volatile accesses. - - // We currently give up on any instruction which is ordered, but we do handle - // atomic instructions which are unordered. - // TODO: Handle ordered instructions - auto isOrdered = [](Instruction *Inst) { - if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { - return !LI->isUnordered(); - } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { - return !SI->isUnordered(); - } - return false; - }; - if (isVolatile(QueryInst) || isOrdered(QueryInst)) { - Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(), - const_cast<Value *>(Loc.Ptr))); - return; - } - const DataLayout &DL = FromBB->getModule()->getDataLayout(); - PHITransAddr Address(const_cast<Value *>(Loc.Ptr), DL, &AC); - - // This is the set of blocks we've inspected, and the pointer we consider in - // each block. Because of critical edges, we currently bail out if querying - // a block with multiple different pointers. This can happen during PHI - // translation. - DenseMap<BasicBlock *, Value *> Visited; - if (getNonLocalPointerDepFromBB(QueryInst, Address, Loc, isLoad, FromBB, - Result, Visited, true)) - return; - Result.clear(); - Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(), - const_cast<Value *>(Loc.Ptr))); -} - -/// Compute the memdep value for BB with Pointer/PointeeSize using either -/// cached information in Cache or by doing a lookup (which may use dirty cache -/// info if available). -/// -/// If we do a lookup, add the result to the cache. -MemDepResult MemoryDependenceResults::GetNonLocalInfoForBlock( - Instruction *QueryInst, const MemoryLocation &Loc, bool isLoad, - BasicBlock *BB, NonLocalDepInfo *Cache, unsigned NumSortedEntries) { - - // Do a binary search to see if we already have an entry for this block in - // the cache set. If so, find it. - NonLocalDepInfo::iterator Entry = std::upper_bound( - Cache->begin(), Cache->begin() + NumSortedEntries, NonLocalDepEntry(BB)); - if (Entry != Cache->begin() && (Entry - 1)->getBB() == BB) - --Entry; - - NonLocalDepEntry *ExistingResult = nullptr; - if (Entry != Cache->begin() + NumSortedEntries && Entry->getBB() == BB) - ExistingResult = &*Entry; - - // If we have a cached entry, and it is non-dirty, use it as the value for - // this dependency. - if (ExistingResult && !ExistingResult->getResult().isDirty()) { - ++NumCacheNonLocalPtr; - return ExistingResult->getResult(); - } - - // Otherwise, we have to scan for the value. If we have a dirty cache - // entry, start scanning from its position, otherwise we scan from the end - // of the block. - BasicBlock::iterator ScanPos = BB->end(); - if (ExistingResult && ExistingResult->getResult().getInst()) { - assert(ExistingResult->getResult().getInst()->getParent() == BB && - "Instruction invalidated?"); - ++NumCacheDirtyNonLocalPtr; - ScanPos = ExistingResult->getResult().getInst()->getIterator(); - - // Eliminating the dirty entry from 'Cache', so update the reverse info. - ValueIsLoadPair CacheKey(Loc.Ptr, isLoad); - RemoveFromReverseMap(ReverseNonLocalPtrDeps, &*ScanPos, CacheKey); - } else { - ++NumUncacheNonLocalPtr; - } - - // Scan the block for the dependency. - MemDepResult Dep = - getPointerDependencyFrom(Loc, isLoad, ScanPos, BB, QueryInst); - - // If we had a dirty entry for the block, update it. Otherwise, just add - // a new entry. - if (ExistingResult) - ExistingResult->setResult(Dep); - else - Cache->push_back(NonLocalDepEntry(BB, Dep)); - - // If the block has a dependency (i.e. it isn't completely transparent to - // the value), remember the reverse association because we just added it - // to Cache! - if (!Dep.isDef() && !Dep.isClobber()) - return Dep; - - // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently - // update MemDep when we remove instructions. - Instruction *Inst = Dep.getInst(); - assert(Inst && "Didn't depend on anything?"); - ValueIsLoadPair CacheKey(Loc.Ptr, isLoad); - ReverseNonLocalPtrDeps[Inst].insert(CacheKey); - return Dep; -} - -/// Sort the NonLocalDepInfo cache, given a certain number of elements in the -/// array that are already properly ordered. -/// -/// This is optimized for the case when only a few entries are added. -static void -SortNonLocalDepInfoCache(MemoryDependenceResults::NonLocalDepInfo &Cache, - unsigned NumSortedEntries) { - switch (Cache.size() - NumSortedEntries) { - case 0: - // done, no new entries. - break; - case 2: { - // Two new entries, insert the last one into place. - NonLocalDepEntry Val = Cache.back(); - Cache.pop_back(); - MemoryDependenceResults::NonLocalDepInfo::iterator Entry = - std::upper_bound(Cache.begin(), Cache.end() - 1, Val); - Cache.insert(Entry, Val); - LLVM_FALLTHROUGH; - } - case 1: - // One new entry, Just insert the new value at the appropriate position. - if (Cache.size() != 1) { - NonLocalDepEntry Val = Cache.back(); - Cache.pop_back(); - MemoryDependenceResults::NonLocalDepInfo::iterator Entry = - std::upper_bound(Cache.begin(), Cache.end(), Val); - Cache.insert(Entry, Val); - } - break; - default: - // Added many values, do a full scale sort. - llvm::sort(Cache); - break; - } -} - -/// Perform a dependency query based on pointer/pointeesize starting at the end -/// of StartBB. -/// -/// Add any clobber/def results to the results vector and keep track of which -/// blocks are visited in 'Visited'. -/// -/// This has special behavior for the first block queries (when SkipFirstBlock -/// is true). In this special case, it ignores the contents of the specified -/// block and starts returning dependence info for its predecessors. -/// -/// This function returns true on success, or false to indicate that it could -/// not compute dependence information for some reason. This should be treated -/// as a clobber dependence on the first instruction in the predecessor block. -bool MemoryDependenceResults::getNonLocalPointerDepFromBB( - Instruction *QueryInst, const PHITransAddr &Pointer, - const MemoryLocation &Loc, bool isLoad, BasicBlock *StartBB, - SmallVectorImpl<NonLocalDepResult> &Result, - DenseMap<BasicBlock *, Value *> &Visited, bool SkipFirstBlock) { - // Look up the cached info for Pointer. - ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad); - - // Set up a temporary NLPI value. If the map doesn't yet have an entry for - // CacheKey, this value will be inserted as the associated value. Otherwise, - // it'll be ignored, and we'll have to check to see if the cached size and - // aa tags are consistent with the current query. - NonLocalPointerInfo InitialNLPI; - InitialNLPI.Size = Loc.Size; - InitialNLPI.AATags = Loc.AATags; - - // Get the NLPI for CacheKey, inserting one into the map if it doesn't - // already have one. - std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair = - NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI)); - NonLocalPointerInfo *CacheInfo = &Pair.first->second; - - // If we already have a cache entry for this CacheKey, we may need to do some - // work to reconcile the cache entry and the current query. - if (!Pair.second) { - if (CacheInfo->Size != Loc.Size) { - bool ThrowOutEverything; - if (CacheInfo->Size.hasValue() && Loc.Size.hasValue()) { - // FIXME: We may be able to do better in the face of results with mixed - // precision. We don't appear to get them in practice, though, so just - // be conservative. - ThrowOutEverything = - CacheInfo->Size.isPrecise() != Loc.Size.isPrecise() || - CacheInfo->Size.getValue() < Loc.Size.getValue(); - } else { - // For our purposes, unknown size > all others. - ThrowOutEverything = !Loc.Size.hasValue(); - } - - if (ThrowOutEverything) { - // The query's Size is greater than the cached one. Throw out the - // cached data and proceed with the query at the greater size. - CacheInfo->Pair = BBSkipFirstBlockPair(); - CacheInfo->Size = Loc.Size; - for (auto &Entry : CacheInfo->NonLocalDeps) - if (Instruction *Inst = Entry.getResult().getInst()) - RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey); - CacheInfo->NonLocalDeps.clear(); - } else { - // This query's Size is less than the cached one. Conservatively restart - // the query using the greater size. - return getNonLocalPointerDepFromBB( - QueryInst, Pointer, Loc.getWithNewSize(CacheInfo->Size), isLoad, - StartBB, Result, Visited, SkipFirstBlock); - } - } - - // If the query's AATags are inconsistent with the cached one, - // conservatively throw out the cached data and restart the query with - // no tag if needed. - if (CacheInfo->AATags != Loc.AATags) { - if (CacheInfo->AATags) { - CacheInfo->Pair = BBSkipFirstBlockPair(); - CacheInfo->AATags = AAMDNodes(); - for (auto &Entry : CacheInfo->NonLocalDeps) - if (Instruction *Inst = Entry.getResult().getInst()) - RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey); - CacheInfo->NonLocalDeps.clear(); - } - if (Loc.AATags) - return getNonLocalPointerDepFromBB( - QueryInst, Pointer, Loc.getWithoutAATags(), isLoad, StartBB, Result, - Visited, SkipFirstBlock); - } - } - - NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps; - - // If we have valid cached information for exactly the block we are - // investigating, just return it with no recomputation. - if (CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) { - // We have a fully cached result for this query then we can just return the - // cached results and populate the visited set. However, we have to verify - // that we don't already have conflicting results for these blocks. Check - // to ensure that if a block in the results set is in the visited set that - // it was for the same pointer query. - if (!Visited.empty()) { - for (auto &Entry : *Cache) { - DenseMap<BasicBlock *, Value *>::iterator VI = - Visited.find(Entry.getBB()); - if (VI == Visited.end() || VI->second == Pointer.getAddr()) - continue; - - // We have a pointer mismatch in a block. Just return false, saying - // that something was clobbered in this result. We could also do a - // non-fully cached query, but there is little point in doing this. - return false; - } - } - - Value *Addr = Pointer.getAddr(); - for (auto &Entry : *Cache) { - Visited.insert(std::make_pair(Entry.getBB(), Addr)); - if (Entry.getResult().isNonLocal()) { - continue; - } - - if (DT.isReachableFromEntry(Entry.getBB())) { - Result.push_back( - NonLocalDepResult(Entry.getBB(), Entry.getResult(), Addr)); - } - } - ++NumCacheCompleteNonLocalPtr; - return true; - } - - // Otherwise, either this is a new block, a block with an invalid cache - // pointer or one that we're about to invalidate by putting more info into it - // than its valid cache info. If empty, the result will be valid cache info, - // otherwise it isn't. - if (Cache->empty()) - CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock); - else - CacheInfo->Pair = BBSkipFirstBlockPair(); - - SmallVector<BasicBlock *, 32> Worklist; - Worklist.push_back(StartBB); - - // PredList used inside loop. - SmallVector<std::pair<BasicBlock *, PHITransAddr>, 16> PredList; - - // Keep track of the entries that we know are sorted. Previously cached - // entries will all be sorted. The entries we add we only sort on demand (we - // don't insert every element into its sorted position). We know that we - // won't get any reuse from currently inserted values, because we don't - // revisit blocks after we insert info for them. - unsigned NumSortedEntries = Cache->size(); - unsigned WorklistEntries = BlockNumberLimit; - bool GotWorklistLimit = false; - LLVM_DEBUG(AssertSorted(*Cache)); - - while (!Worklist.empty()) { - BasicBlock *BB = Worklist.pop_back_val(); - - // If we do process a large number of blocks it becomes very expensive and - // likely it isn't worth worrying about - if (Result.size() > NumResultsLimit) { - Worklist.clear(); - // Sort it now (if needed) so that recursive invocations of - // getNonLocalPointerDepFromBB and other routines that could reuse the - // cache value will only see properly sorted cache arrays. - if (Cache && NumSortedEntries != Cache->size()) { - SortNonLocalDepInfoCache(*Cache, NumSortedEntries); - } - // Since we bail out, the "Cache" set won't contain all of the - // results for the query. This is ok (we can still use it to accelerate - // specific block queries) but we can't do the fastpath "return all - // results from the set". Clear out the indicator for this. - CacheInfo->Pair = BBSkipFirstBlockPair(); - return false; - } - - // Skip the first block if we have it. - if (!SkipFirstBlock) { - // Analyze the dependency of *Pointer in FromBB. See if we already have - // been here. - assert(Visited.count(BB) && "Should check 'visited' before adding to WL"); - - // Get the dependency info for Pointer in BB. If we have cached - // information, we will use it, otherwise we compute it. - LLVM_DEBUG(AssertSorted(*Cache, NumSortedEntries)); - MemDepResult Dep = GetNonLocalInfoForBlock(QueryInst, Loc, isLoad, BB, - Cache, NumSortedEntries); - - // If we got a Def or Clobber, add this to the list of results. - if (!Dep.isNonLocal()) { - if (DT.isReachableFromEntry(BB)) { - Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr())); - continue; - } - } - } - - // If 'Pointer' is an instruction defined in this block, then we need to do - // phi translation to change it into a value live in the predecessor block. - // If not, we just add the predecessors to the worklist and scan them with - // the same Pointer. - if (!Pointer.NeedsPHITranslationFromBlock(BB)) { - SkipFirstBlock = false; - SmallVector<BasicBlock *, 16> NewBlocks; - for (BasicBlock *Pred : PredCache.get(BB)) { - // Verify that we haven't looked at this block yet. - std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes = - Visited.insert(std::make_pair(Pred, Pointer.getAddr())); - if (InsertRes.second) { - // First time we've looked at *PI. - NewBlocks.push_back(Pred); - continue; - } - - // If we have seen this block before, but it was with a different - // pointer then we have a phi translation failure and we have to treat - // this as a clobber. - if (InsertRes.first->second != Pointer.getAddr()) { - // Make sure to clean up the Visited map before continuing on to - // PredTranslationFailure. - for (unsigned i = 0; i < NewBlocks.size(); i++) - Visited.erase(NewBlocks[i]); - goto PredTranslationFailure; - } - } - if (NewBlocks.size() > WorklistEntries) { - // Make sure to clean up the Visited map before continuing on to - // PredTranslationFailure. - for (unsigned i = 0; i < NewBlocks.size(); i++) - Visited.erase(NewBlocks[i]); - GotWorklistLimit = true; - goto PredTranslationFailure; - } - WorklistEntries -= NewBlocks.size(); - Worklist.append(NewBlocks.begin(), NewBlocks.end()); - continue; - } - - // We do need to do phi translation, if we know ahead of time we can't phi - // translate this value, don't even try. - if (!Pointer.IsPotentiallyPHITranslatable()) - goto PredTranslationFailure; - - // We may have added values to the cache list before this PHI translation. - // If so, we haven't done anything to ensure that the cache remains sorted. - // Sort it now (if needed) so that recursive invocations of - // getNonLocalPointerDepFromBB and other routines that could reuse the cache - // value will only see properly sorted cache arrays. - if (Cache && NumSortedEntries != Cache->size()) { - SortNonLocalDepInfoCache(*Cache, NumSortedEntries); - NumSortedEntries = Cache->size(); - } - Cache = nullptr; - - PredList.clear(); - for (BasicBlock *Pred : PredCache.get(BB)) { - PredList.push_back(std::make_pair(Pred, Pointer)); - - // Get the PHI translated pointer in this predecessor. This can fail if - // not translatable, in which case the getAddr() returns null. - PHITransAddr &PredPointer = PredList.back().second; - PredPointer.PHITranslateValue(BB, Pred, &DT, /*MustDominate=*/false); - Value *PredPtrVal = PredPointer.getAddr(); - - // Check to see if we have already visited this pred block with another - // pointer. If so, we can't do this lookup. This failure can occur - // with PHI translation when a critical edge exists and the PHI node in - // the successor translates to a pointer value different than the - // pointer the block was first analyzed with. - std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes = - Visited.insert(std::make_pair(Pred, PredPtrVal)); - - if (!InsertRes.second) { - // We found the pred; take it off the list of preds to visit. - PredList.pop_back(); - - // If the predecessor was visited with PredPtr, then we already did - // the analysis and can ignore it. - if (InsertRes.first->second == PredPtrVal) - continue; - - // Otherwise, the block was previously analyzed with a different - // pointer. We can't represent the result of this case, so we just - // treat this as a phi translation failure. - - // Make sure to clean up the Visited map before continuing on to - // PredTranslationFailure. - for (unsigned i = 0, n = PredList.size(); i < n; ++i) - Visited.erase(PredList[i].first); - - goto PredTranslationFailure; - } - } - - // Actually process results here; this need to be a separate loop to avoid - // calling getNonLocalPointerDepFromBB for blocks we don't want to return - // any results for. (getNonLocalPointerDepFromBB will modify our - // datastructures in ways the code after the PredTranslationFailure label - // doesn't expect.) - for (unsigned i = 0, n = PredList.size(); i < n; ++i) { - BasicBlock *Pred = PredList[i].first; - PHITransAddr &PredPointer = PredList[i].second; - Value *PredPtrVal = PredPointer.getAddr(); - - bool CanTranslate = true; - // If PHI translation was unable to find an available pointer in this - // predecessor, then we have to assume that the pointer is clobbered in - // that predecessor. We can still do PRE of the load, which would insert - // a computation of the pointer in this predecessor. - if (!PredPtrVal) - CanTranslate = false; - - // FIXME: it is entirely possible that PHI translating will end up with - // the same value. Consider PHI translating something like: - // X = phi [x, bb1], [y, bb2]. PHI translating for bb1 doesn't *need* - // to recurse here, pedantically speaking. - - // If getNonLocalPointerDepFromBB fails here, that means the cached - // result conflicted with the Visited list; we have to conservatively - // assume it is unknown, but this also does not block PRE of the load. - if (!CanTranslate || - !getNonLocalPointerDepFromBB(QueryInst, PredPointer, - Loc.getWithNewPtr(PredPtrVal), isLoad, - Pred, Result, Visited)) { - // Add the entry to the Result list. - NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal); - Result.push_back(Entry); - - // Since we had a phi translation failure, the cache for CacheKey won't - // include all of the entries that we need to immediately satisfy future - // queries. Mark this in NonLocalPointerDeps by setting the - // BBSkipFirstBlockPair pointer to null. This requires reuse of the - // cached value to do more work but not miss the phi trans failure. - NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey]; - NLPI.Pair = BBSkipFirstBlockPair(); - continue; - } - } - - // Refresh the CacheInfo/Cache pointer so that it isn't invalidated. - CacheInfo = &NonLocalPointerDeps[CacheKey]; - Cache = &CacheInfo->NonLocalDeps; - NumSortedEntries = Cache->size(); - - // Since we did phi translation, the "Cache" set won't contain all of the - // results for the query. This is ok (we can still use it to accelerate - // specific block queries) but we can't do the fastpath "return all - // results from the set" Clear out the indicator for this. - CacheInfo->Pair = BBSkipFirstBlockPair(); - SkipFirstBlock = false; - continue; - - PredTranslationFailure: - // The following code is "failure"; we can't produce a sane translation - // for the given block. It assumes that we haven't modified any of - // our datastructures while processing the current block. - - if (!Cache) { - // Refresh the CacheInfo/Cache pointer if it got invalidated. - CacheInfo = &NonLocalPointerDeps[CacheKey]; - Cache = &CacheInfo->NonLocalDeps; - NumSortedEntries = Cache->size(); - } - - // Since we failed phi translation, the "Cache" set won't contain all of the - // results for the query. This is ok (we can still use it to accelerate - // specific block queries) but we can't do the fastpath "return all - // results from the set". Clear out the indicator for this. - CacheInfo->Pair = BBSkipFirstBlockPair(); - - // If *nothing* works, mark the pointer as unknown. - // - // If this is the magic first block, return this as a clobber of the whole - // incoming value. Since we can't phi translate to one of the predecessors, - // we have to bail out. - if (SkipFirstBlock) - return false; - - bool foundBlock = false; - for (NonLocalDepEntry &I : llvm::reverse(*Cache)) { - if (I.getBB() != BB) - continue; - - assert((GotWorklistLimit || I.getResult().isNonLocal() || - !DT.isReachableFromEntry(BB)) && - "Should only be here with transparent block"); - foundBlock = true; - I.setResult(MemDepResult::getUnknown()); - Result.push_back( - NonLocalDepResult(I.getBB(), I.getResult(), Pointer.getAddr())); - break; - } - (void)foundBlock; (void)GotWorklistLimit; - assert((foundBlock || GotWorklistLimit) && "Current block not in cache?"); - } - - // Okay, we're done now. If we added new values to the cache, re-sort it. - SortNonLocalDepInfoCache(*Cache, NumSortedEntries); - LLVM_DEBUG(AssertSorted(*Cache)); - return true; -} - -/// If P exists in CachedNonLocalPointerInfo or NonLocalDefsCache, remove it. -void MemoryDependenceResults::RemoveCachedNonLocalPointerDependencies( - ValueIsLoadPair P) { - - // Most of the time this cache is empty. - if (!NonLocalDefsCache.empty()) { - auto it = NonLocalDefsCache.find(P.getPointer()); - if (it != NonLocalDefsCache.end()) { - RemoveFromReverseMap(ReverseNonLocalDefsCache, - it->second.getResult().getInst(), P.getPointer()); - NonLocalDefsCache.erase(it); - } - - if (auto *I = dyn_cast<Instruction>(P.getPointer())) { - auto toRemoveIt = ReverseNonLocalDefsCache.find(I); - if (toRemoveIt != ReverseNonLocalDefsCache.end()) { - for (const auto &entry : toRemoveIt->second) - NonLocalDefsCache.erase(entry); - ReverseNonLocalDefsCache.erase(toRemoveIt); - } - } - } - - CachedNonLocalPointerInfo::iterator It = NonLocalPointerDeps.find(P); - if (It == NonLocalPointerDeps.end()) - return; - - // Remove all of the entries in the BB->val map. This involves removing - // instructions from the reverse map. - NonLocalDepInfo &PInfo = It->second.NonLocalDeps; - - for (unsigned i = 0, e = PInfo.size(); i != e; ++i) { - Instruction *Target = PInfo[i].getResult().getInst(); - if (!Target) - continue; // Ignore non-local dep results. - assert(Target->getParent() == PInfo[i].getBB()); - - // Eliminating the dirty entry from 'Cache', so update the reverse info. - RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P); - } - - // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo). - NonLocalPointerDeps.erase(It); -} - -void MemoryDependenceResults::invalidateCachedPointerInfo(Value *Ptr) { - // If Ptr isn't really a pointer, just ignore it. - if (!Ptr->getType()->isPointerTy()) - return; - // Flush store info for the pointer. - RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false)); - // Flush load info for the pointer. - RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true)); - // Invalidate phis that use the pointer. - PV.invalidateValue(Ptr); -} - -void MemoryDependenceResults::invalidateCachedPredecessors() { - PredCache.clear(); -} - -void MemoryDependenceResults::removeInstruction(Instruction *RemInst) { - // Walk through the Non-local dependencies, removing this one as the value - // for any cached queries. - NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst); - if (NLDI != NonLocalDeps.end()) { - NonLocalDepInfo &BlockMap = NLDI->second.first; - for (auto &Entry : BlockMap) - if (Instruction *Inst = Entry.getResult().getInst()) - RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst); - NonLocalDeps.erase(NLDI); - } - - // If we have a cached local dependence query for this instruction, remove it. - LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst); - if (LocalDepEntry != LocalDeps.end()) { - // Remove us from DepInst's reverse set now that the local dep info is gone. - if (Instruction *Inst = LocalDepEntry->second.getInst()) - RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst); - - // Remove this local dependency info. - LocalDeps.erase(LocalDepEntry); - } - - // If we have any cached pointer dependencies on this instruction, remove - // them. If the instruction has non-pointer type, then it can't be a pointer - // base. - - // Remove it from both the load info and the store info. The instruction - // can't be in either of these maps if it is non-pointer. - if (RemInst->getType()->isPointerTy()) { - RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false)); - RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true)); - } - - // Loop over all of the things that depend on the instruction we're removing. - SmallVector<std::pair<Instruction *, Instruction *>, 8> ReverseDepsToAdd; - - // If we find RemInst as a clobber or Def in any of the maps for other values, - // we need to replace its entry with a dirty version of the instruction after - // it. If RemInst is a terminator, we use a null dirty value. - // - // Using a dirty version of the instruction after RemInst saves having to scan - // the entire block to get to this point. - MemDepResult NewDirtyVal; - if (!RemInst->isTerminator()) - NewDirtyVal = MemDepResult::getDirty(&*++RemInst->getIterator()); - - ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst); - if (ReverseDepIt != ReverseLocalDeps.end()) { - // RemInst can't be the terminator if it has local stuff depending on it. - assert(!ReverseDepIt->second.empty() && !RemInst->isTerminator() && - "Nothing can locally depend on a terminator"); - - for (Instruction *InstDependingOnRemInst : ReverseDepIt->second) { - assert(InstDependingOnRemInst != RemInst && - "Already removed our local dep info"); - - LocalDeps[InstDependingOnRemInst] = NewDirtyVal; - - // Make sure to remember that new things depend on NewDepInst. - assert(NewDirtyVal.getInst() && - "There is no way something else can have " - "a local dep on this if it is a terminator!"); - ReverseDepsToAdd.push_back( - std::make_pair(NewDirtyVal.getInst(), InstDependingOnRemInst)); - } - - ReverseLocalDeps.erase(ReverseDepIt); - - // Add new reverse deps after scanning the set, to avoid invalidating the - // 'ReverseDeps' reference. - while (!ReverseDepsToAdd.empty()) { - ReverseLocalDeps[ReverseDepsToAdd.back().first].insert( - ReverseDepsToAdd.back().second); - ReverseDepsToAdd.pop_back(); - } - } - - ReverseDepIt = ReverseNonLocalDeps.find(RemInst); - if (ReverseDepIt != ReverseNonLocalDeps.end()) { - for (Instruction *I : ReverseDepIt->second) { - assert(I != RemInst && "Already removed NonLocalDep info for RemInst"); - - PerInstNLInfo &INLD = NonLocalDeps[I]; - // The information is now dirty! - INLD.second = true; - - for (auto &Entry : INLD.first) { - if (Entry.getResult().getInst() != RemInst) - continue; - - // Convert to a dirty entry for the subsequent instruction. - Entry.setResult(NewDirtyVal); - - if (Instruction *NextI = NewDirtyVal.getInst()) - ReverseDepsToAdd.push_back(std::make_pair(NextI, I)); - } - } - - ReverseNonLocalDeps.erase(ReverseDepIt); - - // Add new reverse deps after scanning the set, to avoid invalidating 'Set' - while (!ReverseDepsToAdd.empty()) { - ReverseNonLocalDeps[ReverseDepsToAdd.back().first].insert( - ReverseDepsToAdd.back().second); - ReverseDepsToAdd.pop_back(); - } - } - - // If the instruction is in ReverseNonLocalPtrDeps then it appears as a - // value in the NonLocalPointerDeps info. - ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt = - ReverseNonLocalPtrDeps.find(RemInst); - if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) { - SmallVector<std::pair<Instruction *, ValueIsLoadPair>, 8> - ReversePtrDepsToAdd; - - for (ValueIsLoadPair P : ReversePtrDepIt->second) { - assert(P.getPointer() != RemInst && - "Already removed NonLocalPointerDeps info for RemInst"); - - NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps; - - // The cache is not valid for any specific block anymore. - NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair(); - - // Update any entries for RemInst to use the instruction after it. - for (auto &Entry : NLPDI) { - if (Entry.getResult().getInst() != RemInst) - continue; - - // Convert to a dirty entry for the subsequent instruction. - Entry.setResult(NewDirtyVal); - - if (Instruction *NewDirtyInst = NewDirtyVal.getInst()) - ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P)); - } - - // Re-sort the NonLocalDepInfo. Changing the dirty entry to its - // subsequent value may invalidate the sortedness. - llvm::sort(NLPDI); - } - - ReverseNonLocalPtrDeps.erase(ReversePtrDepIt); - - while (!ReversePtrDepsToAdd.empty()) { - ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first].insert( - ReversePtrDepsToAdd.back().second); - ReversePtrDepsToAdd.pop_back(); - } - } - - // Invalidate phis that use the removed instruction. - PV.invalidateValue(RemInst); - - assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?"); - LLVM_DEBUG(verifyRemoved(RemInst)); -} - -/// Verify that the specified instruction does not occur in our internal data -/// structures. -/// -/// This function verifies by asserting in debug builds. -void MemoryDependenceResults::verifyRemoved(Instruction *D) const { -#ifndef NDEBUG - for (const auto &DepKV : LocalDeps) { - assert(DepKV.first != D && "Inst occurs in data structures"); - assert(DepKV.second.getInst() != D && "Inst occurs in data structures"); - } - - for (const auto &DepKV : NonLocalPointerDeps) { - assert(DepKV.first.getPointer() != D && "Inst occurs in NLPD map key"); - for (const auto &Entry : DepKV.second.NonLocalDeps) - assert(Entry.getResult().getInst() != D && "Inst occurs as NLPD value"); - } - - for (const auto &DepKV : NonLocalDeps) { - assert(DepKV.first != D && "Inst occurs in data structures"); - const PerInstNLInfo &INLD = DepKV.second; - for (const auto &Entry : INLD.first) - assert(Entry.getResult().getInst() != D && - "Inst occurs in data structures"); - } - - for (const auto &DepKV : ReverseLocalDeps) { - assert(DepKV.first != D && "Inst occurs in data structures"); - for (Instruction *Inst : DepKV.second) - assert(Inst != D && "Inst occurs in data structures"); - } - - for (const auto &DepKV : ReverseNonLocalDeps) { - assert(DepKV.first != D && "Inst occurs in data structures"); - for (Instruction *Inst : DepKV.second) - assert(Inst != D && "Inst occurs in data structures"); - } - - for (const auto &DepKV : ReverseNonLocalPtrDeps) { - assert(DepKV.first != D && "Inst occurs in rev NLPD map"); - - for (ValueIsLoadPair P : DepKV.second) - assert(P != ValueIsLoadPair(D, false) && P != ValueIsLoadPair(D, true) && - "Inst occurs in ReverseNonLocalPtrDeps map"); - } -#endif -} - -AnalysisKey MemoryDependenceAnalysis::Key; - -MemoryDependenceResults -MemoryDependenceAnalysis::run(Function &F, FunctionAnalysisManager &AM) { - auto &AA = AM.getResult<AAManager>(F); - auto &AC = AM.getResult<AssumptionAnalysis>(F); - auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); - auto &DT = AM.getResult<DominatorTreeAnalysis>(F); - auto &PV = AM.getResult<PhiValuesAnalysis>(F); - return MemoryDependenceResults(AA, AC, TLI, DT, PV); -} - -char MemoryDependenceWrapperPass::ID = 0; - -INITIALIZE_PASS_BEGIN(MemoryDependenceWrapperPass, "memdep", - "Memory Dependence Analysis", false, true) -INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) -INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) -INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) -INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) -INITIALIZE_PASS_DEPENDENCY(PhiValuesWrapperPass) -INITIALIZE_PASS_END(MemoryDependenceWrapperPass, "memdep", - "Memory Dependence Analysis", false, true) - -MemoryDependenceWrapperPass::MemoryDependenceWrapperPass() : FunctionPass(ID) { - initializeMemoryDependenceWrapperPassPass(*PassRegistry::getPassRegistry()); -} - -MemoryDependenceWrapperPass::~MemoryDependenceWrapperPass() = default; - -void MemoryDependenceWrapperPass::releaseMemory() { - MemDep.reset(); -} - -void MemoryDependenceWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { - AU.setPreservesAll(); - AU.addRequired<AssumptionCacheTracker>(); - AU.addRequired<DominatorTreeWrapperPass>(); - AU.addRequired<PhiValuesWrapperPass>(); - AU.addRequiredTransitive<AAResultsWrapperPass>(); - AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); -} - -bool MemoryDependenceResults::invalidate(Function &F, const PreservedAnalyses &PA, - FunctionAnalysisManager::Invalidator &Inv) { - // Check whether our analysis is preserved. - auto PAC = PA.getChecker<MemoryDependenceAnalysis>(); - if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>()) - // If not, give up now. - return true; - - // Check whether the analyses we depend on became invalid for any reason. - if (Inv.invalidate<AAManager>(F, PA) || - Inv.invalidate<AssumptionAnalysis>(F, PA) || - Inv.invalidate<DominatorTreeAnalysis>(F, PA) || - Inv.invalidate<PhiValuesAnalysis>(F, PA)) - return true; - - // Otherwise this analysis result remains valid. - return false; -} - -unsigned MemoryDependenceResults::getDefaultBlockScanLimit() const { - return BlockScanLimit; -} - -bool MemoryDependenceWrapperPass::runOnFunction(Function &F) { - auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); - auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); - auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); - auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); - auto &PV = getAnalysis<PhiValuesWrapperPass>().getResult(); - MemDep.emplace(AA, AC, TLI, DT, PV); - return false; -} |
