summaryrefslogtreecommitdiffstats
path: root/gnu/llvm/lib/Analysis/MemoryDependenceAnalysis.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'gnu/llvm/lib/Analysis/MemoryDependenceAnalysis.cpp')
-rw-r--r--gnu/llvm/lib/Analysis/MemoryDependenceAnalysis.cpp1817
1 files changed, 0 insertions, 1817 deletions
diff --git a/gnu/llvm/lib/Analysis/MemoryDependenceAnalysis.cpp b/gnu/llvm/lib/Analysis/MemoryDependenceAnalysis.cpp
deleted file mode 100644
index e22182b99e1..00000000000
--- a/gnu/llvm/lib/Analysis/MemoryDependenceAnalysis.cpp
+++ /dev/null
@@ -1,1817 +0,0 @@
-//===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation -------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements an analysis that determines, for a given memory
-// operation, what preceding memory operations it depends on. It builds on
-// alias analysis information, and tries to provide a lazy, caching interface to
-// a common kind of alias information query.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Analysis/MemoryDependenceAnalysis.h"
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/Analysis/AliasAnalysis.h"
-#include "llvm/Analysis/AssumptionCache.h"
-#include "llvm/Analysis/MemoryBuiltins.h"
-#include "llvm/Analysis/MemoryLocation.h"
-#include "llvm/Analysis/OrderedBasicBlock.h"
-#include "llvm/Analysis/PHITransAddr.h"
-#include "llvm/Analysis/PhiValues.h"
-#include "llvm/Analysis/TargetLibraryInfo.h"
-#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/IR/Attributes.h"
-#include "llvm/IR/BasicBlock.h"
-#include "llvm/IR/Constants.h"
-#include "llvm/IR/DataLayout.h"
-#include "llvm/IR/DerivedTypes.h"
-#include "llvm/IR/Dominators.h"
-#include "llvm/IR/Function.h"
-#include "llvm/IR/InstrTypes.h"
-#include "llvm/IR/Instruction.h"
-#include "llvm/IR/Instructions.h"
-#include "llvm/IR/IntrinsicInst.h"
-#include "llvm/IR/LLVMContext.h"
-#include "llvm/IR/Metadata.h"
-#include "llvm/IR/Module.h"
-#include "llvm/IR/PredIteratorCache.h"
-#include "llvm/IR/Type.h"
-#include "llvm/IR/Use.h"
-#include "llvm/IR/User.h"
-#include "llvm/IR/Value.h"
-#include "llvm/Pass.h"
-#include "llvm/Support/AtomicOrdering.h"
-#include "llvm/Support/Casting.h"
-#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/Compiler.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/MathExtras.h"
-#include <algorithm>
-#include <cassert>
-#include <cstdint>
-#include <iterator>
-#include <utility>
-
-using namespace llvm;
-
-#define DEBUG_TYPE "memdep"
-
-STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses");
-STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses");
-STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
-
-STATISTIC(NumCacheNonLocalPtr,
- "Number of fully cached non-local ptr responses");
-STATISTIC(NumCacheDirtyNonLocalPtr,
- "Number of cached, but dirty, non-local ptr responses");
-STATISTIC(NumUncacheNonLocalPtr, "Number of uncached non-local ptr responses");
-STATISTIC(NumCacheCompleteNonLocalPtr,
- "Number of block queries that were completely cached");
-
-// Limit for the number of instructions to scan in a block.
-
-static cl::opt<unsigned> BlockScanLimit(
- "memdep-block-scan-limit", cl::Hidden, cl::init(100),
- cl::desc("The number of instructions to scan in a block in memory "
- "dependency analysis (default = 100)"));
-
-static cl::opt<unsigned>
- BlockNumberLimit("memdep-block-number-limit", cl::Hidden, cl::init(1000),
- cl::desc("The number of blocks to scan during memory "
- "dependency analysis (default = 1000)"));
-
-// Limit on the number of memdep results to process.
-static const unsigned int NumResultsLimit = 100;
-
-/// This is a helper function that removes Val from 'Inst's set in ReverseMap.
-///
-/// If the set becomes empty, remove Inst's entry.
-template <typename KeyTy>
-static void
-RemoveFromReverseMap(DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>> &ReverseMap,
- Instruction *Inst, KeyTy Val) {
- typename DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>>::iterator InstIt =
- ReverseMap.find(Inst);
- assert(InstIt != ReverseMap.end() && "Reverse map out of sync?");
- bool Found = InstIt->second.erase(Val);
- assert(Found && "Invalid reverse map!");
- (void)Found;
- if (InstIt->second.empty())
- ReverseMap.erase(InstIt);
-}
-
-/// If the given instruction references a specific memory location, fill in Loc
-/// with the details, otherwise set Loc.Ptr to null.
-///
-/// Returns a ModRefInfo value describing the general behavior of the
-/// instruction.
-static ModRefInfo GetLocation(const Instruction *Inst, MemoryLocation &Loc,
- const TargetLibraryInfo &TLI) {
- if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
- if (LI->isUnordered()) {
- Loc = MemoryLocation::get(LI);
- return ModRefInfo::Ref;
- }
- if (LI->getOrdering() == AtomicOrdering::Monotonic) {
- Loc = MemoryLocation::get(LI);
- return ModRefInfo::ModRef;
- }
- Loc = MemoryLocation();
- return ModRefInfo::ModRef;
- }
-
- if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
- if (SI->isUnordered()) {
- Loc = MemoryLocation::get(SI);
- return ModRefInfo::Mod;
- }
- if (SI->getOrdering() == AtomicOrdering::Monotonic) {
- Loc = MemoryLocation::get(SI);
- return ModRefInfo::ModRef;
- }
- Loc = MemoryLocation();
- return ModRefInfo::ModRef;
- }
-
- if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
- Loc = MemoryLocation::get(V);
- return ModRefInfo::ModRef;
- }
-
- if (const CallInst *CI = isFreeCall(Inst, &TLI)) {
- // calls to free() deallocate the entire structure
- Loc = MemoryLocation(CI->getArgOperand(0));
- return ModRefInfo::Mod;
- }
-
- if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
- switch (II->getIntrinsicID()) {
- case Intrinsic::lifetime_start:
- case Intrinsic::lifetime_end:
- case Intrinsic::invariant_start:
- Loc = MemoryLocation::getForArgument(II, 1, TLI);
- // These intrinsics don't really modify the memory, but returning Mod
- // will allow them to be handled conservatively.
- return ModRefInfo::Mod;
- case Intrinsic::invariant_end:
- Loc = MemoryLocation::getForArgument(II, 2, TLI);
- // These intrinsics don't really modify the memory, but returning Mod
- // will allow them to be handled conservatively.
- return ModRefInfo::Mod;
- default:
- break;
- }
- }
-
- // Otherwise, just do the coarse-grained thing that always works.
- if (Inst->mayWriteToMemory())
- return ModRefInfo::ModRef;
- if (Inst->mayReadFromMemory())
- return ModRefInfo::Ref;
- return ModRefInfo::NoModRef;
-}
-
-/// Private helper for finding the local dependencies of a call site.
-MemDepResult MemoryDependenceResults::getCallDependencyFrom(
- CallBase *Call, bool isReadOnlyCall, BasicBlock::iterator ScanIt,
- BasicBlock *BB) {
- unsigned Limit = BlockScanLimit;
-
- // Walk backwards through the block, looking for dependencies.
- while (ScanIt != BB->begin()) {
- Instruction *Inst = &*--ScanIt;
- // Debug intrinsics don't cause dependences and should not affect Limit
- if (isa<DbgInfoIntrinsic>(Inst))
- continue;
-
- // Limit the amount of scanning we do so we don't end up with quadratic
- // running time on extreme testcases.
- --Limit;
- if (!Limit)
- return MemDepResult::getUnknown();
-
- // If this inst is a memory op, get the pointer it accessed
- MemoryLocation Loc;
- ModRefInfo MR = GetLocation(Inst, Loc, TLI);
- if (Loc.Ptr) {
- // A simple instruction.
- if (isModOrRefSet(AA.getModRefInfo(Call, Loc)))
- return MemDepResult::getClobber(Inst);
- continue;
- }
-
- if (auto *CallB = dyn_cast<CallBase>(Inst)) {
- // If these two calls do not interfere, look past it.
- if (isNoModRef(AA.getModRefInfo(Call, CallB))) {
- // If the two calls are the same, return Inst as a Def, so that
- // Call can be found redundant and eliminated.
- if (isReadOnlyCall && !isModSet(MR) &&
- Call->isIdenticalToWhenDefined(CallB))
- return MemDepResult::getDef(Inst);
-
- // Otherwise if the two calls don't interact (e.g. CallB is readnone)
- // keep scanning.
- continue;
- } else
- return MemDepResult::getClobber(Inst);
- }
-
- // If we could not obtain a pointer for the instruction and the instruction
- // touches memory then assume that this is a dependency.
- if (isModOrRefSet(MR))
- return MemDepResult::getClobber(Inst);
- }
-
- // No dependence found. If this is the entry block of the function, it is
- // unknown, otherwise it is non-local.
- if (BB != &BB->getParent()->getEntryBlock())
- return MemDepResult::getNonLocal();
- return MemDepResult::getNonFuncLocal();
-}
-
-unsigned MemoryDependenceResults::getLoadLoadClobberFullWidthSize(
- const Value *MemLocBase, int64_t MemLocOffs, unsigned MemLocSize,
- const LoadInst *LI) {
- // We can only extend simple integer loads.
- if (!isa<IntegerType>(LI->getType()) || !LI->isSimple())
- return 0;
-
- // Load widening is hostile to ThreadSanitizer: it may cause false positives
- // or make the reports more cryptic (access sizes are wrong).
- if (LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread))
- return 0;
-
- const DataLayout &DL = LI->getModule()->getDataLayout();
-
- // Get the base of this load.
- int64_t LIOffs = 0;
- const Value *LIBase =
- GetPointerBaseWithConstantOffset(LI->getPointerOperand(), LIOffs, DL);
-
- // If the two pointers are not based on the same pointer, we can't tell that
- // they are related.
- if (LIBase != MemLocBase)
- return 0;
-
- // Okay, the two values are based on the same pointer, but returned as
- // no-alias. This happens when we have things like two byte loads at "P+1"
- // and "P+3". Check to see if increasing the size of the "LI" load up to its
- // alignment (or the largest native integer type) will allow us to load all
- // the bits required by MemLoc.
-
- // If MemLoc is before LI, then no widening of LI will help us out.
- if (MemLocOffs < LIOffs)
- return 0;
-
- // Get the alignment of the load in bytes. We assume that it is safe to load
- // any legal integer up to this size without a problem. For example, if we're
- // looking at an i8 load on x86-32 that is known 1024 byte aligned, we can
- // widen it up to an i32 load. If it is known 2-byte aligned, we can widen it
- // to i16.
- unsigned LoadAlign = LI->getAlignment();
-
- int64_t MemLocEnd = MemLocOffs + MemLocSize;
-
- // If no amount of rounding up will let MemLoc fit into LI, then bail out.
- if (LIOffs + LoadAlign < MemLocEnd)
- return 0;
-
- // This is the size of the load to try. Start with the next larger power of
- // two.
- unsigned NewLoadByteSize = LI->getType()->getPrimitiveSizeInBits() / 8U;
- NewLoadByteSize = NextPowerOf2(NewLoadByteSize);
-
- while (true) {
- // If this load size is bigger than our known alignment or would not fit
- // into a native integer register, then we fail.
- if (NewLoadByteSize > LoadAlign ||
- !DL.fitsInLegalInteger(NewLoadByteSize * 8))
- return 0;
-
- if (LIOffs + NewLoadByteSize > MemLocEnd &&
- (LI->getParent()->getParent()->hasFnAttribute(
- Attribute::SanitizeAddress) ||
- LI->getParent()->getParent()->hasFnAttribute(
- Attribute::SanitizeHWAddress)))
- // We will be reading past the location accessed by the original program.
- // While this is safe in a regular build, Address Safety analysis tools
- // may start reporting false warnings. So, don't do widening.
- return 0;
-
- // If a load of this width would include all of MemLoc, then we succeed.
- if (LIOffs + NewLoadByteSize >= MemLocEnd)
- return NewLoadByteSize;
-
- NewLoadByteSize <<= 1;
- }
-}
-
-static bool isVolatile(Instruction *Inst) {
- if (auto *LI = dyn_cast<LoadInst>(Inst))
- return LI->isVolatile();
- if (auto *SI = dyn_cast<StoreInst>(Inst))
- return SI->isVolatile();
- if (auto *AI = dyn_cast<AtomicCmpXchgInst>(Inst))
- return AI->isVolatile();
- return false;
-}
-
-MemDepResult MemoryDependenceResults::getPointerDependencyFrom(
- const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt,
- BasicBlock *BB, Instruction *QueryInst, unsigned *Limit) {
- MemDepResult InvariantGroupDependency = MemDepResult::getUnknown();
- if (QueryInst != nullptr) {
- if (auto *LI = dyn_cast<LoadInst>(QueryInst)) {
- InvariantGroupDependency = getInvariantGroupPointerDependency(LI, BB);
-
- if (InvariantGroupDependency.isDef())
- return InvariantGroupDependency;
- }
- }
- MemDepResult SimpleDep = getSimplePointerDependencyFrom(
- MemLoc, isLoad, ScanIt, BB, QueryInst, Limit);
- if (SimpleDep.isDef())
- return SimpleDep;
- // Non-local invariant group dependency indicates there is non local Def
- // (it only returns nonLocal if it finds nonLocal def), which is better than
- // local clobber and everything else.
- if (InvariantGroupDependency.isNonLocal())
- return InvariantGroupDependency;
-
- assert(InvariantGroupDependency.isUnknown() &&
- "InvariantGroupDependency should be only unknown at this point");
- return SimpleDep;
-}
-
-MemDepResult
-MemoryDependenceResults::getInvariantGroupPointerDependency(LoadInst *LI,
- BasicBlock *BB) {
-
- if (!LI->getMetadata(LLVMContext::MD_invariant_group))
- return MemDepResult::getUnknown();
-
- // Take the ptr operand after all casts and geps 0. This way we can search
- // cast graph down only.
- Value *LoadOperand = LI->getPointerOperand()->stripPointerCasts();
-
- // It's is not safe to walk the use list of global value, because function
- // passes aren't allowed to look outside their functions.
- // FIXME: this could be fixed by filtering instructions from outside
- // of current function.
- if (isa<GlobalValue>(LoadOperand))
- return MemDepResult::getUnknown();
-
- // Queue to process all pointers that are equivalent to load operand.
- SmallVector<const Value *, 8> LoadOperandsQueue;
- LoadOperandsQueue.push_back(LoadOperand);
-
- Instruction *ClosestDependency = nullptr;
- // Order of instructions in uses list is unpredictible. In order to always
- // get the same result, we will look for the closest dominance.
- auto GetClosestDependency = [this](Instruction *Best, Instruction *Other) {
- assert(Other && "Must call it with not null instruction");
- if (Best == nullptr || DT.dominates(Best, Other))
- return Other;
- return Best;
- };
-
- // FIXME: This loop is O(N^2) because dominates can be O(n) and in worst case
- // we will see all the instructions. This should be fixed in MSSA.
- while (!LoadOperandsQueue.empty()) {
- const Value *Ptr = LoadOperandsQueue.pop_back_val();
- assert(Ptr && !isa<GlobalValue>(Ptr) &&
- "Null or GlobalValue should not be inserted");
-
- for (const Use &Us : Ptr->uses()) {
- auto *U = dyn_cast<Instruction>(Us.getUser());
- if (!U || U == LI || !DT.dominates(U, LI))
- continue;
-
- // Bitcast or gep with zeros are using Ptr. Add to queue to check it's
- // users. U = bitcast Ptr
- if (isa<BitCastInst>(U)) {
- LoadOperandsQueue.push_back(U);
- continue;
- }
- // Gep with zeros is equivalent to bitcast.
- // FIXME: we are not sure if some bitcast should be canonicalized to gep 0
- // or gep 0 to bitcast because of SROA, so there are 2 forms. When
- // typeless pointers will be ready then both cases will be gone
- // (and this BFS also won't be needed).
- if (auto *GEP = dyn_cast<GetElementPtrInst>(U))
- if (GEP->hasAllZeroIndices()) {
- LoadOperandsQueue.push_back(U);
- continue;
- }
-
- // If we hit load/store with the same invariant.group metadata (and the
- // same pointer operand) we can assume that value pointed by pointer
- // operand didn't change.
- if ((isa<LoadInst>(U) || isa<StoreInst>(U)) &&
- U->getMetadata(LLVMContext::MD_invariant_group) != nullptr)
- ClosestDependency = GetClosestDependency(ClosestDependency, U);
- }
- }
-
- if (!ClosestDependency)
- return MemDepResult::getUnknown();
- if (ClosestDependency->getParent() == BB)
- return MemDepResult::getDef(ClosestDependency);
- // Def(U) can't be returned here because it is non-local. If local
- // dependency won't be found then return nonLocal counting that the
- // user will call getNonLocalPointerDependency, which will return cached
- // result.
- NonLocalDefsCache.try_emplace(
- LI, NonLocalDepResult(ClosestDependency->getParent(),
- MemDepResult::getDef(ClosestDependency), nullptr));
- ReverseNonLocalDefsCache[ClosestDependency].insert(LI);
- return MemDepResult::getNonLocal();
-}
-
-MemDepResult MemoryDependenceResults::getSimplePointerDependencyFrom(
- const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt,
- BasicBlock *BB, Instruction *QueryInst, unsigned *Limit) {
- bool isInvariantLoad = false;
-
- if (!Limit) {
- unsigned DefaultLimit = BlockScanLimit;
- return getSimplePointerDependencyFrom(MemLoc, isLoad, ScanIt, BB, QueryInst,
- &DefaultLimit);
- }
-
- // We must be careful with atomic accesses, as they may allow another thread
- // to touch this location, clobbering it. We are conservative: if the
- // QueryInst is not a simple (non-atomic) memory access, we automatically
- // return getClobber.
- // If it is simple, we know based on the results of
- // "Compiler testing via a theory of sound optimisations in the C11/C++11
- // memory model" in PLDI 2013, that a non-atomic location can only be
- // clobbered between a pair of a release and an acquire action, with no
- // access to the location in between.
- // Here is an example for giving the general intuition behind this rule.
- // In the following code:
- // store x 0;
- // release action; [1]
- // acquire action; [4]
- // %val = load x;
- // It is unsafe to replace %val by 0 because another thread may be running:
- // acquire action; [2]
- // store x 42;
- // release action; [3]
- // with synchronization from 1 to 2 and from 3 to 4, resulting in %val
- // being 42. A key property of this program however is that if either
- // 1 or 4 were missing, there would be a race between the store of 42
- // either the store of 0 or the load (making the whole program racy).
- // The paper mentioned above shows that the same property is respected
- // by every program that can detect any optimization of that kind: either
- // it is racy (undefined) or there is a release followed by an acquire
- // between the pair of accesses under consideration.
-
- // If the load is invariant, we "know" that it doesn't alias *any* write. We
- // do want to respect mustalias results since defs are useful for value
- // forwarding, but any mayalias write can be assumed to be noalias.
- // Arguably, this logic should be pushed inside AliasAnalysis itself.
- if (isLoad && QueryInst) {
- LoadInst *LI = dyn_cast<LoadInst>(QueryInst);
- if (LI && LI->getMetadata(LLVMContext::MD_invariant_load) != nullptr)
- isInvariantLoad = true;
- }
-
- const DataLayout &DL = BB->getModule()->getDataLayout();
-
- // Create a numbered basic block to lazily compute and cache instruction
- // positions inside a BB. This is used to provide fast queries for relative
- // position between two instructions in a BB and can be used by
- // AliasAnalysis::callCapturesBefore.
- OrderedBasicBlock OBB(BB);
-
- // Return "true" if and only if the instruction I is either a non-simple
- // load or a non-simple store.
- auto isNonSimpleLoadOrStore = [](Instruction *I) -> bool {
- if (auto *LI = dyn_cast<LoadInst>(I))
- return !LI->isSimple();
- if (auto *SI = dyn_cast<StoreInst>(I))
- return !SI->isSimple();
- return false;
- };
-
- // Return "true" if I is not a load and not a store, but it does access
- // memory.
- auto isOtherMemAccess = [](Instruction *I) -> bool {
- return !isa<LoadInst>(I) && !isa<StoreInst>(I) && I->mayReadOrWriteMemory();
- };
-
- // Walk backwards through the basic block, looking for dependencies.
- while (ScanIt != BB->begin()) {
- Instruction *Inst = &*--ScanIt;
-
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
- // Debug intrinsics don't (and can't) cause dependencies.
- if (isa<DbgInfoIntrinsic>(II))
- continue;
-
- // Limit the amount of scanning we do so we don't end up with quadratic
- // running time on extreme testcases.
- --*Limit;
- if (!*Limit)
- return MemDepResult::getUnknown();
-
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
- // If we reach a lifetime begin or end marker, then the query ends here
- // because the value is undefined.
- if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
- // FIXME: This only considers queries directly on the invariant-tagged
- // pointer, not on query pointers that are indexed off of them. It'd
- // be nice to handle that at some point (the right approach is to use
- // GetPointerBaseWithConstantOffset).
- if (AA.isMustAlias(MemoryLocation(II->getArgOperand(1)), MemLoc))
- return MemDepResult::getDef(II);
- continue;
- }
- }
-
- // Values depend on loads if the pointers are must aliased. This means
- // that a load depends on another must aliased load from the same value.
- // One exception is atomic loads: a value can depend on an atomic load that
- // it does not alias with when this atomic load indicates that another
- // thread may be accessing the location.
- if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
- // While volatile access cannot be eliminated, they do not have to clobber
- // non-aliasing locations, as normal accesses, for example, can be safely
- // reordered with volatile accesses.
- if (LI->isVolatile()) {
- if (!QueryInst)
- // Original QueryInst *may* be volatile
- return MemDepResult::getClobber(LI);
- if (isVolatile(QueryInst))
- // Ordering required if QueryInst is itself volatile
- return MemDepResult::getClobber(LI);
- // Otherwise, volatile doesn't imply any special ordering
- }
-
- // Atomic loads have complications involved.
- // A Monotonic (or higher) load is OK if the query inst is itself not
- // atomic.
- // FIXME: This is overly conservative.
- if (LI->isAtomic() && isStrongerThanUnordered(LI->getOrdering())) {
- if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) ||
- isOtherMemAccess(QueryInst))
- return MemDepResult::getClobber(LI);
- if (LI->getOrdering() != AtomicOrdering::Monotonic)
- return MemDepResult::getClobber(LI);
- }
-
- MemoryLocation LoadLoc = MemoryLocation::get(LI);
-
- // If we found a pointer, check if it could be the same as our pointer.
- AliasResult R = AA.alias(LoadLoc, MemLoc);
-
- if (isLoad) {
- if (R == NoAlias)
- continue;
-
- // Must aliased loads are defs of each other.
- if (R == MustAlias)
- return MemDepResult::getDef(Inst);
-
-#if 0 // FIXME: Temporarily disabled. GVN is cleverly rewriting loads
- // in terms of clobbering loads, but since it does this by looking
- // at the clobbering load directly, it doesn't know about any
- // phi translation that may have happened along the way.
-
- // If we have a partial alias, then return this as a clobber for the
- // client to handle.
- if (R == PartialAlias)
- return MemDepResult::getClobber(Inst);
-#endif
-
- // Random may-alias loads don't depend on each other without a
- // dependence.
- continue;
- }
-
- // Stores don't depend on other no-aliased accesses.
- if (R == NoAlias)
- continue;
-
- // Stores don't alias loads from read-only memory.
- if (AA.pointsToConstantMemory(LoadLoc))
- continue;
-
- // Stores depend on may/must aliased loads.
- return MemDepResult::getDef(Inst);
- }
-
- if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
- // Atomic stores have complications involved.
- // A Monotonic store is OK if the query inst is itself not atomic.
- // FIXME: This is overly conservative.
- if (!SI->isUnordered() && SI->isAtomic()) {
- if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) ||
- isOtherMemAccess(QueryInst))
- return MemDepResult::getClobber(SI);
- if (SI->getOrdering() != AtomicOrdering::Monotonic)
- return MemDepResult::getClobber(SI);
- }
-
- // FIXME: this is overly conservative.
- // While volatile access cannot be eliminated, they do not have to clobber
- // non-aliasing locations, as normal accesses can for example be reordered
- // with volatile accesses.
- if (SI->isVolatile())
- if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) ||
- isOtherMemAccess(QueryInst))
- return MemDepResult::getClobber(SI);
-
- // If alias analysis can tell that this store is guaranteed to not modify
- // the query pointer, ignore it. Use getModRefInfo to handle cases where
- // the query pointer points to constant memory etc.
- if (!isModOrRefSet(AA.getModRefInfo(SI, MemLoc)))
- continue;
-
- // Ok, this store might clobber the query pointer. Check to see if it is
- // a must alias: in this case, we want to return this as a def.
- // FIXME: Use ModRefInfo::Must bit from getModRefInfo call above.
- MemoryLocation StoreLoc = MemoryLocation::get(SI);
-
- // If we found a pointer, check if it could be the same as our pointer.
- AliasResult R = AA.alias(StoreLoc, MemLoc);
-
- if (R == NoAlias)
- continue;
- if (R == MustAlias)
- return MemDepResult::getDef(Inst);
- if (isInvariantLoad)
- continue;
- return MemDepResult::getClobber(Inst);
- }
-
- // If this is an allocation, and if we know that the accessed pointer is to
- // the allocation, return Def. This means that there is no dependence and
- // the access can be optimized based on that. For example, a load could
- // turn into undef. Note that we can bypass the allocation itself when
- // looking for a clobber in many cases; that's an alias property and is
- // handled by BasicAA.
- if (isa<AllocaInst>(Inst) || isNoAliasFn(Inst, &TLI)) {
- const Value *AccessPtr = GetUnderlyingObject(MemLoc.Ptr, DL);
- if (AccessPtr == Inst || AA.isMustAlias(Inst, AccessPtr))
- return MemDepResult::getDef(Inst);
- }
-
- if (isInvariantLoad)
- continue;
-
- // A release fence requires that all stores complete before it, but does
- // not prevent the reordering of following loads or stores 'before' the
- // fence. As a result, we look past it when finding a dependency for
- // loads. DSE uses this to find preceeding stores to delete and thus we
- // can't bypass the fence if the query instruction is a store.
- if (FenceInst *FI = dyn_cast<FenceInst>(Inst))
- if (isLoad && FI->getOrdering() == AtomicOrdering::Release)
- continue;
-
- // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
- ModRefInfo MR = AA.getModRefInfo(Inst, MemLoc);
- // If necessary, perform additional analysis.
- if (isModAndRefSet(MR))
- MR = AA.callCapturesBefore(Inst, MemLoc, &DT, &OBB);
- switch (clearMust(MR)) {
- case ModRefInfo::NoModRef:
- // If the call has no effect on the queried pointer, just ignore it.
- continue;
- case ModRefInfo::Mod:
- return MemDepResult::getClobber(Inst);
- case ModRefInfo::Ref:
- // If the call is known to never store to the pointer, and if this is a
- // load query, we can safely ignore it (scan past it).
- if (isLoad)
- continue;
- LLVM_FALLTHROUGH;
- default:
- // Otherwise, there is a potential dependence. Return a clobber.
- return MemDepResult::getClobber(Inst);
- }
- }
-
- // No dependence found. If this is the entry block of the function, it is
- // unknown, otherwise it is non-local.
- if (BB != &BB->getParent()->getEntryBlock())
- return MemDepResult::getNonLocal();
- return MemDepResult::getNonFuncLocal();
-}
-
-MemDepResult MemoryDependenceResults::getDependency(Instruction *QueryInst) {
- Instruction *ScanPos = QueryInst;
-
- // Check for a cached result
- MemDepResult &LocalCache = LocalDeps[QueryInst];
-
- // If the cached entry is non-dirty, just return it. Note that this depends
- // on MemDepResult's default constructing to 'dirty'.
- if (!LocalCache.isDirty())
- return LocalCache;
-
- // Otherwise, if we have a dirty entry, we know we can start the scan at that
- // instruction, which may save us some work.
- if (Instruction *Inst = LocalCache.getInst()) {
- ScanPos = Inst;
-
- RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst);
- }
-
- BasicBlock *QueryParent = QueryInst->getParent();
-
- // Do the scan.
- if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) {
- // No dependence found. If this is the entry block of the function, it is
- // unknown, otherwise it is non-local.
- if (QueryParent != &QueryParent->getParent()->getEntryBlock())
- LocalCache = MemDepResult::getNonLocal();
- else
- LocalCache = MemDepResult::getNonFuncLocal();
- } else {
- MemoryLocation MemLoc;
- ModRefInfo MR = GetLocation(QueryInst, MemLoc, TLI);
- if (MemLoc.Ptr) {
- // If we can do a pointer scan, make it happen.
- bool isLoad = !isModSet(MR);
- if (auto *II = dyn_cast<IntrinsicInst>(QueryInst))
- isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start;
-
- LocalCache = getPointerDependencyFrom(
- MemLoc, isLoad, ScanPos->getIterator(), QueryParent, QueryInst);
- } else if (auto *QueryCall = dyn_cast<CallBase>(QueryInst)) {
- bool isReadOnly = AA.onlyReadsMemory(QueryCall);
- LocalCache = getCallDependencyFrom(QueryCall, isReadOnly,
- ScanPos->getIterator(), QueryParent);
- } else
- // Non-memory instruction.
- LocalCache = MemDepResult::getUnknown();
- }
-
- // Remember the result!
- if (Instruction *I = LocalCache.getInst())
- ReverseLocalDeps[I].insert(QueryInst);
-
- return LocalCache;
-}
-
-#ifndef NDEBUG
-/// This method is used when -debug is specified to verify that cache arrays
-/// are properly kept sorted.
-static void AssertSorted(MemoryDependenceResults::NonLocalDepInfo &Cache,
- int Count = -1) {
- if (Count == -1)
- Count = Cache.size();
- assert(std::is_sorted(Cache.begin(), Cache.begin() + Count) &&
- "Cache isn't sorted!");
-}
-#endif
-
-const MemoryDependenceResults::NonLocalDepInfo &
-MemoryDependenceResults::getNonLocalCallDependency(CallBase *QueryCall) {
- assert(getDependency(QueryCall).isNonLocal() &&
- "getNonLocalCallDependency should only be used on calls with "
- "non-local deps!");
- PerInstNLInfo &CacheP = NonLocalDeps[QueryCall];
- NonLocalDepInfo &Cache = CacheP.first;
-
- // This is the set of blocks that need to be recomputed. In the cached case,
- // this can happen due to instructions being deleted etc. In the uncached
- // case, this starts out as the set of predecessors we care about.
- SmallVector<BasicBlock *, 32> DirtyBlocks;
-
- if (!Cache.empty()) {
- // Okay, we have a cache entry. If we know it is not dirty, just return it
- // with no computation.
- if (!CacheP.second) {
- ++NumCacheNonLocal;
- return Cache;
- }
-
- // If we already have a partially computed set of results, scan them to
- // determine what is dirty, seeding our initial DirtyBlocks worklist.
- for (auto &Entry : Cache)
- if (Entry.getResult().isDirty())
- DirtyBlocks.push_back(Entry.getBB());
-
- // Sort the cache so that we can do fast binary search lookups below.
- llvm::sort(Cache);
-
- ++NumCacheDirtyNonLocal;
- // cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
- // << Cache.size() << " cached: " << *QueryInst;
- } else {
- // Seed DirtyBlocks with each of the preds of QueryInst's block.
- BasicBlock *QueryBB = QueryCall->getParent();
- for (BasicBlock *Pred : PredCache.get(QueryBB))
- DirtyBlocks.push_back(Pred);
- ++NumUncacheNonLocal;
- }
-
- // isReadonlyCall - If this is a read-only call, we can be more aggressive.
- bool isReadonlyCall = AA.onlyReadsMemory(QueryCall);
-
- SmallPtrSet<BasicBlock *, 32> Visited;
-
- unsigned NumSortedEntries = Cache.size();
- LLVM_DEBUG(AssertSorted(Cache));
-
- // Iterate while we still have blocks to update.
- while (!DirtyBlocks.empty()) {
- BasicBlock *DirtyBB = DirtyBlocks.back();
- DirtyBlocks.pop_back();
-
- // Already processed this block?
- if (!Visited.insert(DirtyBB).second)
- continue;
-
- // Do a binary search to see if we already have an entry for this block in
- // the cache set. If so, find it.
- LLVM_DEBUG(AssertSorted(Cache, NumSortedEntries));
- NonLocalDepInfo::iterator Entry =
- std::upper_bound(Cache.begin(), Cache.begin() + NumSortedEntries,
- NonLocalDepEntry(DirtyBB));
- if (Entry != Cache.begin() && std::prev(Entry)->getBB() == DirtyBB)
- --Entry;
-
- NonLocalDepEntry *ExistingResult = nullptr;
- if (Entry != Cache.begin() + NumSortedEntries &&
- Entry->getBB() == DirtyBB) {
- // If we already have an entry, and if it isn't already dirty, the block
- // is done.
- if (!Entry->getResult().isDirty())
- continue;
-
- // Otherwise, remember this slot so we can update the value.
- ExistingResult = &*Entry;
- }
-
- // If the dirty entry has a pointer, start scanning from it so we don't have
- // to rescan the entire block.
- BasicBlock::iterator ScanPos = DirtyBB->end();
- if (ExistingResult) {
- if (Instruction *Inst = ExistingResult->getResult().getInst()) {
- ScanPos = Inst->getIterator();
- // We're removing QueryInst's use of Inst.
- RemoveFromReverseMap<Instruction *>(ReverseNonLocalDeps, Inst,
- QueryCall);
- }
- }
-
- // Find out if this block has a local dependency for QueryInst.
- MemDepResult Dep;
-
- if (ScanPos != DirtyBB->begin()) {
- Dep = getCallDependencyFrom(QueryCall, isReadonlyCall, ScanPos, DirtyBB);
- } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) {
- // No dependence found. If this is the entry block of the function, it is
- // a clobber, otherwise it is unknown.
- Dep = MemDepResult::getNonLocal();
- } else {
- Dep = MemDepResult::getNonFuncLocal();
- }
-
- // If we had a dirty entry for the block, update it. Otherwise, just add
- // a new entry.
- if (ExistingResult)
- ExistingResult->setResult(Dep);
- else
- Cache.push_back(NonLocalDepEntry(DirtyBB, Dep));
-
- // If the block has a dependency (i.e. it isn't completely transparent to
- // the value), remember the association!
- if (!Dep.isNonLocal()) {
- // Keep the ReverseNonLocalDeps map up to date so we can efficiently
- // update this when we remove instructions.
- if (Instruction *Inst = Dep.getInst())
- ReverseNonLocalDeps[Inst].insert(QueryCall);
- } else {
-
- // If the block *is* completely transparent to the load, we need to check
- // the predecessors of this block. Add them to our worklist.
- for (BasicBlock *Pred : PredCache.get(DirtyBB))
- DirtyBlocks.push_back(Pred);
- }
- }
-
- return Cache;
-}
-
-void MemoryDependenceResults::getNonLocalPointerDependency(
- Instruction *QueryInst, SmallVectorImpl<NonLocalDepResult> &Result) {
- const MemoryLocation Loc = MemoryLocation::get(QueryInst);
- bool isLoad = isa<LoadInst>(QueryInst);
- BasicBlock *FromBB = QueryInst->getParent();
- assert(FromBB);
-
- assert(Loc.Ptr->getType()->isPointerTy() &&
- "Can't get pointer deps of a non-pointer!");
- Result.clear();
- {
- // Check if there is cached Def with invariant.group.
- auto NonLocalDefIt = NonLocalDefsCache.find(QueryInst);
- if (NonLocalDefIt != NonLocalDefsCache.end()) {
- Result.push_back(NonLocalDefIt->second);
- ReverseNonLocalDefsCache[NonLocalDefIt->second.getResult().getInst()]
- .erase(QueryInst);
- NonLocalDefsCache.erase(NonLocalDefIt);
- return;
- }
- }
- // This routine does not expect to deal with volatile instructions.
- // Doing so would require piping through the QueryInst all the way through.
- // TODO: volatiles can't be elided, but they can be reordered with other
- // non-volatile accesses.
-
- // We currently give up on any instruction which is ordered, but we do handle
- // atomic instructions which are unordered.
- // TODO: Handle ordered instructions
- auto isOrdered = [](Instruction *Inst) {
- if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
- return !LI->isUnordered();
- } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
- return !SI->isUnordered();
- }
- return false;
- };
- if (isVolatile(QueryInst) || isOrdered(QueryInst)) {
- Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(),
- const_cast<Value *>(Loc.Ptr)));
- return;
- }
- const DataLayout &DL = FromBB->getModule()->getDataLayout();
- PHITransAddr Address(const_cast<Value *>(Loc.Ptr), DL, &AC);
-
- // This is the set of blocks we've inspected, and the pointer we consider in
- // each block. Because of critical edges, we currently bail out if querying
- // a block with multiple different pointers. This can happen during PHI
- // translation.
- DenseMap<BasicBlock *, Value *> Visited;
- if (getNonLocalPointerDepFromBB(QueryInst, Address, Loc, isLoad, FromBB,
- Result, Visited, true))
- return;
- Result.clear();
- Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(),
- const_cast<Value *>(Loc.Ptr)));
-}
-
-/// Compute the memdep value for BB with Pointer/PointeeSize using either
-/// cached information in Cache or by doing a lookup (which may use dirty cache
-/// info if available).
-///
-/// If we do a lookup, add the result to the cache.
-MemDepResult MemoryDependenceResults::GetNonLocalInfoForBlock(
- Instruction *QueryInst, const MemoryLocation &Loc, bool isLoad,
- BasicBlock *BB, NonLocalDepInfo *Cache, unsigned NumSortedEntries) {
-
- // Do a binary search to see if we already have an entry for this block in
- // the cache set. If so, find it.
- NonLocalDepInfo::iterator Entry = std::upper_bound(
- Cache->begin(), Cache->begin() + NumSortedEntries, NonLocalDepEntry(BB));
- if (Entry != Cache->begin() && (Entry - 1)->getBB() == BB)
- --Entry;
-
- NonLocalDepEntry *ExistingResult = nullptr;
- if (Entry != Cache->begin() + NumSortedEntries && Entry->getBB() == BB)
- ExistingResult = &*Entry;
-
- // If we have a cached entry, and it is non-dirty, use it as the value for
- // this dependency.
- if (ExistingResult && !ExistingResult->getResult().isDirty()) {
- ++NumCacheNonLocalPtr;
- return ExistingResult->getResult();
- }
-
- // Otherwise, we have to scan for the value. If we have a dirty cache
- // entry, start scanning from its position, otherwise we scan from the end
- // of the block.
- BasicBlock::iterator ScanPos = BB->end();
- if (ExistingResult && ExistingResult->getResult().getInst()) {
- assert(ExistingResult->getResult().getInst()->getParent() == BB &&
- "Instruction invalidated?");
- ++NumCacheDirtyNonLocalPtr;
- ScanPos = ExistingResult->getResult().getInst()->getIterator();
-
- // Eliminating the dirty entry from 'Cache', so update the reverse info.
- ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
- RemoveFromReverseMap(ReverseNonLocalPtrDeps, &*ScanPos, CacheKey);
- } else {
- ++NumUncacheNonLocalPtr;
- }
-
- // Scan the block for the dependency.
- MemDepResult Dep =
- getPointerDependencyFrom(Loc, isLoad, ScanPos, BB, QueryInst);
-
- // If we had a dirty entry for the block, update it. Otherwise, just add
- // a new entry.
- if (ExistingResult)
- ExistingResult->setResult(Dep);
- else
- Cache->push_back(NonLocalDepEntry(BB, Dep));
-
- // If the block has a dependency (i.e. it isn't completely transparent to
- // the value), remember the reverse association because we just added it
- // to Cache!
- if (!Dep.isDef() && !Dep.isClobber())
- return Dep;
-
- // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently
- // update MemDep when we remove instructions.
- Instruction *Inst = Dep.getInst();
- assert(Inst && "Didn't depend on anything?");
- ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
- ReverseNonLocalPtrDeps[Inst].insert(CacheKey);
- return Dep;
-}
-
-/// Sort the NonLocalDepInfo cache, given a certain number of elements in the
-/// array that are already properly ordered.
-///
-/// This is optimized for the case when only a few entries are added.
-static void
-SortNonLocalDepInfoCache(MemoryDependenceResults::NonLocalDepInfo &Cache,
- unsigned NumSortedEntries) {
- switch (Cache.size() - NumSortedEntries) {
- case 0:
- // done, no new entries.
- break;
- case 2: {
- // Two new entries, insert the last one into place.
- NonLocalDepEntry Val = Cache.back();
- Cache.pop_back();
- MemoryDependenceResults::NonLocalDepInfo::iterator Entry =
- std::upper_bound(Cache.begin(), Cache.end() - 1, Val);
- Cache.insert(Entry, Val);
- LLVM_FALLTHROUGH;
- }
- case 1:
- // One new entry, Just insert the new value at the appropriate position.
- if (Cache.size() != 1) {
- NonLocalDepEntry Val = Cache.back();
- Cache.pop_back();
- MemoryDependenceResults::NonLocalDepInfo::iterator Entry =
- std::upper_bound(Cache.begin(), Cache.end(), Val);
- Cache.insert(Entry, Val);
- }
- break;
- default:
- // Added many values, do a full scale sort.
- llvm::sort(Cache);
- break;
- }
-}
-
-/// Perform a dependency query based on pointer/pointeesize starting at the end
-/// of StartBB.
-///
-/// Add any clobber/def results to the results vector and keep track of which
-/// blocks are visited in 'Visited'.
-///
-/// This has special behavior for the first block queries (when SkipFirstBlock
-/// is true). In this special case, it ignores the contents of the specified
-/// block and starts returning dependence info for its predecessors.
-///
-/// This function returns true on success, or false to indicate that it could
-/// not compute dependence information for some reason. This should be treated
-/// as a clobber dependence on the first instruction in the predecessor block.
-bool MemoryDependenceResults::getNonLocalPointerDepFromBB(
- Instruction *QueryInst, const PHITransAddr &Pointer,
- const MemoryLocation &Loc, bool isLoad, BasicBlock *StartBB,
- SmallVectorImpl<NonLocalDepResult> &Result,
- DenseMap<BasicBlock *, Value *> &Visited, bool SkipFirstBlock) {
- // Look up the cached info for Pointer.
- ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad);
-
- // Set up a temporary NLPI value. If the map doesn't yet have an entry for
- // CacheKey, this value will be inserted as the associated value. Otherwise,
- // it'll be ignored, and we'll have to check to see if the cached size and
- // aa tags are consistent with the current query.
- NonLocalPointerInfo InitialNLPI;
- InitialNLPI.Size = Loc.Size;
- InitialNLPI.AATags = Loc.AATags;
-
- // Get the NLPI for CacheKey, inserting one into the map if it doesn't
- // already have one.
- std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair =
- NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI));
- NonLocalPointerInfo *CacheInfo = &Pair.first->second;
-
- // If we already have a cache entry for this CacheKey, we may need to do some
- // work to reconcile the cache entry and the current query.
- if (!Pair.second) {
- if (CacheInfo->Size != Loc.Size) {
- bool ThrowOutEverything;
- if (CacheInfo->Size.hasValue() && Loc.Size.hasValue()) {
- // FIXME: We may be able to do better in the face of results with mixed
- // precision. We don't appear to get them in practice, though, so just
- // be conservative.
- ThrowOutEverything =
- CacheInfo->Size.isPrecise() != Loc.Size.isPrecise() ||
- CacheInfo->Size.getValue() < Loc.Size.getValue();
- } else {
- // For our purposes, unknown size > all others.
- ThrowOutEverything = !Loc.Size.hasValue();
- }
-
- if (ThrowOutEverything) {
- // The query's Size is greater than the cached one. Throw out the
- // cached data and proceed with the query at the greater size.
- CacheInfo->Pair = BBSkipFirstBlockPair();
- CacheInfo->Size = Loc.Size;
- for (auto &Entry : CacheInfo->NonLocalDeps)
- if (Instruction *Inst = Entry.getResult().getInst())
- RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
- CacheInfo->NonLocalDeps.clear();
- } else {
- // This query's Size is less than the cached one. Conservatively restart
- // the query using the greater size.
- return getNonLocalPointerDepFromBB(
- QueryInst, Pointer, Loc.getWithNewSize(CacheInfo->Size), isLoad,
- StartBB, Result, Visited, SkipFirstBlock);
- }
- }
-
- // If the query's AATags are inconsistent with the cached one,
- // conservatively throw out the cached data and restart the query with
- // no tag if needed.
- if (CacheInfo->AATags != Loc.AATags) {
- if (CacheInfo->AATags) {
- CacheInfo->Pair = BBSkipFirstBlockPair();
- CacheInfo->AATags = AAMDNodes();
- for (auto &Entry : CacheInfo->NonLocalDeps)
- if (Instruction *Inst = Entry.getResult().getInst())
- RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
- CacheInfo->NonLocalDeps.clear();
- }
- if (Loc.AATags)
- return getNonLocalPointerDepFromBB(
- QueryInst, Pointer, Loc.getWithoutAATags(), isLoad, StartBB, Result,
- Visited, SkipFirstBlock);
- }
- }
-
- NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps;
-
- // If we have valid cached information for exactly the block we are
- // investigating, just return it with no recomputation.
- if (CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) {
- // We have a fully cached result for this query then we can just return the
- // cached results and populate the visited set. However, we have to verify
- // that we don't already have conflicting results for these blocks. Check
- // to ensure that if a block in the results set is in the visited set that
- // it was for the same pointer query.
- if (!Visited.empty()) {
- for (auto &Entry : *Cache) {
- DenseMap<BasicBlock *, Value *>::iterator VI =
- Visited.find(Entry.getBB());
- if (VI == Visited.end() || VI->second == Pointer.getAddr())
- continue;
-
- // We have a pointer mismatch in a block. Just return false, saying
- // that something was clobbered in this result. We could also do a
- // non-fully cached query, but there is little point in doing this.
- return false;
- }
- }
-
- Value *Addr = Pointer.getAddr();
- for (auto &Entry : *Cache) {
- Visited.insert(std::make_pair(Entry.getBB(), Addr));
- if (Entry.getResult().isNonLocal()) {
- continue;
- }
-
- if (DT.isReachableFromEntry(Entry.getBB())) {
- Result.push_back(
- NonLocalDepResult(Entry.getBB(), Entry.getResult(), Addr));
- }
- }
- ++NumCacheCompleteNonLocalPtr;
- return true;
- }
-
- // Otherwise, either this is a new block, a block with an invalid cache
- // pointer or one that we're about to invalidate by putting more info into it
- // than its valid cache info. If empty, the result will be valid cache info,
- // otherwise it isn't.
- if (Cache->empty())
- CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock);
- else
- CacheInfo->Pair = BBSkipFirstBlockPair();
-
- SmallVector<BasicBlock *, 32> Worklist;
- Worklist.push_back(StartBB);
-
- // PredList used inside loop.
- SmallVector<std::pair<BasicBlock *, PHITransAddr>, 16> PredList;
-
- // Keep track of the entries that we know are sorted. Previously cached
- // entries will all be sorted. The entries we add we only sort on demand (we
- // don't insert every element into its sorted position). We know that we
- // won't get any reuse from currently inserted values, because we don't
- // revisit blocks after we insert info for them.
- unsigned NumSortedEntries = Cache->size();
- unsigned WorklistEntries = BlockNumberLimit;
- bool GotWorklistLimit = false;
- LLVM_DEBUG(AssertSorted(*Cache));
-
- while (!Worklist.empty()) {
- BasicBlock *BB = Worklist.pop_back_val();
-
- // If we do process a large number of blocks it becomes very expensive and
- // likely it isn't worth worrying about
- if (Result.size() > NumResultsLimit) {
- Worklist.clear();
- // Sort it now (if needed) so that recursive invocations of
- // getNonLocalPointerDepFromBB and other routines that could reuse the
- // cache value will only see properly sorted cache arrays.
- if (Cache && NumSortedEntries != Cache->size()) {
- SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
- }
- // Since we bail out, the "Cache" set won't contain all of the
- // results for the query. This is ok (we can still use it to accelerate
- // specific block queries) but we can't do the fastpath "return all
- // results from the set". Clear out the indicator for this.
- CacheInfo->Pair = BBSkipFirstBlockPair();
- return false;
- }
-
- // Skip the first block if we have it.
- if (!SkipFirstBlock) {
- // Analyze the dependency of *Pointer in FromBB. See if we already have
- // been here.
- assert(Visited.count(BB) && "Should check 'visited' before adding to WL");
-
- // Get the dependency info for Pointer in BB. If we have cached
- // information, we will use it, otherwise we compute it.
- LLVM_DEBUG(AssertSorted(*Cache, NumSortedEntries));
- MemDepResult Dep = GetNonLocalInfoForBlock(QueryInst, Loc, isLoad, BB,
- Cache, NumSortedEntries);
-
- // If we got a Def or Clobber, add this to the list of results.
- if (!Dep.isNonLocal()) {
- if (DT.isReachableFromEntry(BB)) {
- Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr()));
- continue;
- }
- }
- }
-
- // If 'Pointer' is an instruction defined in this block, then we need to do
- // phi translation to change it into a value live in the predecessor block.
- // If not, we just add the predecessors to the worklist and scan them with
- // the same Pointer.
- if (!Pointer.NeedsPHITranslationFromBlock(BB)) {
- SkipFirstBlock = false;
- SmallVector<BasicBlock *, 16> NewBlocks;
- for (BasicBlock *Pred : PredCache.get(BB)) {
- // Verify that we haven't looked at this block yet.
- std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes =
- Visited.insert(std::make_pair(Pred, Pointer.getAddr()));
- if (InsertRes.second) {
- // First time we've looked at *PI.
- NewBlocks.push_back(Pred);
- continue;
- }
-
- // If we have seen this block before, but it was with a different
- // pointer then we have a phi translation failure and we have to treat
- // this as a clobber.
- if (InsertRes.first->second != Pointer.getAddr()) {
- // Make sure to clean up the Visited map before continuing on to
- // PredTranslationFailure.
- for (unsigned i = 0; i < NewBlocks.size(); i++)
- Visited.erase(NewBlocks[i]);
- goto PredTranslationFailure;
- }
- }
- if (NewBlocks.size() > WorklistEntries) {
- // Make sure to clean up the Visited map before continuing on to
- // PredTranslationFailure.
- for (unsigned i = 0; i < NewBlocks.size(); i++)
- Visited.erase(NewBlocks[i]);
- GotWorklistLimit = true;
- goto PredTranslationFailure;
- }
- WorklistEntries -= NewBlocks.size();
- Worklist.append(NewBlocks.begin(), NewBlocks.end());
- continue;
- }
-
- // We do need to do phi translation, if we know ahead of time we can't phi
- // translate this value, don't even try.
- if (!Pointer.IsPotentiallyPHITranslatable())
- goto PredTranslationFailure;
-
- // We may have added values to the cache list before this PHI translation.
- // If so, we haven't done anything to ensure that the cache remains sorted.
- // Sort it now (if needed) so that recursive invocations of
- // getNonLocalPointerDepFromBB and other routines that could reuse the cache
- // value will only see properly sorted cache arrays.
- if (Cache && NumSortedEntries != Cache->size()) {
- SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
- NumSortedEntries = Cache->size();
- }
- Cache = nullptr;
-
- PredList.clear();
- for (BasicBlock *Pred : PredCache.get(BB)) {
- PredList.push_back(std::make_pair(Pred, Pointer));
-
- // Get the PHI translated pointer in this predecessor. This can fail if
- // not translatable, in which case the getAddr() returns null.
- PHITransAddr &PredPointer = PredList.back().second;
- PredPointer.PHITranslateValue(BB, Pred, &DT, /*MustDominate=*/false);
- Value *PredPtrVal = PredPointer.getAddr();
-
- // Check to see if we have already visited this pred block with another
- // pointer. If so, we can't do this lookup. This failure can occur
- // with PHI translation when a critical edge exists and the PHI node in
- // the successor translates to a pointer value different than the
- // pointer the block was first analyzed with.
- std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes =
- Visited.insert(std::make_pair(Pred, PredPtrVal));
-
- if (!InsertRes.second) {
- // We found the pred; take it off the list of preds to visit.
- PredList.pop_back();
-
- // If the predecessor was visited with PredPtr, then we already did
- // the analysis and can ignore it.
- if (InsertRes.first->second == PredPtrVal)
- continue;
-
- // Otherwise, the block was previously analyzed with a different
- // pointer. We can't represent the result of this case, so we just
- // treat this as a phi translation failure.
-
- // Make sure to clean up the Visited map before continuing on to
- // PredTranslationFailure.
- for (unsigned i = 0, n = PredList.size(); i < n; ++i)
- Visited.erase(PredList[i].first);
-
- goto PredTranslationFailure;
- }
- }
-
- // Actually process results here; this need to be a separate loop to avoid
- // calling getNonLocalPointerDepFromBB for blocks we don't want to return
- // any results for. (getNonLocalPointerDepFromBB will modify our
- // datastructures in ways the code after the PredTranslationFailure label
- // doesn't expect.)
- for (unsigned i = 0, n = PredList.size(); i < n; ++i) {
- BasicBlock *Pred = PredList[i].first;
- PHITransAddr &PredPointer = PredList[i].second;
- Value *PredPtrVal = PredPointer.getAddr();
-
- bool CanTranslate = true;
- // If PHI translation was unable to find an available pointer in this
- // predecessor, then we have to assume that the pointer is clobbered in
- // that predecessor. We can still do PRE of the load, which would insert
- // a computation of the pointer in this predecessor.
- if (!PredPtrVal)
- CanTranslate = false;
-
- // FIXME: it is entirely possible that PHI translating will end up with
- // the same value. Consider PHI translating something like:
- // X = phi [x, bb1], [y, bb2]. PHI translating for bb1 doesn't *need*
- // to recurse here, pedantically speaking.
-
- // If getNonLocalPointerDepFromBB fails here, that means the cached
- // result conflicted with the Visited list; we have to conservatively
- // assume it is unknown, but this also does not block PRE of the load.
- if (!CanTranslate ||
- !getNonLocalPointerDepFromBB(QueryInst, PredPointer,
- Loc.getWithNewPtr(PredPtrVal), isLoad,
- Pred, Result, Visited)) {
- // Add the entry to the Result list.
- NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal);
- Result.push_back(Entry);
-
- // Since we had a phi translation failure, the cache for CacheKey won't
- // include all of the entries that we need to immediately satisfy future
- // queries. Mark this in NonLocalPointerDeps by setting the
- // BBSkipFirstBlockPair pointer to null. This requires reuse of the
- // cached value to do more work but not miss the phi trans failure.
- NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey];
- NLPI.Pair = BBSkipFirstBlockPair();
- continue;
- }
- }
-
- // Refresh the CacheInfo/Cache pointer so that it isn't invalidated.
- CacheInfo = &NonLocalPointerDeps[CacheKey];
- Cache = &CacheInfo->NonLocalDeps;
- NumSortedEntries = Cache->size();
-
- // Since we did phi translation, the "Cache" set won't contain all of the
- // results for the query. This is ok (we can still use it to accelerate
- // specific block queries) but we can't do the fastpath "return all
- // results from the set" Clear out the indicator for this.
- CacheInfo->Pair = BBSkipFirstBlockPair();
- SkipFirstBlock = false;
- continue;
-
- PredTranslationFailure:
- // The following code is "failure"; we can't produce a sane translation
- // for the given block. It assumes that we haven't modified any of
- // our datastructures while processing the current block.
-
- if (!Cache) {
- // Refresh the CacheInfo/Cache pointer if it got invalidated.
- CacheInfo = &NonLocalPointerDeps[CacheKey];
- Cache = &CacheInfo->NonLocalDeps;
- NumSortedEntries = Cache->size();
- }
-
- // Since we failed phi translation, the "Cache" set won't contain all of the
- // results for the query. This is ok (we can still use it to accelerate
- // specific block queries) but we can't do the fastpath "return all
- // results from the set". Clear out the indicator for this.
- CacheInfo->Pair = BBSkipFirstBlockPair();
-
- // If *nothing* works, mark the pointer as unknown.
- //
- // If this is the magic first block, return this as a clobber of the whole
- // incoming value. Since we can't phi translate to one of the predecessors,
- // we have to bail out.
- if (SkipFirstBlock)
- return false;
-
- bool foundBlock = false;
- for (NonLocalDepEntry &I : llvm::reverse(*Cache)) {
- if (I.getBB() != BB)
- continue;
-
- assert((GotWorklistLimit || I.getResult().isNonLocal() ||
- !DT.isReachableFromEntry(BB)) &&
- "Should only be here with transparent block");
- foundBlock = true;
- I.setResult(MemDepResult::getUnknown());
- Result.push_back(
- NonLocalDepResult(I.getBB(), I.getResult(), Pointer.getAddr()));
- break;
- }
- (void)foundBlock; (void)GotWorklistLimit;
- assert((foundBlock || GotWorklistLimit) && "Current block not in cache?");
- }
-
- // Okay, we're done now. If we added new values to the cache, re-sort it.
- SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
- LLVM_DEBUG(AssertSorted(*Cache));
- return true;
-}
-
-/// If P exists in CachedNonLocalPointerInfo or NonLocalDefsCache, remove it.
-void MemoryDependenceResults::RemoveCachedNonLocalPointerDependencies(
- ValueIsLoadPair P) {
-
- // Most of the time this cache is empty.
- if (!NonLocalDefsCache.empty()) {
- auto it = NonLocalDefsCache.find(P.getPointer());
- if (it != NonLocalDefsCache.end()) {
- RemoveFromReverseMap(ReverseNonLocalDefsCache,
- it->second.getResult().getInst(), P.getPointer());
- NonLocalDefsCache.erase(it);
- }
-
- if (auto *I = dyn_cast<Instruction>(P.getPointer())) {
- auto toRemoveIt = ReverseNonLocalDefsCache.find(I);
- if (toRemoveIt != ReverseNonLocalDefsCache.end()) {
- for (const auto &entry : toRemoveIt->second)
- NonLocalDefsCache.erase(entry);
- ReverseNonLocalDefsCache.erase(toRemoveIt);
- }
- }
- }
-
- CachedNonLocalPointerInfo::iterator It = NonLocalPointerDeps.find(P);
- if (It == NonLocalPointerDeps.end())
- return;
-
- // Remove all of the entries in the BB->val map. This involves removing
- // instructions from the reverse map.
- NonLocalDepInfo &PInfo = It->second.NonLocalDeps;
-
- for (unsigned i = 0, e = PInfo.size(); i != e; ++i) {
- Instruction *Target = PInfo[i].getResult().getInst();
- if (!Target)
- continue; // Ignore non-local dep results.
- assert(Target->getParent() == PInfo[i].getBB());
-
- // Eliminating the dirty entry from 'Cache', so update the reverse info.
- RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P);
- }
-
- // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo).
- NonLocalPointerDeps.erase(It);
-}
-
-void MemoryDependenceResults::invalidateCachedPointerInfo(Value *Ptr) {
- // If Ptr isn't really a pointer, just ignore it.
- if (!Ptr->getType()->isPointerTy())
- return;
- // Flush store info for the pointer.
- RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false));
- // Flush load info for the pointer.
- RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true));
- // Invalidate phis that use the pointer.
- PV.invalidateValue(Ptr);
-}
-
-void MemoryDependenceResults::invalidateCachedPredecessors() {
- PredCache.clear();
-}
-
-void MemoryDependenceResults::removeInstruction(Instruction *RemInst) {
- // Walk through the Non-local dependencies, removing this one as the value
- // for any cached queries.
- NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst);
- if (NLDI != NonLocalDeps.end()) {
- NonLocalDepInfo &BlockMap = NLDI->second.first;
- for (auto &Entry : BlockMap)
- if (Instruction *Inst = Entry.getResult().getInst())
- RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst);
- NonLocalDeps.erase(NLDI);
- }
-
- // If we have a cached local dependence query for this instruction, remove it.
- LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
- if (LocalDepEntry != LocalDeps.end()) {
- // Remove us from DepInst's reverse set now that the local dep info is gone.
- if (Instruction *Inst = LocalDepEntry->second.getInst())
- RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst);
-
- // Remove this local dependency info.
- LocalDeps.erase(LocalDepEntry);
- }
-
- // If we have any cached pointer dependencies on this instruction, remove
- // them. If the instruction has non-pointer type, then it can't be a pointer
- // base.
-
- // Remove it from both the load info and the store info. The instruction
- // can't be in either of these maps if it is non-pointer.
- if (RemInst->getType()->isPointerTy()) {
- RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false));
- RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true));
- }
-
- // Loop over all of the things that depend on the instruction we're removing.
- SmallVector<std::pair<Instruction *, Instruction *>, 8> ReverseDepsToAdd;
-
- // If we find RemInst as a clobber or Def in any of the maps for other values,
- // we need to replace its entry with a dirty version of the instruction after
- // it. If RemInst is a terminator, we use a null dirty value.
- //
- // Using a dirty version of the instruction after RemInst saves having to scan
- // the entire block to get to this point.
- MemDepResult NewDirtyVal;
- if (!RemInst->isTerminator())
- NewDirtyVal = MemDepResult::getDirty(&*++RemInst->getIterator());
-
- ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
- if (ReverseDepIt != ReverseLocalDeps.end()) {
- // RemInst can't be the terminator if it has local stuff depending on it.
- assert(!ReverseDepIt->second.empty() && !RemInst->isTerminator() &&
- "Nothing can locally depend on a terminator");
-
- for (Instruction *InstDependingOnRemInst : ReverseDepIt->second) {
- assert(InstDependingOnRemInst != RemInst &&
- "Already removed our local dep info");
-
- LocalDeps[InstDependingOnRemInst] = NewDirtyVal;
-
- // Make sure to remember that new things depend on NewDepInst.
- assert(NewDirtyVal.getInst() &&
- "There is no way something else can have "
- "a local dep on this if it is a terminator!");
- ReverseDepsToAdd.push_back(
- std::make_pair(NewDirtyVal.getInst(), InstDependingOnRemInst));
- }
-
- ReverseLocalDeps.erase(ReverseDepIt);
-
- // Add new reverse deps after scanning the set, to avoid invalidating the
- // 'ReverseDeps' reference.
- while (!ReverseDepsToAdd.empty()) {
- ReverseLocalDeps[ReverseDepsToAdd.back().first].insert(
- ReverseDepsToAdd.back().second);
- ReverseDepsToAdd.pop_back();
- }
- }
-
- ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
- if (ReverseDepIt != ReverseNonLocalDeps.end()) {
- for (Instruction *I : ReverseDepIt->second) {
- assert(I != RemInst && "Already removed NonLocalDep info for RemInst");
-
- PerInstNLInfo &INLD = NonLocalDeps[I];
- // The information is now dirty!
- INLD.second = true;
-
- for (auto &Entry : INLD.first) {
- if (Entry.getResult().getInst() != RemInst)
- continue;
-
- // Convert to a dirty entry for the subsequent instruction.
- Entry.setResult(NewDirtyVal);
-
- if (Instruction *NextI = NewDirtyVal.getInst())
- ReverseDepsToAdd.push_back(std::make_pair(NextI, I));
- }
- }
-
- ReverseNonLocalDeps.erase(ReverseDepIt);
-
- // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
- while (!ReverseDepsToAdd.empty()) {
- ReverseNonLocalDeps[ReverseDepsToAdd.back().first].insert(
- ReverseDepsToAdd.back().second);
- ReverseDepsToAdd.pop_back();
- }
- }
-
- // If the instruction is in ReverseNonLocalPtrDeps then it appears as a
- // value in the NonLocalPointerDeps info.
- ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt =
- ReverseNonLocalPtrDeps.find(RemInst);
- if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) {
- SmallVector<std::pair<Instruction *, ValueIsLoadPair>, 8>
- ReversePtrDepsToAdd;
-
- for (ValueIsLoadPair P : ReversePtrDepIt->second) {
- assert(P.getPointer() != RemInst &&
- "Already removed NonLocalPointerDeps info for RemInst");
-
- NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps;
-
- // The cache is not valid for any specific block anymore.
- NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair();
-
- // Update any entries for RemInst to use the instruction after it.
- for (auto &Entry : NLPDI) {
- if (Entry.getResult().getInst() != RemInst)
- continue;
-
- // Convert to a dirty entry for the subsequent instruction.
- Entry.setResult(NewDirtyVal);
-
- if (Instruction *NewDirtyInst = NewDirtyVal.getInst())
- ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P));
- }
-
- // Re-sort the NonLocalDepInfo. Changing the dirty entry to its
- // subsequent value may invalidate the sortedness.
- llvm::sort(NLPDI);
- }
-
- ReverseNonLocalPtrDeps.erase(ReversePtrDepIt);
-
- while (!ReversePtrDepsToAdd.empty()) {
- ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first].insert(
- ReversePtrDepsToAdd.back().second);
- ReversePtrDepsToAdd.pop_back();
- }
- }
-
- // Invalidate phis that use the removed instruction.
- PV.invalidateValue(RemInst);
-
- assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?");
- LLVM_DEBUG(verifyRemoved(RemInst));
-}
-
-/// Verify that the specified instruction does not occur in our internal data
-/// structures.
-///
-/// This function verifies by asserting in debug builds.
-void MemoryDependenceResults::verifyRemoved(Instruction *D) const {
-#ifndef NDEBUG
- for (const auto &DepKV : LocalDeps) {
- assert(DepKV.first != D && "Inst occurs in data structures");
- assert(DepKV.second.getInst() != D && "Inst occurs in data structures");
- }
-
- for (const auto &DepKV : NonLocalPointerDeps) {
- assert(DepKV.first.getPointer() != D && "Inst occurs in NLPD map key");
- for (const auto &Entry : DepKV.second.NonLocalDeps)
- assert(Entry.getResult().getInst() != D && "Inst occurs as NLPD value");
- }
-
- for (const auto &DepKV : NonLocalDeps) {
- assert(DepKV.first != D && "Inst occurs in data structures");
- const PerInstNLInfo &INLD = DepKV.second;
- for (const auto &Entry : INLD.first)
- assert(Entry.getResult().getInst() != D &&
- "Inst occurs in data structures");
- }
-
- for (const auto &DepKV : ReverseLocalDeps) {
- assert(DepKV.first != D && "Inst occurs in data structures");
- for (Instruction *Inst : DepKV.second)
- assert(Inst != D && "Inst occurs in data structures");
- }
-
- for (const auto &DepKV : ReverseNonLocalDeps) {
- assert(DepKV.first != D && "Inst occurs in data structures");
- for (Instruction *Inst : DepKV.second)
- assert(Inst != D && "Inst occurs in data structures");
- }
-
- for (const auto &DepKV : ReverseNonLocalPtrDeps) {
- assert(DepKV.first != D && "Inst occurs in rev NLPD map");
-
- for (ValueIsLoadPair P : DepKV.second)
- assert(P != ValueIsLoadPair(D, false) && P != ValueIsLoadPair(D, true) &&
- "Inst occurs in ReverseNonLocalPtrDeps map");
- }
-#endif
-}
-
-AnalysisKey MemoryDependenceAnalysis::Key;
-
-MemoryDependenceResults
-MemoryDependenceAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
- auto &AA = AM.getResult<AAManager>(F);
- auto &AC = AM.getResult<AssumptionAnalysis>(F);
- auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
- auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
- auto &PV = AM.getResult<PhiValuesAnalysis>(F);
- return MemoryDependenceResults(AA, AC, TLI, DT, PV);
-}
-
-char MemoryDependenceWrapperPass::ID = 0;
-
-INITIALIZE_PASS_BEGIN(MemoryDependenceWrapperPass, "memdep",
- "Memory Dependence Analysis", false, true)
-INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
-INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(PhiValuesWrapperPass)
-INITIALIZE_PASS_END(MemoryDependenceWrapperPass, "memdep",
- "Memory Dependence Analysis", false, true)
-
-MemoryDependenceWrapperPass::MemoryDependenceWrapperPass() : FunctionPass(ID) {
- initializeMemoryDependenceWrapperPassPass(*PassRegistry::getPassRegistry());
-}
-
-MemoryDependenceWrapperPass::~MemoryDependenceWrapperPass() = default;
-
-void MemoryDependenceWrapperPass::releaseMemory() {
- MemDep.reset();
-}
-
-void MemoryDependenceWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
- AU.setPreservesAll();
- AU.addRequired<AssumptionCacheTracker>();
- AU.addRequired<DominatorTreeWrapperPass>();
- AU.addRequired<PhiValuesWrapperPass>();
- AU.addRequiredTransitive<AAResultsWrapperPass>();
- AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
-}
-
-bool MemoryDependenceResults::invalidate(Function &F, const PreservedAnalyses &PA,
- FunctionAnalysisManager::Invalidator &Inv) {
- // Check whether our analysis is preserved.
- auto PAC = PA.getChecker<MemoryDependenceAnalysis>();
- if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>())
- // If not, give up now.
- return true;
-
- // Check whether the analyses we depend on became invalid for any reason.
- if (Inv.invalidate<AAManager>(F, PA) ||
- Inv.invalidate<AssumptionAnalysis>(F, PA) ||
- Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
- Inv.invalidate<PhiValuesAnalysis>(F, PA))
- return true;
-
- // Otherwise this analysis result remains valid.
- return false;
-}
-
-unsigned MemoryDependenceResults::getDefaultBlockScanLimit() const {
- return BlockScanLimit;
-}
-
-bool MemoryDependenceWrapperPass::runOnFunction(Function &F) {
- auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
- auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
- auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
- auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- auto &PV = getAnalysis<PhiValuesWrapperPass>().getResult();
- MemDep.emplace(AA, AC, TLI, DT, PV);
- return false;
-}