diff options
Diffstat (limited to 'gnu/llvm/lib/Target/WebAssembly/WebAssemblyFixIrreducibleControlFlow.cpp')
| -rw-r--r-- | gnu/llvm/lib/Target/WebAssembly/WebAssemblyFixIrreducibleControlFlow.cpp | 429 |
1 files changed, 0 insertions, 429 deletions
diff --git a/gnu/llvm/lib/Target/WebAssembly/WebAssemblyFixIrreducibleControlFlow.cpp b/gnu/llvm/lib/Target/WebAssembly/WebAssemblyFixIrreducibleControlFlow.cpp deleted file mode 100644 index 108f2879a07..00000000000 --- a/gnu/llvm/lib/Target/WebAssembly/WebAssemblyFixIrreducibleControlFlow.cpp +++ /dev/null @@ -1,429 +0,0 @@ -//=- WebAssemblyFixIrreducibleControlFlow.cpp - Fix irreducible control flow -// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -/// -/// \file -/// This file implements a pass that transforms irreducible control flow into -/// reducible control flow. Irreducible control flow means multiple-entry -/// loops; they appear as CFG cycles that are not recorded in MachineLoopInfo -/// due to being unnatural. -/// -/// Note that LLVM has a generic pass that lowers irreducible control flow, but -/// it linearizes control flow, turning diamonds into two triangles, which is -/// both unnecessary and undesirable for WebAssembly. -/// -/// The big picture: Ignoring natural loops (seeing them monolithically), we -/// find all the blocks which can return to themselves ("loopers"). Loopers -/// reachable from the non-loopers are loop entries: if there are 2 or more, -/// then we have irreducible control flow. We fix that as follows: a new block -/// is created that can dispatch to each of the loop entries, based on the -/// value of a label "helper" variable, and we replace direct branches to the -/// entries with assignments to the label variable and a branch to the dispatch -/// block. Then the dispatch block is the single entry in a new natural loop. -/// -/// This is similar to what the Relooper [1] does, both identify looping code -/// that requires multiple entries, and resolve it in a similar way. In -/// Relooper terminology, we implement a Multiple shape in a Loop shape. Note -/// also that like the Relooper, we implement a "minimal" intervention: we only -/// use the "label" helper for the blocks we absolutely must and no others. We -/// also prioritize code size and do not perform node splitting (i.e. we don't -/// duplicate code in order to resolve irreducibility). -/// -/// The difference between this code and the Relooper is that the Relooper also -/// generates ifs and loops and works in a recursive manner, knowing at each -/// point what the entries are, and recursively breaks down the problem. Here -/// we just want to resolve irreducible control flow, and we also want to use -/// as much LLVM infrastructure as possible. So we use the MachineLoopInfo to -/// identify natural loops, etc., and we start with the whole CFG and must -/// identify both the looping code and its entries. -/// -/// [1] Alon Zakai. 2011. Emscripten: an LLVM-to-JavaScript compiler. In -/// Proceedings of the ACM international conference companion on Object oriented -/// programming systems languages and applications companion (SPLASH '11). ACM, -/// New York, NY, USA, 301-312. DOI=10.1145/2048147.2048224 -/// http://doi.acm.org/10.1145/2048147.2048224 -/// -//===----------------------------------------------------------------------===// - -#include "MCTargetDesc/WebAssemblyMCTargetDesc.h" -#include "WebAssembly.h" -#include "WebAssemblyMachineFunctionInfo.h" -#include "WebAssemblySubtarget.h" -#include "llvm/ADT/PriorityQueue.h" -#include "llvm/ADT/SCCIterator.h" -#include "llvm/ADT/SetVector.h" -#include "llvm/CodeGen/MachineDominators.h" -#include "llvm/CodeGen/MachineFunction.h" -#include "llvm/CodeGen/MachineInstrBuilder.h" -#include "llvm/CodeGen/MachineLoopInfo.h" -#include "llvm/CodeGen/MachineRegisterInfo.h" -#include "llvm/CodeGen/Passes.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/raw_ostream.h" -using namespace llvm; - -#define DEBUG_TYPE "wasm-fix-irreducible-control-flow" - -namespace { - -class LoopFixer { -public: - LoopFixer(MachineFunction &MF, MachineLoopInfo &MLI, MachineLoop *Loop) - : MF(MF), MLI(MLI), Loop(Loop) {} - - // Run the fixer on the given inputs. Returns whether changes were made. - bool run(); - -private: - MachineFunction &MF; - MachineLoopInfo &MLI; - MachineLoop *Loop; - - MachineBasicBlock *Header; - SmallPtrSet<MachineBasicBlock *, 4> LoopBlocks; - - using BlockSet = SmallPtrSet<MachineBasicBlock *, 4>; - DenseMap<MachineBasicBlock *, BlockSet> Reachable; - - // The worklist contains pairs of recent additions, (a, b), where we just - // added a link a => b. - using BlockPair = std::pair<MachineBasicBlock *, MachineBasicBlock *>; - SmallVector<BlockPair, 4> WorkList; - - // Get a canonical block to represent a block or a loop: the block, or if in - // an inner loop, the loop header, of it in an outer loop scope, we can - // ignore it. We need to call this on all blocks we work on. - MachineBasicBlock *canonicalize(MachineBasicBlock *MBB) { - MachineLoop *InnerLoop = MLI.getLoopFor(MBB); - if (InnerLoop == Loop) { - return MBB; - } else { - // This is either in an outer or an inner loop, and not in ours. - if (!LoopBlocks.count(MBB)) { - // It's in outer code, ignore it. - return nullptr; - } - assert(InnerLoop); - // It's in an inner loop, canonicalize it to the header of that loop. - return InnerLoop->getHeader(); - } - } - - // For a successor we can additionally ignore it if it's a branch back to a - // natural loop top, as when we are in the scope of a loop, we just care - // about internal irreducibility, and can ignore the loop we are in. We need - // to call this on all blocks in a context where they are a successor. - MachineBasicBlock *canonicalizeSuccessor(MachineBasicBlock *MBB) { - if (Loop && MBB == Loop->getHeader()) { - // Ignore branches going to the loop's natural header. - return nullptr; - } - return canonicalize(MBB); - } - - // Potentially insert a new reachable edge, and if so, note it as further - // work. - void maybeInsert(MachineBasicBlock *MBB, MachineBasicBlock *Succ) { - assert(MBB == canonicalize(MBB)); - assert(Succ); - // Succ may not be interesting as a sucessor. - Succ = canonicalizeSuccessor(Succ); - if (!Succ) - return; - if (Reachable[MBB].insert(Succ).second) { - // For there to be further work, it means that we have - // X => MBB => Succ - // for some other X, and in that case X => Succ would be a new edge for - // us to discover later. However, if we don't care about MBB as a - // successor, then we don't care about that anyhow. - if (canonicalizeSuccessor(MBB)) { - WorkList.emplace_back(MBB, Succ); - } - } - } -}; - -bool LoopFixer::run() { - Header = Loop ? Loop->getHeader() : &*MF.begin(); - - // Identify all the blocks in this loop scope. - if (Loop) { - for (auto *MBB : Loop->getBlocks()) { - LoopBlocks.insert(MBB); - } - } else { - for (auto &MBB : MF) { - LoopBlocks.insert(&MBB); - } - } - - // Compute which (canonicalized) blocks each block can reach. - - // Add all the initial work. - for (auto *MBB : LoopBlocks) { - MachineLoop *InnerLoop = MLI.getLoopFor(MBB); - - if (InnerLoop == Loop) { - for (auto *Succ : MBB->successors()) { - maybeInsert(MBB, Succ); - } - } else { - // It can't be in an outer loop - we loop on LoopBlocks - and so it must - // be an inner loop. - assert(InnerLoop); - // Check if we are the canonical block for this loop. - if (canonicalize(MBB) != MBB) { - continue; - } - // The successors are those of the loop. - SmallVector<MachineBasicBlock *, 2> ExitBlocks; - InnerLoop->getExitBlocks(ExitBlocks); - for (auto *Succ : ExitBlocks) { - maybeInsert(MBB, Succ); - } - } - } - - // Do work until we are all done. - while (!WorkList.empty()) { - MachineBasicBlock *MBB; - MachineBasicBlock *Succ; - std::tie(MBB, Succ) = WorkList.pop_back_val(); - // The worklist item is an edge we just added, so it must have valid blocks - // (and not something canonicalized to nullptr). - assert(MBB); - assert(Succ); - // The successor in that pair must also be a valid successor. - assert(MBB == canonicalizeSuccessor(MBB)); - // We recently added MBB => Succ, and that means we may have enabled - // Pred => MBB => Succ. Check all the predecessors. Note that our loop here - // is correct for both a block and a block representing a loop, as the loop - // is natural and so the predecessors are all predecessors of the loop - // header, which is the block we have here. - for (auto *Pred : MBB->predecessors()) { - // Canonicalize, make sure it's relevant, and check it's not the same - // block (an update to the block itself doesn't help compute that same - // block). - Pred = canonicalize(Pred); - if (Pred && Pred != MBB) { - maybeInsert(Pred, Succ); - } - } - } - - // It's now trivial to identify the loopers. - SmallPtrSet<MachineBasicBlock *, 4> Loopers; - for (auto MBB : LoopBlocks) { - if (Reachable[MBB].count(MBB)) { - Loopers.insert(MBB); - } - } - // The header cannot be a looper. At the toplevel, LLVM does not allow the - // entry to be in a loop, and in a natural loop we should ignore the header. - assert(Loopers.count(Header) == 0); - - // Find the entries, loopers reachable from non-loopers. - SmallPtrSet<MachineBasicBlock *, 4> Entries; - SmallVector<MachineBasicBlock *, 4> SortedEntries; - for (auto *Looper : Loopers) { - for (auto *Pred : Looper->predecessors()) { - Pred = canonicalize(Pred); - if (Pred && !Loopers.count(Pred)) { - Entries.insert(Looper); - SortedEntries.push_back(Looper); - break; - } - } - } - - // Check if we found irreducible control flow. - if (LLVM_LIKELY(Entries.size() <= 1)) - return false; - - // Sort the entries to ensure a deterministic build. - llvm::sort(SortedEntries, - [&](const MachineBasicBlock *A, const MachineBasicBlock *B) { - auto ANum = A->getNumber(); - auto BNum = B->getNumber(); - return ANum < BNum; - }); - -#ifndef NDEBUG - for (auto Block : SortedEntries) - assert(Block->getNumber() != -1); - if (SortedEntries.size() > 1) { - for (auto I = SortedEntries.begin(), E = SortedEntries.end() - 1; - I != E; ++I) { - auto ANum = (*I)->getNumber(); - auto BNum = (*(std::next(I)))->getNumber(); - assert(ANum != BNum); - } - } -#endif - - // Create a dispatch block which will contain a jump table to the entries. - MachineBasicBlock *Dispatch = MF.CreateMachineBasicBlock(); - MF.insert(MF.end(), Dispatch); - MLI.changeLoopFor(Dispatch, Loop); - - // Add the jump table. - const auto &TII = *MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo(); - MachineInstrBuilder MIB = BuildMI(*Dispatch, Dispatch->end(), DebugLoc(), - TII.get(WebAssembly::BR_TABLE_I32)); - - // Add the register which will be used to tell the jump table which block to - // jump to. - MachineRegisterInfo &MRI = MF.getRegInfo(); - unsigned Reg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); - MIB.addReg(Reg); - - // Compute the indices in the superheader, one for each bad block, and - // add them as successors. - DenseMap<MachineBasicBlock *, unsigned> Indices; - for (auto *MBB : SortedEntries) { - auto Pair = Indices.insert(std::make_pair(MBB, 0)); - if (!Pair.second) { - continue; - } - - unsigned Index = MIB.getInstr()->getNumExplicitOperands() - 1; - Pair.first->second = Index; - - MIB.addMBB(MBB); - Dispatch->addSuccessor(MBB); - } - - // Rewrite the problematic successors for every block that wants to reach the - // bad blocks. For simplicity, we just introduce a new block for every edge - // we need to rewrite. (Fancier things are possible.) - - SmallVector<MachineBasicBlock *, 4> AllPreds; - for (auto *MBB : SortedEntries) { - for (auto *Pred : MBB->predecessors()) { - if (Pred != Dispatch) { - AllPreds.push_back(Pred); - } - } - } - - for (MachineBasicBlock *MBB : AllPreds) { - DenseMap<MachineBasicBlock *, MachineBasicBlock *> Map; - for (auto *Succ : MBB->successors()) { - if (!Entries.count(Succ)) { - continue; - } - - // This is a successor we need to rewrite. - MachineBasicBlock *Split = MF.CreateMachineBasicBlock(); - MF.insert(MBB->isLayoutSuccessor(Succ) ? MachineFunction::iterator(Succ) - : MF.end(), - Split); - MLI.changeLoopFor(Split, Loop); - - // Set the jump table's register of the index of the block we wish to - // jump to, and jump to the jump table. - BuildMI(*Split, Split->end(), DebugLoc(), TII.get(WebAssembly::CONST_I32), - Reg) - .addImm(Indices[Succ]); - BuildMI(*Split, Split->end(), DebugLoc(), TII.get(WebAssembly::BR)) - .addMBB(Dispatch); - Split->addSuccessor(Dispatch); - Map[Succ] = Split; - } - // Remap the terminator operands and the successor list. - for (MachineInstr &Term : MBB->terminators()) - for (auto &Op : Term.explicit_uses()) - if (Op.isMBB() && Indices.count(Op.getMBB())) - Op.setMBB(Map[Op.getMBB()]); - for (auto Rewrite : Map) - MBB->replaceSuccessor(Rewrite.first, Rewrite.second); - } - - // Create a fake default label, because br_table requires one. - MIB.addMBB(MIB.getInstr() - ->getOperand(MIB.getInstr()->getNumExplicitOperands() - 1) - .getMBB()); - - return true; -} - -class WebAssemblyFixIrreducibleControlFlow final : public MachineFunctionPass { - StringRef getPassName() const override { - return "WebAssembly Fix Irreducible Control Flow"; - } - - void getAnalysisUsage(AnalysisUsage &AU) const override { - AU.setPreservesCFG(); - AU.addRequired<MachineDominatorTree>(); - AU.addPreserved<MachineDominatorTree>(); - AU.addRequired<MachineLoopInfo>(); - AU.addPreserved<MachineLoopInfo>(); - MachineFunctionPass::getAnalysisUsage(AU); - } - - bool runOnMachineFunction(MachineFunction &MF) override; - - bool runIteration(MachineFunction &MF, MachineLoopInfo &MLI) { - // Visit the function body, which is identified as a null loop. - if (LoopFixer(MF, MLI, nullptr).run()) { - return true; - } - - // Visit all the loops. - SmallVector<MachineLoop *, 8> Worklist(MLI.begin(), MLI.end()); - while (!Worklist.empty()) { - MachineLoop *Loop = Worklist.pop_back_val(); - Worklist.append(Loop->begin(), Loop->end()); - if (LoopFixer(MF, MLI, Loop).run()) { - return true; - } - } - - return false; - } - -public: - static char ID; // Pass identification, replacement for typeid - WebAssemblyFixIrreducibleControlFlow() : MachineFunctionPass(ID) {} -}; -} // end anonymous namespace - -char WebAssemblyFixIrreducibleControlFlow::ID = 0; -INITIALIZE_PASS(WebAssemblyFixIrreducibleControlFlow, DEBUG_TYPE, - "Removes irreducible control flow", false, false) - -FunctionPass *llvm::createWebAssemblyFixIrreducibleControlFlow() { - return new WebAssemblyFixIrreducibleControlFlow(); -} - -bool WebAssemblyFixIrreducibleControlFlow::runOnMachineFunction( - MachineFunction &MF) { - LLVM_DEBUG(dbgs() << "********** Fixing Irreducible Control Flow **********\n" - "********** Function: " - << MF.getName() << '\n'); - - bool Changed = false; - auto &MLI = getAnalysis<MachineLoopInfo>(); - - // When we modify something, bail out and recompute MLI, then start again, as - // we create a new natural loop when we resolve irreducible control flow, and - // other loops may become nested in it, etc. In practice this is not an issue - // because irreducible control flow is rare, only very few cycles are needed - // here. - while (LLVM_UNLIKELY(runIteration(MF, MLI))) { - // We rewrote part of the function; recompute MLI and start again. - LLVM_DEBUG(dbgs() << "Recomputing loops.\n"); - MF.getRegInfo().invalidateLiveness(); - MF.RenumberBlocks(); - getAnalysis<MachineDominatorTree>().runOnMachineFunction(MF); - MLI.runOnMachineFunction(MF); - Changed = true; - } - - return Changed; -} |
