aboutsummaryrefslogtreecommitdiffstats
path: root/src/router/workers.rs
blob: fb22280846cf834093ff94bcd58bcb057b934b44 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
use std::mem;
use std::sync::mpsc::Receiver;
use std::sync::Arc;

use futures::sync::oneshot;
use futures::*;

use log::debug;

use ring::aead::{Aad, LessSafeKey, Nonce, UnboundKey, CHACHA20_POLY1305};
use std::net::{Ipv4Addr, Ipv6Addr};
use std::sync::atomic::Ordering;
use zerocopy::{AsBytes, LayoutVerified};

use super::device::{DecryptionState, DeviceInner};
use super::messages::TransportHeader;
use super::peer::PeerInner;
use super::types::Callbacks;

use super::ip::*;

use super::super::types::{Bind, Tun};

#[derive(PartialEq, Debug)]
pub enum Operation {
    Encryption,
    Decryption,
}

pub struct JobBuffer {
    pub msg: Vec<u8>,  // message buffer (nonce and receiver id set)
    pub key: [u8; 32], // chacha20poly1305 key
    pub okay: bool,    // state of the job
    pub op: Operation, // should be buffer be encrypted / decrypted?
}

pub type JobParallel = (oneshot::Sender<JobBuffer>, JobBuffer);

#[allow(type_alias_bounds)]
pub type JobInbound<C, T, B: Bind> = (
    Arc<DecryptionState<C, T, B>>,
    B::Endpoint,
    oneshot::Receiver<JobBuffer>,
);

pub type JobOutbound = oneshot::Receiver<JobBuffer>;

#[inline(always)]
fn check_route<C: Callbacks, T: Tun, B: Bind>(
    device: &Arc<DeviceInner<C, T, B>>,
    peer: &Arc<PeerInner<C, T, B>>,
    packet: &[u8],
) -> Option<usize> {
    match packet[0] >> 4 {
        VERSION_IP4 => {
            // check length and cast to IPv4 header
            let (header, _) = LayoutVerified::new_from_prefix(packet)?;
            let header: LayoutVerified<&[u8], IPv4Header> = header;

            // check IPv4 source address
            device
                .ipv4
                .read()
                .longest_match(Ipv4Addr::from(header.f_source))
                .and_then(|(_, _, p)| {
                    if Arc::ptr_eq(p, &peer) {
                        Some(header.f_total_len.get() as usize)
                    } else {
                        None
                    }
                })
        }
        VERSION_IP6 => {
            // check length and cast to IPv6 header
            let (header, _) = LayoutVerified::new_from_prefix(packet)?;
            let header: LayoutVerified<&[u8], IPv6Header> = header;

            // check IPv6 source address
            device
                .ipv6
                .read()
                .longest_match(Ipv6Addr::from(header.f_source))
                .and_then(|(_, _, p)| {
                    if Arc::ptr_eq(p, &peer) {
                        Some(header.f_len.get() as usize + mem::size_of::<IPv6Header>())
                    } else {
                        None
                    }
                })
        }
        _ => None,
    }
}

pub fn worker_inbound<C: Callbacks, T: Tun, B: Bind>(
    device: Arc<DeviceInner<C, T, B>>, // related device
    peer: Arc<PeerInner<C, T, B>>,     // related peer
    receiver: Receiver<JobInbound<C, T, B>>,
) {
    loop {
        // fetch job
        let (state, endpoint, rx) = match receiver.recv() {
            Ok(v) => v,
            _ => {
                return;
            }
        };

        // wait for job to complete
        let _ = rx
            .map(|buf| {
                if buf.okay {
                    // parse / cast
                    let (header, packet) = match LayoutVerified::new_from_prefix(&buf.msg[..]) {
                        Some(v) => v,
                        None => {
                            return;
                        }
                    };
                    let header: LayoutVerified<&[u8], TransportHeader> = header;
                    debug_assert!(
                        packet.len() >= CHACHA20_POLY1305.tag_len(),
                        "this should be checked earlier in the pipeline"
                    );

                    // check for replay
                    if !state.protector.lock().update(header.f_counter.get()) {
                        return;
                    }

                    // check for confirms key
                    if !state.confirmed.swap(true, Ordering::SeqCst) {
                        peer.confirm_key(&state.keypair);
                    }

                    // update endpoint
                    *peer.endpoint.lock() = Some(endpoint);

                    // calculate length of IP packet + padding
                    let length = packet.len() - CHACHA20_POLY1305.nonce_len();

                    // check if should be written to TUN
                    let mut sent = false;
                    if length > 0 {
                        if let Some(inner_len) = check_route(&device, &peer, &packet[..length]) {
                            debug_assert!(inner_len <= length, "should be validated");
                            if inner_len <= length {
                                sent = true;
                                let _ = device.tun.write(&packet[..inner_len]);
                            }
                        }
                    }

                    // trigger callback
                    (device.call_recv)(&peer.opaque, length == 0, sent);
                }
            })
            .wait();
    }
}

pub fn worker_outbound<C: Callbacks, T: Tun, B: Bind>(
    device: Arc<DeviceInner<C, T, B>>, // related device
    peer: Arc<PeerInner<C, T, B>>,     // related peer
    receiver: Receiver<JobOutbound>,
) {
    loop {
        // fetch job
        let rx = match receiver.recv() {
            Ok(v) => v,
            _ => {
                return;
            }
        };

        // wait for job to complete
        let _ = rx
            .map(|buf| {
                if buf.okay {
                    // write to UDP device, TODO
                    let xmit = false;

                    // trigger callback
                    (device.call_send)(
                        &peer.opaque,
                        buf.msg.len()
                            > CHACHA20_POLY1305.nonce_len() + mem::size_of::<TransportHeader>(),
                        xmit,
                    );
                }
            })
            .wait();
    }
}

pub fn worker_parallel(receiver: Receiver<JobParallel>) {
    loop {
        // fetch next job
        let (tx, mut buf) = match receiver.recv() {
            Err(_) => {
                return;
            }
            Ok(val) => val,
        };

        // cast and check size of packet
        let (header, packet) = match LayoutVerified::new_from_prefix(&buf.msg[..]) {
            Some(v) => v,
            None => continue,
        };

        if packet.len() < CHACHA20_POLY1305.nonce_len() {
            continue;
        }

        let header: LayoutVerified<&[u8], TransportHeader> = header;

        // do the weird ring AEAD dance
        let key = LessSafeKey::new(UnboundKey::new(&CHACHA20_POLY1305, &buf.key[..]).unwrap());

        // create a nonce object
        let mut nonce = [0u8; 12];
        debug_assert_eq!(nonce.len(), CHACHA20_POLY1305.nonce_len());
        nonce[4..].copy_from_slice(header.f_counter.as_bytes());
        let nonce = Nonce::assume_unique_for_key(nonce);

        match buf.op {
            Operation::Encryption => {
                debug!("worker, process encryption");

                // note: extends the vector to accommodate the tag
                key.seal_in_place_append_tag(nonce, Aad::empty(), &mut buf.msg)
                    .unwrap();
                buf.okay = true;
            }
            Operation::Decryption => {
                debug!("worker, process decryption");

                // opening failure is signaled by fault state
                buf.okay = match key.open_in_place(nonce, Aad::empty(), &mut buf.msg) {
                    Ok(_) => true,
                    Err(_) => false,
                };
            }
        }

        // pass ownership to consumer
        let _ = tx.send(buf);
    }
}