aboutsummaryrefslogtreecommitdiffstats
path: root/gnuradio-runtime/lib/block_executor.cc
blob: 97e163b68381ba22adff8213a24fb9fa89d09b53 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
/* -*- c++ -*- */
/*
 * Copyright 2004,2008-2010,2013,2017 Free Software Foundation, Inc.
 *
 * This file is part of GNU Radio
 *
 * GNU Radio is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3, or (at your option)
 * any later version.
 *
 * GNU Radio is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with GNU Radio; see the file COPYING.  If not, write to
 * the Free Software Foundation, Inc., 51 Franklin Street,
 * Boston, MA 02110-1301, USA.
 */

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include <gnuradio/block.h>
#include <gnuradio/block_detail.h>
#include <gnuradio/buffer.h>
#include <gnuradio/prefs.h>
#include <assert.h>
#include <block_executor.h>
#include <stdio.h>
#include <boost/format.hpp>
#include <boost/thread.hpp>
#include <iostream>
#include <limits>

namespace gr {

// must be defined to either 0 or 1
#define ENABLE_LOGGING 0

#if (ENABLE_LOGGING)
#define LOG(x) \
    do {       \
        x;     \
    } while (0)
#else
#define LOG(x) \
    do {       \
        ;      \
    } while (0)
#endif

static int which_scheduler = 0;

inline static unsigned int round_up(unsigned int n, unsigned int multiple)
{
    return ((n + multiple - 1) / multiple) * multiple;
}

inline static unsigned int round_down(unsigned int n, unsigned int multiple)
{
    return (n / multiple) * multiple;
}

//
// Return minimum available write space in all our downstream
// buffers or -1 if we're output blocked and the output we're
// blocked on is done.
//
static int
min_available_space(block_detail* d, int output_multiple, int min_noutput_items)
{
    int min_space = std::numeric_limits<int>::max();
    if (min_noutput_items == 0)
        min_noutput_items = 1;
    for (int i = 0; i < d->noutputs(); i++) {
        buffer_sptr out_buf = d->output(i);
        gr::thread::scoped_lock guard(*out_buf->mutex());
        int avail_n = round_down(out_buf->space_available(), output_multiple);
        int best_n = round_down(out_buf->bufsize() / 2, output_multiple);
        if (best_n < min_noutput_items)
            throw std::runtime_error("Buffer too small for min_noutput_items");
        int n = std::min(avail_n, best_n);
        if (n < min_noutput_items) { // We're blocked on output.
            if (out_buf->done()) {   // Downstream is done, therefore we're done.
                return -1;
            }
            return 0;
        }
        min_space = std::min(min_space, n);
    }
    return min_space;
}

static bool propagate_tags(block::tag_propagation_policy_t policy,
                           block_detail* d,
                           const std::vector<uint64_t>& start_nitems_read,
                           double rrate,
                           mpq_class& mp_rrate,
                           bool use_fp_rrate,
                           std::vector<tag_t>& rtags,
                           long block_id)
{
    static const mpq_class one_half(1, 2);

    // Move tags downstream
    // if a sink, we don't need to move downstream
    if (d->sink_p()) {
        return true;
    }

    switch (policy) {
    case block::TPP_DONT:
    case block::TPP_CUSTOM:
        return true;
    case block::TPP_ALL_TO_ALL: {
        // every tag on every input propagates to everyone downstream
        std::vector<buffer_sptr> out_buf;

        for (int i = 0; i < d->ninputs(); i++) {
            d->get_tags_in_range(
                rtags, i, start_nitems_read[i], d->nitems_read(i), block_id);

            if (rtags.empty()) {
                continue;
            }

            if (out_buf.empty()) {
                out_buf.reserve(d->noutputs());
                for (int o = 0; o < d->noutputs(); o++)
                    out_buf.push_back(d->output(o));
            }

            std::vector<tag_t>::iterator t;
            if (rrate == 1.0) {
                for (t = rtags.begin(); t != rtags.end(); t++) {
                    for (int o = 0; o < d->noutputs(); o++)
                        out_buf[o]->add_item_tag(*t);
                }
            } else if (use_fp_rrate) {
                for (t = rtags.begin(); t != rtags.end(); t++) {
                    tag_t new_tag = *t;
                    new_tag.offset = ((double)new_tag.offset * rrate) + 0.5;
                    for (int o = 0; o < d->noutputs(); o++)
                        out_buf[o]->add_item_tag(new_tag);
                }
            } else {
                mpz_class offset;
                for (t = rtags.begin(); t != rtags.end(); t++) {
                    tag_t new_tag = *t;
                    mpz_import(offset.get_mpz_t(),
                               1,
                               1,
                               sizeof(new_tag.offset),
                               0,
                               0,
                               &new_tag.offset);
                    offset = offset * mp_rrate + one_half;
                    new_tag.offset = offset.get_ui();
                    for (int o = 0; o < d->noutputs(); o++)
                        out_buf[o]->add_item_tag(new_tag);
                }
            }
        }
    } break;
    case block::TPP_ONE_TO_ONE:
        // tags from input i only go to output i
        // this requires d->ninputs() == d->noutputs; this is checked when this
        // type of tag-propagation system is selected in block_detail
        if (d->ninputs() == d->noutputs()) {
            buffer_sptr out_buf;

            for (int i = 0; i < d->ninputs(); i++) {
                d->get_tags_in_range(
                    rtags, i, start_nitems_read[i], d->nitems_read(i), block_id);

                if (rtags.empty()) {
                    continue;
                }

                out_buf = d->output(i);

                std::vector<tag_t>::iterator t;
                if (rrate == 1.0) {
                    for (t = rtags.begin(); t != rtags.end(); t++) {
                        out_buf->add_item_tag(*t);
                    }
                } else if (use_fp_rrate) {
                    for (t = rtags.begin(); t != rtags.end(); t++) {
                        tag_t new_tag = *t;
                        new_tag.offset = ((double)new_tag.offset * rrate) + 0.5;
                        out_buf->add_item_tag(new_tag);
                    }
                } else {
                    mpz_class offset;
                    for (t = rtags.begin(); t != rtags.end(); t++) {
                        tag_t new_tag = *t;
                        mpz_import(offset.get_mpz_t(),
                                   1,
                                   1,
                                   sizeof(new_tag.offset),
                                   0,
                                   0,
                                   &new_tag.offset);
                        offset = offset * mp_rrate + one_half;
                        new_tag.offset = offset.get_ui();
                        out_buf->add_item_tag(new_tag);
                    }
                }
            }
        } else {
            std::cerr << "Error: block_executor: propagation_policy 'ONE-TO-ONE' "
                         "requires ninputs == noutputs"
                      << std::endl;
            return false;
        }
        break;
    default:
        return true;
    }
    return true;
}

block_executor::block_executor(block_sptr block, int max_noutput_items)
    : d_block(block), d_log(0), d_max_noutput_items(max_noutput_items)
{
    if (ENABLE_LOGGING) {
        std::string name = str(boost::format("sst-%03d.log") % which_scheduler++);
        d_log = new std::ofstream(name.c_str());
        std::unitbuf(*d_log); // make it unbuffered...
        *d_log << "block_executor: " << d_block << std::endl;
    }

#ifdef GR_PERFORMANCE_COUNTERS
    prefs* prefs = prefs::singleton();
    d_use_pc = prefs->get_bool("PerfCounters", "on", false);
#endif /* GR_PERFORMANCE_COUNTERS */

    d_block->start(); // enable any drivers, etc.
}

block_executor::~block_executor()
{
    if (ENABLE_LOGGING)
        delete d_log;

    d_block->stop(); // stop any drivers, etc.
}

block_executor::state block_executor::run_one_iteration()
{
    int noutput_items;
    int max_items_avail;
    int max_noutput_items;
    int new_alignment = 0;
    int alignment_state = -1;

    block* m = d_block.get();
    block_detail* d = m->detail().get();

    LOG(*d_log << std::endl << m);

    max_noutput_items = round_down(d_max_noutput_items, m->output_multiple());

    if (d->done()) {
        assert(0);
        return DONE;
    }

    if (d->source_p()) {
        d_ninput_items_required.resize(0);
        d_ninput_items.resize(0);
        d_input_items.resize(0);
        d_input_done.resize(0);
        d_output_items.resize(d->noutputs());
        d_start_nitems_read.resize(0);

        // determine the minimum available output space
        noutput_items =
            min_available_space(d, m->output_multiple(), m->min_noutput_items());
        noutput_items = std::min(noutput_items, max_noutput_items);
        LOG(*d_log << " source\n  noutput_items = " << noutput_items << std::endl);
        if (noutput_items == -1) // we're done
            goto were_done;

        if (noutput_items == 0) { // we're output blocked
            LOG(*d_log << "  BLKD_OUT\n");
            return BLKD_OUT;
        }

        goto setup_call_to_work; // jump to common code
    }

    else if (d->sink_p()) {
        d_ninput_items_required.resize(d->ninputs());
        d_ninput_items.resize(d->ninputs());
        d_input_items.resize(d->ninputs());
        d_input_done.resize(d->ninputs());
        d_output_items.resize(0);
        d_start_nitems_read.resize(d->ninputs());
        LOG(*d_log << " sink\n");

        max_items_avail = 0;
        for (int i = 0; i < d->ninputs(); i++) {
            {
                /*
                 * Acquire the mutex and grab local copies of items_available and done.
                 */
                buffer_reader_sptr in_buf = d->input(i);
                gr::thread::scoped_lock guard(*in_buf->mutex());
                d_ninput_items[i] = in_buf->items_available();
                d_input_done[i] = in_buf->done();
            }

            LOG(*d_log << "  d_ninput_items[" << i << "] = " << d_ninput_items[i]
                       << std::endl);
            LOG(*d_log << "  d_input_done[" << i << "] = " << d_input_done[i]
                       << std::endl);

            if (d_ninput_items[i] < m->output_multiple() && d_input_done[i])
                goto were_done;

            max_items_avail = std::max(max_items_avail, d_ninput_items[i]);
        }

        // take a swag at how much output we can sink
        noutput_items = (int)(max_items_avail * m->relative_rate());
        noutput_items = round_down(noutput_items, m->output_multiple());
        noutput_items = std::min(noutput_items, max_noutput_items);
        LOG(*d_log << "  max_items_avail = " << max_items_avail << std::endl);
        LOG(*d_log << "  noutput_items = " << noutput_items << std::endl);

        if (noutput_items == 0) { // we're blocked on input
            LOG(*d_log << "  BLKD_IN\n");
            return BLKD_IN;
        }

        goto try_again; // Jump to code shared with regular case.
    }

    else {
        // do the regular thing
        d_ninput_items_required.resize(d->ninputs());
        d_ninput_items.resize(d->ninputs());
        d_input_items.resize(d->ninputs());
        d_input_done.resize(d->ninputs());
        d_output_items.resize(d->noutputs());
        d_start_nitems_read.resize(d->ninputs());

        max_items_avail = 0;
        for (int i = 0; i < d->ninputs(); i++) {
            {
                /*
                 * Acquire the mutex and grab local copies of items_available and done.
                 */
                buffer_reader_sptr in_buf = d->input(i);
                gr::thread::scoped_lock guard(*in_buf->mutex());
                d_ninput_items[i] = in_buf->items_available();
                d_input_done[i] = in_buf->done();
            }
            max_items_avail = std::max(max_items_avail, d_ninput_items[i]);
        }

        // determine the minimum available output space
        noutput_items =
            min_available_space(d, m->output_multiple(), m->min_noutput_items());
        if (ENABLE_LOGGING) {
            *d_log << " regular ";
            *d_log << m->relative_rate_i() << ":" << m->relative_rate_d() << std::endl;
            *d_log << "  max_items_avail = " << max_items_avail << std::endl;
            *d_log << "  noutput_items = " << noutput_items << std::endl;
        }
        if (noutput_items == -1) // we're done
            goto were_done;

        if (noutput_items == 0) { // we're output blocked
            LOG(*d_log << "  BLKD_OUT\n");
            return BLKD_OUT;
        }

    try_again:
        if (m->fixed_rate()) {
            // try to work it forward starting with max_items_avail.
            // We want to try to consume all the input we've got.
            int reqd_noutput_items = m->fixed_rate_ninput_to_noutput(max_items_avail);

            // only test this if we specifically set the output_multiple
            if (m->output_multiple_set())
                reqd_noutput_items = round_down(reqd_noutput_items, m->output_multiple());

            if (reqd_noutput_items > 0 && reqd_noutput_items <= noutput_items)
                noutput_items = reqd_noutput_items;

            // if we need this many outputs, overrule the max_noutput_items setting
            max_noutput_items = std::max(m->output_multiple(), max_noutput_items);
        }
        noutput_items = std::min(noutput_items, max_noutput_items);

        // Check if we're still unaligned; use up items until we're
        // aligned again. Otherwise, make sure we set the alignment
        // requirement.
        if (!m->output_multiple_set()) {
            if (m->is_unaligned()) {
                // When unaligned, don't just set noutput_items to the remaining
                // samples to meet alignment; this causes too much overhead in
                // requiring a premature call back here. Set the maximum amount
                // of samples to handle unalignment and get us back aligned.
                if (noutput_items >= m->unaligned()) {
                    noutput_items = round_up(noutput_items, m->alignment()) -
                                    (m->alignment() - m->unaligned());
                    new_alignment = 0;
                } else {
                    new_alignment = m->unaligned() - noutput_items;
                }
                alignment_state = 0;
            } else if (noutput_items < m->alignment()) {
                // if we don't have enough for an aligned call, keep track of
                // misalignment, set unaligned flag, and proceed.
                new_alignment = m->alignment() - noutput_items;
                m->set_unaligned(new_alignment);
                m->set_is_unaligned(true);
                alignment_state = 1;
            } else {
                // enough to round down to the nearest alignment and process.
                noutput_items = round_down(noutput_items, m->alignment());
                m->set_is_unaligned(false);
                alignment_state = 2;
            }
        }

        // ask the block how much input they need to produce noutput_items
        m->forecast(noutput_items, d_ninput_items_required);

        // See if we've got sufficient input available and make sure we
        // didn't overflow on the input.
        int i;
        for (i = 0; i < d->ninputs(); i++) {
            if (d_ninput_items_required[i] > d_ninput_items[i]) // not enough
                break;

            if (d_ninput_items_required[i] < 0) {
                std::cerr << "\nsched: <block " << m->name() << " (" << m->unique_id()
                          << ")>"
                          << " thinks its ninput_items required is "
                          << d_ninput_items_required[i] << " and cannot be negative.\n"
                          << "Some parameterization is wrong. "
                          << "Too large a decimation value?\n\n";
                goto were_done;
            }
        }

        if (i < d->ninputs()) { // not enough input on input[i]
            // if we can, try reducing the size of our output request
            if (noutput_items > m->output_multiple()) {
                noutput_items /= 2;
                noutput_items = round_up(noutput_items, m->output_multiple());
                goto try_again;
            }

            // We're blocked on input
            LOG(*d_log << "  BLKD_IN\n");
            if (d_input_done[i]) // If the upstream block is done, we're done
                goto were_done;

            // Is it possible to ever fulfill this request?
            buffer_reader_sptr in_buf = d->input(i);
            if (d_ninput_items_required[i] > in_buf->max_possible_items_available()) {
                // Nope, never going to happen...
                std::cerr
                    << "\nsched: <block " << m->name() << " (" << m->unique_id() << ")>"
                    << " is requesting more input data\n"
                    << "  than we can provide.\n"
                    << "  ninput_items_required = " << d_ninput_items_required[i] << "\n"
                    << "  max_possible_items_available = "
                    << in_buf->max_possible_items_available() << "\n"
                    << "  If this is a filter, consider reducing the number of taps.\n";
                goto were_done;
            }

            // If we were made unaligned in this round but return here without
            // processing; reset the unalignment claim before next entry.
            if (alignment_state == 1) {
                m->set_unaligned(0);
                m->set_is_unaligned(false);
            }
            return BLKD_IN;
        }

        // We've got enough data on each input to produce noutput_items.
        // Finish setting up the call to work.
        for (int i = 0; i < d->ninputs(); i++)
            d_input_items[i] = d->input(i)->read_pointer();

    setup_call_to_work:

        d->d_produce_or = 0;
        for (int i = 0; i < d->noutputs(); i++)
            d_output_items[i] = d->output(i)->write_pointer();

        // determine where to start looking for new tags
        for (int i = 0; i < d->ninputs(); i++)
            d_start_nitems_read[i] = d->nitems_read(i);

#ifdef GR_PERFORMANCE_COUNTERS
        if (d_use_pc)
            d->start_perf_counters();
#endif /* GR_PERFORMANCE_COUNTERS */

        // Do the actual work of the block
        int n =
            m->general_work(noutput_items, d_ninput_items, d_input_items, d_output_items);

#ifdef GR_PERFORMANCE_COUNTERS
        if (d_use_pc)
            d->stop_perf_counters(noutput_items, n);
#endif /* GR_PERFORMANCE_COUNTERS */

        LOG(*d_log << "  general_work: noutput_items = " << noutput_items
                   << " result = " << n << std::endl);

        // Adjust number of unaligned items left to process
        if (m->is_unaligned()) {
            m->set_unaligned(new_alignment);
            m->set_is_unaligned(m->unaligned() != 0);
        }

        // Now propagate the tags based on the new relative rate
        if (!propagate_tags(m->tag_propagation_policy(),
                            d,
                            d_start_nitems_read,
                            m->relative_rate(),
                            m->mp_relative_rate(),
                            m->update_rate(),
                            d_returned_tags,
                            m->unique_id()))
            goto were_done;

        if (n == block::WORK_DONE)
            goto were_done;

        if (n != block::WORK_CALLED_PRODUCE)
            d->produce_each(n); // advance write pointers

        // For some blocks that can change their produce/consume ratio
        // (the relative_rate), we might want to automatically update
        // based on the amount of items written/read.
        // In the block constructor, use enable_update_rate(true).
        if (m->update_rate()) {
            // rrate = ((double)(m->nitems_written(0))) / ((double)m->nitems_read(0));
            // if(rrate > 0.0)
            //  m->set_relative_rate(rrate);
            if ((n > 0) && (d->consumed() > 0))
                m->set_relative_rate((uint64_t)n, (uint64_t)d->consumed());
        }

        if (d->d_produce_or > 0) // block produced something
            return READY;

        // We didn't produce any output even though we called general_work.
        // We have (most likely) consumed some input.

        /*
        // If this is a source, it's broken.
        if(d->source_p()) {
          std::cerr << "block_executor: source " << m
                    << " produced no output.  We're marking it DONE.\n";
          // FIXME maybe we ought to raise an exception...
          goto were_done;
        }
        */

        // Have the caller try again...
        return READY_NO_OUTPUT;
    }
    assert(0);

were_done:
    LOG(*d_log << "  were_done\n");
    d->set_done(true);
    return DONE;
}

} /* namespace gr */