aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/dma/ti/edma.c
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2018-06-08 11:02:21 -0700
committerLinus Torvalds <torvalds@linux-foundation.org>2018-06-08 11:02:21 -0700
commit2996148a9d4169f19a57827003c75605ce3b152b (patch)
tree77230462b98573fb87237ceafb086c1e7fe4c906 /drivers/dma/ti/edma.c
parentMerge tag 'iommu-updates-v4.18' of git://git.kernel.org/pub/scm/linux/kernel/git/joro/iommu (diff)
parentMerge branch 'topic/txx' into for-linus (diff)
downloadlinux-dev-2996148a9d4169f19a57827003c75605ce3b152b.tar.xz
linux-dev-2996148a9d4169f19a57827003c75605ce3b152b.zip
Merge tag 'dmaengine-4.18-rc1' of git://git.infradead.org/users/vkoul/slave-dma
Pull dmaengine updates from Vinod Koul: - updates to sprd, bam_dma, stm drivers - remove VLAs in dmatest - move TI drivers to their own subdir - switch to SPDX tags for ima/mxs dma drivers - simplify getting .drvdata on bunch of drivers by Wolfram Sang * tag 'dmaengine-4.18-rc1' of git://git.infradead.org/users/vkoul/slave-dma: (32 commits) dmaengine: sprd: Add Spreadtrum DMA configuration dmaengine: sprd: Optimize the sprd_dma_prep_dma_memcpy() dmaengine: imx-dma: Switch to SPDX identifier dmaengine: mxs-dma: Switch to SPDX identifier dmaengine: imx-sdma: Switch to SPDX identifier dmaengine: usb-dmac: Document R8A7799{0,5} bindings dmaengine: qcom: bam_dma: fix some doc warnings. dmaengine: qcom: bam_dma: fix invalid assignment warning dmaengine: sprd: fix an NULL vs IS_ERR() bug dmaengine: sprd: Use devm_ioremap_resource() to map memory dmaengine: sprd: Fix potential NULL dereference in sprd_dma_probe() dmaengine: pl330: flush before wait, and add dev burst support. dmaengine: axi-dmac: Request IRQ with IRQF_SHARED dmaengine: stm32-mdma: fix spelling mistake: "avalaible" -> "available" dmaengine: rcar-dmac: Document R-Car D3 bindings dmaengine: sprd: Move DMA request mode and interrupt type into head file dmaengine: sprd: Define the DMA data width type dmaengine: sprd: Define the DMA transfer step type dmaengine: ti: New directory for Texas Instruments DMA drivers dmaengine: shdmac: Change platform check to CONFIG_ARCH_RENESAS ...
Diffstat (limited to 'drivers/dma/ti/edma.c')
-rw-r--r--drivers/dma/ti/edma.c2565
1 files changed, 2565 insertions, 0 deletions
diff --git a/drivers/dma/ti/edma.c b/drivers/dma/ti/edma.c
new file mode 100644
index 000000000000..ceabdea40ae0
--- /dev/null
+++ b/drivers/dma/ti/edma.c
@@ -0,0 +1,2565 @@
+/*
+ * TI EDMA DMA engine driver
+ *
+ * Copyright 2012 Texas Instruments
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License as
+ * published by the Free Software Foundation version 2.
+ *
+ * This program is distributed "as is" WITHOUT ANY WARRANTY of any
+ * kind, whether express or implied; without even the implied warranty
+ * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ */
+
+#include <linux/dmaengine.h>
+#include <linux/dma-mapping.h>
+#include <linux/edma.h>
+#include <linux/err.h>
+#include <linux/init.h>
+#include <linux/interrupt.h>
+#include <linux/list.h>
+#include <linux/module.h>
+#include <linux/platform_device.h>
+#include <linux/slab.h>
+#include <linux/spinlock.h>
+#include <linux/of.h>
+#include <linux/of_dma.h>
+#include <linux/of_irq.h>
+#include <linux/of_address.h>
+#include <linux/of_device.h>
+#include <linux/pm_runtime.h>
+
+#include <linux/platform_data/edma.h>
+
+#include "../dmaengine.h"
+#include "../virt-dma.h"
+
+/* Offsets matching "struct edmacc_param" */
+#define PARM_OPT 0x00
+#define PARM_SRC 0x04
+#define PARM_A_B_CNT 0x08
+#define PARM_DST 0x0c
+#define PARM_SRC_DST_BIDX 0x10
+#define PARM_LINK_BCNTRLD 0x14
+#define PARM_SRC_DST_CIDX 0x18
+#define PARM_CCNT 0x1c
+
+#define PARM_SIZE 0x20
+
+/* Offsets for EDMA CC global channel registers and their shadows */
+#define SH_ER 0x00 /* 64 bits */
+#define SH_ECR 0x08 /* 64 bits */
+#define SH_ESR 0x10 /* 64 bits */
+#define SH_CER 0x18 /* 64 bits */
+#define SH_EER 0x20 /* 64 bits */
+#define SH_EECR 0x28 /* 64 bits */
+#define SH_EESR 0x30 /* 64 bits */
+#define SH_SER 0x38 /* 64 bits */
+#define SH_SECR 0x40 /* 64 bits */
+#define SH_IER 0x50 /* 64 bits */
+#define SH_IECR 0x58 /* 64 bits */
+#define SH_IESR 0x60 /* 64 bits */
+#define SH_IPR 0x68 /* 64 bits */
+#define SH_ICR 0x70 /* 64 bits */
+#define SH_IEVAL 0x78
+#define SH_QER 0x80
+#define SH_QEER 0x84
+#define SH_QEECR 0x88
+#define SH_QEESR 0x8c
+#define SH_QSER 0x90
+#define SH_QSECR 0x94
+#define SH_SIZE 0x200
+
+/* Offsets for EDMA CC global registers */
+#define EDMA_REV 0x0000
+#define EDMA_CCCFG 0x0004
+#define EDMA_QCHMAP 0x0200 /* 8 registers */
+#define EDMA_DMAQNUM 0x0240 /* 8 registers (4 on OMAP-L1xx) */
+#define EDMA_QDMAQNUM 0x0260
+#define EDMA_QUETCMAP 0x0280
+#define EDMA_QUEPRI 0x0284
+#define EDMA_EMR 0x0300 /* 64 bits */
+#define EDMA_EMCR 0x0308 /* 64 bits */
+#define EDMA_QEMR 0x0310
+#define EDMA_QEMCR 0x0314
+#define EDMA_CCERR 0x0318
+#define EDMA_CCERRCLR 0x031c
+#define EDMA_EEVAL 0x0320
+#define EDMA_DRAE 0x0340 /* 4 x 64 bits*/
+#define EDMA_QRAE 0x0380 /* 4 registers */
+#define EDMA_QUEEVTENTRY 0x0400 /* 2 x 16 registers */
+#define EDMA_QSTAT 0x0600 /* 2 registers */
+#define EDMA_QWMTHRA 0x0620
+#define EDMA_QWMTHRB 0x0624
+#define EDMA_CCSTAT 0x0640
+
+#define EDMA_M 0x1000 /* global channel registers */
+#define EDMA_ECR 0x1008
+#define EDMA_ECRH 0x100C
+#define EDMA_SHADOW0 0x2000 /* 4 shadow regions */
+#define EDMA_PARM 0x4000 /* PaRAM entries */
+
+#define PARM_OFFSET(param_no) (EDMA_PARM + ((param_no) << 5))
+
+#define EDMA_DCHMAP 0x0100 /* 64 registers */
+
+/* CCCFG register */
+#define GET_NUM_DMACH(x) (x & 0x7) /* bits 0-2 */
+#define GET_NUM_QDMACH(x) ((x & 0x70) >> 4) /* bits 4-6 */
+#define GET_NUM_PAENTRY(x) ((x & 0x7000) >> 12) /* bits 12-14 */
+#define GET_NUM_EVQUE(x) ((x & 0x70000) >> 16) /* bits 16-18 */
+#define GET_NUM_REGN(x) ((x & 0x300000) >> 20) /* bits 20-21 */
+#define CHMAP_EXIST BIT(24)
+
+/* CCSTAT register */
+#define EDMA_CCSTAT_ACTV BIT(4)
+
+/*
+ * Max of 20 segments per channel to conserve PaRAM slots
+ * Also note that MAX_NR_SG should be atleast the no.of periods
+ * that are required for ASoC, otherwise DMA prep calls will
+ * fail. Today davinci-pcm is the only user of this driver and
+ * requires atleast 17 slots, so we setup the default to 20.
+ */
+#define MAX_NR_SG 20
+#define EDMA_MAX_SLOTS MAX_NR_SG
+#define EDMA_DESCRIPTORS 16
+
+#define EDMA_CHANNEL_ANY -1 /* for edma_alloc_channel() */
+#define EDMA_SLOT_ANY -1 /* for edma_alloc_slot() */
+#define EDMA_CONT_PARAMS_ANY 1001
+#define EDMA_CONT_PARAMS_FIXED_EXACT 1002
+#define EDMA_CONT_PARAMS_FIXED_NOT_EXACT 1003
+
+/* PaRAM slots are laid out like this */
+struct edmacc_param {
+ u32 opt;
+ u32 src;
+ u32 a_b_cnt;
+ u32 dst;
+ u32 src_dst_bidx;
+ u32 link_bcntrld;
+ u32 src_dst_cidx;
+ u32 ccnt;
+} __packed;
+
+/* fields in edmacc_param.opt */
+#define SAM BIT(0)
+#define DAM BIT(1)
+#define SYNCDIM BIT(2)
+#define STATIC BIT(3)
+#define EDMA_FWID (0x07 << 8)
+#define TCCMODE BIT(11)
+#define EDMA_TCC(t) ((t) << 12)
+#define TCINTEN BIT(20)
+#define ITCINTEN BIT(21)
+#define TCCHEN BIT(22)
+#define ITCCHEN BIT(23)
+
+struct edma_pset {
+ u32 len;
+ dma_addr_t addr;
+ struct edmacc_param param;
+};
+
+struct edma_desc {
+ struct virt_dma_desc vdesc;
+ struct list_head node;
+ enum dma_transfer_direction direction;
+ int cyclic;
+ int absync;
+ int pset_nr;
+ struct edma_chan *echan;
+ int processed;
+
+ /*
+ * The following 4 elements are used for residue accounting.
+ *
+ * - processed_stat: the number of SG elements we have traversed
+ * so far to cover accounting. This is updated directly to processed
+ * during edma_callback and is always <= processed, because processed
+ * refers to the number of pending transfer (programmed to EDMA
+ * controller), where as processed_stat tracks number of transfers
+ * accounted for so far.
+ *
+ * - residue: The amount of bytes we have left to transfer for this desc
+ *
+ * - residue_stat: The residue in bytes of data we have covered
+ * so far for accounting. This is updated directly to residue
+ * during callbacks to keep it current.
+ *
+ * - sg_len: Tracks the length of the current intermediate transfer,
+ * this is required to update the residue during intermediate transfer
+ * completion callback.
+ */
+ int processed_stat;
+ u32 sg_len;
+ u32 residue;
+ u32 residue_stat;
+
+ struct edma_pset pset[0];
+};
+
+struct edma_cc;
+
+struct edma_tc {
+ struct device_node *node;
+ u16 id;
+};
+
+struct edma_chan {
+ struct virt_dma_chan vchan;
+ struct list_head node;
+ struct edma_desc *edesc;
+ struct edma_cc *ecc;
+ struct edma_tc *tc;
+ int ch_num;
+ bool alloced;
+ bool hw_triggered;
+ int slot[EDMA_MAX_SLOTS];
+ int missed;
+ struct dma_slave_config cfg;
+};
+
+struct edma_cc {
+ struct device *dev;
+ struct edma_soc_info *info;
+ void __iomem *base;
+ int id;
+ bool legacy_mode;
+
+ /* eDMA3 resource information */
+ unsigned num_channels;
+ unsigned num_qchannels;
+ unsigned num_region;
+ unsigned num_slots;
+ unsigned num_tc;
+ bool chmap_exist;
+ enum dma_event_q default_queue;
+
+ unsigned int ccint;
+ unsigned int ccerrint;
+
+ /*
+ * The slot_inuse bit for each PaRAM slot is clear unless the slot is
+ * in use by Linux or if it is allocated to be used by DSP.
+ */
+ unsigned long *slot_inuse;
+
+ struct dma_device dma_slave;
+ struct dma_device *dma_memcpy;
+ struct edma_chan *slave_chans;
+ struct edma_tc *tc_list;
+ int dummy_slot;
+};
+
+/* dummy param set used to (re)initialize parameter RAM slots */
+static const struct edmacc_param dummy_paramset = {
+ .link_bcntrld = 0xffff,
+ .ccnt = 1,
+};
+
+#define EDMA_BINDING_LEGACY 0
+#define EDMA_BINDING_TPCC 1
+static const u32 edma_binding_type[] = {
+ [EDMA_BINDING_LEGACY] = EDMA_BINDING_LEGACY,
+ [EDMA_BINDING_TPCC] = EDMA_BINDING_TPCC,
+};
+
+static const struct of_device_id edma_of_ids[] = {
+ {
+ .compatible = "ti,edma3",
+ .data = &edma_binding_type[EDMA_BINDING_LEGACY],
+ },
+ {
+ .compatible = "ti,edma3-tpcc",
+ .data = &edma_binding_type[EDMA_BINDING_TPCC],
+ },
+ {}
+};
+MODULE_DEVICE_TABLE(of, edma_of_ids);
+
+static const struct of_device_id edma_tptc_of_ids[] = {
+ { .compatible = "ti,edma3-tptc", },
+ {}
+};
+MODULE_DEVICE_TABLE(of, edma_tptc_of_ids);
+
+static inline unsigned int edma_read(struct edma_cc *ecc, int offset)
+{
+ return (unsigned int)__raw_readl(ecc->base + offset);
+}
+
+static inline void edma_write(struct edma_cc *ecc, int offset, int val)
+{
+ __raw_writel(val, ecc->base + offset);
+}
+
+static inline void edma_modify(struct edma_cc *ecc, int offset, unsigned and,
+ unsigned or)
+{
+ unsigned val = edma_read(ecc, offset);
+
+ val &= and;
+ val |= or;
+ edma_write(ecc, offset, val);
+}
+
+static inline void edma_and(struct edma_cc *ecc, int offset, unsigned and)
+{
+ unsigned val = edma_read(ecc, offset);
+
+ val &= and;
+ edma_write(ecc, offset, val);
+}
+
+static inline void edma_or(struct edma_cc *ecc, int offset, unsigned or)
+{
+ unsigned val = edma_read(ecc, offset);
+
+ val |= or;
+ edma_write(ecc, offset, val);
+}
+
+static inline unsigned int edma_read_array(struct edma_cc *ecc, int offset,
+ int i)
+{
+ return edma_read(ecc, offset + (i << 2));
+}
+
+static inline void edma_write_array(struct edma_cc *ecc, int offset, int i,
+ unsigned val)
+{
+ edma_write(ecc, offset + (i << 2), val);
+}
+
+static inline void edma_modify_array(struct edma_cc *ecc, int offset, int i,
+ unsigned and, unsigned or)
+{
+ edma_modify(ecc, offset + (i << 2), and, or);
+}
+
+static inline void edma_or_array(struct edma_cc *ecc, int offset, int i,
+ unsigned or)
+{
+ edma_or(ecc, offset + (i << 2), or);
+}
+
+static inline void edma_or_array2(struct edma_cc *ecc, int offset, int i, int j,
+ unsigned or)
+{
+ edma_or(ecc, offset + ((i * 2 + j) << 2), or);
+}
+
+static inline void edma_write_array2(struct edma_cc *ecc, int offset, int i,
+ int j, unsigned val)
+{
+ edma_write(ecc, offset + ((i * 2 + j) << 2), val);
+}
+
+static inline unsigned int edma_shadow0_read(struct edma_cc *ecc, int offset)
+{
+ return edma_read(ecc, EDMA_SHADOW0 + offset);
+}
+
+static inline unsigned int edma_shadow0_read_array(struct edma_cc *ecc,
+ int offset, int i)
+{
+ return edma_read(ecc, EDMA_SHADOW0 + offset + (i << 2));
+}
+
+static inline void edma_shadow0_write(struct edma_cc *ecc, int offset,
+ unsigned val)
+{
+ edma_write(ecc, EDMA_SHADOW0 + offset, val);
+}
+
+static inline void edma_shadow0_write_array(struct edma_cc *ecc, int offset,
+ int i, unsigned val)
+{
+ edma_write(ecc, EDMA_SHADOW0 + offset + (i << 2), val);
+}
+
+static inline unsigned int edma_param_read(struct edma_cc *ecc, int offset,
+ int param_no)
+{
+ return edma_read(ecc, EDMA_PARM + offset + (param_no << 5));
+}
+
+static inline void edma_param_write(struct edma_cc *ecc, int offset,
+ int param_no, unsigned val)
+{
+ edma_write(ecc, EDMA_PARM + offset + (param_no << 5), val);
+}
+
+static inline void edma_param_modify(struct edma_cc *ecc, int offset,
+ int param_no, unsigned and, unsigned or)
+{
+ edma_modify(ecc, EDMA_PARM + offset + (param_no << 5), and, or);
+}
+
+static inline void edma_param_and(struct edma_cc *ecc, int offset, int param_no,
+ unsigned and)
+{
+ edma_and(ecc, EDMA_PARM + offset + (param_no << 5), and);
+}
+
+static inline void edma_param_or(struct edma_cc *ecc, int offset, int param_no,
+ unsigned or)
+{
+ edma_or(ecc, EDMA_PARM + offset + (param_no << 5), or);
+}
+
+static inline void edma_set_bits(int offset, int len, unsigned long *p)
+{
+ for (; len > 0; len--)
+ set_bit(offset + (len - 1), p);
+}
+
+static void edma_assign_priority_to_queue(struct edma_cc *ecc, int queue_no,
+ int priority)
+{
+ int bit = queue_no * 4;
+
+ edma_modify(ecc, EDMA_QUEPRI, ~(0x7 << bit), ((priority & 0x7) << bit));
+}
+
+static void edma_set_chmap(struct edma_chan *echan, int slot)
+{
+ struct edma_cc *ecc = echan->ecc;
+ int channel = EDMA_CHAN_SLOT(echan->ch_num);
+
+ if (ecc->chmap_exist) {
+ slot = EDMA_CHAN_SLOT(slot);
+ edma_write_array(ecc, EDMA_DCHMAP, channel, (slot << 5));
+ }
+}
+
+static void edma_setup_interrupt(struct edma_chan *echan, bool enable)
+{
+ struct edma_cc *ecc = echan->ecc;
+ int channel = EDMA_CHAN_SLOT(echan->ch_num);
+
+ if (enable) {
+ edma_shadow0_write_array(ecc, SH_ICR, channel >> 5,
+ BIT(channel & 0x1f));
+ edma_shadow0_write_array(ecc, SH_IESR, channel >> 5,
+ BIT(channel & 0x1f));
+ } else {
+ edma_shadow0_write_array(ecc, SH_IECR, channel >> 5,
+ BIT(channel & 0x1f));
+ }
+}
+
+/*
+ * paRAM slot management functions
+ */
+static void edma_write_slot(struct edma_cc *ecc, unsigned slot,
+ const struct edmacc_param *param)
+{
+ slot = EDMA_CHAN_SLOT(slot);
+ if (slot >= ecc->num_slots)
+ return;
+ memcpy_toio(ecc->base + PARM_OFFSET(slot), param, PARM_SIZE);
+}
+
+static int edma_read_slot(struct edma_cc *ecc, unsigned slot,
+ struct edmacc_param *param)
+{
+ slot = EDMA_CHAN_SLOT(slot);
+ if (slot >= ecc->num_slots)
+ return -EINVAL;
+ memcpy_fromio(param, ecc->base + PARM_OFFSET(slot), PARM_SIZE);
+
+ return 0;
+}
+
+/**
+ * edma_alloc_slot - allocate DMA parameter RAM
+ * @ecc: pointer to edma_cc struct
+ * @slot: specific slot to allocate; negative for "any unused slot"
+ *
+ * This allocates a parameter RAM slot, initializing it to hold a
+ * dummy transfer. Slots allocated using this routine have not been
+ * mapped to a hardware DMA channel, and will normally be used by
+ * linking to them from a slot associated with a DMA channel.
+ *
+ * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
+ * slots may be allocated on behalf of DSP firmware.
+ *
+ * Returns the number of the slot, else negative errno.
+ */
+static int edma_alloc_slot(struct edma_cc *ecc, int slot)
+{
+ if (slot >= 0) {
+ slot = EDMA_CHAN_SLOT(slot);
+ /* Requesting entry paRAM slot for a HW triggered channel. */
+ if (ecc->chmap_exist && slot < ecc->num_channels)
+ slot = EDMA_SLOT_ANY;
+ }
+
+ if (slot < 0) {
+ if (ecc->chmap_exist)
+ slot = 0;
+ else
+ slot = ecc->num_channels;
+ for (;;) {
+ slot = find_next_zero_bit(ecc->slot_inuse,
+ ecc->num_slots,
+ slot);
+ if (slot == ecc->num_slots)
+ return -ENOMEM;
+ if (!test_and_set_bit(slot, ecc->slot_inuse))
+ break;
+ }
+ } else if (slot >= ecc->num_slots) {
+ return -EINVAL;
+ } else if (test_and_set_bit(slot, ecc->slot_inuse)) {
+ return -EBUSY;
+ }
+
+ edma_write_slot(ecc, slot, &dummy_paramset);
+
+ return EDMA_CTLR_CHAN(ecc->id, slot);
+}
+
+static void edma_free_slot(struct edma_cc *ecc, unsigned slot)
+{
+ slot = EDMA_CHAN_SLOT(slot);
+ if (slot >= ecc->num_slots)
+ return;
+
+ edma_write_slot(ecc, slot, &dummy_paramset);
+ clear_bit(slot, ecc->slot_inuse);
+}
+
+/**
+ * edma_link - link one parameter RAM slot to another
+ * @ecc: pointer to edma_cc struct
+ * @from: parameter RAM slot originating the link
+ * @to: parameter RAM slot which is the link target
+ *
+ * The originating slot should not be part of any active DMA transfer.
+ */
+static void edma_link(struct edma_cc *ecc, unsigned from, unsigned to)
+{
+ if (unlikely(EDMA_CTLR(from) != EDMA_CTLR(to)))
+ dev_warn(ecc->dev, "Ignoring eDMA instance for linking\n");
+
+ from = EDMA_CHAN_SLOT(from);
+ to = EDMA_CHAN_SLOT(to);
+ if (from >= ecc->num_slots || to >= ecc->num_slots)
+ return;
+
+ edma_param_modify(ecc, PARM_LINK_BCNTRLD, from, 0xffff0000,
+ PARM_OFFSET(to));
+}
+
+/**
+ * edma_get_position - returns the current transfer point
+ * @ecc: pointer to edma_cc struct
+ * @slot: parameter RAM slot being examined
+ * @dst: true selects the dest position, false the source
+ *
+ * Returns the position of the current active slot
+ */
+static dma_addr_t edma_get_position(struct edma_cc *ecc, unsigned slot,
+ bool dst)
+{
+ u32 offs;
+
+ slot = EDMA_CHAN_SLOT(slot);
+ offs = PARM_OFFSET(slot);
+ offs += dst ? PARM_DST : PARM_SRC;
+
+ return edma_read(ecc, offs);
+}
+
+/*
+ * Channels with event associations will be triggered by their hardware
+ * events, and channels without such associations will be triggered by
+ * software. (At this writing there is no interface for using software
+ * triggers except with channels that don't support hardware triggers.)
+ */
+static void edma_start(struct edma_chan *echan)
+{
+ struct edma_cc *ecc = echan->ecc;
+ int channel = EDMA_CHAN_SLOT(echan->ch_num);
+ int j = (channel >> 5);
+ unsigned int mask = BIT(channel & 0x1f);
+
+ if (!echan->hw_triggered) {
+ /* EDMA channels without event association */
+ dev_dbg(ecc->dev, "ESR%d %08x\n", j,
+ edma_shadow0_read_array(ecc, SH_ESR, j));
+ edma_shadow0_write_array(ecc, SH_ESR, j, mask);
+ } else {
+ /* EDMA channel with event association */
+ dev_dbg(ecc->dev, "ER%d %08x\n", j,
+ edma_shadow0_read_array(ecc, SH_ER, j));
+ /* Clear any pending event or error */
+ edma_write_array(ecc, EDMA_ECR, j, mask);
+ edma_write_array(ecc, EDMA_EMCR, j, mask);
+ /* Clear any SER */
+ edma_shadow0_write_array(ecc, SH_SECR, j, mask);
+ edma_shadow0_write_array(ecc, SH_EESR, j, mask);
+ dev_dbg(ecc->dev, "EER%d %08x\n", j,
+ edma_shadow0_read_array(ecc, SH_EER, j));
+ }
+}
+
+static void edma_stop(struct edma_chan *echan)
+{
+ struct edma_cc *ecc = echan->ecc;
+ int channel = EDMA_CHAN_SLOT(echan->ch_num);
+ int j = (channel >> 5);
+ unsigned int mask = BIT(channel & 0x1f);
+
+ edma_shadow0_write_array(ecc, SH_EECR, j, mask);
+ edma_shadow0_write_array(ecc, SH_ECR, j, mask);
+ edma_shadow0_write_array(ecc, SH_SECR, j, mask);
+ edma_write_array(ecc, EDMA_EMCR, j, mask);
+
+ /* clear possibly pending completion interrupt */
+ edma_shadow0_write_array(ecc, SH_ICR, j, mask);
+
+ dev_dbg(ecc->dev, "EER%d %08x\n", j,
+ edma_shadow0_read_array(ecc, SH_EER, j));
+
+ /* REVISIT: consider guarding against inappropriate event
+ * chaining by overwriting with dummy_paramset.
+ */
+}
+
+/*
+ * Temporarily disable EDMA hardware events on the specified channel,
+ * preventing them from triggering new transfers
+ */
+static void edma_pause(struct edma_chan *echan)
+{
+ int channel = EDMA_CHAN_SLOT(echan->ch_num);
+ unsigned int mask = BIT(channel & 0x1f);
+
+ edma_shadow0_write_array(echan->ecc, SH_EECR, channel >> 5, mask);
+}
+
+/* Re-enable EDMA hardware events on the specified channel. */
+static void edma_resume(struct edma_chan *echan)
+{
+ int channel = EDMA_CHAN_SLOT(echan->ch_num);
+ unsigned int mask = BIT(channel & 0x1f);
+
+ edma_shadow0_write_array(echan->ecc, SH_EESR, channel >> 5, mask);
+}
+
+static void edma_trigger_channel(struct edma_chan *echan)
+{
+ struct edma_cc *ecc = echan->ecc;
+ int channel = EDMA_CHAN_SLOT(echan->ch_num);
+ unsigned int mask = BIT(channel & 0x1f);
+
+ edma_shadow0_write_array(ecc, SH_ESR, (channel >> 5), mask);
+
+ dev_dbg(ecc->dev, "ESR%d %08x\n", (channel >> 5),
+ edma_shadow0_read_array(ecc, SH_ESR, (channel >> 5)));
+}
+
+static void edma_clean_channel(struct edma_chan *echan)
+{
+ struct edma_cc *ecc = echan->ecc;
+ int channel = EDMA_CHAN_SLOT(echan->ch_num);
+ int j = (channel >> 5);
+ unsigned int mask = BIT(channel & 0x1f);
+
+ dev_dbg(ecc->dev, "EMR%d %08x\n", j, edma_read_array(ecc, EDMA_EMR, j));
+ edma_shadow0_write_array(ecc, SH_ECR, j, mask);
+ /* Clear the corresponding EMR bits */
+ edma_write_array(ecc, EDMA_EMCR, j, mask);
+ /* Clear any SER */
+ edma_shadow0_write_array(ecc, SH_SECR, j, mask);
+ edma_write(ecc, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0));
+}
+
+/* Move channel to a specific event queue */
+static void edma_assign_channel_eventq(struct edma_chan *echan,
+ enum dma_event_q eventq_no)
+{
+ struct edma_cc *ecc = echan->ecc;
+ int channel = EDMA_CHAN_SLOT(echan->ch_num);
+ int bit = (channel & 0x7) * 4;
+
+ /* default to low priority queue */
+ if (eventq_no == EVENTQ_DEFAULT)
+ eventq_no = ecc->default_queue;
+ if (eventq_no >= ecc->num_tc)
+ return;
+
+ eventq_no &= 7;
+ edma_modify_array(ecc, EDMA_DMAQNUM, (channel >> 3), ~(0x7 << bit),
+ eventq_no << bit);
+}
+
+static int edma_alloc_channel(struct edma_chan *echan,
+ enum dma_event_q eventq_no)
+{
+ struct edma_cc *ecc = echan->ecc;
+ int channel = EDMA_CHAN_SLOT(echan->ch_num);
+
+ /* ensure access through shadow region 0 */
+ edma_or_array2(ecc, EDMA_DRAE, 0, channel >> 5, BIT(channel & 0x1f));
+
+ /* ensure no events are pending */
+ edma_stop(echan);
+
+ edma_setup_interrupt(echan, true);
+
+ edma_assign_channel_eventq(echan, eventq_no);
+
+ return 0;
+}
+
+static void edma_free_channel(struct edma_chan *echan)
+{
+ /* ensure no events are pending */
+ edma_stop(echan);
+ /* REVISIT should probably take out of shadow region 0 */
+ edma_setup_interrupt(echan, false);
+}
+
+static inline struct edma_cc *to_edma_cc(struct dma_device *d)
+{
+ return container_of(d, struct edma_cc, dma_slave);
+}
+
+static inline struct edma_chan *to_edma_chan(struct dma_chan *c)
+{
+ return container_of(c, struct edma_chan, vchan.chan);
+}
+
+static inline struct edma_desc *to_edma_desc(struct dma_async_tx_descriptor *tx)
+{
+ return container_of(tx, struct edma_desc, vdesc.tx);
+}
+
+static void edma_desc_free(struct virt_dma_desc *vdesc)
+{
+ kfree(container_of(vdesc, struct edma_desc, vdesc));
+}
+
+/* Dispatch a queued descriptor to the controller (caller holds lock) */
+static void edma_execute(struct edma_chan *echan)
+{
+ struct edma_cc *ecc = echan->ecc;
+ struct virt_dma_desc *vdesc;
+ struct edma_desc *edesc;
+ struct device *dev = echan->vchan.chan.device->dev;
+ int i, j, left, nslots;
+
+ if (!echan->edesc) {
+ /* Setup is needed for the first transfer */
+ vdesc = vchan_next_desc(&echan->vchan);
+ if (!vdesc)
+ return;
+ list_del(&vdesc->node);
+ echan->edesc = to_edma_desc(&vdesc->tx);
+ }
+
+ edesc = echan->edesc;
+
+ /* Find out how many left */
+ left = edesc->pset_nr - edesc->processed;
+ nslots = min(MAX_NR_SG, left);
+ edesc->sg_len = 0;
+
+ /* Write descriptor PaRAM set(s) */
+ for (i = 0; i < nslots; i++) {
+ j = i + edesc->processed;
+ edma_write_slot(ecc, echan->slot[i], &edesc->pset[j].param);
+ edesc->sg_len += edesc->pset[j].len;
+ dev_vdbg(dev,
+ "\n pset[%d]:\n"
+ " chnum\t%d\n"
+ " slot\t%d\n"
+ " opt\t%08x\n"
+ " src\t%08x\n"
+ " dst\t%08x\n"
+ " abcnt\t%08x\n"
+ " ccnt\t%08x\n"
+ " bidx\t%08x\n"
+ " cidx\t%08x\n"
+ " lkrld\t%08x\n",
+ j, echan->ch_num, echan->slot[i],
+ edesc->pset[j].param.opt,
+ edesc->pset[j].param.src,
+ edesc->pset[j].param.dst,
+ edesc->pset[j].param.a_b_cnt,
+ edesc->pset[j].param.ccnt,
+ edesc->pset[j].param.src_dst_bidx,
+ edesc->pset[j].param.src_dst_cidx,
+ edesc->pset[j].param.link_bcntrld);
+ /* Link to the previous slot if not the last set */
+ if (i != (nslots - 1))
+ edma_link(ecc, echan->slot[i], echan->slot[i + 1]);
+ }
+
+ edesc->processed += nslots;
+
+ /*
+ * If this is either the last set in a set of SG-list transactions
+ * then setup a link to the dummy slot, this results in all future
+ * events being absorbed and that's OK because we're done
+ */
+ if (edesc->processed == edesc->pset_nr) {
+ if (edesc->cyclic)
+ edma_link(ecc, echan->slot[nslots - 1], echan->slot[1]);
+ else
+ edma_link(ecc, echan->slot[nslots - 1],
+ echan->ecc->dummy_slot);
+ }
+
+ if (echan->missed) {
+ /*
+ * This happens due to setup times between intermediate
+ * transfers in long SG lists which have to be broken up into
+ * transfers of MAX_NR_SG
+ */
+ dev_dbg(dev, "missed event on channel %d\n", echan->ch_num);
+ edma_clean_channel(echan);
+ edma_stop(echan);
+ edma_start(echan);
+ edma_trigger_channel(echan);
+ echan->missed = 0;
+ } else if (edesc->processed <= MAX_NR_SG) {
+ dev_dbg(dev, "first transfer starting on channel %d\n",
+ echan->ch_num);
+ edma_start(echan);
+ } else {
+ dev_dbg(dev, "chan: %d: completed %d elements, resuming\n",
+ echan->ch_num, edesc->processed);
+ edma_resume(echan);
+ }
+}
+
+static int edma_terminate_all(struct dma_chan *chan)
+{
+ struct edma_chan *echan = to_edma_chan(chan);
+ unsigned long flags;
+ LIST_HEAD(head);
+
+ spin_lock_irqsave(&echan->vchan.lock, flags);
+
+ /*
+ * Stop DMA activity: we assume the callback will not be called
+ * after edma_dma() returns (even if it does, it will see
+ * echan->edesc is NULL and exit.)
+ */
+ if (echan->edesc) {
+ edma_stop(echan);
+ /* Move the cyclic channel back to default queue */
+ if (!echan->tc && echan->edesc->cyclic)
+ edma_assign_channel_eventq(echan, EVENTQ_DEFAULT);
+
+ vchan_terminate_vdesc(&echan->edesc->vdesc);
+ echan->edesc = NULL;
+ }
+
+ vchan_get_all_descriptors(&echan->vchan, &head);
+ spin_unlock_irqrestore(&echan->vchan.lock, flags);
+ vchan_dma_desc_free_list(&echan->vchan, &head);
+
+ return 0;
+}
+
+static void edma_synchronize(struct dma_chan *chan)
+{
+ struct edma_chan *echan = to_edma_chan(chan);
+
+ vchan_synchronize(&echan->vchan);
+}
+
+static int edma_slave_config(struct dma_chan *chan,
+ struct dma_slave_config *cfg)
+{
+ struct edma_chan *echan = to_edma_chan(chan);
+
+ if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
+ cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
+ return -EINVAL;
+
+ if (cfg->src_maxburst > chan->device->max_burst ||
+ cfg->dst_maxburst > chan->device->max_burst)
+ return -EINVAL;
+
+ memcpy(&echan->cfg, cfg, sizeof(echan->cfg));
+
+ return 0;
+}
+
+static int edma_dma_pause(struct dma_chan *chan)
+{
+ struct edma_chan *echan = to_edma_chan(chan);
+
+ if (!echan->edesc)
+ return -EINVAL;
+
+ edma_pause(echan);
+ return 0;
+}
+
+static int edma_dma_resume(struct dma_chan *chan)
+{
+ struct edma_chan *echan = to_edma_chan(chan);
+
+ edma_resume(echan);
+ return 0;
+}
+
+/*
+ * A PaRAM set configuration abstraction used by other modes
+ * @chan: Channel who's PaRAM set we're configuring
+ * @pset: PaRAM set to initialize and setup.
+ * @src_addr: Source address of the DMA
+ * @dst_addr: Destination address of the DMA
+ * @burst: In units of dev_width, how much to send
+ * @dev_width: How much is the dev_width
+ * @dma_length: Total length of the DMA transfer
+ * @direction: Direction of the transfer
+ */
+static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset,
+ dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst,
+ unsigned int acnt, unsigned int dma_length,
+ enum dma_transfer_direction direction)
+{
+ struct edma_chan *echan = to_edma_chan(chan);
+ struct device *dev = chan->device->dev;
+ struct edmacc_param *param = &epset->param;
+ int bcnt, ccnt, cidx;
+ int src_bidx, dst_bidx, src_cidx, dst_cidx;
+ int absync;
+
+ /* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */
+ if (!burst)
+ burst = 1;
+ /*
+ * If the maxburst is equal to the fifo width, use
+ * A-synced transfers. This allows for large contiguous
+ * buffer transfers using only one PaRAM set.
+ */
+ if (burst == 1) {
+ /*
+ * For the A-sync case, bcnt and ccnt are the remainder
+ * and quotient respectively of the division of:
+ * (dma_length / acnt) by (SZ_64K -1). This is so
+ * that in case bcnt over flows, we have ccnt to use.
+ * Note: In A-sync tranfer only, bcntrld is used, but it
+ * only applies for sg_dma_len(sg) >= SZ_64K.
+ * In this case, the best way adopted is- bccnt for the
+ * first frame will be the remainder below. Then for
+ * every successive frame, bcnt will be SZ_64K-1. This
+ * is assured as bcntrld = 0xffff in end of function.
+ */
+ absync = false;
+ ccnt = dma_length / acnt / (SZ_64K - 1);
+ bcnt = dma_length / acnt - ccnt * (SZ_64K - 1);
+ /*
+ * If bcnt is non-zero, we have a remainder and hence an
+ * extra frame to transfer, so increment ccnt.
+ */
+ if (bcnt)
+ ccnt++;
+ else
+ bcnt = SZ_64K - 1;
+ cidx = acnt;
+ } else {
+ /*
+ * If maxburst is greater than the fifo address_width,
+ * use AB-synced transfers where A count is the fifo
+ * address_width and B count is the maxburst. In this
+ * case, we are limited to transfers of C count frames
+ * of (address_width * maxburst) where C count is limited
+ * to SZ_64K-1. This places an upper bound on the length
+ * of an SG segment that can be handled.
+ */
+ absync = true;
+ bcnt = burst;
+ ccnt = dma_length / (acnt * bcnt);
+ if (ccnt > (SZ_64K - 1)) {
+ dev_err(dev, "Exceeded max SG segment size\n");
+ return -EINVAL;
+ }
+ cidx = acnt * bcnt;
+ }
+
+ epset->len = dma_length;
+
+ if (direction == DMA_MEM_TO_DEV) {
+ src_bidx = acnt;
+ src_cidx = cidx;
+ dst_bidx = 0;
+ dst_cidx = 0;
+ epset->addr = src_addr;
+ } else if (direction == DMA_DEV_TO_MEM) {
+ src_bidx = 0;
+ src_cidx = 0;
+ dst_bidx = acnt;
+ dst_cidx = cidx;
+ epset->addr = dst_addr;
+ } else if (direction == DMA_MEM_TO_MEM) {
+ src_bidx = acnt;
+ src_cidx = cidx;
+ dst_bidx = acnt;
+ dst_cidx = cidx;
+ } else {
+ dev_err(dev, "%s: direction not implemented yet\n", __func__);
+ return -EINVAL;
+ }
+
+ param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
+ /* Configure A or AB synchronized transfers */
+ if (absync)
+ param->opt |= SYNCDIM;
+
+ param->src = src_addr;
+ param->dst = dst_addr;
+
+ param->src_dst_bidx = (dst_bidx << 16) | src_bidx;
+ param->src_dst_cidx = (dst_cidx << 16) | src_cidx;
+
+ param->a_b_cnt = bcnt << 16 | acnt;
+ param->ccnt = ccnt;
+ /*
+ * Only time when (bcntrld) auto reload is required is for
+ * A-sync case, and in this case, a requirement of reload value
+ * of SZ_64K-1 only is assured. 'link' is initially set to NULL
+ * and then later will be populated by edma_execute.
+ */
+ param->link_bcntrld = 0xffffffff;
+ return absync;
+}
+
+static struct dma_async_tx_descriptor *edma_prep_slave_sg(
+ struct dma_chan *chan, struct scatterlist *sgl,
+ unsigned int sg_len, enum dma_transfer_direction direction,
+ unsigned long tx_flags, void *context)
+{
+ struct edma_chan *echan = to_edma_chan(chan);
+ struct device *dev = chan->device->dev;
+ struct edma_desc *edesc;
+ dma_addr_t src_addr = 0, dst_addr = 0;
+ enum dma_slave_buswidth dev_width;
+ u32 burst;
+ struct scatterlist *sg;
+ int i, nslots, ret;
+
+ if (unlikely(!echan || !sgl || !sg_len))
+ return NULL;
+
+ if (direction == DMA_DEV_TO_MEM) {
+ src_addr = echan->cfg.src_addr;
+ dev_width = echan->cfg.src_addr_width;
+ burst = echan->cfg.src_maxburst;
+ } else if (direction == DMA_MEM_TO_DEV) {
+ dst_addr = echan->cfg.dst_addr;
+ dev_width = echan->cfg.dst_addr_width;
+ burst = echan->cfg.dst_maxburst;
+ } else {
+ dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
+ return NULL;
+ }
+
+ if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
+ dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
+ return NULL;
+ }
+
+ edesc = kzalloc(struct_size(edesc, pset, sg_len), GFP_ATOMIC);
+ if (!edesc)
+ return NULL;
+
+ edesc->pset_nr = sg_len;
+ edesc->residue = 0;
+ edesc->direction = direction;
+ edesc->echan = echan;
+
+ /* Allocate a PaRAM slot, if needed */
+ nslots = min_t(unsigned, MAX_NR_SG, sg_len);
+
+ for (i = 0; i < nslots; i++) {
+ if (echan->slot[i] < 0) {
+ echan->slot[i] =
+ edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
+ if (echan->slot[i] < 0) {
+ kfree(edesc);
+ dev_err(dev, "%s: Failed to allocate slot\n",
+ __func__);
+ return NULL;
+ }
+ }
+ }
+
+ /* Configure PaRAM sets for each SG */
+ for_each_sg(sgl, sg, sg_len, i) {
+ /* Get address for each SG */
+ if (direction == DMA_DEV_TO_MEM)
+ dst_addr = sg_dma_address(sg);
+ else
+ src_addr = sg_dma_address(sg);
+
+ ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
+ dst_addr, burst, dev_width,
+ sg_dma_len(sg), direction);
+ if (ret < 0) {
+ kfree(edesc);
+ return NULL;
+ }
+
+ edesc->absync = ret;
+ edesc->residue += sg_dma_len(sg);
+
+ if (i == sg_len - 1)
+ /* Enable completion interrupt */
+ edesc->pset[i].param.opt |= TCINTEN;
+ else if (!((i+1) % MAX_NR_SG))
+ /*
+ * Enable early completion interrupt for the
+ * intermediateset. In this case the driver will be
+ * notified when the paRAM set is submitted to TC. This
+ * will allow more time to set up the next set of slots.
+ */
+ edesc->pset[i].param.opt |= (TCINTEN | TCCMODE);
+ }
+ edesc->residue_stat = edesc->residue;
+
+ return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
+}
+
+static struct dma_async_tx_descriptor *edma_prep_dma_memcpy(
+ struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
+ size_t len, unsigned long tx_flags)
+{
+ int ret, nslots;
+ struct edma_desc *edesc;
+ struct device *dev = chan->device->dev;
+ struct edma_chan *echan = to_edma_chan(chan);
+ unsigned int width, pset_len, array_size;
+
+ if (unlikely(!echan || !len))
+ return NULL;
+
+ /* Align the array size (acnt block) with the transfer properties */
+ switch (__ffs((src | dest | len))) {
+ case 0:
+ array_size = SZ_32K - 1;
+ break;
+ case 1:
+ array_size = SZ_32K - 2;
+ break;
+ default:
+ array_size = SZ_32K - 4;
+ break;
+ }
+
+ if (len < SZ_64K) {
+ /*
+ * Transfer size less than 64K can be handled with one paRAM
+ * slot and with one burst.
+ * ACNT = length
+ */
+ width = len;
+ pset_len = len;
+ nslots = 1;
+ } else {
+ /*
+ * Transfer size bigger than 64K will be handled with maximum of
+ * two paRAM slots.
+ * slot1: (full_length / 32767) times 32767 bytes bursts.
+ * ACNT = 32767, length1: (full_length / 32767) * 32767
+ * slot2: the remaining amount of data after slot1.
+ * ACNT = full_length - length1, length2 = ACNT
+ *
+ * When the full_length is multibple of 32767 one slot can be
+ * used to complete the transfer.
+ */
+ width = array_size;
+ pset_len = rounddown(len, width);
+ /* One slot is enough for lengths multiple of (SZ_32K -1) */
+ if (unlikely(pset_len == len))
+ nslots = 1;
+ else
+ nslots = 2;
+ }
+
+ edesc = kzalloc(struct_size(edesc, pset, nslots), GFP_ATOMIC);
+ if (!edesc)
+ return NULL;
+
+ edesc->pset_nr = nslots;
+ edesc->residue = edesc->residue_stat = len;
+ edesc->direction = DMA_MEM_TO_MEM;
+ edesc->echan = echan;
+
+ ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1,
+ width, pset_len, DMA_MEM_TO_MEM);
+ if (ret < 0) {
+ kfree(edesc);
+ return NULL;
+ }
+
+ edesc->absync = ret;
+
+ edesc->pset[0].param.opt |= ITCCHEN;
+ if (nslots == 1) {
+ /* Enable transfer complete interrupt */
+ edesc->pset[0].param.opt |= TCINTEN;
+ } else {
+ /* Enable transfer complete chaining for the first slot */
+ edesc->pset[0].param.opt |= TCCHEN;
+
+ if (echan->slot[1] < 0) {
+ echan->slot[1] = edma_alloc_slot(echan->ecc,
+ EDMA_SLOT_ANY);
+ if (echan->slot[1] < 0) {
+ kfree(edesc);
+ dev_err(dev, "%s: Failed to allocate slot\n",
+ __func__);
+ return NULL;
+ }
+ }
+ dest += pset_len;
+ src += pset_len;
+ pset_len = width = len % array_size;
+
+ ret = edma_config_pset(chan, &edesc->pset[1], src, dest, 1,
+ width, pset_len, DMA_MEM_TO_MEM);
+ if (ret < 0) {
+ kfree(edesc);
+ return NULL;
+ }
+
+ edesc->pset[1].param.opt |= ITCCHEN;
+ edesc->pset[1].param.opt |= TCINTEN;
+ }
+
+ return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
+}
+
+static struct dma_async_tx_descriptor *edma_prep_dma_cyclic(
+ struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
+ size_t period_len, enum dma_transfer_direction direction,
+ unsigned long tx_flags)
+{
+ struct edma_chan *echan = to_edma_chan(chan);
+ struct device *dev = chan->device->dev;
+ struct edma_desc *edesc;
+ dma_addr_t src_addr, dst_addr;
+ enum dma_slave_buswidth dev_width;
+ bool use_intermediate = false;
+ u32 burst;
+ int i, ret, nslots;
+
+ if (unlikely(!echan || !buf_len || !period_len))
+ return NULL;
+
+ if (direction == DMA_DEV_TO_MEM) {
+ src_addr = echan->cfg.src_addr;
+ dst_addr = buf_addr;
+ dev_width = echan->cfg.src_addr_width;
+ burst = echan->cfg.src_maxburst;
+ } else if (direction == DMA_MEM_TO_DEV) {
+ src_addr = buf_addr;
+ dst_addr = echan->cfg.dst_addr;
+ dev_width = echan->cfg.dst_addr_width;
+ burst = echan->cfg.dst_maxburst;
+ } else {
+ dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
+ return NULL;
+ }
+
+ if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
+ dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
+ return NULL;
+ }
+
+ if (unlikely(buf_len % period_len)) {
+ dev_err(dev, "Period should be multiple of Buffer length\n");
+ return NULL;
+ }
+
+ nslots = (buf_len / period_len) + 1;
+
+ /*
+ * Cyclic DMA users such as audio cannot tolerate delays introduced
+ * by cases where the number of periods is more than the maximum
+ * number of SGs the EDMA driver can handle at a time. For DMA types
+ * such as Slave SGs, such delays are tolerable and synchronized,
+ * but the synchronization is difficult to achieve with Cyclic and
+ * cannot be guaranteed, so we error out early.
+ */
+ if (nslots > MAX_NR_SG) {
+ /*
+ * If the burst and period sizes are the same, we can put
+ * the full buffer into a single period and activate
+ * intermediate interrupts. This will produce interrupts
+ * after each burst, which is also after each desired period.
+ */
+ if (burst == period_len) {
+ period_len = buf_len;
+ nslots = 2;
+ use_intermediate = true;
+ } else {
+ return NULL;
+ }
+ }
+
+ edesc = kzalloc(struct_size(edesc, pset, nslots), GFP_ATOMIC);
+ if (!edesc)
+ return NULL;
+
+ edesc->cyclic = 1;
+ edesc->pset_nr = nslots;
+ edesc->residue = edesc->residue_stat = buf_len;
+ edesc->direction = direction;
+ edesc->echan = echan;
+
+ dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n",
+ __func__, echan->ch_num, nslots, period_len, buf_len);
+
+ for (i = 0; i < nslots; i++) {
+ /* Allocate a PaRAM slot, if needed */
+ if (echan->slot[i] < 0) {
+ echan->slot[i] =
+ edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
+ if (echan->slot[i] < 0) {
+ kfree(edesc);
+ dev_err(dev, "%s: Failed to allocate slot\n",
+ __func__);
+ return NULL;
+ }
+ }
+
+ if (i == nslots - 1) {
+ memcpy(&edesc->pset[i], &edesc->pset[0],
+ sizeof(edesc->pset[0]));
+ break;
+ }
+
+ ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
+ dst_addr, burst, dev_width, period_len,
+ direction);
+ if (ret < 0) {
+ kfree(edesc);
+ return NULL;
+ }
+
+ if (direction == DMA_DEV_TO_MEM)
+ dst_addr += period_len;
+ else
+ src_addr += period_len;
+
+ dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i);
+ dev_vdbg(dev,
+ "\n pset[%d]:\n"
+ " chnum\t%d\n"
+ " slot\t%d\n"
+ " opt\t%08x\n"
+ " src\t%08x\n"
+ " dst\t%08x\n"
+ " abcnt\t%08x\n"
+ " ccnt\t%08x\n"
+ " bidx\t%08x\n"
+ " cidx\t%08x\n"
+ " lkrld\t%08x\n",
+ i, echan->ch_num, echan->slot[i],
+ edesc->pset[i].param.opt,
+ edesc->pset[i].param.src,
+ edesc->pset[i].param.dst,
+ edesc->pset[i].param.a_b_cnt,
+ edesc->pset[i].param.ccnt,
+ edesc->pset[i].param.src_dst_bidx,
+ edesc->pset[i].param.src_dst_cidx,
+ edesc->pset[i].param.link_bcntrld);
+
+ edesc->absync = ret;
+
+ /*
+ * Enable period interrupt only if it is requested
+ */
+ if (tx_flags & DMA_PREP_INTERRUPT) {
+ edesc->pset[i].param.opt |= TCINTEN;
+
+ /* Also enable intermediate interrupts if necessary */
+ if (use_intermediate)
+ edesc->pset[i].param.opt |= ITCINTEN;
+ }
+ }
+
+ /* Place the cyclic channel to highest priority queue */
+ if (!echan->tc)
+ edma_assign_channel_eventq(echan, EVENTQ_0);
+
+ return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
+}
+
+static void edma_completion_handler(struct edma_chan *echan)
+{
+ struct device *dev = echan->vchan.chan.device->dev;
+ struct edma_desc *edesc;
+
+ spin_lock(&echan->vchan.lock);
+ edesc = echan->edesc;
+ if (edesc) {
+ if (edesc->cyclic) {
+ vchan_cyclic_callback(&edesc->vdesc);
+ spin_unlock(&echan->vchan.lock);
+ return;
+ } else if (edesc->processed == edesc->pset_nr) {
+ edesc->residue = 0;
+ edma_stop(echan);
+ vchan_cookie_complete(&edesc->vdesc);
+ echan->edesc = NULL;
+
+ dev_dbg(dev, "Transfer completed on channel %d\n",
+ echan->ch_num);
+ } else {
+ dev_dbg(dev, "Sub transfer completed on channel %d\n",
+ echan->ch_num);
+
+ edma_pause(echan);
+
+ /* Update statistics for tx_status */
+ edesc->residue -= edesc->sg_len;
+ edesc->residue_stat = edesc->residue;
+ edesc->processed_stat = edesc->processed;
+ }
+ edma_execute(echan);
+ }
+
+ spin_unlock(&echan->vchan.lock);
+}
+
+/* eDMA interrupt handler */
+static irqreturn_t dma_irq_handler(int irq, void *data)
+{
+ struct edma_cc *ecc = data;
+ int ctlr;
+ u32 sh_ier;
+ u32 sh_ipr;
+ u32 bank;
+
+ ctlr = ecc->id;
+ if (ctlr < 0)
+ return IRQ_NONE;
+
+ dev_vdbg(ecc->dev, "dma_irq_handler\n");
+
+ sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 0);
+ if (!sh_ipr) {
+ sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 1);
+ if (!sh_ipr)
+ return IRQ_NONE;
+ sh_ier = edma_shadow0_read_array(ecc, SH_IER, 1);
+ bank = 1;
+ } else {
+ sh_ier = edma_shadow0_read_array(ecc, SH_IER, 0);
+ bank = 0;
+ }
+
+ do {
+ u32 slot;
+ u32 channel;
+
+ slot = __ffs(sh_ipr);
+ sh_ipr &= ~(BIT(slot));
+
+ if (sh_ier & BIT(slot)) {
+ channel = (bank << 5) | slot;
+ /* Clear the corresponding IPR bits */
+ edma_shadow0_write_array(ecc, SH_ICR, bank, BIT(slot));
+ edma_completion_handler(&ecc->slave_chans[channel]);
+ }
+ } while (sh_ipr);
+
+ edma_shadow0_write(ecc, SH_IEVAL, 1);
+ return IRQ_HANDLED;
+}
+
+static void edma_error_handler(struct edma_chan *echan)
+{
+ struct edma_cc *ecc = echan->ecc;
+ struct device *dev = echan->vchan.chan.device->dev;
+ struct edmacc_param p;
+ int err;
+
+ if (!echan->edesc)
+ return;
+
+ spin_lock(&echan->vchan.lock);
+
+ err = edma_read_slot(ecc, echan->slot[0], &p);
+
+ /*
+ * Issue later based on missed flag which will be sure
+ * to happen as:
+ * (1) we finished transmitting an intermediate slot and
+ * edma_execute is coming up.
+ * (2) or we finished current transfer and issue will
+ * call edma_execute.
+ *
+ * Important note: issuing can be dangerous here and
+ * lead to some nasty recursion when we are in a NULL
+ * slot. So we avoid doing so and set the missed flag.
+ */
+ if (err || (p.a_b_cnt == 0 && p.ccnt == 0)) {
+ dev_dbg(dev, "Error on null slot, setting miss\n");
+ echan->missed = 1;
+ } else {
+ /*
+ * The slot is already programmed but the event got
+ * missed, so its safe to issue it here.
+ */
+ dev_dbg(dev, "Missed event, TRIGGERING\n");
+ edma_clean_channel(echan);
+ edma_stop(echan);
+ edma_start(echan);
+ edma_trigger_channel(echan);
+ }
+ spin_unlock(&echan->vchan.lock);
+}
+
+static inline bool edma_error_pending(struct edma_cc *ecc)
+{
+ if (edma_read_array(ecc, EDMA_EMR, 0) ||
+ edma_read_array(ecc, EDMA_EMR, 1) ||
+ edma_read(ecc, EDMA_QEMR) || edma_read(ecc, EDMA_CCERR))
+ return true;
+
+ return false;
+}
+
+/* eDMA error interrupt handler */
+static irqreturn_t dma_ccerr_handler(int irq, void *data)
+{
+ struct edma_cc *ecc = data;
+ int i, j;
+ int ctlr;
+ unsigned int cnt = 0;
+ unsigned int val;
+
+ ctlr = ecc->id;
+ if (ctlr < 0)
+ return IRQ_NONE;
+
+ dev_vdbg(ecc->dev, "dma_ccerr_handler\n");
+
+ if (!edma_error_pending(ecc)) {
+ /*
+ * The registers indicate no pending error event but the irq
+ * handler has been called.
+ * Ask eDMA to re-evaluate the error registers.
+ */
+ dev_err(ecc->dev, "%s: Error interrupt without error event!\n",
+ __func__);
+ edma_write(ecc, EDMA_EEVAL, 1);
+ return IRQ_NONE;
+ }
+
+ while (1) {
+ /* Event missed register(s) */
+ for (j = 0; j < 2; j++) {
+ unsigned long emr;
+
+ val = edma_read_array(ecc, EDMA_EMR, j);
+ if (!val)
+ continue;
+
+ dev_dbg(ecc->dev, "EMR%d 0x%08x\n", j, val);
+ emr = val;
+ for (i = find_next_bit(&emr, 32, 0); i < 32;
+ i = find_next_bit(&emr, 32, i + 1)) {
+ int k = (j << 5) + i;
+
+ /* Clear the corresponding EMR bits */
+ edma_write_array(ecc, EDMA_EMCR, j, BIT(i));
+ /* Clear any SER */
+ edma_shadow0_write_array(ecc, SH_SECR, j,
+ BIT(i));
+ edma_error_handler(&ecc->slave_chans[k]);
+ }
+ }
+
+ val = edma_read(ecc, EDMA_QEMR);
+ if (val) {
+ dev_dbg(ecc->dev, "QEMR 0x%02x\n", val);
+ /* Not reported, just clear the interrupt reason. */
+ edma_write(ecc, EDMA_QEMCR, val);
+ edma_shadow0_write(ecc, SH_QSECR, val);
+ }
+
+ val = edma_read(ecc, EDMA_CCERR);
+ if (val) {
+ dev_warn(ecc->dev, "CCERR 0x%08x\n", val);
+ /* Not reported, just clear the interrupt reason. */
+ edma_write(ecc, EDMA_CCERRCLR, val);
+ }
+
+ if (!edma_error_pending(ecc))
+ break;
+ cnt++;
+ if (cnt > 10)
+ break;
+ }
+ edma_write(ecc, EDMA_EEVAL, 1);
+ return IRQ_HANDLED;
+}
+
+/* Alloc channel resources */
+static int edma_alloc_chan_resources(struct dma_chan *chan)
+{
+ struct edma_chan *echan = to_edma_chan(chan);
+ struct edma_cc *ecc = echan->ecc;
+ struct device *dev = ecc->dev;
+ enum dma_event_q eventq_no = EVENTQ_DEFAULT;
+ int ret;
+
+ if (echan->tc) {
+ eventq_no = echan->tc->id;
+ } else if (ecc->tc_list) {
+ /* memcpy channel */
+ echan->tc = &ecc->tc_list[ecc->info->default_queue];
+ eventq_no = echan->tc->id;
+ }
+
+ ret = edma_alloc_channel(echan, eventq_no);
+ if (ret)
+ return ret;
+
+ echan->slot[0] = edma_alloc_slot(ecc, echan->ch_num);
+ if (echan->slot[0] < 0) {
+ dev_err(dev, "Entry slot allocation failed for channel %u\n",
+ EDMA_CHAN_SLOT(echan->ch_num));
+ ret = echan->slot[0];
+ goto err_slot;
+ }
+
+ /* Set up channel -> slot mapping for the entry slot */
+ edma_set_chmap(echan, echan->slot[0]);
+ echan->alloced = true;
+
+ dev_dbg(dev, "Got eDMA channel %d for virt channel %d (%s trigger)\n",
+ EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id,
+ echan->hw_triggered ? "HW" : "SW");
+
+ return 0;
+
+err_slot:
+ edma_free_channel(echan);
+ return ret;
+}
+
+/* Free channel resources */
+static void edma_free_chan_resources(struct dma_chan *chan)
+{
+ struct edma_chan *echan = to_edma_chan(chan);
+ struct device *dev = echan->ecc->dev;
+ int i;
+
+ /* Terminate transfers */
+ edma_stop(echan);
+
+ vchan_free_chan_resources(&echan->vchan);
+
+ /* Free EDMA PaRAM slots */
+ for (i = 0; i < EDMA_MAX_SLOTS; i++) {
+ if (echan->slot[i] >= 0) {
+ edma_free_slot(echan->ecc, echan->slot[i]);
+ echan->slot[i] = -1;
+ }
+ }
+
+ /* Set entry slot to the dummy slot */
+ edma_set_chmap(echan, echan->ecc->dummy_slot);
+
+ /* Free EDMA channel */
+ if (echan->alloced) {
+ edma_free_channel(echan);
+ echan->alloced = false;
+ }
+
+ echan->tc = NULL;
+ echan->hw_triggered = false;
+
+ dev_dbg(dev, "Free eDMA channel %d for virt channel %d\n",
+ EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id);
+}
+
+/* Send pending descriptor to hardware */
+static void edma_issue_pending(struct dma_chan *chan)
+{
+ struct edma_chan *echan = to_edma_chan(chan);
+ unsigned long flags;
+
+ spin_lock_irqsave(&echan->vchan.lock, flags);
+ if (vchan_issue_pending(&echan->vchan) && !echan->edesc)
+ edma_execute(echan);
+ spin_unlock_irqrestore(&echan->vchan.lock, flags);
+}
+
+/*
+ * This limit exists to avoid a possible infinite loop when waiting for proof
+ * that a particular transfer is completed. This limit can be hit if there
+ * are large bursts to/from slow devices or the CPU is never able to catch
+ * the DMA hardware idle. On an AM335x transfering 48 bytes from the UART
+ * RX-FIFO, as many as 55 loops have been seen.
+ */
+#define EDMA_MAX_TR_WAIT_LOOPS 1000
+
+static u32 edma_residue(struct edma_desc *edesc)
+{
+ bool dst = edesc->direction == DMA_DEV_TO_MEM;
+ int loop_count = EDMA_MAX_TR_WAIT_LOOPS;
+ struct edma_chan *echan = edesc->echan;
+ struct edma_pset *pset = edesc->pset;
+ dma_addr_t done, pos;
+ int i;
+
+ /*
+ * We always read the dst/src position from the first RamPar
+ * pset. That's the one which is active now.
+ */
+ pos = edma_get_position(echan->ecc, echan->slot[0], dst);
+
+ /*
+ * "pos" may represent a transfer request that is still being
+ * processed by the EDMACC or EDMATC. We will busy wait until
+ * any one of the situations occurs:
+ * 1. the DMA hardware is idle
+ * 2. a new transfer request is setup
+ * 3. we hit the loop limit
+ */
+ while (edma_read(echan->ecc, EDMA_CCSTAT) & EDMA_CCSTAT_ACTV) {
+ /* check if a new transfer request is setup */
+ if (edma_get_position(echan->ecc,
+ echan->slot[0], dst) != pos) {
+ break;
+ }
+
+ if (!--loop_count) {
+ dev_dbg_ratelimited(echan->vchan.chan.device->dev,
+ "%s: timeout waiting for PaRAM update\n",
+ __func__);
+ break;
+ }
+
+ cpu_relax();
+ }
+
+ /*
+ * Cyclic is simple. Just subtract pset[0].addr from pos.
+ *
+ * We never update edesc->residue in the cyclic case, so we
+ * can tell the remaining room to the end of the circular
+ * buffer.
+ */
+ if (edesc->cyclic) {
+ done = pos - pset->addr;
+ edesc->residue_stat = edesc->residue - done;
+ return edesc->residue_stat;
+ }
+
+ /*
+ * For SG operation we catch up with the last processed
+ * status.
+ */
+ pset += edesc->processed_stat;
+
+ for (i = edesc->processed_stat; i < edesc->processed; i++, pset++) {
+ /*
+ * If we are inside this pset address range, we know
+ * this is the active one. Get the current delta and
+ * stop walking the psets.
+ */
+ if (pos >= pset->addr && pos < pset->addr + pset->len)
+ return edesc->residue_stat - (pos - pset->addr);
+
+ /* Otherwise mark it done and update residue_stat. */
+ edesc->processed_stat++;
+ edesc->residue_stat -= pset->len;
+ }
+ return edesc->residue_stat;
+}
+
+/* Check request completion status */
+static enum dma_status edma_tx_status(struct dma_chan *chan,
+ dma_cookie_t cookie,
+ struct dma_tx_state *txstate)
+{
+ struct edma_chan *echan = to_edma_chan(chan);
+ struct virt_dma_desc *vdesc;
+ enum dma_status ret;
+ unsigned long flags;
+
+ ret = dma_cookie_status(chan, cookie, txstate);
+ if (ret == DMA_COMPLETE || !txstate)
+ return ret;
+
+ spin_lock_irqsave(&echan->vchan.lock, flags);
+ if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie)
+ txstate->residue = edma_residue(echan->edesc);
+ else if ((vdesc = vchan_find_desc(&echan->vchan, cookie)))
+ txstate->residue = to_edma_desc(&vdesc->tx)->residue;
+ spin_unlock_irqrestore(&echan->vchan.lock, flags);
+
+ return ret;
+}
+
+static bool edma_is_memcpy_channel(int ch_num, s32 *memcpy_channels)
+{
+ if (!memcpy_channels)
+ return false;
+ while (*memcpy_channels != -1) {
+ if (*memcpy_channels == ch_num)
+ return true;
+ memcpy_channels++;
+ }
+ return false;
+}
+
+#define EDMA_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
+ BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
+ BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
+ BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
+
+static void edma_dma_init(struct edma_cc *ecc, bool legacy_mode)
+{
+ struct dma_device *s_ddev = &ecc->dma_slave;
+ struct dma_device *m_ddev = NULL;
+ s32 *memcpy_channels = ecc->info->memcpy_channels;
+ int i, j;
+
+ dma_cap_zero(s_ddev->cap_mask);
+ dma_cap_set(DMA_SLAVE, s_ddev->cap_mask);
+ dma_cap_set(DMA_CYCLIC, s_ddev->cap_mask);
+ if (ecc->legacy_mode && !memcpy_channels) {
+ dev_warn(ecc->dev,
+ "Legacy memcpy is enabled, things might not work\n");
+
+ dma_cap_set(DMA_MEMCPY, s_ddev->cap_mask);
+ s_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
+ s_ddev->directions = BIT(DMA_MEM_TO_MEM);
+ }
+
+ s_ddev->device_prep_slave_sg = edma_prep_slave_sg;
+ s_ddev->device_prep_dma_cyclic = edma_prep_dma_cyclic;
+ s_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
+ s_ddev->device_free_chan_resources = edma_free_chan_resources;
+ s_ddev->device_issue_pending = edma_issue_pending;
+ s_ddev->device_tx_status = edma_tx_status;
+ s_ddev->device_config = edma_slave_config;
+ s_ddev->device_pause = edma_dma_pause;
+ s_ddev->device_resume = edma_dma_resume;
+ s_ddev->device_terminate_all = edma_terminate_all;
+ s_ddev->device_synchronize = edma_synchronize;
+
+ s_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
+ s_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
+ s_ddev->directions |= (BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV));
+ s_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
+ s_ddev->max_burst = SZ_32K - 1; /* CIDX: 16bit signed */
+
+ s_ddev->dev = ecc->dev;
+ INIT_LIST_HEAD(&s_ddev->channels);
+
+ if (memcpy_channels) {
+ m_ddev = devm_kzalloc(ecc->dev, sizeof(*m_ddev), GFP_KERNEL);
+ if (!m_ddev) {
+ dev_warn(ecc->dev, "memcpy is disabled due to OoM\n");
+ memcpy_channels = NULL;
+ goto ch_setup;
+ }
+ ecc->dma_memcpy = m_ddev;
+
+ dma_cap_zero(m_ddev->cap_mask);
+ dma_cap_set(DMA_MEMCPY, m_ddev->cap_mask);
+
+ m_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
+ m_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
+ m_ddev->device_free_chan_resources = edma_free_chan_resources;
+ m_ddev->device_issue_pending = edma_issue_pending;
+ m_ddev->device_tx_status = edma_tx_status;
+ m_ddev->device_config = edma_slave_config;
+ m_ddev->device_pause = edma_dma_pause;
+ m_ddev->device_resume = edma_dma_resume;
+ m_ddev->device_terminate_all = edma_terminate_all;
+ m_ddev->device_synchronize = edma_synchronize;
+
+ m_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
+ m_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
+ m_ddev->directions = BIT(DMA_MEM_TO_MEM);
+ m_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
+
+ m_ddev->dev = ecc->dev;
+ INIT_LIST_HEAD(&m_ddev->channels);
+ } else if (!ecc->legacy_mode) {
+ dev_info(ecc->dev, "memcpy is disabled\n");
+ }
+
+ch_setup:
+ for (i = 0; i < ecc->num_channels; i++) {
+ struct edma_chan *echan = &ecc->slave_chans[i];
+ echan->ch_num = EDMA_CTLR_CHAN(ecc->id, i);
+ echan->ecc = ecc;
+ echan->vchan.desc_free = edma_desc_free;
+
+ if (m_ddev && edma_is_memcpy_channel(i, memcpy_channels))
+ vchan_init(&echan->vchan, m_ddev);
+ else
+ vchan_init(&echan->vchan, s_ddev);
+
+ INIT_LIST_HEAD(&echan->node);
+ for (j = 0; j < EDMA_MAX_SLOTS; j++)
+ echan->slot[j] = -1;
+ }
+}
+
+static int edma_setup_from_hw(struct device *dev, struct edma_soc_info *pdata,
+ struct edma_cc *ecc)
+{
+ int i;
+ u32 value, cccfg;
+ s8 (*queue_priority_map)[2];
+
+ /* Decode the eDMA3 configuration from CCCFG register */
+ cccfg = edma_read(ecc, EDMA_CCCFG);
+
+ value = GET_NUM_REGN(cccfg);
+ ecc->num_region = BIT(value);
+
+ value = GET_NUM_DMACH(cccfg);
+ ecc->num_channels = BIT(value + 1);
+
+ value = GET_NUM_QDMACH(cccfg);
+ ecc->num_qchannels = value * 2;
+
+ value = GET_NUM_PAENTRY(cccfg);
+ ecc->num_slots = BIT(value + 4);
+
+ value = GET_NUM_EVQUE(cccfg);
+ ecc->num_tc = value + 1;
+
+ ecc->chmap_exist = (cccfg & CHMAP_EXIST) ? true : false;
+
+ dev_dbg(dev, "eDMA3 CC HW configuration (cccfg: 0x%08x):\n", cccfg);
+ dev_dbg(dev, "num_region: %u\n", ecc->num_region);
+ dev_dbg(dev, "num_channels: %u\n", ecc->num_channels);
+ dev_dbg(dev, "num_qchannels: %u\n", ecc->num_qchannels);
+ dev_dbg(dev, "num_slots: %u\n", ecc->num_slots);
+ dev_dbg(dev, "num_tc: %u\n", ecc->num_tc);
+ dev_dbg(dev, "chmap_exist: %s\n", ecc->chmap_exist ? "yes" : "no");
+
+ /* Nothing need to be done if queue priority is provided */
+ if (pdata->queue_priority_mapping)
+ return 0;
+
+ /*
+ * Configure TC/queue priority as follows:
+ * Q0 - priority 0
+ * Q1 - priority 1
+ * Q2 - priority 2
+ * ...
+ * The meaning of priority numbers: 0 highest priority, 7 lowest
+ * priority. So Q0 is the highest priority queue and the last queue has
+ * the lowest priority.
+ */
+ queue_priority_map = devm_kcalloc(dev, ecc->num_tc + 1, sizeof(s8),
+ GFP_KERNEL);
+ if (!queue_priority_map)
+ return -ENOMEM;
+
+ for (i = 0; i < ecc->num_tc; i++) {
+ queue_priority_map[i][0] = i;
+ queue_priority_map[i][1] = i;
+ }
+ queue_priority_map[i][0] = -1;
+ queue_priority_map[i][1] = -1;
+
+ pdata->queue_priority_mapping = queue_priority_map;
+ /* Default queue has the lowest priority */
+ pdata->default_queue = i - 1;
+
+ return 0;
+}
+
+#if IS_ENABLED(CONFIG_OF)
+static int edma_xbar_event_map(struct device *dev, struct edma_soc_info *pdata,
+ size_t sz)
+{
+ const char pname[] = "ti,edma-xbar-event-map";
+ struct resource res;
+ void __iomem *xbar;
+ s16 (*xbar_chans)[2];
+ size_t nelm = sz / sizeof(s16);
+ u32 shift, offset, mux;
+ int ret, i;
+
+ xbar_chans = devm_kcalloc(dev, nelm + 2, sizeof(s16), GFP_KERNEL);
+ if (!xbar_chans)
+ return -ENOMEM;
+
+ ret = of_address_to_resource(dev->of_node, 1, &res);
+ if (ret)
+ return -ENOMEM;
+
+ xbar = devm_ioremap(dev, res.start, resource_size(&res));
+ if (!xbar)
+ return -ENOMEM;
+
+ ret = of_property_read_u16_array(dev->of_node, pname, (u16 *)xbar_chans,
+ nelm);
+ if (ret)
+ return -EIO;
+
+ /* Invalidate last entry for the other user of this mess */
+ nelm >>= 1;
+ xbar_chans[nelm][0] = -1;
+ xbar_chans[nelm][1] = -1;
+
+ for (i = 0; i < nelm; i++) {
+ shift = (xbar_chans[i][1] & 0x03) << 3;
+ offset = xbar_chans[i][1] & 0xfffffffc;
+ mux = readl(xbar + offset);
+ mux &= ~(0xff << shift);
+ mux |= xbar_chans[i][0] << shift;
+ writel(mux, (xbar + offset));
+ }
+
+ pdata->xbar_chans = (const s16 (*)[2]) xbar_chans;
+ return 0;
+}
+
+static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
+ bool legacy_mode)
+{
+ struct edma_soc_info *info;
+ struct property *prop;
+ int sz, ret;
+
+ info = devm_kzalloc(dev, sizeof(struct edma_soc_info), GFP_KERNEL);
+ if (!info)
+ return ERR_PTR(-ENOMEM);
+
+ if (legacy_mode) {
+ prop = of_find_property(dev->of_node, "ti,edma-xbar-event-map",
+ &sz);
+ if (prop) {
+ ret = edma_xbar_event_map(dev, info, sz);
+ if (ret)
+ return ERR_PTR(ret);
+ }
+ return info;
+ }
+
+ /* Get the list of channels allocated to be used for memcpy */
+ prop = of_find_property(dev->of_node, "ti,edma-memcpy-channels", &sz);
+ if (prop) {
+ const char pname[] = "ti,edma-memcpy-channels";
+ size_t nelm = sz / sizeof(s32);
+ s32 *memcpy_ch;
+
+ memcpy_ch = devm_kcalloc(dev, nelm + 1, sizeof(s32),
+ GFP_KERNEL);
+ if (!memcpy_ch)
+ return ERR_PTR(-ENOMEM);
+
+ ret = of_property_read_u32_array(dev->of_node, pname,
+ (u32 *)memcpy_ch, nelm);
+ if (ret)
+ return ERR_PTR(ret);
+
+ memcpy_ch[nelm] = -1;
+ info->memcpy_channels = memcpy_ch;
+ }
+
+ prop = of_find_property(dev->of_node, "ti,edma-reserved-slot-ranges",
+ &sz);
+ if (prop) {
+ const char pname[] = "ti,edma-reserved-slot-ranges";
+ u32 (*tmp)[2];
+ s16 (*rsv_slots)[2];
+ size_t nelm = sz / sizeof(*tmp);
+ struct edma_rsv_info *rsv_info;
+ int i;
+
+ if (!nelm)
+ return info;
+
+ tmp = kcalloc(nelm, sizeof(*tmp), GFP_KERNEL);
+ if (!tmp)
+ return ERR_PTR(-ENOMEM);
+
+ rsv_info = devm_kzalloc(dev, sizeof(*rsv_info), GFP_KERNEL);
+ if (!rsv_info) {
+ kfree(tmp);
+ return ERR_PTR(-ENOMEM);
+ }
+
+ rsv_slots = devm_kcalloc(dev, nelm + 1, sizeof(*rsv_slots),
+ GFP_KERNEL);
+ if (!rsv_slots) {
+ kfree(tmp);
+ return ERR_PTR(-ENOMEM);
+ }
+
+ ret = of_property_read_u32_array(dev->of_node, pname,
+ (u32 *)tmp, nelm * 2);
+ if (ret) {
+ kfree(tmp);
+ return ERR_PTR(ret);
+ }
+
+ for (i = 0; i < nelm; i++) {
+ rsv_slots[i][0] = tmp[i][0];
+ rsv_slots[i][1] = tmp[i][1];
+ }
+ rsv_slots[nelm][0] = -1;
+ rsv_slots[nelm][1] = -1;
+
+ info->rsv = rsv_info;
+ info->rsv->rsv_slots = (const s16 (*)[2])rsv_slots;
+
+ kfree(tmp);
+ }
+
+ return info;
+}
+
+static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
+ struct of_dma *ofdma)
+{
+ struct edma_cc *ecc = ofdma->of_dma_data;
+ struct dma_chan *chan = NULL;
+ struct edma_chan *echan;
+ int i;
+
+ if (!ecc || dma_spec->args_count < 1)
+ return NULL;
+
+ for (i = 0; i < ecc->num_channels; i++) {
+ echan = &ecc->slave_chans[i];
+ if (echan->ch_num == dma_spec->args[0]) {
+ chan = &echan->vchan.chan;
+ break;
+ }
+ }
+
+ if (!chan)
+ return NULL;
+
+ if (echan->ecc->legacy_mode && dma_spec->args_count == 1)
+ goto out;
+
+ if (!echan->ecc->legacy_mode && dma_spec->args_count == 2 &&
+ dma_spec->args[1] < echan->ecc->num_tc) {
+ echan->tc = &echan->ecc->tc_list[dma_spec->args[1]];
+ goto out;
+ }
+
+ return NULL;
+out:
+ /* The channel is going to be used as HW synchronized */
+ echan->hw_triggered = true;
+ return dma_get_slave_channel(chan);
+}
+#else
+static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
+ bool legacy_mode)
+{
+ return ERR_PTR(-EINVAL);
+}
+
+static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
+ struct of_dma *ofdma)
+{
+ return NULL;
+}
+#endif
+
+static int edma_probe(struct platform_device *pdev)
+{
+ struct edma_soc_info *info = pdev->dev.platform_data;
+ s8 (*queue_priority_mapping)[2];
+ int i, off, ln;
+ const s16 (*rsv_slots)[2];
+ const s16 (*xbar_chans)[2];
+ int irq;
+ char *irq_name;
+ struct resource *mem;
+ struct device_node *node = pdev->dev.of_node;
+ struct device *dev = &pdev->dev;
+ struct edma_cc *ecc;
+ bool legacy_mode = true;
+ int ret;
+
+ if (node) {
+ const struct of_device_id *match;
+
+ match = of_match_node(edma_of_ids, node);
+ if (match && (*(u32 *)match->data) == EDMA_BINDING_TPCC)
+ legacy_mode = false;
+
+ info = edma_setup_info_from_dt(dev, legacy_mode);
+ if (IS_ERR(info)) {
+ dev_err(dev, "failed to get DT data\n");
+ return PTR_ERR(info);
+ }
+ }
+
+ if (!info)
+ return -ENODEV;
+
+ pm_runtime_enable(dev);
+ ret = pm_runtime_get_sync(dev);
+ if (ret < 0) {
+ dev_err(dev, "pm_runtime_get_sync() failed\n");
+ return ret;
+ }
+
+ ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
+ if (ret)
+ return ret;
+
+ ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL);
+ if (!ecc)
+ return -ENOMEM;
+
+ ecc->dev = dev;
+ ecc->id = pdev->id;
+ ecc->legacy_mode = legacy_mode;
+ /* When booting with DT the pdev->id is -1 */
+ if (ecc->id < 0)
+ ecc->id = 0;
+
+ mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "edma3_cc");
+ if (!mem) {
+ dev_dbg(dev, "mem resource not found, using index 0\n");
+ mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+ if (!mem) {
+ dev_err(dev, "no mem resource?\n");
+ return -ENODEV;
+ }
+ }
+ ecc->base = devm_ioremap_resource(dev, mem);
+ if (IS_ERR(ecc->base))
+ return PTR_ERR(ecc->base);
+
+ platform_set_drvdata(pdev, ecc);
+
+ /* Get eDMA3 configuration from IP */
+ ret = edma_setup_from_hw(dev, info, ecc);
+ if (ret)
+ return ret;
+
+ /* Allocate memory based on the information we got from the IP */
+ ecc->slave_chans = devm_kcalloc(dev, ecc->num_channels,
+ sizeof(*ecc->slave_chans), GFP_KERNEL);
+ if (!ecc->slave_chans)
+ return -ENOMEM;
+
+ ecc->slot_inuse = devm_kcalloc(dev, BITS_TO_LONGS(ecc->num_slots),
+ sizeof(unsigned long), GFP_KERNEL);
+ if (!ecc->slot_inuse)
+ return -ENOMEM;
+
+ ecc->default_queue = info->default_queue;
+
+ for (i = 0; i < ecc->num_slots; i++)
+ edma_write_slot(ecc, i, &dummy_paramset);
+
+ if (info->rsv) {
+ /* Set the reserved slots in inuse list */
+ rsv_slots = info->rsv->rsv_slots;
+ if (rsv_slots) {
+ for (i = 0; rsv_slots[i][0] != -1; i++) {
+ off = rsv_slots[i][0];
+ ln = rsv_slots[i][1];
+ edma_set_bits(off, ln, ecc->slot_inuse);
+ }
+ }
+ }
+
+ /* Clear the xbar mapped channels in unused list */
+ xbar_chans = info->xbar_chans;
+ if (xbar_chans) {
+ for (i = 0; xbar_chans[i][1] != -1; i++) {
+ off = xbar_chans[i][1];
+ }
+ }
+
+ irq = platform_get_irq_byname(pdev, "edma3_ccint");
+ if (irq < 0 && node)
+ irq = irq_of_parse_and_map(node, 0);
+
+ if (irq >= 0) {
+ irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccint",
+ dev_name(dev));
+ ret = devm_request_irq(dev, irq, dma_irq_handler, 0, irq_name,
+ ecc);
+ if (ret) {
+ dev_err(dev, "CCINT (%d) failed --> %d\n", irq, ret);
+ return ret;
+ }
+ ecc->ccint = irq;
+ }
+
+ irq = platform_get_irq_byname(pdev, "edma3_ccerrint");
+ if (irq < 0 && node)
+ irq = irq_of_parse_and_map(node, 2);
+
+ if (irq >= 0) {
+ irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccerrint",
+ dev_name(dev));
+ ret = devm_request_irq(dev, irq, dma_ccerr_handler, 0, irq_name,
+ ecc);
+ if (ret) {
+ dev_err(dev, "CCERRINT (%d) failed --> %d\n", irq, ret);
+ return ret;
+ }
+ ecc->ccerrint = irq;
+ }
+
+ ecc->dummy_slot = edma_alloc_slot(ecc, EDMA_SLOT_ANY);
+ if (ecc->dummy_slot < 0) {
+ dev_err(dev, "Can't allocate PaRAM dummy slot\n");
+ return ecc->dummy_slot;
+ }
+
+ queue_priority_mapping = info->queue_priority_mapping;
+
+ if (!ecc->legacy_mode) {
+ int lowest_priority = 0;
+ struct of_phandle_args tc_args;
+
+ ecc->tc_list = devm_kcalloc(dev, ecc->num_tc,
+ sizeof(*ecc->tc_list), GFP_KERNEL);
+ if (!ecc->tc_list)
+ return -ENOMEM;
+
+ for (i = 0;; i++) {
+ ret = of_parse_phandle_with_fixed_args(node, "ti,tptcs",
+ 1, i, &tc_args);
+ if (ret || i == ecc->num_tc)
+ break;
+
+ ecc->tc_list[i].node = tc_args.np;
+ ecc->tc_list[i].id = i;
+ queue_priority_mapping[i][1] = tc_args.args[0];
+ if (queue_priority_mapping[i][1] > lowest_priority) {
+ lowest_priority = queue_priority_mapping[i][1];
+ info->default_queue = i;
+ }
+ }
+ }
+
+ /* Event queue priority mapping */
+ for (i = 0; queue_priority_mapping[i][0] != -1; i++)
+ edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
+ queue_priority_mapping[i][1]);
+
+ for (i = 0; i < ecc->num_region; i++) {
+ edma_write_array2(ecc, EDMA_DRAE, i, 0, 0x0);
+ edma_write_array2(ecc, EDMA_DRAE, i, 1, 0x0);
+ edma_write_array(ecc, EDMA_QRAE, i, 0x0);
+ }
+ ecc->info = info;
+
+ /* Init the dma device and channels */
+ edma_dma_init(ecc, legacy_mode);
+
+ for (i = 0; i < ecc->num_channels; i++) {
+ /* Assign all channels to the default queue */
+ edma_assign_channel_eventq(&ecc->slave_chans[i],
+ info->default_queue);
+ /* Set entry slot to the dummy slot */
+ edma_set_chmap(&ecc->slave_chans[i], ecc->dummy_slot);
+ }
+
+ ecc->dma_slave.filter.map = info->slave_map;
+ ecc->dma_slave.filter.mapcnt = info->slavecnt;
+ ecc->dma_slave.filter.fn = edma_filter_fn;
+
+ ret = dma_async_device_register(&ecc->dma_slave);
+ if (ret) {
+ dev_err(dev, "slave ddev registration failed (%d)\n", ret);
+ goto err_reg1;
+ }
+
+ if (ecc->dma_memcpy) {
+ ret = dma_async_device_register(ecc->dma_memcpy);
+ if (ret) {
+ dev_err(dev, "memcpy ddev registration failed (%d)\n",
+ ret);
+ dma_async_device_unregister(&ecc->dma_slave);
+ goto err_reg1;
+ }
+ }
+
+ if (node)
+ of_dma_controller_register(node, of_edma_xlate, ecc);
+
+ dev_info(dev, "TI EDMA DMA engine driver\n");
+
+ return 0;
+
+err_reg1:
+ edma_free_slot(ecc, ecc->dummy_slot);
+ return ret;
+}
+
+static void edma_cleanupp_vchan(struct dma_device *dmadev)
+{
+ struct edma_chan *echan, *_echan;
+
+ list_for_each_entry_safe(echan, _echan,
+ &dmadev->channels, vchan.chan.device_node) {
+ list_del(&echan->vchan.chan.device_node);
+ tasklet_kill(&echan->vchan.task);
+ }
+}
+
+static int edma_remove(struct platform_device *pdev)
+{
+ struct device *dev = &pdev->dev;
+ struct edma_cc *ecc = dev_get_drvdata(dev);
+
+ devm_free_irq(dev, ecc->ccint, ecc);
+ devm_free_irq(dev, ecc->ccerrint, ecc);
+
+ edma_cleanupp_vchan(&ecc->dma_slave);
+
+ if (dev->of_node)
+ of_dma_controller_free(dev->of_node);
+ dma_async_device_unregister(&ecc->dma_slave);
+ if (ecc->dma_memcpy)
+ dma_async_device_unregister(ecc->dma_memcpy);
+ edma_free_slot(ecc, ecc->dummy_slot);
+
+ return 0;
+}
+
+#ifdef CONFIG_PM_SLEEP
+static int edma_pm_suspend(struct device *dev)
+{
+ struct edma_cc *ecc = dev_get_drvdata(dev);
+ struct edma_chan *echan = ecc->slave_chans;
+ int i;
+
+ for (i = 0; i < ecc->num_channels; i++) {
+ if (echan[i].alloced)
+ edma_setup_interrupt(&echan[i], false);
+ }
+
+ return 0;
+}
+
+static int edma_pm_resume(struct device *dev)
+{
+ struct edma_cc *ecc = dev_get_drvdata(dev);
+ struct edma_chan *echan = ecc->slave_chans;
+ int i;
+ s8 (*queue_priority_mapping)[2];
+
+ /* re initialize dummy slot to dummy param set */
+ edma_write_slot(ecc, ecc->dummy_slot, &dummy_paramset);
+
+ queue_priority_mapping = ecc->info->queue_priority_mapping;
+
+ /* Event queue priority mapping */
+ for (i = 0; queue_priority_mapping[i][0] != -1; i++)
+ edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
+ queue_priority_mapping[i][1]);
+
+ for (i = 0; i < ecc->num_channels; i++) {
+ if (echan[i].alloced) {
+ /* ensure access through shadow region 0 */
+ edma_or_array2(ecc, EDMA_DRAE, 0, i >> 5,
+ BIT(i & 0x1f));
+
+ edma_setup_interrupt(&echan[i], true);
+
+ /* Set up channel -> slot mapping for the entry slot */
+ edma_set_chmap(&echan[i], echan[i].slot[0]);
+ }
+ }
+
+ return 0;
+}
+#endif
+
+static const struct dev_pm_ops edma_pm_ops = {
+ SET_LATE_SYSTEM_SLEEP_PM_OPS(edma_pm_suspend, edma_pm_resume)
+};
+
+static struct platform_driver edma_driver = {
+ .probe = edma_probe,
+ .remove = edma_remove,
+ .driver = {
+ .name = "edma",
+ .pm = &edma_pm_ops,
+ .of_match_table = edma_of_ids,
+ },
+};
+
+static int edma_tptc_probe(struct platform_device *pdev)
+{
+ pm_runtime_enable(&pdev->dev);
+ return pm_runtime_get_sync(&pdev->dev);
+}
+
+static struct platform_driver edma_tptc_driver = {
+ .probe = edma_tptc_probe,
+ .driver = {
+ .name = "edma3-tptc",
+ .of_match_table = edma_tptc_of_ids,
+ },
+};
+
+bool edma_filter_fn(struct dma_chan *chan, void *param)
+{
+ bool match = false;
+
+ if (chan->device->dev->driver == &edma_driver.driver) {
+ struct edma_chan *echan = to_edma_chan(chan);
+ unsigned ch_req = *(unsigned *)param;
+ if (ch_req == echan->ch_num) {
+ /* The channel is going to be used as HW synchronized */
+ echan->hw_triggered = true;
+ match = true;
+ }
+ }
+ return match;
+}
+EXPORT_SYMBOL(edma_filter_fn);
+
+static int edma_init(void)
+{
+ int ret;
+
+ ret = platform_driver_register(&edma_tptc_driver);
+ if (ret)
+ return ret;
+
+ return platform_driver_register(&edma_driver);
+}
+subsys_initcall(edma_init);
+
+static void __exit edma_exit(void)
+{
+ platform_driver_unregister(&edma_driver);
+ platform_driver_unregister(&edma_tptc_driver);
+}
+module_exit(edma_exit);
+
+MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>");
+MODULE_DESCRIPTION("TI EDMA DMA engine driver");
+MODULE_LICENSE("GPL v2");