aboutsummaryrefslogtreecommitdiffstats
path: root/security/integrity/ima/ima_mok.c (follow)
AgeCommit message (Collapse)AuthorFilesLines
2021-07-23IMA: remove -Wmissing-prototypes warningAustin Kim1-1/+1
With W=1 build, the compiler throws warning message as below: security/integrity/ima/ima_mok.c:24:12: warning: no previous prototype for ‘ima_mok_init’ [-Wmissing-prototypes] __init int ima_mok_init(void) Silence the warning by adding static keyword to ima_mok_init(). Signed-off-by: Austin Kim <austin.kim@lge.com> Fixes: 41c89b64d718 ("IMA: create machine owner and blacklist keyrings") Cc: stable@vger.kernel.org Signed-off-by: Mimi Zohar <zohar@linux.ibm.com>
2021-01-21certs: Fix blacklist flag type confusionDavid Howells1-3/+2
KEY_FLAG_KEEP is not meant to be passed to keyring_alloc() or key_alloc(), as these only take KEY_ALLOC_* flags. KEY_FLAG_KEEP has the same value as KEY_ALLOC_BYPASS_RESTRICTION, but fortunately only key_create_or_update() uses it. LSMs using the key_alloc hook don't check that flag. KEY_FLAG_KEEP is then ignored but fortunately (again) the root user cannot write to the blacklist keyring, so it is not possible to remove a key/hash from it. Fix this by adding a KEY_ALLOC_SET_KEEP flag that tells key_alloc() to set KEY_FLAG_KEEP on the new key. blacklist_init() can then, correctly, pass this to keyring_alloc(). We can also use this in ima_mok_init() rather than setting the flag manually. Note that this doesn't fix an observable bug with the current implementation but it is required to allow addition of new hashes to the blacklist in the future without making it possible for them to be removed. Fixes: 734114f8782f ("KEYS: Add a system blacklist keyring") Reported-by: Mickaël Salaün <mic@linux.microsoft.com> Signed-off-by: David Howells <dhowells@redhat.com> cc: Mickaël Salaün <mic@linux.microsoft.com> cc: Mimi Zohar <zohar@linux.vnet.ibm.com> Cc: David Woodhouse <dwmw2@infradead.org>
2019-07-10Revert "Merge tag 'keys-acl-20190703' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs"Linus Torvalds1-10/+3
This reverts merge 0f75ef6a9cff49ff612f7ce0578bced9d0b38325 (and thus effectively commits 7a1ade847596 ("keys: Provide KEYCTL_GRANT_PERMISSION") 2e12256b9a76 ("keys: Replace uid/gid/perm permissions checking with an ACL") that the merge brought in). It turns out that it breaks booting with an encrypted volume, and Eric biggers reports that it also breaks the fscrypt tests [1] and loading of in-kernel X.509 certificates [2]. The root cause of all the breakage is likely the same, but David Howells is off email so rather than try to work it out it's getting reverted in order to not impact the rest of the merge window. [1] https://lore.kernel.org/lkml/20190710011559.GA7973@sol.localdomain/ [2] https://lore.kernel.org/lkml/20190710013225.GB7973@sol.localdomain/ Link: https://lore.kernel.org/lkml/CAHk-=wjxoeMJfeBahnWH=9zShKp2bsVy527vo3_y8HfOdhwAAw@mail.gmail.com/ Reported-by: Eric Biggers <ebiggers@kernel.org> Cc: David Howells <dhowells@redhat.com> Cc: James Morris <jmorris@namei.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-08Merge tag 'keys-acl-20190703' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fsLinus Torvalds1-3/+10
Pull keyring ACL support from David Howells: "This changes the permissions model used by keys and keyrings to be based on an internal ACL by the following means: - Replace the permissions mask internally with an ACL that contains a list of ACEs, each with a specific subject with a permissions mask. Potted default ACLs are available for new keys and keyrings. ACE subjects can be macroised to indicate the UID and GID specified on the key (which remain). Future commits will be able to add additional subject types, such as specific UIDs or domain tags/namespaces. Also split a number of permissions to give finer control. Examples include splitting the revocation permit from the change-attributes permit, thereby allowing someone to be granted permission to revoke a key without allowing them to change the owner; also the ability to join a keyring is split from the ability to link to it, thereby stopping a process accessing a keyring by joining it and thus acquiring use of possessor permits. - Provide a keyctl to allow the granting or denial of one or more permits to a specific subject. Direct access to the ACL is not granted, and the ACL cannot be viewed" * tag 'keys-acl-20190703' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs: keys: Provide KEYCTL_GRANT_PERMISSION keys: Replace uid/gid/perm permissions checking with an ACL
2019-06-27keys: Replace uid/gid/perm permissions checking with an ACLDavid Howells1-3/+10
Replace the uid/gid/perm permissions checking on a key with an ACL to allow the SETATTR and SEARCH permissions to be split. This will also allow a greater range of subjects to represented. ============ WHY DO THIS? ============ The problem is that SETATTR and SEARCH cover a slew of actions, not all of which should be grouped together. For SETATTR, this includes actions that are about controlling access to a key: (1) Changing a key's ownership. (2) Changing a key's security information. (3) Setting a keyring's restriction. And actions that are about managing a key's lifetime: (4) Setting an expiry time. (5) Revoking a key. and (proposed) managing a key as part of a cache: (6) Invalidating a key. Managing a key's lifetime doesn't really have anything to do with controlling access to that key. Expiry time is awkward since it's more about the lifetime of the content and so, in some ways goes better with WRITE permission. It can, however, be set unconditionally by a process with an appropriate authorisation token for instantiating a key, and can also be set by the key type driver when a key is instantiated, so lumping it with the access-controlling actions is probably okay. As for SEARCH permission, that currently covers: (1) Finding keys in a keyring tree during a search. (2) Permitting keyrings to be joined. (3) Invalidation. But these don't really belong together either, since these actions really need to be controlled separately. Finally, there are number of special cases to do with granting the administrator special rights to invalidate or clear keys that I would like to handle with the ACL rather than key flags and special checks. =============== WHAT IS CHANGED =============== The SETATTR permission is split to create two new permissions: (1) SET_SECURITY - which allows the key's owner, group and ACL to be changed and a restriction to be placed on a keyring. (2) REVOKE - which allows a key to be revoked. The SEARCH permission is split to create: (1) SEARCH - which allows a keyring to be search and a key to be found. (2) JOIN - which allows a keyring to be joined as a session keyring. (3) INVAL - which allows a key to be invalidated. The WRITE permission is also split to create: (1) WRITE - which allows a key's content to be altered and links to be added, removed and replaced in a keyring. (2) CLEAR - which allows a keyring to be cleared completely. This is split out to make it possible to give just this to an administrator. (3) REVOKE - see above. Keys acquire ACLs which consist of a series of ACEs, and all that apply are unioned together. An ACE specifies a subject, such as: (*) Possessor - permitted to anyone who 'possesses' a key (*) Owner - permitted to the key owner (*) Group - permitted to the key group (*) Everyone - permitted to everyone Note that 'Other' has been replaced with 'Everyone' on the assumption that you wouldn't grant a permit to 'Other' that you wouldn't also grant to everyone else. Further subjects may be made available by later patches. The ACE also specifies a permissions mask. The set of permissions is now: VIEW Can view the key metadata READ Can read the key content WRITE Can update/modify the key content SEARCH Can find the key by searching/requesting LINK Can make a link to the key SET_SECURITY Can change owner, ACL, expiry INVAL Can invalidate REVOKE Can revoke JOIN Can join this keyring CLEAR Can clear this keyring The KEYCTL_SETPERM function is then deprecated. The KEYCTL_SET_TIMEOUT function then is permitted if SET_SECURITY is set, or if the caller has a valid instantiation auth token. The KEYCTL_INVALIDATE function then requires INVAL. The KEYCTL_REVOKE function then requires REVOKE. The KEYCTL_JOIN_SESSION_KEYRING function then requires JOIN to join an existing keyring. The JOIN permission is enabled by default for session keyrings and manually created keyrings only. ====================== BACKWARD COMPATIBILITY ====================== To maintain backward compatibility, KEYCTL_SETPERM will translate the permissions mask it is given into a new ACL for a key - unless KEYCTL_SET_ACL has been called on that key, in which case an error will be returned. It will convert possessor, owner, group and other permissions into separate ACEs, if each portion of the mask is non-zero. SETATTR permission turns on all of INVAL, REVOKE and SET_SECURITY. WRITE permission turns on WRITE, REVOKE and, if a keyring, CLEAR. JOIN is turned on if a keyring is being altered. The KEYCTL_DESCRIBE function translates the ACL back into a permissions mask to return depending on possessor, owner, group and everyone ACEs. It will make the following mappings: (1) INVAL, JOIN -> SEARCH (2) SET_SECURITY -> SETATTR (3) REVOKE -> WRITE if SETATTR isn't already set (4) CLEAR -> WRITE Note that the value subsequently returned by KEYCTL_DESCRIBE may not match the value set with KEYCTL_SETATTR. ======= TESTING ======= This passes the keyutils testsuite for all but a couple of tests: (1) tests/keyctl/dh_compute/badargs: The first wrong-key-type test now returns EOPNOTSUPP rather than ENOKEY as READ permission isn't removed if the type doesn't have ->read(). You still can't actually read the key. (2) tests/keyctl/permitting/valid: The view-other-permissions test doesn't work as Other has been replaced with Everyone in the ACL. Signed-off-by: David Howells <dhowells@redhat.com>
2019-06-05treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 441Thomas Gleixner1-6/+1
Based on 1 normalized pattern(s): this program is free software you can redistribute it and or modify it under the terms of the gnu general public license as published by the free software foundation version 2 of the license extracted by the scancode license scanner the SPDX license identifier GPL-2.0-only has been chosen to replace the boilerplate/reference in 315 file(s). Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Allison Randal <allison@lohutok.net> Reviewed-by: Armijn Hemel <armijn@tjaldur.nl> Cc: linux-spdx@vger.kernel.org Link: https://lkml.kernel.org/r/20190531190115.503150771@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-04-04KEYS: Use structure to capture key restriction function and dataMat Martineau1-1/+10
Replace struct key's restrict_link function pointer with a pointer to the new struct key_restriction. The structure contains pointers to the restriction function as well as relevant data for evaluating the restriction. The garbage collector checks restrict_link->keytype when key types are unregistered. Restrictions involving a removed key type are converted to use restrict_link_reject so that restrictions cannot be removed by unregistering key types. Signed-off-by: Mat Martineau <mathew.j.martineau@linux.intel.com>
2016-04-11IMA: Use the the system trusted keyrings instead of .ima_mokDavid Howells1-13/+4
Add a config option (IMA_KEYRINGS_PERMIT_SIGNED_BY_BUILTIN_OR_SECONDARY) that, when enabled, allows keys to be added to the IMA keyrings by userspace - with the restriction that each must be signed by a key in the system trusted keyrings. EPERM will be returned if this option is disabled, ENOKEY will be returned if no authoritative key can be found and EKEYREJECTED will be returned if the signature doesn't match. Other errors such as ENOPKG may also be returned. If this new option is enabled, the builtin system keyring is searched, as is the secondary system keyring if that is also enabled. Intermediate keys between the builtin system keyring and the key being added can be added to the secondary keyring (which replaces .ima_mok) to form a trust chain - provided they are also validly signed by a key in one of the trusted keyrings. The .ima_mok keyring is then removed and the IMA blacklist keyring gets its own config option (IMA_BLACKLIST_KEYRING). Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
2016-04-11KEYS: Move the point of trust determination to __key_link()David Howells1-3/+3
Move the point at which a key is determined to be trustworthy to __key_link() so that we use the contents of the keyring being linked in to to determine whether the key being linked in is trusted or not. What is 'trusted' then becomes a matter of what's in the keyring. Currently, the test is done when the key is parsed, but given that at that point we can only sensibly refer to the contents of the system trusted keyring, we can only use that as the basis for working out the trustworthiness of a new key. With this change, a trusted keyring is a set of keys that once the trusted-only flag is set cannot be added to except by verification through one of the contained keys. Further, adding a key into a trusted keyring, whilst it might grant trustworthiness in the context of that keyring, does not automatically grant trustworthiness in the context of a second keyring to which it could be secondarily linked. To accomplish this, the authentication data associated with the key source must now be retained. For an X.509 cert, this means the contents of the AuthorityKeyIdentifier and the signature data. If system keyrings are disabled then restrict_link_by_builtin_trusted() resolves to restrict_link_reject(). The integrity digital signature code still works correctly with this as it was previously using KEY_FLAG_TRUSTED_ONLY, which doesn't permit anything to be added if there is no system keyring against which trust can be determined. Signed-off-by: David Howells <dhowells@redhat.com>
2016-04-11KEYS: Add a facility to restrict new links into a keyringDavid Howells1-4/+4
Add a facility whereby proposed new links to be added to a keyring can be vetted, permitting them to be rejected if necessary. This can be used to block public keys from which the signature cannot be verified or for which the signature verification fails. It could also be used to provide blacklisting. This affects operations like add_key(), KEYCTL_LINK and KEYCTL_INSTANTIATE. To this end: (1) A function pointer is added to the key struct that, if set, points to the vetting function. This is called as: int (*restrict_link)(struct key *keyring, const struct key_type *key_type, unsigned long key_flags, const union key_payload *key_payload), where 'keyring' will be the keyring being added to, key_type and key_payload will describe the key being added and key_flags[*] can be AND'ed with KEY_FLAG_TRUSTED. [*] This parameter will be removed in a later patch when KEY_FLAG_TRUSTED is removed. The function should return 0 to allow the link to take place or an error (typically -ENOKEY, -ENOPKG or -EKEYREJECTED) to reject the link. The pointer should not be set directly, but rather should be set through keyring_alloc(). Note that if called during add_key(), preparse is called before this method, but a key isn't actually allocated until after this function is called. (2) KEY_ALLOC_BYPASS_RESTRICTION is added. This can be passed to key_create_or_update() or key_instantiate_and_link() to bypass the restriction check. (3) KEY_FLAG_TRUSTED_ONLY is removed. The entire contents of a keyring with this restriction emplaced can be considered 'trustworthy' by virtue of being in the keyring when that keyring is consulted. (4) key_alloc() and keyring_alloc() take an extra argument that will be used to set restrict_link in the new key. This ensures that the pointer is set before the key is published, thus preventing a window of unrestrictedness. Normally this argument will be NULL. (5) As a temporary affair, keyring_restrict_trusted_only() is added. It should be passed to keyring_alloc() as the extra argument instead of setting KEY_FLAG_TRUSTED_ONLY on a keyring. This will be replaced in a later patch with functions that look in the appropriate places for authoritative keys. Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
2015-12-15security/integrity: make ima/ima_mok.c explicitly non-modularPaul Gortmaker1-3/+2
The Kconfig currently controlling compilation of this code is: ima/Kconfig:config IMA_MOK_KEYRING ima/Kconfig: bool "Create IMA machine owner keys (MOK) and blacklist keyrings" ...meaning that it currently is not being built as a module by anyone. Lets remove the couple of traces of modularity so that when reading the driver there is no doubt it really is builtin-only. Since module_init translates to device_initcall in the non-modular case, the init ordering remains unchanged with this commit. Cc: Mimi Zohar <zohar@linux.vnet.ibm.com> Cc: Dmitry Kasatkin <dmitry.kasatkin@gmail.com> Cc: James Morris <james.l.morris@oracle.com> Cc: "Serge E. Hallyn" <serge@hallyn.com> Cc: linux-ima-devel@lists.sourceforge.net Cc: linux-ima-user@lists.sourceforge.net Cc: linux-security-module@vger.kernel.org Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com> Signed-off-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
2015-12-15IMA: prevent keys on the .ima_blacklist from being removedMimi Zohar1-0/+2
Set the KEY_FLAGS_KEEP on the .ima_blacklist to prevent userspace from removing keys from the keyring. Signed-off-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
2015-12-15IMA: create machine owner and blacklist keyringsPetko Manolov1-0/+54
This option creates IMA MOK and blacklist keyrings. IMA MOK is an intermediate keyring that sits between .system and .ima keyrings, effectively forming a simple CA hierarchy. To successfully import a key into .ima_mok it must be signed by a key which CA is in .system keyring. On turn any key that needs to go in .ima keyring must be signed by CA in either .system or .ima_mok keyrings. IMA MOK is empty at kernel boot. IMA blacklist keyring contains all revoked IMA keys. It is consulted before any other keyring. If the search is successful the requested operation is rejected and error is returned to the caller. Signed-off-by: Petko Manolov <petkan@mip-labs.com> Signed-off-by: Mimi Zohar <zohar@linux.vnet.ibm.com>