diff options
author | 2020-08-03 14:31:31 +0000 | |
---|---|---|
committer | 2020-08-03 14:31:31 +0000 | |
commit | e5dd70708596ae51455a0ffa086a00c5b29f8583 (patch) | |
tree | 5d676f27b570bacf71e786c3b5cff3e6f6679b59 /gnu/llvm/clang/lib/AST/ASTStructuralEquivalence.cpp | |
parent | Import LLVM 10.0.0 release including clang, lld and lldb. (diff) | |
download | wireguard-openbsd-e5dd70708596ae51455a0ffa086a00c5b29f8583.tar.xz wireguard-openbsd-e5dd70708596ae51455a0ffa086a00c5b29f8583.zip |
Import LLVM 10.0.0 release including clang, lld and lldb.
ok hackroom
tested by plenty
Diffstat (limited to 'gnu/llvm/clang/lib/AST/ASTStructuralEquivalence.cpp')
-rw-r--r-- | gnu/llvm/clang/lib/AST/ASTStructuralEquivalence.cpp | 1924 |
1 files changed, 1924 insertions, 0 deletions
diff --git a/gnu/llvm/clang/lib/AST/ASTStructuralEquivalence.cpp b/gnu/llvm/clang/lib/AST/ASTStructuralEquivalence.cpp new file mode 100644 index 00000000000..91a2f3a8391 --- /dev/null +++ b/gnu/llvm/clang/lib/AST/ASTStructuralEquivalence.cpp @@ -0,0 +1,1924 @@ +//===- ASTStructuralEquivalence.cpp ---------------------------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file implement StructuralEquivalenceContext class and helper functions +// for layout matching. +// +// The structural equivalence check could have been implemented as a parallel +// BFS on a pair of graphs. That must have been the original approach at the +// beginning. +// Let's consider this simple BFS algorithm from the `s` source: +// ``` +// void bfs(Graph G, int s) +// { +// Queue<Integer> queue = new Queue<Integer>(); +// marked[s] = true; // Mark the source +// queue.enqueue(s); // and put it on the queue. +// while (!q.isEmpty()) { +// int v = queue.dequeue(); // Remove next vertex from the queue. +// for (int w : G.adj(v)) +// if (!marked[w]) // For every unmarked adjacent vertex, +// { +// marked[w] = true; +// queue.enqueue(w); +// } +// } +// } +// ``` +// Indeed, it has it's queue, which holds pairs of nodes, one from each graph, +// this is the `DeclsToCheck` and it's pair is in `TentativeEquivalences`. +// `TentativeEquivalences` also plays the role of the marking (`marked`) +// functionality above, we use it to check whether we've already seen a pair of +// nodes. +// +// We put in the elements into the queue only in the toplevel decl check +// function: +// ``` +// static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, +// Decl *D1, Decl *D2); +// ``` +// The `while` loop where we iterate over the children is implemented in +// `Finish()`. And `Finish` is called only from the two **member** functions +// which check the equivalency of two Decls or two Types. ASTImporter (and +// other clients) call only these functions. +// +// The `static` implementation functions are called from `Finish`, these push +// the children nodes to the queue via `static bool +// IsStructurallyEquivalent(StructuralEquivalenceContext &Context, Decl *D1, +// Decl *D2)`. So far so good, this is almost like the BFS. However, if we +// let a static implementation function to call `Finish` via another **member** +// function that means we end up with two nested while loops each of them +// working on the same queue. This is wrong and nobody can reason about it's +// doing. Thus, static implementation functions must not call the **member** +// functions. +// +// So, now `TentativeEquivalences` plays two roles. It is used to store the +// second half of the decls which we want to compare, plus it plays a role in +// closing the recursion. On a long term, we could refactor structural +// equivalency to be more alike to the traditional BFS. +// +//===----------------------------------------------------------------------===// + +#include "clang/AST/ASTStructuralEquivalence.h" +#include "clang/AST/ASTContext.h" +#include "clang/AST/ASTDiagnostic.h" +#include "clang/AST/Decl.h" +#include "clang/AST/DeclBase.h" +#include "clang/AST/DeclCXX.h" +#include "clang/AST/DeclFriend.h" +#include "clang/AST/DeclObjC.h" +#include "clang/AST/DeclTemplate.h" +#include "clang/AST/ExprCXX.h" +#include "clang/AST/NestedNameSpecifier.h" +#include "clang/AST/TemplateBase.h" +#include "clang/AST/TemplateName.h" +#include "clang/AST/Type.h" +#include "clang/Basic/ExceptionSpecificationType.h" +#include "clang/Basic/IdentifierTable.h" +#include "clang/Basic/LLVM.h" +#include "clang/Basic/SourceLocation.h" +#include "llvm/ADT/APInt.h" +#include "llvm/ADT/APSInt.h" +#include "llvm/ADT/None.h" +#include "llvm/ADT/Optional.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/ErrorHandling.h" +#include <cassert> +#include <utility> + +using namespace clang; + +static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, + QualType T1, QualType T2); +static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, + Decl *D1, Decl *D2); +static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, + const TemplateArgument &Arg1, + const TemplateArgument &Arg2); +static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, + NestedNameSpecifier *NNS1, + NestedNameSpecifier *NNS2); +static bool IsStructurallyEquivalent(const IdentifierInfo *Name1, + const IdentifierInfo *Name2); + +static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, + const DeclarationName Name1, + const DeclarationName Name2) { + if (Name1.getNameKind() != Name2.getNameKind()) + return false; + + switch (Name1.getNameKind()) { + + case DeclarationName::Identifier: + return IsStructurallyEquivalent(Name1.getAsIdentifierInfo(), + Name2.getAsIdentifierInfo()); + + case DeclarationName::CXXConstructorName: + case DeclarationName::CXXDestructorName: + case DeclarationName::CXXConversionFunctionName: + return IsStructurallyEquivalent(Context, Name1.getCXXNameType(), + Name2.getCXXNameType()); + + case DeclarationName::CXXDeductionGuideName: { + if (!IsStructurallyEquivalent( + Context, Name1.getCXXDeductionGuideTemplate()->getDeclName(), + Name2.getCXXDeductionGuideTemplate()->getDeclName())) + return false; + return IsStructurallyEquivalent(Context, + Name1.getCXXDeductionGuideTemplate(), + Name2.getCXXDeductionGuideTemplate()); + } + + case DeclarationName::CXXOperatorName: + return Name1.getCXXOverloadedOperator() == Name2.getCXXOverloadedOperator(); + + case DeclarationName::CXXLiteralOperatorName: + return IsStructurallyEquivalent(Name1.getCXXLiteralIdentifier(), + Name2.getCXXLiteralIdentifier()); + + case DeclarationName::CXXUsingDirective: + return true; // FIXME When do we consider two using directives equal? + + case DeclarationName::ObjCZeroArgSelector: + case DeclarationName::ObjCOneArgSelector: + case DeclarationName::ObjCMultiArgSelector: + return true; // FIXME + } + + llvm_unreachable("Unhandled kind of DeclarationName"); + return true; +} + +/// Determine structural equivalence of two expressions. +static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, + const Expr *E1, const Expr *E2) { + if (!E1 || !E2) + return E1 == E2; + + if (auto *DE1 = dyn_cast<DependentScopeDeclRefExpr>(E1)) { + auto *DE2 = dyn_cast<DependentScopeDeclRefExpr>(E2); + if (!DE2) + return false; + if (!IsStructurallyEquivalent(Context, DE1->getDeclName(), + DE2->getDeclName())) + return false; + return IsStructurallyEquivalent(Context, DE1->getQualifier(), + DE2->getQualifier()); + } else if (auto CastE1 = dyn_cast<ImplicitCastExpr>(E1)) { + auto *CastE2 = dyn_cast<ImplicitCastExpr>(E2); + if (!CastE2) + return false; + if (!IsStructurallyEquivalent(Context, CastE1->getType(), + CastE2->getType())) + return false; + return IsStructurallyEquivalent(Context, CastE1->getSubExpr(), + CastE2->getSubExpr()); + } + // FIXME: Handle other kind of expressions! + return true; +} + +/// Determine whether two identifiers are equivalent. +static bool IsStructurallyEquivalent(const IdentifierInfo *Name1, + const IdentifierInfo *Name2) { + if (!Name1 || !Name2) + return Name1 == Name2; + + return Name1->getName() == Name2->getName(); +} + +/// Determine whether two nested-name-specifiers are equivalent. +static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, + NestedNameSpecifier *NNS1, + NestedNameSpecifier *NNS2) { + if (NNS1->getKind() != NNS2->getKind()) + return false; + + NestedNameSpecifier *Prefix1 = NNS1->getPrefix(), + *Prefix2 = NNS2->getPrefix(); + if ((bool)Prefix1 != (bool)Prefix2) + return false; + + if (Prefix1) + if (!IsStructurallyEquivalent(Context, Prefix1, Prefix2)) + return false; + + switch (NNS1->getKind()) { + case NestedNameSpecifier::Identifier: + return IsStructurallyEquivalent(NNS1->getAsIdentifier(), + NNS2->getAsIdentifier()); + case NestedNameSpecifier::Namespace: + return IsStructurallyEquivalent(Context, NNS1->getAsNamespace(), + NNS2->getAsNamespace()); + case NestedNameSpecifier::NamespaceAlias: + return IsStructurallyEquivalent(Context, NNS1->getAsNamespaceAlias(), + NNS2->getAsNamespaceAlias()); + case NestedNameSpecifier::TypeSpec: + case NestedNameSpecifier::TypeSpecWithTemplate: + return IsStructurallyEquivalent(Context, QualType(NNS1->getAsType(), 0), + QualType(NNS2->getAsType(), 0)); + case NestedNameSpecifier::Global: + return true; + case NestedNameSpecifier::Super: + return IsStructurallyEquivalent(Context, NNS1->getAsRecordDecl(), + NNS2->getAsRecordDecl()); + } + return false; +} + +static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, + const TemplateName &N1, + const TemplateName &N2) { + TemplateDecl *TemplateDeclN1 = N1.getAsTemplateDecl(); + TemplateDecl *TemplateDeclN2 = N2.getAsTemplateDecl(); + if (TemplateDeclN1 && TemplateDeclN2) { + if (!IsStructurallyEquivalent(Context, TemplateDeclN1, TemplateDeclN2)) + return false; + // If the kind is different we compare only the template decl. + if (N1.getKind() != N2.getKind()) + return true; + } else if (TemplateDeclN1 || TemplateDeclN2) + return false; + else if (N1.getKind() != N2.getKind()) + return false; + + // Check for special case incompatibilities. + switch (N1.getKind()) { + + case TemplateName::OverloadedTemplate: { + OverloadedTemplateStorage *OS1 = N1.getAsOverloadedTemplate(), + *OS2 = N2.getAsOverloadedTemplate(); + OverloadedTemplateStorage::iterator I1 = OS1->begin(), I2 = OS2->begin(), + E1 = OS1->end(), E2 = OS2->end(); + for (; I1 != E1 && I2 != E2; ++I1, ++I2) + if (!IsStructurallyEquivalent(Context, *I1, *I2)) + return false; + return I1 == E1 && I2 == E2; + } + + case TemplateName::AssumedTemplate: { + AssumedTemplateStorage *TN1 = N1.getAsAssumedTemplateName(), + *TN2 = N1.getAsAssumedTemplateName(); + return TN1->getDeclName() == TN2->getDeclName(); + } + + case TemplateName::DependentTemplate: { + DependentTemplateName *DN1 = N1.getAsDependentTemplateName(), + *DN2 = N2.getAsDependentTemplateName(); + if (!IsStructurallyEquivalent(Context, DN1->getQualifier(), + DN2->getQualifier())) + return false; + if (DN1->isIdentifier() && DN2->isIdentifier()) + return IsStructurallyEquivalent(DN1->getIdentifier(), + DN2->getIdentifier()); + else if (DN1->isOverloadedOperator() && DN2->isOverloadedOperator()) + return DN1->getOperator() == DN2->getOperator(); + return false; + } + + case TemplateName::SubstTemplateTemplateParmPack: { + SubstTemplateTemplateParmPackStorage + *P1 = N1.getAsSubstTemplateTemplateParmPack(), + *P2 = N2.getAsSubstTemplateTemplateParmPack(); + return IsStructurallyEquivalent(Context, P1->getArgumentPack(), + P2->getArgumentPack()) && + IsStructurallyEquivalent(Context, P1->getParameterPack(), + P2->getParameterPack()); + } + + case TemplateName::Template: + case TemplateName::QualifiedTemplate: + case TemplateName::SubstTemplateTemplateParm: + // It is sufficient to check value of getAsTemplateDecl. + break; + + } + + return true; +} + +/// Determine whether two template arguments are equivalent. +static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, + const TemplateArgument &Arg1, + const TemplateArgument &Arg2) { + if (Arg1.getKind() != Arg2.getKind()) + return false; + + switch (Arg1.getKind()) { + case TemplateArgument::Null: + return true; + + case TemplateArgument::Type: + return IsStructurallyEquivalent(Context, Arg1.getAsType(), Arg2.getAsType()); + + case TemplateArgument::Integral: + if (!IsStructurallyEquivalent(Context, Arg1.getIntegralType(), + Arg2.getIntegralType())) + return false; + + return llvm::APSInt::isSameValue(Arg1.getAsIntegral(), + Arg2.getAsIntegral()); + + case TemplateArgument::Declaration: + return IsStructurallyEquivalent(Context, Arg1.getAsDecl(), Arg2.getAsDecl()); + + case TemplateArgument::NullPtr: + return true; // FIXME: Is this correct? + + case TemplateArgument::Template: + return IsStructurallyEquivalent(Context, Arg1.getAsTemplate(), + Arg2.getAsTemplate()); + + case TemplateArgument::TemplateExpansion: + return IsStructurallyEquivalent(Context, + Arg1.getAsTemplateOrTemplatePattern(), + Arg2.getAsTemplateOrTemplatePattern()); + + case TemplateArgument::Expression: + return IsStructurallyEquivalent(Context, Arg1.getAsExpr(), + Arg2.getAsExpr()); + + case TemplateArgument::Pack: + if (Arg1.pack_size() != Arg2.pack_size()) + return false; + + for (unsigned I = 0, N = Arg1.pack_size(); I != N; ++I) + if (!IsStructurallyEquivalent(Context, Arg1.pack_begin()[I], + Arg2.pack_begin()[I])) + return false; + + return true; + } + + llvm_unreachable("Invalid template argument kind"); +} + +/// Determine structural equivalence for the common part of array +/// types. +static bool IsArrayStructurallyEquivalent(StructuralEquivalenceContext &Context, + const ArrayType *Array1, + const ArrayType *Array2) { + if (!IsStructurallyEquivalent(Context, Array1->getElementType(), + Array2->getElementType())) + return false; + if (Array1->getSizeModifier() != Array2->getSizeModifier()) + return false; + if (Array1->getIndexTypeQualifiers() != Array2->getIndexTypeQualifiers()) + return false; + + return true; +} + +/// Determine structural equivalence based on the ExtInfo of functions. This +/// is inspired by ASTContext::mergeFunctionTypes(), we compare calling +/// conventions bits but must not compare some other bits. +static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, + FunctionType::ExtInfo EI1, + FunctionType::ExtInfo EI2) { + // Compatible functions must have compatible calling conventions. + if (EI1.getCC() != EI2.getCC()) + return false; + + // Regparm is part of the calling convention. + if (EI1.getHasRegParm() != EI2.getHasRegParm()) + return false; + if (EI1.getRegParm() != EI2.getRegParm()) + return false; + + if (EI1.getProducesResult() != EI2.getProducesResult()) + return false; + if (EI1.getNoCallerSavedRegs() != EI2.getNoCallerSavedRegs()) + return false; + if (EI1.getNoCfCheck() != EI2.getNoCfCheck()) + return false; + + return true; +} + +/// Check the equivalence of exception specifications. +static bool IsEquivalentExceptionSpec(StructuralEquivalenceContext &Context, + const FunctionProtoType *Proto1, + const FunctionProtoType *Proto2) { + + auto Spec1 = Proto1->getExceptionSpecType(); + auto Spec2 = Proto2->getExceptionSpecType(); + + if (isUnresolvedExceptionSpec(Spec1) || isUnresolvedExceptionSpec(Spec2)) + return true; + + if (Spec1 != Spec2) + return false; + if (Spec1 == EST_Dynamic) { + if (Proto1->getNumExceptions() != Proto2->getNumExceptions()) + return false; + for (unsigned I = 0, N = Proto1->getNumExceptions(); I != N; ++I) { + if (!IsStructurallyEquivalent(Context, Proto1->getExceptionType(I), + Proto2->getExceptionType(I))) + return false; + } + } else if (isComputedNoexcept(Spec1)) { + if (!IsStructurallyEquivalent(Context, Proto1->getNoexceptExpr(), + Proto2->getNoexceptExpr())) + return false; + } + + return true; +} + +/// Determine structural equivalence of two types. +static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, + QualType T1, QualType T2) { + if (T1.isNull() || T2.isNull()) + return T1.isNull() && T2.isNull(); + + QualType OrigT1 = T1; + QualType OrigT2 = T2; + + if (!Context.StrictTypeSpelling) { + // We aren't being strict about token-to-token equivalence of types, + // so map down to the canonical type. + T1 = Context.FromCtx.getCanonicalType(T1); + T2 = Context.ToCtx.getCanonicalType(T2); + } + + if (T1.getQualifiers() != T2.getQualifiers()) + return false; + + Type::TypeClass TC = T1->getTypeClass(); + + if (T1->getTypeClass() != T2->getTypeClass()) { + // Compare function types with prototypes vs. without prototypes as if + // both did not have prototypes. + if (T1->getTypeClass() == Type::FunctionProto && + T2->getTypeClass() == Type::FunctionNoProto) + TC = Type::FunctionNoProto; + else if (T1->getTypeClass() == Type::FunctionNoProto && + T2->getTypeClass() == Type::FunctionProto) + TC = Type::FunctionNoProto; + else + return false; + } + + switch (TC) { + case Type::Builtin: + // FIXME: Deal with Char_S/Char_U. + if (cast<BuiltinType>(T1)->getKind() != cast<BuiltinType>(T2)->getKind()) + return false; + break; + + case Type::Complex: + if (!IsStructurallyEquivalent(Context, + cast<ComplexType>(T1)->getElementType(), + cast<ComplexType>(T2)->getElementType())) + return false; + break; + + case Type::Adjusted: + case Type::Decayed: + if (!IsStructurallyEquivalent(Context, + cast<AdjustedType>(T1)->getOriginalType(), + cast<AdjustedType>(T2)->getOriginalType())) + return false; + break; + + case Type::Pointer: + if (!IsStructurallyEquivalent(Context, + cast<PointerType>(T1)->getPointeeType(), + cast<PointerType>(T2)->getPointeeType())) + return false; + break; + + case Type::BlockPointer: + if (!IsStructurallyEquivalent(Context, + cast<BlockPointerType>(T1)->getPointeeType(), + cast<BlockPointerType>(T2)->getPointeeType())) + return false; + break; + + case Type::LValueReference: + case Type::RValueReference: { + const auto *Ref1 = cast<ReferenceType>(T1); + const auto *Ref2 = cast<ReferenceType>(T2); + if (Ref1->isSpelledAsLValue() != Ref2->isSpelledAsLValue()) + return false; + if (Ref1->isInnerRef() != Ref2->isInnerRef()) + return false; + if (!IsStructurallyEquivalent(Context, Ref1->getPointeeTypeAsWritten(), + Ref2->getPointeeTypeAsWritten())) + return false; + break; + } + + case Type::MemberPointer: { + const auto *MemPtr1 = cast<MemberPointerType>(T1); + const auto *MemPtr2 = cast<MemberPointerType>(T2); + if (!IsStructurallyEquivalent(Context, MemPtr1->getPointeeType(), + MemPtr2->getPointeeType())) + return false; + if (!IsStructurallyEquivalent(Context, QualType(MemPtr1->getClass(), 0), + QualType(MemPtr2->getClass(), 0))) + return false; + break; + } + + case Type::ConstantArray: { + const auto *Array1 = cast<ConstantArrayType>(T1); + const auto *Array2 = cast<ConstantArrayType>(T2); + if (!llvm::APInt::isSameValue(Array1->getSize(), Array2->getSize())) + return false; + + if (!IsArrayStructurallyEquivalent(Context, Array1, Array2)) + return false; + break; + } + + case Type::IncompleteArray: + if (!IsArrayStructurallyEquivalent(Context, cast<ArrayType>(T1), + cast<ArrayType>(T2))) + return false; + break; + + case Type::VariableArray: { + const auto *Array1 = cast<VariableArrayType>(T1); + const auto *Array2 = cast<VariableArrayType>(T2); + if (!IsStructurallyEquivalent(Context, Array1->getSizeExpr(), + Array2->getSizeExpr())) + return false; + + if (!IsArrayStructurallyEquivalent(Context, Array1, Array2)) + return false; + + break; + } + + case Type::DependentSizedArray: { + const auto *Array1 = cast<DependentSizedArrayType>(T1); + const auto *Array2 = cast<DependentSizedArrayType>(T2); + if (!IsStructurallyEquivalent(Context, Array1->getSizeExpr(), + Array2->getSizeExpr())) + return false; + + if (!IsArrayStructurallyEquivalent(Context, Array1, Array2)) + return false; + + break; + } + + case Type::DependentAddressSpace: { + const auto *DepAddressSpace1 = cast<DependentAddressSpaceType>(T1); + const auto *DepAddressSpace2 = cast<DependentAddressSpaceType>(T2); + if (!IsStructurallyEquivalent(Context, DepAddressSpace1->getAddrSpaceExpr(), + DepAddressSpace2->getAddrSpaceExpr())) + return false; + if (!IsStructurallyEquivalent(Context, DepAddressSpace1->getPointeeType(), + DepAddressSpace2->getPointeeType())) + return false; + + break; + } + + case Type::DependentSizedExtVector: { + const auto *Vec1 = cast<DependentSizedExtVectorType>(T1); + const auto *Vec2 = cast<DependentSizedExtVectorType>(T2); + if (!IsStructurallyEquivalent(Context, Vec1->getSizeExpr(), + Vec2->getSizeExpr())) + return false; + if (!IsStructurallyEquivalent(Context, Vec1->getElementType(), + Vec2->getElementType())) + return false; + break; + } + + case Type::DependentVector: { + const auto *Vec1 = cast<DependentVectorType>(T1); + const auto *Vec2 = cast<DependentVectorType>(T2); + if (Vec1->getVectorKind() != Vec2->getVectorKind()) + return false; + if (!IsStructurallyEquivalent(Context, Vec1->getSizeExpr(), + Vec2->getSizeExpr())) + return false; + if (!IsStructurallyEquivalent(Context, Vec1->getElementType(), + Vec2->getElementType())) + return false; + break; + } + + case Type::Vector: + case Type::ExtVector: { + const auto *Vec1 = cast<VectorType>(T1); + const auto *Vec2 = cast<VectorType>(T2); + if (!IsStructurallyEquivalent(Context, Vec1->getElementType(), + Vec2->getElementType())) + return false; + if (Vec1->getNumElements() != Vec2->getNumElements()) + return false; + if (Vec1->getVectorKind() != Vec2->getVectorKind()) + return false; + break; + } + + case Type::FunctionProto: { + const auto *Proto1 = cast<FunctionProtoType>(T1); + const auto *Proto2 = cast<FunctionProtoType>(T2); + + if (Proto1->getNumParams() != Proto2->getNumParams()) + return false; + for (unsigned I = 0, N = Proto1->getNumParams(); I != N; ++I) { + if (!IsStructurallyEquivalent(Context, Proto1->getParamType(I), + Proto2->getParamType(I))) + return false; + } + if (Proto1->isVariadic() != Proto2->isVariadic()) + return false; + + if (Proto1->getMethodQuals() != Proto2->getMethodQuals()) + return false; + + // Check exceptions, this information is lost in canonical type. + const auto *OrigProto1 = + cast<FunctionProtoType>(OrigT1.getDesugaredType(Context.FromCtx)); + const auto *OrigProto2 = + cast<FunctionProtoType>(OrigT2.getDesugaredType(Context.ToCtx)); + if (!IsEquivalentExceptionSpec(Context, OrigProto1, OrigProto2)) + return false; + + // Fall through to check the bits common with FunctionNoProtoType. + LLVM_FALLTHROUGH; + } + + case Type::FunctionNoProto: { + const auto *Function1 = cast<FunctionType>(T1); + const auto *Function2 = cast<FunctionType>(T2); + if (!IsStructurallyEquivalent(Context, Function1->getReturnType(), + Function2->getReturnType())) + return false; + if (!IsStructurallyEquivalent(Context, Function1->getExtInfo(), + Function2->getExtInfo())) + return false; + break; + } + + case Type::UnresolvedUsing: + if (!IsStructurallyEquivalent(Context, + cast<UnresolvedUsingType>(T1)->getDecl(), + cast<UnresolvedUsingType>(T2)->getDecl())) + return false; + break; + + case Type::Attributed: + if (!IsStructurallyEquivalent(Context, + cast<AttributedType>(T1)->getModifiedType(), + cast<AttributedType>(T2)->getModifiedType())) + return false; + if (!IsStructurallyEquivalent( + Context, cast<AttributedType>(T1)->getEquivalentType(), + cast<AttributedType>(T2)->getEquivalentType())) + return false; + break; + + case Type::Paren: + if (!IsStructurallyEquivalent(Context, cast<ParenType>(T1)->getInnerType(), + cast<ParenType>(T2)->getInnerType())) + return false; + break; + + case Type::MacroQualified: + if (!IsStructurallyEquivalent( + Context, cast<MacroQualifiedType>(T1)->getUnderlyingType(), + cast<MacroQualifiedType>(T2)->getUnderlyingType())) + return false; + break; + + case Type::Typedef: + if (!IsStructurallyEquivalent(Context, cast<TypedefType>(T1)->getDecl(), + cast<TypedefType>(T2)->getDecl())) + return false; + break; + + case Type::TypeOfExpr: + if (!IsStructurallyEquivalent( + Context, cast<TypeOfExprType>(T1)->getUnderlyingExpr(), + cast<TypeOfExprType>(T2)->getUnderlyingExpr())) + return false; + break; + + case Type::TypeOf: + if (!IsStructurallyEquivalent(Context, + cast<TypeOfType>(T1)->getUnderlyingType(), + cast<TypeOfType>(T2)->getUnderlyingType())) + return false; + break; + + case Type::UnaryTransform: + if (!IsStructurallyEquivalent( + Context, cast<UnaryTransformType>(T1)->getUnderlyingType(), + cast<UnaryTransformType>(T2)->getUnderlyingType())) + return false; + break; + + case Type::Decltype: + if (!IsStructurallyEquivalent(Context, + cast<DecltypeType>(T1)->getUnderlyingExpr(), + cast<DecltypeType>(T2)->getUnderlyingExpr())) + return false; + break; + + case Type::Auto: { + auto *Auto1 = cast<AutoType>(T1); + auto *Auto2 = cast<AutoType>(T2); + if (!IsStructurallyEquivalent(Context, Auto1->getDeducedType(), + Auto2->getDeducedType())) + return false; + if (Auto1->isConstrained() != Auto2->isConstrained()) + return false; + if (Auto1->isConstrained()) { + if (Auto1->getTypeConstraintConcept() != + Auto2->getTypeConstraintConcept()) + return false; + ArrayRef<TemplateArgument> Auto1Args = + Auto1->getTypeConstraintArguments(); + ArrayRef<TemplateArgument> Auto2Args = + Auto2->getTypeConstraintArguments(); + if (Auto1Args.size() != Auto2Args.size()) + return false; + for (unsigned I = 0, N = Auto1Args.size(); I != N; ++I) { + if (!IsStructurallyEquivalent(Context, Auto1Args[I], Auto2Args[I])) + return false; + } + } + break; + } + + case Type::DeducedTemplateSpecialization: { + const auto *DT1 = cast<DeducedTemplateSpecializationType>(T1); + const auto *DT2 = cast<DeducedTemplateSpecializationType>(T2); + if (!IsStructurallyEquivalent(Context, DT1->getTemplateName(), + DT2->getTemplateName())) + return false; + if (!IsStructurallyEquivalent(Context, DT1->getDeducedType(), + DT2->getDeducedType())) + return false; + break; + } + + case Type::Record: + case Type::Enum: + if (!IsStructurallyEquivalent(Context, cast<TagType>(T1)->getDecl(), + cast<TagType>(T2)->getDecl())) + return false; + break; + + case Type::TemplateTypeParm: { + const auto *Parm1 = cast<TemplateTypeParmType>(T1); + const auto *Parm2 = cast<TemplateTypeParmType>(T2); + if (Parm1->getDepth() != Parm2->getDepth()) + return false; + if (Parm1->getIndex() != Parm2->getIndex()) + return false; + if (Parm1->isParameterPack() != Parm2->isParameterPack()) + return false; + + // Names of template type parameters are never significant. + break; + } + + case Type::SubstTemplateTypeParm: { + const auto *Subst1 = cast<SubstTemplateTypeParmType>(T1); + const auto *Subst2 = cast<SubstTemplateTypeParmType>(T2); + if (!IsStructurallyEquivalent(Context, + QualType(Subst1->getReplacedParameter(), 0), + QualType(Subst2->getReplacedParameter(), 0))) + return false; + if (!IsStructurallyEquivalent(Context, Subst1->getReplacementType(), + Subst2->getReplacementType())) + return false; + break; + } + + case Type::SubstTemplateTypeParmPack: { + const auto *Subst1 = cast<SubstTemplateTypeParmPackType>(T1); + const auto *Subst2 = cast<SubstTemplateTypeParmPackType>(T2); + if (!IsStructurallyEquivalent(Context, + QualType(Subst1->getReplacedParameter(), 0), + QualType(Subst2->getReplacedParameter(), 0))) + return false; + if (!IsStructurallyEquivalent(Context, Subst1->getArgumentPack(), + Subst2->getArgumentPack())) + return false; + break; + } + + case Type::TemplateSpecialization: { + const auto *Spec1 = cast<TemplateSpecializationType>(T1); + const auto *Spec2 = cast<TemplateSpecializationType>(T2); + if (!IsStructurallyEquivalent(Context, Spec1->getTemplateName(), + Spec2->getTemplateName())) + return false; + if (Spec1->getNumArgs() != Spec2->getNumArgs()) + return false; + for (unsigned I = 0, N = Spec1->getNumArgs(); I != N; ++I) { + if (!IsStructurallyEquivalent(Context, Spec1->getArg(I), + Spec2->getArg(I))) + return false; + } + break; + } + + case Type::Elaborated: { + const auto *Elab1 = cast<ElaboratedType>(T1); + const auto *Elab2 = cast<ElaboratedType>(T2); + // CHECKME: what if a keyword is ETK_None or ETK_typename ? + if (Elab1->getKeyword() != Elab2->getKeyword()) + return false; + if (!IsStructurallyEquivalent(Context, Elab1->getQualifier(), + Elab2->getQualifier())) + return false; + if (!IsStructurallyEquivalent(Context, Elab1->getNamedType(), + Elab2->getNamedType())) + return false; + break; + } + + case Type::InjectedClassName: { + const auto *Inj1 = cast<InjectedClassNameType>(T1); + const auto *Inj2 = cast<InjectedClassNameType>(T2); + if (!IsStructurallyEquivalent(Context, + Inj1->getInjectedSpecializationType(), + Inj2->getInjectedSpecializationType())) + return false; + break; + } + + case Type::DependentName: { + const auto *Typename1 = cast<DependentNameType>(T1); + const auto *Typename2 = cast<DependentNameType>(T2); + if (!IsStructurallyEquivalent(Context, Typename1->getQualifier(), + Typename2->getQualifier())) + return false; + if (!IsStructurallyEquivalent(Typename1->getIdentifier(), + Typename2->getIdentifier())) + return false; + + break; + } + + case Type::DependentTemplateSpecialization: { + const auto *Spec1 = cast<DependentTemplateSpecializationType>(T1); + const auto *Spec2 = cast<DependentTemplateSpecializationType>(T2); + if (!IsStructurallyEquivalent(Context, Spec1->getQualifier(), + Spec2->getQualifier())) + return false; + if (!IsStructurallyEquivalent(Spec1->getIdentifier(), + Spec2->getIdentifier())) + return false; + if (Spec1->getNumArgs() != Spec2->getNumArgs()) + return false; + for (unsigned I = 0, N = Spec1->getNumArgs(); I != N; ++I) { + if (!IsStructurallyEquivalent(Context, Spec1->getArg(I), + Spec2->getArg(I))) + return false; + } + break; + } + + case Type::PackExpansion: + if (!IsStructurallyEquivalent(Context, + cast<PackExpansionType>(T1)->getPattern(), + cast<PackExpansionType>(T2)->getPattern())) + return false; + break; + + case Type::ObjCInterface: { + const auto *Iface1 = cast<ObjCInterfaceType>(T1); + const auto *Iface2 = cast<ObjCInterfaceType>(T2); + if (!IsStructurallyEquivalent(Context, Iface1->getDecl(), + Iface2->getDecl())) + return false; + break; + } + + case Type::ObjCTypeParam: { + const auto *Obj1 = cast<ObjCTypeParamType>(T1); + const auto *Obj2 = cast<ObjCTypeParamType>(T2); + if (!IsStructurallyEquivalent(Context, Obj1->getDecl(), Obj2->getDecl())) + return false; + + if (Obj1->getNumProtocols() != Obj2->getNumProtocols()) + return false; + for (unsigned I = 0, N = Obj1->getNumProtocols(); I != N; ++I) { + if (!IsStructurallyEquivalent(Context, Obj1->getProtocol(I), + Obj2->getProtocol(I))) + return false; + } + break; + } + + case Type::ObjCObject: { + const auto *Obj1 = cast<ObjCObjectType>(T1); + const auto *Obj2 = cast<ObjCObjectType>(T2); + if (!IsStructurallyEquivalent(Context, Obj1->getBaseType(), + Obj2->getBaseType())) + return false; + if (Obj1->getNumProtocols() != Obj2->getNumProtocols()) + return false; + for (unsigned I = 0, N = Obj1->getNumProtocols(); I != N; ++I) { + if (!IsStructurallyEquivalent(Context, Obj1->getProtocol(I), + Obj2->getProtocol(I))) + return false; + } + break; + } + + case Type::ObjCObjectPointer: { + const auto *Ptr1 = cast<ObjCObjectPointerType>(T1); + const auto *Ptr2 = cast<ObjCObjectPointerType>(T2); + if (!IsStructurallyEquivalent(Context, Ptr1->getPointeeType(), + Ptr2->getPointeeType())) + return false; + break; + } + + case Type::Atomic: + if (!IsStructurallyEquivalent(Context, cast<AtomicType>(T1)->getValueType(), + cast<AtomicType>(T2)->getValueType())) + return false; + break; + + case Type::Pipe: + if (!IsStructurallyEquivalent(Context, cast<PipeType>(T1)->getElementType(), + cast<PipeType>(T2)->getElementType())) + return false; + break; + } // end switch + + return true; +} + +/// Determine structural equivalence of two fields. +static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, + FieldDecl *Field1, FieldDecl *Field2) { + const auto *Owner2 = cast<RecordDecl>(Field2->getDeclContext()); + + // For anonymous structs/unions, match up the anonymous struct/union type + // declarations directly, so that we don't go off searching for anonymous + // types + if (Field1->isAnonymousStructOrUnion() && + Field2->isAnonymousStructOrUnion()) { + RecordDecl *D1 = Field1->getType()->castAs<RecordType>()->getDecl(); + RecordDecl *D2 = Field2->getType()->castAs<RecordType>()->getDecl(); + return IsStructurallyEquivalent(Context, D1, D2); + } + + // Check for equivalent field names. + IdentifierInfo *Name1 = Field1->getIdentifier(); + IdentifierInfo *Name2 = Field2->getIdentifier(); + if (!::IsStructurallyEquivalent(Name1, Name2)) { + if (Context.Complain) { + Context.Diag2( + Owner2->getLocation(), + Context.getApplicableDiagnostic(diag::err_odr_tag_type_inconsistent)) + << Context.ToCtx.getTypeDeclType(Owner2); + Context.Diag2(Field2->getLocation(), diag::note_odr_field_name) + << Field2->getDeclName(); + Context.Diag1(Field1->getLocation(), diag::note_odr_field_name) + << Field1->getDeclName(); + } + return false; + } + + if (!IsStructurallyEquivalent(Context, Field1->getType(), + Field2->getType())) { + if (Context.Complain) { + Context.Diag2( + Owner2->getLocation(), + Context.getApplicableDiagnostic(diag::err_odr_tag_type_inconsistent)) + << Context.ToCtx.getTypeDeclType(Owner2); + Context.Diag2(Field2->getLocation(), diag::note_odr_field) + << Field2->getDeclName() << Field2->getType(); + Context.Diag1(Field1->getLocation(), diag::note_odr_field) + << Field1->getDeclName() << Field1->getType(); + } + return false; + } + + if (Field1->isBitField() != Field2->isBitField()) { + if (Context.Complain) { + Context.Diag2( + Owner2->getLocation(), + Context.getApplicableDiagnostic(diag::err_odr_tag_type_inconsistent)) + << Context.ToCtx.getTypeDeclType(Owner2); + if (Field1->isBitField()) { + Context.Diag1(Field1->getLocation(), diag::note_odr_bit_field) + << Field1->getDeclName() << Field1->getType() + << Field1->getBitWidthValue(Context.FromCtx); + Context.Diag2(Field2->getLocation(), diag::note_odr_not_bit_field) + << Field2->getDeclName(); + } else { + Context.Diag2(Field2->getLocation(), diag::note_odr_bit_field) + << Field2->getDeclName() << Field2->getType() + << Field2->getBitWidthValue(Context.ToCtx); + Context.Diag1(Field1->getLocation(), diag::note_odr_not_bit_field) + << Field1->getDeclName(); + } + } + return false; + } + + if (Field1->isBitField()) { + // Make sure that the bit-fields are the same length. + unsigned Bits1 = Field1->getBitWidthValue(Context.FromCtx); + unsigned Bits2 = Field2->getBitWidthValue(Context.ToCtx); + + if (Bits1 != Bits2) { + if (Context.Complain) { + Context.Diag2(Owner2->getLocation(), + Context.getApplicableDiagnostic( + diag::err_odr_tag_type_inconsistent)) + << Context.ToCtx.getTypeDeclType(Owner2); + Context.Diag2(Field2->getLocation(), diag::note_odr_bit_field) + << Field2->getDeclName() << Field2->getType() << Bits2; + Context.Diag1(Field1->getLocation(), diag::note_odr_bit_field) + << Field1->getDeclName() << Field1->getType() << Bits1; + } + return false; + } + } + + return true; +} + +/// Determine structural equivalence of two methods. +static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, + CXXMethodDecl *Method1, + CXXMethodDecl *Method2) { + bool PropertiesEqual = + Method1->getDeclKind() == Method2->getDeclKind() && + Method1->getRefQualifier() == Method2->getRefQualifier() && + Method1->getAccess() == Method2->getAccess() && + Method1->getOverloadedOperator() == Method2->getOverloadedOperator() && + Method1->isStatic() == Method2->isStatic() && + Method1->isConst() == Method2->isConst() && + Method1->isVolatile() == Method2->isVolatile() && + Method1->isVirtual() == Method2->isVirtual() && + Method1->isPure() == Method2->isPure() && + Method1->isDefaulted() == Method2->isDefaulted() && + Method1->isDeleted() == Method2->isDeleted(); + if (!PropertiesEqual) + return false; + // FIXME: Check for 'final'. + + if (auto *Constructor1 = dyn_cast<CXXConstructorDecl>(Method1)) { + auto *Constructor2 = cast<CXXConstructorDecl>(Method2); + if (!Constructor1->getExplicitSpecifier().isEquivalent( + Constructor2->getExplicitSpecifier())) + return false; + } + + if (auto *Conversion1 = dyn_cast<CXXConversionDecl>(Method1)) { + auto *Conversion2 = cast<CXXConversionDecl>(Method2); + if (!Conversion1->getExplicitSpecifier().isEquivalent( + Conversion2->getExplicitSpecifier())) + return false; + if (!IsStructurallyEquivalent(Context, Conversion1->getConversionType(), + Conversion2->getConversionType())) + return false; + } + + const IdentifierInfo *Name1 = Method1->getIdentifier(); + const IdentifierInfo *Name2 = Method2->getIdentifier(); + if (!::IsStructurallyEquivalent(Name1, Name2)) { + return false; + // TODO: Names do not match, add warning like at check for FieldDecl. + } + + // Check the prototypes. + if (!::IsStructurallyEquivalent(Context, + Method1->getType(), Method2->getType())) + return false; + + return true; +} + +/// Determine structural equivalence of two lambda classes. +static bool +IsStructurallyEquivalentLambdas(StructuralEquivalenceContext &Context, + CXXRecordDecl *D1, CXXRecordDecl *D2) { + assert(D1->isLambda() && D2->isLambda() && + "Must be called on lambda classes"); + if (!IsStructurallyEquivalent(Context, D1->getLambdaCallOperator(), + D2->getLambdaCallOperator())) + return false; + + return true; +} + +/// Determine structural equivalence of two records. +static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, + RecordDecl *D1, RecordDecl *D2) { + if (D1->isUnion() != D2->isUnion()) { + if (Context.Complain) { + Context.Diag2(D2->getLocation(), Context.getApplicableDiagnostic( + diag::err_odr_tag_type_inconsistent)) + << Context.ToCtx.getTypeDeclType(D2); + Context.Diag1(D1->getLocation(), diag::note_odr_tag_kind_here) + << D1->getDeclName() << (unsigned)D1->getTagKind(); + } + return false; + } + + if (!D1->getDeclName() && !D2->getDeclName()) { + // If both anonymous structs/unions are in a record context, make sure + // they occur in the same location in the context records. + if (Optional<unsigned> Index1 = + StructuralEquivalenceContext::findUntaggedStructOrUnionIndex(D1)) { + if (Optional<unsigned> Index2 = + StructuralEquivalenceContext::findUntaggedStructOrUnionIndex( + D2)) { + if (*Index1 != *Index2) + return false; + } + } + } + + // If both declarations are class template specializations, we know + // the ODR applies, so check the template and template arguments. + const auto *Spec1 = dyn_cast<ClassTemplateSpecializationDecl>(D1); + const auto *Spec2 = dyn_cast<ClassTemplateSpecializationDecl>(D2); + if (Spec1 && Spec2) { + // Check that the specialized templates are the same. + if (!IsStructurallyEquivalent(Context, Spec1->getSpecializedTemplate(), + Spec2->getSpecializedTemplate())) + return false; + + // Check that the template arguments are the same. + if (Spec1->getTemplateArgs().size() != Spec2->getTemplateArgs().size()) + return false; + + for (unsigned I = 0, N = Spec1->getTemplateArgs().size(); I != N; ++I) + if (!IsStructurallyEquivalent(Context, Spec1->getTemplateArgs().get(I), + Spec2->getTemplateArgs().get(I))) + return false; + } + // If one is a class template specialization and the other is not, these + // structures are different. + else if (Spec1 || Spec2) + return false; + + // Compare the definitions of these two records. If either or both are + // incomplete (i.e. it is a forward decl), we assume that they are + // equivalent. + D1 = D1->getDefinition(); + D2 = D2->getDefinition(); + if (!D1 || !D2) + return true; + + // If any of the records has external storage and we do a minimal check (or + // AST import) we assume they are equivalent. (If we didn't have this + // assumption then `RecordDecl::LoadFieldsFromExternalStorage` could trigger + // another AST import which in turn would call the structural equivalency + // check again and finally we'd have an improper result.) + if (Context.EqKind == StructuralEquivalenceKind::Minimal) + if (D1->hasExternalLexicalStorage() || D2->hasExternalLexicalStorage()) + return true; + + // If one definition is currently being defined, we do not compare for + // equality and we assume that the decls are equal. + if (D1->isBeingDefined() || D2->isBeingDefined()) + return true; + + if (auto *D1CXX = dyn_cast<CXXRecordDecl>(D1)) { + if (auto *D2CXX = dyn_cast<CXXRecordDecl>(D2)) { + if (D1CXX->hasExternalLexicalStorage() && + !D1CXX->isCompleteDefinition()) { + D1CXX->getASTContext().getExternalSource()->CompleteType(D1CXX); + } + + if (D1CXX->isLambda() != D2CXX->isLambda()) + return false; + if (D1CXX->isLambda()) { + if (!IsStructurallyEquivalentLambdas(Context, D1CXX, D2CXX)) + return false; + } + + if (D1CXX->getNumBases() != D2CXX->getNumBases()) { + if (Context.Complain) { + Context.Diag2(D2->getLocation(), + Context.getApplicableDiagnostic( + diag::err_odr_tag_type_inconsistent)) + << Context.ToCtx.getTypeDeclType(D2); + Context.Diag2(D2->getLocation(), diag::note_odr_number_of_bases) + << D2CXX->getNumBases(); + Context.Diag1(D1->getLocation(), diag::note_odr_number_of_bases) + << D1CXX->getNumBases(); + } + return false; + } + + // Check the base classes. + for (CXXRecordDecl::base_class_iterator Base1 = D1CXX->bases_begin(), + BaseEnd1 = D1CXX->bases_end(), + Base2 = D2CXX->bases_begin(); + Base1 != BaseEnd1; ++Base1, ++Base2) { + if (!IsStructurallyEquivalent(Context, Base1->getType(), + Base2->getType())) { + if (Context.Complain) { + Context.Diag2(D2->getLocation(), + Context.getApplicableDiagnostic( + diag::err_odr_tag_type_inconsistent)) + << Context.ToCtx.getTypeDeclType(D2); + Context.Diag2(Base2->getBeginLoc(), diag::note_odr_base) + << Base2->getType() << Base2->getSourceRange(); + Context.Diag1(Base1->getBeginLoc(), diag::note_odr_base) + << Base1->getType() << Base1->getSourceRange(); + } + return false; + } + + // Check virtual vs. non-virtual inheritance mismatch. + if (Base1->isVirtual() != Base2->isVirtual()) { + if (Context.Complain) { + Context.Diag2(D2->getLocation(), + Context.getApplicableDiagnostic( + diag::err_odr_tag_type_inconsistent)) + << Context.ToCtx.getTypeDeclType(D2); + Context.Diag2(Base2->getBeginLoc(), diag::note_odr_virtual_base) + << Base2->isVirtual() << Base2->getSourceRange(); + Context.Diag1(Base1->getBeginLoc(), diag::note_odr_base) + << Base1->isVirtual() << Base1->getSourceRange(); + } + return false; + } + } + + // Check the friends for consistency. + CXXRecordDecl::friend_iterator Friend2 = D2CXX->friend_begin(), + Friend2End = D2CXX->friend_end(); + for (CXXRecordDecl::friend_iterator Friend1 = D1CXX->friend_begin(), + Friend1End = D1CXX->friend_end(); + Friend1 != Friend1End; ++Friend1, ++Friend2) { + if (Friend2 == Friend2End) { + if (Context.Complain) { + Context.Diag2(D2->getLocation(), + Context.getApplicableDiagnostic( + diag::err_odr_tag_type_inconsistent)) + << Context.ToCtx.getTypeDeclType(D2CXX); + Context.Diag1((*Friend1)->getFriendLoc(), diag::note_odr_friend); + Context.Diag2(D2->getLocation(), diag::note_odr_missing_friend); + } + return false; + } + + if (!IsStructurallyEquivalent(Context, *Friend1, *Friend2)) { + if (Context.Complain) { + Context.Diag2(D2->getLocation(), + Context.getApplicableDiagnostic( + diag::err_odr_tag_type_inconsistent)) + << Context.ToCtx.getTypeDeclType(D2CXX); + Context.Diag1((*Friend1)->getFriendLoc(), diag::note_odr_friend); + Context.Diag2((*Friend2)->getFriendLoc(), diag::note_odr_friend); + } + return false; + } + } + + if (Friend2 != Friend2End) { + if (Context.Complain) { + Context.Diag2(D2->getLocation(), + Context.getApplicableDiagnostic( + diag::err_odr_tag_type_inconsistent)) + << Context.ToCtx.getTypeDeclType(D2); + Context.Diag2((*Friend2)->getFriendLoc(), diag::note_odr_friend); + Context.Diag1(D1->getLocation(), diag::note_odr_missing_friend); + } + return false; + } + } else if (D1CXX->getNumBases() > 0) { + if (Context.Complain) { + Context.Diag2(D2->getLocation(), + Context.getApplicableDiagnostic( + diag::err_odr_tag_type_inconsistent)) + << Context.ToCtx.getTypeDeclType(D2); + const CXXBaseSpecifier *Base1 = D1CXX->bases_begin(); + Context.Diag1(Base1->getBeginLoc(), diag::note_odr_base) + << Base1->getType() << Base1->getSourceRange(); + Context.Diag2(D2->getLocation(), diag::note_odr_missing_base); + } + return false; + } + } + + // Check the fields for consistency. + RecordDecl::field_iterator Field2 = D2->field_begin(), + Field2End = D2->field_end(); + for (RecordDecl::field_iterator Field1 = D1->field_begin(), + Field1End = D1->field_end(); + Field1 != Field1End; ++Field1, ++Field2) { + if (Field2 == Field2End) { + if (Context.Complain) { + Context.Diag2(D2->getLocation(), + Context.getApplicableDiagnostic( + diag::err_odr_tag_type_inconsistent)) + << Context.ToCtx.getTypeDeclType(D2); + Context.Diag1(Field1->getLocation(), diag::note_odr_field) + << Field1->getDeclName() << Field1->getType(); + Context.Diag2(D2->getLocation(), diag::note_odr_missing_field); + } + return false; + } + + if (!IsStructurallyEquivalent(Context, *Field1, *Field2)) + return false; + } + + if (Field2 != Field2End) { + if (Context.Complain) { + Context.Diag2(D2->getLocation(), Context.getApplicableDiagnostic( + diag::err_odr_tag_type_inconsistent)) + << Context.ToCtx.getTypeDeclType(D2); + Context.Diag2(Field2->getLocation(), diag::note_odr_field) + << Field2->getDeclName() << Field2->getType(); + Context.Diag1(D1->getLocation(), diag::note_odr_missing_field); + } + return false; + } + + return true; +} + +/// Determine structural equivalence of two enums. +static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, + EnumDecl *D1, EnumDecl *D2) { + + // Compare the definitions of these two enums. If either or both are + // incomplete (i.e. forward declared), we assume that they are equivalent. + D1 = D1->getDefinition(); + D2 = D2->getDefinition(); + if (!D1 || !D2) + return true; + + EnumDecl::enumerator_iterator EC2 = D2->enumerator_begin(), + EC2End = D2->enumerator_end(); + for (EnumDecl::enumerator_iterator EC1 = D1->enumerator_begin(), + EC1End = D1->enumerator_end(); + EC1 != EC1End; ++EC1, ++EC2) { + if (EC2 == EC2End) { + if (Context.Complain) { + Context.Diag2(D2->getLocation(), + Context.getApplicableDiagnostic( + diag::err_odr_tag_type_inconsistent)) + << Context.ToCtx.getTypeDeclType(D2); + Context.Diag1(EC1->getLocation(), diag::note_odr_enumerator) + << EC1->getDeclName() << EC1->getInitVal().toString(10); + Context.Diag2(D2->getLocation(), diag::note_odr_missing_enumerator); + } + return false; + } + + llvm::APSInt Val1 = EC1->getInitVal(); + llvm::APSInt Val2 = EC2->getInitVal(); + if (!llvm::APSInt::isSameValue(Val1, Val2) || + !IsStructurallyEquivalent(EC1->getIdentifier(), EC2->getIdentifier())) { + if (Context.Complain) { + Context.Diag2(D2->getLocation(), + Context.getApplicableDiagnostic( + diag::err_odr_tag_type_inconsistent)) + << Context.ToCtx.getTypeDeclType(D2); + Context.Diag2(EC2->getLocation(), diag::note_odr_enumerator) + << EC2->getDeclName() << EC2->getInitVal().toString(10); + Context.Diag1(EC1->getLocation(), diag::note_odr_enumerator) + << EC1->getDeclName() << EC1->getInitVal().toString(10); + } + return false; + } + } + + if (EC2 != EC2End) { + if (Context.Complain) { + Context.Diag2(D2->getLocation(), Context.getApplicableDiagnostic( + diag::err_odr_tag_type_inconsistent)) + << Context.ToCtx.getTypeDeclType(D2); + Context.Diag2(EC2->getLocation(), diag::note_odr_enumerator) + << EC2->getDeclName() << EC2->getInitVal().toString(10); + Context.Diag1(D1->getLocation(), diag::note_odr_missing_enumerator); + } + return false; + } + + return true; +} + +static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, + TemplateParameterList *Params1, + TemplateParameterList *Params2) { + if (Params1->size() != Params2->size()) { + if (Context.Complain) { + Context.Diag2(Params2->getTemplateLoc(), + Context.getApplicableDiagnostic( + diag::err_odr_different_num_template_parameters)) + << Params1->size() << Params2->size(); + Context.Diag1(Params1->getTemplateLoc(), + diag::note_odr_template_parameter_list); + } + return false; + } + + for (unsigned I = 0, N = Params1->size(); I != N; ++I) { + if (Params1->getParam(I)->getKind() != Params2->getParam(I)->getKind()) { + if (Context.Complain) { + Context.Diag2(Params2->getParam(I)->getLocation(), + Context.getApplicableDiagnostic( + diag::err_odr_different_template_parameter_kind)); + Context.Diag1(Params1->getParam(I)->getLocation(), + diag::note_odr_template_parameter_here); + } + return false; + } + + if (!IsStructurallyEquivalent(Context, Params1->getParam(I), + Params2->getParam(I))) + return false; + } + + return true; +} + +static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, + TemplateTypeParmDecl *D1, + TemplateTypeParmDecl *D2) { + if (D1->isParameterPack() != D2->isParameterPack()) { + if (Context.Complain) { + Context.Diag2(D2->getLocation(), + Context.getApplicableDiagnostic( + diag::err_odr_parameter_pack_non_pack)) + << D2->isParameterPack(); + Context.Diag1(D1->getLocation(), diag::note_odr_parameter_pack_non_pack) + << D1->isParameterPack(); + } + return false; + } + + return true; +} + +static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, + NonTypeTemplateParmDecl *D1, + NonTypeTemplateParmDecl *D2) { + if (D1->isParameterPack() != D2->isParameterPack()) { + if (Context.Complain) { + Context.Diag2(D2->getLocation(), + Context.getApplicableDiagnostic( + diag::err_odr_parameter_pack_non_pack)) + << D2->isParameterPack(); + Context.Diag1(D1->getLocation(), diag::note_odr_parameter_pack_non_pack) + << D1->isParameterPack(); + } + return false; + } + + // Check types. + if (!IsStructurallyEquivalent(Context, D1->getType(), D2->getType())) { + if (Context.Complain) { + Context.Diag2(D2->getLocation(), + Context.getApplicableDiagnostic( + diag::err_odr_non_type_parameter_type_inconsistent)) + << D2->getType() << D1->getType(); + Context.Diag1(D1->getLocation(), diag::note_odr_value_here) + << D1->getType(); + } + return false; + } + + return true; +} + +static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, + TemplateTemplateParmDecl *D1, + TemplateTemplateParmDecl *D2) { + if (D1->isParameterPack() != D2->isParameterPack()) { + if (Context.Complain) { + Context.Diag2(D2->getLocation(), + Context.getApplicableDiagnostic( + diag::err_odr_parameter_pack_non_pack)) + << D2->isParameterPack(); + Context.Diag1(D1->getLocation(), diag::note_odr_parameter_pack_non_pack) + << D1->isParameterPack(); + } + return false; + } + + // Check template parameter lists. + return IsStructurallyEquivalent(Context, D1->getTemplateParameters(), + D2->getTemplateParameters()); +} + +static bool IsTemplateDeclCommonStructurallyEquivalent( + StructuralEquivalenceContext &Ctx, TemplateDecl *D1, TemplateDecl *D2) { + if (!IsStructurallyEquivalent(D1->getIdentifier(), D2->getIdentifier())) + return false; + if (!D1->getIdentifier()) // Special name + if (D1->getNameAsString() != D2->getNameAsString()) + return false; + return IsStructurallyEquivalent(Ctx, D1->getTemplateParameters(), + D2->getTemplateParameters()); +} + +static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, + ClassTemplateDecl *D1, + ClassTemplateDecl *D2) { + // Check template parameters. + if (!IsTemplateDeclCommonStructurallyEquivalent(Context, D1, D2)) + return false; + + // Check the templated declaration. + return IsStructurallyEquivalent(Context, D1->getTemplatedDecl(), + D2->getTemplatedDecl()); +} + +static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, + FunctionTemplateDecl *D1, + FunctionTemplateDecl *D2) { + // Check template parameters. + if (!IsTemplateDeclCommonStructurallyEquivalent(Context, D1, D2)) + return false; + + // Check the templated declaration. + return IsStructurallyEquivalent(Context, D1->getTemplatedDecl()->getType(), + D2->getTemplatedDecl()->getType()); +} + +static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, + ConceptDecl *D1, + ConceptDecl *D2) { + // Check template parameters. + if (!IsTemplateDeclCommonStructurallyEquivalent(Context, D1, D2)) + return false; + + // Check the constraint expression. + return IsStructurallyEquivalent(Context, D1->getConstraintExpr(), + D2->getConstraintExpr()); +} + +static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, + FriendDecl *D1, FriendDecl *D2) { + if ((D1->getFriendType() && D2->getFriendDecl()) || + (D1->getFriendDecl() && D2->getFriendType())) { + return false; + } + if (D1->getFriendType() && D2->getFriendType()) + return IsStructurallyEquivalent(Context, + D1->getFriendType()->getType(), + D2->getFriendType()->getType()); + if (D1->getFriendDecl() && D2->getFriendDecl()) + return IsStructurallyEquivalent(Context, D1->getFriendDecl(), + D2->getFriendDecl()); + return false; +} + +static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, + FunctionDecl *D1, FunctionDecl *D2) { + // FIXME: Consider checking for function attributes as well. + if (!IsStructurallyEquivalent(Context, D1->getType(), D2->getType())) + return false; + + return true; +} + +/// Determine structural equivalence of two declarations. +static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, + Decl *D1, Decl *D2) { + // FIXME: Check for known structural equivalences via a callback of some sort. + + D1 = D1->getCanonicalDecl(); + D2 = D2->getCanonicalDecl(); + std::pair<Decl *, Decl *> P{D1, D2}; + + // Check whether we already know that these two declarations are not + // structurally equivalent. + if (Context.NonEquivalentDecls.count(P)) + return false; + + // Check if a check for these declarations is already pending. + // If yes D1 and D2 will be checked later (from DeclsToCheck), + // or these are already checked (and equivalent). + bool Inserted = Context.VisitedDecls.insert(P).second; + if (!Inserted) + return true; + + Context.DeclsToCheck.push(P); + + return true; +} + +DiagnosticBuilder StructuralEquivalenceContext::Diag1(SourceLocation Loc, + unsigned DiagID) { + assert(Complain && "Not allowed to complain"); + if (LastDiagFromC2) + FromCtx.getDiagnostics().notePriorDiagnosticFrom(ToCtx.getDiagnostics()); + LastDiagFromC2 = false; + return FromCtx.getDiagnostics().Report(Loc, DiagID); +} + +DiagnosticBuilder StructuralEquivalenceContext::Diag2(SourceLocation Loc, + unsigned DiagID) { + assert(Complain && "Not allowed to complain"); + if (!LastDiagFromC2) + ToCtx.getDiagnostics().notePriorDiagnosticFrom(FromCtx.getDiagnostics()); + LastDiagFromC2 = true; + return ToCtx.getDiagnostics().Report(Loc, DiagID); +} + +Optional<unsigned> +StructuralEquivalenceContext::findUntaggedStructOrUnionIndex(RecordDecl *Anon) { + ASTContext &Context = Anon->getASTContext(); + QualType AnonTy = Context.getRecordType(Anon); + + const auto *Owner = dyn_cast<RecordDecl>(Anon->getDeclContext()); + if (!Owner) + return None; + + unsigned Index = 0; + for (const auto *D : Owner->noload_decls()) { + const auto *F = dyn_cast<FieldDecl>(D); + if (!F) + continue; + + if (F->isAnonymousStructOrUnion()) { + if (Context.hasSameType(F->getType(), AnonTy)) + break; + ++Index; + continue; + } + + // If the field looks like this: + // struct { ... } A; + QualType FieldType = F->getType(); + // In case of nested structs. + while (const auto *ElabType = dyn_cast<ElaboratedType>(FieldType)) + FieldType = ElabType->getNamedType(); + + if (const auto *RecType = dyn_cast<RecordType>(FieldType)) { + const RecordDecl *RecDecl = RecType->getDecl(); + if (RecDecl->getDeclContext() == Owner && !RecDecl->getIdentifier()) { + if (Context.hasSameType(FieldType, AnonTy)) + break; + ++Index; + continue; + } + } + } + + return Index; +} + +unsigned StructuralEquivalenceContext::getApplicableDiagnostic( + unsigned ErrorDiagnostic) { + if (ErrorOnTagTypeMismatch) + return ErrorDiagnostic; + + switch (ErrorDiagnostic) { + case diag::err_odr_variable_type_inconsistent: + return diag::warn_odr_variable_type_inconsistent; + case diag::err_odr_variable_multiple_def: + return diag::warn_odr_variable_multiple_def; + case diag::err_odr_function_type_inconsistent: + return diag::warn_odr_function_type_inconsistent; + case diag::err_odr_tag_type_inconsistent: + return diag::warn_odr_tag_type_inconsistent; + case diag::err_odr_field_type_inconsistent: + return diag::warn_odr_field_type_inconsistent; + case diag::err_odr_ivar_type_inconsistent: + return diag::warn_odr_ivar_type_inconsistent; + case diag::err_odr_objc_superclass_inconsistent: + return diag::warn_odr_objc_superclass_inconsistent; + case diag::err_odr_objc_method_result_type_inconsistent: + return diag::warn_odr_objc_method_result_type_inconsistent; + case diag::err_odr_objc_method_num_params_inconsistent: + return diag::warn_odr_objc_method_num_params_inconsistent; + case diag::err_odr_objc_method_param_type_inconsistent: + return diag::warn_odr_objc_method_param_type_inconsistent; + case diag::err_odr_objc_method_variadic_inconsistent: + return diag::warn_odr_objc_method_variadic_inconsistent; + case diag::err_odr_objc_property_type_inconsistent: + return diag::warn_odr_objc_property_type_inconsistent; + case diag::err_odr_objc_property_impl_kind_inconsistent: + return diag::warn_odr_objc_property_impl_kind_inconsistent; + case diag::err_odr_objc_synthesize_ivar_inconsistent: + return diag::warn_odr_objc_synthesize_ivar_inconsistent; + case diag::err_odr_different_num_template_parameters: + return diag::warn_odr_different_num_template_parameters; + case diag::err_odr_different_template_parameter_kind: + return diag::warn_odr_different_template_parameter_kind; + case diag::err_odr_parameter_pack_non_pack: + return diag::warn_odr_parameter_pack_non_pack; + case diag::err_odr_non_type_parameter_type_inconsistent: + return diag::warn_odr_non_type_parameter_type_inconsistent; + } + llvm_unreachable("Diagnostic kind not handled in preceding switch"); +} + +bool StructuralEquivalenceContext::IsEquivalent(Decl *D1, Decl *D2) { + + // Ensure that the implementation functions (all static functions in this TU) + // never call the public ASTStructuralEquivalence::IsEquivalent() functions, + // because that will wreak havoc the internal state (DeclsToCheck and + // VisitedDecls members) and can cause faulty behaviour. + // In other words: Do not start a graph search from a new node with the + // internal data of another search in progress. + // FIXME: Better encapsulation and separation of internal and public + // functionality. + assert(DeclsToCheck.empty()); + assert(VisitedDecls.empty()); + + if (!::IsStructurallyEquivalent(*this, D1, D2)) + return false; + + return !Finish(); +} + +bool StructuralEquivalenceContext::IsEquivalent(QualType T1, QualType T2) { + assert(DeclsToCheck.empty()); + assert(VisitedDecls.empty()); + if (!::IsStructurallyEquivalent(*this, T1, T2)) + return false; + + return !Finish(); +} + +bool StructuralEquivalenceContext::CheckCommonEquivalence(Decl *D1, Decl *D2) { + // Check for equivalent described template. + TemplateDecl *Template1 = D1->getDescribedTemplate(); + TemplateDecl *Template2 = D2->getDescribedTemplate(); + if ((Template1 != nullptr) != (Template2 != nullptr)) + return false; + if (Template1 && !IsStructurallyEquivalent(*this, Template1, Template2)) + return false; + + // FIXME: Move check for identifier names into this function. + + return true; +} + +bool StructuralEquivalenceContext::CheckKindSpecificEquivalence( + Decl *D1, Decl *D2) { + // FIXME: Switch on all declaration kinds. For now, we're just going to + // check the obvious ones. + if (auto *Record1 = dyn_cast<RecordDecl>(D1)) { + if (auto *Record2 = dyn_cast<RecordDecl>(D2)) { + // Check for equivalent structure names. + IdentifierInfo *Name1 = Record1->getIdentifier(); + if (!Name1 && Record1->getTypedefNameForAnonDecl()) + Name1 = Record1->getTypedefNameForAnonDecl()->getIdentifier(); + IdentifierInfo *Name2 = Record2->getIdentifier(); + if (!Name2 && Record2->getTypedefNameForAnonDecl()) + Name2 = Record2->getTypedefNameForAnonDecl()->getIdentifier(); + if (!::IsStructurallyEquivalent(Name1, Name2) || + !::IsStructurallyEquivalent(*this, Record1, Record2)) + return false; + } else { + // Record/non-record mismatch. + return false; + } + } else if (auto *Enum1 = dyn_cast<EnumDecl>(D1)) { + if (auto *Enum2 = dyn_cast<EnumDecl>(D2)) { + // Check for equivalent enum names. + IdentifierInfo *Name1 = Enum1->getIdentifier(); + if (!Name1 && Enum1->getTypedefNameForAnonDecl()) + Name1 = Enum1->getTypedefNameForAnonDecl()->getIdentifier(); + IdentifierInfo *Name2 = Enum2->getIdentifier(); + if (!Name2 && Enum2->getTypedefNameForAnonDecl()) + Name2 = Enum2->getTypedefNameForAnonDecl()->getIdentifier(); + if (!::IsStructurallyEquivalent(Name1, Name2) || + !::IsStructurallyEquivalent(*this, Enum1, Enum2)) + return false; + } else { + // Enum/non-enum mismatch + return false; + } + } else if (const auto *Typedef1 = dyn_cast<TypedefNameDecl>(D1)) { + if (const auto *Typedef2 = dyn_cast<TypedefNameDecl>(D2)) { + if (!::IsStructurallyEquivalent(Typedef1->getIdentifier(), + Typedef2->getIdentifier()) || + !::IsStructurallyEquivalent(*this, Typedef1->getUnderlyingType(), + Typedef2->getUnderlyingType())) + return false; + } else { + // Typedef/non-typedef mismatch. + return false; + } + } else if (auto *ClassTemplate1 = dyn_cast<ClassTemplateDecl>(D1)) { + if (auto *ClassTemplate2 = dyn_cast<ClassTemplateDecl>(D2)) { + if (!::IsStructurallyEquivalent(*this, ClassTemplate1, + ClassTemplate2)) + return false; + } else { + // Class template/non-class-template mismatch. + return false; + } + } else if (auto *FunctionTemplate1 = dyn_cast<FunctionTemplateDecl>(D1)) { + if (auto *FunctionTemplate2 = dyn_cast<FunctionTemplateDecl>(D2)) { + if (!::IsStructurallyEquivalent(*this, FunctionTemplate1, + FunctionTemplate2)) + return false; + } else { + // Class template/non-class-template mismatch. + return false; + } + } else if (auto *ConceptDecl1 = dyn_cast<ConceptDecl>(D1)) { + if (auto *ConceptDecl2 = dyn_cast<ConceptDecl>(D2)) { + if (!::IsStructurallyEquivalent(*this, ConceptDecl1, ConceptDecl2)) + return false; + } else { + // Concept/non-concept mismatch. + return false; + } + } else if (auto *TTP1 = dyn_cast<TemplateTypeParmDecl>(D1)) { + if (auto *TTP2 = dyn_cast<TemplateTypeParmDecl>(D2)) { + if (!::IsStructurallyEquivalent(*this, TTP1, TTP2)) + return false; + } else { + // Kind mismatch. + return false; + } + } else if (auto *NTTP1 = dyn_cast<NonTypeTemplateParmDecl>(D1)) { + if (auto *NTTP2 = dyn_cast<NonTypeTemplateParmDecl>(D2)) { + if (!::IsStructurallyEquivalent(*this, NTTP1, NTTP2)) + return false; + } else { + // Kind mismatch. + return false; + } + } else if (auto *TTP1 = dyn_cast<TemplateTemplateParmDecl>(D1)) { + if (auto *TTP2 = dyn_cast<TemplateTemplateParmDecl>(D2)) { + if (!::IsStructurallyEquivalent(*this, TTP1, TTP2)) + return false; + } else { + // Kind mismatch. + return false; + } + } else if (auto *MD1 = dyn_cast<CXXMethodDecl>(D1)) { + if (auto *MD2 = dyn_cast<CXXMethodDecl>(D2)) { + if (!::IsStructurallyEquivalent(*this, MD1, MD2)) + return false; + } else { + // Kind mismatch. + return false; + } + } else if (FunctionDecl *FD1 = dyn_cast<FunctionDecl>(D1)) { + if (FunctionDecl *FD2 = dyn_cast<FunctionDecl>(D2)) { + if (FD1->isOverloadedOperator()) { + if (!FD2->isOverloadedOperator()) + return false; + if (FD1->getOverloadedOperator() != FD2->getOverloadedOperator()) + return false; + } + if (!::IsStructurallyEquivalent(FD1->getIdentifier(), + FD2->getIdentifier())) + return false; + if (!::IsStructurallyEquivalent(*this, FD1, FD2)) + return false; + } else { + // Kind mismatch. + return false; + } + } else if (FriendDecl *FrD1 = dyn_cast<FriendDecl>(D1)) { + if (FriendDecl *FrD2 = dyn_cast<FriendDecl>(D2)) { + if (!::IsStructurallyEquivalent(*this, FrD1, FrD2)) + return false; + } else { + // Kind mismatch. + return false; + } + } + + return true; +} + +bool StructuralEquivalenceContext::Finish() { + while (!DeclsToCheck.empty()) { + // Check the next declaration. + std::pair<Decl *, Decl *> P = DeclsToCheck.front(); + DeclsToCheck.pop(); + + Decl *D1 = P.first; + Decl *D2 = P.second; + + bool Equivalent = + CheckCommonEquivalence(D1, D2) && CheckKindSpecificEquivalence(D1, D2); + + if (!Equivalent) { + // Note that these two declarations are not equivalent (and we already + // know about it). + NonEquivalentDecls.insert(P); + + return true; + } + } + + return false; +} |