summaryrefslogtreecommitdiffstats
path: root/gnu/llvm/clang/lib/AST/ASTStructuralEquivalence.cpp
diff options
context:
space:
mode:
authorpatrick <patrick@openbsd.org>2020-08-03 14:31:31 +0000
committerpatrick <patrick@openbsd.org>2020-08-03 14:31:31 +0000
commite5dd70708596ae51455a0ffa086a00c5b29f8583 (patch)
tree5d676f27b570bacf71e786c3b5cff3e6f6679b59 /gnu/llvm/clang/lib/AST/ASTStructuralEquivalence.cpp
parentImport LLVM 10.0.0 release including clang, lld and lldb. (diff)
downloadwireguard-openbsd-e5dd70708596ae51455a0ffa086a00c5b29f8583.tar.xz
wireguard-openbsd-e5dd70708596ae51455a0ffa086a00c5b29f8583.zip
Import LLVM 10.0.0 release including clang, lld and lldb.
ok hackroom tested by plenty
Diffstat (limited to 'gnu/llvm/clang/lib/AST/ASTStructuralEquivalence.cpp')
-rw-r--r--gnu/llvm/clang/lib/AST/ASTStructuralEquivalence.cpp1924
1 files changed, 1924 insertions, 0 deletions
diff --git a/gnu/llvm/clang/lib/AST/ASTStructuralEquivalence.cpp b/gnu/llvm/clang/lib/AST/ASTStructuralEquivalence.cpp
new file mode 100644
index 00000000000..91a2f3a8391
--- /dev/null
+++ b/gnu/llvm/clang/lib/AST/ASTStructuralEquivalence.cpp
@@ -0,0 +1,1924 @@
+//===- ASTStructuralEquivalence.cpp ---------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implement StructuralEquivalenceContext class and helper functions
+// for layout matching.
+//
+// The structural equivalence check could have been implemented as a parallel
+// BFS on a pair of graphs. That must have been the original approach at the
+// beginning.
+// Let's consider this simple BFS algorithm from the `s` source:
+// ```
+// void bfs(Graph G, int s)
+// {
+// Queue<Integer> queue = new Queue<Integer>();
+// marked[s] = true; // Mark the source
+// queue.enqueue(s); // and put it on the queue.
+// while (!q.isEmpty()) {
+// int v = queue.dequeue(); // Remove next vertex from the queue.
+// for (int w : G.adj(v))
+// if (!marked[w]) // For every unmarked adjacent vertex,
+// {
+// marked[w] = true;
+// queue.enqueue(w);
+// }
+// }
+// }
+// ```
+// Indeed, it has it's queue, which holds pairs of nodes, one from each graph,
+// this is the `DeclsToCheck` and it's pair is in `TentativeEquivalences`.
+// `TentativeEquivalences` also plays the role of the marking (`marked`)
+// functionality above, we use it to check whether we've already seen a pair of
+// nodes.
+//
+// We put in the elements into the queue only in the toplevel decl check
+// function:
+// ```
+// static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+// Decl *D1, Decl *D2);
+// ```
+// The `while` loop where we iterate over the children is implemented in
+// `Finish()`. And `Finish` is called only from the two **member** functions
+// which check the equivalency of two Decls or two Types. ASTImporter (and
+// other clients) call only these functions.
+//
+// The `static` implementation functions are called from `Finish`, these push
+// the children nodes to the queue via `static bool
+// IsStructurallyEquivalent(StructuralEquivalenceContext &Context, Decl *D1,
+// Decl *D2)`. So far so good, this is almost like the BFS. However, if we
+// let a static implementation function to call `Finish` via another **member**
+// function that means we end up with two nested while loops each of them
+// working on the same queue. This is wrong and nobody can reason about it's
+// doing. Thus, static implementation functions must not call the **member**
+// functions.
+//
+// So, now `TentativeEquivalences` plays two roles. It is used to store the
+// second half of the decls which we want to compare, plus it plays a role in
+// closing the recursion. On a long term, we could refactor structural
+// equivalency to be more alike to the traditional BFS.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/ASTStructuralEquivalence.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/ASTDiagnostic.h"
+#include "clang/AST/Decl.h"
+#include "clang/AST/DeclBase.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/DeclFriend.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/NestedNameSpecifier.h"
+#include "clang/AST/TemplateBase.h"
+#include "clang/AST/TemplateName.h"
+#include "clang/AST/Type.h"
+#include "clang/Basic/ExceptionSpecificationType.h"
+#include "clang/Basic/IdentifierTable.h"
+#include "clang/Basic/LLVM.h"
+#include "clang/Basic/SourceLocation.h"
+#include "llvm/ADT/APInt.h"
+#include "llvm/ADT/APSInt.h"
+#include "llvm/ADT/None.h"
+#include "llvm/ADT/Optional.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/ErrorHandling.h"
+#include <cassert>
+#include <utility>
+
+using namespace clang;
+
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ QualType T1, QualType T2);
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ Decl *D1, Decl *D2);
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ const TemplateArgument &Arg1,
+ const TemplateArgument &Arg2);
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ NestedNameSpecifier *NNS1,
+ NestedNameSpecifier *NNS2);
+static bool IsStructurallyEquivalent(const IdentifierInfo *Name1,
+ const IdentifierInfo *Name2);
+
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ const DeclarationName Name1,
+ const DeclarationName Name2) {
+ if (Name1.getNameKind() != Name2.getNameKind())
+ return false;
+
+ switch (Name1.getNameKind()) {
+
+ case DeclarationName::Identifier:
+ return IsStructurallyEquivalent(Name1.getAsIdentifierInfo(),
+ Name2.getAsIdentifierInfo());
+
+ case DeclarationName::CXXConstructorName:
+ case DeclarationName::CXXDestructorName:
+ case DeclarationName::CXXConversionFunctionName:
+ return IsStructurallyEquivalent(Context, Name1.getCXXNameType(),
+ Name2.getCXXNameType());
+
+ case DeclarationName::CXXDeductionGuideName: {
+ if (!IsStructurallyEquivalent(
+ Context, Name1.getCXXDeductionGuideTemplate()->getDeclName(),
+ Name2.getCXXDeductionGuideTemplate()->getDeclName()))
+ return false;
+ return IsStructurallyEquivalent(Context,
+ Name1.getCXXDeductionGuideTemplate(),
+ Name2.getCXXDeductionGuideTemplate());
+ }
+
+ case DeclarationName::CXXOperatorName:
+ return Name1.getCXXOverloadedOperator() == Name2.getCXXOverloadedOperator();
+
+ case DeclarationName::CXXLiteralOperatorName:
+ return IsStructurallyEquivalent(Name1.getCXXLiteralIdentifier(),
+ Name2.getCXXLiteralIdentifier());
+
+ case DeclarationName::CXXUsingDirective:
+ return true; // FIXME When do we consider two using directives equal?
+
+ case DeclarationName::ObjCZeroArgSelector:
+ case DeclarationName::ObjCOneArgSelector:
+ case DeclarationName::ObjCMultiArgSelector:
+ return true; // FIXME
+ }
+
+ llvm_unreachable("Unhandled kind of DeclarationName");
+ return true;
+}
+
+/// Determine structural equivalence of two expressions.
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ const Expr *E1, const Expr *E2) {
+ if (!E1 || !E2)
+ return E1 == E2;
+
+ if (auto *DE1 = dyn_cast<DependentScopeDeclRefExpr>(E1)) {
+ auto *DE2 = dyn_cast<DependentScopeDeclRefExpr>(E2);
+ if (!DE2)
+ return false;
+ if (!IsStructurallyEquivalent(Context, DE1->getDeclName(),
+ DE2->getDeclName()))
+ return false;
+ return IsStructurallyEquivalent(Context, DE1->getQualifier(),
+ DE2->getQualifier());
+ } else if (auto CastE1 = dyn_cast<ImplicitCastExpr>(E1)) {
+ auto *CastE2 = dyn_cast<ImplicitCastExpr>(E2);
+ if (!CastE2)
+ return false;
+ if (!IsStructurallyEquivalent(Context, CastE1->getType(),
+ CastE2->getType()))
+ return false;
+ return IsStructurallyEquivalent(Context, CastE1->getSubExpr(),
+ CastE2->getSubExpr());
+ }
+ // FIXME: Handle other kind of expressions!
+ return true;
+}
+
+/// Determine whether two identifiers are equivalent.
+static bool IsStructurallyEquivalent(const IdentifierInfo *Name1,
+ const IdentifierInfo *Name2) {
+ if (!Name1 || !Name2)
+ return Name1 == Name2;
+
+ return Name1->getName() == Name2->getName();
+}
+
+/// Determine whether two nested-name-specifiers are equivalent.
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ NestedNameSpecifier *NNS1,
+ NestedNameSpecifier *NNS2) {
+ if (NNS1->getKind() != NNS2->getKind())
+ return false;
+
+ NestedNameSpecifier *Prefix1 = NNS1->getPrefix(),
+ *Prefix2 = NNS2->getPrefix();
+ if ((bool)Prefix1 != (bool)Prefix2)
+ return false;
+
+ if (Prefix1)
+ if (!IsStructurallyEquivalent(Context, Prefix1, Prefix2))
+ return false;
+
+ switch (NNS1->getKind()) {
+ case NestedNameSpecifier::Identifier:
+ return IsStructurallyEquivalent(NNS1->getAsIdentifier(),
+ NNS2->getAsIdentifier());
+ case NestedNameSpecifier::Namespace:
+ return IsStructurallyEquivalent(Context, NNS1->getAsNamespace(),
+ NNS2->getAsNamespace());
+ case NestedNameSpecifier::NamespaceAlias:
+ return IsStructurallyEquivalent(Context, NNS1->getAsNamespaceAlias(),
+ NNS2->getAsNamespaceAlias());
+ case NestedNameSpecifier::TypeSpec:
+ case NestedNameSpecifier::TypeSpecWithTemplate:
+ return IsStructurallyEquivalent(Context, QualType(NNS1->getAsType(), 0),
+ QualType(NNS2->getAsType(), 0));
+ case NestedNameSpecifier::Global:
+ return true;
+ case NestedNameSpecifier::Super:
+ return IsStructurallyEquivalent(Context, NNS1->getAsRecordDecl(),
+ NNS2->getAsRecordDecl());
+ }
+ return false;
+}
+
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ const TemplateName &N1,
+ const TemplateName &N2) {
+ TemplateDecl *TemplateDeclN1 = N1.getAsTemplateDecl();
+ TemplateDecl *TemplateDeclN2 = N2.getAsTemplateDecl();
+ if (TemplateDeclN1 && TemplateDeclN2) {
+ if (!IsStructurallyEquivalent(Context, TemplateDeclN1, TemplateDeclN2))
+ return false;
+ // If the kind is different we compare only the template decl.
+ if (N1.getKind() != N2.getKind())
+ return true;
+ } else if (TemplateDeclN1 || TemplateDeclN2)
+ return false;
+ else if (N1.getKind() != N2.getKind())
+ return false;
+
+ // Check for special case incompatibilities.
+ switch (N1.getKind()) {
+
+ case TemplateName::OverloadedTemplate: {
+ OverloadedTemplateStorage *OS1 = N1.getAsOverloadedTemplate(),
+ *OS2 = N2.getAsOverloadedTemplate();
+ OverloadedTemplateStorage::iterator I1 = OS1->begin(), I2 = OS2->begin(),
+ E1 = OS1->end(), E2 = OS2->end();
+ for (; I1 != E1 && I2 != E2; ++I1, ++I2)
+ if (!IsStructurallyEquivalent(Context, *I1, *I2))
+ return false;
+ return I1 == E1 && I2 == E2;
+ }
+
+ case TemplateName::AssumedTemplate: {
+ AssumedTemplateStorage *TN1 = N1.getAsAssumedTemplateName(),
+ *TN2 = N1.getAsAssumedTemplateName();
+ return TN1->getDeclName() == TN2->getDeclName();
+ }
+
+ case TemplateName::DependentTemplate: {
+ DependentTemplateName *DN1 = N1.getAsDependentTemplateName(),
+ *DN2 = N2.getAsDependentTemplateName();
+ if (!IsStructurallyEquivalent(Context, DN1->getQualifier(),
+ DN2->getQualifier()))
+ return false;
+ if (DN1->isIdentifier() && DN2->isIdentifier())
+ return IsStructurallyEquivalent(DN1->getIdentifier(),
+ DN2->getIdentifier());
+ else if (DN1->isOverloadedOperator() && DN2->isOverloadedOperator())
+ return DN1->getOperator() == DN2->getOperator();
+ return false;
+ }
+
+ case TemplateName::SubstTemplateTemplateParmPack: {
+ SubstTemplateTemplateParmPackStorage
+ *P1 = N1.getAsSubstTemplateTemplateParmPack(),
+ *P2 = N2.getAsSubstTemplateTemplateParmPack();
+ return IsStructurallyEquivalent(Context, P1->getArgumentPack(),
+ P2->getArgumentPack()) &&
+ IsStructurallyEquivalent(Context, P1->getParameterPack(),
+ P2->getParameterPack());
+ }
+
+ case TemplateName::Template:
+ case TemplateName::QualifiedTemplate:
+ case TemplateName::SubstTemplateTemplateParm:
+ // It is sufficient to check value of getAsTemplateDecl.
+ break;
+
+ }
+
+ return true;
+}
+
+/// Determine whether two template arguments are equivalent.
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ const TemplateArgument &Arg1,
+ const TemplateArgument &Arg2) {
+ if (Arg1.getKind() != Arg2.getKind())
+ return false;
+
+ switch (Arg1.getKind()) {
+ case TemplateArgument::Null:
+ return true;
+
+ case TemplateArgument::Type:
+ return IsStructurallyEquivalent(Context, Arg1.getAsType(), Arg2.getAsType());
+
+ case TemplateArgument::Integral:
+ if (!IsStructurallyEquivalent(Context, Arg1.getIntegralType(),
+ Arg2.getIntegralType()))
+ return false;
+
+ return llvm::APSInt::isSameValue(Arg1.getAsIntegral(),
+ Arg2.getAsIntegral());
+
+ case TemplateArgument::Declaration:
+ return IsStructurallyEquivalent(Context, Arg1.getAsDecl(), Arg2.getAsDecl());
+
+ case TemplateArgument::NullPtr:
+ return true; // FIXME: Is this correct?
+
+ case TemplateArgument::Template:
+ return IsStructurallyEquivalent(Context, Arg1.getAsTemplate(),
+ Arg2.getAsTemplate());
+
+ case TemplateArgument::TemplateExpansion:
+ return IsStructurallyEquivalent(Context,
+ Arg1.getAsTemplateOrTemplatePattern(),
+ Arg2.getAsTemplateOrTemplatePattern());
+
+ case TemplateArgument::Expression:
+ return IsStructurallyEquivalent(Context, Arg1.getAsExpr(),
+ Arg2.getAsExpr());
+
+ case TemplateArgument::Pack:
+ if (Arg1.pack_size() != Arg2.pack_size())
+ return false;
+
+ for (unsigned I = 0, N = Arg1.pack_size(); I != N; ++I)
+ if (!IsStructurallyEquivalent(Context, Arg1.pack_begin()[I],
+ Arg2.pack_begin()[I]))
+ return false;
+
+ return true;
+ }
+
+ llvm_unreachable("Invalid template argument kind");
+}
+
+/// Determine structural equivalence for the common part of array
+/// types.
+static bool IsArrayStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ const ArrayType *Array1,
+ const ArrayType *Array2) {
+ if (!IsStructurallyEquivalent(Context, Array1->getElementType(),
+ Array2->getElementType()))
+ return false;
+ if (Array1->getSizeModifier() != Array2->getSizeModifier())
+ return false;
+ if (Array1->getIndexTypeQualifiers() != Array2->getIndexTypeQualifiers())
+ return false;
+
+ return true;
+}
+
+/// Determine structural equivalence based on the ExtInfo of functions. This
+/// is inspired by ASTContext::mergeFunctionTypes(), we compare calling
+/// conventions bits but must not compare some other bits.
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ FunctionType::ExtInfo EI1,
+ FunctionType::ExtInfo EI2) {
+ // Compatible functions must have compatible calling conventions.
+ if (EI1.getCC() != EI2.getCC())
+ return false;
+
+ // Regparm is part of the calling convention.
+ if (EI1.getHasRegParm() != EI2.getHasRegParm())
+ return false;
+ if (EI1.getRegParm() != EI2.getRegParm())
+ return false;
+
+ if (EI1.getProducesResult() != EI2.getProducesResult())
+ return false;
+ if (EI1.getNoCallerSavedRegs() != EI2.getNoCallerSavedRegs())
+ return false;
+ if (EI1.getNoCfCheck() != EI2.getNoCfCheck())
+ return false;
+
+ return true;
+}
+
+/// Check the equivalence of exception specifications.
+static bool IsEquivalentExceptionSpec(StructuralEquivalenceContext &Context,
+ const FunctionProtoType *Proto1,
+ const FunctionProtoType *Proto2) {
+
+ auto Spec1 = Proto1->getExceptionSpecType();
+ auto Spec2 = Proto2->getExceptionSpecType();
+
+ if (isUnresolvedExceptionSpec(Spec1) || isUnresolvedExceptionSpec(Spec2))
+ return true;
+
+ if (Spec1 != Spec2)
+ return false;
+ if (Spec1 == EST_Dynamic) {
+ if (Proto1->getNumExceptions() != Proto2->getNumExceptions())
+ return false;
+ for (unsigned I = 0, N = Proto1->getNumExceptions(); I != N; ++I) {
+ if (!IsStructurallyEquivalent(Context, Proto1->getExceptionType(I),
+ Proto2->getExceptionType(I)))
+ return false;
+ }
+ } else if (isComputedNoexcept(Spec1)) {
+ if (!IsStructurallyEquivalent(Context, Proto1->getNoexceptExpr(),
+ Proto2->getNoexceptExpr()))
+ return false;
+ }
+
+ return true;
+}
+
+/// Determine structural equivalence of two types.
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ QualType T1, QualType T2) {
+ if (T1.isNull() || T2.isNull())
+ return T1.isNull() && T2.isNull();
+
+ QualType OrigT1 = T1;
+ QualType OrigT2 = T2;
+
+ if (!Context.StrictTypeSpelling) {
+ // We aren't being strict about token-to-token equivalence of types,
+ // so map down to the canonical type.
+ T1 = Context.FromCtx.getCanonicalType(T1);
+ T2 = Context.ToCtx.getCanonicalType(T2);
+ }
+
+ if (T1.getQualifiers() != T2.getQualifiers())
+ return false;
+
+ Type::TypeClass TC = T1->getTypeClass();
+
+ if (T1->getTypeClass() != T2->getTypeClass()) {
+ // Compare function types with prototypes vs. without prototypes as if
+ // both did not have prototypes.
+ if (T1->getTypeClass() == Type::FunctionProto &&
+ T2->getTypeClass() == Type::FunctionNoProto)
+ TC = Type::FunctionNoProto;
+ else if (T1->getTypeClass() == Type::FunctionNoProto &&
+ T2->getTypeClass() == Type::FunctionProto)
+ TC = Type::FunctionNoProto;
+ else
+ return false;
+ }
+
+ switch (TC) {
+ case Type::Builtin:
+ // FIXME: Deal with Char_S/Char_U.
+ if (cast<BuiltinType>(T1)->getKind() != cast<BuiltinType>(T2)->getKind())
+ return false;
+ break;
+
+ case Type::Complex:
+ if (!IsStructurallyEquivalent(Context,
+ cast<ComplexType>(T1)->getElementType(),
+ cast<ComplexType>(T2)->getElementType()))
+ return false;
+ break;
+
+ case Type::Adjusted:
+ case Type::Decayed:
+ if (!IsStructurallyEquivalent(Context,
+ cast<AdjustedType>(T1)->getOriginalType(),
+ cast<AdjustedType>(T2)->getOriginalType()))
+ return false;
+ break;
+
+ case Type::Pointer:
+ if (!IsStructurallyEquivalent(Context,
+ cast<PointerType>(T1)->getPointeeType(),
+ cast<PointerType>(T2)->getPointeeType()))
+ return false;
+ break;
+
+ case Type::BlockPointer:
+ if (!IsStructurallyEquivalent(Context,
+ cast<BlockPointerType>(T1)->getPointeeType(),
+ cast<BlockPointerType>(T2)->getPointeeType()))
+ return false;
+ break;
+
+ case Type::LValueReference:
+ case Type::RValueReference: {
+ const auto *Ref1 = cast<ReferenceType>(T1);
+ const auto *Ref2 = cast<ReferenceType>(T2);
+ if (Ref1->isSpelledAsLValue() != Ref2->isSpelledAsLValue())
+ return false;
+ if (Ref1->isInnerRef() != Ref2->isInnerRef())
+ return false;
+ if (!IsStructurallyEquivalent(Context, Ref1->getPointeeTypeAsWritten(),
+ Ref2->getPointeeTypeAsWritten()))
+ return false;
+ break;
+ }
+
+ case Type::MemberPointer: {
+ const auto *MemPtr1 = cast<MemberPointerType>(T1);
+ const auto *MemPtr2 = cast<MemberPointerType>(T2);
+ if (!IsStructurallyEquivalent(Context, MemPtr1->getPointeeType(),
+ MemPtr2->getPointeeType()))
+ return false;
+ if (!IsStructurallyEquivalent(Context, QualType(MemPtr1->getClass(), 0),
+ QualType(MemPtr2->getClass(), 0)))
+ return false;
+ break;
+ }
+
+ case Type::ConstantArray: {
+ const auto *Array1 = cast<ConstantArrayType>(T1);
+ const auto *Array2 = cast<ConstantArrayType>(T2);
+ if (!llvm::APInt::isSameValue(Array1->getSize(), Array2->getSize()))
+ return false;
+
+ if (!IsArrayStructurallyEquivalent(Context, Array1, Array2))
+ return false;
+ break;
+ }
+
+ case Type::IncompleteArray:
+ if (!IsArrayStructurallyEquivalent(Context, cast<ArrayType>(T1),
+ cast<ArrayType>(T2)))
+ return false;
+ break;
+
+ case Type::VariableArray: {
+ const auto *Array1 = cast<VariableArrayType>(T1);
+ const auto *Array2 = cast<VariableArrayType>(T2);
+ if (!IsStructurallyEquivalent(Context, Array1->getSizeExpr(),
+ Array2->getSizeExpr()))
+ return false;
+
+ if (!IsArrayStructurallyEquivalent(Context, Array1, Array2))
+ return false;
+
+ break;
+ }
+
+ case Type::DependentSizedArray: {
+ const auto *Array1 = cast<DependentSizedArrayType>(T1);
+ const auto *Array2 = cast<DependentSizedArrayType>(T2);
+ if (!IsStructurallyEquivalent(Context, Array1->getSizeExpr(),
+ Array2->getSizeExpr()))
+ return false;
+
+ if (!IsArrayStructurallyEquivalent(Context, Array1, Array2))
+ return false;
+
+ break;
+ }
+
+ case Type::DependentAddressSpace: {
+ const auto *DepAddressSpace1 = cast<DependentAddressSpaceType>(T1);
+ const auto *DepAddressSpace2 = cast<DependentAddressSpaceType>(T2);
+ if (!IsStructurallyEquivalent(Context, DepAddressSpace1->getAddrSpaceExpr(),
+ DepAddressSpace2->getAddrSpaceExpr()))
+ return false;
+ if (!IsStructurallyEquivalent(Context, DepAddressSpace1->getPointeeType(),
+ DepAddressSpace2->getPointeeType()))
+ return false;
+
+ break;
+ }
+
+ case Type::DependentSizedExtVector: {
+ const auto *Vec1 = cast<DependentSizedExtVectorType>(T1);
+ const auto *Vec2 = cast<DependentSizedExtVectorType>(T2);
+ if (!IsStructurallyEquivalent(Context, Vec1->getSizeExpr(),
+ Vec2->getSizeExpr()))
+ return false;
+ if (!IsStructurallyEquivalent(Context, Vec1->getElementType(),
+ Vec2->getElementType()))
+ return false;
+ break;
+ }
+
+ case Type::DependentVector: {
+ const auto *Vec1 = cast<DependentVectorType>(T1);
+ const auto *Vec2 = cast<DependentVectorType>(T2);
+ if (Vec1->getVectorKind() != Vec2->getVectorKind())
+ return false;
+ if (!IsStructurallyEquivalent(Context, Vec1->getSizeExpr(),
+ Vec2->getSizeExpr()))
+ return false;
+ if (!IsStructurallyEquivalent(Context, Vec1->getElementType(),
+ Vec2->getElementType()))
+ return false;
+ break;
+ }
+
+ case Type::Vector:
+ case Type::ExtVector: {
+ const auto *Vec1 = cast<VectorType>(T1);
+ const auto *Vec2 = cast<VectorType>(T2);
+ if (!IsStructurallyEquivalent(Context, Vec1->getElementType(),
+ Vec2->getElementType()))
+ return false;
+ if (Vec1->getNumElements() != Vec2->getNumElements())
+ return false;
+ if (Vec1->getVectorKind() != Vec2->getVectorKind())
+ return false;
+ break;
+ }
+
+ case Type::FunctionProto: {
+ const auto *Proto1 = cast<FunctionProtoType>(T1);
+ const auto *Proto2 = cast<FunctionProtoType>(T2);
+
+ if (Proto1->getNumParams() != Proto2->getNumParams())
+ return false;
+ for (unsigned I = 0, N = Proto1->getNumParams(); I != N; ++I) {
+ if (!IsStructurallyEquivalent(Context, Proto1->getParamType(I),
+ Proto2->getParamType(I)))
+ return false;
+ }
+ if (Proto1->isVariadic() != Proto2->isVariadic())
+ return false;
+
+ if (Proto1->getMethodQuals() != Proto2->getMethodQuals())
+ return false;
+
+ // Check exceptions, this information is lost in canonical type.
+ const auto *OrigProto1 =
+ cast<FunctionProtoType>(OrigT1.getDesugaredType(Context.FromCtx));
+ const auto *OrigProto2 =
+ cast<FunctionProtoType>(OrigT2.getDesugaredType(Context.ToCtx));
+ if (!IsEquivalentExceptionSpec(Context, OrigProto1, OrigProto2))
+ return false;
+
+ // Fall through to check the bits common with FunctionNoProtoType.
+ LLVM_FALLTHROUGH;
+ }
+
+ case Type::FunctionNoProto: {
+ const auto *Function1 = cast<FunctionType>(T1);
+ const auto *Function2 = cast<FunctionType>(T2);
+ if (!IsStructurallyEquivalent(Context, Function1->getReturnType(),
+ Function2->getReturnType()))
+ return false;
+ if (!IsStructurallyEquivalent(Context, Function1->getExtInfo(),
+ Function2->getExtInfo()))
+ return false;
+ break;
+ }
+
+ case Type::UnresolvedUsing:
+ if (!IsStructurallyEquivalent(Context,
+ cast<UnresolvedUsingType>(T1)->getDecl(),
+ cast<UnresolvedUsingType>(T2)->getDecl()))
+ return false;
+ break;
+
+ case Type::Attributed:
+ if (!IsStructurallyEquivalent(Context,
+ cast<AttributedType>(T1)->getModifiedType(),
+ cast<AttributedType>(T2)->getModifiedType()))
+ return false;
+ if (!IsStructurallyEquivalent(
+ Context, cast<AttributedType>(T1)->getEquivalentType(),
+ cast<AttributedType>(T2)->getEquivalentType()))
+ return false;
+ break;
+
+ case Type::Paren:
+ if (!IsStructurallyEquivalent(Context, cast<ParenType>(T1)->getInnerType(),
+ cast<ParenType>(T2)->getInnerType()))
+ return false;
+ break;
+
+ case Type::MacroQualified:
+ if (!IsStructurallyEquivalent(
+ Context, cast<MacroQualifiedType>(T1)->getUnderlyingType(),
+ cast<MacroQualifiedType>(T2)->getUnderlyingType()))
+ return false;
+ break;
+
+ case Type::Typedef:
+ if (!IsStructurallyEquivalent(Context, cast<TypedefType>(T1)->getDecl(),
+ cast<TypedefType>(T2)->getDecl()))
+ return false;
+ break;
+
+ case Type::TypeOfExpr:
+ if (!IsStructurallyEquivalent(
+ Context, cast<TypeOfExprType>(T1)->getUnderlyingExpr(),
+ cast<TypeOfExprType>(T2)->getUnderlyingExpr()))
+ return false;
+ break;
+
+ case Type::TypeOf:
+ if (!IsStructurallyEquivalent(Context,
+ cast<TypeOfType>(T1)->getUnderlyingType(),
+ cast<TypeOfType>(T2)->getUnderlyingType()))
+ return false;
+ break;
+
+ case Type::UnaryTransform:
+ if (!IsStructurallyEquivalent(
+ Context, cast<UnaryTransformType>(T1)->getUnderlyingType(),
+ cast<UnaryTransformType>(T2)->getUnderlyingType()))
+ return false;
+ break;
+
+ case Type::Decltype:
+ if (!IsStructurallyEquivalent(Context,
+ cast<DecltypeType>(T1)->getUnderlyingExpr(),
+ cast<DecltypeType>(T2)->getUnderlyingExpr()))
+ return false;
+ break;
+
+ case Type::Auto: {
+ auto *Auto1 = cast<AutoType>(T1);
+ auto *Auto2 = cast<AutoType>(T2);
+ if (!IsStructurallyEquivalent(Context, Auto1->getDeducedType(),
+ Auto2->getDeducedType()))
+ return false;
+ if (Auto1->isConstrained() != Auto2->isConstrained())
+ return false;
+ if (Auto1->isConstrained()) {
+ if (Auto1->getTypeConstraintConcept() !=
+ Auto2->getTypeConstraintConcept())
+ return false;
+ ArrayRef<TemplateArgument> Auto1Args =
+ Auto1->getTypeConstraintArguments();
+ ArrayRef<TemplateArgument> Auto2Args =
+ Auto2->getTypeConstraintArguments();
+ if (Auto1Args.size() != Auto2Args.size())
+ return false;
+ for (unsigned I = 0, N = Auto1Args.size(); I != N; ++I) {
+ if (!IsStructurallyEquivalent(Context, Auto1Args[I], Auto2Args[I]))
+ return false;
+ }
+ }
+ break;
+ }
+
+ case Type::DeducedTemplateSpecialization: {
+ const auto *DT1 = cast<DeducedTemplateSpecializationType>(T1);
+ const auto *DT2 = cast<DeducedTemplateSpecializationType>(T2);
+ if (!IsStructurallyEquivalent(Context, DT1->getTemplateName(),
+ DT2->getTemplateName()))
+ return false;
+ if (!IsStructurallyEquivalent(Context, DT1->getDeducedType(),
+ DT2->getDeducedType()))
+ return false;
+ break;
+ }
+
+ case Type::Record:
+ case Type::Enum:
+ if (!IsStructurallyEquivalent(Context, cast<TagType>(T1)->getDecl(),
+ cast<TagType>(T2)->getDecl()))
+ return false;
+ break;
+
+ case Type::TemplateTypeParm: {
+ const auto *Parm1 = cast<TemplateTypeParmType>(T1);
+ const auto *Parm2 = cast<TemplateTypeParmType>(T2);
+ if (Parm1->getDepth() != Parm2->getDepth())
+ return false;
+ if (Parm1->getIndex() != Parm2->getIndex())
+ return false;
+ if (Parm1->isParameterPack() != Parm2->isParameterPack())
+ return false;
+
+ // Names of template type parameters are never significant.
+ break;
+ }
+
+ case Type::SubstTemplateTypeParm: {
+ const auto *Subst1 = cast<SubstTemplateTypeParmType>(T1);
+ const auto *Subst2 = cast<SubstTemplateTypeParmType>(T2);
+ if (!IsStructurallyEquivalent(Context,
+ QualType(Subst1->getReplacedParameter(), 0),
+ QualType(Subst2->getReplacedParameter(), 0)))
+ return false;
+ if (!IsStructurallyEquivalent(Context, Subst1->getReplacementType(),
+ Subst2->getReplacementType()))
+ return false;
+ break;
+ }
+
+ case Type::SubstTemplateTypeParmPack: {
+ const auto *Subst1 = cast<SubstTemplateTypeParmPackType>(T1);
+ const auto *Subst2 = cast<SubstTemplateTypeParmPackType>(T2);
+ if (!IsStructurallyEquivalent(Context,
+ QualType(Subst1->getReplacedParameter(), 0),
+ QualType(Subst2->getReplacedParameter(), 0)))
+ return false;
+ if (!IsStructurallyEquivalent(Context, Subst1->getArgumentPack(),
+ Subst2->getArgumentPack()))
+ return false;
+ break;
+ }
+
+ case Type::TemplateSpecialization: {
+ const auto *Spec1 = cast<TemplateSpecializationType>(T1);
+ const auto *Spec2 = cast<TemplateSpecializationType>(T2);
+ if (!IsStructurallyEquivalent(Context, Spec1->getTemplateName(),
+ Spec2->getTemplateName()))
+ return false;
+ if (Spec1->getNumArgs() != Spec2->getNumArgs())
+ return false;
+ for (unsigned I = 0, N = Spec1->getNumArgs(); I != N; ++I) {
+ if (!IsStructurallyEquivalent(Context, Spec1->getArg(I),
+ Spec2->getArg(I)))
+ return false;
+ }
+ break;
+ }
+
+ case Type::Elaborated: {
+ const auto *Elab1 = cast<ElaboratedType>(T1);
+ const auto *Elab2 = cast<ElaboratedType>(T2);
+ // CHECKME: what if a keyword is ETK_None or ETK_typename ?
+ if (Elab1->getKeyword() != Elab2->getKeyword())
+ return false;
+ if (!IsStructurallyEquivalent(Context, Elab1->getQualifier(),
+ Elab2->getQualifier()))
+ return false;
+ if (!IsStructurallyEquivalent(Context, Elab1->getNamedType(),
+ Elab2->getNamedType()))
+ return false;
+ break;
+ }
+
+ case Type::InjectedClassName: {
+ const auto *Inj1 = cast<InjectedClassNameType>(T1);
+ const auto *Inj2 = cast<InjectedClassNameType>(T2);
+ if (!IsStructurallyEquivalent(Context,
+ Inj1->getInjectedSpecializationType(),
+ Inj2->getInjectedSpecializationType()))
+ return false;
+ break;
+ }
+
+ case Type::DependentName: {
+ const auto *Typename1 = cast<DependentNameType>(T1);
+ const auto *Typename2 = cast<DependentNameType>(T2);
+ if (!IsStructurallyEquivalent(Context, Typename1->getQualifier(),
+ Typename2->getQualifier()))
+ return false;
+ if (!IsStructurallyEquivalent(Typename1->getIdentifier(),
+ Typename2->getIdentifier()))
+ return false;
+
+ break;
+ }
+
+ case Type::DependentTemplateSpecialization: {
+ const auto *Spec1 = cast<DependentTemplateSpecializationType>(T1);
+ const auto *Spec2 = cast<DependentTemplateSpecializationType>(T2);
+ if (!IsStructurallyEquivalent(Context, Spec1->getQualifier(),
+ Spec2->getQualifier()))
+ return false;
+ if (!IsStructurallyEquivalent(Spec1->getIdentifier(),
+ Spec2->getIdentifier()))
+ return false;
+ if (Spec1->getNumArgs() != Spec2->getNumArgs())
+ return false;
+ for (unsigned I = 0, N = Spec1->getNumArgs(); I != N; ++I) {
+ if (!IsStructurallyEquivalent(Context, Spec1->getArg(I),
+ Spec2->getArg(I)))
+ return false;
+ }
+ break;
+ }
+
+ case Type::PackExpansion:
+ if (!IsStructurallyEquivalent(Context,
+ cast<PackExpansionType>(T1)->getPattern(),
+ cast<PackExpansionType>(T2)->getPattern()))
+ return false;
+ break;
+
+ case Type::ObjCInterface: {
+ const auto *Iface1 = cast<ObjCInterfaceType>(T1);
+ const auto *Iface2 = cast<ObjCInterfaceType>(T2);
+ if (!IsStructurallyEquivalent(Context, Iface1->getDecl(),
+ Iface2->getDecl()))
+ return false;
+ break;
+ }
+
+ case Type::ObjCTypeParam: {
+ const auto *Obj1 = cast<ObjCTypeParamType>(T1);
+ const auto *Obj2 = cast<ObjCTypeParamType>(T2);
+ if (!IsStructurallyEquivalent(Context, Obj1->getDecl(), Obj2->getDecl()))
+ return false;
+
+ if (Obj1->getNumProtocols() != Obj2->getNumProtocols())
+ return false;
+ for (unsigned I = 0, N = Obj1->getNumProtocols(); I != N; ++I) {
+ if (!IsStructurallyEquivalent(Context, Obj1->getProtocol(I),
+ Obj2->getProtocol(I)))
+ return false;
+ }
+ break;
+ }
+
+ case Type::ObjCObject: {
+ const auto *Obj1 = cast<ObjCObjectType>(T1);
+ const auto *Obj2 = cast<ObjCObjectType>(T2);
+ if (!IsStructurallyEquivalent(Context, Obj1->getBaseType(),
+ Obj2->getBaseType()))
+ return false;
+ if (Obj1->getNumProtocols() != Obj2->getNumProtocols())
+ return false;
+ for (unsigned I = 0, N = Obj1->getNumProtocols(); I != N; ++I) {
+ if (!IsStructurallyEquivalent(Context, Obj1->getProtocol(I),
+ Obj2->getProtocol(I)))
+ return false;
+ }
+ break;
+ }
+
+ case Type::ObjCObjectPointer: {
+ const auto *Ptr1 = cast<ObjCObjectPointerType>(T1);
+ const auto *Ptr2 = cast<ObjCObjectPointerType>(T2);
+ if (!IsStructurallyEquivalent(Context, Ptr1->getPointeeType(),
+ Ptr2->getPointeeType()))
+ return false;
+ break;
+ }
+
+ case Type::Atomic:
+ if (!IsStructurallyEquivalent(Context, cast<AtomicType>(T1)->getValueType(),
+ cast<AtomicType>(T2)->getValueType()))
+ return false;
+ break;
+
+ case Type::Pipe:
+ if (!IsStructurallyEquivalent(Context, cast<PipeType>(T1)->getElementType(),
+ cast<PipeType>(T2)->getElementType()))
+ return false;
+ break;
+ } // end switch
+
+ return true;
+}
+
+/// Determine structural equivalence of two fields.
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ FieldDecl *Field1, FieldDecl *Field2) {
+ const auto *Owner2 = cast<RecordDecl>(Field2->getDeclContext());
+
+ // For anonymous structs/unions, match up the anonymous struct/union type
+ // declarations directly, so that we don't go off searching for anonymous
+ // types
+ if (Field1->isAnonymousStructOrUnion() &&
+ Field2->isAnonymousStructOrUnion()) {
+ RecordDecl *D1 = Field1->getType()->castAs<RecordType>()->getDecl();
+ RecordDecl *D2 = Field2->getType()->castAs<RecordType>()->getDecl();
+ return IsStructurallyEquivalent(Context, D1, D2);
+ }
+
+ // Check for equivalent field names.
+ IdentifierInfo *Name1 = Field1->getIdentifier();
+ IdentifierInfo *Name2 = Field2->getIdentifier();
+ if (!::IsStructurallyEquivalent(Name1, Name2)) {
+ if (Context.Complain) {
+ Context.Diag2(
+ Owner2->getLocation(),
+ Context.getApplicableDiagnostic(diag::err_odr_tag_type_inconsistent))
+ << Context.ToCtx.getTypeDeclType(Owner2);
+ Context.Diag2(Field2->getLocation(), diag::note_odr_field_name)
+ << Field2->getDeclName();
+ Context.Diag1(Field1->getLocation(), diag::note_odr_field_name)
+ << Field1->getDeclName();
+ }
+ return false;
+ }
+
+ if (!IsStructurallyEquivalent(Context, Field1->getType(),
+ Field2->getType())) {
+ if (Context.Complain) {
+ Context.Diag2(
+ Owner2->getLocation(),
+ Context.getApplicableDiagnostic(diag::err_odr_tag_type_inconsistent))
+ << Context.ToCtx.getTypeDeclType(Owner2);
+ Context.Diag2(Field2->getLocation(), diag::note_odr_field)
+ << Field2->getDeclName() << Field2->getType();
+ Context.Diag1(Field1->getLocation(), diag::note_odr_field)
+ << Field1->getDeclName() << Field1->getType();
+ }
+ return false;
+ }
+
+ if (Field1->isBitField() != Field2->isBitField()) {
+ if (Context.Complain) {
+ Context.Diag2(
+ Owner2->getLocation(),
+ Context.getApplicableDiagnostic(diag::err_odr_tag_type_inconsistent))
+ << Context.ToCtx.getTypeDeclType(Owner2);
+ if (Field1->isBitField()) {
+ Context.Diag1(Field1->getLocation(), diag::note_odr_bit_field)
+ << Field1->getDeclName() << Field1->getType()
+ << Field1->getBitWidthValue(Context.FromCtx);
+ Context.Diag2(Field2->getLocation(), diag::note_odr_not_bit_field)
+ << Field2->getDeclName();
+ } else {
+ Context.Diag2(Field2->getLocation(), diag::note_odr_bit_field)
+ << Field2->getDeclName() << Field2->getType()
+ << Field2->getBitWidthValue(Context.ToCtx);
+ Context.Diag1(Field1->getLocation(), diag::note_odr_not_bit_field)
+ << Field1->getDeclName();
+ }
+ }
+ return false;
+ }
+
+ if (Field1->isBitField()) {
+ // Make sure that the bit-fields are the same length.
+ unsigned Bits1 = Field1->getBitWidthValue(Context.FromCtx);
+ unsigned Bits2 = Field2->getBitWidthValue(Context.ToCtx);
+
+ if (Bits1 != Bits2) {
+ if (Context.Complain) {
+ Context.Diag2(Owner2->getLocation(),
+ Context.getApplicableDiagnostic(
+ diag::err_odr_tag_type_inconsistent))
+ << Context.ToCtx.getTypeDeclType(Owner2);
+ Context.Diag2(Field2->getLocation(), diag::note_odr_bit_field)
+ << Field2->getDeclName() << Field2->getType() << Bits2;
+ Context.Diag1(Field1->getLocation(), diag::note_odr_bit_field)
+ << Field1->getDeclName() << Field1->getType() << Bits1;
+ }
+ return false;
+ }
+ }
+
+ return true;
+}
+
+/// Determine structural equivalence of two methods.
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ CXXMethodDecl *Method1,
+ CXXMethodDecl *Method2) {
+ bool PropertiesEqual =
+ Method1->getDeclKind() == Method2->getDeclKind() &&
+ Method1->getRefQualifier() == Method2->getRefQualifier() &&
+ Method1->getAccess() == Method2->getAccess() &&
+ Method1->getOverloadedOperator() == Method2->getOverloadedOperator() &&
+ Method1->isStatic() == Method2->isStatic() &&
+ Method1->isConst() == Method2->isConst() &&
+ Method1->isVolatile() == Method2->isVolatile() &&
+ Method1->isVirtual() == Method2->isVirtual() &&
+ Method1->isPure() == Method2->isPure() &&
+ Method1->isDefaulted() == Method2->isDefaulted() &&
+ Method1->isDeleted() == Method2->isDeleted();
+ if (!PropertiesEqual)
+ return false;
+ // FIXME: Check for 'final'.
+
+ if (auto *Constructor1 = dyn_cast<CXXConstructorDecl>(Method1)) {
+ auto *Constructor2 = cast<CXXConstructorDecl>(Method2);
+ if (!Constructor1->getExplicitSpecifier().isEquivalent(
+ Constructor2->getExplicitSpecifier()))
+ return false;
+ }
+
+ if (auto *Conversion1 = dyn_cast<CXXConversionDecl>(Method1)) {
+ auto *Conversion2 = cast<CXXConversionDecl>(Method2);
+ if (!Conversion1->getExplicitSpecifier().isEquivalent(
+ Conversion2->getExplicitSpecifier()))
+ return false;
+ if (!IsStructurallyEquivalent(Context, Conversion1->getConversionType(),
+ Conversion2->getConversionType()))
+ return false;
+ }
+
+ const IdentifierInfo *Name1 = Method1->getIdentifier();
+ const IdentifierInfo *Name2 = Method2->getIdentifier();
+ if (!::IsStructurallyEquivalent(Name1, Name2)) {
+ return false;
+ // TODO: Names do not match, add warning like at check for FieldDecl.
+ }
+
+ // Check the prototypes.
+ if (!::IsStructurallyEquivalent(Context,
+ Method1->getType(), Method2->getType()))
+ return false;
+
+ return true;
+}
+
+/// Determine structural equivalence of two lambda classes.
+static bool
+IsStructurallyEquivalentLambdas(StructuralEquivalenceContext &Context,
+ CXXRecordDecl *D1, CXXRecordDecl *D2) {
+ assert(D1->isLambda() && D2->isLambda() &&
+ "Must be called on lambda classes");
+ if (!IsStructurallyEquivalent(Context, D1->getLambdaCallOperator(),
+ D2->getLambdaCallOperator()))
+ return false;
+
+ return true;
+}
+
+/// Determine structural equivalence of two records.
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ RecordDecl *D1, RecordDecl *D2) {
+ if (D1->isUnion() != D2->isUnion()) {
+ if (Context.Complain) {
+ Context.Diag2(D2->getLocation(), Context.getApplicableDiagnostic(
+ diag::err_odr_tag_type_inconsistent))
+ << Context.ToCtx.getTypeDeclType(D2);
+ Context.Diag1(D1->getLocation(), diag::note_odr_tag_kind_here)
+ << D1->getDeclName() << (unsigned)D1->getTagKind();
+ }
+ return false;
+ }
+
+ if (!D1->getDeclName() && !D2->getDeclName()) {
+ // If both anonymous structs/unions are in a record context, make sure
+ // they occur in the same location in the context records.
+ if (Optional<unsigned> Index1 =
+ StructuralEquivalenceContext::findUntaggedStructOrUnionIndex(D1)) {
+ if (Optional<unsigned> Index2 =
+ StructuralEquivalenceContext::findUntaggedStructOrUnionIndex(
+ D2)) {
+ if (*Index1 != *Index2)
+ return false;
+ }
+ }
+ }
+
+ // If both declarations are class template specializations, we know
+ // the ODR applies, so check the template and template arguments.
+ const auto *Spec1 = dyn_cast<ClassTemplateSpecializationDecl>(D1);
+ const auto *Spec2 = dyn_cast<ClassTemplateSpecializationDecl>(D2);
+ if (Spec1 && Spec2) {
+ // Check that the specialized templates are the same.
+ if (!IsStructurallyEquivalent(Context, Spec1->getSpecializedTemplate(),
+ Spec2->getSpecializedTemplate()))
+ return false;
+
+ // Check that the template arguments are the same.
+ if (Spec1->getTemplateArgs().size() != Spec2->getTemplateArgs().size())
+ return false;
+
+ for (unsigned I = 0, N = Spec1->getTemplateArgs().size(); I != N; ++I)
+ if (!IsStructurallyEquivalent(Context, Spec1->getTemplateArgs().get(I),
+ Spec2->getTemplateArgs().get(I)))
+ return false;
+ }
+ // If one is a class template specialization and the other is not, these
+ // structures are different.
+ else if (Spec1 || Spec2)
+ return false;
+
+ // Compare the definitions of these two records. If either or both are
+ // incomplete (i.e. it is a forward decl), we assume that they are
+ // equivalent.
+ D1 = D1->getDefinition();
+ D2 = D2->getDefinition();
+ if (!D1 || !D2)
+ return true;
+
+ // If any of the records has external storage and we do a minimal check (or
+ // AST import) we assume they are equivalent. (If we didn't have this
+ // assumption then `RecordDecl::LoadFieldsFromExternalStorage` could trigger
+ // another AST import which in turn would call the structural equivalency
+ // check again and finally we'd have an improper result.)
+ if (Context.EqKind == StructuralEquivalenceKind::Minimal)
+ if (D1->hasExternalLexicalStorage() || D2->hasExternalLexicalStorage())
+ return true;
+
+ // If one definition is currently being defined, we do not compare for
+ // equality and we assume that the decls are equal.
+ if (D1->isBeingDefined() || D2->isBeingDefined())
+ return true;
+
+ if (auto *D1CXX = dyn_cast<CXXRecordDecl>(D1)) {
+ if (auto *D2CXX = dyn_cast<CXXRecordDecl>(D2)) {
+ if (D1CXX->hasExternalLexicalStorage() &&
+ !D1CXX->isCompleteDefinition()) {
+ D1CXX->getASTContext().getExternalSource()->CompleteType(D1CXX);
+ }
+
+ if (D1CXX->isLambda() != D2CXX->isLambda())
+ return false;
+ if (D1CXX->isLambda()) {
+ if (!IsStructurallyEquivalentLambdas(Context, D1CXX, D2CXX))
+ return false;
+ }
+
+ if (D1CXX->getNumBases() != D2CXX->getNumBases()) {
+ if (Context.Complain) {
+ Context.Diag2(D2->getLocation(),
+ Context.getApplicableDiagnostic(
+ diag::err_odr_tag_type_inconsistent))
+ << Context.ToCtx.getTypeDeclType(D2);
+ Context.Diag2(D2->getLocation(), diag::note_odr_number_of_bases)
+ << D2CXX->getNumBases();
+ Context.Diag1(D1->getLocation(), diag::note_odr_number_of_bases)
+ << D1CXX->getNumBases();
+ }
+ return false;
+ }
+
+ // Check the base classes.
+ for (CXXRecordDecl::base_class_iterator Base1 = D1CXX->bases_begin(),
+ BaseEnd1 = D1CXX->bases_end(),
+ Base2 = D2CXX->bases_begin();
+ Base1 != BaseEnd1; ++Base1, ++Base2) {
+ if (!IsStructurallyEquivalent(Context, Base1->getType(),
+ Base2->getType())) {
+ if (Context.Complain) {
+ Context.Diag2(D2->getLocation(),
+ Context.getApplicableDiagnostic(
+ diag::err_odr_tag_type_inconsistent))
+ << Context.ToCtx.getTypeDeclType(D2);
+ Context.Diag2(Base2->getBeginLoc(), diag::note_odr_base)
+ << Base2->getType() << Base2->getSourceRange();
+ Context.Diag1(Base1->getBeginLoc(), diag::note_odr_base)
+ << Base1->getType() << Base1->getSourceRange();
+ }
+ return false;
+ }
+
+ // Check virtual vs. non-virtual inheritance mismatch.
+ if (Base1->isVirtual() != Base2->isVirtual()) {
+ if (Context.Complain) {
+ Context.Diag2(D2->getLocation(),
+ Context.getApplicableDiagnostic(
+ diag::err_odr_tag_type_inconsistent))
+ << Context.ToCtx.getTypeDeclType(D2);
+ Context.Diag2(Base2->getBeginLoc(), diag::note_odr_virtual_base)
+ << Base2->isVirtual() << Base2->getSourceRange();
+ Context.Diag1(Base1->getBeginLoc(), diag::note_odr_base)
+ << Base1->isVirtual() << Base1->getSourceRange();
+ }
+ return false;
+ }
+ }
+
+ // Check the friends for consistency.
+ CXXRecordDecl::friend_iterator Friend2 = D2CXX->friend_begin(),
+ Friend2End = D2CXX->friend_end();
+ for (CXXRecordDecl::friend_iterator Friend1 = D1CXX->friend_begin(),
+ Friend1End = D1CXX->friend_end();
+ Friend1 != Friend1End; ++Friend1, ++Friend2) {
+ if (Friend2 == Friend2End) {
+ if (Context.Complain) {
+ Context.Diag2(D2->getLocation(),
+ Context.getApplicableDiagnostic(
+ diag::err_odr_tag_type_inconsistent))
+ << Context.ToCtx.getTypeDeclType(D2CXX);
+ Context.Diag1((*Friend1)->getFriendLoc(), diag::note_odr_friend);
+ Context.Diag2(D2->getLocation(), diag::note_odr_missing_friend);
+ }
+ return false;
+ }
+
+ if (!IsStructurallyEquivalent(Context, *Friend1, *Friend2)) {
+ if (Context.Complain) {
+ Context.Diag2(D2->getLocation(),
+ Context.getApplicableDiagnostic(
+ diag::err_odr_tag_type_inconsistent))
+ << Context.ToCtx.getTypeDeclType(D2CXX);
+ Context.Diag1((*Friend1)->getFriendLoc(), diag::note_odr_friend);
+ Context.Diag2((*Friend2)->getFriendLoc(), diag::note_odr_friend);
+ }
+ return false;
+ }
+ }
+
+ if (Friend2 != Friend2End) {
+ if (Context.Complain) {
+ Context.Diag2(D2->getLocation(),
+ Context.getApplicableDiagnostic(
+ diag::err_odr_tag_type_inconsistent))
+ << Context.ToCtx.getTypeDeclType(D2);
+ Context.Diag2((*Friend2)->getFriendLoc(), diag::note_odr_friend);
+ Context.Diag1(D1->getLocation(), diag::note_odr_missing_friend);
+ }
+ return false;
+ }
+ } else if (D1CXX->getNumBases() > 0) {
+ if (Context.Complain) {
+ Context.Diag2(D2->getLocation(),
+ Context.getApplicableDiagnostic(
+ diag::err_odr_tag_type_inconsistent))
+ << Context.ToCtx.getTypeDeclType(D2);
+ const CXXBaseSpecifier *Base1 = D1CXX->bases_begin();
+ Context.Diag1(Base1->getBeginLoc(), diag::note_odr_base)
+ << Base1->getType() << Base1->getSourceRange();
+ Context.Diag2(D2->getLocation(), diag::note_odr_missing_base);
+ }
+ return false;
+ }
+ }
+
+ // Check the fields for consistency.
+ RecordDecl::field_iterator Field2 = D2->field_begin(),
+ Field2End = D2->field_end();
+ for (RecordDecl::field_iterator Field1 = D1->field_begin(),
+ Field1End = D1->field_end();
+ Field1 != Field1End; ++Field1, ++Field2) {
+ if (Field2 == Field2End) {
+ if (Context.Complain) {
+ Context.Diag2(D2->getLocation(),
+ Context.getApplicableDiagnostic(
+ diag::err_odr_tag_type_inconsistent))
+ << Context.ToCtx.getTypeDeclType(D2);
+ Context.Diag1(Field1->getLocation(), diag::note_odr_field)
+ << Field1->getDeclName() << Field1->getType();
+ Context.Diag2(D2->getLocation(), diag::note_odr_missing_field);
+ }
+ return false;
+ }
+
+ if (!IsStructurallyEquivalent(Context, *Field1, *Field2))
+ return false;
+ }
+
+ if (Field2 != Field2End) {
+ if (Context.Complain) {
+ Context.Diag2(D2->getLocation(), Context.getApplicableDiagnostic(
+ diag::err_odr_tag_type_inconsistent))
+ << Context.ToCtx.getTypeDeclType(D2);
+ Context.Diag2(Field2->getLocation(), diag::note_odr_field)
+ << Field2->getDeclName() << Field2->getType();
+ Context.Diag1(D1->getLocation(), diag::note_odr_missing_field);
+ }
+ return false;
+ }
+
+ return true;
+}
+
+/// Determine structural equivalence of two enums.
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ EnumDecl *D1, EnumDecl *D2) {
+
+ // Compare the definitions of these two enums. If either or both are
+ // incomplete (i.e. forward declared), we assume that they are equivalent.
+ D1 = D1->getDefinition();
+ D2 = D2->getDefinition();
+ if (!D1 || !D2)
+ return true;
+
+ EnumDecl::enumerator_iterator EC2 = D2->enumerator_begin(),
+ EC2End = D2->enumerator_end();
+ for (EnumDecl::enumerator_iterator EC1 = D1->enumerator_begin(),
+ EC1End = D1->enumerator_end();
+ EC1 != EC1End; ++EC1, ++EC2) {
+ if (EC2 == EC2End) {
+ if (Context.Complain) {
+ Context.Diag2(D2->getLocation(),
+ Context.getApplicableDiagnostic(
+ diag::err_odr_tag_type_inconsistent))
+ << Context.ToCtx.getTypeDeclType(D2);
+ Context.Diag1(EC1->getLocation(), diag::note_odr_enumerator)
+ << EC1->getDeclName() << EC1->getInitVal().toString(10);
+ Context.Diag2(D2->getLocation(), diag::note_odr_missing_enumerator);
+ }
+ return false;
+ }
+
+ llvm::APSInt Val1 = EC1->getInitVal();
+ llvm::APSInt Val2 = EC2->getInitVal();
+ if (!llvm::APSInt::isSameValue(Val1, Val2) ||
+ !IsStructurallyEquivalent(EC1->getIdentifier(), EC2->getIdentifier())) {
+ if (Context.Complain) {
+ Context.Diag2(D2->getLocation(),
+ Context.getApplicableDiagnostic(
+ diag::err_odr_tag_type_inconsistent))
+ << Context.ToCtx.getTypeDeclType(D2);
+ Context.Diag2(EC2->getLocation(), diag::note_odr_enumerator)
+ << EC2->getDeclName() << EC2->getInitVal().toString(10);
+ Context.Diag1(EC1->getLocation(), diag::note_odr_enumerator)
+ << EC1->getDeclName() << EC1->getInitVal().toString(10);
+ }
+ return false;
+ }
+ }
+
+ if (EC2 != EC2End) {
+ if (Context.Complain) {
+ Context.Diag2(D2->getLocation(), Context.getApplicableDiagnostic(
+ diag::err_odr_tag_type_inconsistent))
+ << Context.ToCtx.getTypeDeclType(D2);
+ Context.Diag2(EC2->getLocation(), diag::note_odr_enumerator)
+ << EC2->getDeclName() << EC2->getInitVal().toString(10);
+ Context.Diag1(D1->getLocation(), diag::note_odr_missing_enumerator);
+ }
+ return false;
+ }
+
+ return true;
+}
+
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ TemplateParameterList *Params1,
+ TemplateParameterList *Params2) {
+ if (Params1->size() != Params2->size()) {
+ if (Context.Complain) {
+ Context.Diag2(Params2->getTemplateLoc(),
+ Context.getApplicableDiagnostic(
+ diag::err_odr_different_num_template_parameters))
+ << Params1->size() << Params2->size();
+ Context.Diag1(Params1->getTemplateLoc(),
+ diag::note_odr_template_parameter_list);
+ }
+ return false;
+ }
+
+ for (unsigned I = 0, N = Params1->size(); I != N; ++I) {
+ if (Params1->getParam(I)->getKind() != Params2->getParam(I)->getKind()) {
+ if (Context.Complain) {
+ Context.Diag2(Params2->getParam(I)->getLocation(),
+ Context.getApplicableDiagnostic(
+ diag::err_odr_different_template_parameter_kind));
+ Context.Diag1(Params1->getParam(I)->getLocation(),
+ diag::note_odr_template_parameter_here);
+ }
+ return false;
+ }
+
+ if (!IsStructurallyEquivalent(Context, Params1->getParam(I),
+ Params2->getParam(I)))
+ return false;
+ }
+
+ return true;
+}
+
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ TemplateTypeParmDecl *D1,
+ TemplateTypeParmDecl *D2) {
+ if (D1->isParameterPack() != D2->isParameterPack()) {
+ if (Context.Complain) {
+ Context.Diag2(D2->getLocation(),
+ Context.getApplicableDiagnostic(
+ diag::err_odr_parameter_pack_non_pack))
+ << D2->isParameterPack();
+ Context.Diag1(D1->getLocation(), diag::note_odr_parameter_pack_non_pack)
+ << D1->isParameterPack();
+ }
+ return false;
+ }
+
+ return true;
+}
+
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ NonTypeTemplateParmDecl *D1,
+ NonTypeTemplateParmDecl *D2) {
+ if (D1->isParameterPack() != D2->isParameterPack()) {
+ if (Context.Complain) {
+ Context.Diag2(D2->getLocation(),
+ Context.getApplicableDiagnostic(
+ diag::err_odr_parameter_pack_non_pack))
+ << D2->isParameterPack();
+ Context.Diag1(D1->getLocation(), diag::note_odr_parameter_pack_non_pack)
+ << D1->isParameterPack();
+ }
+ return false;
+ }
+
+ // Check types.
+ if (!IsStructurallyEquivalent(Context, D1->getType(), D2->getType())) {
+ if (Context.Complain) {
+ Context.Diag2(D2->getLocation(),
+ Context.getApplicableDiagnostic(
+ diag::err_odr_non_type_parameter_type_inconsistent))
+ << D2->getType() << D1->getType();
+ Context.Diag1(D1->getLocation(), diag::note_odr_value_here)
+ << D1->getType();
+ }
+ return false;
+ }
+
+ return true;
+}
+
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ TemplateTemplateParmDecl *D1,
+ TemplateTemplateParmDecl *D2) {
+ if (D1->isParameterPack() != D2->isParameterPack()) {
+ if (Context.Complain) {
+ Context.Diag2(D2->getLocation(),
+ Context.getApplicableDiagnostic(
+ diag::err_odr_parameter_pack_non_pack))
+ << D2->isParameterPack();
+ Context.Diag1(D1->getLocation(), diag::note_odr_parameter_pack_non_pack)
+ << D1->isParameterPack();
+ }
+ return false;
+ }
+
+ // Check template parameter lists.
+ return IsStructurallyEquivalent(Context, D1->getTemplateParameters(),
+ D2->getTemplateParameters());
+}
+
+static bool IsTemplateDeclCommonStructurallyEquivalent(
+ StructuralEquivalenceContext &Ctx, TemplateDecl *D1, TemplateDecl *D2) {
+ if (!IsStructurallyEquivalent(D1->getIdentifier(), D2->getIdentifier()))
+ return false;
+ if (!D1->getIdentifier()) // Special name
+ if (D1->getNameAsString() != D2->getNameAsString())
+ return false;
+ return IsStructurallyEquivalent(Ctx, D1->getTemplateParameters(),
+ D2->getTemplateParameters());
+}
+
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ ClassTemplateDecl *D1,
+ ClassTemplateDecl *D2) {
+ // Check template parameters.
+ if (!IsTemplateDeclCommonStructurallyEquivalent(Context, D1, D2))
+ return false;
+
+ // Check the templated declaration.
+ return IsStructurallyEquivalent(Context, D1->getTemplatedDecl(),
+ D2->getTemplatedDecl());
+}
+
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ FunctionTemplateDecl *D1,
+ FunctionTemplateDecl *D2) {
+ // Check template parameters.
+ if (!IsTemplateDeclCommonStructurallyEquivalent(Context, D1, D2))
+ return false;
+
+ // Check the templated declaration.
+ return IsStructurallyEquivalent(Context, D1->getTemplatedDecl()->getType(),
+ D2->getTemplatedDecl()->getType());
+}
+
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ ConceptDecl *D1,
+ ConceptDecl *D2) {
+ // Check template parameters.
+ if (!IsTemplateDeclCommonStructurallyEquivalent(Context, D1, D2))
+ return false;
+
+ // Check the constraint expression.
+ return IsStructurallyEquivalent(Context, D1->getConstraintExpr(),
+ D2->getConstraintExpr());
+}
+
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ FriendDecl *D1, FriendDecl *D2) {
+ if ((D1->getFriendType() && D2->getFriendDecl()) ||
+ (D1->getFriendDecl() && D2->getFriendType())) {
+ return false;
+ }
+ if (D1->getFriendType() && D2->getFriendType())
+ return IsStructurallyEquivalent(Context,
+ D1->getFriendType()->getType(),
+ D2->getFriendType()->getType());
+ if (D1->getFriendDecl() && D2->getFriendDecl())
+ return IsStructurallyEquivalent(Context, D1->getFriendDecl(),
+ D2->getFriendDecl());
+ return false;
+}
+
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ FunctionDecl *D1, FunctionDecl *D2) {
+ // FIXME: Consider checking for function attributes as well.
+ if (!IsStructurallyEquivalent(Context, D1->getType(), D2->getType()))
+ return false;
+
+ return true;
+}
+
+/// Determine structural equivalence of two declarations.
+static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context,
+ Decl *D1, Decl *D2) {
+ // FIXME: Check for known structural equivalences via a callback of some sort.
+
+ D1 = D1->getCanonicalDecl();
+ D2 = D2->getCanonicalDecl();
+ std::pair<Decl *, Decl *> P{D1, D2};
+
+ // Check whether we already know that these two declarations are not
+ // structurally equivalent.
+ if (Context.NonEquivalentDecls.count(P))
+ return false;
+
+ // Check if a check for these declarations is already pending.
+ // If yes D1 and D2 will be checked later (from DeclsToCheck),
+ // or these are already checked (and equivalent).
+ bool Inserted = Context.VisitedDecls.insert(P).second;
+ if (!Inserted)
+ return true;
+
+ Context.DeclsToCheck.push(P);
+
+ return true;
+}
+
+DiagnosticBuilder StructuralEquivalenceContext::Diag1(SourceLocation Loc,
+ unsigned DiagID) {
+ assert(Complain && "Not allowed to complain");
+ if (LastDiagFromC2)
+ FromCtx.getDiagnostics().notePriorDiagnosticFrom(ToCtx.getDiagnostics());
+ LastDiagFromC2 = false;
+ return FromCtx.getDiagnostics().Report(Loc, DiagID);
+}
+
+DiagnosticBuilder StructuralEquivalenceContext::Diag2(SourceLocation Loc,
+ unsigned DiagID) {
+ assert(Complain && "Not allowed to complain");
+ if (!LastDiagFromC2)
+ ToCtx.getDiagnostics().notePriorDiagnosticFrom(FromCtx.getDiagnostics());
+ LastDiagFromC2 = true;
+ return ToCtx.getDiagnostics().Report(Loc, DiagID);
+}
+
+Optional<unsigned>
+StructuralEquivalenceContext::findUntaggedStructOrUnionIndex(RecordDecl *Anon) {
+ ASTContext &Context = Anon->getASTContext();
+ QualType AnonTy = Context.getRecordType(Anon);
+
+ const auto *Owner = dyn_cast<RecordDecl>(Anon->getDeclContext());
+ if (!Owner)
+ return None;
+
+ unsigned Index = 0;
+ for (const auto *D : Owner->noload_decls()) {
+ const auto *F = dyn_cast<FieldDecl>(D);
+ if (!F)
+ continue;
+
+ if (F->isAnonymousStructOrUnion()) {
+ if (Context.hasSameType(F->getType(), AnonTy))
+ break;
+ ++Index;
+ continue;
+ }
+
+ // If the field looks like this:
+ // struct { ... } A;
+ QualType FieldType = F->getType();
+ // In case of nested structs.
+ while (const auto *ElabType = dyn_cast<ElaboratedType>(FieldType))
+ FieldType = ElabType->getNamedType();
+
+ if (const auto *RecType = dyn_cast<RecordType>(FieldType)) {
+ const RecordDecl *RecDecl = RecType->getDecl();
+ if (RecDecl->getDeclContext() == Owner && !RecDecl->getIdentifier()) {
+ if (Context.hasSameType(FieldType, AnonTy))
+ break;
+ ++Index;
+ continue;
+ }
+ }
+ }
+
+ return Index;
+}
+
+unsigned StructuralEquivalenceContext::getApplicableDiagnostic(
+ unsigned ErrorDiagnostic) {
+ if (ErrorOnTagTypeMismatch)
+ return ErrorDiagnostic;
+
+ switch (ErrorDiagnostic) {
+ case diag::err_odr_variable_type_inconsistent:
+ return diag::warn_odr_variable_type_inconsistent;
+ case diag::err_odr_variable_multiple_def:
+ return diag::warn_odr_variable_multiple_def;
+ case diag::err_odr_function_type_inconsistent:
+ return diag::warn_odr_function_type_inconsistent;
+ case diag::err_odr_tag_type_inconsistent:
+ return diag::warn_odr_tag_type_inconsistent;
+ case diag::err_odr_field_type_inconsistent:
+ return diag::warn_odr_field_type_inconsistent;
+ case diag::err_odr_ivar_type_inconsistent:
+ return diag::warn_odr_ivar_type_inconsistent;
+ case diag::err_odr_objc_superclass_inconsistent:
+ return diag::warn_odr_objc_superclass_inconsistent;
+ case diag::err_odr_objc_method_result_type_inconsistent:
+ return diag::warn_odr_objc_method_result_type_inconsistent;
+ case diag::err_odr_objc_method_num_params_inconsistent:
+ return diag::warn_odr_objc_method_num_params_inconsistent;
+ case diag::err_odr_objc_method_param_type_inconsistent:
+ return diag::warn_odr_objc_method_param_type_inconsistent;
+ case diag::err_odr_objc_method_variadic_inconsistent:
+ return diag::warn_odr_objc_method_variadic_inconsistent;
+ case diag::err_odr_objc_property_type_inconsistent:
+ return diag::warn_odr_objc_property_type_inconsistent;
+ case diag::err_odr_objc_property_impl_kind_inconsistent:
+ return diag::warn_odr_objc_property_impl_kind_inconsistent;
+ case diag::err_odr_objc_synthesize_ivar_inconsistent:
+ return diag::warn_odr_objc_synthesize_ivar_inconsistent;
+ case diag::err_odr_different_num_template_parameters:
+ return diag::warn_odr_different_num_template_parameters;
+ case diag::err_odr_different_template_parameter_kind:
+ return diag::warn_odr_different_template_parameter_kind;
+ case diag::err_odr_parameter_pack_non_pack:
+ return diag::warn_odr_parameter_pack_non_pack;
+ case diag::err_odr_non_type_parameter_type_inconsistent:
+ return diag::warn_odr_non_type_parameter_type_inconsistent;
+ }
+ llvm_unreachable("Diagnostic kind not handled in preceding switch");
+}
+
+bool StructuralEquivalenceContext::IsEquivalent(Decl *D1, Decl *D2) {
+
+ // Ensure that the implementation functions (all static functions in this TU)
+ // never call the public ASTStructuralEquivalence::IsEquivalent() functions,
+ // because that will wreak havoc the internal state (DeclsToCheck and
+ // VisitedDecls members) and can cause faulty behaviour.
+ // In other words: Do not start a graph search from a new node with the
+ // internal data of another search in progress.
+ // FIXME: Better encapsulation and separation of internal and public
+ // functionality.
+ assert(DeclsToCheck.empty());
+ assert(VisitedDecls.empty());
+
+ if (!::IsStructurallyEquivalent(*this, D1, D2))
+ return false;
+
+ return !Finish();
+}
+
+bool StructuralEquivalenceContext::IsEquivalent(QualType T1, QualType T2) {
+ assert(DeclsToCheck.empty());
+ assert(VisitedDecls.empty());
+ if (!::IsStructurallyEquivalent(*this, T1, T2))
+ return false;
+
+ return !Finish();
+}
+
+bool StructuralEquivalenceContext::CheckCommonEquivalence(Decl *D1, Decl *D2) {
+ // Check for equivalent described template.
+ TemplateDecl *Template1 = D1->getDescribedTemplate();
+ TemplateDecl *Template2 = D2->getDescribedTemplate();
+ if ((Template1 != nullptr) != (Template2 != nullptr))
+ return false;
+ if (Template1 && !IsStructurallyEquivalent(*this, Template1, Template2))
+ return false;
+
+ // FIXME: Move check for identifier names into this function.
+
+ return true;
+}
+
+bool StructuralEquivalenceContext::CheckKindSpecificEquivalence(
+ Decl *D1, Decl *D2) {
+ // FIXME: Switch on all declaration kinds. For now, we're just going to
+ // check the obvious ones.
+ if (auto *Record1 = dyn_cast<RecordDecl>(D1)) {
+ if (auto *Record2 = dyn_cast<RecordDecl>(D2)) {
+ // Check for equivalent structure names.
+ IdentifierInfo *Name1 = Record1->getIdentifier();
+ if (!Name1 && Record1->getTypedefNameForAnonDecl())
+ Name1 = Record1->getTypedefNameForAnonDecl()->getIdentifier();
+ IdentifierInfo *Name2 = Record2->getIdentifier();
+ if (!Name2 && Record2->getTypedefNameForAnonDecl())
+ Name2 = Record2->getTypedefNameForAnonDecl()->getIdentifier();
+ if (!::IsStructurallyEquivalent(Name1, Name2) ||
+ !::IsStructurallyEquivalent(*this, Record1, Record2))
+ return false;
+ } else {
+ // Record/non-record mismatch.
+ return false;
+ }
+ } else if (auto *Enum1 = dyn_cast<EnumDecl>(D1)) {
+ if (auto *Enum2 = dyn_cast<EnumDecl>(D2)) {
+ // Check for equivalent enum names.
+ IdentifierInfo *Name1 = Enum1->getIdentifier();
+ if (!Name1 && Enum1->getTypedefNameForAnonDecl())
+ Name1 = Enum1->getTypedefNameForAnonDecl()->getIdentifier();
+ IdentifierInfo *Name2 = Enum2->getIdentifier();
+ if (!Name2 && Enum2->getTypedefNameForAnonDecl())
+ Name2 = Enum2->getTypedefNameForAnonDecl()->getIdentifier();
+ if (!::IsStructurallyEquivalent(Name1, Name2) ||
+ !::IsStructurallyEquivalent(*this, Enum1, Enum2))
+ return false;
+ } else {
+ // Enum/non-enum mismatch
+ return false;
+ }
+ } else if (const auto *Typedef1 = dyn_cast<TypedefNameDecl>(D1)) {
+ if (const auto *Typedef2 = dyn_cast<TypedefNameDecl>(D2)) {
+ if (!::IsStructurallyEquivalent(Typedef1->getIdentifier(),
+ Typedef2->getIdentifier()) ||
+ !::IsStructurallyEquivalent(*this, Typedef1->getUnderlyingType(),
+ Typedef2->getUnderlyingType()))
+ return false;
+ } else {
+ // Typedef/non-typedef mismatch.
+ return false;
+ }
+ } else if (auto *ClassTemplate1 = dyn_cast<ClassTemplateDecl>(D1)) {
+ if (auto *ClassTemplate2 = dyn_cast<ClassTemplateDecl>(D2)) {
+ if (!::IsStructurallyEquivalent(*this, ClassTemplate1,
+ ClassTemplate2))
+ return false;
+ } else {
+ // Class template/non-class-template mismatch.
+ return false;
+ }
+ } else if (auto *FunctionTemplate1 = dyn_cast<FunctionTemplateDecl>(D1)) {
+ if (auto *FunctionTemplate2 = dyn_cast<FunctionTemplateDecl>(D2)) {
+ if (!::IsStructurallyEquivalent(*this, FunctionTemplate1,
+ FunctionTemplate2))
+ return false;
+ } else {
+ // Class template/non-class-template mismatch.
+ return false;
+ }
+ } else if (auto *ConceptDecl1 = dyn_cast<ConceptDecl>(D1)) {
+ if (auto *ConceptDecl2 = dyn_cast<ConceptDecl>(D2)) {
+ if (!::IsStructurallyEquivalent(*this, ConceptDecl1, ConceptDecl2))
+ return false;
+ } else {
+ // Concept/non-concept mismatch.
+ return false;
+ }
+ } else if (auto *TTP1 = dyn_cast<TemplateTypeParmDecl>(D1)) {
+ if (auto *TTP2 = dyn_cast<TemplateTypeParmDecl>(D2)) {
+ if (!::IsStructurallyEquivalent(*this, TTP1, TTP2))
+ return false;
+ } else {
+ // Kind mismatch.
+ return false;
+ }
+ } else if (auto *NTTP1 = dyn_cast<NonTypeTemplateParmDecl>(D1)) {
+ if (auto *NTTP2 = dyn_cast<NonTypeTemplateParmDecl>(D2)) {
+ if (!::IsStructurallyEquivalent(*this, NTTP1, NTTP2))
+ return false;
+ } else {
+ // Kind mismatch.
+ return false;
+ }
+ } else if (auto *TTP1 = dyn_cast<TemplateTemplateParmDecl>(D1)) {
+ if (auto *TTP2 = dyn_cast<TemplateTemplateParmDecl>(D2)) {
+ if (!::IsStructurallyEquivalent(*this, TTP1, TTP2))
+ return false;
+ } else {
+ // Kind mismatch.
+ return false;
+ }
+ } else if (auto *MD1 = dyn_cast<CXXMethodDecl>(D1)) {
+ if (auto *MD2 = dyn_cast<CXXMethodDecl>(D2)) {
+ if (!::IsStructurallyEquivalent(*this, MD1, MD2))
+ return false;
+ } else {
+ // Kind mismatch.
+ return false;
+ }
+ } else if (FunctionDecl *FD1 = dyn_cast<FunctionDecl>(D1)) {
+ if (FunctionDecl *FD2 = dyn_cast<FunctionDecl>(D2)) {
+ if (FD1->isOverloadedOperator()) {
+ if (!FD2->isOverloadedOperator())
+ return false;
+ if (FD1->getOverloadedOperator() != FD2->getOverloadedOperator())
+ return false;
+ }
+ if (!::IsStructurallyEquivalent(FD1->getIdentifier(),
+ FD2->getIdentifier()))
+ return false;
+ if (!::IsStructurallyEquivalent(*this, FD1, FD2))
+ return false;
+ } else {
+ // Kind mismatch.
+ return false;
+ }
+ } else if (FriendDecl *FrD1 = dyn_cast<FriendDecl>(D1)) {
+ if (FriendDecl *FrD2 = dyn_cast<FriendDecl>(D2)) {
+ if (!::IsStructurallyEquivalent(*this, FrD1, FrD2))
+ return false;
+ } else {
+ // Kind mismatch.
+ return false;
+ }
+ }
+
+ return true;
+}
+
+bool StructuralEquivalenceContext::Finish() {
+ while (!DeclsToCheck.empty()) {
+ // Check the next declaration.
+ std::pair<Decl *, Decl *> P = DeclsToCheck.front();
+ DeclsToCheck.pop();
+
+ Decl *D1 = P.first;
+ Decl *D2 = P.second;
+
+ bool Equivalent =
+ CheckCommonEquivalence(D1, D2) && CheckKindSpecificEquivalence(D1, D2);
+
+ if (!Equivalent) {
+ // Note that these two declarations are not equivalent (and we already
+ // know about it).
+ NonEquivalentDecls.insert(P);
+
+ return true;
+ }
+ }
+
+ return false;
+}