summaryrefslogtreecommitdiffstats
path: root/gnu/llvm/clang/lib/CodeGen/CGClass.cpp
diff options
context:
space:
mode:
authorpatrick <patrick@openbsd.org>2020-08-03 14:31:31 +0000
committerpatrick <patrick@openbsd.org>2020-08-03 14:31:31 +0000
commite5dd70708596ae51455a0ffa086a00c5b29f8583 (patch)
tree5d676f27b570bacf71e786c3b5cff3e6f6679b59 /gnu/llvm/clang/lib/CodeGen/CGClass.cpp
parentImport LLVM 10.0.0 release including clang, lld and lldb. (diff)
downloadwireguard-openbsd-e5dd70708596ae51455a0ffa086a00c5b29f8583.tar.xz
wireguard-openbsd-e5dd70708596ae51455a0ffa086a00c5b29f8583.zip
Import LLVM 10.0.0 release including clang, lld and lldb.
ok hackroom tested by plenty
Diffstat (limited to 'gnu/llvm/clang/lib/CodeGen/CGClass.cpp')
-rw-r--r--gnu/llvm/clang/lib/CodeGen/CGClass.cpp2942
1 files changed, 2942 insertions, 0 deletions
diff --git a/gnu/llvm/clang/lib/CodeGen/CGClass.cpp b/gnu/llvm/clang/lib/CodeGen/CGClass.cpp
new file mode 100644
index 00000000000..3f3825b7627
--- /dev/null
+++ b/gnu/llvm/clang/lib/CodeGen/CGClass.cpp
@@ -0,0 +1,2942 @@
+//===--- CGClass.cpp - Emit LLVM Code for C++ classes -----------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This contains code dealing with C++ code generation of classes
+//
+//===----------------------------------------------------------------------===//
+
+#include "CGBlocks.h"
+#include "CGCXXABI.h"
+#include "CGDebugInfo.h"
+#include "CGRecordLayout.h"
+#include "CodeGenFunction.h"
+#include "TargetInfo.h"
+#include "clang/AST/Attr.h"
+#include "clang/AST/CXXInheritance.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/EvaluatedExprVisitor.h"
+#include "clang/AST/RecordLayout.h"
+#include "clang/AST/StmtCXX.h"
+#include "clang/Basic/CodeGenOptions.h"
+#include "clang/Basic/TargetBuiltins.h"
+#include "clang/CodeGen/CGFunctionInfo.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/Transforms/Utils/SanitizerStats.h"
+
+using namespace clang;
+using namespace CodeGen;
+
+/// Return the best known alignment for an unknown pointer to a
+/// particular class.
+CharUnits CodeGenModule::getClassPointerAlignment(const CXXRecordDecl *RD) {
+ if (!RD->isCompleteDefinition())
+ return CharUnits::One(); // Hopefully won't be used anywhere.
+
+ auto &layout = getContext().getASTRecordLayout(RD);
+
+ // If the class is final, then we know that the pointer points to an
+ // object of that type and can use the full alignment.
+ if (RD->hasAttr<FinalAttr>()) {
+ return layout.getAlignment();
+
+ // Otherwise, we have to assume it could be a subclass.
+ } else {
+ return layout.getNonVirtualAlignment();
+ }
+}
+
+/// Return the best known alignment for a pointer to a virtual base,
+/// given the alignment of a pointer to the derived class.
+CharUnits CodeGenModule::getVBaseAlignment(CharUnits actualDerivedAlign,
+ const CXXRecordDecl *derivedClass,
+ const CXXRecordDecl *vbaseClass) {
+ // The basic idea here is that an underaligned derived pointer might
+ // indicate an underaligned base pointer.
+
+ assert(vbaseClass->isCompleteDefinition());
+ auto &baseLayout = getContext().getASTRecordLayout(vbaseClass);
+ CharUnits expectedVBaseAlign = baseLayout.getNonVirtualAlignment();
+
+ return getDynamicOffsetAlignment(actualDerivedAlign, derivedClass,
+ expectedVBaseAlign);
+}
+
+CharUnits
+CodeGenModule::getDynamicOffsetAlignment(CharUnits actualBaseAlign,
+ const CXXRecordDecl *baseDecl,
+ CharUnits expectedTargetAlign) {
+ // If the base is an incomplete type (which is, alas, possible with
+ // member pointers), be pessimistic.
+ if (!baseDecl->isCompleteDefinition())
+ return std::min(actualBaseAlign, expectedTargetAlign);
+
+ auto &baseLayout = getContext().getASTRecordLayout(baseDecl);
+ CharUnits expectedBaseAlign = baseLayout.getNonVirtualAlignment();
+
+ // If the class is properly aligned, assume the target offset is, too.
+ //
+ // This actually isn't necessarily the right thing to do --- if the
+ // class is a complete object, but it's only properly aligned for a
+ // base subobject, then the alignments of things relative to it are
+ // probably off as well. (Note that this requires the alignment of
+ // the target to be greater than the NV alignment of the derived
+ // class.)
+ //
+ // However, our approach to this kind of under-alignment can only
+ // ever be best effort; after all, we're never going to propagate
+ // alignments through variables or parameters. Note, in particular,
+ // that constructing a polymorphic type in an address that's less
+ // than pointer-aligned will generally trap in the constructor,
+ // unless we someday add some sort of attribute to change the
+ // assumed alignment of 'this'. So our goal here is pretty much
+ // just to allow the user to explicitly say that a pointer is
+ // under-aligned and then safely access its fields and vtables.
+ if (actualBaseAlign >= expectedBaseAlign) {
+ return expectedTargetAlign;
+ }
+
+ // Otherwise, we might be offset by an arbitrary multiple of the
+ // actual alignment. The correct adjustment is to take the min of
+ // the two alignments.
+ return std::min(actualBaseAlign, expectedTargetAlign);
+}
+
+Address CodeGenFunction::LoadCXXThisAddress() {
+ assert(CurFuncDecl && "loading 'this' without a func declaration?");
+ assert(isa<CXXMethodDecl>(CurFuncDecl));
+
+ // Lazily compute CXXThisAlignment.
+ if (CXXThisAlignment.isZero()) {
+ // Just use the best known alignment for the parent.
+ // TODO: if we're currently emitting a complete-object ctor/dtor,
+ // we can always use the complete-object alignment.
+ auto RD = cast<CXXMethodDecl>(CurFuncDecl)->getParent();
+ CXXThisAlignment = CGM.getClassPointerAlignment(RD);
+ }
+
+ return Address(LoadCXXThis(), CXXThisAlignment);
+}
+
+/// Emit the address of a field using a member data pointer.
+///
+/// \param E Only used for emergency diagnostics
+Address
+CodeGenFunction::EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
+ llvm::Value *memberPtr,
+ const MemberPointerType *memberPtrType,
+ LValueBaseInfo *BaseInfo,
+ TBAAAccessInfo *TBAAInfo) {
+ // Ask the ABI to compute the actual address.
+ llvm::Value *ptr =
+ CGM.getCXXABI().EmitMemberDataPointerAddress(*this, E, base,
+ memberPtr, memberPtrType);
+
+ QualType memberType = memberPtrType->getPointeeType();
+ CharUnits memberAlign = getNaturalTypeAlignment(memberType, BaseInfo,
+ TBAAInfo);
+ memberAlign =
+ CGM.getDynamicOffsetAlignment(base.getAlignment(),
+ memberPtrType->getClass()->getAsCXXRecordDecl(),
+ memberAlign);
+ return Address(ptr, memberAlign);
+}
+
+CharUnits CodeGenModule::computeNonVirtualBaseClassOffset(
+ const CXXRecordDecl *DerivedClass, CastExpr::path_const_iterator Start,
+ CastExpr::path_const_iterator End) {
+ CharUnits Offset = CharUnits::Zero();
+
+ const ASTContext &Context = getContext();
+ const CXXRecordDecl *RD = DerivedClass;
+
+ for (CastExpr::path_const_iterator I = Start; I != End; ++I) {
+ const CXXBaseSpecifier *Base = *I;
+ assert(!Base->isVirtual() && "Should not see virtual bases here!");
+
+ // Get the layout.
+ const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
+
+ const auto *BaseDecl =
+ cast<CXXRecordDecl>(Base->getType()->castAs<RecordType>()->getDecl());
+
+ // Add the offset.
+ Offset += Layout.getBaseClassOffset(BaseDecl);
+
+ RD = BaseDecl;
+ }
+
+ return Offset;
+}
+
+llvm::Constant *
+CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl,
+ CastExpr::path_const_iterator PathBegin,
+ CastExpr::path_const_iterator PathEnd) {
+ assert(PathBegin != PathEnd && "Base path should not be empty!");
+
+ CharUnits Offset =
+ computeNonVirtualBaseClassOffset(ClassDecl, PathBegin, PathEnd);
+ if (Offset.isZero())
+ return nullptr;
+
+ llvm::Type *PtrDiffTy =
+ Types.ConvertType(getContext().getPointerDiffType());
+
+ return llvm::ConstantInt::get(PtrDiffTy, Offset.getQuantity());
+}
+
+/// Gets the address of a direct base class within a complete object.
+/// This should only be used for (1) non-virtual bases or (2) virtual bases
+/// when the type is known to be complete (e.g. in complete destructors).
+///
+/// The object pointed to by 'This' is assumed to be non-null.
+Address
+CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(Address This,
+ const CXXRecordDecl *Derived,
+ const CXXRecordDecl *Base,
+ bool BaseIsVirtual) {
+ // 'this' must be a pointer (in some address space) to Derived.
+ assert(This.getElementType() == ConvertType(Derived));
+
+ // Compute the offset of the virtual base.
+ CharUnits Offset;
+ const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived);
+ if (BaseIsVirtual)
+ Offset = Layout.getVBaseClassOffset(Base);
+ else
+ Offset = Layout.getBaseClassOffset(Base);
+
+ // Shift and cast down to the base type.
+ // TODO: for complete types, this should be possible with a GEP.
+ Address V = This;
+ if (!Offset.isZero()) {
+ V = Builder.CreateElementBitCast(V, Int8Ty);
+ V = Builder.CreateConstInBoundsByteGEP(V, Offset);
+ }
+ V = Builder.CreateElementBitCast(V, ConvertType(Base));
+
+ return V;
+}
+
+static Address
+ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, Address addr,
+ CharUnits nonVirtualOffset,
+ llvm::Value *virtualOffset,
+ const CXXRecordDecl *derivedClass,
+ const CXXRecordDecl *nearestVBase) {
+ // Assert that we have something to do.
+ assert(!nonVirtualOffset.isZero() || virtualOffset != nullptr);
+
+ // Compute the offset from the static and dynamic components.
+ llvm::Value *baseOffset;
+ if (!nonVirtualOffset.isZero()) {
+ baseOffset = llvm::ConstantInt::get(CGF.PtrDiffTy,
+ nonVirtualOffset.getQuantity());
+ if (virtualOffset) {
+ baseOffset = CGF.Builder.CreateAdd(virtualOffset, baseOffset);
+ }
+ } else {
+ baseOffset = virtualOffset;
+ }
+
+ // Apply the base offset.
+ llvm::Value *ptr = addr.getPointer();
+ unsigned AddrSpace = ptr->getType()->getPointerAddressSpace();
+ ptr = CGF.Builder.CreateBitCast(ptr, CGF.Int8Ty->getPointerTo(AddrSpace));
+ ptr = CGF.Builder.CreateInBoundsGEP(ptr, baseOffset, "add.ptr");
+
+ // If we have a virtual component, the alignment of the result will
+ // be relative only to the known alignment of that vbase.
+ CharUnits alignment;
+ if (virtualOffset) {
+ assert(nearestVBase && "virtual offset without vbase?");
+ alignment = CGF.CGM.getVBaseAlignment(addr.getAlignment(),
+ derivedClass, nearestVBase);
+ } else {
+ alignment = addr.getAlignment();
+ }
+ alignment = alignment.alignmentAtOffset(nonVirtualOffset);
+
+ return Address(ptr, alignment);
+}
+
+Address CodeGenFunction::GetAddressOfBaseClass(
+ Address Value, const CXXRecordDecl *Derived,
+ CastExpr::path_const_iterator PathBegin,
+ CastExpr::path_const_iterator PathEnd, bool NullCheckValue,
+ SourceLocation Loc) {
+ assert(PathBegin != PathEnd && "Base path should not be empty!");
+
+ CastExpr::path_const_iterator Start = PathBegin;
+ const CXXRecordDecl *VBase = nullptr;
+
+ // Sema has done some convenient canonicalization here: if the
+ // access path involved any virtual steps, the conversion path will
+ // *start* with a step down to the correct virtual base subobject,
+ // and hence will not require any further steps.
+ if ((*Start)->isVirtual()) {
+ VBase = cast<CXXRecordDecl>(
+ (*Start)->getType()->castAs<RecordType>()->getDecl());
+ ++Start;
+ }
+
+ // Compute the static offset of the ultimate destination within its
+ // allocating subobject (the virtual base, if there is one, or else
+ // the "complete" object that we see).
+ CharUnits NonVirtualOffset = CGM.computeNonVirtualBaseClassOffset(
+ VBase ? VBase : Derived, Start, PathEnd);
+
+ // If there's a virtual step, we can sometimes "devirtualize" it.
+ // For now, that's limited to when the derived type is final.
+ // TODO: "devirtualize" this for accesses to known-complete objects.
+ if (VBase && Derived->hasAttr<FinalAttr>()) {
+ const ASTRecordLayout &layout = getContext().getASTRecordLayout(Derived);
+ CharUnits vBaseOffset = layout.getVBaseClassOffset(VBase);
+ NonVirtualOffset += vBaseOffset;
+ VBase = nullptr; // we no longer have a virtual step
+ }
+
+ // Get the base pointer type.
+ llvm::Type *BasePtrTy =
+ ConvertType((PathEnd[-1])->getType())
+ ->getPointerTo(Value.getType()->getPointerAddressSpace());
+
+ QualType DerivedTy = getContext().getRecordType(Derived);
+ CharUnits DerivedAlign = CGM.getClassPointerAlignment(Derived);
+
+ // If the static offset is zero and we don't have a virtual step,
+ // just do a bitcast; null checks are unnecessary.
+ if (NonVirtualOffset.isZero() && !VBase) {
+ if (sanitizePerformTypeCheck()) {
+ SanitizerSet SkippedChecks;
+ SkippedChecks.set(SanitizerKind::Null, !NullCheckValue);
+ EmitTypeCheck(TCK_Upcast, Loc, Value.getPointer(),
+ DerivedTy, DerivedAlign, SkippedChecks);
+ }
+ return Builder.CreateBitCast(Value, BasePtrTy);
+ }
+
+ llvm::BasicBlock *origBB = nullptr;
+ llvm::BasicBlock *endBB = nullptr;
+
+ // Skip over the offset (and the vtable load) if we're supposed to
+ // null-check the pointer.
+ if (NullCheckValue) {
+ origBB = Builder.GetInsertBlock();
+ llvm::BasicBlock *notNullBB = createBasicBlock("cast.notnull");
+ endBB = createBasicBlock("cast.end");
+
+ llvm::Value *isNull = Builder.CreateIsNull(Value.getPointer());
+ Builder.CreateCondBr(isNull, endBB, notNullBB);
+ EmitBlock(notNullBB);
+ }
+
+ if (sanitizePerformTypeCheck()) {
+ SanitizerSet SkippedChecks;
+ SkippedChecks.set(SanitizerKind::Null, true);
+ EmitTypeCheck(VBase ? TCK_UpcastToVirtualBase : TCK_Upcast, Loc,
+ Value.getPointer(), DerivedTy, DerivedAlign, SkippedChecks);
+ }
+
+ // Compute the virtual offset.
+ llvm::Value *VirtualOffset = nullptr;
+ if (VBase) {
+ VirtualOffset =
+ CGM.getCXXABI().GetVirtualBaseClassOffset(*this, Value, Derived, VBase);
+ }
+
+ // Apply both offsets.
+ Value = ApplyNonVirtualAndVirtualOffset(*this, Value, NonVirtualOffset,
+ VirtualOffset, Derived, VBase);
+
+ // Cast to the destination type.
+ Value = Builder.CreateBitCast(Value, BasePtrTy);
+
+ // Build a phi if we needed a null check.
+ if (NullCheckValue) {
+ llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
+ Builder.CreateBr(endBB);
+ EmitBlock(endBB);
+
+ llvm::PHINode *PHI = Builder.CreatePHI(BasePtrTy, 2, "cast.result");
+ PHI->addIncoming(Value.getPointer(), notNullBB);
+ PHI->addIncoming(llvm::Constant::getNullValue(BasePtrTy), origBB);
+ Value = Address(PHI, Value.getAlignment());
+ }
+
+ return Value;
+}
+
+Address
+CodeGenFunction::GetAddressOfDerivedClass(Address BaseAddr,
+ const CXXRecordDecl *Derived,
+ CastExpr::path_const_iterator PathBegin,
+ CastExpr::path_const_iterator PathEnd,
+ bool NullCheckValue) {
+ assert(PathBegin != PathEnd && "Base path should not be empty!");
+
+ QualType DerivedTy =
+ getContext().getCanonicalType(getContext().getTagDeclType(Derived));
+ unsigned AddrSpace =
+ BaseAddr.getPointer()->getType()->getPointerAddressSpace();
+ llvm::Type *DerivedPtrTy = ConvertType(DerivedTy)->getPointerTo(AddrSpace);
+
+ llvm::Value *NonVirtualOffset =
+ CGM.GetNonVirtualBaseClassOffset(Derived, PathBegin, PathEnd);
+
+ if (!NonVirtualOffset) {
+ // No offset, we can just cast back.
+ return Builder.CreateBitCast(BaseAddr, DerivedPtrTy);
+ }
+
+ llvm::BasicBlock *CastNull = nullptr;
+ llvm::BasicBlock *CastNotNull = nullptr;
+ llvm::BasicBlock *CastEnd = nullptr;
+
+ if (NullCheckValue) {
+ CastNull = createBasicBlock("cast.null");
+ CastNotNull = createBasicBlock("cast.notnull");
+ CastEnd = createBasicBlock("cast.end");
+
+ llvm::Value *IsNull = Builder.CreateIsNull(BaseAddr.getPointer());
+ Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
+ EmitBlock(CastNotNull);
+ }
+
+ // Apply the offset.
+ llvm::Value *Value = Builder.CreateBitCast(BaseAddr.getPointer(), Int8PtrTy);
+ Value = Builder.CreateInBoundsGEP(Value, Builder.CreateNeg(NonVirtualOffset),
+ "sub.ptr");
+
+ // Just cast.
+ Value = Builder.CreateBitCast(Value, DerivedPtrTy);
+
+ // Produce a PHI if we had a null-check.
+ if (NullCheckValue) {
+ Builder.CreateBr(CastEnd);
+ EmitBlock(CastNull);
+ Builder.CreateBr(CastEnd);
+ EmitBlock(CastEnd);
+
+ llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
+ PHI->addIncoming(Value, CastNotNull);
+ PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
+ Value = PHI;
+ }
+
+ return Address(Value, CGM.getClassPointerAlignment(Derived));
+}
+
+llvm::Value *CodeGenFunction::GetVTTParameter(GlobalDecl GD,
+ bool ForVirtualBase,
+ bool Delegating) {
+ if (!CGM.getCXXABI().NeedsVTTParameter(GD)) {
+ // This constructor/destructor does not need a VTT parameter.
+ return nullptr;
+ }
+
+ const CXXRecordDecl *RD = cast<CXXMethodDecl>(CurCodeDecl)->getParent();
+ const CXXRecordDecl *Base = cast<CXXMethodDecl>(GD.getDecl())->getParent();
+
+ llvm::Value *VTT;
+
+ uint64_t SubVTTIndex;
+
+ if (Delegating) {
+ // If this is a delegating constructor call, just load the VTT.
+ return LoadCXXVTT();
+ } else if (RD == Base) {
+ // If the record matches the base, this is the complete ctor/dtor
+ // variant calling the base variant in a class with virtual bases.
+ assert(!CGM.getCXXABI().NeedsVTTParameter(CurGD) &&
+ "doing no-op VTT offset in base dtor/ctor?");
+ assert(!ForVirtualBase && "Can't have same class as virtual base!");
+ SubVTTIndex = 0;
+ } else {
+ const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
+ CharUnits BaseOffset = ForVirtualBase ?
+ Layout.getVBaseClassOffset(Base) :
+ Layout.getBaseClassOffset(Base);
+
+ SubVTTIndex =
+ CGM.getVTables().getSubVTTIndex(RD, BaseSubobject(Base, BaseOffset));
+ assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!");
+ }
+
+ if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
+ // A VTT parameter was passed to the constructor, use it.
+ VTT = LoadCXXVTT();
+ VTT = Builder.CreateConstInBoundsGEP1_64(VTT, SubVTTIndex);
+ } else {
+ // We're the complete constructor, so get the VTT by name.
+ VTT = CGM.getVTables().GetAddrOfVTT(RD);
+ VTT = Builder.CreateConstInBoundsGEP2_64(VTT, 0, SubVTTIndex);
+ }
+
+ return VTT;
+}
+
+namespace {
+ /// Call the destructor for a direct base class.
+ struct CallBaseDtor final : EHScopeStack::Cleanup {
+ const CXXRecordDecl *BaseClass;
+ bool BaseIsVirtual;
+ CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual)
+ : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {}
+
+ void Emit(CodeGenFunction &CGF, Flags flags) override {
+ const CXXRecordDecl *DerivedClass =
+ cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent();
+
+ const CXXDestructorDecl *D = BaseClass->getDestructor();
+ // We are already inside a destructor, so presumably the object being
+ // destroyed should have the expected type.
+ QualType ThisTy = D->getThisObjectType();
+ Address Addr =
+ CGF.GetAddressOfDirectBaseInCompleteClass(CGF.LoadCXXThisAddress(),
+ DerivedClass, BaseClass,
+ BaseIsVirtual);
+ CGF.EmitCXXDestructorCall(D, Dtor_Base, BaseIsVirtual,
+ /*Delegating=*/false, Addr, ThisTy);
+ }
+ };
+
+ /// A visitor which checks whether an initializer uses 'this' in a
+ /// way which requires the vtable to be properly set.
+ struct DynamicThisUseChecker : ConstEvaluatedExprVisitor<DynamicThisUseChecker> {
+ typedef ConstEvaluatedExprVisitor<DynamicThisUseChecker> super;
+
+ bool UsesThis;
+
+ DynamicThisUseChecker(const ASTContext &C) : super(C), UsesThis(false) {}
+
+ // Black-list all explicit and implicit references to 'this'.
+ //
+ // Do we need to worry about external references to 'this' derived
+ // from arbitrary code? If so, then anything which runs arbitrary
+ // external code might potentially access the vtable.
+ void VisitCXXThisExpr(const CXXThisExpr *E) { UsesThis = true; }
+ };
+} // end anonymous namespace
+
+static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) {
+ DynamicThisUseChecker Checker(C);
+ Checker.Visit(Init);
+ return Checker.UsesThis;
+}
+
+static void EmitBaseInitializer(CodeGenFunction &CGF,
+ const CXXRecordDecl *ClassDecl,
+ CXXCtorInitializer *BaseInit) {
+ assert(BaseInit->isBaseInitializer() &&
+ "Must have base initializer!");
+
+ Address ThisPtr = CGF.LoadCXXThisAddress();
+
+ const Type *BaseType = BaseInit->getBaseClass();
+ const auto *BaseClassDecl =
+ cast<CXXRecordDecl>(BaseType->castAs<RecordType>()->getDecl());
+
+ bool isBaseVirtual = BaseInit->isBaseVirtual();
+
+ // If the initializer for the base (other than the constructor
+ // itself) accesses 'this' in any way, we need to initialize the
+ // vtables.
+ if (BaseInitializerUsesThis(CGF.getContext(), BaseInit->getInit()))
+ CGF.InitializeVTablePointers(ClassDecl);
+
+ // We can pretend to be a complete class because it only matters for
+ // virtual bases, and we only do virtual bases for complete ctors.
+ Address V =
+ CGF.GetAddressOfDirectBaseInCompleteClass(ThisPtr, ClassDecl,
+ BaseClassDecl,
+ isBaseVirtual);
+ AggValueSlot AggSlot =
+ AggValueSlot::forAddr(
+ V, Qualifiers(),
+ AggValueSlot::IsDestructed,
+ AggValueSlot::DoesNotNeedGCBarriers,
+ AggValueSlot::IsNotAliased,
+ CGF.getOverlapForBaseInit(ClassDecl, BaseClassDecl, isBaseVirtual));
+
+ CGF.EmitAggExpr(BaseInit->getInit(), AggSlot);
+
+ if (CGF.CGM.getLangOpts().Exceptions &&
+ !BaseClassDecl->hasTrivialDestructor())
+ CGF.EHStack.pushCleanup<CallBaseDtor>(EHCleanup, BaseClassDecl,
+ isBaseVirtual);
+}
+
+static bool isMemcpyEquivalentSpecialMember(const CXXMethodDecl *D) {
+ auto *CD = dyn_cast<CXXConstructorDecl>(D);
+ if (!(CD && CD->isCopyOrMoveConstructor()) &&
+ !D->isCopyAssignmentOperator() && !D->isMoveAssignmentOperator())
+ return false;
+
+ // We can emit a memcpy for a trivial copy or move constructor/assignment.
+ if (D->isTrivial() && !D->getParent()->mayInsertExtraPadding())
+ return true;
+
+ // We *must* emit a memcpy for a defaulted union copy or move op.
+ if (D->getParent()->isUnion() && D->isDefaulted())
+ return true;
+
+ return false;
+}
+
+static void EmitLValueForAnyFieldInitialization(CodeGenFunction &CGF,
+ CXXCtorInitializer *MemberInit,
+ LValue &LHS) {
+ FieldDecl *Field = MemberInit->getAnyMember();
+ if (MemberInit->isIndirectMemberInitializer()) {
+ // If we are initializing an anonymous union field, drill down to the field.
+ IndirectFieldDecl *IndirectField = MemberInit->getIndirectMember();
+ for (const auto *I : IndirectField->chain())
+ LHS = CGF.EmitLValueForFieldInitialization(LHS, cast<FieldDecl>(I));
+ } else {
+ LHS = CGF.EmitLValueForFieldInitialization(LHS, Field);
+ }
+}
+
+static void EmitMemberInitializer(CodeGenFunction &CGF,
+ const CXXRecordDecl *ClassDecl,
+ CXXCtorInitializer *MemberInit,
+ const CXXConstructorDecl *Constructor,
+ FunctionArgList &Args) {
+ ApplyDebugLocation Loc(CGF, MemberInit->getSourceLocation());
+ assert(MemberInit->isAnyMemberInitializer() &&
+ "Must have member initializer!");
+ assert(MemberInit->getInit() && "Must have initializer!");
+
+ // non-static data member initializers.
+ FieldDecl *Field = MemberInit->getAnyMember();
+ QualType FieldType = Field->getType();
+
+ llvm::Value *ThisPtr = CGF.LoadCXXThis();
+ QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
+ LValue LHS;
+
+ // If a base constructor is being emitted, create an LValue that has the
+ // non-virtual alignment.
+ if (CGF.CurGD.getCtorType() == Ctor_Base)
+ LHS = CGF.MakeNaturalAlignPointeeAddrLValue(ThisPtr, RecordTy);
+ else
+ LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy);
+
+ EmitLValueForAnyFieldInitialization(CGF, MemberInit, LHS);
+
+ // Special case: if we are in a copy or move constructor, and we are copying
+ // an array of PODs or classes with trivial copy constructors, ignore the
+ // AST and perform the copy we know is equivalent.
+ // FIXME: This is hacky at best... if we had a bit more explicit information
+ // in the AST, we could generalize it more easily.
+ const ConstantArrayType *Array
+ = CGF.getContext().getAsConstantArrayType(FieldType);
+ if (Array && Constructor->isDefaulted() &&
+ Constructor->isCopyOrMoveConstructor()) {
+ QualType BaseElementTy = CGF.getContext().getBaseElementType(Array);
+ CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
+ if (BaseElementTy.isPODType(CGF.getContext()) ||
+ (CE && isMemcpyEquivalentSpecialMember(CE->getConstructor()))) {
+ unsigned SrcArgIndex =
+ CGF.CGM.getCXXABI().getSrcArgforCopyCtor(Constructor, Args);
+ llvm::Value *SrcPtr
+ = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(Args[SrcArgIndex]));
+ LValue ThisRHSLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
+ LValue Src = CGF.EmitLValueForFieldInitialization(ThisRHSLV, Field);
+
+ // Copy the aggregate.
+ CGF.EmitAggregateCopy(LHS, Src, FieldType, CGF.getOverlapForFieldInit(Field),
+ LHS.isVolatileQualified());
+ // Ensure that we destroy the objects if an exception is thrown later in
+ // the constructor.
+ QualType::DestructionKind dtorKind = FieldType.isDestructedType();
+ if (CGF.needsEHCleanup(dtorKind))
+ CGF.pushEHDestroy(dtorKind, LHS.getAddress(CGF), FieldType);
+ return;
+ }
+ }
+
+ CGF.EmitInitializerForField(Field, LHS, MemberInit->getInit());
+}
+
+void CodeGenFunction::EmitInitializerForField(FieldDecl *Field, LValue LHS,
+ Expr *Init) {
+ QualType FieldType = Field->getType();
+ switch (getEvaluationKind(FieldType)) {
+ case TEK_Scalar:
+ if (LHS.isSimple()) {
+ EmitExprAsInit(Init, Field, LHS, false);
+ } else {
+ RValue RHS = RValue::get(EmitScalarExpr(Init));
+ EmitStoreThroughLValue(RHS, LHS);
+ }
+ break;
+ case TEK_Complex:
+ EmitComplexExprIntoLValue(Init, LHS, /*isInit*/ true);
+ break;
+ case TEK_Aggregate: {
+ AggValueSlot Slot = AggValueSlot::forLValue(
+ LHS, *this, AggValueSlot::IsDestructed,
+ AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased,
+ getOverlapForFieldInit(Field), AggValueSlot::IsNotZeroed,
+ // Checks are made by the code that calls constructor.
+ AggValueSlot::IsSanitizerChecked);
+ EmitAggExpr(Init, Slot);
+ break;
+ }
+ }
+
+ // Ensure that we destroy this object if an exception is thrown
+ // later in the constructor.
+ QualType::DestructionKind dtorKind = FieldType.isDestructedType();
+ if (needsEHCleanup(dtorKind))
+ pushEHDestroy(dtorKind, LHS.getAddress(*this), FieldType);
+}
+
+/// Checks whether the given constructor is a valid subject for the
+/// complete-to-base constructor delegation optimization, i.e.
+/// emitting the complete constructor as a simple call to the base
+/// constructor.
+bool CodeGenFunction::IsConstructorDelegationValid(
+ const CXXConstructorDecl *Ctor) {
+
+ // Currently we disable the optimization for classes with virtual
+ // bases because (1) the addresses of parameter variables need to be
+ // consistent across all initializers but (2) the delegate function
+ // call necessarily creates a second copy of the parameter variable.
+ //
+ // The limiting example (purely theoretical AFAIK):
+ // struct A { A(int &c) { c++; } };
+ // struct B : virtual A {
+ // B(int count) : A(count) { printf("%d\n", count); }
+ // };
+ // ...although even this example could in principle be emitted as a
+ // delegation since the address of the parameter doesn't escape.
+ if (Ctor->getParent()->getNumVBases()) {
+ // TODO: white-list trivial vbase initializers. This case wouldn't
+ // be subject to the restrictions below.
+
+ // TODO: white-list cases where:
+ // - there are no non-reference parameters to the constructor
+ // - the initializers don't access any non-reference parameters
+ // - the initializers don't take the address of non-reference
+ // parameters
+ // - etc.
+ // If we ever add any of the above cases, remember that:
+ // - function-try-blocks will always blacklist this optimization
+ // - we need to perform the constructor prologue and cleanup in
+ // EmitConstructorBody.
+
+ return false;
+ }
+
+ // We also disable the optimization for variadic functions because
+ // it's impossible to "re-pass" varargs.
+ if (Ctor->getType()->castAs<FunctionProtoType>()->isVariadic())
+ return false;
+
+ // FIXME: Decide if we can do a delegation of a delegating constructor.
+ if (Ctor->isDelegatingConstructor())
+ return false;
+
+ return true;
+}
+
+// Emit code in ctor (Prologue==true) or dtor (Prologue==false)
+// to poison the extra field paddings inserted under
+// -fsanitize-address-field-padding=1|2.
+void CodeGenFunction::EmitAsanPrologueOrEpilogue(bool Prologue) {
+ ASTContext &Context = getContext();
+ const CXXRecordDecl *ClassDecl =
+ Prologue ? cast<CXXConstructorDecl>(CurGD.getDecl())->getParent()
+ : cast<CXXDestructorDecl>(CurGD.getDecl())->getParent();
+ if (!ClassDecl->mayInsertExtraPadding()) return;
+
+ struct SizeAndOffset {
+ uint64_t Size;
+ uint64_t Offset;
+ };
+
+ unsigned PtrSize = CGM.getDataLayout().getPointerSizeInBits();
+ const ASTRecordLayout &Info = Context.getASTRecordLayout(ClassDecl);
+
+ // Populate sizes and offsets of fields.
+ SmallVector<SizeAndOffset, 16> SSV(Info.getFieldCount());
+ for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i)
+ SSV[i].Offset =
+ Context.toCharUnitsFromBits(Info.getFieldOffset(i)).getQuantity();
+
+ size_t NumFields = 0;
+ for (const auto *Field : ClassDecl->fields()) {
+ const FieldDecl *D = Field;
+ std::pair<CharUnits, CharUnits> FieldInfo =
+ Context.getTypeInfoInChars(D->getType());
+ CharUnits FieldSize = FieldInfo.first;
+ assert(NumFields < SSV.size());
+ SSV[NumFields].Size = D->isBitField() ? 0 : FieldSize.getQuantity();
+ NumFields++;
+ }
+ assert(NumFields == SSV.size());
+ if (SSV.size() <= 1) return;
+
+ // We will insert calls to __asan_* run-time functions.
+ // LLVM AddressSanitizer pass may decide to inline them later.
+ llvm::Type *Args[2] = {IntPtrTy, IntPtrTy};
+ llvm::FunctionType *FTy =
+ llvm::FunctionType::get(CGM.VoidTy, Args, false);
+ llvm::FunctionCallee F = CGM.CreateRuntimeFunction(
+ FTy, Prologue ? "__asan_poison_intra_object_redzone"
+ : "__asan_unpoison_intra_object_redzone");
+
+ llvm::Value *ThisPtr = LoadCXXThis();
+ ThisPtr = Builder.CreatePtrToInt(ThisPtr, IntPtrTy);
+ uint64_t TypeSize = Info.getNonVirtualSize().getQuantity();
+ // For each field check if it has sufficient padding,
+ // if so (un)poison it with a call.
+ for (size_t i = 0; i < SSV.size(); i++) {
+ uint64_t AsanAlignment = 8;
+ uint64_t NextField = i == SSV.size() - 1 ? TypeSize : SSV[i + 1].Offset;
+ uint64_t PoisonSize = NextField - SSV[i].Offset - SSV[i].Size;
+ uint64_t EndOffset = SSV[i].Offset + SSV[i].Size;
+ if (PoisonSize < AsanAlignment || !SSV[i].Size ||
+ (NextField % AsanAlignment) != 0)
+ continue;
+ Builder.CreateCall(
+ F, {Builder.CreateAdd(ThisPtr, Builder.getIntN(PtrSize, EndOffset)),
+ Builder.getIntN(PtrSize, PoisonSize)});
+ }
+}
+
+/// EmitConstructorBody - Emits the body of the current constructor.
+void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) {
+ EmitAsanPrologueOrEpilogue(true);
+ const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(CurGD.getDecl());
+ CXXCtorType CtorType = CurGD.getCtorType();
+
+ assert((CGM.getTarget().getCXXABI().hasConstructorVariants() ||
+ CtorType == Ctor_Complete) &&
+ "can only generate complete ctor for this ABI");
+
+ // Before we go any further, try the complete->base constructor
+ // delegation optimization.
+ if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor) &&
+ CGM.getTarget().getCXXABI().hasConstructorVariants()) {
+ EmitDelegateCXXConstructorCall(Ctor, Ctor_Base, Args, Ctor->getEndLoc());
+ return;
+ }
+
+ const FunctionDecl *Definition = nullptr;
+ Stmt *Body = Ctor->getBody(Definition);
+ assert(Definition == Ctor && "emitting wrong constructor body");
+
+ // Enter the function-try-block before the constructor prologue if
+ // applicable.
+ bool IsTryBody = (Body && isa<CXXTryStmt>(Body));
+ if (IsTryBody)
+ EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
+
+ incrementProfileCounter(Body);
+
+ RunCleanupsScope RunCleanups(*this);
+
+ // TODO: in restricted cases, we can emit the vbase initializers of
+ // a complete ctor and then delegate to the base ctor.
+
+ // Emit the constructor prologue, i.e. the base and member
+ // initializers.
+ EmitCtorPrologue(Ctor, CtorType, Args);
+
+ // Emit the body of the statement.
+ if (IsTryBody)
+ EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
+ else if (Body)
+ EmitStmt(Body);
+
+ // Emit any cleanup blocks associated with the member or base
+ // initializers, which includes (along the exceptional path) the
+ // destructors for those members and bases that were fully
+ // constructed.
+ RunCleanups.ForceCleanup();
+
+ if (IsTryBody)
+ ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
+}
+
+namespace {
+ /// RAII object to indicate that codegen is copying the value representation
+ /// instead of the object representation. Useful when copying a struct or
+ /// class which has uninitialized members and we're only performing
+ /// lvalue-to-rvalue conversion on the object but not its members.
+ class CopyingValueRepresentation {
+ public:
+ explicit CopyingValueRepresentation(CodeGenFunction &CGF)
+ : CGF(CGF), OldSanOpts(CGF.SanOpts) {
+ CGF.SanOpts.set(SanitizerKind::Bool, false);
+ CGF.SanOpts.set(SanitizerKind::Enum, false);
+ }
+ ~CopyingValueRepresentation() {
+ CGF.SanOpts = OldSanOpts;
+ }
+ private:
+ CodeGenFunction &CGF;
+ SanitizerSet OldSanOpts;
+ };
+} // end anonymous namespace
+
+namespace {
+ class FieldMemcpyizer {
+ public:
+ FieldMemcpyizer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl,
+ const VarDecl *SrcRec)
+ : CGF(CGF), ClassDecl(ClassDecl), SrcRec(SrcRec),
+ RecLayout(CGF.getContext().getASTRecordLayout(ClassDecl)),
+ FirstField(nullptr), LastField(nullptr), FirstFieldOffset(0),
+ LastFieldOffset(0), LastAddedFieldIndex(0) {}
+
+ bool isMemcpyableField(FieldDecl *F) const {
+ // Never memcpy fields when we are adding poisoned paddings.
+ if (CGF.getContext().getLangOpts().SanitizeAddressFieldPadding)
+ return false;
+ Qualifiers Qual = F->getType().getQualifiers();
+ if (Qual.hasVolatile() || Qual.hasObjCLifetime())
+ return false;
+ return true;
+ }
+
+ void addMemcpyableField(FieldDecl *F) {
+ if (F->isZeroSize(CGF.getContext()))
+ return;
+ if (!FirstField)
+ addInitialField(F);
+ else
+ addNextField(F);
+ }
+
+ CharUnits getMemcpySize(uint64_t FirstByteOffset) const {
+ ASTContext &Ctx = CGF.getContext();
+ unsigned LastFieldSize =
+ LastField->isBitField()
+ ? LastField->getBitWidthValue(Ctx)
+ : Ctx.toBits(
+ Ctx.getTypeInfoDataSizeInChars(LastField->getType()).first);
+ uint64_t MemcpySizeBits = LastFieldOffset + LastFieldSize -
+ FirstByteOffset + Ctx.getCharWidth() - 1;
+ CharUnits MemcpySize = Ctx.toCharUnitsFromBits(MemcpySizeBits);
+ return MemcpySize;
+ }
+
+ void emitMemcpy() {
+ // Give the subclass a chance to bail out if it feels the memcpy isn't
+ // worth it (e.g. Hasn't aggregated enough data).
+ if (!FirstField) {
+ return;
+ }
+
+ uint64_t FirstByteOffset;
+ if (FirstField->isBitField()) {
+ const CGRecordLayout &RL =
+ CGF.getTypes().getCGRecordLayout(FirstField->getParent());
+ const CGBitFieldInfo &BFInfo = RL.getBitFieldInfo(FirstField);
+ // FirstFieldOffset is not appropriate for bitfields,
+ // we need to use the storage offset instead.
+ FirstByteOffset = CGF.getContext().toBits(BFInfo.StorageOffset);
+ } else {
+ FirstByteOffset = FirstFieldOffset;
+ }
+
+ CharUnits MemcpySize = getMemcpySize(FirstByteOffset);
+ QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
+ Address ThisPtr = CGF.LoadCXXThisAddress();
+ LValue DestLV = CGF.MakeAddrLValue(ThisPtr, RecordTy);
+ LValue Dest = CGF.EmitLValueForFieldInitialization(DestLV, FirstField);
+ llvm::Value *SrcPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(SrcRec));
+ LValue SrcLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
+ LValue Src = CGF.EmitLValueForFieldInitialization(SrcLV, FirstField);
+
+ emitMemcpyIR(
+ Dest.isBitField() ? Dest.getBitFieldAddress() : Dest.getAddress(CGF),
+ Src.isBitField() ? Src.getBitFieldAddress() : Src.getAddress(CGF),
+ MemcpySize);
+ reset();
+ }
+
+ void reset() {
+ FirstField = nullptr;
+ }
+
+ protected:
+ CodeGenFunction &CGF;
+ const CXXRecordDecl *ClassDecl;
+
+ private:
+ void emitMemcpyIR(Address DestPtr, Address SrcPtr, CharUnits Size) {
+ llvm::PointerType *DPT = DestPtr.getType();
+ llvm::Type *DBP =
+ llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), DPT->getAddressSpace());
+ DestPtr = CGF.Builder.CreateBitCast(DestPtr, DBP);
+
+ llvm::PointerType *SPT = SrcPtr.getType();
+ llvm::Type *SBP =
+ llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), SPT->getAddressSpace());
+ SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, SBP);
+
+ CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, Size.getQuantity());
+ }
+
+ void addInitialField(FieldDecl *F) {
+ FirstField = F;
+ LastField = F;
+ FirstFieldOffset = RecLayout.getFieldOffset(F->getFieldIndex());
+ LastFieldOffset = FirstFieldOffset;
+ LastAddedFieldIndex = F->getFieldIndex();
+ }
+
+ void addNextField(FieldDecl *F) {
+ // For the most part, the following invariant will hold:
+ // F->getFieldIndex() == LastAddedFieldIndex + 1
+ // The one exception is that Sema won't add a copy-initializer for an
+ // unnamed bitfield, which will show up here as a gap in the sequence.
+ assert(F->getFieldIndex() >= LastAddedFieldIndex + 1 &&
+ "Cannot aggregate fields out of order.");
+ LastAddedFieldIndex = F->getFieldIndex();
+
+ // The 'first' and 'last' fields are chosen by offset, rather than field
+ // index. This allows the code to support bitfields, as well as regular
+ // fields.
+ uint64_t FOffset = RecLayout.getFieldOffset(F->getFieldIndex());
+ if (FOffset < FirstFieldOffset) {
+ FirstField = F;
+ FirstFieldOffset = FOffset;
+ } else if (FOffset >= LastFieldOffset) {
+ LastField = F;
+ LastFieldOffset = FOffset;
+ }
+ }
+
+ const VarDecl *SrcRec;
+ const ASTRecordLayout &RecLayout;
+ FieldDecl *FirstField;
+ FieldDecl *LastField;
+ uint64_t FirstFieldOffset, LastFieldOffset;
+ unsigned LastAddedFieldIndex;
+ };
+
+ class ConstructorMemcpyizer : public FieldMemcpyizer {
+ private:
+ /// Get source argument for copy constructor. Returns null if not a copy
+ /// constructor.
+ static const VarDecl *getTrivialCopySource(CodeGenFunction &CGF,
+ const CXXConstructorDecl *CD,
+ FunctionArgList &Args) {
+ if (CD->isCopyOrMoveConstructor() && CD->isDefaulted())
+ return Args[CGF.CGM.getCXXABI().getSrcArgforCopyCtor(CD, Args)];
+ return nullptr;
+ }
+
+ // Returns true if a CXXCtorInitializer represents a member initialization
+ // that can be rolled into a memcpy.
+ bool isMemberInitMemcpyable(CXXCtorInitializer *MemberInit) const {
+ if (!MemcpyableCtor)
+ return false;
+ FieldDecl *Field = MemberInit->getMember();
+ assert(Field && "No field for member init.");
+ QualType FieldType = Field->getType();
+ CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
+
+ // Bail out on non-memcpyable, not-trivially-copyable members.
+ if (!(CE && isMemcpyEquivalentSpecialMember(CE->getConstructor())) &&
+ !(FieldType.isTriviallyCopyableType(CGF.getContext()) ||
+ FieldType->isReferenceType()))
+ return false;
+
+ // Bail out on volatile fields.
+ if (!isMemcpyableField(Field))
+ return false;
+
+ // Otherwise we're good.
+ return true;
+ }
+
+ public:
+ ConstructorMemcpyizer(CodeGenFunction &CGF, const CXXConstructorDecl *CD,
+ FunctionArgList &Args)
+ : FieldMemcpyizer(CGF, CD->getParent(), getTrivialCopySource(CGF, CD, Args)),
+ ConstructorDecl(CD),
+ MemcpyableCtor(CD->isDefaulted() &&
+ CD->isCopyOrMoveConstructor() &&
+ CGF.getLangOpts().getGC() == LangOptions::NonGC),
+ Args(Args) { }
+
+ void addMemberInitializer(CXXCtorInitializer *MemberInit) {
+ if (isMemberInitMemcpyable(MemberInit)) {
+ AggregatedInits.push_back(MemberInit);
+ addMemcpyableField(MemberInit->getMember());
+ } else {
+ emitAggregatedInits();
+ EmitMemberInitializer(CGF, ConstructorDecl->getParent(), MemberInit,
+ ConstructorDecl, Args);
+ }
+ }
+
+ void emitAggregatedInits() {
+ if (AggregatedInits.size() <= 1) {
+ // This memcpy is too small to be worthwhile. Fall back on default
+ // codegen.
+ if (!AggregatedInits.empty()) {
+ CopyingValueRepresentation CVR(CGF);
+ EmitMemberInitializer(CGF, ConstructorDecl->getParent(),
+ AggregatedInits[0], ConstructorDecl, Args);
+ AggregatedInits.clear();
+ }
+ reset();
+ return;
+ }
+
+ pushEHDestructors();
+ emitMemcpy();
+ AggregatedInits.clear();
+ }
+
+ void pushEHDestructors() {
+ Address ThisPtr = CGF.LoadCXXThisAddress();
+ QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
+ LValue LHS = CGF.MakeAddrLValue(ThisPtr, RecordTy);
+
+ for (unsigned i = 0; i < AggregatedInits.size(); ++i) {
+ CXXCtorInitializer *MemberInit = AggregatedInits[i];
+ QualType FieldType = MemberInit->getAnyMember()->getType();
+ QualType::DestructionKind dtorKind = FieldType.isDestructedType();
+ if (!CGF.needsEHCleanup(dtorKind))
+ continue;
+ LValue FieldLHS = LHS;
+ EmitLValueForAnyFieldInitialization(CGF, MemberInit, FieldLHS);
+ CGF.pushEHDestroy(dtorKind, FieldLHS.getAddress(CGF), FieldType);
+ }
+ }
+
+ void finish() {
+ emitAggregatedInits();
+ }
+
+ private:
+ const CXXConstructorDecl *ConstructorDecl;
+ bool MemcpyableCtor;
+ FunctionArgList &Args;
+ SmallVector<CXXCtorInitializer*, 16> AggregatedInits;
+ };
+
+ class AssignmentMemcpyizer : public FieldMemcpyizer {
+ private:
+ // Returns the memcpyable field copied by the given statement, if one
+ // exists. Otherwise returns null.
+ FieldDecl *getMemcpyableField(Stmt *S) {
+ if (!AssignmentsMemcpyable)
+ return nullptr;
+ if (BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) {
+ // Recognise trivial assignments.
+ if (BO->getOpcode() != BO_Assign)
+ return nullptr;
+ MemberExpr *ME = dyn_cast<MemberExpr>(BO->getLHS());
+ if (!ME)
+ return nullptr;
+ FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
+ if (!Field || !isMemcpyableField(Field))
+ return nullptr;
+ Stmt *RHS = BO->getRHS();
+ if (ImplicitCastExpr *EC = dyn_cast<ImplicitCastExpr>(RHS))
+ RHS = EC->getSubExpr();
+ if (!RHS)
+ return nullptr;
+ if (MemberExpr *ME2 = dyn_cast<MemberExpr>(RHS)) {
+ if (ME2->getMemberDecl() == Field)
+ return Field;
+ }
+ return nullptr;
+ } else if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(S)) {
+ CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MCE->getCalleeDecl());
+ if (!(MD && isMemcpyEquivalentSpecialMember(MD)))
+ return nullptr;
+ MemberExpr *IOA = dyn_cast<MemberExpr>(MCE->getImplicitObjectArgument());
+ if (!IOA)
+ return nullptr;
+ FieldDecl *Field = dyn_cast<FieldDecl>(IOA->getMemberDecl());
+ if (!Field || !isMemcpyableField(Field))
+ return nullptr;
+ MemberExpr *Arg0 = dyn_cast<MemberExpr>(MCE->getArg(0));
+ if (!Arg0 || Field != dyn_cast<FieldDecl>(Arg0->getMemberDecl()))
+ return nullptr;
+ return Field;
+ } else if (CallExpr *CE = dyn_cast<CallExpr>(S)) {
+ FunctionDecl *FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
+ if (!FD || FD->getBuiltinID() != Builtin::BI__builtin_memcpy)
+ return nullptr;
+ Expr *DstPtr = CE->getArg(0);
+ if (ImplicitCastExpr *DC = dyn_cast<ImplicitCastExpr>(DstPtr))
+ DstPtr = DC->getSubExpr();
+ UnaryOperator *DUO = dyn_cast<UnaryOperator>(DstPtr);
+ if (!DUO || DUO->getOpcode() != UO_AddrOf)
+ return nullptr;
+ MemberExpr *ME = dyn_cast<MemberExpr>(DUO->getSubExpr());
+ if (!ME)
+ return nullptr;
+ FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
+ if (!Field || !isMemcpyableField(Field))
+ return nullptr;
+ Expr *SrcPtr = CE->getArg(1);
+ if (ImplicitCastExpr *SC = dyn_cast<ImplicitCastExpr>(SrcPtr))
+ SrcPtr = SC->getSubExpr();
+ UnaryOperator *SUO = dyn_cast<UnaryOperator>(SrcPtr);
+ if (!SUO || SUO->getOpcode() != UO_AddrOf)
+ return nullptr;
+ MemberExpr *ME2 = dyn_cast<MemberExpr>(SUO->getSubExpr());
+ if (!ME2 || Field != dyn_cast<FieldDecl>(ME2->getMemberDecl()))
+ return nullptr;
+ return Field;
+ }
+
+ return nullptr;
+ }
+
+ bool AssignmentsMemcpyable;
+ SmallVector<Stmt*, 16> AggregatedStmts;
+
+ public:
+ AssignmentMemcpyizer(CodeGenFunction &CGF, const CXXMethodDecl *AD,
+ FunctionArgList &Args)
+ : FieldMemcpyizer(CGF, AD->getParent(), Args[Args.size() - 1]),
+ AssignmentsMemcpyable(CGF.getLangOpts().getGC() == LangOptions::NonGC) {
+ assert(Args.size() == 2);
+ }
+
+ void emitAssignment(Stmt *S) {
+ FieldDecl *F = getMemcpyableField(S);
+ if (F) {
+ addMemcpyableField(F);
+ AggregatedStmts.push_back(S);
+ } else {
+ emitAggregatedStmts();
+ CGF.EmitStmt(S);
+ }
+ }
+
+ void emitAggregatedStmts() {
+ if (AggregatedStmts.size() <= 1) {
+ if (!AggregatedStmts.empty()) {
+ CopyingValueRepresentation CVR(CGF);
+ CGF.EmitStmt(AggregatedStmts[0]);
+ }
+ reset();
+ }
+
+ emitMemcpy();
+ AggregatedStmts.clear();
+ }
+
+ void finish() {
+ emitAggregatedStmts();
+ }
+ };
+} // end anonymous namespace
+
+static bool isInitializerOfDynamicClass(const CXXCtorInitializer *BaseInit) {
+ const Type *BaseType = BaseInit->getBaseClass();
+ const auto *BaseClassDecl =
+ cast<CXXRecordDecl>(BaseType->castAs<RecordType>()->getDecl());
+ return BaseClassDecl->isDynamicClass();
+}
+
+/// EmitCtorPrologue - This routine generates necessary code to initialize
+/// base classes and non-static data members belonging to this constructor.
+void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD,
+ CXXCtorType CtorType,
+ FunctionArgList &Args) {
+ if (CD->isDelegatingConstructor())
+ return EmitDelegatingCXXConstructorCall(CD, Args);
+
+ const CXXRecordDecl *ClassDecl = CD->getParent();
+
+ CXXConstructorDecl::init_const_iterator B = CD->init_begin(),
+ E = CD->init_end();
+
+ // Virtual base initializers first, if any. They aren't needed if:
+ // - This is a base ctor variant
+ // - There are no vbases
+ // - The class is abstract, so a complete object of it cannot be constructed
+ //
+ // The check for an abstract class is necessary because sema may not have
+ // marked virtual base destructors referenced.
+ bool ConstructVBases = CtorType != Ctor_Base &&
+ ClassDecl->getNumVBases() != 0 &&
+ !ClassDecl->isAbstract();
+
+ // In the Microsoft C++ ABI, there are no constructor variants. Instead, the
+ // constructor of a class with virtual bases takes an additional parameter to
+ // conditionally construct the virtual bases. Emit that check here.
+ llvm::BasicBlock *BaseCtorContinueBB = nullptr;
+ if (ConstructVBases &&
+ !CGM.getTarget().getCXXABI().hasConstructorVariants()) {
+ BaseCtorContinueBB =
+ CGM.getCXXABI().EmitCtorCompleteObjectHandler(*this, ClassDecl);
+ assert(BaseCtorContinueBB);
+ }
+
+ llvm::Value *const OldThis = CXXThisValue;
+ for (; B != E && (*B)->isBaseInitializer() && (*B)->isBaseVirtual(); B++) {
+ if (!ConstructVBases)
+ continue;
+ if (CGM.getCodeGenOpts().StrictVTablePointers &&
+ CGM.getCodeGenOpts().OptimizationLevel > 0 &&
+ isInitializerOfDynamicClass(*B))
+ CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis());
+ EmitBaseInitializer(*this, ClassDecl, *B);
+ }
+
+ if (BaseCtorContinueBB) {
+ // Complete object handler should continue to the remaining initializers.
+ Builder.CreateBr(BaseCtorContinueBB);
+ EmitBlock(BaseCtorContinueBB);
+ }
+
+ // Then, non-virtual base initializers.
+ for (; B != E && (*B)->isBaseInitializer(); B++) {
+ assert(!(*B)->isBaseVirtual());
+
+ if (CGM.getCodeGenOpts().StrictVTablePointers &&
+ CGM.getCodeGenOpts().OptimizationLevel > 0 &&
+ isInitializerOfDynamicClass(*B))
+ CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis());
+ EmitBaseInitializer(*this, ClassDecl, *B);
+ }
+
+ CXXThisValue = OldThis;
+
+ InitializeVTablePointers(ClassDecl);
+
+ // And finally, initialize class members.
+ FieldConstructionScope FCS(*this, LoadCXXThisAddress());
+ ConstructorMemcpyizer CM(*this, CD, Args);
+ for (; B != E; B++) {
+ CXXCtorInitializer *Member = (*B);
+ assert(!Member->isBaseInitializer());
+ assert(Member->isAnyMemberInitializer() &&
+ "Delegating initializer on non-delegating constructor");
+ CM.addMemberInitializer(Member);
+ }
+ CM.finish();
+}
+
+static bool
+FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field);
+
+static bool
+HasTrivialDestructorBody(ASTContext &Context,
+ const CXXRecordDecl *BaseClassDecl,
+ const CXXRecordDecl *MostDerivedClassDecl)
+{
+ // If the destructor is trivial we don't have to check anything else.
+ if (BaseClassDecl->hasTrivialDestructor())
+ return true;
+
+ if (!BaseClassDecl->getDestructor()->hasTrivialBody())
+ return false;
+
+ // Check fields.
+ for (const auto *Field : BaseClassDecl->fields())
+ if (!FieldHasTrivialDestructorBody(Context, Field))
+ return false;
+
+ // Check non-virtual bases.
+ for (const auto &I : BaseClassDecl->bases()) {
+ if (I.isVirtual())
+ continue;
+
+ const CXXRecordDecl *NonVirtualBase =
+ cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
+ if (!HasTrivialDestructorBody(Context, NonVirtualBase,
+ MostDerivedClassDecl))
+ return false;
+ }
+
+ if (BaseClassDecl == MostDerivedClassDecl) {
+ // Check virtual bases.
+ for (const auto &I : BaseClassDecl->vbases()) {
+ const CXXRecordDecl *VirtualBase =
+ cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
+ if (!HasTrivialDestructorBody(Context, VirtualBase,
+ MostDerivedClassDecl))
+ return false;
+ }
+ }
+
+ return true;
+}
+
+static bool
+FieldHasTrivialDestructorBody(ASTContext &Context,
+ const FieldDecl *Field)
+{
+ QualType FieldBaseElementType = Context.getBaseElementType(Field->getType());
+
+ const RecordType *RT = FieldBaseElementType->getAs<RecordType>();
+ if (!RT)
+ return true;
+
+ CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
+
+ // The destructor for an implicit anonymous union member is never invoked.
+ if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
+ return false;
+
+ return HasTrivialDestructorBody(Context, FieldClassDecl, FieldClassDecl);
+}
+
+/// CanSkipVTablePointerInitialization - Check whether we need to initialize
+/// any vtable pointers before calling this destructor.
+static bool CanSkipVTablePointerInitialization(CodeGenFunction &CGF,
+ const CXXDestructorDecl *Dtor) {
+ const CXXRecordDecl *ClassDecl = Dtor->getParent();
+ if (!ClassDecl->isDynamicClass())
+ return true;
+
+ if (!Dtor->hasTrivialBody())
+ return false;
+
+ // Check the fields.
+ for (const auto *Field : ClassDecl->fields())
+ if (!FieldHasTrivialDestructorBody(CGF.getContext(), Field))
+ return false;
+
+ return true;
+}
+
+/// EmitDestructorBody - Emits the body of the current destructor.
+void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) {
+ const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CurGD.getDecl());
+ CXXDtorType DtorType = CurGD.getDtorType();
+
+ // For an abstract class, non-base destructors are never used (and can't
+ // be emitted in general, because vbase dtors may not have been validated
+ // by Sema), but the Itanium ABI doesn't make them optional and Clang may
+ // in fact emit references to them from other compilations, so emit them
+ // as functions containing a trap instruction.
+ if (DtorType != Dtor_Base && Dtor->getParent()->isAbstract()) {
+ llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
+ TrapCall->setDoesNotReturn();
+ TrapCall->setDoesNotThrow();
+ Builder.CreateUnreachable();
+ Builder.ClearInsertionPoint();
+ return;
+ }
+
+ Stmt *Body = Dtor->getBody();
+ if (Body)
+ incrementProfileCounter(Body);
+
+ // The call to operator delete in a deleting destructor happens
+ // outside of the function-try-block, which means it's always
+ // possible to delegate the destructor body to the complete
+ // destructor. Do so.
+ if (DtorType == Dtor_Deleting) {
+ RunCleanupsScope DtorEpilogue(*this);
+ EnterDtorCleanups(Dtor, Dtor_Deleting);
+ if (HaveInsertPoint()) {
+ QualType ThisTy = Dtor->getThisObjectType();
+ EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false,
+ /*Delegating=*/false, LoadCXXThisAddress(), ThisTy);
+ }
+ return;
+ }
+
+ // If the body is a function-try-block, enter the try before
+ // anything else.
+ bool isTryBody = (Body && isa<CXXTryStmt>(Body));
+ if (isTryBody)
+ EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
+ EmitAsanPrologueOrEpilogue(false);
+
+ // Enter the epilogue cleanups.
+ RunCleanupsScope DtorEpilogue(*this);
+
+ // If this is the complete variant, just invoke the base variant;
+ // the epilogue will destruct the virtual bases. But we can't do
+ // this optimization if the body is a function-try-block, because
+ // we'd introduce *two* handler blocks. In the Microsoft ABI, we
+ // always delegate because we might not have a definition in this TU.
+ switch (DtorType) {
+ case Dtor_Comdat: llvm_unreachable("not expecting a COMDAT");
+ case Dtor_Deleting: llvm_unreachable("already handled deleting case");
+
+ case Dtor_Complete:
+ assert((Body || getTarget().getCXXABI().isMicrosoft()) &&
+ "can't emit a dtor without a body for non-Microsoft ABIs");
+
+ // Enter the cleanup scopes for virtual bases.
+ EnterDtorCleanups(Dtor, Dtor_Complete);
+
+ if (!isTryBody) {
+ QualType ThisTy = Dtor->getThisObjectType();
+ EmitCXXDestructorCall(Dtor, Dtor_Base, /*ForVirtualBase=*/false,
+ /*Delegating=*/false, LoadCXXThisAddress(), ThisTy);
+ break;
+ }
+
+ // Fallthrough: act like we're in the base variant.
+ LLVM_FALLTHROUGH;
+
+ case Dtor_Base:
+ assert(Body);
+
+ // Enter the cleanup scopes for fields and non-virtual bases.
+ EnterDtorCleanups(Dtor, Dtor_Base);
+
+ // Initialize the vtable pointers before entering the body.
+ if (!CanSkipVTablePointerInitialization(*this, Dtor)) {
+ // Insert the llvm.launder.invariant.group intrinsic before initializing
+ // the vptrs to cancel any previous assumptions we might have made.
+ if (CGM.getCodeGenOpts().StrictVTablePointers &&
+ CGM.getCodeGenOpts().OptimizationLevel > 0)
+ CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis());
+ InitializeVTablePointers(Dtor->getParent());
+ }
+
+ if (isTryBody)
+ EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
+ else if (Body)
+ EmitStmt(Body);
+ else {
+ assert(Dtor->isImplicit() && "bodyless dtor not implicit");
+ // nothing to do besides what's in the epilogue
+ }
+ // -fapple-kext must inline any call to this dtor into
+ // the caller's body.
+ if (getLangOpts().AppleKext)
+ CurFn->addFnAttr(llvm::Attribute::AlwaysInline);
+
+ break;
+ }
+
+ // Jump out through the epilogue cleanups.
+ DtorEpilogue.ForceCleanup();
+
+ // Exit the try if applicable.
+ if (isTryBody)
+ ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
+}
+
+void CodeGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList &Args) {
+ const CXXMethodDecl *AssignOp = cast<CXXMethodDecl>(CurGD.getDecl());
+ const Stmt *RootS = AssignOp->getBody();
+ assert(isa<CompoundStmt>(RootS) &&
+ "Body of an implicit assignment operator should be compound stmt.");
+ const CompoundStmt *RootCS = cast<CompoundStmt>(RootS);
+
+ LexicalScope Scope(*this, RootCS->getSourceRange());
+
+ incrementProfileCounter(RootCS);
+ AssignmentMemcpyizer AM(*this, AssignOp, Args);
+ for (auto *I : RootCS->body())
+ AM.emitAssignment(I);
+ AM.finish();
+}
+
+namespace {
+ llvm::Value *LoadThisForDtorDelete(CodeGenFunction &CGF,
+ const CXXDestructorDecl *DD) {
+ if (Expr *ThisArg = DD->getOperatorDeleteThisArg())
+ return CGF.EmitScalarExpr(ThisArg);
+ return CGF.LoadCXXThis();
+ }
+
+ /// Call the operator delete associated with the current destructor.
+ struct CallDtorDelete final : EHScopeStack::Cleanup {
+ CallDtorDelete() {}
+
+ void Emit(CodeGenFunction &CGF, Flags flags) override {
+ const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
+ const CXXRecordDecl *ClassDecl = Dtor->getParent();
+ CGF.EmitDeleteCall(Dtor->getOperatorDelete(),
+ LoadThisForDtorDelete(CGF, Dtor),
+ CGF.getContext().getTagDeclType(ClassDecl));
+ }
+ };
+
+ void EmitConditionalDtorDeleteCall(CodeGenFunction &CGF,
+ llvm::Value *ShouldDeleteCondition,
+ bool ReturnAfterDelete) {
+ llvm::BasicBlock *callDeleteBB = CGF.createBasicBlock("dtor.call_delete");
+ llvm::BasicBlock *continueBB = CGF.createBasicBlock("dtor.continue");
+ llvm::Value *ShouldCallDelete
+ = CGF.Builder.CreateIsNull(ShouldDeleteCondition);
+ CGF.Builder.CreateCondBr(ShouldCallDelete, continueBB, callDeleteBB);
+
+ CGF.EmitBlock(callDeleteBB);
+ const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
+ const CXXRecordDecl *ClassDecl = Dtor->getParent();
+ CGF.EmitDeleteCall(Dtor->getOperatorDelete(),
+ LoadThisForDtorDelete(CGF, Dtor),
+ CGF.getContext().getTagDeclType(ClassDecl));
+ assert(Dtor->getOperatorDelete()->isDestroyingOperatorDelete() ==
+ ReturnAfterDelete &&
+ "unexpected value for ReturnAfterDelete");
+ if (ReturnAfterDelete)
+ CGF.EmitBranchThroughCleanup(CGF.ReturnBlock);
+ else
+ CGF.Builder.CreateBr(continueBB);
+
+ CGF.EmitBlock(continueBB);
+ }
+
+ struct CallDtorDeleteConditional final : EHScopeStack::Cleanup {
+ llvm::Value *ShouldDeleteCondition;
+
+ public:
+ CallDtorDeleteConditional(llvm::Value *ShouldDeleteCondition)
+ : ShouldDeleteCondition(ShouldDeleteCondition) {
+ assert(ShouldDeleteCondition != nullptr);
+ }
+
+ void Emit(CodeGenFunction &CGF, Flags flags) override {
+ EmitConditionalDtorDeleteCall(CGF, ShouldDeleteCondition,
+ /*ReturnAfterDelete*/false);
+ }
+ };
+
+ class DestroyField final : public EHScopeStack::Cleanup {
+ const FieldDecl *field;
+ CodeGenFunction::Destroyer *destroyer;
+ bool useEHCleanupForArray;
+
+ public:
+ DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer,
+ bool useEHCleanupForArray)
+ : field(field), destroyer(destroyer),
+ useEHCleanupForArray(useEHCleanupForArray) {}
+
+ void Emit(CodeGenFunction &CGF, Flags flags) override {
+ // Find the address of the field.
+ Address thisValue = CGF.LoadCXXThisAddress();
+ QualType RecordTy = CGF.getContext().getTagDeclType(field->getParent());
+ LValue ThisLV = CGF.MakeAddrLValue(thisValue, RecordTy);
+ LValue LV = CGF.EmitLValueForField(ThisLV, field);
+ assert(LV.isSimple());
+
+ CGF.emitDestroy(LV.getAddress(CGF), field->getType(), destroyer,
+ flags.isForNormalCleanup() && useEHCleanupForArray);
+ }
+ };
+
+ static void EmitSanitizerDtorCallback(CodeGenFunction &CGF, llvm::Value *Ptr,
+ CharUnits::QuantityType PoisonSize) {
+ CodeGenFunction::SanitizerScope SanScope(&CGF);
+ // Pass in void pointer and size of region as arguments to runtime
+ // function
+ llvm::Value *Args[] = {CGF.Builder.CreateBitCast(Ptr, CGF.VoidPtrTy),
+ llvm::ConstantInt::get(CGF.SizeTy, PoisonSize)};
+
+ llvm::Type *ArgTypes[] = {CGF.VoidPtrTy, CGF.SizeTy};
+
+ llvm::FunctionType *FnType =
+ llvm::FunctionType::get(CGF.VoidTy, ArgTypes, false);
+ llvm::FunctionCallee Fn =
+ CGF.CGM.CreateRuntimeFunction(FnType, "__sanitizer_dtor_callback");
+ CGF.EmitNounwindRuntimeCall(Fn, Args);
+ }
+
+ class SanitizeDtorMembers final : public EHScopeStack::Cleanup {
+ const CXXDestructorDecl *Dtor;
+
+ public:
+ SanitizeDtorMembers(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {}
+
+ // Generate function call for handling object poisoning.
+ // Disables tail call elimination, to prevent the current stack frame
+ // from disappearing from the stack trace.
+ void Emit(CodeGenFunction &CGF, Flags flags) override {
+ const ASTRecordLayout &Layout =
+ CGF.getContext().getASTRecordLayout(Dtor->getParent());
+
+ // Nothing to poison.
+ if (Layout.getFieldCount() == 0)
+ return;
+
+ // Prevent the current stack frame from disappearing from the stack trace.
+ CGF.CurFn->addFnAttr("disable-tail-calls", "true");
+
+ // Construct pointer to region to begin poisoning, and calculate poison
+ // size, so that only members declared in this class are poisoned.
+ ASTContext &Context = CGF.getContext();
+ unsigned fieldIndex = 0;
+ int startIndex = -1;
+ // RecordDecl::field_iterator Field;
+ for (const FieldDecl *Field : Dtor->getParent()->fields()) {
+ // Poison field if it is trivial
+ if (FieldHasTrivialDestructorBody(Context, Field)) {
+ // Start sanitizing at this field
+ if (startIndex < 0)
+ startIndex = fieldIndex;
+
+ // Currently on the last field, and it must be poisoned with the
+ // current block.
+ if (fieldIndex == Layout.getFieldCount() - 1) {
+ PoisonMembers(CGF, startIndex, Layout.getFieldCount());
+ }
+ } else if (startIndex >= 0) {
+ // No longer within a block of memory to poison, so poison the block
+ PoisonMembers(CGF, startIndex, fieldIndex);
+ // Re-set the start index
+ startIndex = -1;
+ }
+ fieldIndex += 1;
+ }
+ }
+
+ private:
+ /// \param layoutStartOffset index of the ASTRecordLayout field to
+ /// start poisoning (inclusive)
+ /// \param layoutEndOffset index of the ASTRecordLayout field to
+ /// end poisoning (exclusive)
+ void PoisonMembers(CodeGenFunction &CGF, unsigned layoutStartOffset,
+ unsigned layoutEndOffset) {
+ ASTContext &Context = CGF.getContext();
+ const ASTRecordLayout &Layout =
+ Context.getASTRecordLayout(Dtor->getParent());
+
+ llvm::ConstantInt *OffsetSizePtr = llvm::ConstantInt::get(
+ CGF.SizeTy,
+ Context.toCharUnitsFromBits(Layout.getFieldOffset(layoutStartOffset))
+ .getQuantity());
+
+ llvm::Value *OffsetPtr = CGF.Builder.CreateGEP(
+ CGF.Builder.CreateBitCast(CGF.LoadCXXThis(), CGF.Int8PtrTy),
+ OffsetSizePtr);
+
+ CharUnits::QuantityType PoisonSize;
+ if (layoutEndOffset >= Layout.getFieldCount()) {
+ PoisonSize = Layout.getNonVirtualSize().getQuantity() -
+ Context.toCharUnitsFromBits(
+ Layout.getFieldOffset(layoutStartOffset))
+ .getQuantity();
+ } else {
+ PoisonSize = Context.toCharUnitsFromBits(
+ Layout.getFieldOffset(layoutEndOffset) -
+ Layout.getFieldOffset(layoutStartOffset))
+ .getQuantity();
+ }
+
+ if (PoisonSize == 0)
+ return;
+
+ EmitSanitizerDtorCallback(CGF, OffsetPtr, PoisonSize);
+ }
+ };
+
+ class SanitizeDtorVTable final : public EHScopeStack::Cleanup {
+ const CXXDestructorDecl *Dtor;
+
+ public:
+ SanitizeDtorVTable(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {}
+
+ // Generate function call for handling vtable pointer poisoning.
+ void Emit(CodeGenFunction &CGF, Flags flags) override {
+ assert(Dtor->getParent()->isDynamicClass());
+ (void)Dtor;
+ ASTContext &Context = CGF.getContext();
+ // Poison vtable and vtable ptr if they exist for this class.
+ llvm::Value *VTablePtr = CGF.LoadCXXThis();
+
+ CharUnits::QuantityType PoisonSize =
+ Context.toCharUnitsFromBits(CGF.PointerWidthInBits).getQuantity();
+ // Pass in void pointer and size of region as arguments to runtime
+ // function
+ EmitSanitizerDtorCallback(CGF, VTablePtr, PoisonSize);
+ }
+ };
+} // end anonymous namespace
+
+/// Emit all code that comes at the end of class's
+/// destructor. This is to call destructors on members and base classes
+/// in reverse order of their construction.
+///
+/// For a deleting destructor, this also handles the case where a destroying
+/// operator delete completely overrides the definition.
+void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD,
+ CXXDtorType DtorType) {
+ assert((!DD->isTrivial() || DD->hasAttr<DLLExportAttr>()) &&
+ "Should not emit dtor epilogue for non-exported trivial dtor!");
+
+ // The deleting-destructor phase just needs to call the appropriate
+ // operator delete that Sema picked up.
+ if (DtorType == Dtor_Deleting) {
+ assert(DD->getOperatorDelete() &&
+ "operator delete missing - EnterDtorCleanups");
+ if (CXXStructorImplicitParamValue) {
+ // If there is an implicit param to the deleting dtor, it's a boolean
+ // telling whether this is a deleting destructor.
+ if (DD->getOperatorDelete()->isDestroyingOperatorDelete())
+ EmitConditionalDtorDeleteCall(*this, CXXStructorImplicitParamValue,
+ /*ReturnAfterDelete*/true);
+ else
+ EHStack.pushCleanup<CallDtorDeleteConditional>(
+ NormalAndEHCleanup, CXXStructorImplicitParamValue);
+ } else {
+ if (DD->getOperatorDelete()->isDestroyingOperatorDelete()) {
+ const CXXRecordDecl *ClassDecl = DD->getParent();
+ EmitDeleteCall(DD->getOperatorDelete(),
+ LoadThisForDtorDelete(*this, DD),
+ getContext().getTagDeclType(ClassDecl));
+ EmitBranchThroughCleanup(ReturnBlock);
+ } else {
+ EHStack.pushCleanup<CallDtorDelete>(NormalAndEHCleanup);
+ }
+ }
+ return;
+ }
+
+ const CXXRecordDecl *ClassDecl = DD->getParent();
+
+ // Unions have no bases and do not call field destructors.
+ if (ClassDecl->isUnion())
+ return;
+
+ // The complete-destructor phase just destructs all the virtual bases.
+ if (DtorType == Dtor_Complete) {
+ // Poison the vtable pointer such that access after the base
+ // and member destructors are invoked is invalid.
+ if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
+ SanOpts.has(SanitizerKind::Memory) && ClassDecl->getNumVBases() &&
+ ClassDecl->isPolymorphic())
+ EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD);
+
+ // We push them in the forward order so that they'll be popped in
+ // the reverse order.
+ for (const auto &Base : ClassDecl->vbases()) {
+ auto *BaseClassDecl =
+ cast<CXXRecordDecl>(Base.getType()->castAs<RecordType>()->getDecl());
+
+ // Ignore trivial destructors.
+ if (BaseClassDecl->hasTrivialDestructor())
+ continue;
+
+ EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup,
+ BaseClassDecl,
+ /*BaseIsVirtual*/ true);
+ }
+
+ return;
+ }
+
+ assert(DtorType == Dtor_Base);
+ // Poison the vtable pointer if it has no virtual bases, but inherits
+ // virtual functions.
+ if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
+ SanOpts.has(SanitizerKind::Memory) && !ClassDecl->getNumVBases() &&
+ ClassDecl->isPolymorphic())
+ EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD);
+
+ // Destroy non-virtual bases.
+ for (const auto &Base : ClassDecl->bases()) {
+ // Ignore virtual bases.
+ if (Base.isVirtual())
+ continue;
+
+ CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl();
+
+ // Ignore trivial destructors.
+ if (BaseClassDecl->hasTrivialDestructor())
+ continue;
+
+ EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup,
+ BaseClassDecl,
+ /*BaseIsVirtual*/ false);
+ }
+
+ // Poison fields such that access after their destructors are
+ // invoked, and before the base class destructor runs, is invalid.
+ if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
+ SanOpts.has(SanitizerKind::Memory))
+ EHStack.pushCleanup<SanitizeDtorMembers>(NormalAndEHCleanup, DD);
+
+ // Destroy direct fields.
+ for (const auto *Field : ClassDecl->fields()) {
+ QualType type = Field->getType();
+ QualType::DestructionKind dtorKind = type.isDestructedType();
+ if (!dtorKind) continue;
+
+ // Anonymous union members do not have their destructors called.
+ const RecordType *RT = type->getAsUnionType();
+ if (RT && RT->getDecl()->isAnonymousStructOrUnion()) continue;
+
+ CleanupKind cleanupKind = getCleanupKind(dtorKind);
+ EHStack.pushCleanup<DestroyField>(cleanupKind, Field,
+ getDestroyer(dtorKind),
+ cleanupKind & EHCleanup);
+ }
+}
+
+/// EmitCXXAggrConstructorCall - Emit a loop to call a particular
+/// constructor for each of several members of an array.
+///
+/// \param ctor the constructor to call for each element
+/// \param arrayType the type of the array to initialize
+/// \param arrayBegin an arrayType*
+/// \param zeroInitialize true if each element should be
+/// zero-initialized before it is constructed
+void CodeGenFunction::EmitCXXAggrConstructorCall(
+ const CXXConstructorDecl *ctor, const ArrayType *arrayType,
+ Address arrayBegin, const CXXConstructExpr *E, bool NewPointerIsChecked,
+ bool zeroInitialize) {
+ QualType elementType;
+ llvm::Value *numElements =
+ emitArrayLength(arrayType, elementType, arrayBegin);
+
+ EmitCXXAggrConstructorCall(ctor, numElements, arrayBegin, E,
+ NewPointerIsChecked, zeroInitialize);
+}
+
+/// EmitCXXAggrConstructorCall - Emit a loop to call a particular
+/// constructor for each of several members of an array.
+///
+/// \param ctor the constructor to call for each element
+/// \param numElements the number of elements in the array;
+/// may be zero
+/// \param arrayBase a T*, where T is the type constructed by ctor
+/// \param zeroInitialize true if each element should be
+/// zero-initialized before it is constructed
+void CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor,
+ llvm::Value *numElements,
+ Address arrayBase,
+ const CXXConstructExpr *E,
+ bool NewPointerIsChecked,
+ bool zeroInitialize) {
+ // It's legal for numElements to be zero. This can happen both
+ // dynamically, because x can be zero in 'new A[x]', and statically,
+ // because of GCC extensions that permit zero-length arrays. There
+ // are probably legitimate places where we could assume that this
+ // doesn't happen, but it's not clear that it's worth it.
+ llvm::BranchInst *zeroCheckBranch = nullptr;
+
+ // Optimize for a constant count.
+ llvm::ConstantInt *constantCount
+ = dyn_cast<llvm::ConstantInt>(numElements);
+ if (constantCount) {
+ // Just skip out if the constant count is zero.
+ if (constantCount->isZero()) return;
+
+ // Otherwise, emit the check.
+ } else {
+ llvm::BasicBlock *loopBB = createBasicBlock("new.ctorloop");
+ llvm::Value *iszero = Builder.CreateIsNull(numElements, "isempty");
+ zeroCheckBranch = Builder.CreateCondBr(iszero, loopBB, loopBB);
+ EmitBlock(loopBB);
+ }
+
+ // Find the end of the array.
+ llvm::Value *arrayBegin = arrayBase.getPointer();
+ llvm::Value *arrayEnd = Builder.CreateInBoundsGEP(arrayBegin, numElements,
+ "arrayctor.end");
+
+ // Enter the loop, setting up a phi for the current location to initialize.
+ llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
+ llvm::BasicBlock *loopBB = createBasicBlock("arrayctor.loop");
+ EmitBlock(loopBB);
+ llvm::PHINode *cur = Builder.CreatePHI(arrayBegin->getType(), 2,
+ "arrayctor.cur");
+ cur->addIncoming(arrayBegin, entryBB);
+
+ // Inside the loop body, emit the constructor call on the array element.
+
+ // The alignment of the base, adjusted by the size of a single element,
+ // provides a conservative estimate of the alignment of every element.
+ // (This assumes we never start tracking offsetted alignments.)
+ //
+ // Note that these are complete objects and so we don't need to
+ // use the non-virtual size or alignment.
+ QualType type = getContext().getTypeDeclType(ctor->getParent());
+ CharUnits eltAlignment =
+ arrayBase.getAlignment()
+ .alignmentOfArrayElement(getContext().getTypeSizeInChars(type));
+ Address curAddr = Address(cur, eltAlignment);
+
+ // Zero initialize the storage, if requested.
+ if (zeroInitialize)
+ EmitNullInitialization(curAddr, type);
+
+ // C++ [class.temporary]p4:
+ // There are two contexts in which temporaries are destroyed at a different
+ // point than the end of the full-expression. The first context is when a
+ // default constructor is called to initialize an element of an array.
+ // If the constructor has one or more default arguments, the destruction of
+ // every temporary created in a default argument expression is sequenced
+ // before the construction of the next array element, if any.
+
+ {
+ RunCleanupsScope Scope(*this);
+
+ // Evaluate the constructor and its arguments in a regular
+ // partial-destroy cleanup.
+ if (getLangOpts().Exceptions &&
+ !ctor->getParent()->hasTrivialDestructor()) {
+ Destroyer *destroyer = destroyCXXObject;
+ pushRegularPartialArrayCleanup(arrayBegin, cur, type, eltAlignment,
+ *destroyer);
+ }
+ auto currAVS = AggValueSlot::forAddr(
+ curAddr, type.getQualifiers(), AggValueSlot::IsDestructed,
+ AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased,
+ AggValueSlot::DoesNotOverlap, AggValueSlot::IsNotZeroed,
+ NewPointerIsChecked ? AggValueSlot::IsSanitizerChecked
+ : AggValueSlot::IsNotSanitizerChecked);
+ EmitCXXConstructorCall(ctor, Ctor_Complete, /*ForVirtualBase=*/false,
+ /*Delegating=*/false, currAVS, E);
+ }
+
+ // Go to the next element.
+ llvm::Value *next =
+ Builder.CreateInBoundsGEP(cur, llvm::ConstantInt::get(SizeTy, 1),
+ "arrayctor.next");
+ cur->addIncoming(next, Builder.GetInsertBlock());
+
+ // Check whether that's the end of the loop.
+ llvm::Value *done = Builder.CreateICmpEQ(next, arrayEnd, "arrayctor.done");
+ llvm::BasicBlock *contBB = createBasicBlock("arrayctor.cont");
+ Builder.CreateCondBr(done, contBB, loopBB);
+
+ // Patch the earlier check to skip over the loop.
+ if (zeroCheckBranch) zeroCheckBranch->setSuccessor(0, contBB);
+
+ EmitBlock(contBB);
+}
+
+void CodeGenFunction::destroyCXXObject(CodeGenFunction &CGF,
+ Address addr,
+ QualType type) {
+ const RecordType *rtype = type->castAs<RecordType>();
+ const CXXRecordDecl *record = cast<CXXRecordDecl>(rtype->getDecl());
+ const CXXDestructorDecl *dtor = record->getDestructor();
+ assert(!dtor->isTrivial());
+ CGF.EmitCXXDestructorCall(dtor, Dtor_Complete, /*for vbase*/ false,
+ /*Delegating=*/false, addr, type);
+}
+
+void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D,
+ CXXCtorType Type,
+ bool ForVirtualBase,
+ bool Delegating,
+ AggValueSlot ThisAVS,
+ const CXXConstructExpr *E) {
+ CallArgList Args;
+ Address This = ThisAVS.getAddress();
+ LangAS SlotAS = ThisAVS.getQualifiers().getAddressSpace();
+ QualType ThisType = D->getThisType();
+ LangAS ThisAS = ThisType.getTypePtr()->getPointeeType().getAddressSpace();
+ llvm::Value *ThisPtr = This.getPointer();
+
+ if (SlotAS != ThisAS) {
+ unsigned TargetThisAS = getContext().getTargetAddressSpace(ThisAS);
+ llvm::Type *NewType =
+ ThisPtr->getType()->getPointerElementType()->getPointerTo(TargetThisAS);
+ ThisPtr = getTargetHooks().performAddrSpaceCast(*this, This.getPointer(),
+ ThisAS, SlotAS, NewType);
+ }
+
+ // Push the this ptr.
+ Args.add(RValue::get(ThisPtr), D->getThisType());
+
+ // If this is a trivial constructor, emit a memcpy now before we lose
+ // the alignment information on the argument.
+ // FIXME: It would be better to preserve alignment information into CallArg.
+ if (isMemcpyEquivalentSpecialMember(D)) {
+ assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
+
+ const Expr *Arg = E->getArg(0);
+ LValue Src = EmitLValue(Arg);
+ QualType DestTy = getContext().getTypeDeclType(D->getParent());
+ LValue Dest = MakeAddrLValue(This, DestTy);
+ EmitAggregateCopyCtor(Dest, Src, ThisAVS.mayOverlap());
+ return;
+ }
+
+ // Add the rest of the user-supplied arguments.
+ const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
+ EvaluationOrder Order = E->isListInitialization()
+ ? EvaluationOrder::ForceLeftToRight
+ : EvaluationOrder::Default;
+ EmitCallArgs(Args, FPT, E->arguments(), E->getConstructor(),
+ /*ParamsToSkip*/ 0, Order);
+
+ EmitCXXConstructorCall(D, Type, ForVirtualBase, Delegating, This, Args,
+ ThisAVS.mayOverlap(), E->getExprLoc(),
+ ThisAVS.isSanitizerChecked());
+}
+
+static bool canEmitDelegateCallArgs(CodeGenFunction &CGF,
+ const CXXConstructorDecl *Ctor,
+ CXXCtorType Type, CallArgList &Args) {
+ // We can't forward a variadic call.
+ if (Ctor->isVariadic())
+ return false;
+
+ if (CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
+ // If the parameters are callee-cleanup, it's not safe to forward.
+ for (auto *P : Ctor->parameters())
+ if (P->needsDestruction(CGF.getContext()))
+ return false;
+
+ // Likewise if they're inalloca.
+ const CGFunctionInfo &Info =
+ CGF.CGM.getTypes().arrangeCXXConstructorCall(Args, Ctor, Type, 0, 0);
+ if (Info.usesInAlloca())
+ return false;
+ }
+
+ // Anything else should be OK.
+ return true;
+}
+
+void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D,
+ CXXCtorType Type,
+ bool ForVirtualBase,
+ bool Delegating,
+ Address This,
+ CallArgList &Args,
+ AggValueSlot::Overlap_t Overlap,
+ SourceLocation Loc,
+ bool NewPointerIsChecked) {
+ const CXXRecordDecl *ClassDecl = D->getParent();
+
+ if (!NewPointerIsChecked)
+ EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, Loc, This.getPointer(),
+ getContext().getRecordType(ClassDecl), CharUnits::Zero());
+
+ if (D->isTrivial() && D->isDefaultConstructor()) {
+ assert(Args.size() == 1 && "trivial default ctor with args");
+ return;
+ }
+
+ // If this is a trivial constructor, just emit what's needed. If this is a
+ // union copy constructor, we must emit a memcpy, because the AST does not
+ // model that copy.
+ if (isMemcpyEquivalentSpecialMember(D)) {
+ assert(Args.size() == 2 && "unexpected argcount for trivial ctor");
+
+ QualType SrcTy = D->getParamDecl(0)->getType().getNonReferenceType();
+ Address Src(Args[1].getRValue(*this).getScalarVal(),
+ getNaturalTypeAlignment(SrcTy));
+ LValue SrcLVal = MakeAddrLValue(Src, SrcTy);
+ QualType DestTy = getContext().getTypeDeclType(ClassDecl);
+ LValue DestLVal = MakeAddrLValue(This, DestTy);
+ EmitAggregateCopyCtor(DestLVal, SrcLVal, Overlap);
+ return;
+ }
+
+ bool PassPrototypeArgs = true;
+ // Check whether we can actually emit the constructor before trying to do so.
+ if (auto Inherited = D->getInheritedConstructor()) {
+ PassPrototypeArgs = getTypes().inheritingCtorHasParams(Inherited, Type);
+ if (PassPrototypeArgs && !canEmitDelegateCallArgs(*this, D, Type, Args)) {
+ EmitInlinedInheritingCXXConstructorCall(D, Type, ForVirtualBase,
+ Delegating, Args);
+ return;
+ }
+ }
+
+ // Insert any ABI-specific implicit constructor arguments.
+ CGCXXABI::AddedStructorArgs ExtraArgs =
+ CGM.getCXXABI().addImplicitConstructorArgs(*this, D, Type, ForVirtualBase,
+ Delegating, Args);
+
+ // Emit the call.
+ llvm::Constant *CalleePtr = CGM.getAddrOfCXXStructor(GlobalDecl(D, Type));
+ const CGFunctionInfo &Info = CGM.getTypes().arrangeCXXConstructorCall(
+ Args, D, Type, ExtraArgs.Prefix, ExtraArgs.Suffix, PassPrototypeArgs);
+ CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(D, Type));
+ EmitCall(Info, Callee, ReturnValueSlot(), Args);
+
+ // Generate vtable assumptions if we're constructing a complete object
+ // with a vtable. We don't do this for base subobjects for two reasons:
+ // first, it's incorrect for classes with virtual bases, and second, we're
+ // about to overwrite the vptrs anyway.
+ // We also have to make sure if we can refer to vtable:
+ // - Otherwise we can refer to vtable if it's safe to speculatively emit.
+ // FIXME: If vtable is used by ctor/dtor, or if vtable is external and we are
+ // sure that definition of vtable is not hidden,
+ // then we are always safe to refer to it.
+ // FIXME: It looks like InstCombine is very inefficient on dealing with
+ // assumes. Make assumption loads require -fstrict-vtable-pointers temporarily.
+ if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
+ ClassDecl->isDynamicClass() && Type != Ctor_Base &&
+ CGM.getCXXABI().canSpeculativelyEmitVTable(ClassDecl) &&
+ CGM.getCodeGenOpts().StrictVTablePointers)
+ EmitVTableAssumptionLoads(ClassDecl, This);
+}
+
+void CodeGenFunction::EmitInheritedCXXConstructorCall(
+ const CXXConstructorDecl *D, bool ForVirtualBase, Address This,
+ bool InheritedFromVBase, const CXXInheritedCtorInitExpr *E) {
+ CallArgList Args;
+ CallArg ThisArg(RValue::get(This.getPointer()), D->getThisType());
+
+ // Forward the parameters.
+ if (InheritedFromVBase &&
+ CGM.getTarget().getCXXABI().hasConstructorVariants()) {
+ // Nothing to do; this construction is not responsible for constructing
+ // the base class containing the inherited constructor.
+ // FIXME: Can we just pass undef's for the remaining arguments if we don't
+ // have constructor variants?
+ Args.push_back(ThisArg);
+ } else if (!CXXInheritedCtorInitExprArgs.empty()) {
+ // The inheriting constructor was inlined; just inject its arguments.
+ assert(CXXInheritedCtorInitExprArgs.size() >= D->getNumParams() &&
+ "wrong number of parameters for inherited constructor call");
+ Args = CXXInheritedCtorInitExprArgs;
+ Args[0] = ThisArg;
+ } else {
+ // The inheriting constructor was not inlined. Emit delegating arguments.
+ Args.push_back(ThisArg);
+ const auto *OuterCtor = cast<CXXConstructorDecl>(CurCodeDecl);
+ assert(OuterCtor->getNumParams() == D->getNumParams());
+ assert(!OuterCtor->isVariadic() && "should have been inlined");
+
+ for (const auto *Param : OuterCtor->parameters()) {
+ assert(getContext().hasSameUnqualifiedType(
+ OuterCtor->getParamDecl(Param->getFunctionScopeIndex())->getType(),
+ Param->getType()));
+ EmitDelegateCallArg(Args, Param, E->getLocation());
+
+ // Forward __attribute__(pass_object_size).
+ if (Param->hasAttr<PassObjectSizeAttr>()) {
+ auto *POSParam = SizeArguments[Param];
+ assert(POSParam && "missing pass_object_size value for forwarding");
+ EmitDelegateCallArg(Args, POSParam, E->getLocation());
+ }
+ }
+ }
+
+ EmitCXXConstructorCall(D, Ctor_Base, ForVirtualBase, /*Delegating*/false,
+ This, Args, AggValueSlot::MayOverlap,
+ E->getLocation(), /*NewPointerIsChecked*/true);
+}
+
+void CodeGenFunction::EmitInlinedInheritingCXXConstructorCall(
+ const CXXConstructorDecl *Ctor, CXXCtorType CtorType, bool ForVirtualBase,
+ bool Delegating, CallArgList &Args) {
+ GlobalDecl GD(Ctor, CtorType);
+ InlinedInheritingConstructorScope Scope(*this, GD);
+ ApplyInlineDebugLocation DebugScope(*this, GD);
+ RunCleanupsScope RunCleanups(*this);
+
+ // Save the arguments to be passed to the inherited constructor.
+ CXXInheritedCtorInitExprArgs = Args;
+
+ FunctionArgList Params;
+ QualType RetType = BuildFunctionArgList(CurGD, Params);
+ FnRetTy = RetType;
+
+ // Insert any ABI-specific implicit constructor arguments.
+ CGM.getCXXABI().addImplicitConstructorArgs(*this, Ctor, CtorType,
+ ForVirtualBase, Delegating, Args);
+
+ // Emit a simplified prolog. We only need to emit the implicit params.
+ assert(Args.size() >= Params.size() && "too few arguments for call");
+ for (unsigned I = 0, N = Args.size(); I != N; ++I) {
+ if (I < Params.size() && isa<ImplicitParamDecl>(Params[I])) {
+ const RValue &RV = Args[I].getRValue(*this);
+ assert(!RV.isComplex() && "complex indirect params not supported");
+ ParamValue Val = RV.isScalar()
+ ? ParamValue::forDirect(RV.getScalarVal())
+ : ParamValue::forIndirect(RV.getAggregateAddress());
+ EmitParmDecl(*Params[I], Val, I + 1);
+ }
+ }
+
+ // Create a return value slot if the ABI implementation wants one.
+ // FIXME: This is dumb, we should ask the ABI not to try to set the return
+ // value instead.
+ if (!RetType->isVoidType())
+ ReturnValue = CreateIRTemp(RetType, "retval.inhctor");
+
+ CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
+ CXXThisValue = CXXABIThisValue;
+
+ // Directly emit the constructor initializers.
+ EmitCtorPrologue(Ctor, CtorType, Params);
+}
+
+void CodeGenFunction::EmitVTableAssumptionLoad(const VPtr &Vptr, Address This) {
+ llvm::Value *VTableGlobal =
+ CGM.getCXXABI().getVTableAddressPoint(Vptr.Base, Vptr.VTableClass);
+ if (!VTableGlobal)
+ return;
+
+ // We can just use the base offset in the complete class.
+ CharUnits NonVirtualOffset = Vptr.Base.getBaseOffset();
+
+ if (!NonVirtualOffset.isZero())
+ This =
+ ApplyNonVirtualAndVirtualOffset(*this, This, NonVirtualOffset, nullptr,
+ Vptr.VTableClass, Vptr.NearestVBase);
+
+ llvm::Value *VPtrValue =
+ GetVTablePtr(This, VTableGlobal->getType(), Vptr.VTableClass);
+ llvm::Value *Cmp =
+ Builder.CreateICmpEQ(VPtrValue, VTableGlobal, "cmp.vtables");
+ Builder.CreateAssumption(Cmp);
+}
+
+void CodeGenFunction::EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl,
+ Address This) {
+ if (CGM.getCXXABI().doStructorsInitializeVPtrs(ClassDecl))
+ for (const VPtr &Vptr : getVTablePointers(ClassDecl))
+ EmitVTableAssumptionLoad(Vptr, This);
+}
+
+void
+CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
+ Address This, Address Src,
+ const CXXConstructExpr *E) {
+ const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
+
+ CallArgList Args;
+
+ // Push the this ptr.
+ Args.add(RValue::get(This.getPointer()), D->getThisType());
+
+ // Push the src ptr.
+ QualType QT = *(FPT->param_type_begin());
+ llvm::Type *t = CGM.getTypes().ConvertType(QT);
+ Src = Builder.CreateBitCast(Src, t);
+ Args.add(RValue::get(Src.getPointer()), QT);
+
+ // Skip over first argument (Src).
+ EmitCallArgs(Args, FPT, drop_begin(E->arguments(), 1), E->getConstructor(),
+ /*ParamsToSkip*/ 1);
+
+ EmitCXXConstructorCall(D, Ctor_Complete, /*ForVirtualBase*/false,
+ /*Delegating*/false, This, Args,
+ AggValueSlot::MayOverlap, E->getExprLoc(),
+ /*NewPointerIsChecked*/false);
+}
+
+void
+CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
+ CXXCtorType CtorType,
+ const FunctionArgList &Args,
+ SourceLocation Loc) {
+ CallArgList DelegateArgs;
+
+ FunctionArgList::const_iterator I = Args.begin(), E = Args.end();
+ assert(I != E && "no parameters to constructor");
+
+ // this
+ Address This = LoadCXXThisAddress();
+ DelegateArgs.add(RValue::get(This.getPointer()), (*I)->getType());
+ ++I;
+
+ // FIXME: The location of the VTT parameter in the parameter list is
+ // specific to the Itanium ABI and shouldn't be hardcoded here.
+ if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
+ assert(I != E && "cannot skip vtt parameter, already done with args");
+ assert((*I)->getType()->isPointerType() &&
+ "skipping parameter not of vtt type");
+ ++I;
+ }
+
+ // Explicit arguments.
+ for (; I != E; ++I) {
+ const VarDecl *param = *I;
+ // FIXME: per-argument source location
+ EmitDelegateCallArg(DelegateArgs, param, Loc);
+ }
+
+ EmitCXXConstructorCall(Ctor, CtorType, /*ForVirtualBase=*/false,
+ /*Delegating=*/true, This, DelegateArgs,
+ AggValueSlot::MayOverlap, Loc,
+ /*NewPointerIsChecked=*/true);
+}
+
+namespace {
+ struct CallDelegatingCtorDtor final : EHScopeStack::Cleanup {
+ const CXXDestructorDecl *Dtor;
+ Address Addr;
+ CXXDtorType Type;
+
+ CallDelegatingCtorDtor(const CXXDestructorDecl *D, Address Addr,
+ CXXDtorType Type)
+ : Dtor(D), Addr(Addr), Type(Type) {}
+
+ void Emit(CodeGenFunction &CGF, Flags flags) override {
+ // We are calling the destructor from within the constructor.
+ // Therefore, "this" should have the expected type.
+ QualType ThisTy = Dtor->getThisObjectType();
+ CGF.EmitCXXDestructorCall(Dtor, Type, /*ForVirtualBase=*/false,
+ /*Delegating=*/true, Addr, ThisTy);
+ }
+ };
+} // end anonymous namespace
+
+void
+CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
+ const FunctionArgList &Args) {
+ assert(Ctor->isDelegatingConstructor());
+
+ Address ThisPtr = LoadCXXThisAddress();
+
+ AggValueSlot AggSlot =
+ AggValueSlot::forAddr(ThisPtr, Qualifiers(),
+ AggValueSlot::IsDestructed,
+ AggValueSlot::DoesNotNeedGCBarriers,
+ AggValueSlot::IsNotAliased,
+ AggValueSlot::MayOverlap,
+ AggValueSlot::IsNotZeroed,
+ // Checks are made by the code that calls constructor.
+ AggValueSlot::IsSanitizerChecked);
+
+ EmitAggExpr(Ctor->init_begin()[0]->getInit(), AggSlot);
+
+ const CXXRecordDecl *ClassDecl = Ctor->getParent();
+ if (CGM.getLangOpts().Exceptions && !ClassDecl->hasTrivialDestructor()) {
+ CXXDtorType Type =
+ CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base;
+
+ EHStack.pushCleanup<CallDelegatingCtorDtor>(EHCleanup,
+ ClassDecl->getDestructor(),
+ ThisPtr, Type);
+ }
+}
+
+void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD,
+ CXXDtorType Type,
+ bool ForVirtualBase,
+ bool Delegating, Address This,
+ QualType ThisTy) {
+ CGM.getCXXABI().EmitDestructorCall(*this, DD, Type, ForVirtualBase,
+ Delegating, This, ThisTy);
+}
+
+namespace {
+ struct CallLocalDtor final : EHScopeStack::Cleanup {
+ const CXXDestructorDecl *Dtor;
+ Address Addr;
+ QualType Ty;
+
+ CallLocalDtor(const CXXDestructorDecl *D, Address Addr, QualType Ty)
+ : Dtor(D), Addr(Addr), Ty(Ty) {}
+
+ void Emit(CodeGenFunction &CGF, Flags flags) override {
+ CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
+ /*ForVirtualBase=*/false,
+ /*Delegating=*/false, Addr, Ty);
+ }
+ };
+} // end anonymous namespace
+
+void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D,
+ QualType T, Address Addr) {
+ EHStack.pushCleanup<CallLocalDtor>(NormalAndEHCleanup, D, Addr, T);
+}
+
+void CodeGenFunction::PushDestructorCleanup(QualType T, Address Addr) {
+ CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl();
+ if (!ClassDecl) return;
+ if (ClassDecl->hasTrivialDestructor()) return;
+
+ const CXXDestructorDecl *D = ClassDecl->getDestructor();
+ assert(D && D->isUsed() && "destructor not marked as used!");
+ PushDestructorCleanup(D, T, Addr);
+}
+
+void CodeGenFunction::InitializeVTablePointer(const VPtr &Vptr) {
+ // Compute the address point.
+ llvm::Value *VTableAddressPoint =
+ CGM.getCXXABI().getVTableAddressPointInStructor(
+ *this, Vptr.VTableClass, Vptr.Base, Vptr.NearestVBase);
+
+ if (!VTableAddressPoint)
+ return;
+
+ // Compute where to store the address point.
+ llvm::Value *VirtualOffset = nullptr;
+ CharUnits NonVirtualOffset = CharUnits::Zero();
+
+ if (CGM.getCXXABI().isVirtualOffsetNeededForVTableField(*this, Vptr)) {
+ // We need to use the virtual base offset offset because the virtual base
+ // might have a different offset in the most derived class.
+
+ VirtualOffset = CGM.getCXXABI().GetVirtualBaseClassOffset(
+ *this, LoadCXXThisAddress(), Vptr.VTableClass, Vptr.NearestVBase);
+ NonVirtualOffset = Vptr.OffsetFromNearestVBase;
+ } else {
+ // We can just use the base offset in the complete class.
+ NonVirtualOffset = Vptr.Base.getBaseOffset();
+ }
+
+ // Apply the offsets.
+ Address VTableField = LoadCXXThisAddress();
+
+ if (!NonVirtualOffset.isZero() || VirtualOffset)
+ VTableField = ApplyNonVirtualAndVirtualOffset(
+ *this, VTableField, NonVirtualOffset, VirtualOffset, Vptr.VTableClass,
+ Vptr.NearestVBase);
+
+ // Finally, store the address point. Use the same LLVM types as the field to
+ // support optimization.
+ llvm::Type *VTablePtrTy =
+ llvm::FunctionType::get(CGM.Int32Ty, /*isVarArg=*/true)
+ ->getPointerTo()
+ ->getPointerTo();
+ VTableField = Builder.CreateBitCast(VTableField, VTablePtrTy->getPointerTo());
+ VTableAddressPoint = Builder.CreateBitCast(VTableAddressPoint, VTablePtrTy);
+
+ llvm::StoreInst *Store = Builder.CreateStore(VTableAddressPoint, VTableField);
+ TBAAAccessInfo TBAAInfo = CGM.getTBAAVTablePtrAccessInfo(VTablePtrTy);
+ CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
+ if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
+ CGM.getCodeGenOpts().StrictVTablePointers)
+ CGM.DecorateInstructionWithInvariantGroup(Store, Vptr.VTableClass);
+}
+
+CodeGenFunction::VPtrsVector
+CodeGenFunction::getVTablePointers(const CXXRecordDecl *VTableClass) {
+ CodeGenFunction::VPtrsVector VPtrsResult;
+ VisitedVirtualBasesSetTy VBases;
+ getVTablePointers(BaseSubobject(VTableClass, CharUnits::Zero()),
+ /*NearestVBase=*/nullptr,
+ /*OffsetFromNearestVBase=*/CharUnits::Zero(),
+ /*BaseIsNonVirtualPrimaryBase=*/false, VTableClass, VBases,
+ VPtrsResult);
+ return VPtrsResult;
+}
+
+void CodeGenFunction::getVTablePointers(BaseSubobject Base,
+ const CXXRecordDecl *NearestVBase,
+ CharUnits OffsetFromNearestVBase,
+ bool BaseIsNonVirtualPrimaryBase,
+ const CXXRecordDecl *VTableClass,
+ VisitedVirtualBasesSetTy &VBases,
+ VPtrsVector &Vptrs) {
+ // If this base is a non-virtual primary base the address point has already
+ // been set.
+ if (!BaseIsNonVirtualPrimaryBase) {
+ // Initialize the vtable pointer for this base.
+ VPtr Vptr = {Base, NearestVBase, OffsetFromNearestVBase, VTableClass};
+ Vptrs.push_back(Vptr);
+ }
+
+ const CXXRecordDecl *RD = Base.getBase();
+
+ // Traverse bases.
+ for (const auto &I : RD->bases()) {
+ auto *BaseDecl =
+ cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
+
+ // Ignore classes without a vtable.
+ if (!BaseDecl->isDynamicClass())
+ continue;
+
+ CharUnits BaseOffset;
+ CharUnits BaseOffsetFromNearestVBase;
+ bool BaseDeclIsNonVirtualPrimaryBase;
+
+ if (I.isVirtual()) {
+ // Check if we've visited this virtual base before.
+ if (!VBases.insert(BaseDecl).second)
+ continue;
+
+ const ASTRecordLayout &Layout =
+ getContext().getASTRecordLayout(VTableClass);
+
+ BaseOffset = Layout.getVBaseClassOffset(BaseDecl);
+ BaseOffsetFromNearestVBase = CharUnits::Zero();
+ BaseDeclIsNonVirtualPrimaryBase = false;
+ } else {
+ const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
+
+ BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(BaseDecl);
+ BaseOffsetFromNearestVBase =
+ OffsetFromNearestVBase + Layout.getBaseClassOffset(BaseDecl);
+ BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl;
+ }
+
+ getVTablePointers(
+ BaseSubobject(BaseDecl, BaseOffset),
+ I.isVirtual() ? BaseDecl : NearestVBase, BaseOffsetFromNearestVBase,
+ BaseDeclIsNonVirtualPrimaryBase, VTableClass, VBases, Vptrs);
+ }
+}
+
+void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) {
+ // Ignore classes without a vtable.
+ if (!RD->isDynamicClass())
+ return;
+
+ // Initialize the vtable pointers for this class and all of its bases.
+ if (CGM.getCXXABI().doStructorsInitializeVPtrs(RD))
+ for (const VPtr &Vptr : getVTablePointers(RD))
+ InitializeVTablePointer(Vptr);
+
+ if (RD->getNumVBases())
+ CGM.getCXXABI().initializeHiddenVirtualInheritanceMembers(*this, RD);
+}
+
+llvm::Value *CodeGenFunction::GetVTablePtr(Address This,
+ llvm::Type *VTableTy,
+ const CXXRecordDecl *RD) {
+ Address VTablePtrSrc = Builder.CreateElementBitCast(This, VTableTy);
+ llvm::Instruction *VTable = Builder.CreateLoad(VTablePtrSrc, "vtable");
+ TBAAAccessInfo TBAAInfo = CGM.getTBAAVTablePtrAccessInfo(VTableTy);
+ CGM.DecorateInstructionWithTBAA(VTable, TBAAInfo);
+
+ if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
+ CGM.getCodeGenOpts().StrictVTablePointers)
+ CGM.DecorateInstructionWithInvariantGroup(VTable, RD);
+
+ return VTable;
+}
+
+// If a class has a single non-virtual base and does not introduce or override
+// virtual member functions or fields, it will have the same layout as its base.
+// This function returns the least derived such class.
+//
+// Casting an instance of a base class to such a derived class is technically
+// undefined behavior, but it is a relatively common hack for introducing member
+// functions on class instances with specific properties (e.g. llvm::Operator)
+// that works under most compilers and should not have security implications, so
+// we allow it by default. It can be disabled with -fsanitize=cfi-cast-strict.
+static const CXXRecordDecl *
+LeastDerivedClassWithSameLayout(const CXXRecordDecl *RD) {
+ if (!RD->field_empty())
+ return RD;
+
+ if (RD->getNumVBases() != 0)
+ return RD;
+
+ if (RD->getNumBases() != 1)
+ return RD;
+
+ for (const CXXMethodDecl *MD : RD->methods()) {
+ if (MD->isVirtual()) {
+ // Virtual member functions are only ok if they are implicit destructors
+ // because the implicit destructor will have the same semantics as the
+ // base class's destructor if no fields are added.
+ if (isa<CXXDestructorDecl>(MD) && MD->isImplicit())
+ continue;
+ return RD;
+ }
+ }
+
+ return LeastDerivedClassWithSameLayout(
+ RD->bases_begin()->getType()->getAsCXXRecordDecl());
+}
+
+void CodeGenFunction::EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
+ llvm::Value *VTable,
+ SourceLocation Loc) {
+ if (SanOpts.has(SanitizerKind::CFIVCall))
+ EmitVTablePtrCheckForCall(RD, VTable, CodeGenFunction::CFITCK_VCall, Loc);
+ else if (CGM.getCodeGenOpts().WholeProgramVTables &&
+ CGM.HasHiddenLTOVisibility(RD)) {
+ llvm::Metadata *MD =
+ CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
+ llvm::Value *TypeId =
+ llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD);
+
+ llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy);
+ llvm::Value *TypeTest =
+ Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
+ {CastedVTable, TypeId});
+ Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::assume), TypeTest);
+ }
+}
+
+void CodeGenFunction::EmitVTablePtrCheckForCall(const CXXRecordDecl *RD,
+ llvm::Value *VTable,
+ CFITypeCheckKind TCK,
+ SourceLocation Loc) {
+ if (!SanOpts.has(SanitizerKind::CFICastStrict))
+ RD = LeastDerivedClassWithSameLayout(RD);
+
+ EmitVTablePtrCheck(RD, VTable, TCK, Loc);
+}
+
+void CodeGenFunction::EmitVTablePtrCheckForCast(QualType T,
+ llvm::Value *Derived,
+ bool MayBeNull,
+ CFITypeCheckKind TCK,
+ SourceLocation Loc) {
+ if (!getLangOpts().CPlusPlus)
+ return;
+
+ auto *ClassTy = T->getAs<RecordType>();
+ if (!ClassTy)
+ return;
+
+ const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassTy->getDecl());
+
+ if (!ClassDecl->isCompleteDefinition() || !ClassDecl->isDynamicClass())
+ return;
+
+ if (!SanOpts.has(SanitizerKind::CFICastStrict))
+ ClassDecl = LeastDerivedClassWithSameLayout(ClassDecl);
+
+ llvm::BasicBlock *ContBlock = nullptr;
+
+ if (MayBeNull) {
+ llvm::Value *DerivedNotNull =
+ Builder.CreateIsNotNull(Derived, "cast.nonnull");
+
+ llvm::BasicBlock *CheckBlock = createBasicBlock("cast.check");
+ ContBlock = createBasicBlock("cast.cont");
+
+ Builder.CreateCondBr(DerivedNotNull, CheckBlock, ContBlock);
+
+ EmitBlock(CheckBlock);
+ }
+
+ llvm::Value *VTable;
+ std::tie(VTable, ClassDecl) = CGM.getCXXABI().LoadVTablePtr(
+ *this, Address(Derived, getPointerAlign()), ClassDecl);
+
+ EmitVTablePtrCheck(ClassDecl, VTable, TCK, Loc);
+
+ if (MayBeNull) {
+ Builder.CreateBr(ContBlock);
+ EmitBlock(ContBlock);
+ }
+}
+
+void CodeGenFunction::EmitVTablePtrCheck(const CXXRecordDecl *RD,
+ llvm::Value *VTable,
+ CFITypeCheckKind TCK,
+ SourceLocation Loc) {
+ if (!CGM.getCodeGenOpts().SanitizeCfiCrossDso &&
+ !CGM.HasHiddenLTOVisibility(RD))
+ return;
+
+ SanitizerMask M;
+ llvm::SanitizerStatKind SSK;
+ switch (TCK) {
+ case CFITCK_VCall:
+ M = SanitizerKind::CFIVCall;
+ SSK = llvm::SanStat_CFI_VCall;
+ break;
+ case CFITCK_NVCall:
+ M = SanitizerKind::CFINVCall;
+ SSK = llvm::SanStat_CFI_NVCall;
+ break;
+ case CFITCK_DerivedCast:
+ M = SanitizerKind::CFIDerivedCast;
+ SSK = llvm::SanStat_CFI_DerivedCast;
+ break;
+ case CFITCK_UnrelatedCast:
+ M = SanitizerKind::CFIUnrelatedCast;
+ SSK = llvm::SanStat_CFI_UnrelatedCast;
+ break;
+ case CFITCK_ICall:
+ case CFITCK_NVMFCall:
+ case CFITCK_VMFCall:
+ llvm_unreachable("unexpected sanitizer kind");
+ }
+
+ std::string TypeName = RD->getQualifiedNameAsString();
+ if (getContext().getSanitizerBlacklist().isBlacklistedType(M, TypeName))
+ return;
+
+ SanitizerScope SanScope(this);
+ EmitSanitizerStatReport(SSK);
+
+ llvm::Metadata *MD =
+ CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
+ llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
+
+ llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy);
+ llvm::Value *TypeTest = Builder.CreateCall(
+ CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedVTable, TypeId});
+
+ llvm::Constant *StaticData[] = {
+ llvm::ConstantInt::get(Int8Ty, TCK),
+ EmitCheckSourceLocation(Loc),
+ EmitCheckTypeDescriptor(QualType(RD->getTypeForDecl(), 0)),
+ };
+
+ auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
+ if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
+ EmitCfiSlowPathCheck(M, TypeTest, CrossDsoTypeId, CastedVTable, StaticData);
+ return;
+ }
+
+ if (CGM.getCodeGenOpts().SanitizeTrap.has(M)) {
+ EmitTrapCheck(TypeTest);
+ return;
+ }
+
+ llvm::Value *AllVtables = llvm::MetadataAsValue::get(
+ CGM.getLLVMContext(),
+ llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
+ llvm::Value *ValidVtable = Builder.CreateCall(
+ CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedVTable, AllVtables});
+ EmitCheck(std::make_pair(TypeTest, M), SanitizerHandler::CFICheckFail,
+ StaticData, {CastedVTable, ValidVtable});
+}
+
+bool CodeGenFunction::ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD) {
+ if (!CGM.getCodeGenOpts().WholeProgramVTables ||
+ !CGM.HasHiddenLTOVisibility(RD))
+ return false;
+
+ if (CGM.getCodeGenOpts().VirtualFunctionElimination)
+ return true;
+
+ if (!SanOpts.has(SanitizerKind::CFIVCall) ||
+ !CGM.getCodeGenOpts().SanitizeTrap.has(SanitizerKind::CFIVCall))
+ return false;
+
+ std::string TypeName = RD->getQualifiedNameAsString();
+ return !getContext().getSanitizerBlacklist().isBlacklistedType(
+ SanitizerKind::CFIVCall, TypeName);
+}
+
+llvm::Value *CodeGenFunction::EmitVTableTypeCheckedLoad(
+ const CXXRecordDecl *RD, llvm::Value *VTable, uint64_t VTableByteOffset) {
+ SanitizerScope SanScope(this);
+
+ EmitSanitizerStatReport(llvm::SanStat_CFI_VCall);
+
+ llvm::Metadata *MD =
+ CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
+ llvm::Value *TypeId = llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD);
+
+ llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy);
+ llvm::Value *CheckedLoad = Builder.CreateCall(
+ CGM.getIntrinsic(llvm::Intrinsic::type_checked_load),
+ {CastedVTable, llvm::ConstantInt::get(Int32Ty, VTableByteOffset),
+ TypeId});
+ llvm::Value *CheckResult = Builder.CreateExtractValue(CheckedLoad, 1);
+
+ std::string TypeName = RD->getQualifiedNameAsString();
+ if (SanOpts.has(SanitizerKind::CFIVCall) &&
+ !getContext().getSanitizerBlacklist().isBlacklistedType(
+ SanitizerKind::CFIVCall, TypeName)) {
+ EmitCheck(std::make_pair(CheckResult, SanitizerKind::CFIVCall),
+ SanitizerHandler::CFICheckFail, {}, {});
+ }
+
+ return Builder.CreateBitCast(
+ Builder.CreateExtractValue(CheckedLoad, 0),
+ cast<llvm::PointerType>(VTable->getType())->getElementType());
+}
+
+void CodeGenFunction::EmitForwardingCallToLambda(
+ const CXXMethodDecl *callOperator,
+ CallArgList &callArgs) {
+ // Get the address of the call operator.
+ const CGFunctionInfo &calleeFnInfo =
+ CGM.getTypes().arrangeCXXMethodDeclaration(callOperator);
+ llvm::Constant *calleePtr =
+ CGM.GetAddrOfFunction(GlobalDecl(callOperator),
+ CGM.getTypes().GetFunctionType(calleeFnInfo));
+
+ // Prepare the return slot.
+ const FunctionProtoType *FPT =
+ callOperator->getType()->castAs<FunctionProtoType>();
+ QualType resultType = FPT->getReturnType();
+ ReturnValueSlot returnSlot;
+ if (!resultType->isVoidType() &&
+ calleeFnInfo.getReturnInfo().getKind() == ABIArgInfo::Indirect &&
+ !hasScalarEvaluationKind(calleeFnInfo.getReturnType()))
+ returnSlot = ReturnValueSlot(ReturnValue, resultType.isVolatileQualified());
+
+ // We don't need to separately arrange the call arguments because
+ // the call can't be variadic anyway --- it's impossible to forward
+ // variadic arguments.
+
+ // Now emit our call.
+ auto callee = CGCallee::forDirect(calleePtr, GlobalDecl(callOperator));
+ RValue RV = EmitCall(calleeFnInfo, callee, returnSlot, callArgs);
+
+ // If necessary, copy the returned value into the slot.
+ if (!resultType->isVoidType() && returnSlot.isNull()) {
+ if (getLangOpts().ObjCAutoRefCount && resultType->isObjCRetainableType()) {
+ RV = RValue::get(EmitARCRetainAutoreleasedReturnValue(RV.getScalarVal()));
+ }
+ EmitReturnOfRValue(RV, resultType);
+ } else
+ EmitBranchThroughCleanup(ReturnBlock);
+}
+
+void CodeGenFunction::EmitLambdaBlockInvokeBody() {
+ const BlockDecl *BD = BlockInfo->getBlockDecl();
+ const VarDecl *variable = BD->capture_begin()->getVariable();
+ const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl();
+ const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator();
+
+ if (CallOp->isVariadic()) {
+ // FIXME: Making this work correctly is nasty because it requires either
+ // cloning the body of the call operator or making the call operator
+ // forward.
+ CGM.ErrorUnsupported(CurCodeDecl, "lambda conversion to variadic function");
+ return;
+ }
+
+ // Start building arguments for forwarding call
+ CallArgList CallArgs;
+
+ QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
+ Address ThisPtr = GetAddrOfBlockDecl(variable);
+ CallArgs.add(RValue::get(ThisPtr.getPointer()), ThisType);
+
+ // Add the rest of the parameters.
+ for (auto param : BD->parameters())
+ EmitDelegateCallArg(CallArgs, param, param->getBeginLoc());
+
+ assert(!Lambda->isGenericLambda() &&
+ "generic lambda interconversion to block not implemented");
+ EmitForwardingCallToLambda(CallOp, CallArgs);
+}
+
+void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD) {
+ const CXXRecordDecl *Lambda = MD->getParent();
+
+ // Start building arguments for forwarding call
+ CallArgList CallArgs;
+
+ QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
+ llvm::Value *ThisPtr = llvm::UndefValue::get(getTypes().ConvertType(ThisType));
+ CallArgs.add(RValue::get(ThisPtr), ThisType);
+
+ // Add the rest of the parameters.
+ for (auto Param : MD->parameters())
+ EmitDelegateCallArg(CallArgs, Param, Param->getBeginLoc());
+
+ const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator();
+ // For a generic lambda, find the corresponding call operator specialization
+ // to which the call to the static-invoker shall be forwarded.
+ if (Lambda->isGenericLambda()) {
+ assert(MD->isFunctionTemplateSpecialization());
+ const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs();
+ FunctionTemplateDecl *CallOpTemplate = CallOp->getDescribedFunctionTemplate();
+ void *InsertPos = nullptr;
+ FunctionDecl *CorrespondingCallOpSpecialization =
+ CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos);
+ assert(CorrespondingCallOpSpecialization);
+ CallOp = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization);
+ }
+ EmitForwardingCallToLambda(CallOp, CallArgs);
+}
+
+void CodeGenFunction::EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD) {
+ if (MD->isVariadic()) {
+ // FIXME: Making this work correctly is nasty because it requires either
+ // cloning the body of the call operator or making the call operator forward.
+ CGM.ErrorUnsupported(MD, "lambda conversion to variadic function");
+ return;
+ }
+
+ EmitLambdaDelegatingInvokeBody(MD);
+}