summaryrefslogtreecommitdiffstats
path: root/gnu/llvm/clang/lib/CodeGen/CGExpr.cpp
diff options
context:
space:
mode:
authorpatrick <patrick@openbsd.org>2020-08-03 14:31:31 +0000
committerpatrick <patrick@openbsd.org>2020-08-03 14:31:31 +0000
commite5dd70708596ae51455a0ffa086a00c5b29f8583 (patch)
tree5d676f27b570bacf71e786c3b5cff3e6f6679b59 /gnu/llvm/clang/lib/CodeGen/CGExpr.cpp
parentImport LLVM 10.0.0 release including clang, lld and lldb. (diff)
downloadwireguard-openbsd-e5dd70708596ae51455a0ffa086a00c5b29f8583.tar.xz
wireguard-openbsd-e5dd70708596ae51455a0ffa086a00c5b29f8583.zip
Import LLVM 10.0.0 release including clang, lld and lldb.
ok hackroom tested by plenty
Diffstat (limited to 'gnu/llvm/clang/lib/CodeGen/CGExpr.cpp')
-rw-r--r--gnu/llvm/clang/lib/CodeGen/CGExpr.cpp5179
1 files changed, 5179 insertions, 0 deletions
diff --git a/gnu/llvm/clang/lib/CodeGen/CGExpr.cpp b/gnu/llvm/clang/lib/CodeGen/CGExpr.cpp
new file mode 100644
index 00000000000..8e0604181fb
--- /dev/null
+++ b/gnu/llvm/clang/lib/CodeGen/CGExpr.cpp
@@ -0,0 +1,5179 @@
+//===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This contains code to emit Expr nodes as LLVM code.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CGCXXABI.h"
+#include "CGCall.h"
+#include "CGCleanup.h"
+#include "CGDebugInfo.h"
+#include "CGObjCRuntime.h"
+#include "CGOpenMPRuntime.h"
+#include "CGRecordLayout.h"
+#include "CodeGenFunction.h"
+#include "CodeGenModule.h"
+#include "ConstantEmitter.h"
+#include "TargetInfo.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/Attr.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/NSAPI.h"
+#include "clang/Basic/Builtins.h"
+#include "clang/Basic/CodeGenOptions.h"
+#include "llvm/ADT/Hashing.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/MDBuilder.h"
+#include "llvm/Support/ConvertUTF.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/Path.h"
+#include "llvm/Transforms/Utils/SanitizerStats.h"
+
+#include <string>
+
+using namespace clang;
+using namespace CodeGen;
+
+//===--------------------------------------------------------------------===//
+// Miscellaneous Helper Methods
+//===--------------------------------------------------------------------===//
+
+llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
+ unsigned addressSpace =
+ cast<llvm::PointerType>(value->getType())->getAddressSpace();
+
+ llvm::PointerType *destType = Int8PtrTy;
+ if (addressSpace)
+ destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
+
+ if (value->getType() == destType) return value;
+ return Builder.CreateBitCast(value, destType);
+}
+
+/// CreateTempAlloca - This creates a alloca and inserts it into the entry
+/// block.
+Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty,
+ CharUnits Align,
+ const Twine &Name,
+ llvm::Value *ArraySize) {
+ auto Alloca = CreateTempAlloca(Ty, Name, ArraySize);
+ Alloca->setAlignment(Align.getAsAlign());
+ return Address(Alloca, Align);
+}
+
+/// CreateTempAlloca - This creates a alloca and inserts it into the entry
+/// block. The alloca is casted to default address space if necessary.
+Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align,
+ const Twine &Name,
+ llvm::Value *ArraySize,
+ Address *AllocaAddr) {
+ auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize);
+ if (AllocaAddr)
+ *AllocaAddr = Alloca;
+ llvm::Value *V = Alloca.getPointer();
+ // Alloca always returns a pointer in alloca address space, which may
+ // be different from the type defined by the language. For example,
+ // in C++ the auto variables are in the default address space. Therefore
+ // cast alloca to the default address space when necessary.
+ if (getASTAllocaAddressSpace() != LangAS::Default) {
+ auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default);
+ llvm::IRBuilderBase::InsertPointGuard IPG(Builder);
+ // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt,
+ // otherwise alloca is inserted at the current insertion point of the
+ // builder.
+ if (!ArraySize)
+ Builder.SetInsertPoint(AllocaInsertPt);
+ V = getTargetHooks().performAddrSpaceCast(
+ *this, V, getASTAllocaAddressSpace(), LangAS::Default,
+ Ty->getPointerTo(DestAddrSpace), /*non-null*/ true);
+ }
+
+ return Address(V, Align);
+}
+
+/// CreateTempAlloca - This creates an alloca and inserts it into the entry
+/// block if \p ArraySize is nullptr, otherwise inserts it at the current
+/// insertion point of the builder.
+llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
+ const Twine &Name,
+ llvm::Value *ArraySize) {
+ if (ArraySize)
+ return Builder.CreateAlloca(Ty, ArraySize, Name);
+ return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(),
+ ArraySize, Name, AllocaInsertPt);
+}
+
+/// CreateDefaultAlignTempAlloca - This creates an alloca with the
+/// default alignment of the corresponding LLVM type, which is *not*
+/// guaranteed to be related in any way to the expected alignment of
+/// an AST type that might have been lowered to Ty.
+Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty,
+ const Twine &Name) {
+ CharUnits Align =
+ CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty));
+ return CreateTempAlloca(Ty, Align, Name);
+}
+
+void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) {
+ assert(isa<llvm::AllocaInst>(Var.getPointer()));
+ auto *Store = new llvm::StoreInst(Init, Var.getPointer());
+ Store->setAlignment(Var.getAlignment().getAsAlign());
+ llvm::BasicBlock *Block = AllocaInsertPt->getParent();
+ Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store);
+}
+
+Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) {
+ CharUnits Align = getContext().getTypeAlignInChars(Ty);
+ return CreateTempAlloca(ConvertType(Ty), Align, Name);
+}
+
+Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name,
+ Address *Alloca) {
+ // FIXME: Should we prefer the preferred type alignment here?
+ return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca);
+}
+
+Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align,
+ const Twine &Name, Address *Alloca) {
+ return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name,
+ /*ArraySize=*/nullptr, Alloca);
+}
+
+Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align,
+ const Twine &Name) {
+ return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name);
+}
+
+Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty,
+ const Twine &Name) {
+ return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty),
+ Name);
+}
+
+/// EvaluateExprAsBool - Perform the usual unary conversions on the specified
+/// expression and compare the result against zero, returning an Int1Ty value.
+llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
+ PGO.setCurrentStmt(E);
+ if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
+ llvm::Value *MemPtr = EmitScalarExpr(E);
+ return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
+ }
+
+ QualType BoolTy = getContext().BoolTy;
+ SourceLocation Loc = E->getExprLoc();
+ if (!E->getType()->isAnyComplexType())
+ return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc);
+
+ return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy,
+ Loc);
+}
+
+/// EmitIgnoredExpr - Emit code to compute the specified expression,
+/// ignoring the result.
+void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
+ if (E->isRValue())
+ return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
+
+ // Just emit it as an l-value and drop the result.
+ EmitLValue(E);
+}
+
+/// EmitAnyExpr - Emit code to compute the specified expression which
+/// can have any type. The result is returned as an RValue struct.
+/// If this is an aggregate expression, AggSlot indicates where the
+/// result should be returned.
+RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
+ AggValueSlot aggSlot,
+ bool ignoreResult) {
+ switch (getEvaluationKind(E->getType())) {
+ case TEK_Scalar:
+ return RValue::get(EmitScalarExpr(E, ignoreResult));
+ case TEK_Complex:
+ return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
+ case TEK_Aggregate:
+ if (!ignoreResult && aggSlot.isIgnored())
+ aggSlot = CreateAggTemp(E->getType(), "agg-temp");
+ EmitAggExpr(E, aggSlot);
+ return aggSlot.asRValue();
+ }
+ llvm_unreachable("bad evaluation kind");
+}
+
+/// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will
+/// always be accessible even if no aggregate location is provided.
+RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
+ AggValueSlot AggSlot = AggValueSlot::ignored();
+
+ if (hasAggregateEvaluationKind(E->getType()))
+ AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
+ return EmitAnyExpr(E, AggSlot);
+}
+
+/// EmitAnyExprToMem - Evaluate an expression into a given memory
+/// location.
+void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
+ Address Location,
+ Qualifiers Quals,
+ bool IsInit) {
+ // FIXME: This function should take an LValue as an argument.
+ switch (getEvaluationKind(E->getType())) {
+ case TEK_Complex:
+ EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()),
+ /*isInit*/ false);
+ return;
+
+ case TEK_Aggregate: {
+ EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals,
+ AggValueSlot::IsDestructed_t(IsInit),
+ AggValueSlot::DoesNotNeedGCBarriers,
+ AggValueSlot::IsAliased_t(!IsInit),
+ AggValueSlot::MayOverlap));
+ return;
+ }
+
+ case TEK_Scalar: {
+ RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
+ LValue LV = MakeAddrLValue(Location, E->getType());
+ EmitStoreThroughLValue(RV, LV);
+ return;
+ }
+ }
+ llvm_unreachable("bad evaluation kind");
+}
+
+static void
+pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
+ const Expr *E, Address ReferenceTemporary) {
+ // Objective-C++ ARC:
+ // If we are binding a reference to a temporary that has ownership, we
+ // need to perform retain/release operations on the temporary.
+ //
+ // FIXME: This should be looking at E, not M.
+ if (auto Lifetime = M->getType().getObjCLifetime()) {
+ switch (Lifetime) {
+ case Qualifiers::OCL_None:
+ case Qualifiers::OCL_ExplicitNone:
+ // Carry on to normal cleanup handling.
+ break;
+
+ case Qualifiers::OCL_Autoreleasing:
+ // Nothing to do; cleaned up by an autorelease pool.
+ return;
+
+ case Qualifiers::OCL_Strong:
+ case Qualifiers::OCL_Weak:
+ switch (StorageDuration Duration = M->getStorageDuration()) {
+ case SD_Static:
+ // Note: we intentionally do not register a cleanup to release
+ // the object on program termination.
+ return;
+
+ case SD_Thread:
+ // FIXME: We should probably register a cleanup in this case.
+ return;
+
+ case SD_Automatic:
+ case SD_FullExpression:
+ CodeGenFunction::Destroyer *Destroy;
+ CleanupKind CleanupKind;
+ if (Lifetime == Qualifiers::OCL_Strong) {
+ const ValueDecl *VD = M->getExtendingDecl();
+ bool Precise =
+ VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
+ CleanupKind = CGF.getARCCleanupKind();
+ Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
+ : &CodeGenFunction::destroyARCStrongImprecise;
+ } else {
+ // __weak objects always get EH cleanups; otherwise, exceptions
+ // could cause really nasty crashes instead of mere leaks.
+ CleanupKind = NormalAndEHCleanup;
+ Destroy = &CodeGenFunction::destroyARCWeak;
+ }
+ if (Duration == SD_FullExpression)
+ CGF.pushDestroy(CleanupKind, ReferenceTemporary,
+ M->getType(), *Destroy,
+ CleanupKind & EHCleanup);
+ else
+ CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
+ M->getType(),
+ *Destroy, CleanupKind & EHCleanup);
+ return;
+
+ case SD_Dynamic:
+ llvm_unreachable("temporary cannot have dynamic storage duration");
+ }
+ llvm_unreachable("unknown storage duration");
+ }
+ }
+
+ CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
+ if (const RecordType *RT =
+ E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
+ // Get the destructor for the reference temporary.
+ auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
+ if (!ClassDecl->hasTrivialDestructor())
+ ReferenceTemporaryDtor = ClassDecl->getDestructor();
+ }
+
+ if (!ReferenceTemporaryDtor)
+ return;
+
+ // Call the destructor for the temporary.
+ switch (M->getStorageDuration()) {
+ case SD_Static:
+ case SD_Thread: {
+ llvm::FunctionCallee CleanupFn;
+ llvm::Constant *CleanupArg;
+ if (E->getType()->isArrayType()) {
+ CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
+ ReferenceTemporary, E->getType(),
+ CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
+ dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
+ CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
+ } else {
+ CleanupFn = CGF.CGM.getAddrAndTypeOfCXXStructor(
+ GlobalDecl(ReferenceTemporaryDtor, Dtor_Complete));
+ CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer());
+ }
+ CGF.CGM.getCXXABI().registerGlobalDtor(
+ CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
+ break;
+ }
+
+ case SD_FullExpression:
+ CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
+ CodeGenFunction::destroyCXXObject,
+ CGF.getLangOpts().Exceptions);
+ break;
+
+ case SD_Automatic:
+ CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
+ ReferenceTemporary, E->getType(),
+ CodeGenFunction::destroyCXXObject,
+ CGF.getLangOpts().Exceptions);
+ break;
+
+ case SD_Dynamic:
+ llvm_unreachable("temporary cannot have dynamic storage duration");
+ }
+}
+
+static Address createReferenceTemporary(CodeGenFunction &CGF,
+ const MaterializeTemporaryExpr *M,
+ const Expr *Inner,
+ Address *Alloca = nullptr) {
+ auto &TCG = CGF.getTargetHooks();
+ switch (M->getStorageDuration()) {
+ case SD_FullExpression:
+ case SD_Automatic: {
+ // If we have a constant temporary array or record try to promote it into a
+ // constant global under the same rules a normal constant would've been
+ // promoted. This is easier on the optimizer and generally emits fewer
+ // instructions.
+ QualType Ty = Inner->getType();
+ if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
+ (Ty->isArrayType() || Ty->isRecordType()) &&
+ CGF.CGM.isTypeConstant(Ty, true))
+ if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) {
+ if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) {
+ auto AS = AddrSpace.getValue();
+ auto *GV = new llvm::GlobalVariable(
+ CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
+ llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr,
+ llvm::GlobalValue::NotThreadLocal,
+ CGF.getContext().getTargetAddressSpace(AS));
+ CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty);
+ GV->setAlignment(alignment.getAsAlign());
+ llvm::Constant *C = GV;
+ if (AS != LangAS::Default)
+ C = TCG.performAddrSpaceCast(
+ CGF.CGM, GV, AS, LangAS::Default,
+ GV->getValueType()->getPointerTo(
+ CGF.getContext().getTargetAddressSpace(LangAS::Default)));
+ // FIXME: Should we put the new global into a COMDAT?
+ return Address(C, alignment);
+ }
+ }
+ return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca);
+ }
+ case SD_Thread:
+ case SD_Static:
+ return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
+
+ case SD_Dynamic:
+ llvm_unreachable("temporary can't have dynamic storage duration");
+ }
+ llvm_unreachable("unknown storage duration");
+}
+
+LValue CodeGenFunction::
+EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
+ const Expr *E = M->getSubExpr();
+
+ assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) ||
+ !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) &&
+ "Reference should never be pseudo-strong!");
+
+ // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
+ // as that will cause the lifetime adjustment to be lost for ARC
+ auto ownership = M->getType().getObjCLifetime();
+ if (ownership != Qualifiers::OCL_None &&
+ ownership != Qualifiers::OCL_ExplicitNone) {
+ Address Object = createReferenceTemporary(*this, M, E);
+ if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
+ Object = Address(llvm::ConstantExpr::getBitCast(Var,
+ ConvertTypeForMem(E->getType())
+ ->getPointerTo(Object.getAddressSpace())),
+ Object.getAlignment());
+
+ // createReferenceTemporary will promote the temporary to a global with a
+ // constant initializer if it can. It can only do this to a value of
+ // ARC-manageable type if the value is global and therefore "immune" to
+ // ref-counting operations. Therefore we have no need to emit either a
+ // dynamic initialization or a cleanup and we can just return the address
+ // of the temporary.
+ if (Var->hasInitializer())
+ return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
+
+ Var->setInitializer(CGM.EmitNullConstant(E->getType()));
+ }
+ LValue RefTempDst = MakeAddrLValue(Object, M->getType(),
+ AlignmentSource::Decl);
+
+ switch (getEvaluationKind(E->getType())) {
+ default: llvm_unreachable("expected scalar or aggregate expression");
+ case TEK_Scalar:
+ EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
+ break;
+ case TEK_Aggregate: {
+ EmitAggExpr(E, AggValueSlot::forAddr(Object,
+ E->getType().getQualifiers(),
+ AggValueSlot::IsDestructed,
+ AggValueSlot::DoesNotNeedGCBarriers,
+ AggValueSlot::IsNotAliased,
+ AggValueSlot::DoesNotOverlap));
+ break;
+ }
+ }
+
+ pushTemporaryCleanup(*this, M, E, Object);
+ return RefTempDst;
+ }
+
+ SmallVector<const Expr *, 2> CommaLHSs;
+ SmallVector<SubobjectAdjustment, 2> Adjustments;
+ E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
+
+ for (const auto &Ignored : CommaLHSs)
+ EmitIgnoredExpr(Ignored);
+
+ if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
+ if (opaque->getType()->isRecordType()) {
+ assert(Adjustments.empty());
+ return EmitOpaqueValueLValue(opaque);
+ }
+ }
+
+ // Create and initialize the reference temporary.
+ Address Alloca = Address::invalid();
+ Address Object = createReferenceTemporary(*this, M, E, &Alloca);
+ if (auto *Var = dyn_cast<llvm::GlobalVariable>(
+ Object.getPointer()->stripPointerCasts())) {
+ Object = Address(llvm::ConstantExpr::getBitCast(
+ cast<llvm::Constant>(Object.getPointer()),
+ ConvertTypeForMem(E->getType())->getPointerTo()),
+ Object.getAlignment());
+ // If the temporary is a global and has a constant initializer or is a
+ // constant temporary that we promoted to a global, we may have already
+ // initialized it.
+ if (!Var->hasInitializer()) {
+ Var->setInitializer(CGM.EmitNullConstant(E->getType()));
+ EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
+ }
+ } else {
+ switch (M->getStorageDuration()) {
+ case SD_Automatic:
+ if (auto *Size = EmitLifetimeStart(
+ CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
+ Alloca.getPointer())) {
+ pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker,
+ Alloca, Size);
+ }
+ break;
+
+ case SD_FullExpression: {
+ if (!ShouldEmitLifetimeMarkers)
+ break;
+
+ // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end
+ // marker. Instead, start the lifetime of a conditional temporary earlier
+ // so that it's unconditional. Don't do this with sanitizers which need
+ // more precise lifetime marks.
+ ConditionalEvaluation *OldConditional = nullptr;
+ CGBuilderTy::InsertPoint OldIP;
+ if (isInConditionalBranch() && !E->getType().isDestructedType() &&
+ !SanOpts.has(SanitizerKind::HWAddress) &&
+ !SanOpts.has(SanitizerKind::Memory) &&
+ !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) {
+ OldConditional = OutermostConditional;
+ OutermostConditional = nullptr;
+
+ OldIP = Builder.saveIP();
+ llvm::BasicBlock *Block = OldConditional->getStartingBlock();
+ Builder.restoreIP(CGBuilderTy::InsertPoint(
+ Block, llvm::BasicBlock::iterator(Block->back())));
+ }
+
+ if (auto *Size = EmitLifetimeStart(
+ CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
+ Alloca.getPointer())) {
+ pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca,
+ Size);
+ }
+
+ if (OldConditional) {
+ OutermostConditional = OldConditional;
+ Builder.restoreIP(OldIP);
+ }
+ break;
+ }
+
+ default:
+ break;
+ }
+ EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
+ }
+ pushTemporaryCleanup(*this, M, E, Object);
+
+ // Perform derived-to-base casts and/or field accesses, to get from the
+ // temporary object we created (and, potentially, for which we extended
+ // the lifetime) to the subobject we're binding the reference to.
+ for (unsigned I = Adjustments.size(); I != 0; --I) {
+ SubobjectAdjustment &Adjustment = Adjustments[I-1];
+ switch (Adjustment.Kind) {
+ case SubobjectAdjustment::DerivedToBaseAdjustment:
+ Object =
+ GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
+ Adjustment.DerivedToBase.BasePath->path_begin(),
+ Adjustment.DerivedToBase.BasePath->path_end(),
+ /*NullCheckValue=*/ false, E->getExprLoc());
+ break;
+
+ case SubobjectAdjustment::FieldAdjustment: {
+ LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl);
+ LV = EmitLValueForField(LV, Adjustment.Field);
+ assert(LV.isSimple() &&
+ "materialized temporary field is not a simple lvalue");
+ Object = LV.getAddress(*this);
+ break;
+ }
+
+ case SubobjectAdjustment::MemberPointerAdjustment: {
+ llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
+ Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr,
+ Adjustment.Ptr.MPT);
+ break;
+ }
+ }
+ }
+
+ return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
+}
+
+RValue
+CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
+ // Emit the expression as an lvalue.
+ LValue LV = EmitLValue(E);
+ assert(LV.isSimple());
+ llvm::Value *Value = LV.getPointer(*this);
+
+ if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
+ // C++11 [dcl.ref]p5 (as amended by core issue 453):
+ // If a glvalue to which a reference is directly bound designates neither
+ // an existing object or function of an appropriate type nor a region of
+ // storage of suitable size and alignment to contain an object of the
+ // reference's type, the behavior is undefined.
+ QualType Ty = E->getType();
+ EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
+ }
+
+ return RValue::get(Value);
+}
+
+
+/// getAccessedFieldNo - Given an encoded value and a result number, return the
+/// input field number being accessed.
+unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
+ const llvm::Constant *Elts) {
+ return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
+ ->getZExtValue();
+}
+
+/// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
+static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
+ llvm::Value *High) {
+ llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
+ llvm::Value *K47 = Builder.getInt64(47);
+ llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
+ llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
+ llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
+ llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
+ return Builder.CreateMul(B1, KMul);
+}
+
+bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) {
+ return TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
+ TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation;
+}
+
+bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) {
+ CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
+ return (RD && RD->hasDefinition() && RD->isDynamicClass()) &&
+ (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
+ TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
+ TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation);
+}
+
+bool CodeGenFunction::sanitizePerformTypeCheck() const {
+ return SanOpts.has(SanitizerKind::Null) |
+ SanOpts.has(SanitizerKind::Alignment) |
+ SanOpts.has(SanitizerKind::ObjectSize) |
+ SanOpts.has(SanitizerKind::Vptr);
+}
+
+void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
+ llvm::Value *Ptr, QualType Ty,
+ CharUnits Alignment,
+ SanitizerSet SkippedChecks,
+ llvm::Value *ArraySize) {
+ if (!sanitizePerformTypeCheck())
+ return;
+
+ // Don't check pointers outside the default address space. The null check
+ // isn't correct, the object-size check isn't supported by LLVM, and we can't
+ // communicate the addresses to the runtime handler for the vptr check.
+ if (Ptr->getType()->getPointerAddressSpace())
+ return;
+
+ // Don't check pointers to volatile data. The behavior here is implementation-
+ // defined.
+ if (Ty.isVolatileQualified())
+ return;
+
+ SanitizerScope SanScope(this);
+
+ SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks;
+ llvm::BasicBlock *Done = nullptr;
+
+ // Quickly determine whether we have a pointer to an alloca. It's possible
+ // to skip null checks, and some alignment checks, for these pointers. This
+ // can reduce compile-time significantly.
+ auto PtrToAlloca = dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCasts());
+
+ llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext());
+ llvm::Value *IsNonNull = nullptr;
+ bool IsGuaranteedNonNull =
+ SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca;
+ bool AllowNullPointers = isNullPointerAllowed(TCK);
+ if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
+ !IsGuaranteedNonNull) {
+ // The glvalue must not be an empty glvalue.
+ IsNonNull = Builder.CreateIsNotNull(Ptr);
+
+ // The IR builder can constant-fold the null check if the pointer points to
+ // a constant.
+ IsGuaranteedNonNull = IsNonNull == True;
+
+ // Skip the null check if the pointer is known to be non-null.
+ if (!IsGuaranteedNonNull) {
+ if (AllowNullPointers) {
+ // When performing pointer casts, it's OK if the value is null.
+ // Skip the remaining checks in that case.
+ Done = createBasicBlock("null");
+ llvm::BasicBlock *Rest = createBasicBlock("not.null");
+ Builder.CreateCondBr(IsNonNull, Rest, Done);
+ EmitBlock(Rest);
+ } else {
+ Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
+ }
+ }
+ }
+
+ if (SanOpts.has(SanitizerKind::ObjectSize) &&
+ !SkippedChecks.has(SanitizerKind::ObjectSize) &&
+ !Ty->isIncompleteType()) {
+ uint64_t TySize = getContext().getTypeSizeInChars(Ty).getQuantity();
+ llvm::Value *Size = llvm::ConstantInt::get(IntPtrTy, TySize);
+ if (ArraySize)
+ Size = Builder.CreateMul(Size, ArraySize);
+
+ // Degenerate case: new X[0] does not need an objectsize check.
+ llvm::Constant *ConstantSize = dyn_cast<llvm::Constant>(Size);
+ if (!ConstantSize || !ConstantSize->isNullValue()) {
+ // The glvalue must refer to a large enough storage region.
+ // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
+ // to check this.
+ // FIXME: Get object address space
+ llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
+ llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
+ llvm::Value *Min = Builder.getFalse();
+ llvm::Value *NullIsUnknown = Builder.getFalse();
+ llvm::Value *Dynamic = Builder.getFalse();
+ llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy);
+ llvm::Value *LargeEnough = Builder.CreateICmpUGE(
+ Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown, Dynamic}), Size);
+ Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
+ }
+ }
+
+ uint64_t AlignVal = 0;
+ llvm::Value *PtrAsInt = nullptr;
+
+ if (SanOpts.has(SanitizerKind::Alignment) &&
+ !SkippedChecks.has(SanitizerKind::Alignment)) {
+ AlignVal = Alignment.getQuantity();
+ if (!Ty->isIncompleteType() && !AlignVal)
+ AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
+
+ // The glvalue must be suitably aligned.
+ if (AlignVal > 1 &&
+ (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) {
+ PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy);
+ llvm::Value *Align = Builder.CreateAnd(
+ PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
+ llvm::Value *Aligned =
+ Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
+ if (Aligned != True)
+ Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
+ }
+ }
+
+ if (Checks.size() > 0) {
+ // Make sure we're not losing information. Alignment needs to be a power of
+ // 2
+ assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal);
+ llvm::Constant *StaticData[] = {
+ EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty),
+ llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1),
+ llvm::ConstantInt::get(Int8Ty, TCK)};
+ EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData,
+ PtrAsInt ? PtrAsInt : Ptr);
+ }
+
+ // If possible, check that the vptr indicates that there is a subobject of
+ // type Ty at offset zero within this object.
+ //
+ // C++11 [basic.life]p5,6:
+ // [For storage which does not refer to an object within its lifetime]
+ // The program has undefined behavior if:
+ // -- the [pointer or glvalue] is used to access a non-static data member
+ // or call a non-static member function
+ if (SanOpts.has(SanitizerKind::Vptr) &&
+ !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) {
+ // Ensure that the pointer is non-null before loading it. If there is no
+ // compile-time guarantee, reuse the run-time null check or emit a new one.
+ if (!IsGuaranteedNonNull) {
+ if (!IsNonNull)
+ IsNonNull = Builder.CreateIsNotNull(Ptr);
+ if (!Done)
+ Done = createBasicBlock("vptr.null");
+ llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null");
+ Builder.CreateCondBr(IsNonNull, VptrNotNull, Done);
+ EmitBlock(VptrNotNull);
+ }
+
+ // Compute a hash of the mangled name of the type.
+ //
+ // FIXME: This is not guaranteed to be deterministic! Move to a
+ // fingerprinting mechanism once LLVM provides one. For the time
+ // being the implementation happens to be deterministic.
+ SmallString<64> MangledName;
+ llvm::raw_svector_ostream Out(MangledName);
+ CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
+ Out);
+
+ // Blacklist based on the mangled type.
+ if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType(
+ SanitizerKind::Vptr, Out.str())) {
+ llvm::hash_code TypeHash = hash_value(Out.str());
+
+ // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
+ llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
+ llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
+ Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign());
+ llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
+ llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
+
+ llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
+ Hash = Builder.CreateTrunc(Hash, IntPtrTy);
+
+ // Look the hash up in our cache.
+ const int CacheSize = 128;
+ llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
+ llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
+ "__ubsan_vptr_type_cache");
+ llvm::Value *Slot = Builder.CreateAnd(Hash,
+ llvm::ConstantInt::get(IntPtrTy,
+ CacheSize-1));
+ llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
+ llvm::Value *CacheVal =
+ Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices),
+ getPointerAlign());
+
+ // If the hash isn't in the cache, call a runtime handler to perform the
+ // hard work of checking whether the vptr is for an object of the right
+ // type. This will either fill in the cache and return, or produce a
+ // diagnostic.
+ llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
+ llvm::Constant *StaticData[] = {
+ EmitCheckSourceLocation(Loc),
+ EmitCheckTypeDescriptor(Ty),
+ CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
+ llvm::ConstantInt::get(Int8Ty, TCK)
+ };
+ llvm::Value *DynamicData[] = { Ptr, Hash };
+ EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
+ SanitizerHandler::DynamicTypeCacheMiss, StaticData,
+ DynamicData);
+ }
+ }
+
+ if (Done) {
+ Builder.CreateBr(Done);
+ EmitBlock(Done);
+ }
+}
+
+/// Determine whether this expression refers to a flexible array member in a
+/// struct. We disable array bounds checks for such members.
+static bool isFlexibleArrayMemberExpr(const Expr *E) {
+ // For compatibility with existing code, we treat arrays of length 0 or
+ // 1 as flexible array members.
+ const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
+ if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
+ if (CAT->getSize().ugt(1))
+ return false;
+ } else if (!isa<IncompleteArrayType>(AT))
+ return false;
+
+ E = E->IgnoreParens();
+
+ // A flexible array member must be the last member in the class.
+ if (const auto *ME = dyn_cast<MemberExpr>(E)) {
+ // FIXME: If the base type of the member expr is not FD->getParent(),
+ // this should not be treated as a flexible array member access.
+ if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
+ RecordDecl::field_iterator FI(
+ DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
+ return ++FI == FD->getParent()->field_end();
+ }
+ } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) {
+ return IRE->getDecl()->getNextIvar() == nullptr;
+ }
+
+ return false;
+}
+
+llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E,
+ QualType EltTy) {
+ ASTContext &C = getContext();
+ uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity();
+ if (!EltSize)
+ return nullptr;
+
+ auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
+ if (!ArrayDeclRef)
+ return nullptr;
+
+ auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl());
+ if (!ParamDecl)
+ return nullptr;
+
+ auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>();
+ if (!POSAttr)
+ return nullptr;
+
+ // Don't load the size if it's a lower bound.
+ int POSType = POSAttr->getType();
+ if (POSType != 0 && POSType != 1)
+ return nullptr;
+
+ // Find the implicit size parameter.
+ auto PassedSizeIt = SizeArguments.find(ParamDecl);
+ if (PassedSizeIt == SizeArguments.end())
+ return nullptr;
+
+ const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second;
+ assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable");
+ Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second;
+ llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false,
+ C.getSizeType(), E->getExprLoc());
+ llvm::Value *SizeOfElement =
+ llvm::ConstantInt::get(SizeInBytes->getType(), EltSize);
+ return Builder.CreateUDiv(SizeInBytes, SizeOfElement);
+}
+
+/// If Base is known to point to the start of an array, return the length of
+/// that array. Return 0 if the length cannot be determined.
+static llvm::Value *getArrayIndexingBound(
+ CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
+ // For the vector indexing extension, the bound is the number of elements.
+ if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
+ IndexedType = Base->getType();
+ return CGF.Builder.getInt32(VT->getNumElements());
+ }
+
+ Base = Base->IgnoreParens();
+
+ if (const auto *CE = dyn_cast<CastExpr>(Base)) {
+ if (CE->getCastKind() == CK_ArrayToPointerDecay &&
+ !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
+ IndexedType = CE->getSubExpr()->getType();
+ const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
+ if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
+ return CGF.Builder.getInt(CAT->getSize());
+ else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
+ return CGF.getVLASize(VAT).NumElts;
+ // Ignore pass_object_size here. It's not applicable on decayed pointers.
+ }
+ }
+
+ QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0};
+ if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) {
+ IndexedType = Base->getType();
+ return POS;
+ }
+
+ return nullptr;
+}
+
+void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
+ llvm::Value *Index, QualType IndexType,
+ bool Accessed) {
+ assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
+ "should not be called unless adding bounds checks");
+ SanitizerScope SanScope(this);
+
+ QualType IndexedType;
+ llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
+ if (!Bound)
+ return;
+
+ bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
+ llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
+ llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
+
+ llvm::Constant *StaticData[] = {
+ EmitCheckSourceLocation(E->getExprLoc()),
+ EmitCheckTypeDescriptor(IndexedType),
+ EmitCheckTypeDescriptor(IndexType)
+ };
+ llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
+ : Builder.CreateICmpULE(IndexVal, BoundVal);
+ EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds),
+ SanitizerHandler::OutOfBounds, StaticData, Index);
+}
+
+
+CodeGenFunction::ComplexPairTy CodeGenFunction::
+EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
+ bool isInc, bool isPre) {
+ ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
+
+ llvm::Value *NextVal;
+ if (isa<llvm::IntegerType>(InVal.first->getType())) {
+ uint64_t AmountVal = isInc ? 1 : -1;
+ NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
+
+ // Add the inc/dec to the real part.
+ NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
+ } else {
+ QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
+ llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
+ if (!isInc)
+ FVal.changeSign();
+ NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
+
+ // Add the inc/dec to the real part.
+ NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
+ }
+
+ ComplexPairTy IncVal(NextVal, InVal.second);
+
+ // Store the updated result through the lvalue.
+ EmitStoreOfComplex(IncVal, LV, /*init*/ false);
+ if (getLangOpts().OpenMP)
+ CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
+ E->getSubExpr());
+
+ // If this is a postinc, return the value read from memory, otherwise use the
+ // updated value.
+ return isPre ? IncVal : InVal;
+}
+
+void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E,
+ CodeGenFunction *CGF) {
+ // Bind VLAs in the cast type.
+ if (CGF && E->getType()->isVariablyModifiedType())
+ CGF->EmitVariablyModifiedType(E->getType());
+
+ if (CGDebugInfo *DI = getModuleDebugInfo())
+ DI->EmitExplicitCastType(E->getType());
+}
+
+//===----------------------------------------------------------------------===//
+// LValue Expression Emission
+//===----------------------------------------------------------------------===//
+
+/// EmitPointerWithAlignment - Given an expression of pointer type, try to
+/// derive a more accurate bound on the alignment of the pointer.
+Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E,
+ LValueBaseInfo *BaseInfo,
+ TBAAAccessInfo *TBAAInfo) {
+ // We allow this with ObjC object pointers because of fragile ABIs.
+ assert(E->getType()->isPointerType() ||
+ E->getType()->isObjCObjectPointerType());
+ E = E->IgnoreParens();
+
+ // Casts:
+ if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
+ if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE))
+ CGM.EmitExplicitCastExprType(ECE, this);
+
+ switch (CE->getCastKind()) {
+ // Non-converting casts (but not C's implicit conversion from void*).
+ case CK_BitCast:
+ case CK_NoOp:
+ case CK_AddressSpaceConversion:
+ if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) {
+ if (PtrTy->getPointeeType()->isVoidType())
+ break;
+
+ LValueBaseInfo InnerBaseInfo;
+ TBAAAccessInfo InnerTBAAInfo;
+ Address Addr = EmitPointerWithAlignment(CE->getSubExpr(),
+ &InnerBaseInfo,
+ &InnerTBAAInfo);
+ if (BaseInfo) *BaseInfo = InnerBaseInfo;
+ if (TBAAInfo) *TBAAInfo = InnerTBAAInfo;
+
+ if (isa<ExplicitCastExpr>(CE)) {
+ LValueBaseInfo TargetTypeBaseInfo;
+ TBAAAccessInfo TargetTypeTBAAInfo;
+ CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(),
+ &TargetTypeBaseInfo,
+ &TargetTypeTBAAInfo);
+ if (TBAAInfo)
+ *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo,
+ TargetTypeTBAAInfo);
+ // If the source l-value is opaque, honor the alignment of the
+ // casted-to type.
+ if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) {
+ if (BaseInfo)
+ BaseInfo->mergeForCast(TargetTypeBaseInfo);
+ Addr = Address(Addr.getPointer(), Align);
+ }
+ }
+
+ if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) &&
+ CE->getCastKind() == CK_BitCast) {
+ if (auto PT = E->getType()->getAs<PointerType>())
+ EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(),
+ /*MayBeNull=*/true,
+ CodeGenFunction::CFITCK_UnrelatedCast,
+ CE->getBeginLoc());
+ }
+ return CE->getCastKind() != CK_AddressSpaceConversion
+ ? Builder.CreateBitCast(Addr, ConvertType(E->getType()))
+ : Builder.CreateAddrSpaceCast(Addr,
+ ConvertType(E->getType()));
+ }
+ break;
+
+ // Array-to-pointer decay.
+ case CK_ArrayToPointerDecay:
+ return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo);
+
+ // Derived-to-base conversions.
+ case CK_UncheckedDerivedToBase:
+ case CK_DerivedToBase: {
+ // TODO: Support accesses to members of base classes in TBAA. For now, we
+ // conservatively pretend that the complete object is of the base class
+ // type.
+ if (TBAAInfo)
+ *TBAAInfo = CGM.getTBAAAccessInfo(E->getType());
+ Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo);
+ auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl();
+ return GetAddressOfBaseClass(Addr, Derived,
+ CE->path_begin(), CE->path_end(),
+ ShouldNullCheckClassCastValue(CE),
+ CE->getExprLoc());
+ }
+
+ // TODO: Is there any reason to treat base-to-derived conversions
+ // specially?
+ default:
+ break;
+ }
+ }
+
+ // Unary &.
+ if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
+ if (UO->getOpcode() == UO_AddrOf) {
+ LValue LV = EmitLValue(UO->getSubExpr());
+ if (BaseInfo) *BaseInfo = LV.getBaseInfo();
+ if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo();
+ return LV.getAddress(*this);
+ }
+ }
+
+ // TODO: conditional operators, comma.
+
+ // Otherwise, use the alignment of the type.
+ CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), BaseInfo,
+ TBAAInfo);
+ return Address(EmitScalarExpr(E), Align);
+}
+
+RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
+ if (Ty->isVoidType())
+ return RValue::get(nullptr);
+
+ switch (getEvaluationKind(Ty)) {
+ case TEK_Complex: {
+ llvm::Type *EltTy =
+ ConvertType(Ty->castAs<ComplexType>()->getElementType());
+ llvm::Value *U = llvm::UndefValue::get(EltTy);
+ return RValue::getComplex(std::make_pair(U, U));
+ }
+
+ // If this is a use of an undefined aggregate type, the aggregate must have an
+ // identifiable address. Just because the contents of the value are undefined
+ // doesn't mean that the address can't be taken and compared.
+ case TEK_Aggregate: {
+ Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
+ return RValue::getAggregate(DestPtr);
+ }
+
+ case TEK_Scalar:
+ return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
+ }
+ llvm_unreachable("bad evaluation kind");
+}
+
+RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
+ const char *Name) {
+ ErrorUnsupported(E, Name);
+ return GetUndefRValue(E->getType());
+}
+
+LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
+ const char *Name) {
+ ErrorUnsupported(E, Name);
+ llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
+ return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()),
+ E->getType());
+}
+
+bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) {
+ const Expr *Base = Obj;
+ while (!isa<CXXThisExpr>(Base)) {
+ // The result of a dynamic_cast can be null.
+ if (isa<CXXDynamicCastExpr>(Base))
+ return false;
+
+ if (const auto *CE = dyn_cast<CastExpr>(Base)) {
+ Base = CE->getSubExpr();
+ } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) {
+ Base = PE->getSubExpr();
+ } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) {
+ if (UO->getOpcode() == UO_Extension)
+ Base = UO->getSubExpr();
+ else
+ return false;
+ } else {
+ return false;
+ }
+ }
+ return true;
+}
+
+LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
+ LValue LV;
+ if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
+ LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
+ else
+ LV = EmitLValue(E);
+ if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) {
+ SanitizerSet SkippedChecks;
+ if (const auto *ME = dyn_cast<MemberExpr>(E)) {
+ bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase());
+ if (IsBaseCXXThis)
+ SkippedChecks.set(SanitizerKind::Alignment, true);
+ if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase()))
+ SkippedChecks.set(SanitizerKind::Null, true);
+ }
+ EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(*this), E->getType(),
+ LV.getAlignment(), SkippedChecks);
+ }
+ return LV;
+}
+
+/// EmitLValue - Emit code to compute a designator that specifies the location
+/// of the expression.
+///
+/// This can return one of two things: a simple address or a bitfield reference.
+/// In either case, the LLVM Value* in the LValue structure is guaranteed to be
+/// an LLVM pointer type.
+///
+/// If this returns a bitfield reference, nothing about the pointee type of the
+/// LLVM value is known: For example, it may not be a pointer to an integer.
+///
+/// If this returns a normal address, and if the lvalue's C type is fixed size,
+/// this method guarantees that the returned pointer type will point to an LLVM
+/// type of the same size of the lvalue's type. If the lvalue has a variable
+/// length type, this is not possible.
+///
+LValue CodeGenFunction::EmitLValue(const Expr *E) {
+ ApplyDebugLocation DL(*this, E);
+ switch (E->getStmtClass()) {
+ default: return EmitUnsupportedLValue(E, "l-value expression");
+
+ case Expr::ObjCPropertyRefExprClass:
+ llvm_unreachable("cannot emit a property reference directly");
+
+ case Expr::ObjCSelectorExprClass:
+ return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
+ case Expr::ObjCIsaExprClass:
+ return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
+ case Expr::BinaryOperatorClass:
+ return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
+ case Expr::CompoundAssignOperatorClass: {
+ QualType Ty = E->getType();
+ if (const AtomicType *AT = Ty->getAs<AtomicType>())
+ Ty = AT->getValueType();
+ if (!Ty->isAnyComplexType())
+ return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
+ return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
+ }
+ case Expr::CallExprClass:
+ case Expr::CXXMemberCallExprClass:
+ case Expr::CXXOperatorCallExprClass:
+ case Expr::UserDefinedLiteralClass:
+ return EmitCallExprLValue(cast<CallExpr>(E));
+ case Expr::CXXRewrittenBinaryOperatorClass:
+ return EmitLValue(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm());
+ case Expr::VAArgExprClass:
+ return EmitVAArgExprLValue(cast<VAArgExpr>(E));
+ case Expr::DeclRefExprClass:
+ return EmitDeclRefLValue(cast<DeclRefExpr>(E));
+ case Expr::ConstantExprClass:
+ return EmitLValue(cast<ConstantExpr>(E)->getSubExpr());
+ case Expr::ParenExprClass:
+ return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
+ case Expr::GenericSelectionExprClass:
+ return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
+ case Expr::PredefinedExprClass:
+ return EmitPredefinedLValue(cast<PredefinedExpr>(E));
+ case Expr::StringLiteralClass:
+ return EmitStringLiteralLValue(cast<StringLiteral>(E));
+ case Expr::ObjCEncodeExprClass:
+ return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
+ case Expr::PseudoObjectExprClass:
+ return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
+ case Expr::InitListExprClass:
+ return EmitInitListLValue(cast<InitListExpr>(E));
+ case Expr::CXXTemporaryObjectExprClass:
+ case Expr::CXXConstructExprClass:
+ return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
+ case Expr::CXXBindTemporaryExprClass:
+ return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
+ case Expr::CXXUuidofExprClass:
+ return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
+ case Expr::LambdaExprClass:
+ return EmitAggExprToLValue(E);
+
+ case Expr::ExprWithCleanupsClass: {
+ const auto *cleanups = cast<ExprWithCleanups>(E);
+ enterFullExpression(cleanups);
+ RunCleanupsScope Scope(*this);
+ LValue LV = EmitLValue(cleanups->getSubExpr());
+ if (LV.isSimple()) {
+ // Defend against branches out of gnu statement expressions surrounded by
+ // cleanups.
+ llvm::Value *V = LV.getPointer(*this);
+ Scope.ForceCleanup({&V});
+ return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(),
+ getContext(), LV.getBaseInfo(), LV.getTBAAInfo());
+ }
+ // FIXME: Is it possible to create an ExprWithCleanups that produces a
+ // bitfield lvalue or some other non-simple lvalue?
+ return LV;
+ }
+
+ case Expr::CXXDefaultArgExprClass: {
+ auto *DAE = cast<CXXDefaultArgExpr>(E);
+ CXXDefaultArgExprScope Scope(*this, DAE);
+ return EmitLValue(DAE->getExpr());
+ }
+ case Expr::CXXDefaultInitExprClass: {
+ auto *DIE = cast<CXXDefaultInitExpr>(E);
+ CXXDefaultInitExprScope Scope(*this, DIE);
+ return EmitLValue(DIE->getExpr());
+ }
+ case Expr::CXXTypeidExprClass:
+ return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
+
+ case Expr::ObjCMessageExprClass:
+ return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
+ case Expr::ObjCIvarRefExprClass:
+ return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
+ case Expr::StmtExprClass:
+ return EmitStmtExprLValue(cast<StmtExpr>(E));
+ case Expr::UnaryOperatorClass:
+ return EmitUnaryOpLValue(cast<UnaryOperator>(E));
+ case Expr::ArraySubscriptExprClass:
+ return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
+ case Expr::OMPArraySectionExprClass:
+ return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E));
+ case Expr::ExtVectorElementExprClass:
+ return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
+ case Expr::MemberExprClass:
+ return EmitMemberExpr(cast<MemberExpr>(E));
+ case Expr::CompoundLiteralExprClass:
+ return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
+ case Expr::ConditionalOperatorClass:
+ return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
+ case Expr::BinaryConditionalOperatorClass:
+ return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
+ case Expr::ChooseExprClass:
+ return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
+ case Expr::OpaqueValueExprClass:
+ return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
+ case Expr::SubstNonTypeTemplateParmExprClass:
+ return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
+ case Expr::ImplicitCastExprClass:
+ case Expr::CStyleCastExprClass:
+ case Expr::CXXFunctionalCastExprClass:
+ case Expr::CXXStaticCastExprClass:
+ case Expr::CXXDynamicCastExprClass:
+ case Expr::CXXReinterpretCastExprClass:
+ case Expr::CXXConstCastExprClass:
+ case Expr::ObjCBridgedCastExprClass:
+ return EmitCastLValue(cast<CastExpr>(E));
+
+ case Expr::MaterializeTemporaryExprClass:
+ return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
+
+ case Expr::CoawaitExprClass:
+ return EmitCoawaitLValue(cast<CoawaitExpr>(E));
+ case Expr::CoyieldExprClass:
+ return EmitCoyieldLValue(cast<CoyieldExpr>(E));
+ }
+}
+
+/// Given an object of the given canonical type, can we safely copy a
+/// value out of it based on its initializer?
+static bool isConstantEmittableObjectType(QualType type) {
+ assert(type.isCanonical());
+ assert(!type->isReferenceType());
+
+ // Must be const-qualified but non-volatile.
+ Qualifiers qs = type.getLocalQualifiers();
+ if (!qs.hasConst() || qs.hasVolatile()) return false;
+
+ // Otherwise, all object types satisfy this except C++ classes with
+ // mutable subobjects or non-trivial copy/destroy behavior.
+ if (const auto *RT = dyn_cast<RecordType>(type))
+ if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
+ if (RD->hasMutableFields() || !RD->isTrivial())
+ return false;
+
+ return true;
+}
+
+/// Can we constant-emit a load of a reference to a variable of the
+/// given type? This is different from predicates like
+/// Decl::mightBeUsableInConstantExpressions because we do want it to apply
+/// in situations that don't necessarily satisfy the language's rules
+/// for this (e.g. C++'s ODR-use rules). For example, we want to able
+/// to do this with const float variables even if those variables
+/// aren't marked 'constexpr'.
+enum ConstantEmissionKind {
+ CEK_None,
+ CEK_AsReferenceOnly,
+ CEK_AsValueOrReference,
+ CEK_AsValueOnly
+};
+static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
+ type = type.getCanonicalType();
+ if (const auto *ref = dyn_cast<ReferenceType>(type)) {
+ if (isConstantEmittableObjectType(ref->getPointeeType()))
+ return CEK_AsValueOrReference;
+ return CEK_AsReferenceOnly;
+ }
+ if (isConstantEmittableObjectType(type))
+ return CEK_AsValueOnly;
+ return CEK_None;
+}
+
+/// Try to emit a reference to the given value without producing it as
+/// an l-value. This is just an optimization, but it avoids us needing
+/// to emit global copies of variables if they're named without triggering
+/// a formal use in a context where we can't emit a direct reference to them,
+/// for instance if a block or lambda or a member of a local class uses a
+/// const int variable or constexpr variable from an enclosing function.
+CodeGenFunction::ConstantEmission
+CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
+ ValueDecl *value = refExpr->getDecl();
+
+ // The value needs to be an enum constant or a constant variable.
+ ConstantEmissionKind CEK;
+ if (isa<ParmVarDecl>(value)) {
+ CEK = CEK_None;
+ } else if (auto *var = dyn_cast<VarDecl>(value)) {
+ CEK = checkVarTypeForConstantEmission(var->getType());
+ } else if (isa<EnumConstantDecl>(value)) {
+ CEK = CEK_AsValueOnly;
+ } else {
+ CEK = CEK_None;
+ }
+ if (CEK == CEK_None) return ConstantEmission();
+
+ Expr::EvalResult result;
+ bool resultIsReference;
+ QualType resultType;
+
+ // It's best to evaluate all the way as an r-value if that's permitted.
+ if (CEK != CEK_AsReferenceOnly &&
+ refExpr->EvaluateAsRValue(result, getContext())) {
+ resultIsReference = false;
+ resultType = refExpr->getType();
+
+ // Otherwise, try to evaluate as an l-value.
+ } else if (CEK != CEK_AsValueOnly &&
+ refExpr->EvaluateAsLValue(result, getContext())) {
+ resultIsReference = true;
+ resultType = value->getType();
+
+ // Failure.
+ } else {
+ return ConstantEmission();
+ }
+
+ // In any case, if the initializer has side-effects, abandon ship.
+ if (result.HasSideEffects)
+ return ConstantEmission();
+
+ // Emit as a constant.
+ auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(),
+ result.Val, resultType);
+
+ // Make sure we emit a debug reference to the global variable.
+ // This should probably fire even for
+ if (isa<VarDecl>(value)) {
+ if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
+ EmitDeclRefExprDbgValue(refExpr, result.Val);
+ } else {
+ assert(isa<EnumConstantDecl>(value));
+ EmitDeclRefExprDbgValue(refExpr, result.Val);
+ }
+
+ // If we emitted a reference constant, we need to dereference that.
+ if (resultIsReference)
+ return ConstantEmission::forReference(C);
+
+ return ConstantEmission::forValue(C);
+}
+
+static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF,
+ const MemberExpr *ME) {
+ if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) {
+ // Try to emit static variable member expressions as DREs.
+ return DeclRefExpr::Create(
+ CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD,
+ /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(),
+ ME->getType(), ME->getValueKind(), nullptr, nullptr, ME->isNonOdrUse());
+ }
+ return nullptr;
+}
+
+CodeGenFunction::ConstantEmission
+CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) {
+ if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME))
+ return tryEmitAsConstant(DRE);
+ return ConstantEmission();
+}
+
+llvm::Value *CodeGenFunction::emitScalarConstant(
+ const CodeGenFunction::ConstantEmission &Constant, Expr *E) {
+ assert(Constant && "not a constant");
+ if (Constant.isReference())
+ return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E),
+ E->getExprLoc())
+ .getScalarVal();
+ return Constant.getValue();
+}
+
+llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
+ SourceLocation Loc) {
+ return EmitLoadOfScalar(lvalue.getAddress(*this), lvalue.isVolatile(),
+ lvalue.getType(), Loc, lvalue.getBaseInfo(),
+ lvalue.getTBAAInfo(), lvalue.isNontemporal());
+}
+
+static bool hasBooleanRepresentation(QualType Ty) {
+ if (Ty->isBooleanType())
+ return true;
+
+ if (const EnumType *ET = Ty->getAs<EnumType>())
+ return ET->getDecl()->getIntegerType()->isBooleanType();
+
+ if (const AtomicType *AT = Ty->getAs<AtomicType>())
+ return hasBooleanRepresentation(AT->getValueType());
+
+ return false;
+}
+
+static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
+ llvm::APInt &Min, llvm::APInt &End,
+ bool StrictEnums, bool IsBool) {
+ const EnumType *ET = Ty->getAs<EnumType>();
+ bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
+ ET && !ET->getDecl()->isFixed();
+ if (!IsBool && !IsRegularCPlusPlusEnum)
+ return false;
+
+ if (IsBool) {
+ Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
+ End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
+ } else {
+ const EnumDecl *ED = ET->getDecl();
+ llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
+ unsigned Bitwidth = LTy->getScalarSizeInBits();
+ unsigned NumNegativeBits = ED->getNumNegativeBits();
+ unsigned NumPositiveBits = ED->getNumPositiveBits();
+
+ if (NumNegativeBits) {
+ unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
+ assert(NumBits <= Bitwidth);
+ End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
+ Min = -End;
+ } else {
+ assert(NumPositiveBits <= Bitwidth);
+ End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
+ Min = llvm::APInt(Bitwidth, 0);
+ }
+ }
+ return true;
+}
+
+llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
+ llvm::APInt Min, End;
+ if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums,
+ hasBooleanRepresentation(Ty)))
+ return nullptr;
+
+ llvm::MDBuilder MDHelper(getLLVMContext());
+ return MDHelper.createRange(Min, End);
+}
+
+bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
+ SourceLocation Loc) {
+ bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool);
+ bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum);
+ if (!HasBoolCheck && !HasEnumCheck)
+ return false;
+
+ bool IsBool = hasBooleanRepresentation(Ty) ||
+ NSAPI(CGM.getContext()).isObjCBOOLType(Ty);
+ bool NeedsBoolCheck = HasBoolCheck && IsBool;
+ bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>();
+ if (!NeedsBoolCheck && !NeedsEnumCheck)
+ return false;
+
+ // Single-bit booleans don't need to be checked. Special-case this to avoid
+ // a bit width mismatch when handling bitfield values. This is handled by
+ // EmitFromMemory for the non-bitfield case.
+ if (IsBool &&
+ cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1)
+ return false;
+
+ llvm::APInt Min, End;
+ if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool))
+ return true;
+
+ auto &Ctx = getLLVMContext();
+ SanitizerScope SanScope(this);
+ llvm::Value *Check;
+ --End;
+ if (!Min) {
+ Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End));
+ } else {
+ llvm::Value *Upper =
+ Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End));
+ llvm::Value *Lower =
+ Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min));
+ Check = Builder.CreateAnd(Upper, Lower);
+ }
+ llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc),
+ EmitCheckTypeDescriptor(Ty)};
+ SanitizerMask Kind =
+ NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
+ EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue,
+ StaticArgs, EmitCheckValue(Value));
+ return true;
+}
+
+llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile,
+ QualType Ty,
+ SourceLocation Loc,
+ LValueBaseInfo BaseInfo,
+ TBAAAccessInfo TBAAInfo,
+ bool isNontemporal) {
+ if (!CGM.getCodeGenOpts().PreserveVec3Type) {
+ // For better performance, handle vector loads differently.
+ if (Ty->isVectorType()) {
+ const llvm::Type *EltTy = Addr.getElementType();
+
+ const auto *VTy = cast<llvm::VectorType>(EltTy);
+
+ // Handle vectors of size 3 like size 4 for better performance.
+ if (VTy->getNumElements() == 3) {
+
+ // Bitcast to vec4 type.
+ llvm::VectorType *vec4Ty =
+ llvm::VectorType::get(VTy->getElementType(), 4);
+ Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4");
+ // Now load value.
+ llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4");
+
+ // Shuffle vector to get vec3.
+ V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty),
+ {0, 1, 2}, "extractVec");
+ return EmitFromMemory(V, Ty);
+ }
+ }
+ }
+
+ // Atomic operations have to be done on integral types.
+ LValue AtomicLValue =
+ LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
+ if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) {
+ return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal();
+ }
+
+ llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile);
+ if (isNontemporal) {
+ llvm::MDNode *Node = llvm::MDNode::get(
+ Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
+ Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
+ }
+
+ CGM.DecorateInstructionWithTBAA(Load, TBAAInfo);
+
+ if (EmitScalarRangeCheck(Load, Ty, Loc)) {
+ // In order to prevent the optimizer from throwing away the check, don't
+ // attach range metadata to the load.
+ } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
+ if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
+ Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
+
+ return EmitFromMemory(Load, Ty);
+}
+
+llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
+ // Bool has a different representation in memory than in registers.
+ if (hasBooleanRepresentation(Ty)) {
+ // This should really always be an i1, but sometimes it's already
+ // an i8, and it's awkward to track those cases down.
+ if (Value->getType()->isIntegerTy(1))
+ return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
+ assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
+ "wrong value rep of bool");
+ }
+
+ return Value;
+}
+
+llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
+ // Bool has a different representation in memory than in registers.
+ if (hasBooleanRepresentation(Ty)) {
+ assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
+ "wrong value rep of bool");
+ return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
+ }
+
+ return Value;
+}
+
+void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr,
+ bool Volatile, QualType Ty,
+ LValueBaseInfo BaseInfo,
+ TBAAAccessInfo TBAAInfo,
+ bool isInit, bool isNontemporal) {
+ if (!CGM.getCodeGenOpts().PreserveVec3Type) {
+ // Handle vectors differently to get better performance.
+ if (Ty->isVectorType()) {
+ llvm::Type *SrcTy = Value->getType();
+ auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy);
+ // Handle vec3 special.
+ if (VecTy && VecTy->getNumElements() == 3) {
+ // Our source is a vec3, do a shuffle vector to make it a vec4.
+ llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1),
+ Builder.getInt32(2),
+ llvm::UndefValue::get(Builder.getInt32Ty())};
+ llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
+ Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy),
+ MaskV, "extractVec");
+ SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
+ }
+ if (Addr.getElementType() != SrcTy) {
+ Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp");
+ }
+ }
+ }
+
+ Value = EmitToMemory(Value, Ty);
+
+ LValue AtomicLValue =
+ LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
+ if (Ty->isAtomicType() ||
+ (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) {
+ EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit);
+ return;
+ }
+
+ llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
+ if (isNontemporal) {
+ llvm::MDNode *Node =
+ llvm::MDNode::get(Store->getContext(),
+ llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
+ Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
+ }
+
+ CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
+}
+
+void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
+ bool isInit) {
+ EmitStoreOfScalar(value, lvalue.getAddress(*this), lvalue.isVolatile(),
+ lvalue.getType(), lvalue.getBaseInfo(),
+ lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal());
+}
+
+/// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
+/// method emits the address of the lvalue, then loads the result as an rvalue,
+/// returning the rvalue.
+RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
+ if (LV.isObjCWeak()) {
+ // load of a __weak object.
+ Address AddrWeakObj = LV.getAddress(*this);
+ return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
+ AddrWeakObj));
+ }
+ if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
+ // In MRC mode, we do a load+autorelease.
+ if (!getLangOpts().ObjCAutoRefCount) {
+ return RValue::get(EmitARCLoadWeak(LV.getAddress(*this)));
+ }
+
+ // In ARC mode, we load retained and then consume the value.
+ llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress(*this));
+ Object = EmitObjCConsumeObject(LV.getType(), Object);
+ return RValue::get(Object);
+ }
+
+ if (LV.isSimple()) {
+ assert(!LV.getType()->isFunctionType());
+
+ // Everything needs a load.
+ return RValue::get(EmitLoadOfScalar(LV, Loc));
+ }
+
+ if (LV.isVectorElt()) {
+ llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(),
+ LV.isVolatileQualified());
+ return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
+ "vecext"));
+ }
+
+ // If this is a reference to a subset of the elements of a vector, either
+ // shuffle the input or extract/insert them as appropriate.
+ if (LV.isExtVectorElt())
+ return EmitLoadOfExtVectorElementLValue(LV);
+
+ // Global Register variables always invoke intrinsics
+ if (LV.isGlobalReg())
+ return EmitLoadOfGlobalRegLValue(LV);
+
+ assert(LV.isBitField() && "Unknown LValue type!");
+ return EmitLoadOfBitfieldLValue(LV, Loc);
+}
+
+RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
+ SourceLocation Loc) {
+ const CGBitFieldInfo &Info = LV.getBitFieldInfo();
+
+ // Get the output type.
+ llvm::Type *ResLTy = ConvertType(LV.getType());
+
+ Address Ptr = LV.getBitFieldAddress();
+ llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load");
+
+ if (Info.IsSigned) {
+ assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
+ unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
+ if (HighBits)
+ Val = Builder.CreateShl(Val, HighBits, "bf.shl");
+ if (Info.Offset + HighBits)
+ Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
+ } else {
+ if (Info.Offset)
+ Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
+ if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
+ Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
+ Info.Size),
+ "bf.clear");
+ }
+ Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
+ EmitScalarRangeCheck(Val, LV.getType(), Loc);
+ return RValue::get(Val);
+}
+
+// If this is a reference to a subset of the elements of a vector, create an
+// appropriate shufflevector.
+RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
+ llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(),
+ LV.isVolatileQualified());
+
+ const llvm::Constant *Elts = LV.getExtVectorElts();
+
+ // If the result of the expression is a non-vector type, we must be extracting
+ // a single element. Just codegen as an extractelement.
+ const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
+ if (!ExprVT) {
+ unsigned InIdx = getAccessedFieldNo(0, Elts);
+ llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
+ return RValue::get(Builder.CreateExtractElement(Vec, Elt));
+ }
+
+ // Always use shuffle vector to try to retain the original program structure
+ unsigned NumResultElts = ExprVT->getNumElements();
+
+ SmallVector<llvm::Constant*, 4> Mask;
+ for (unsigned i = 0; i != NumResultElts; ++i)
+ Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
+
+ llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
+ Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
+ MaskV);
+ return RValue::get(Vec);
+}
+
+/// Generates lvalue for partial ext_vector access.
+Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
+ Address VectorAddress = LV.getExtVectorAddress();
+ QualType EQT = LV.getType()->castAs<VectorType>()->getElementType();
+ llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
+
+ Address CastToPointerElement =
+ Builder.CreateElementBitCast(VectorAddress, VectorElementTy,
+ "conv.ptr.element");
+
+ const llvm::Constant *Elts = LV.getExtVectorElts();
+ unsigned ix = getAccessedFieldNo(0, Elts);
+
+ Address VectorBasePtrPlusIx =
+ Builder.CreateConstInBoundsGEP(CastToPointerElement, ix,
+ "vector.elt");
+
+ return VectorBasePtrPlusIx;
+}
+
+/// Load of global gamed gegisters are always calls to intrinsics.
+RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
+ assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
+ "Bad type for register variable");
+ llvm::MDNode *RegName = cast<llvm::MDNode>(
+ cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
+
+ // We accept integer and pointer types only
+ llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
+ llvm::Type *Ty = OrigTy;
+ if (OrigTy->isPointerTy())
+ Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
+ llvm::Type *Types[] = { Ty };
+
+ llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
+ llvm::Value *Call = Builder.CreateCall(
+ F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
+ if (OrigTy->isPointerTy())
+ Call = Builder.CreateIntToPtr(Call, OrigTy);
+ return RValue::get(Call);
+}
+
+
+/// EmitStoreThroughLValue - Store the specified rvalue into the specified
+/// lvalue, where both are guaranteed to the have the same type, and that type
+/// is 'Ty'.
+void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
+ bool isInit) {
+ if (!Dst.isSimple()) {
+ if (Dst.isVectorElt()) {
+ // Read/modify/write the vector, inserting the new element.
+ llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(),
+ Dst.isVolatileQualified());
+ Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
+ Dst.getVectorIdx(), "vecins");
+ Builder.CreateStore(Vec, Dst.getVectorAddress(),
+ Dst.isVolatileQualified());
+ return;
+ }
+
+ // If this is an update of extended vector elements, insert them as
+ // appropriate.
+ if (Dst.isExtVectorElt())
+ return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
+
+ if (Dst.isGlobalReg())
+ return EmitStoreThroughGlobalRegLValue(Src, Dst);
+
+ assert(Dst.isBitField() && "Unknown LValue type");
+ return EmitStoreThroughBitfieldLValue(Src, Dst);
+ }
+
+ // There's special magic for assigning into an ARC-qualified l-value.
+ if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
+ switch (Lifetime) {
+ case Qualifiers::OCL_None:
+ llvm_unreachable("present but none");
+
+ case Qualifiers::OCL_ExplicitNone:
+ // nothing special
+ break;
+
+ case Qualifiers::OCL_Strong:
+ if (isInit) {
+ Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal()));
+ break;
+ }
+ EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
+ return;
+
+ case Qualifiers::OCL_Weak:
+ if (isInit)
+ // Initialize and then skip the primitive store.
+ EmitARCInitWeak(Dst.getAddress(*this), Src.getScalarVal());
+ else
+ EmitARCStoreWeak(Dst.getAddress(*this), Src.getScalarVal(),
+ /*ignore*/ true);
+ return;
+
+ case Qualifiers::OCL_Autoreleasing:
+ Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
+ Src.getScalarVal()));
+ // fall into the normal path
+ break;
+ }
+ }
+
+ if (Dst.isObjCWeak() && !Dst.isNonGC()) {
+ // load of a __weak object.
+ Address LvalueDst = Dst.getAddress(*this);
+ llvm::Value *src = Src.getScalarVal();
+ CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
+ return;
+ }
+
+ if (Dst.isObjCStrong() && !Dst.isNonGC()) {
+ // load of a __strong object.
+ Address LvalueDst = Dst.getAddress(*this);
+ llvm::Value *src = Src.getScalarVal();
+ if (Dst.isObjCIvar()) {
+ assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
+ llvm::Type *ResultType = IntPtrTy;
+ Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp());
+ llvm::Value *RHS = dst.getPointer();
+ RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
+ llvm::Value *LHS =
+ Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType,
+ "sub.ptr.lhs.cast");
+ llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
+ CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
+ BytesBetween);
+ } else if (Dst.isGlobalObjCRef()) {
+ CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
+ Dst.isThreadLocalRef());
+ }
+ else
+ CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
+ return;
+ }
+
+ assert(Src.isScalar() && "Can't emit an agg store with this method");
+ EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
+}
+
+void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
+ llvm::Value **Result) {
+ const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
+ llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
+ Address Ptr = Dst.getBitFieldAddress();
+
+ // Get the source value, truncated to the width of the bit-field.
+ llvm::Value *SrcVal = Src.getScalarVal();
+
+ // Cast the source to the storage type and shift it into place.
+ SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(),
+ /*isSigned=*/false);
+ llvm::Value *MaskedVal = SrcVal;
+
+ // See if there are other bits in the bitfield's storage we'll need to load
+ // and mask together with source before storing.
+ if (Info.StorageSize != Info.Size) {
+ assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
+ llvm::Value *Val =
+ Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load");
+
+ // Mask the source value as needed.
+ if (!hasBooleanRepresentation(Dst.getType()))
+ SrcVal = Builder.CreateAnd(SrcVal,
+ llvm::APInt::getLowBitsSet(Info.StorageSize,
+ Info.Size),
+ "bf.value");
+ MaskedVal = SrcVal;
+ if (Info.Offset)
+ SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
+
+ // Mask out the original value.
+ Val = Builder.CreateAnd(Val,
+ ~llvm::APInt::getBitsSet(Info.StorageSize,
+ Info.Offset,
+ Info.Offset + Info.Size),
+ "bf.clear");
+
+ // Or together the unchanged values and the source value.
+ SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
+ } else {
+ assert(Info.Offset == 0);
+ }
+
+ // Write the new value back out.
+ Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified());
+
+ // Return the new value of the bit-field, if requested.
+ if (Result) {
+ llvm::Value *ResultVal = MaskedVal;
+
+ // Sign extend the value if needed.
+ if (Info.IsSigned) {
+ assert(Info.Size <= Info.StorageSize);
+ unsigned HighBits = Info.StorageSize - Info.Size;
+ if (HighBits) {
+ ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
+ ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
+ }
+ }
+
+ ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
+ "bf.result.cast");
+ *Result = EmitFromMemory(ResultVal, Dst.getType());
+ }
+}
+
+void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
+ LValue Dst) {
+ // This access turns into a read/modify/write of the vector. Load the input
+ // value now.
+ llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(),
+ Dst.isVolatileQualified());
+ const llvm::Constant *Elts = Dst.getExtVectorElts();
+
+ llvm::Value *SrcVal = Src.getScalarVal();
+
+ if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
+ unsigned NumSrcElts = VTy->getNumElements();
+ unsigned NumDstElts = Vec->getType()->getVectorNumElements();
+ if (NumDstElts == NumSrcElts) {
+ // Use shuffle vector is the src and destination are the same number of
+ // elements and restore the vector mask since it is on the side it will be
+ // stored.
+ SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
+ for (unsigned i = 0; i != NumSrcElts; ++i)
+ Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
+
+ llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
+ Vec = Builder.CreateShuffleVector(SrcVal,
+ llvm::UndefValue::get(Vec->getType()),
+ MaskV);
+ } else if (NumDstElts > NumSrcElts) {
+ // Extended the source vector to the same length and then shuffle it
+ // into the destination.
+ // FIXME: since we're shuffling with undef, can we just use the indices
+ // into that? This could be simpler.
+ SmallVector<llvm::Constant*, 4> ExtMask;
+ for (unsigned i = 0; i != NumSrcElts; ++i)
+ ExtMask.push_back(Builder.getInt32(i));
+ ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
+ llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
+ llvm::Value *ExtSrcVal =
+ Builder.CreateShuffleVector(SrcVal,
+ llvm::UndefValue::get(SrcVal->getType()),
+ ExtMaskV);
+ // build identity
+ SmallVector<llvm::Constant*, 4> Mask;
+ for (unsigned i = 0; i != NumDstElts; ++i)
+ Mask.push_back(Builder.getInt32(i));
+
+ // When the vector size is odd and .odd or .hi is used, the last element
+ // of the Elts constant array will be one past the size of the vector.
+ // Ignore the last element here, if it is greater than the mask size.
+ if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
+ NumSrcElts--;
+
+ // modify when what gets shuffled in
+ for (unsigned i = 0; i != NumSrcElts; ++i)
+ Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
+ llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
+ Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
+ } else {
+ // We should never shorten the vector
+ llvm_unreachable("unexpected shorten vector length");
+ }
+ } else {
+ // If the Src is a scalar (not a vector) it must be updating one element.
+ unsigned InIdx = getAccessedFieldNo(0, Elts);
+ llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
+ Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
+ }
+
+ Builder.CreateStore(Vec, Dst.getExtVectorAddress(),
+ Dst.isVolatileQualified());
+}
+
+/// Store of global named registers are always calls to intrinsics.
+void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
+ assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
+ "Bad type for register variable");
+ llvm::MDNode *RegName = cast<llvm::MDNode>(
+ cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
+ assert(RegName && "Register LValue is not metadata");
+
+ // We accept integer and pointer types only
+ llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
+ llvm::Type *Ty = OrigTy;
+ if (OrigTy->isPointerTy())
+ Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
+ llvm::Type *Types[] = { Ty };
+
+ llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
+ llvm::Value *Value = Src.getScalarVal();
+ if (OrigTy->isPointerTy())
+ Value = Builder.CreatePtrToInt(Value, Ty);
+ Builder.CreateCall(
+ F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value});
+}
+
+// setObjCGCLValueClass - sets class of the lvalue for the purpose of
+// generating write-barries API. It is currently a global, ivar,
+// or neither.
+static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
+ LValue &LV,
+ bool IsMemberAccess=false) {
+ if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
+ return;
+
+ if (isa<ObjCIvarRefExpr>(E)) {
+ QualType ExpTy = E->getType();
+ if (IsMemberAccess && ExpTy->isPointerType()) {
+ // If ivar is a structure pointer, assigning to field of
+ // this struct follows gcc's behavior and makes it a non-ivar
+ // writer-barrier conservatively.
+ ExpTy = ExpTy->castAs<PointerType>()->getPointeeType();
+ if (ExpTy->isRecordType()) {
+ LV.setObjCIvar(false);
+ return;
+ }
+ }
+ LV.setObjCIvar(true);
+ auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
+ LV.setBaseIvarExp(Exp->getBase());
+ LV.setObjCArray(E->getType()->isArrayType());
+ return;
+ }
+
+ if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
+ if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
+ if (VD->hasGlobalStorage()) {
+ LV.setGlobalObjCRef(true);
+ LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
+ }
+ }
+ LV.setObjCArray(E->getType()->isArrayType());
+ return;
+ }
+
+ if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
+ setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
+ return;
+ }
+
+ if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
+ setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
+ if (LV.isObjCIvar()) {
+ // If cast is to a structure pointer, follow gcc's behavior and make it
+ // a non-ivar write-barrier.
+ QualType ExpTy = E->getType();
+ if (ExpTy->isPointerType())
+ ExpTy = ExpTy->castAs<PointerType>()->getPointeeType();
+ if (ExpTy->isRecordType())
+ LV.setObjCIvar(false);
+ }
+ return;
+ }
+
+ if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
+ setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
+ return;
+ }
+
+ if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
+ setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
+ return;
+ }
+
+ if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
+ setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
+ return;
+ }
+
+ if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
+ setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
+ return;
+ }
+
+ if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
+ setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
+ if (LV.isObjCIvar() && !LV.isObjCArray())
+ // Using array syntax to assigning to what an ivar points to is not
+ // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
+ LV.setObjCIvar(false);
+ else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
+ // Using array syntax to assigning to what global points to is not
+ // same as assigning to the global itself. {id *G;} G[i] = 0;
+ LV.setGlobalObjCRef(false);
+ return;
+ }
+
+ if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
+ setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
+ // We don't know if member is an 'ivar', but this flag is looked at
+ // only in the context of LV.isObjCIvar().
+ LV.setObjCArray(E->getType()->isArrayType());
+ return;
+ }
+}
+
+static llvm::Value *
+EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
+ llvm::Value *V, llvm::Type *IRType,
+ StringRef Name = StringRef()) {
+ unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
+ return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
+}
+
+static LValue EmitThreadPrivateVarDeclLValue(
+ CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr,
+ llvm::Type *RealVarTy, SourceLocation Loc) {
+ Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc);
+ Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy);
+ return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
+}
+
+static Address emitDeclTargetVarDeclLValue(CodeGenFunction &CGF,
+ const VarDecl *VD, QualType T) {
+ llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
+ OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
+ // Return an invalid address if variable is MT_To and unified
+ // memory is not enabled. For all other cases: MT_Link and
+ // MT_To with unified memory, return a valid address.
+ if (!Res || (*Res == OMPDeclareTargetDeclAttr::MT_To &&
+ !CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory()))
+ return Address::invalid();
+ assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
+ (*Res == OMPDeclareTargetDeclAttr::MT_To &&
+ CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) &&
+ "Expected link clause OR to clause with unified memory enabled.");
+ QualType PtrTy = CGF.getContext().getPointerType(VD->getType());
+ Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
+ return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>());
+}
+
+Address
+CodeGenFunction::EmitLoadOfReference(LValue RefLVal,
+ LValueBaseInfo *PointeeBaseInfo,
+ TBAAAccessInfo *PointeeTBAAInfo) {
+ llvm::LoadInst *Load =
+ Builder.CreateLoad(RefLVal.getAddress(*this), RefLVal.isVolatile());
+ CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo());
+
+ CharUnits Align = getNaturalTypeAlignment(RefLVal.getType()->getPointeeType(),
+ PointeeBaseInfo, PointeeTBAAInfo,
+ /* forPointeeType= */ true);
+ return Address(Load, Align);
+}
+
+LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) {
+ LValueBaseInfo PointeeBaseInfo;
+ TBAAAccessInfo PointeeTBAAInfo;
+ Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo,
+ &PointeeTBAAInfo);
+ return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(),
+ PointeeBaseInfo, PointeeTBAAInfo);
+}
+
+Address CodeGenFunction::EmitLoadOfPointer(Address Ptr,
+ const PointerType *PtrTy,
+ LValueBaseInfo *BaseInfo,
+ TBAAAccessInfo *TBAAInfo) {
+ llvm::Value *Addr = Builder.CreateLoad(Ptr);
+ return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(),
+ BaseInfo, TBAAInfo,
+ /*forPointeeType=*/true));
+}
+
+LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr,
+ const PointerType *PtrTy) {
+ LValueBaseInfo BaseInfo;
+ TBAAAccessInfo TBAAInfo;
+ Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo);
+ return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo);
+}
+
+static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
+ const Expr *E, const VarDecl *VD) {
+ QualType T = E->getType();
+
+ // If it's thread_local, emit a call to its wrapper function instead.
+ if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
+ CGF.CGM.getCXXABI().usesThreadWrapperFunction(VD))
+ return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
+ // Check if the variable is marked as declare target with link clause in
+ // device codegen.
+ if (CGF.getLangOpts().OpenMPIsDevice) {
+ Address Addr = emitDeclTargetVarDeclLValue(CGF, VD, T);
+ if (Addr.isValid())
+ return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
+ }
+
+ llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
+ llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
+ V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
+ CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
+ Address Addr(V, Alignment);
+ // Emit reference to the private copy of the variable if it is an OpenMP
+ // threadprivate variable.
+ if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd &&
+ VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
+ return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy,
+ E->getExprLoc());
+ }
+ LValue LV = VD->getType()->isReferenceType() ?
+ CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(),
+ AlignmentSource::Decl) :
+ CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
+ setObjCGCLValueClass(CGF.getContext(), E, LV);
+ return LV;
+}
+
+static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM,
+ const FunctionDecl *FD) {
+ if (FD->hasAttr<WeakRefAttr>()) {
+ ConstantAddress aliasee = CGM.GetWeakRefReference(FD);
+ return aliasee.getPointer();
+ }
+
+ llvm::Constant *V = CGM.GetAddrOfFunction(FD);
+ if (!FD->hasPrototype()) {
+ if (const FunctionProtoType *Proto =
+ FD->getType()->getAs<FunctionProtoType>()) {
+ // Ugly case: for a K&R-style definition, the type of the definition
+ // isn't the same as the type of a use. Correct for this with a
+ // bitcast.
+ QualType NoProtoType =
+ CGM.getContext().getFunctionNoProtoType(Proto->getReturnType());
+ NoProtoType = CGM.getContext().getPointerType(NoProtoType);
+ V = llvm::ConstantExpr::getBitCast(V,
+ CGM.getTypes().ConvertType(NoProtoType));
+ }
+ }
+ return V;
+}
+
+static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
+ const Expr *E, const FunctionDecl *FD) {
+ llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, FD);
+ CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
+ return CGF.MakeAddrLValue(V, E->getType(), Alignment,
+ AlignmentSource::Decl);
+}
+
+static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
+ llvm::Value *ThisValue) {
+ QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
+ LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
+ return CGF.EmitLValueForField(LV, FD);
+}
+
+/// Named Registers are named metadata pointing to the register name
+/// which will be read from/written to as an argument to the intrinsic
+/// @llvm.read/write_register.
+/// So far, only the name is being passed down, but other options such as
+/// register type, allocation type or even optimization options could be
+/// passed down via the metadata node.
+static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) {
+ SmallString<64> Name("llvm.named.register.");
+ AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
+ assert(Asm->getLabel().size() < 64-Name.size() &&
+ "Register name too big");
+ Name.append(Asm->getLabel());
+ llvm::NamedMDNode *M =
+ CGM.getModule().getOrInsertNamedMetadata(Name);
+ if (M->getNumOperands() == 0) {
+ llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
+ Asm->getLabel());
+ llvm::Metadata *Ops[] = {Str};
+ M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
+ }
+
+ CharUnits Alignment = CGM.getContext().getDeclAlign(VD);
+
+ llvm::Value *Ptr =
+ llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0));
+ return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType());
+}
+
+/// Determine whether we can emit a reference to \p VD from the current
+/// context, despite not necessarily having seen an odr-use of the variable in
+/// this context.
+static bool canEmitSpuriousReferenceToVariable(CodeGenFunction &CGF,
+ const DeclRefExpr *E,
+ const VarDecl *VD,
+ bool IsConstant) {
+ // For a variable declared in an enclosing scope, do not emit a spurious
+ // reference even if we have a capture, as that will emit an unwarranted
+ // reference to our capture state, and will likely generate worse code than
+ // emitting a local copy.
+ if (E->refersToEnclosingVariableOrCapture())
+ return false;
+
+ // For a local declaration declared in this function, we can always reference
+ // it even if we don't have an odr-use.
+ if (VD->hasLocalStorage()) {
+ return VD->getDeclContext() ==
+ dyn_cast_or_null<DeclContext>(CGF.CurCodeDecl);
+ }
+
+ // For a global declaration, we can emit a reference to it if we know
+ // for sure that we are able to emit a definition of it.
+ VD = VD->getDefinition(CGF.getContext());
+ if (!VD)
+ return false;
+
+ // Don't emit a spurious reference if it might be to a variable that only
+ // exists on a different device / target.
+ // FIXME: This is unnecessarily broad. Check whether this would actually be a
+ // cross-target reference.
+ if (CGF.getLangOpts().OpenMP || CGF.getLangOpts().CUDA ||
+ CGF.getLangOpts().OpenCL) {
+ return false;
+ }
+
+ // We can emit a spurious reference only if the linkage implies that we'll
+ // be emitting a non-interposable symbol that will be retained until link
+ // time.
+ switch (CGF.CGM.getLLVMLinkageVarDefinition(VD, IsConstant)) {
+ case llvm::GlobalValue::ExternalLinkage:
+ case llvm::GlobalValue::LinkOnceODRLinkage:
+ case llvm::GlobalValue::WeakODRLinkage:
+ case llvm::GlobalValue::InternalLinkage:
+ case llvm::GlobalValue::PrivateLinkage:
+ return true;
+ default:
+ return false;
+ }
+}
+
+LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
+ const NamedDecl *ND = E->getDecl();
+ QualType T = E->getType();
+
+ assert(E->isNonOdrUse() != NOUR_Unevaluated &&
+ "should not emit an unevaluated operand");
+
+ if (const auto *VD = dyn_cast<VarDecl>(ND)) {
+ // Global Named registers access via intrinsics only
+ if (VD->getStorageClass() == SC_Register &&
+ VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
+ return EmitGlobalNamedRegister(VD, CGM);
+
+ // If this DeclRefExpr does not constitute an odr-use of the variable,
+ // we're not permitted to emit a reference to it in general, and it might
+ // not be captured if capture would be necessary for a use. Emit the
+ // constant value directly instead.
+ if (E->isNonOdrUse() == NOUR_Constant &&
+ (VD->getType()->isReferenceType() ||
+ !canEmitSpuriousReferenceToVariable(*this, E, VD, true))) {
+ VD->getAnyInitializer(VD);
+ llvm::Constant *Val = ConstantEmitter(*this).emitAbstract(
+ E->getLocation(), *VD->evaluateValue(), VD->getType());
+ assert(Val && "failed to emit constant expression");
+
+ Address Addr = Address::invalid();
+ if (!VD->getType()->isReferenceType()) {
+ // Spill the constant value to a global.
+ Addr = CGM.createUnnamedGlobalFrom(*VD, Val,
+ getContext().getDeclAlign(VD));
+ llvm::Type *VarTy = getTypes().ConvertTypeForMem(VD->getType());
+ auto *PTy = llvm::PointerType::get(
+ VarTy, getContext().getTargetAddressSpace(VD->getType()));
+ if (PTy != Addr.getType())
+ Addr = Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, PTy);
+ } else {
+ // Should we be using the alignment of the constant pointer we emitted?
+ CharUnits Alignment =
+ getNaturalTypeAlignment(E->getType(),
+ /* BaseInfo= */ nullptr,
+ /* TBAAInfo= */ nullptr,
+ /* forPointeeType= */ true);
+ Addr = Address(Val, Alignment);
+ }
+ return MakeAddrLValue(Addr, T, AlignmentSource::Decl);
+ }
+
+ // FIXME: Handle other kinds of non-odr-use DeclRefExprs.
+
+ // Check for captured variables.
+ if (E->refersToEnclosingVariableOrCapture()) {
+ VD = VD->getCanonicalDecl();
+ if (auto *FD = LambdaCaptureFields.lookup(VD))
+ return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
+ if (CapturedStmtInfo) {
+ auto I = LocalDeclMap.find(VD);
+ if (I != LocalDeclMap.end()) {
+ LValue CapLVal;
+ if (VD->getType()->isReferenceType())
+ CapLVal = EmitLoadOfReferenceLValue(I->second, VD->getType(),
+ AlignmentSource::Decl);
+ else
+ CapLVal = MakeAddrLValue(I->second, T);
+ // Mark lvalue as nontemporal if the variable is marked as nontemporal
+ // in simd context.
+ if (getLangOpts().OpenMP &&
+ CGM.getOpenMPRuntime().isNontemporalDecl(VD))
+ CapLVal.setNontemporal(/*Value=*/true);
+ return CapLVal;
+ }
+ LValue CapLVal =
+ EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
+ CapturedStmtInfo->getContextValue());
+ CapLVal = MakeAddrLValue(
+ Address(CapLVal.getPointer(*this), getContext().getDeclAlign(VD)),
+ CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl),
+ CapLVal.getTBAAInfo());
+ // Mark lvalue as nontemporal if the variable is marked as nontemporal
+ // in simd context.
+ if (getLangOpts().OpenMP &&
+ CGM.getOpenMPRuntime().isNontemporalDecl(VD))
+ CapLVal.setNontemporal(/*Value=*/true);
+ return CapLVal;
+ }
+
+ assert(isa<BlockDecl>(CurCodeDecl));
+ Address addr = GetAddrOfBlockDecl(VD);
+ return MakeAddrLValue(addr, T, AlignmentSource::Decl);
+ }
+ }
+
+ // FIXME: We should be able to assert this for FunctionDecls as well!
+ // FIXME: We should be able to assert this for all DeclRefExprs, not just
+ // those with a valid source location.
+ assert((ND->isUsed(false) || !isa<VarDecl>(ND) || E->isNonOdrUse() ||
+ !E->getLocation().isValid()) &&
+ "Should not use decl without marking it used!");
+
+ if (ND->hasAttr<WeakRefAttr>()) {
+ const auto *VD = cast<ValueDecl>(ND);
+ ConstantAddress Aliasee = CGM.GetWeakRefReference(VD);
+ return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl);
+ }
+
+ if (const auto *VD = dyn_cast<VarDecl>(ND)) {
+ // Check if this is a global variable.
+ if (VD->hasLinkage() || VD->isStaticDataMember())
+ return EmitGlobalVarDeclLValue(*this, E, VD);
+
+ Address addr = Address::invalid();
+
+ // The variable should generally be present in the local decl map.
+ auto iter = LocalDeclMap.find(VD);
+ if (iter != LocalDeclMap.end()) {
+ addr = iter->second;
+
+ // Otherwise, it might be static local we haven't emitted yet for
+ // some reason; most likely, because it's in an outer function.
+ } else if (VD->isStaticLocal()) {
+ addr = Address(CGM.getOrCreateStaticVarDecl(
+ *VD, CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false)),
+ getContext().getDeclAlign(VD));
+
+ // No other cases for now.
+ } else {
+ llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?");
+ }
+
+
+ // Check for OpenMP threadprivate variables.
+ if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd &&
+ VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
+ return EmitThreadPrivateVarDeclLValue(
+ *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()),
+ E->getExprLoc());
+ }
+
+ // Drill into block byref variables.
+ bool isBlockByref = VD->isEscapingByref();
+ if (isBlockByref) {
+ addr = emitBlockByrefAddress(addr, VD);
+ }
+
+ // Drill into reference types.
+ LValue LV = VD->getType()->isReferenceType() ?
+ EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) :
+ MakeAddrLValue(addr, T, AlignmentSource::Decl);
+
+ bool isLocalStorage = VD->hasLocalStorage();
+
+ bool NonGCable = isLocalStorage &&
+ !VD->getType()->isReferenceType() &&
+ !isBlockByref;
+ if (NonGCable) {
+ LV.getQuals().removeObjCGCAttr();
+ LV.setNonGC(true);
+ }
+
+ bool isImpreciseLifetime =
+ (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
+ if (isImpreciseLifetime)
+ LV.setARCPreciseLifetime(ARCImpreciseLifetime);
+ setObjCGCLValueClass(getContext(), E, LV);
+ return LV;
+ }
+
+ if (const auto *FD = dyn_cast<FunctionDecl>(ND))
+ return EmitFunctionDeclLValue(*this, E, FD);
+
+ // FIXME: While we're emitting a binding from an enclosing scope, all other
+ // DeclRefExprs we see should be implicitly treated as if they also refer to
+ // an enclosing scope.
+ if (const auto *BD = dyn_cast<BindingDecl>(ND))
+ return EmitLValue(BD->getBinding());
+
+ llvm_unreachable("Unhandled DeclRefExpr");
+}
+
+LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
+ // __extension__ doesn't affect lvalue-ness.
+ if (E->getOpcode() == UO_Extension)
+ return EmitLValue(E->getSubExpr());
+
+ QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
+ switch (E->getOpcode()) {
+ default: llvm_unreachable("Unknown unary operator lvalue!");
+ case UO_Deref: {
+ QualType T = E->getSubExpr()->getType()->getPointeeType();
+ assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
+
+ LValueBaseInfo BaseInfo;
+ TBAAAccessInfo TBAAInfo;
+ Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo,
+ &TBAAInfo);
+ LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
+ LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
+
+ // We should not generate __weak write barrier on indirect reference
+ // of a pointer to object; as in void foo (__weak id *param); *param = 0;
+ // But, we continue to generate __strong write barrier on indirect write
+ // into a pointer to object.
+ if (getLangOpts().ObjC &&
+ getLangOpts().getGC() != LangOptions::NonGC &&
+ LV.isObjCWeak())
+ LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
+ return LV;
+ }
+ case UO_Real:
+ case UO_Imag: {
+ LValue LV = EmitLValue(E->getSubExpr());
+ assert(LV.isSimple() && "real/imag on non-ordinary l-value");
+
+ // __real is valid on scalars. This is a faster way of testing that.
+ // __imag can only produce an rvalue on scalars.
+ if (E->getOpcode() == UO_Real &&
+ !LV.getAddress(*this).getElementType()->isStructTy()) {
+ assert(E->getSubExpr()->getType()->isArithmeticType());
+ return LV;
+ }
+
+ QualType T = ExprTy->castAs<ComplexType>()->getElementType();
+
+ Address Component =
+ (E->getOpcode() == UO_Real
+ ? emitAddrOfRealComponent(LV.getAddress(*this), LV.getType())
+ : emitAddrOfImagComponent(LV.getAddress(*this), LV.getType()));
+ LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(),
+ CGM.getTBAAInfoForSubobject(LV, T));
+ ElemLV.getQuals().addQualifiers(LV.getQuals());
+ return ElemLV;
+ }
+ case UO_PreInc:
+ case UO_PreDec: {
+ LValue LV = EmitLValue(E->getSubExpr());
+ bool isInc = E->getOpcode() == UO_PreInc;
+
+ if (E->getType()->isAnyComplexType())
+ EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
+ else
+ EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
+ return LV;
+ }
+ }
+}
+
+LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
+ return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
+ E->getType(), AlignmentSource::Decl);
+}
+
+LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
+ return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
+ E->getType(), AlignmentSource::Decl);
+}
+
+LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
+ auto SL = E->getFunctionName();
+ assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
+ StringRef FnName = CurFn->getName();
+ if (FnName.startswith("\01"))
+ FnName = FnName.substr(1);
+ StringRef NameItems[] = {
+ PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName};
+ std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
+ if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) {
+ std::string Name = SL->getString();
+ if (!Name.empty()) {
+ unsigned Discriminator =
+ CGM.getCXXABI().getMangleContext().getBlockId(BD, true);
+ if (Discriminator)
+ Name += "_" + Twine(Discriminator + 1).str();
+ auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str());
+ return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
+ } else {
+ auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str());
+ return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
+ }
+ }
+ auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
+ return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
+}
+
+/// Emit a type description suitable for use by a runtime sanitizer library. The
+/// format of a type descriptor is
+///
+/// \code
+/// { i16 TypeKind, i16 TypeInfo }
+/// \endcode
+///
+/// followed by an array of i8 containing the type name. TypeKind is 0 for an
+/// integer, 1 for a floating point value, and -1 for anything else.
+llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
+ // Only emit each type's descriptor once.
+ if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
+ return C;
+
+ uint16_t TypeKind = -1;
+ uint16_t TypeInfo = 0;
+
+ if (T->isIntegerType()) {
+ TypeKind = 0;
+ TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
+ (T->isSignedIntegerType() ? 1 : 0);
+ } else if (T->isFloatingType()) {
+ TypeKind = 1;
+ TypeInfo = getContext().getTypeSize(T);
+ }
+
+ // Format the type name as if for a diagnostic, including quotes and
+ // optionally an 'aka'.
+ SmallString<32> Buffer;
+ CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
+ (intptr_t)T.getAsOpaquePtr(),
+ StringRef(), StringRef(), None, Buffer,
+ None);
+
+ llvm::Constant *Components[] = {
+ Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
+ llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
+ };
+ llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
+
+ auto *GV = new llvm::GlobalVariable(
+ CGM.getModule(), Descriptor->getType(),
+ /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
+ GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
+ CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
+
+ // Remember the descriptor for this type.
+ CGM.setTypeDescriptorInMap(T, GV);
+
+ return GV;
+}
+
+llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
+ llvm::Type *TargetTy = IntPtrTy;
+
+ if (V->getType() == TargetTy)
+ return V;
+
+ // Floating-point types which fit into intptr_t are bitcast to integers
+ // and then passed directly (after zero-extension, if necessary).
+ if (V->getType()->isFloatingPointTy()) {
+ unsigned Bits = V->getType()->getPrimitiveSizeInBits();
+ if (Bits <= TargetTy->getIntegerBitWidth())
+ V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
+ Bits));
+ }
+
+ // Integers which fit in intptr_t are zero-extended and passed directly.
+ if (V->getType()->isIntegerTy() &&
+ V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
+ return Builder.CreateZExt(V, TargetTy);
+
+ // Pointers are passed directly, everything else is passed by address.
+ if (!V->getType()->isPointerTy()) {
+ Address Ptr = CreateDefaultAlignTempAlloca(V->getType());
+ Builder.CreateStore(V, Ptr);
+ V = Ptr.getPointer();
+ }
+ return Builder.CreatePtrToInt(V, TargetTy);
+}
+
+/// Emit a representation of a SourceLocation for passing to a handler
+/// in a sanitizer runtime library. The format for this data is:
+/// \code
+/// struct SourceLocation {
+/// const char *Filename;
+/// int32_t Line, Column;
+/// };
+/// \endcode
+/// For an invalid SourceLocation, the Filename pointer is null.
+llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
+ llvm::Constant *Filename;
+ int Line, Column;
+
+ PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
+ if (PLoc.isValid()) {
+ StringRef FilenameString = PLoc.getFilename();
+
+ int PathComponentsToStrip =
+ CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip;
+ if (PathComponentsToStrip < 0) {
+ assert(PathComponentsToStrip != INT_MIN);
+ int PathComponentsToKeep = -PathComponentsToStrip;
+ auto I = llvm::sys::path::rbegin(FilenameString);
+ auto E = llvm::sys::path::rend(FilenameString);
+ while (I != E && --PathComponentsToKeep)
+ ++I;
+
+ FilenameString = FilenameString.substr(I - E);
+ } else if (PathComponentsToStrip > 0) {
+ auto I = llvm::sys::path::begin(FilenameString);
+ auto E = llvm::sys::path::end(FilenameString);
+ while (I != E && PathComponentsToStrip--)
+ ++I;
+
+ if (I != E)
+ FilenameString =
+ FilenameString.substr(I - llvm::sys::path::begin(FilenameString));
+ else
+ FilenameString = llvm::sys::path::filename(FilenameString);
+ }
+
+ auto FilenameGV = CGM.GetAddrOfConstantCString(FilenameString, ".src");
+ CGM.getSanitizerMetadata()->disableSanitizerForGlobal(
+ cast<llvm::GlobalVariable>(FilenameGV.getPointer()));
+ Filename = FilenameGV.getPointer();
+ Line = PLoc.getLine();
+ Column = PLoc.getColumn();
+ } else {
+ Filename = llvm::Constant::getNullValue(Int8PtrTy);
+ Line = Column = 0;
+ }
+
+ llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
+ Builder.getInt32(Column)};
+
+ return llvm::ConstantStruct::getAnon(Data);
+}
+
+namespace {
+/// Specify under what conditions this check can be recovered
+enum class CheckRecoverableKind {
+ /// Always terminate program execution if this check fails.
+ Unrecoverable,
+ /// Check supports recovering, runtime has both fatal (noreturn) and
+ /// non-fatal handlers for this check.
+ Recoverable,
+ /// Runtime conditionally aborts, always need to support recovery.
+ AlwaysRecoverable
+};
+}
+
+static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) {
+ assert(Kind.countPopulation() == 1);
+ if (Kind == SanitizerKind::Function || Kind == SanitizerKind::Vptr)
+ return CheckRecoverableKind::AlwaysRecoverable;
+ else if (Kind == SanitizerKind::Return || Kind == SanitizerKind::Unreachable)
+ return CheckRecoverableKind::Unrecoverable;
+ else
+ return CheckRecoverableKind::Recoverable;
+}
+
+namespace {
+struct SanitizerHandlerInfo {
+ char const *const Name;
+ unsigned Version;
+};
+}
+
+const SanitizerHandlerInfo SanitizerHandlers[] = {
+#define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version},
+ LIST_SANITIZER_CHECKS
+#undef SANITIZER_CHECK
+};
+
+static void emitCheckHandlerCall(CodeGenFunction &CGF,
+ llvm::FunctionType *FnType,
+ ArrayRef<llvm::Value *> FnArgs,
+ SanitizerHandler CheckHandler,
+ CheckRecoverableKind RecoverKind, bool IsFatal,
+ llvm::BasicBlock *ContBB) {
+ assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
+ Optional<ApplyDebugLocation> DL;
+ if (!CGF.Builder.getCurrentDebugLocation()) {
+ // Ensure that the call has at least an artificial debug location.
+ DL.emplace(CGF, SourceLocation());
+ }
+ bool NeedsAbortSuffix =
+ IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
+ bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime;
+ const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler];
+ const StringRef CheckName = CheckInfo.Name;
+ std::string FnName = "__ubsan_handle_" + CheckName.str();
+ if (CheckInfo.Version && !MinimalRuntime)
+ FnName += "_v" + llvm::utostr(CheckInfo.Version);
+ if (MinimalRuntime)
+ FnName += "_minimal";
+ if (NeedsAbortSuffix)
+ FnName += "_abort";
+ bool MayReturn =
+ !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
+
+ llvm::AttrBuilder B;
+ if (!MayReturn) {
+ B.addAttribute(llvm::Attribute::NoReturn)
+ .addAttribute(llvm::Attribute::NoUnwind);
+ }
+ B.addAttribute(llvm::Attribute::UWTable);
+
+ llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(
+ FnType, FnName,
+ llvm::AttributeList::get(CGF.getLLVMContext(),
+ llvm::AttributeList::FunctionIndex, B),
+ /*Local=*/true);
+ llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
+ if (!MayReturn) {
+ HandlerCall->setDoesNotReturn();
+ CGF.Builder.CreateUnreachable();
+ } else {
+ CGF.Builder.CreateBr(ContBB);
+ }
+}
+
+void CodeGenFunction::EmitCheck(
+ ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
+ SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs,
+ ArrayRef<llvm::Value *> DynamicArgs) {
+ assert(IsSanitizerScope);
+ assert(Checked.size() > 0);
+ assert(CheckHandler >= 0 &&
+ size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers));
+ const StringRef CheckName = SanitizerHandlers[CheckHandler].Name;
+
+ llvm::Value *FatalCond = nullptr;
+ llvm::Value *RecoverableCond = nullptr;
+ llvm::Value *TrapCond = nullptr;
+ for (int i = 0, n = Checked.size(); i < n; ++i) {
+ llvm::Value *Check = Checked[i].first;
+ // -fsanitize-trap= overrides -fsanitize-recover=.
+ llvm::Value *&Cond =
+ CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second)
+ ? TrapCond
+ : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
+ ? RecoverableCond
+ : FatalCond;
+ Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
+ }
+
+ if (TrapCond)
+ EmitTrapCheck(TrapCond);
+ if (!FatalCond && !RecoverableCond)
+ return;
+
+ llvm::Value *JointCond;
+ if (FatalCond && RecoverableCond)
+ JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
+ else
+ JointCond = FatalCond ? FatalCond : RecoverableCond;
+ assert(JointCond);
+
+ CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
+ assert(SanOpts.has(Checked[0].second));
+#ifndef NDEBUG
+ for (int i = 1, n = Checked.size(); i < n; ++i) {
+ assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
+ "All recoverable kinds in a single check must be same!");
+ assert(SanOpts.has(Checked[i].second));
+ }
+#endif
+
+ llvm::BasicBlock *Cont = createBasicBlock("cont");
+ llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
+ llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
+ // Give hint that we very much don't expect to execute the handler
+ // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
+ llvm::MDBuilder MDHelper(getLLVMContext());
+ llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
+ Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
+ EmitBlock(Handlers);
+
+ // Handler functions take an i8* pointing to the (handler-specific) static
+ // information block, followed by a sequence of intptr_t arguments
+ // representing operand values.
+ SmallVector<llvm::Value *, 4> Args;
+ SmallVector<llvm::Type *, 4> ArgTypes;
+ if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) {
+ Args.reserve(DynamicArgs.size() + 1);
+ ArgTypes.reserve(DynamicArgs.size() + 1);
+
+ // Emit handler arguments and create handler function type.
+ if (!StaticArgs.empty()) {
+ llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
+ auto *InfoPtr =
+ new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
+ llvm::GlobalVariable::PrivateLinkage, Info);
+ InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
+ CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
+ Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
+ ArgTypes.push_back(Int8PtrTy);
+ }
+
+ for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
+ Args.push_back(EmitCheckValue(DynamicArgs[i]));
+ ArgTypes.push_back(IntPtrTy);
+ }
+ }
+
+ llvm::FunctionType *FnType =
+ llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
+
+ if (!FatalCond || !RecoverableCond) {
+ // Simple case: we need to generate a single handler call, either
+ // fatal, or non-fatal.
+ emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind,
+ (FatalCond != nullptr), Cont);
+ } else {
+ // Emit two handler calls: first one for set of unrecoverable checks,
+ // another one for recoverable.
+ llvm::BasicBlock *NonFatalHandlerBB =
+ createBasicBlock("non_fatal." + CheckName);
+ llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
+ Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
+ EmitBlock(FatalHandlerBB);
+ emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true,
+ NonFatalHandlerBB);
+ EmitBlock(NonFatalHandlerBB);
+ emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false,
+ Cont);
+ }
+
+ EmitBlock(Cont);
+}
+
+void CodeGenFunction::EmitCfiSlowPathCheck(
+ SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId,
+ llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) {
+ llvm::BasicBlock *Cont = createBasicBlock("cfi.cont");
+
+ llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath");
+ llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB);
+
+ llvm::MDBuilder MDHelper(getLLVMContext());
+ llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
+ BI->setMetadata(llvm::LLVMContext::MD_prof, Node);
+
+ EmitBlock(CheckBB);
+
+ bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind);
+
+ llvm::CallInst *CheckCall;
+ llvm::FunctionCallee SlowPathFn;
+ if (WithDiag) {
+ llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
+ auto *InfoPtr =
+ new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
+ llvm::GlobalVariable::PrivateLinkage, Info);
+ InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
+ CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
+
+ SlowPathFn = CGM.getModule().getOrInsertFunction(
+ "__cfi_slowpath_diag",
+ llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy},
+ false));
+ CheckCall = Builder.CreateCall(
+ SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)});
+ } else {
+ SlowPathFn = CGM.getModule().getOrInsertFunction(
+ "__cfi_slowpath",
+ llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false));
+ CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr});
+ }
+
+ CGM.setDSOLocal(
+ cast<llvm::GlobalValue>(SlowPathFn.getCallee()->stripPointerCasts()));
+ CheckCall->setDoesNotThrow();
+
+ EmitBlock(Cont);
+}
+
+// Emit a stub for __cfi_check function so that the linker knows about this
+// symbol in LTO mode.
+void CodeGenFunction::EmitCfiCheckStub() {
+ llvm::Module *M = &CGM.getModule();
+ auto &Ctx = M->getContext();
+ llvm::Function *F = llvm::Function::Create(
+ llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false),
+ llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M);
+ CGM.setDSOLocal(F);
+ llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F);
+ // FIXME: consider emitting an intrinsic call like
+ // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2)
+ // which can be lowered in CrossDSOCFI pass to the actual contents of
+ // __cfi_check. This would allow inlining of __cfi_check calls.
+ llvm::CallInst::Create(
+ llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB);
+ llvm::ReturnInst::Create(Ctx, nullptr, BB);
+}
+
+// This function is basically a switch over the CFI failure kind, which is
+// extracted from CFICheckFailData (1st function argument). Each case is either
+// llvm.trap or a call to one of the two runtime handlers, based on
+// -fsanitize-trap and -fsanitize-recover settings. Default case (invalid
+// failure kind) traps, but this should really never happen. CFICheckFailData
+// can be nullptr if the calling module has -fsanitize-trap behavior for this
+// check kind; in this case __cfi_check_fail traps as well.
+void CodeGenFunction::EmitCfiCheckFail() {
+ SanitizerScope SanScope(this);
+ FunctionArgList Args;
+ ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy,
+ ImplicitParamDecl::Other);
+ ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy,
+ ImplicitParamDecl::Other);
+ Args.push_back(&ArgData);
+ Args.push_back(&ArgAddr);
+
+ const CGFunctionInfo &FI =
+ CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args);
+
+ llvm::Function *F = llvm::Function::Create(
+ llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false),
+ llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule());
+
+ CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, F);
+ CGM.SetLLVMFunctionAttributesForDefinition(nullptr, F);
+ F->setVisibility(llvm::GlobalValue::HiddenVisibility);
+
+ StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args,
+ SourceLocation());
+
+ // This function should not be affected by blacklist. This function does
+ // not have a source location, but "src:*" would still apply. Revert any
+ // changes to SanOpts made in StartFunction.
+ SanOpts = CGM.getLangOpts().Sanitize;
+
+ llvm::Value *Data =
+ EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false,
+ CGM.getContext().VoidPtrTy, ArgData.getLocation());
+ llvm::Value *Addr =
+ EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false,
+ CGM.getContext().VoidPtrTy, ArgAddr.getLocation());
+
+ // Data == nullptr means the calling module has trap behaviour for this check.
+ llvm::Value *DataIsNotNullPtr =
+ Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy));
+ EmitTrapCheck(DataIsNotNullPtr);
+
+ llvm::StructType *SourceLocationTy =
+ llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty);
+ llvm::StructType *CfiCheckFailDataTy =
+ llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy);
+
+ llvm::Value *V = Builder.CreateConstGEP2_32(
+ CfiCheckFailDataTy,
+ Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0,
+ 0);
+ Address CheckKindAddr(V, getIntAlign());
+ llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr);
+
+ llvm::Value *AllVtables = llvm::MetadataAsValue::get(
+ CGM.getLLVMContext(),
+ llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
+ llvm::Value *ValidVtable = Builder.CreateZExt(
+ Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
+ {Addr, AllVtables}),
+ IntPtrTy);
+
+ const std::pair<int, SanitizerMask> CheckKinds[] = {
+ {CFITCK_VCall, SanitizerKind::CFIVCall},
+ {CFITCK_NVCall, SanitizerKind::CFINVCall},
+ {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast},
+ {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast},
+ {CFITCK_ICall, SanitizerKind::CFIICall}};
+
+ SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks;
+ for (auto CheckKindMaskPair : CheckKinds) {
+ int Kind = CheckKindMaskPair.first;
+ SanitizerMask Mask = CheckKindMaskPair.second;
+ llvm::Value *Cond =
+ Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind));
+ if (CGM.getLangOpts().Sanitize.has(Mask))
+ EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {},
+ {Data, Addr, ValidVtable});
+ else
+ EmitTrapCheck(Cond);
+ }
+
+ FinishFunction();
+ // The only reference to this function will be created during LTO link.
+ // Make sure it survives until then.
+ CGM.addUsedGlobal(F);
+}
+
+void CodeGenFunction::EmitUnreachable(SourceLocation Loc) {
+ if (SanOpts.has(SanitizerKind::Unreachable)) {
+ SanitizerScope SanScope(this);
+ EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()),
+ SanitizerKind::Unreachable),
+ SanitizerHandler::BuiltinUnreachable,
+ EmitCheckSourceLocation(Loc), None);
+ }
+ Builder.CreateUnreachable();
+}
+
+void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
+ llvm::BasicBlock *Cont = createBasicBlock("cont");
+
+ // If we're optimizing, collapse all calls to trap down to just one per
+ // function to save on code size.
+ if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
+ TrapBB = createBasicBlock("trap");
+ Builder.CreateCondBr(Checked, Cont, TrapBB);
+ EmitBlock(TrapBB);
+ llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
+ TrapCall->setDoesNotReturn();
+ TrapCall->setDoesNotThrow();
+ Builder.CreateUnreachable();
+ } else {
+ Builder.CreateCondBr(Checked, Cont, TrapBB);
+ }
+
+ EmitBlock(Cont);
+}
+
+llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) {
+ llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID));
+
+ if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
+ auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
+ CGM.getCodeGenOpts().TrapFuncName);
+ TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A);
+ }
+
+ return TrapCall;
+}
+
+Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E,
+ LValueBaseInfo *BaseInfo,
+ TBAAAccessInfo *TBAAInfo) {
+ assert(E->getType()->isArrayType() &&
+ "Array to pointer decay must have array source type!");
+
+ // Expressions of array type can't be bitfields or vector elements.
+ LValue LV = EmitLValue(E);
+ Address Addr = LV.getAddress(*this);
+
+ // If the array type was an incomplete type, we need to make sure
+ // the decay ends up being the right type.
+ llvm::Type *NewTy = ConvertType(E->getType());
+ Addr = Builder.CreateElementBitCast(Addr, NewTy);
+
+ // Note that VLA pointers are always decayed, so we don't need to do
+ // anything here.
+ if (!E->getType()->isVariableArrayType()) {
+ assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
+ "Expected pointer to array");
+ Addr = Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
+ }
+
+ // The result of this decay conversion points to an array element within the
+ // base lvalue. However, since TBAA currently does not support representing
+ // accesses to elements of member arrays, we conservatively represent accesses
+ // to the pointee object as if it had no any base lvalue specified.
+ // TODO: Support TBAA for member arrays.
+ QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType();
+ if (BaseInfo) *BaseInfo = LV.getBaseInfo();
+ if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType);
+
+ return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType));
+}
+
+/// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
+/// array to pointer, return the array subexpression.
+static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
+ // If this isn't just an array->pointer decay, bail out.
+ const auto *CE = dyn_cast<CastExpr>(E);
+ if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
+ return nullptr;
+
+ // If this is a decay from variable width array, bail out.
+ const Expr *SubExpr = CE->getSubExpr();
+ if (SubExpr->getType()->isVariableArrayType())
+ return nullptr;
+
+ return SubExpr;
+}
+
+static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF,
+ llvm::Value *ptr,
+ ArrayRef<llvm::Value*> indices,
+ bool inbounds,
+ bool signedIndices,
+ SourceLocation loc,
+ const llvm::Twine &name = "arrayidx") {
+ if (inbounds) {
+ return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices,
+ CodeGenFunction::NotSubtraction, loc,
+ name);
+ } else {
+ return CGF.Builder.CreateGEP(ptr, indices, name);
+ }
+}
+
+static CharUnits getArrayElementAlign(CharUnits arrayAlign,
+ llvm::Value *idx,
+ CharUnits eltSize) {
+ // If we have a constant index, we can use the exact offset of the
+ // element we're accessing.
+ if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) {
+ CharUnits offset = constantIdx->getZExtValue() * eltSize;
+ return arrayAlign.alignmentAtOffset(offset);
+
+ // Otherwise, use the worst-case alignment for any element.
+ } else {
+ return arrayAlign.alignmentOfArrayElement(eltSize);
+ }
+}
+
+static QualType getFixedSizeElementType(const ASTContext &ctx,
+ const VariableArrayType *vla) {
+ QualType eltType;
+ do {
+ eltType = vla->getElementType();
+ } while ((vla = ctx.getAsVariableArrayType(eltType)));
+ return eltType;
+}
+
+/// Given an array base, check whether its member access belongs to a record
+/// with preserve_access_index attribute or not.
+static bool IsPreserveAIArrayBase(CodeGenFunction &CGF, const Expr *ArrayBase) {
+ if (!ArrayBase || !CGF.getDebugInfo())
+ return false;
+
+ // Only support base as either a MemberExpr or DeclRefExpr.
+ // DeclRefExpr to cover cases like:
+ // struct s { int a; int b[10]; };
+ // struct s *p;
+ // p[1].a
+ // p[1] will generate a DeclRefExpr and p[1].a is a MemberExpr.
+ // p->b[5] is a MemberExpr example.
+ const Expr *E = ArrayBase->IgnoreImpCasts();
+ if (const auto *ME = dyn_cast<MemberExpr>(E))
+ return ME->getMemberDecl()->hasAttr<BPFPreserveAccessIndexAttr>();
+
+ if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
+ const auto *VarDef = dyn_cast<VarDecl>(DRE->getDecl());
+ if (!VarDef)
+ return false;
+
+ const auto *PtrT = VarDef->getType()->getAs<PointerType>();
+ if (!PtrT)
+ return false;
+
+ const auto *PointeeT = PtrT->getPointeeType()
+ ->getUnqualifiedDesugaredType();
+ if (const auto *RecT = dyn_cast<RecordType>(PointeeT))
+ return RecT->getDecl()->hasAttr<BPFPreserveAccessIndexAttr>();
+ return false;
+ }
+
+ return false;
+}
+
+static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr,
+ ArrayRef<llvm::Value *> indices,
+ QualType eltType, bool inbounds,
+ bool signedIndices, SourceLocation loc,
+ QualType *arrayType = nullptr,
+ const Expr *Base = nullptr,
+ const llvm::Twine &name = "arrayidx") {
+ // All the indices except that last must be zero.
+#ifndef NDEBUG
+ for (auto idx : indices.drop_back())
+ assert(isa<llvm::ConstantInt>(idx) &&
+ cast<llvm::ConstantInt>(idx)->isZero());
+#endif
+
+ // Determine the element size of the statically-sized base. This is
+ // the thing that the indices are expressed in terms of.
+ if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) {
+ eltType = getFixedSizeElementType(CGF.getContext(), vla);
+ }
+
+ // We can use that to compute the best alignment of the element.
+ CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
+ CharUnits eltAlign =
+ getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize);
+
+ llvm::Value *eltPtr;
+ auto LastIndex = dyn_cast<llvm::ConstantInt>(indices.back());
+ if (!LastIndex ||
+ (!CGF.IsInPreservedAIRegion && !IsPreserveAIArrayBase(CGF, Base))) {
+ eltPtr = emitArraySubscriptGEP(
+ CGF, addr.getPointer(), indices, inbounds, signedIndices,
+ loc, name);
+ } else {
+ // Remember the original array subscript for bpf target
+ unsigned idx = LastIndex->getZExtValue();
+ llvm::DIType *DbgInfo = nullptr;
+ if (arrayType)
+ DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(*arrayType, loc);
+ eltPtr = CGF.Builder.CreatePreserveArrayAccessIndex(addr.getElementType(),
+ addr.getPointer(),
+ indices.size() - 1,
+ idx, DbgInfo);
+ }
+
+ return Address(eltPtr, eltAlign);
+}
+
+LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
+ bool Accessed) {
+ // The index must always be an integer, which is not an aggregate. Emit it
+ // in lexical order (this complexity is, sadly, required by C++17).
+ llvm::Value *IdxPre =
+ (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr;
+ bool SignedIndices = false;
+ auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * {
+ auto *Idx = IdxPre;
+ if (E->getLHS() != E->getIdx()) {
+ assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS");
+ Idx = EmitScalarExpr(E->getIdx());
+ }
+
+ QualType IdxTy = E->getIdx()->getType();
+ bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
+ SignedIndices |= IdxSigned;
+
+ if (SanOpts.has(SanitizerKind::ArrayBounds))
+ EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
+
+ // Extend or truncate the index type to 32 or 64-bits.
+ if (Promote && Idx->getType() != IntPtrTy)
+ Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
+
+ return Idx;
+ };
+ IdxPre = nullptr;
+
+ // If the base is a vector type, then we are forming a vector element lvalue
+ // with this subscript.
+ if (E->getBase()->getType()->isVectorType() &&
+ !isa<ExtVectorElementExpr>(E->getBase())) {
+ // Emit the vector as an lvalue to get its address.
+ LValue LHS = EmitLValue(E->getBase());
+ auto *Idx = EmitIdxAfterBase(/*Promote*/false);
+ assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
+ return LValue::MakeVectorElt(LHS.getAddress(*this), Idx,
+ E->getBase()->getType(), LHS.getBaseInfo(),
+ TBAAAccessInfo());
+ }
+
+ // All the other cases basically behave like simple offsetting.
+
+ // Handle the extvector case we ignored above.
+ if (isa<ExtVectorElementExpr>(E->getBase())) {
+ LValue LV = EmitLValue(E->getBase());
+ auto *Idx = EmitIdxAfterBase(/*Promote*/true);
+ Address Addr = EmitExtVectorElementLValue(LV);
+
+ QualType EltType = LV.getType()->castAs<VectorType>()->getElementType();
+ Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true,
+ SignedIndices, E->getExprLoc());
+ return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(),
+ CGM.getTBAAInfoForSubobject(LV, EltType));
+ }
+
+ LValueBaseInfo EltBaseInfo;
+ TBAAAccessInfo EltTBAAInfo;
+ Address Addr = Address::invalid();
+ if (const VariableArrayType *vla =
+ getContext().getAsVariableArrayType(E->getType())) {
+ // The base must be a pointer, which is not an aggregate. Emit
+ // it. It needs to be emitted first in case it's what captures
+ // the VLA bounds.
+ Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
+ auto *Idx = EmitIdxAfterBase(/*Promote*/true);
+
+ // The element count here is the total number of non-VLA elements.
+ llvm::Value *numElements = getVLASize(vla).NumElts;
+
+ // Effectively, the multiply by the VLA size is part of the GEP.
+ // GEP indexes are signed, and scaling an index isn't permitted to
+ // signed-overflow, so we use the same semantics for our explicit
+ // multiply. We suppress this if overflow is not undefined behavior.
+ if (getLangOpts().isSignedOverflowDefined()) {
+ Idx = Builder.CreateMul(Idx, numElements);
+ } else {
+ Idx = Builder.CreateNSWMul(Idx, numElements);
+ }
+
+ Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(),
+ !getLangOpts().isSignedOverflowDefined(),
+ SignedIndices, E->getExprLoc());
+
+ } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
+ // Indexing over an interface, as in "NSString *P; P[4];"
+
+ // Emit the base pointer.
+ Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
+ auto *Idx = EmitIdxAfterBase(/*Promote*/true);
+
+ CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT);
+ llvm::Value *InterfaceSizeVal =
+ llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity());
+
+ llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal);
+
+ // We don't necessarily build correct LLVM struct types for ObjC
+ // interfaces, so we can't rely on GEP to do this scaling
+ // correctly, so we need to cast to i8*. FIXME: is this actually
+ // true? A lot of other things in the fragile ABI would break...
+ llvm::Type *OrigBaseTy = Addr.getType();
+ Addr = Builder.CreateElementBitCast(Addr, Int8Ty);
+
+ // Do the GEP.
+ CharUnits EltAlign =
+ getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize);
+ llvm::Value *EltPtr =
+ emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false,
+ SignedIndices, E->getExprLoc());
+ Addr = Address(EltPtr, EltAlign);
+
+ // Cast back.
+ Addr = Builder.CreateBitCast(Addr, OrigBaseTy);
+ } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
+ // If this is A[i] where A is an array, the frontend will have decayed the
+ // base to be a ArrayToPointerDecay implicit cast. While correct, it is
+ // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
+ // "gep x, i" here. Emit one "gep A, 0, i".
+ assert(Array->getType()->isArrayType() &&
+ "Array to pointer decay must have array source type!");
+ LValue ArrayLV;
+ // For simple multidimensional array indexing, set the 'accessed' flag for
+ // better bounds-checking of the base expression.
+ if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
+ ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
+ else
+ ArrayLV = EmitLValue(Array);
+ auto *Idx = EmitIdxAfterBase(/*Promote*/true);
+
+ // Propagate the alignment from the array itself to the result.
+ QualType arrayType = Array->getType();
+ Addr = emitArraySubscriptGEP(
+ *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx},
+ E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices,
+ E->getExprLoc(), &arrayType, E->getBase());
+ EltBaseInfo = ArrayLV.getBaseInfo();
+ EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType());
+ } else {
+ // The base must be a pointer; emit it with an estimate of its alignment.
+ Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
+ auto *Idx = EmitIdxAfterBase(/*Promote*/true);
+ QualType ptrType = E->getBase()->getType();
+ Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(),
+ !getLangOpts().isSignedOverflowDefined(),
+ SignedIndices, E->getExprLoc(), &ptrType,
+ E->getBase());
+ }
+
+ LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo);
+
+ if (getLangOpts().ObjC &&
+ getLangOpts().getGC() != LangOptions::NonGC) {
+ LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
+ setObjCGCLValueClass(getContext(), E, LV);
+ }
+ return LV;
+}
+
+static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base,
+ LValueBaseInfo &BaseInfo,
+ TBAAAccessInfo &TBAAInfo,
+ QualType BaseTy, QualType ElTy,
+ bool IsLowerBound) {
+ LValue BaseLVal;
+ if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) {
+ BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound);
+ if (BaseTy->isArrayType()) {
+ Address Addr = BaseLVal.getAddress(CGF);
+ BaseInfo = BaseLVal.getBaseInfo();
+
+ // If the array type was an incomplete type, we need to make sure
+ // the decay ends up being the right type.
+ llvm::Type *NewTy = CGF.ConvertType(BaseTy);
+ Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy);
+
+ // Note that VLA pointers are always decayed, so we don't need to do
+ // anything here.
+ if (!BaseTy->isVariableArrayType()) {
+ assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
+ "Expected pointer to array");
+ Addr = CGF.Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
+ }
+
+ return CGF.Builder.CreateElementBitCast(Addr,
+ CGF.ConvertTypeForMem(ElTy));
+ }
+ LValueBaseInfo TypeBaseInfo;
+ TBAAAccessInfo TypeTBAAInfo;
+ CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &TypeBaseInfo,
+ &TypeTBAAInfo);
+ BaseInfo.mergeForCast(TypeBaseInfo);
+ TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo);
+ return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress(CGF)), Align);
+ }
+ return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
+}
+
+LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
+ bool IsLowerBound) {
+ QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase());
+ QualType ResultExprTy;
+ if (auto *AT = getContext().getAsArrayType(BaseTy))
+ ResultExprTy = AT->getElementType();
+ else
+ ResultExprTy = BaseTy->getPointeeType();
+ llvm::Value *Idx = nullptr;
+ if (IsLowerBound || E->getColonLoc().isInvalid()) {
+ // Requesting lower bound or upper bound, but without provided length and
+ // without ':' symbol for the default length -> length = 1.
+ // Idx = LowerBound ?: 0;
+ if (auto *LowerBound = E->getLowerBound()) {
+ Idx = Builder.CreateIntCast(
+ EmitScalarExpr(LowerBound), IntPtrTy,
+ LowerBound->getType()->hasSignedIntegerRepresentation());
+ } else
+ Idx = llvm::ConstantInt::getNullValue(IntPtrTy);
+ } else {
+ // Try to emit length or lower bound as constant. If this is possible, 1
+ // is subtracted from constant length or lower bound. Otherwise, emit LLVM
+ // IR (LB + Len) - 1.
+ auto &C = CGM.getContext();
+ auto *Length = E->getLength();
+ llvm::APSInt ConstLength;
+ if (Length) {
+ // Idx = LowerBound + Length - 1;
+ if (Length->isIntegerConstantExpr(ConstLength, C)) {
+ ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
+ Length = nullptr;
+ }
+ auto *LowerBound = E->getLowerBound();
+ llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false);
+ if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) {
+ ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits);
+ LowerBound = nullptr;
+ }
+ if (!Length)
+ --ConstLength;
+ else if (!LowerBound)
+ --ConstLowerBound;
+
+ if (Length || LowerBound) {
+ auto *LowerBoundVal =
+ LowerBound
+ ? Builder.CreateIntCast(
+ EmitScalarExpr(LowerBound), IntPtrTy,
+ LowerBound->getType()->hasSignedIntegerRepresentation())
+ : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound);
+ auto *LengthVal =
+ Length
+ ? Builder.CreateIntCast(
+ EmitScalarExpr(Length), IntPtrTy,
+ Length->getType()->hasSignedIntegerRepresentation())
+ : llvm::ConstantInt::get(IntPtrTy, ConstLength);
+ Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len",
+ /*HasNUW=*/false,
+ !getLangOpts().isSignedOverflowDefined());
+ if (Length && LowerBound) {
+ Idx = Builder.CreateSub(
+ Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1",
+ /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
+ }
+ } else
+ Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound);
+ } else {
+ // Idx = ArraySize - 1;
+ QualType ArrayTy = BaseTy->isPointerType()
+ ? E->getBase()->IgnoreParenImpCasts()->getType()
+ : BaseTy;
+ if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) {
+ Length = VAT->getSizeExpr();
+ if (Length->isIntegerConstantExpr(ConstLength, C))
+ Length = nullptr;
+ } else {
+ auto *CAT = C.getAsConstantArrayType(ArrayTy);
+ ConstLength = CAT->getSize();
+ }
+ if (Length) {
+ auto *LengthVal = Builder.CreateIntCast(
+ EmitScalarExpr(Length), IntPtrTy,
+ Length->getType()->hasSignedIntegerRepresentation());
+ Idx = Builder.CreateSub(
+ LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1",
+ /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
+ } else {
+ ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
+ --ConstLength;
+ Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength);
+ }
+ }
+ }
+ assert(Idx);
+
+ Address EltPtr = Address::invalid();
+ LValueBaseInfo BaseInfo;
+ TBAAAccessInfo TBAAInfo;
+ if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) {
+ // The base must be a pointer, which is not an aggregate. Emit
+ // it. It needs to be emitted first in case it's what captures
+ // the VLA bounds.
+ Address Base =
+ emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo,
+ BaseTy, VLA->getElementType(), IsLowerBound);
+ // The element count here is the total number of non-VLA elements.
+ llvm::Value *NumElements = getVLASize(VLA).NumElts;
+
+ // Effectively, the multiply by the VLA size is part of the GEP.
+ // GEP indexes are signed, and scaling an index isn't permitted to
+ // signed-overflow, so we use the same semantics for our explicit
+ // multiply. We suppress this if overflow is not undefined behavior.
+ if (getLangOpts().isSignedOverflowDefined())
+ Idx = Builder.CreateMul(Idx, NumElements);
+ else
+ Idx = Builder.CreateNSWMul(Idx, NumElements);
+ EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(),
+ !getLangOpts().isSignedOverflowDefined(),
+ /*signedIndices=*/false, E->getExprLoc());
+ } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
+ // If this is A[i] where A is an array, the frontend will have decayed the
+ // base to be a ArrayToPointerDecay implicit cast. While correct, it is
+ // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
+ // "gep x, i" here. Emit one "gep A, 0, i".
+ assert(Array->getType()->isArrayType() &&
+ "Array to pointer decay must have array source type!");
+ LValue ArrayLV;
+ // For simple multidimensional array indexing, set the 'accessed' flag for
+ // better bounds-checking of the base expression.
+ if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
+ ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
+ else
+ ArrayLV = EmitLValue(Array);
+
+ // Propagate the alignment from the array itself to the result.
+ EltPtr = emitArraySubscriptGEP(
+ *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx},
+ ResultExprTy, !getLangOpts().isSignedOverflowDefined(),
+ /*signedIndices=*/false, E->getExprLoc());
+ BaseInfo = ArrayLV.getBaseInfo();
+ TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy);
+ } else {
+ Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo,
+ TBAAInfo, BaseTy, ResultExprTy,
+ IsLowerBound);
+ EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy,
+ !getLangOpts().isSignedOverflowDefined(),
+ /*signedIndices=*/false, E->getExprLoc());
+ }
+
+ return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo);
+}
+
+LValue CodeGenFunction::
+EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
+ // Emit the base vector as an l-value.
+ LValue Base;
+
+ // ExtVectorElementExpr's base can either be a vector or pointer to vector.
+ if (E->isArrow()) {
+ // If it is a pointer to a vector, emit the address and form an lvalue with
+ // it.
+ LValueBaseInfo BaseInfo;
+ TBAAAccessInfo TBAAInfo;
+ Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo);
+ const auto *PT = E->getBase()->getType()->castAs<PointerType>();
+ Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo);
+ Base.getQuals().removeObjCGCAttr();
+ } else if (E->getBase()->isGLValue()) {
+ // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
+ // emit the base as an lvalue.
+ assert(E->getBase()->getType()->isVectorType());
+ Base = EmitLValue(E->getBase());
+ } else {
+ // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
+ assert(E->getBase()->getType()->isVectorType() &&
+ "Result must be a vector");
+ llvm::Value *Vec = EmitScalarExpr(E->getBase());
+
+ // Store the vector to memory (because LValue wants an address).
+ Address VecMem = CreateMemTemp(E->getBase()->getType());
+ Builder.CreateStore(Vec, VecMem);
+ Base = MakeAddrLValue(VecMem, E->getBase()->getType(),
+ AlignmentSource::Decl);
+ }
+
+ QualType type =
+ E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
+
+ // Encode the element access list into a vector of unsigned indices.
+ SmallVector<uint32_t, 4> Indices;
+ E->getEncodedElementAccess(Indices);
+
+ if (Base.isSimple()) {
+ llvm::Constant *CV =
+ llvm::ConstantDataVector::get(getLLVMContext(), Indices);
+ return LValue::MakeExtVectorElt(Base.getAddress(*this), CV, type,
+ Base.getBaseInfo(), TBAAAccessInfo());
+ }
+ assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
+
+ llvm::Constant *BaseElts = Base.getExtVectorElts();
+ SmallVector<llvm::Constant *, 4> CElts;
+
+ for (unsigned i = 0, e = Indices.size(); i != e; ++i)
+ CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
+ llvm::Constant *CV = llvm::ConstantVector::get(CElts);
+ return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type,
+ Base.getBaseInfo(), TBAAAccessInfo());
+}
+
+LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
+ if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) {
+ EmitIgnoredExpr(E->getBase());
+ return EmitDeclRefLValue(DRE);
+ }
+
+ Expr *BaseExpr = E->getBase();
+ // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
+ LValue BaseLV;
+ if (E->isArrow()) {
+ LValueBaseInfo BaseInfo;
+ TBAAAccessInfo TBAAInfo;
+ Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo);
+ QualType PtrTy = BaseExpr->getType()->getPointeeType();
+ SanitizerSet SkippedChecks;
+ bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr);
+ if (IsBaseCXXThis)
+ SkippedChecks.set(SanitizerKind::Alignment, true);
+ if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr))
+ SkippedChecks.set(SanitizerKind::Null, true);
+ EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy,
+ /*Alignment=*/CharUnits::Zero(), SkippedChecks);
+ BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo);
+ } else
+ BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
+
+ NamedDecl *ND = E->getMemberDecl();
+ if (auto *Field = dyn_cast<FieldDecl>(ND)) {
+ LValue LV = EmitLValueForField(BaseLV, Field);
+ setObjCGCLValueClass(getContext(), E, LV);
+ if (getLangOpts().OpenMP) {
+ // If the member was explicitly marked as nontemporal, mark it as
+ // nontemporal. If the base lvalue is marked as nontemporal, mark access
+ // to children as nontemporal too.
+ if ((IsWrappedCXXThis(BaseExpr) &&
+ CGM.getOpenMPRuntime().isNontemporalDecl(Field)) ||
+ BaseLV.isNontemporal())
+ LV.setNontemporal(/*Value=*/true);
+ }
+ return LV;
+ }
+
+ if (const auto *FD = dyn_cast<FunctionDecl>(ND))
+ return EmitFunctionDeclLValue(*this, E, FD);
+
+ llvm_unreachable("Unhandled member declaration!");
+}
+
+/// Given that we are currently emitting a lambda, emit an l-value for
+/// one of its members.
+LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
+ assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
+ assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
+ QualType LambdaTagType =
+ getContext().getTagDeclType(Field->getParent());
+ LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
+ return EmitLValueForField(LambdaLV, Field);
+}
+
+/// Get the field index in the debug info. The debug info structure/union
+/// will ignore the unnamed bitfields.
+unsigned CodeGenFunction::getDebugInfoFIndex(const RecordDecl *Rec,
+ unsigned FieldIndex) {
+ unsigned I = 0, Skipped = 0;
+
+ for (auto F : Rec->getDefinition()->fields()) {
+ if (I == FieldIndex)
+ break;
+ if (F->isUnnamedBitfield())
+ Skipped++;
+ I++;
+ }
+
+ return FieldIndex - Skipped;
+}
+
+/// Get the address of a zero-sized field within a record. The resulting
+/// address doesn't necessarily have the right type.
+static Address emitAddrOfZeroSizeField(CodeGenFunction &CGF, Address Base,
+ const FieldDecl *Field) {
+ CharUnits Offset = CGF.getContext().toCharUnitsFromBits(
+ CGF.getContext().getFieldOffset(Field));
+ if (Offset.isZero())
+ return Base;
+ Base = CGF.Builder.CreateElementBitCast(Base, CGF.Int8Ty);
+ return CGF.Builder.CreateConstInBoundsByteGEP(Base, Offset);
+}
+
+/// Drill down to the storage of a field without walking into
+/// reference types.
+///
+/// The resulting address doesn't necessarily have the right type.
+static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base,
+ const FieldDecl *field) {
+ if (field->isZeroSize(CGF.getContext()))
+ return emitAddrOfZeroSizeField(CGF, base, field);
+
+ const RecordDecl *rec = field->getParent();
+
+ unsigned idx =
+ CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
+
+ return CGF.Builder.CreateStructGEP(base, idx, field->getName());
+}
+
+static Address emitPreserveStructAccess(CodeGenFunction &CGF, Address base,
+ const FieldDecl *field) {
+ const RecordDecl *rec = field->getParent();
+ llvm::DIType *DbgInfo = CGF.getDebugInfo()->getOrCreateRecordType(
+ CGF.getContext().getRecordType(rec), rec->getLocation());
+
+ unsigned idx =
+ CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
+
+ return CGF.Builder.CreatePreserveStructAccessIndex(
+ base, idx, CGF.getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo);
+}
+
+static bool hasAnyVptr(const QualType Type, const ASTContext &Context) {
+ const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl();
+ if (!RD)
+ return false;
+
+ if (RD->isDynamicClass())
+ return true;
+
+ for (const auto &Base : RD->bases())
+ if (hasAnyVptr(Base.getType(), Context))
+ return true;
+
+ for (const FieldDecl *Field : RD->fields())
+ if (hasAnyVptr(Field->getType(), Context))
+ return true;
+
+ return false;
+}
+
+LValue CodeGenFunction::EmitLValueForField(LValue base,
+ const FieldDecl *field) {
+ LValueBaseInfo BaseInfo = base.getBaseInfo();
+
+ if (field->isBitField()) {
+ const CGRecordLayout &RL =
+ CGM.getTypes().getCGRecordLayout(field->getParent());
+ const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
+ Address Addr = base.getAddress(*this);
+ unsigned Idx = RL.getLLVMFieldNo(field);
+ const RecordDecl *rec = field->getParent();
+ if (!IsInPreservedAIRegion &&
+ (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>())) {
+ if (Idx != 0)
+ // For structs, we GEP to the field that the record layout suggests.
+ Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
+ } else {
+ llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateRecordType(
+ getContext().getRecordType(rec), rec->getLocation());
+ Addr = Builder.CreatePreserveStructAccessIndex(Addr, Idx,
+ getDebugInfoFIndex(rec, field->getFieldIndex()),
+ DbgInfo);
+ }
+
+ // Get the access type.
+ llvm::Type *FieldIntTy =
+ llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize);
+ if (Addr.getElementType() != FieldIntTy)
+ Addr = Builder.CreateElementBitCast(Addr, FieldIntTy);
+
+ QualType fieldType =
+ field->getType().withCVRQualifiers(base.getVRQualifiers());
+ // TODO: Support TBAA for bit fields.
+ LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource());
+ return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo,
+ TBAAAccessInfo());
+ }
+
+ // Fields of may-alias structures are may-alias themselves.
+ // FIXME: this should get propagated down through anonymous structs
+ // and unions.
+ QualType FieldType = field->getType();
+ const RecordDecl *rec = field->getParent();
+ AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource();
+ LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource));
+ TBAAAccessInfo FieldTBAAInfo;
+ if (base.getTBAAInfo().isMayAlias() ||
+ rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) {
+ FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
+ } else if (rec->isUnion()) {
+ // TODO: Support TBAA for unions.
+ FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
+ } else {
+ // If no base type been assigned for the base access, then try to generate
+ // one for this base lvalue.
+ FieldTBAAInfo = base.getTBAAInfo();
+ if (!FieldTBAAInfo.BaseType) {
+ FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType());
+ assert(!FieldTBAAInfo.Offset &&
+ "Nonzero offset for an access with no base type!");
+ }
+
+ // Adjust offset to be relative to the base type.
+ const ASTRecordLayout &Layout =
+ getContext().getASTRecordLayout(field->getParent());
+ unsigned CharWidth = getContext().getCharWidth();
+ if (FieldTBAAInfo.BaseType)
+ FieldTBAAInfo.Offset +=
+ Layout.getFieldOffset(field->getFieldIndex()) / CharWidth;
+
+ // Update the final access type and size.
+ FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType);
+ FieldTBAAInfo.Size =
+ getContext().getTypeSizeInChars(FieldType).getQuantity();
+ }
+
+ Address addr = base.getAddress(*this);
+ if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) {
+ if (CGM.getCodeGenOpts().StrictVTablePointers &&
+ ClassDef->isDynamicClass()) {
+ // Getting to any field of dynamic object requires stripping dynamic
+ // information provided by invariant.group. This is because accessing
+ // fields may leak the real address of dynamic object, which could result
+ // in miscompilation when leaked pointer would be compared.
+ auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer());
+ addr = Address(stripped, addr.getAlignment());
+ }
+ }
+
+ unsigned RecordCVR = base.getVRQualifiers();
+ if (rec->isUnion()) {
+ // For unions, there is no pointer adjustment.
+ if (CGM.getCodeGenOpts().StrictVTablePointers &&
+ hasAnyVptr(FieldType, getContext()))
+ // Because unions can easily skip invariant.barriers, we need to add
+ // a barrier every time CXXRecord field with vptr is referenced.
+ addr = Address(Builder.CreateLaunderInvariantGroup(addr.getPointer()),
+ addr.getAlignment());
+
+ if (IsInPreservedAIRegion ||
+ (getDebugInfo() && rec->hasAttr<BPFPreserveAccessIndexAttr>())) {
+ // Remember the original union field index
+ llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateRecordType(
+ getContext().getRecordType(rec), rec->getLocation());
+ addr = Address(
+ Builder.CreatePreserveUnionAccessIndex(
+ addr.getPointer(), getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo),
+ addr.getAlignment());
+ }
+
+ if (FieldType->isReferenceType())
+ addr = Builder.CreateElementBitCast(
+ addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
+ } else {
+ if (!IsInPreservedAIRegion &&
+ (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>()))
+ // For structs, we GEP to the field that the record layout suggests.
+ addr = emitAddrOfFieldStorage(*this, addr, field);
+ else
+ // Remember the original struct field index
+ addr = emitPreserveStructAccess(*this, addr, field);
+ }
+
+ // If this is a reference field, load the reference right now.
+ if (FieldType->isReferenceType()) {
+ LValue RefLVal =
+ MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
+ if (RecordCVR & Qualifiers::Volatile)
+ RefLVal.getQuals().addVolatile();
+ addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo);
+
+ // Qualifiers on the struct don't apply to the referencee.
+ RecordCVR = 0;
+ FieldType = FieldType->getPointeeType();
+ }
+
+ // Make sure that the address is pointing to the right type. This is critical
+ // for both unions and structs. A union needs a bitcast, a struct element
+ // will need a bitcast if the LLVM type laid out doesn't match the desired
+ // type.
+ addr = Builder.CreateElementBitCast(
+ addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
+
+ if (field->hasAttr<AnnotateAttr>())
+ addr = EmitFieldAnnotations(field, addr);
+
+ LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
+ LV.getQuals().addCVRQualifiers(RecordCVR);
+
+ // __weak attribute on a field is ignored.
+ if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
+ LV.getQuals().removeObjCGCAttr();
+
+ return LV;
+}
+
+LValue
+CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
+ const FieldDecl *Field) {
+ QualType FieldType = Field->getType();
+
+ if (!FieldType->isReferenceType())
+ return EmitLValueForField(Base, Field);
+
+ Address V = emitAddrOfFieldStorage(*this, Base.getAddress(*this), Field);
+
+ // Make sure that the address is pointing to the right type.
+ llvm::Type *llvmType = ConvertTypeForMem(FieldType);
+ V = Builder.CreateElementBitCast(V, llvmType, Field->getName());
+
+ // TODO: Generate TBAA information that describes this access as a structure
+ // member access and not just an access to an object of the field's type. This
+ // should be similar to what we do in EmitLValueForField().
+ LValueBaseInfo BaseInfo = Base.getBaseInfo();
+ AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource();
+ LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource));
+ return MakeAddrLValue(V, FieldType, FieldBaseInfo,
+ CGM.getTBAAInfoForSubobject(Base, FieldType));
+}
+
+LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
+ if (E->isFileScope()) {
+ ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
+ return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl);
+ }
+ if (E->getType()->isVariablyModifiedType())
+ // make sure to emit the VLA size.
+ EmitVariablyModifiedType(E->getType());
+
+ Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
+ const Expr *InitExpr = E->getInitializer();
+ LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl);
+
+ EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
+ /*Init*/ true);
+
+ return Result;
+}
+
+LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
+ if (!E->isGLValue())
+ // Initializing an aggregate temporary in C++11: T{...}.
+ return EmitAggExprToLValue(E);
+
+ // An lvalue initializer list must be initializing a reference.
+ assert(E->isTransparent() && "non-transparent glvalue init list");
+ return EmitLValue(E->getInit(0));
+}
+
+/// Emit the operand of a glvalue conditional operator. This is either a glvalue
+/// or a (possibly-parenthesized) throw-expression. If this is a throw, no
+/// LValue is returned and the current block has been terminated.
+static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
+ const Expr *Operand) {
+ if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
+ CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
+ return None;
+ }
+
+ return CGF.EmitLValue(Operand);
+}
+
+LValue CodeGenFunction::
+EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
+ if (!expr->isGLValue()) {
+ // ?: here should be an aggregate.
+ assert(hasAggregateEvaluationKind(expr->getType()) &&
+ "Unexpected conditional operator!");
+ return EmitAggExprToLValue(expr);
+ }
+
+ OpaqueValueMapping binding(*this, expr);
+
+ const Expr *condExpr = expr->getCond();
+ bool CondExprBool;
+ if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
+ const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
+ if (!CondExprBool) std::swap(live, dead);
+
+ if (!ContainsLabel(dead)) {
+ // If the true case is live, we need to track its region.
+ if (CondExprBool)
+ incrementProfileCounter(expr);
+ return EmitLValue(live);
+ }
+ }
+
+ llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
+ llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
+ llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
+
+ ConditionalEvaluation eval(*this);
+ EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr));
+
+ // Any temporaries created here are conditional.
+ EmitBlock(lhsBlock);
+ incrementProfileCounter(expr);
+ eval.begin(*this);
+ Optional<LValue> lhs =
+ EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
+ eval.end(*this);
+
+ if (lhs && !lhs->isSimple())
+ return EmitUnsupportedLValue(expr, "conditional operator");
+
+ lhsBlock = Builder.GetInsertBlock();
+ if (lhs)
+ Builder.CreateBr(contBlock);
+
+ // Any temporaries created here are conditional.
+ EmitBlock(rhsBlock);
+ eval.begin(*this);
+ Optional<LValue> rhs =
+ EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
+ eval.end(*this);
+ if (rhs && !rhs->isSimple())
+ return EmitUnsupportedLValue(expr, "conditional operator");
+ rhsBlock = Builder.GetInsertBlock();
+
+ EmitBlock(contBlock);
+
+ if (lhs && rhs) {
+ llvm::PHINode *phi =
+ Builder.CreatePHI(lhs->getPointer(*this)->getType(), 2, "cond-lvalue");
+ phi->addIncoming(lhs->getPointer(*this), lhsBlock);
+ phi->addIncoming(rhs->getPointer(*this), rhsBlock);
+ Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment()));
+ AlignmentSource alignSource =
+ std::max(lhs->getBaseInfo().getAlignmentSource(),
+ rhs->getBaseInfo().getAlignmentSource());
+ TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator(
+ lhs->getTBAAInfo(), rhs->getTBAAInfo());
+ return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource),
+ TBAAInfo);
+ } else {
+ assert((lhs || rhs) &&
+ "both operands of glvalue conditional are throw-expressions?");
+ return lhs ? *lhs : *rhs;
+ }
+}
+
+/// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
+/// type. If the cast is to a reference, we can have the usual lvalue result,
+/// otherwise if a cast is needed by the code generator in an lvalue context,
+/// then it must mean that we need the address of an aggregate in order to
+/// access one of its members. This can happen for all the reasons that casts
+/// are permitted with aggregate result, including noop aggregate casts, and
+/// cast from scalar to union.
+LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
+ switch (E->getCastKind()) {
+ case CK_ToVoid:
+ case CK_BitCast:
+ case CK_LValueToRValueBitCast:
+ case CK_ArrayToPointerDecay:
+ case CK_FunctionToPointerDecay:
+ case CK_NullToMemberPointer:
+ case CK_NullToPointer:
+ case CK_IntegralToPointer:
+ case CK_PointerToIntegral:
+ case CK_PointerToBoolean:
+ case CK_VectorSplat:
+ case CK_IntegralCast:
+ case CK_BooleanToSignedIntegral:
+ case CK_IntegralToBoolean:
+ case CK_IntegralToFloating:
+ case CK_FloatingToIntegral:
+ case CK_FloatingToBoolean:
+ case CK_FloatingCast:
+ case CK_FloatingRealToComplex:
+ case CK_FloatingComplexToReal:
+ case CK_FloatingComplexToBoolean:
+ case CK_FloatingComplexCast:
+ case CK_FloatingComplexToIntegralComplex:
+ case CK_IntegralRealToComplex:
+ case CK_IntegralComplexToReal:
+ case CK_IntegralComplexToBoolean:
+ case CK_IntegralComplexCast:
+ case CK_IntegralComplexToFloatingComplex:
+ case CK_DerivedToBaseMemberPointer:
+ case CK_BaseToDerivedMemberPointer:
+ case CK_MemberPointerToBoolean:
+ case CK_ReinterpretMemberPointer:
+ case CK_AnyPointerToBlockPointerCast:
+ case CK_ARCProduceObject:
+ case CK_ARCConsumeObject:
+ case CK_ARCReclaimReturnedObject:
+ case CK_ARCExtendBlockObject:
+ case CK_CopyAndAutoreleaseBlockObject:
+ case CK_IntToOCLSampler:
+ case CK_FixedPointCast:
+ case CK_FixedPointToBoolean:
+ case CK_FixedPointToIntegral:
+ case CK_IntegralToFixedPoint:
+ return EmitUnsupportedLValue(E, "unexpected cast lvalue");
+
+ case CK_Dependent:
+ llvm_unreachable("dependent cast kind in IR gen!");
+
+ case CK_BuiltinFnToFnPtr:
+ llvm_unreachable("builtin functions are handled elsewhere");
+
+ // These are never l-values; just use the aggregate emission code.
+ case CK_NonAtomicToAtomic:
+ case CK_AtomicToNonAtomic:
+ return EmitAggExprToLValue(E);
+
+ case CK_Dynamic: {
+ LValue LV = EmitLValue(E->getSubExpr());
+ Address V = LV.getAddress(*this);
+ const auto *DCE = cast<CXXDynamicCastExpr>(E);
+ return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType());
+ }
+
+ case CK_ConstructorConversion:
+ case CK_UserDefinedConversion:
+ case CK_CPointerToObjCPointerCast:
+ case CK_BlockPointerToObjCPointerCast:
+ case CK_NoOp:
+ case CK_LValueToRValue:
+ return EmitLValue(E->getSubExpr());
+
+ case CK_UncheckedDerivedToBase:
+ case CK_DerivedToBase: {
+ const auto *DerivedClassTy =
+ E->getSubExpr()->getType()->castAs<RecordType>();
+ auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
+
+ LValue LV = EmitLValue(E->getSubExpr());
+ Address This = LV.getAddress(*this);
+
+ // Perform the derived-to-base conversion
+ Address Base = GetAddressOfBaseClass(
+ This, DerivedClassDecl, E->path_begin(), E->path_end(),
+ /*NullCheckValue=*/false, E->getExprLoc());
+
+ // TODO: Support accesses to members of base classes in TBAA. For now, we
+ // conservatively pretend that the complete object is of the base class
+ // type.
+ return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(),
+ CGM.getTBAAInfoForSubobject(LV, E->getType()));
+ }
+ case CK_ToUnion:
+ return EmitAggExprToLValue(E);
+ case CK_BaseToDerived: {
+ const auto *DerivedClassTy = E->getType()->castAs<RecordType>();
+ auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
+
+ LValue LV = EmitLValue(E->getSubExpr());
+
+ // Perform the base-to-derived conversion
+ Address Derived = GetAddressOfDerivedClass(
+ LV.getAddress(*this), DerivedClassDecl, E->path_begin(), E->path_end(),
+ /*NullCheckValue=*/false);
+
+ // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
+ // performed and the object is not of the derived type.
+ if (sanitizePerformTypeCheck())
+ EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
+ Derived.getPointer(), E->getType());
+
+ if (SanOpts.has(SanitizerKind::CFIDerivedCast))
+ EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(),
+ /*MayBeNull=*/false, CFITCK_DerivedCast,
+ E->getBeginLoc());
+
+ return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(),
+ CGM.getTBAAInfoForSubobject(LV, E->getType()));
+ }
+ case CK_LValueBitCast: {
+ // This must be a reinterpret_cast (or c-style equivalent).
+ const auto *CE = cast<ExplicitCastExpr>(E);
+
+ CGM.EmitExplicitCastExprType(CE, this);
+ LValue LV = EmitLValue(E->getSubExpr());
+ Address V = Builder.CreateBitCast(LV.getAddress(*this),
+ ConvertType(CE->getTypeAsWritten()));
+
+ if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
+ EmitVTablePtrCheckForCast(E->getType(), V.getPointer(),
+ /*MayBeNull=*/false, CFITCK_UnrelatedCast,
+ E->getBeginLoc());
+
+ return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
+ CGM.getTBAAInfoForSubobject(LV, E->getType()));
+ }
+ case CK_AddressSpaceConversion: {
+ LValue LV = EmitLValue(E->getSubExpr());
+ QualType DestTy = getContext().getPointerType(E->getType());
+ llvm::Value *V = getTargetHooks().performAddrSpaceCast(
+ *this, LV.getPointer(*this),
+ E->getSubExpr()->getType().getAddressSpace(),
+ E->getType().getAddressSpace(), ConvertType(DestTy));
+ return MakeAddrLValue(Address(V, LV.getAddress(*this).getAlignment()),
+ E->getType(), LV.getBaseInfo(), LV.getTBAAInfo());
+ }
+ case CK_ObjCObjectLValueCast: {
+ LValue LV = EmitLValue(E->getSubExpr());
+ Address V = Builder.CreateElementBitCast(LV.getAddress(*this),
+ ConvertType(E->getType()));
+ return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
+ CGM.getTBAAInfoForSubobject(LV, E->getType()));
+ }
+ case CK_ZeroToOCLOpaqueType:
+ llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid");
+ }
+
+ llvm_unreachable("Unhandled lvalue cast kind?");
+}
+
+LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
+ assert(OpaqueValueMappingData::shouldBindAsLValue(e));
+ return getOrCreateOpaqueLValueMapping(e);
+}
+
+LValue
+CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) {
+ assert(OpaqueValueMapping::shouldBindAsLValue(e));
+
+ llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
+ it = OpaqueLValues.find(e);
+
+ if (it != OpaqueLValues.end())
+ return it->second;
+
+ assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted");
+ return EmitLValue(e->getSourceExpr());
+}
+
+RValue
+CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) {
+ assert(!OpaqueValueMapping::shouldBindAsLValue(e));
+
+ llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
+ it = OpaqueRValues.find(e);
+
+ if (it != OpaqueRValues.end())
+ return it->second;
+
+ assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted");
+ return EmitAnyExpr(e->getSourceExpr());
+}
+
+RValue CodeGenFunction::EmitRValueForField(LValue LV,
+ const FieldDecl *FD,
+ SourceLocation Loc) {
+ QualType FT = FD->getType();
+ LValue FieldLV = EmitLValueForField(LV, FD);
+ switch (getEvaluationKind(FT)) {
+ case TEK_Complex:
+ return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
+ case TEK_Aggregate:
+ return FieldLV.asAggregateRValue(*this);
+ case TEK_Scalar:
+ // This routine is used to load fields one-by-one to perform a copy, so
+ // don't load reference fields.
+ if (FD->getType()->isReferenceType())
+ return RValue::get(FieldLV.getPointer(*this));
+ // Call EmitLoadOfScalar except when the lvalue is a bitfield to emit a
+ // primitive load.
+ if (FieldLV.isBitField())
+ return EmitLoadOfLValue(FieldLV, Loc);
+ return RValue::get(EmitLoadOfScalar(FieldLV, Loc));
+ }
+ llvm_unreachable("bad evaluation kind");
+}
+
+//===--------------------------------------------------------------------===//
+// Expression Emission
+//===--------------------------------------------------------------------===//
+
+RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
+ ReturnValueSlot ReturnValue) {
+ // Builtins never have block type.
+ if (E->getCallee()->getType()->isBlockPointerType())
+ return EmitBlockCallExpr(E, ReturnValue);
+
+ if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
+ return EmitCXXMemberCallExpr(CE, ReturnValue);
+
+ if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
+ return EmitCUDAKernelCallExpr(CE, ReturnValue);
+
+ if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
+ if (const CXXMethodDecl *MD =
+ dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl()))
+ return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
+
+ CGCallee callee = EmitCallee(E->getCallee());
+
+ if (callee.isBuiltin()) {
+ return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(),
+ E, ReturnValue);
+ }
+
+ if (callee.isPseudoDestructor()) {
+ return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr());
+ }
+
+ return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue);
+}
+
+/// Emit a CallExpr without considering whether it might be a subclass.
+RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E,
+ ReturnValueSlot ReturnValue) {
+ CGCallee Callee = EmitCallee(E->getCallee());
+ return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue);
+}
+
+static CGCallee EmitDirectCallee(CodeGenFunction &CGF, const FunctionDecl *FD) {
+
+ if (auto builtinID = FD->getBuiltinID()) {
+ // Replaceable builtin provide their own implementation of a builtin. Unless
+ // we are in the builtin implementation itself, don't call the actual
+ // builtin. If we are in the builtin implementation, avoid trivial infinite
+ // recursion.
+ if (!FD->isInlineBuiltinDeclaration() ||
+ CGF.CurFn->getName() == FD->getName())
+ return CGCallee::forBuiltin(builtinID, FD);
+ }
+
+ llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, FD);
+ return CGCallee::forDirect(calleePtr, GlobalDecl(FD));
+}
+
+CGCallee CodeGenFunction::EmitCallee(const Expr *E) {
+ E = E->IgnoreParens();
+
+ // Look through function-to-pointer decay.
+ if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) {
+ if (ICE->getCastKind() == CK_FunctionToPointerDecay ||
+ ICE->getCastKind() == CK_BuiltinFnToFnPtr) {
+ return EmitCallee(ICE->getSubExpr());
+ }
+
+ // Resolve direct calls.
+ } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) {
+ if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
+ return EmitDirectCallee(*this, FD);
+ }
+ } else if (auto ME = dyn_cast<MemberExpr>(E)) {
+ if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) {
+ EmitIgnoredExpr(ME->getBase());
+ return EmitDirectCallee(*this, FD);
+ }
+
+ // Look through template substitutions.
+ } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
+ return EmitCallee(NTTP->getReplacement());
+
+ // Treat pseudo-destructor calls differently.
+ } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) {
+ return CGCallee::forPseudoDestructor(PDE);
+ }
+
+ // Otherwise, we have an indirect reference.
+ llvm::Value *calleePtr;
+ QualType functionType;
+ if (auto ptrType = E->getType()->getAs<PointerType>()) {
+ calleePtr = EmitScalarExpr(E);
+ functionType = ptrType->getPointeeType();
+ } else {
+ functionType = E->getType();
+ calleePtr = EmitLValue(E).getPointer(*this);
+ }
+ assert(functionType->isFunctionType());
+
+ GlobalDecl GD;
+ if (const auto *VD =
+ dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee()))
+ GD = GlobalDecl(VD);
+
+ CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD);
+ CGCallee callee(calleeInfo, calleePtr);
+ return callee;
+}
+
+LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
+ // Comma expressions just emit their LHS then their RHS as an l-value.
+ if (E->getOpcode() == BO_Comma) {
+ EmitIgnoredExpr(E->getLHS());
+ EnsureInsertPoint();
+ return EmitLValue(E->getRHS());
+ }
+
+ if (E->getOpcode() == BO_PtrMemD ||
+ E->getOpcode() == BO_PtrMemI)
+ return EmitPointerToDataMemberBinaryExpr(E);
+
+ assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
+
+ // Note that in all of these cases, __block variables need the RHS
+ // evaluated first just in case the variable gets moved by the RHS.
+
+ switch (getEvaluationKind(E->getType())) {
+ case TEK_Scalar: {
+ switch (E->getLHS()->getType().getObjCLifetime()) {
+ case Qualifiers::OCL_Strong:
+ return EmitARCStoreStrong(E, /*ignored*/ false).first;
+
+ case Qualifiers::OCL_Autoreleasing:
+ return EmitARCStoreAutoreleasing(E).first;
+
+ // No reason to do any of these differently.
+ case Qualifiers::OCL_None:
+ case Qualifiers::OCL_ExplicitNone:
+ case Qualifiers::OCL_Weak:
+ break;
+ }
+
+ RValue RV = EmitAnyExpr(E->getRHS());
+ LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
+ if (RV.isScalar())
+ EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc());
+ EmitStoreThroughLValue(RV, LV);
+ if (getLangOpts().OpenMP)
+ CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
+ E->getLHS());
+ return LV;
+ }
+
+ case TEK_Complex:
+ return EmitComplexAssignmentLValue(E);
+
+ case TEK_Aggregate:
+ return EmitAggExprToLValue(E);
+ }
+ llvm_unreachable("bad evaluation kind");
+}
+
+LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
+ RValue RV = EmitCallExpr(E);
+
+ if (!RV.isScalar())
+ return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
+ AlignmentSource::Decl);
+
+ assert(E->getCallReturnType(getContext())->isReferenceType() &&
+ "Can't have a scalar return unless the return type is a "
+ "reference type!");
+
+ return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
+}
+
+LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
+ // FIXME: This shouldn't require another copy.
+ return EmitAggExprToLValue(E);
+}
+
+LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
+ assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
+ && "binding l-value to type which needs a temporary");
+ AggValueSlot Slot = CreateAggTemp(E->getType());
+ EmitCXXConstructExpr(E, Slot);
+ return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
+}
+
+LValue
+CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
+ return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType());
+}
+
+Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
+ return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E),
+ ConvertType(E->getType()));
+}
+
+LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
+ return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(),
+ AlignmentSource::Decl);
+}
+
+LValue
+CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
+ AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
+ Slot.setExternallyDestructed();
+ EmitAggExpr(E->getSubExpr(), Slot);
+ EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress());
+ return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
+}
+
+LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
+ RValue RV = EmitObjCMessageExpr(E);
+
+ if (!RV.isScalar())
+ return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
+ AlignmentSource::Decl);
+
+ assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
+ "Can't have a scalar return unless the return type is a "
+ "reference type!");
+
+ return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
+}
+
+LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
+ Address V =
+ CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector());
+ return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl);
+}
+
+llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
+ const ObjCIvarDecl *Ivar) {
+ return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
+}
+
+LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
+ llvm::Value *BaseValue,
+ const ObjCIvarDecl *Ivar,
+ unsigned CVRQualifiers) {
+ return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
+ Ivar, CVRQualifiers);
+}
+
+LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
+ // FIXME: A lot of the code below could be shared with EmitMemberExpr.
+ llvm::Value *BaseValue = nullptr;
+ const Expr *BaseExpr = E->getBase();
+ Qualifiers BaseQuals;
+ QualType ObjectTy;
+ if (E->isArrow()) {
+ BaseValue = EmitScalarExpr(BaseExpr);
+ ObjectTy = BaseExpr->getType()->getPointeeType();
+ BaseQuals = ObjectTy.getQualifiers();
+ } else {
+ LValue BaseLV = EmitLValue(BaseExpr);
+ BaseValue = BaseLV.getPointer(*this);
+ ObjectTy = BaseExpr->getType();
+ BaseQuals = ObjectTy.getQualifiers();
+ }
+
+ LValue LV =
+ EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
+ BaseQuals.getCVRQualifiers());
+ setObjCGCLValueClass(getContext(), E, LV);
+ return LV;
+}
+
+LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
+ // Can only get l-value for message expression returning aggregate type
+ RValue RV = EmitAnyExprToTemp(E);
+ return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
+ AlignmentSource::Decl);
+}
+
+RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee,
+ const CallExpr *E, ReturnValueSlot ReturnValue,
+ llvm::Value *Chain) {
+ // Get the actual function type. The callee type will always be a pointer to
+ // function type or a block pointer type.
+ assert(CalleeType->isFunctionPointerType() &&
+ "Call must have function pointer type!");
+
+ const Decl *TargetDecl =
+ OrigCallee.getAbstractInfo().getCalleeDecl().getDecl();
+
+ CalleeType = getContext().getCanonicalType(CalleeType);
+
+ auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType();
+
+ CGCallee Callee = OrigCallee;
+
+ if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) &&
+ (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
+ if (llvm::Constant *PrefixSig =
+ CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
+ SanitizerScope SanScope(this);
+ // Remove any (C++17) exception specifications, to allow calling e.g. a
+ // noexcept function through a non-noexcept pointer.
+ auto ProtoTy =
+ getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None);
+ llvm::Constant *FTRTTIConst =
+ CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
+ llvm::Type *PrefixStructTyElems[] = {PrefixSig->getType(), Int32Ty};
+ llvm::StructType *PrefixStructTy = llvm::StructType::get(
+ CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true);
+
+ llvm::Value *CalleePtr = Callee.getFunctionPointer();
+
+ llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
+ CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy));
+ llvm::Value *CalleeSigPtr =
+ Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0);
+ llvm::Value *CalleeSig =
+ Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign());
+ llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
+
+ llvm::BasicBlock *Cont = createBasicBlock("cont");
+ llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
+ Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
+
+ EmitBlock(TypeCheck);
+ llvm::Value *CalleeRTTIPtr =
+ Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1);
+ llvm::Value *CalleeRTTIEncoded =
+ Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign());
+ llvm::Value *CalleeRTTI =
+ DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded);
+ llvm::Value *CalleeRTTIMatch =
+ Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
+ llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()),
+ EmitCheckTypeDescriptor(CalleeType)};
+ EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function),
+ SanitizerHandler::FunctionTypeMismatch, StaticData,
+ {CalleePtr, CalleeRTTI, FTRTTIConst});
+
+ Builder.CreateBr(Cont);
+ EmitBlock(Cont);
+ }
+ }
+
+ const auto *FnType = cast<FunctionType>(PointeeType);
+
+ // If we are checking indirect calls and this call is indirect, check that the
+ // function pointer is a member of the bit set for the function type.
+ if (SanOpts.has(SanitizerKind::CFIICall) &&
+ (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
+ SanitizerScope SanScope(this);
+ EmitSanitizerStatReport(llvm::SanStat_CFI_ICall);
+
+ llvm::Metadata *MD;
+ if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers)
+ MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0));
+ else
+ MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0));
+
+ llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
+
+ llvm::Value *CalleePtr = Callee.getFunctionPointer();
+ llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy);
+ llvm::Value *TypeTest = Builder.CreateCall(
+ CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId});
+
+ auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
+ llvm::Constant *StaticData[] = {
+ llvm::ConstantInt::get(Int8Ty, CFITCK_ICall),
+ EmitCheckSourceLocation(E->getBeginLoc()),
+ EmitCheckTypeDescriptor(QualType(FnType, 0)),
+ };
+ if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
+ EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId,
+ CastedCallee, StaticData);
+ } else {
+ EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall),
+ SanitizerHandler::CFICheckFail, StaticData,
+ {CastedCallee, llvm::UndefValue::get(IntPtrTy)});
+ }
+ }
+
+ CallArgList Args;
+ if (Chain)
+ Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)),
+ CGM.getContext().VoidPtrTy);
+
+ // C++17 requires that we evaluate arguments to a call using assignment syntax
+ // right-to-left, and that we evaluate arguments to certain other operators
+ // left-to-right. Note that we allow this to override the order dictated by
+ // the calling convention on the MS ABI, which means that parameter
+ // destruction order is not necessarily reverse construction order.
+ // FIXME: Revisit this based on C++ committee response to unimplementability.
+ EvaluationOrder Order = EvaluationOrder::Default;
+ if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) {
+ if (OCE->isAssignmentOp())
+ Order = EvaluationOrder::ForceRightToLeft;
+ else {
+ switch (OCE->getOperator()) {
+ case OO_LessLess:
+ case OO_GreaterGreater:
+ case OO_AmpAmp:
+ case OO_PipePipe:
+ case OO_Comma:
+ case OO_ArrowStar:
+ Order = EvaluationOrder::ForceLeftToRight;
+ break;
+ default:
+ break;
+ }
+ }
+ }
+
+ EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(),
+ E->getDirectCallee(), /*ParamsToSkip*/ 0, Order);
+
+ const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
+ Args, FnType, /*ChainCall=*/Chain);
+
+ // C99 6.5.2.2p6:
+ // If the expression that denotes the called function has a type
+ // that does not include a prototype, [the default argument
+ // promotions are performed]. If the number of arguments does not
+ // equal the number of parameters, the behavior is undefined. If
+ // the function is defined with a type that includes a prototype,
+ // and either the prototype ends with an ellipsis (, ...) or the
+ // types of the arguments after promotion are not compatible with
+ // the types of the parameters, the behavior is undefined. If the
+ // function is defined with a type that does not include a
+ // prototype, and the types of the arguments after promotion are
+ // not compatible with those of the parameters after promotion,
+ // the behavior is undefined [except in some trivial cases].
+ // That is, in the general case, we should assume that a call
+ // through an unprototyped function type works like a *non-variadic*
+ // call. The way we make this work is to cast to the exact type
+ // of the promoted arguments.
+ //
+ // Chain calls use this same code path to add the invisible chain parameter
+ // to the function type.
+ if (isa<FunctionNoProtoType>(FnType) || Chain) {
+ llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
+ CalleeTy = CalleeTy->getPointerTo();
+
+ llvm::Value *CalleePtr = Callee.getFunctionPointer();
+ CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast");
+ Callee.setFunctionPointer(CalleePtr);
+ }
+
+ llvm::CallBase *CallOrInvoke = nullptr;
+ RValue Call = EmitCall(FnInfo, Callee, ReturnValue, Args, &CallOrInvoke,
+ E->getExprLoc());
+
+ // Generate function declaration DISuprogram in order to be used
+ // in debug info about call sites.
+ if (CGDebugInfo *DI = getDebugInfo()) {
+ if (auto *CalleeDecl = dyn_cast_or_null<FunctionDecl>(TargetDecl))
+ DI->EmitFuncDeclForCallSite(CallOrInvoke, QualType(FnType, 0),
+ CalleeDecl);
+ }
+
+ return Call;
+}
+
+LValue CodeGenFunction::
+EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
+ Address BaseAddr = Address::invalid();
+ if (E->getOpcode() == BO_PtrMemI) {
+ BaseAddr = EmitPointerWithAlignment(E->getLHS());
+ } else {
+ BaseAddr = EmitLValue(E->getLHS()).getAddress(*this);
+ }
+
+ llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
+ const auto *MPT = E->getRHS()->getType()->castAs<MemberPointerType>();
+
+ LValueBaseInfo BaseInfo;
+ TBAAAccessInfo TBAAInfo;
+ Address MemberAddr =
+ EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo,
+ &TBAAInfo);
+
+ return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo);
+}
+
+/// Given the address of a temporary variable, produce an r-value of
+/// its type.
+RValue CodeGenFunction::convertTempToRValue(Address addr,
+ QualType type,
+ SourceLocation loc) {
+ LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl);
+ switch (getEvaluationKind(type)) {
+ case TEK_Complex:
+ return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
+ case TEK_Aggregate:
+ return lvalue.asAggregateRValue(*this);
+ case TEK_Scalar:
+ return RValue::get(EmitLoadOfScalar(lvalue, loc));
+ }
+ llvm_unreachable("bad evaluation kind");
+}
+
+void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
+ assert(Val->getType()->isFPOrFPVectorTy());
+ if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
+ return;
+
+ llvm::MDBuilder MDHelper(getLLVMContext());
+ llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
+
+ cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
+}
+
+namespace {
+ struct LValueOrRValue {
+ LValue LV;
+ RValue RV;
+ };
+}
+
+static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
+ const PseudoObjectExpr *E,
+ bool forLValue,
+ AggValueSlot slot) {
+ SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
+
+ // Find the result expression, if any.
+ const Expr *resultExpr = E->getResultExpr();
+ LValueOrRValue result;
+
+ for (PseudoObjectExpr::const_semantics_iterator
+ i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
+ const Expr *semantic = *i;
+
+ // If this semantic expression is an opaque value, bind it
+ // to the result of its source expression.
+ if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
+ // Skip unique OVEs.
+ if (ov->isUnique()) {
+ assert(ov != resultExpr &&
+ "A unique OVE cannot be used as the result expression");
+ continue;
+ }
+
+ // If this is the result expression, we may need to evaluate
+ // directly into the slot.
+ typedef CodeGenFunction::OpaqueValueMappingData OVMA;
+ OVMA opaqueData;
+ if (ov == resultExpr && ov->isRValue() && !forLValue &&
+ CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
+ CGF.EmitAggExpr(ov->getSourceExpr(), slot);
+ LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(),
+ AlignmentSource::Decl);
+ opaqueData = OVMA::bind(CGF, ov, LV);
+ result.RV = slot.asRValue();
+
+ // Otherwise, emit as normal.
+ } else {
+ opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
+
+ // If this is the result, also evaluate the result now.
+ if (ov == resultExpr) {
+ if (forLValue)
+ result.LV = CGF.EmitLValue(ov);
+ else
+ result.RV = CGF.EmitAnyExpr(ov, slot);
+ }
+ }
+
+ opaques.push_back(opaqueData);
+
+ // Otherwise, if the expression is the result, evaluate it
+ // and remember the result.
+ } else if (semantic == resultExpr) {
+ if (forLValue)
+ result.LV = CGF.EmitLValue(semantic);
+ else
+ result.RV = CGF.EmitAnyExpr(semantic, slot);
+
+ // Otherwise, evaluate the expression in an ignored context.
+ } else {
+ CGF.EmitIgnoredExpr(semantic);
+ }
+ }
+
+ // Unbind all the opaques now.
+ for (unsigned i = 0, e = opaques.size(); i != e; ++i)
+ opaques[i].unbind(CGF);
+
+ return result;
+}
+
+RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
+ AggValueSlot slot) {
+ return emitPseudoObjectExpr(*this, E, false, slot).RV;
+}
+
+LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
+ return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
+}