diff options
author | 2020-08-03 14:31:31 +0000 | |
---|---|---|
committer | 2020-08-03 14:31:31 +0000 | |
commit | e5dd70708596ae51455a0ffa086a00c5b29f8583 (patch) | |
tree | 5d676f27b570bacf71e786c3b5cff3e6f6679b59 /gnu/llvm/clang/lib/CodeGen/CGRecordLayoutBuilder.cpp | |
parent | Import LLVM 10.0.0 release including clang, lld and lldb. (diff) | |
download | wireguard-openbsd-e5dd70708596ae51455a0ffa086a00c5b29f8583.tar.xz wireguard-openbsd-e5dd70708596ae51455a0ffa086a00c5b29f8583.zip |
Import LLVM 10.0.0 release including clang, lld and lldb.
ok hackroom
tested by plenty
Diffstat (limited to 'gnu/llvm/clang/lib/CodeGen/CGRecordLayoutBuilder.cpp')
-rw-r--r-- | gnu/llvm/clang/lib/CodeGen/CGRecordLayoutBuilder.cpp | 906 |
1 files changed, 906 insertions, 0 deletions
diff --git a/gnu/llvm/clang/lib/CodeGen/CGRecordLayoutBuilder.cpp b/gnu/llvm/clang/lib/CodeGen/CGRecordLayoutBuilder.cpp new file mode 100644 index 00000000000..4de64a32f2a --- /dev/null +++ b/gnu/llvm/clang/lib/CodeGen/CGRecordLayoutBuilder.cpp @@ -0,0 +1,906 @@ +//===--- CGRecordLayoutBuilder.cpp - CGRecordLayout builder ----*- C++ -*-===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// Builder implementation for CGRecordLayout objects. +// +//===----------------------------------------------------------------------===// + +#include "CGRecordLayout.h" +#include "CGCXXABI.h" +#include "CodeGenTypes.h" +#include "clang/AST/ASTContext.h" +#include "clang/AST/Attr.h" +#include "clang/AST/CXXInheritance.h" +#include "clang/AST/DeclCXX.h" +#include "clang/AST/Expr.h" +#include "clang/AST/RecordLayout.h" +#include "clang/Basic/CodeGenOptions.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Type.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/raw_ostream.h" +using namespace clang; +using namespace CodeGen; + +namespace { +/// The CGRecordLowering is responsible for lowering an ASTRecordLayout to an +/// llvm::Type. Some of the lowering is straightforward, some is not. Here we +/// detail some of the complexities and weirdnesses here. +/// * LLVM does not have unions - Unions can, in theory be represented by any +/// llvm::Type with correct size. We choose a field via a specific heuristic +/// and add padding if necessary. +/// * LLVM does not have bitfields - Bitfields are collected into contiguous +/// runs and allocated as a single storage type for the run. ASTRecordLayout +/// contains enough information to determine where the runs break. Microsoft +/// and Itanium follow different rules and use different codepaths. +/// * It is desired that, when possible, bitfields use the appropriate iN type +/// when lowered to llvm types. For example unsigned x : 24 gets lowered to +/// i24. This isn't always possible because i24 has storage size of 32 bit +/// and if it is possible to use that extra byte of padding we must use +/// [i8 x 3] instead of i24. The function clipTailPadding does this. +/// C++ examples that require clipping: +/// struct { int a : 24; char b; }; // a must be clipped, b goes at offset 3 +/// struct A { int a : 24; }; // a must be clipped because a struct like B +// could exist: struct B : A { char b; }; // b goes at offset 3 +/// * Clang ignores 0 sized bitfields and 0 sized bases but *not* zero sized +/// fields. The existing asserts suggest that LLVM assumes that *every* field +/// has an underlying storage type. Therefore empty structures containing +/// zero sized subobjects such as empty records or zero sized arrays still get +/// a zero sized (empty struct) storage type. +/// * Clang reads the complete type rather than the base type when generating +/// code to access fields. Bitfields in tail position with tail padding may +/// be clipped in the base class but not the complete class (we may discover +/// that the tail padding is not used in the complete class.) However, +/// because LLVM reads from the complete type it can generate incorrect code +/// if we do not clip the tail padding off of the bitfield in the complete +/// layout. This introduces a somewhat awkward extra unnecessary clip stage. +/// The location of the clip is stored internally as a sentinel of type +/// SCISSOR. If LLVM were updated to read base types (which it probably +/// should because locations of things such as VBases are bogus in the llvm +/// type anyway) then we could eliminate the SCISSOR. +/// * Itanium allows nearly empty primary virtual bases. These bases don't get +/// get their own storage because they're laid out as part of another base +/// or at the beginning of the structure. Determining if a VBase actually +/// gets storage awkwardly involves a walk of all bases. +/// * VFPtrs and VBPtrs do *not* make a record NotZeroInitializable. +struct CGRecordLowering { + // MemberInfo is a helper structure that contains information about a record + // member. In additional to the standard member types, there exists a + // sentinel member type that ensures correct rounding. + struct MemberInfo { + CharUnits Offset; + enum InfoKind { VFPtr, VBPtr, Field, Base, VBase, Scissor } Kind; + llvm::Type *Data; + union { + const FieldDecl *FD; + const CXXRecordDecl *RD; + }; + MemberInfo(CharUnits Offset, InfoKind Kind, llvm::Type *Data, + const FieldDecl *FD = nullptr) + : Offset(Offset), Kind(Kind), Data(Data), FD(FD) {} + MemberInfo(CharUnits Offset, InfoKind Kind, llvm::Type *Data, + const CXXRecordDecl *RD) + : Offset(Offset), Kind(Kind), Data(Data), RD(RD) {} + // MemberInfos are sorted so we define a < operator. + bool operator <(const MemberInfo& a) const { return Offset < a.Offset; } + }; + // The constructor. + CGRecordLowering(CodeGenTypes &Types, const RecordDecl *D, bool Packed); + // Short helper routines. + /// Constructs a MemberInfo instance from an offset and llvm::Type *. + MemberInfo StorageInfo(CharUnits Offset, llvm::Type *Data) { + return MemberInfo(Offset, MemberInfo::Field, Data); + } + + /// The Microsoft bitfield layout rule allocates discrete storage + /// units of the field's formal type and only combines adjacent + /// fields of the same formal type. We want to emit a layout with + /// these discrete storage units instead of combining them into a + /// continuous run. + bool isDiscreteBitFieldABI() { + return Context.getTargetInfo().getCXXABI().isMicrosoft() || + D->isMsStruct(Context); + } + + /// The Itanium base layout rule allows virtual bases to overlap + /// other bases, which complicates layout in specific ways. + /// + /// Note specifically that the ms_struct attribute doesn't change this. + bool isOverlappingVBaseABI() { + return !Context.getTargetInfo().getCXXABI().isMicrosoft(); + } + + /// Wraps llvm::Type::getIntNTy with some implicit arguments. + llvm::Type *getIntNType(uint64_t NumBits) { + return llvm::Type::getIntNTy(Types.getLLVMContext(), + (unsigned)llvm::alignTo(NumBits, 8)); + } + /// Gets an llvm type of size NumBytes and alignment 1. + llvm::Type *getByteArrayType(CharUnits NumBytes) { + assert(!NumBytes.isZero() && "Empty byte arrays aren't allowed."); + llvm::Type *Type = llvm::Type::getInt8Ty(Types.getLLVMContext()); + return NumBytes == CharUnits::One() ? Type : + (llvm::Type *)llvm::ArrayType::get(Type, NumBytes.getQuantity()); + } + /// Gets the storage type for a field decl and handles storage + /// for itanium bitfields that are smaller than their declared type. + llvm::Type *getStorageType(const FieldDecl *FD) { + llvm::Type *Type = Types.ConvertTypeForMem(FD->getType()); + if (!FD->isBitField()) return Type; + if (isDiscreteBitFieldABI()) return Type; + return getIntNType(std::min(FD->getBitWidthValue(Context), + (unsigned)Context.toBits(getSize(Type)))); + } + /// Gets the llvm Basesubobject type from a CXXRecordDecl. + llvm::Type *getStorageType(const CXXRecordDecl *RD) { + return Types.getCGRecordLayout(RD).getBaseSubobjectLLVMType(); + } + CharUnits bitsToCharUnits(uint64_t BitOffset) { + return Context.toCharUnitsFromBits(BitOffset); + } + CharUnits getSize(llvm::Type *Type) { + return CharUnits::fromQuantity(DataLayout.getTypeAllocSize(Type)); + } + CharUnits getAlignment(llvm::Type *Type) { + return CharUnits::fromQuantity(DataLayout.getABITypeAlignment(Type)); + } + bool isZeroInitializable(const FieldDecl *FD) { + return Types.isZeroInitializable(FD->getType()); + } + bool isZeroInitializable(const RecordDecl *RD) { + return Types.isZeroInitializable(RD); + } + void appendPaddingBytes(CharUnits Size) { + if (!Size.isZero()) + FieldTypes.push_back(getByteArrayType(Size)); + } + uint64_t getFieldBitOffset(const FieldDecl *FD) { + return Layout.getFieldOffset(FD->getFieldIndex()); + } + // Layout routines. + void setBitFieldInfo(const FieldDecl *FD, CharUnits StartOffset, + llvm::Type *StorageType); + /// Lowers an ASTRecordLayout to a llvm type. + void lower(bool NonVirtualBaseType); + void lowerUnion(); + void accumulateFields(); + void accumulateBitFields(RecordDecl::field_iterator Field, + RecordDecl::field_iterator FieldEnd); + void accumulateBases(); + void accumulateVPtrs(); + void accumulateVBases(); + /// Recursively searches all of the bases to find out if a vbase is + /// not the primary vbase of some base class. + bool hasOwnStorage(const CXXRecordDecl *Decl, const CXXRecordDecl *Query); + void calculateZeroInit(); + /// Lowers bitfield storage types to I8 arrays for bitfields with tail + /// padding that is or can potentially be used. + void clipTailPadding(); + /// Determines if we need a packed llvm struct. + void determinePacked(bool NVBaseType); + /// Inserts padding everywhere it's needed. + void insertPadding(); + /// Fills out the structures that are ultimately consumed. + void fillOutputFields(); + // Input memoization fields. + CodeGenTypes &Types; + const ASTContext &Context; + const RecordDecl *D; + const CXXRecordDecl *RD; + const ASTRecordLayout &Layout; + const llvm::DataLayout &DataLayout; + // Helpful intermediate data-structures. + std::vector<MemberInfo> Members; + // Output fields, consumed by CodeGenTypes::ComputeRecordLayout. + SmallVector<llvm::Type *, 16> FieldTypes; + llvm::DenseMap<const FieldDecl *, unsigned> Fields; + llvm::DenseMap<const FieldDecl *, CGBitFieldInfo> BitFields; + llvm::DenseMap<const CXXRecordDecl *, unsigned> NonVirtualBases; + llvm::DenseMap<const CXXRecordDecl *, unsigned> VirtualBases; + bool IsZeroInitializable : 1; + bool IsZeroInitializableAsBase : 1; + bool Packed : 1; +private: + CGRecordLowering(const CGRecordLowering &) = delete; + void operator =(const CGRecordLowering &) = delete; +}; +} // namespace { + +CGRecordLowering::CGRecordLowering(CodeGenTypes &Types, const RecordDecl *D, + bool Packed) + : Types(Types), Context(Types.getContext()), D(D), + RD(dyn_cast<CXXRecordDecl>(D)), + Layout(Types.getContext().getASTRecordLayout(D)), + DataLayout(Types.getDataLayout()), IsZeroInitializable(true), + IsZeroInitializableAsBase(true), Packed(Packed) {} + +void CGRecordLowering::setBitFieldInfo( + const FieldDecl *FD, CharUnits StartOffset, llvm::Type *StorageType) { + CGBitFieldInfo &Info = BitFields[FD->getCanonicalDecl()]; + Info.IsSigned = FD->getType()->isSignedIntegerOrEnumerationType(); + Info.Offset = (unsigned)(getFieldBitOffset(FD) - Context.toBits(StartOffset)); + Info.Size = FD->getBitWidthValue(Context); + Info.StorageSize = (unsigned)DataLayout.getTypeAllocSizeInBits(StorageType); + Info.StorageOffset = StartOffset; + if (Info.Size > Info.StorageSize) + Info.Size = Info.StorageSize; + // Reverse the bit offsets for big endian machines. Because we represent + // a bitfield as a single large integer load, we can imagine the bits + // counting from the most-significant-bit instead of the + // least-significant-bit. + if (DataLayout.isBigEndian()) + Info.Offset = Info.StorageSize - (Info.Offset + Info.Size); +} + +void CGRecordLowering::lower(bool NVBaseType) { + // The lowering process implemented in this function takes a variety of + // carefully ordered phases. + // 1) Store all members (fields and bases) in a list and sort them by offset. + // 2) Add a 1-byte capstone member at the Size of the structure. + // 3) Clip bitfield storages members if their tail padding is or might be + // used by another field or base. The clipping process uses the capstone + // by treating it as another object that occurs after the record. + // 4) Determine if the llvm-struct requires packing. It's important that this + // phase occur after clipping, because clipping changes the llvm type. + // This phase reads the offset of the capstone when determining packedness + // and updates the alignment of the capstone to be equal of the alignment + // of the record after doing so. + // 5) Insert padding everywhere it is needed. This phase requires 'Packed' to + // have been computed and needs to know the alignment of the record in + // order to understand if explicit tail padding is needed. + // 6) Remove the capstone, we don't need it anymore. + // 7) Determine if this record can be zero-initialized. This phase could have + // been placed anywhere after phase 1. + // 8) Format the complete list of members in a way that can be consumed by + // CodeGenTypes::ComputeRecordLayout. + CharUnits Size = NVBaseType ? Layout.getNonVirtualSize() : Layout.getSize(); + if (D->isUnion()) + return lowerUnion(); + accumulateFields(); + // RD implies C++. + if (RD) { + accumulateVPtrs(); + accumulateBases(); + if (Members.empty()) + return appendPaddingBytes(Size); + if (!NVBaseType) + accumulateVBases(); + } + llvm::stable_sort(Members); + Members.push_back(StorageInfo(Size, getIntNType(8))); + clipTailPadding(); + determinePacked(NVBaseType); + insertPadding(); + Members.pop_back(); + calculateZeroInit(); + fillOutputFields(); +} + +void CGRecordLowering::lowerUnion() { + CharUnits LayoutSize = Layout.getSize(); + llvm::Type *StorageType = nullptr; + bool SeenNamedMember = false; + // Iterate through the fields setting bitFieldInfo and the Fields array. Also + // locate the "most appropriate" storage type. The heuristic for finding the + // storage type isn't necessary, the first (non-0-length-bitfield) field's + // type would work fine and be simpler but would be different than what we've + // been doing and cause lit tests to change. + for (const auto *Field : D->fields()) { + if (Field->isBitField()) { + if (Field->isZeroLengthBitField(Context)) + continue; + llvm::Type *FieldType = getStorageType(Field); + if (LayoutSize < getSize(FieldType)) + FieldType = getByteArrayType(LayoutSize); + setBitFieldInfo(Field, CharUnits::Zero(), FieldType); + } + Fields[Field->getCanonicalDecl()] = 0; + llvm::Type *FieldType = getStorageType(Field); + // Compute zero-initializable status. + // This union might not be zero initialized: it may contain a pointer to + // data member which might have some exotic initialization sequence. + // If this is the case, then we aught not to try and come up with a "better" + // type, it might not be very easy to come up with a Constant which + // correctly initializes it. + if (!SeenNamedMember) { + SeenNamedMember = Field->getIdentifier(); + if (!SeenNamedMember) + if (const auto *FieldRD = Field->getType()->getAsRecordDecl()) + SeenNamedMember = FieldRD->findFirstNamedDataMember(); + if (SeenNamedMember && !isZeroInitializable(Field)) { + IsZeroInitializable = IsZeroInitializableAsBase = false; + StorageType = FieldType; + } + } + // Because our union isn't zero initializable, we won't be getting a better + // storage type. + if (!IsZeroInitializable) + continue; + // Conditionally update our storage type if we've got a new "better" one. + if (!StorageType || + getAlignment(FieldType) > getAlignment(StorageType) || + (getAlignment(FieldType) == getAlignment(StorageType) && + getSize(FieldType) > getSize(StorageType))) + StorageType = FieldType; + } + // If we have no storage type just pad to the appropriate size and return. + if (!StorageType) + return appendPaddingBytes(LayoutSize); + // If our storage size was bigger than our required size (can happen in the + // case of packed bitfields on Itanium) then just use an I8 array. + if (LayoutSize < getSize(StorageType)) + StorageType = getByteArrayType(LayoutSize); + FieldTypes.push_back(StorageType); + appendPaddingBytes(LayoutSize - getSize(StorageType)); + // Set packed if we need it. + if (LayoutSize % getAlignment(StorageType)) + Packed = true; +} + +void CGRecordLowering::accumulateFields() { + for (RecordDecl::field_iterator Field = D->field_begin(), + FieldEnd = D->field_end(); + Field != FieldEnd;) { + if (Field->isBitField()) { + RecordDecl::field_iterator Start = Field; + // Iterate to gather the list of bitfields. + for (++Field; Field != FieldEnd && Field->isBitField(); ++Field); + accumulateBitFields(Start, Field); + } else if (!Field->isZeroSize(Context)) { + Members.push_back(MemberInfo( + bitsToCharUnits(getFieldBitOffset(*Field)), MemberInfo::Field, + getStorageType(*Field), *Field)); + ++Field; + } else { + ++Field; + } + } +} + +void +CGRecordLowering::accumulateBitFields(RecordDecl::field_iterator Field, + RecordDecl::field_iterator FieldEnd) { + // Run stores the first element of the current run of bitfields. FieldEnd is + // used as a special value to note that we don't have a current run. A + // bitfield run is a contiguous collection of bitfields that can be stored in + // the same storage block. Zero-sized bitfields and bitfields that would + // cross an alignment boundary break a run and start a new one. + RecordDecl::field_iterator Run = FieldEnd; + // Tail is the offset of the first bit off the end of the current run. It's + // used to determine if the ASTRecordLayout is treating these two bitfields as + // contiguous. StartBitOffset is offset of the beginning of the Run. + uint64_t StartBitOffset, Tail = 0; + if (isDiscreteBitFieldABI()) { + for (; Field != FieldEnd; ++Field) { + uint64_t BitOffset = getFieldBitOffset(*Field); + // Zero-width bitfields end runs. + if (Field->isZeroLengthBitField(Context)) { + Run = FieldEnd; + continue; + } + llvm::Type *Type = Types.ConvertTypeForMem(Field->getType()); + // If we don't have a run yet, or don't live within the previous run's + // allocated storage then we allocate some storage and start a new run. + if (Run == FieldEnd || BitOffset >= Tail) { + Run = Field; + StartBitOffset = BitOffset; + Tail = StartBitOffset + DataLayout.getTypeAllocSizeInBits(Type); + // Add the storage member to the record. This must be added to the + // record before the bitfield members so that it gets laid out before + // the bitfields it contains get laid out. + Members.push_back(StorageInfo(bitsToCharUnits(StartBitOffset), Type)); + } + // Bitfields get the offset of their storage but come afterward and remain + // there after a stable sort. + Members.push_back(MemberInfo(bitsToCharUnits(StartBitOffset), + MemberInfo::Field, nullptr, *Field)); + } + return; + } + + // Check if OffsetInRecord is better as a single field run. When OffsetInRecord + // has legal integer width, and its bitfield offset is naturally aligned, it + // is better to make the bitfield a separate storage component so as it can be + // accessed directly with lower cost. + auto IsBetterAsSingleFieldRun = [&](uint64_t OffsetInRecord, + uint64_t StartBitOffset) { + if (!Types.getCodeGenOpts().FineGrainedBitfieldAccesses) + return false; + if (!DataLayout.isLegalInteger(OffsetInRecord)) + return false; + // Make sure StartBitOffset is natually aligned if it is treated as an + // IType integer. + if (StartBitOffset % + Context.toBits(getAlignment(getIntNType(OffsetInRecord))) != + 0) + return false; + return true; + }; + + // The start field is better as a single field run. + bool StartFieldAsSingleRun = false; + for (;;) { + // Check to see if we need to start a new run. + if (Run == FieldEnd) { + // If we're out of fields, return. + if (Field == FieldEnd) + break; + // Any non-zero-length bitfield can start a new run. + if (!Field->isZeroLengthBitField(Context)) { + Run = Field; + StartBitOffset = getFieldBitOffset(*Field); + Tail = StartBitOffset + Field->getBitWidthValue(Context); + StartFieldAsSingleRun = IsBetterAsSingleFieldRun(Tail - StartBitOffset, + StartBitOffset); + } + ++Field; + continue; + } + + // If the start field of a new run is better as a single run, or + // if current field (or consecutive fields) is better as a single run, or + // if current field has zero width bitfield and either + // UseZeroLengthBitfieldAlignment or UseBitFieldTypeAlignment is set to + // true, or + // if the offset of current field is inconsistent with the offset of + // previous field plus its offset, + // skip the block below and go ahead to emit the storage. + // Otherwise, try to add bitfields to the run. + if (!StartFieldAsSingleRun && Field != FieldEnd && + !IsBetterAsSingleFieldRun(Tail - StartBitOffset, StartBitOffset) && + (!Field->isZeroLengthBitField(Context) || + (!Context.getTargetInfo().useZeroLengthBitfieldAlignment() && + !Context.getTargetInfo().useBitFieldTypeAlignment())) && + Tail == getFieldBitOffset(*Field)) { + Tail += Field->getBitWidthValue(Context); + ++Field; + continue; + } + + // We've hit a break-point in the run and need to emit a storage field. + llvm::Type *Type = getIntNType(Tail - StartBitOffset); + // Add the storage member to the record and set the bitfield info for all of + // the bitfields in the run. Bitfields get the offset of their storage but + // come afterward and remain there after a stable sort. + Members.push_back(StorageInfo(bitsToCharUnits(StartBitOffset), Type)); + for (; Run != Field; ++Run) + Members.push_back(MemberInfo(bitsToCharUnits(StartBitOffset), + MemberInfo::Field, nullptr, *Run)); + Run = FieldEnd; + StartFieldAsSingleRun = false; + } +} + +void CGRecordLowering::accumulateBases() { + // If we've got a primary virtual base, we need to add it with the bases. + if (Layout.isPrimaryBaseVirtual()) { + const CXXRecordDecl *BaseDecl = Layout.getPrimaryBase(); + Members.push_back(MemberInfo(CharUnits::Zero(), MemberInfo::Base, + getStorageType(BaseDecl), BaseDecl)); + } + // Accumulate the non-virtual bases. + for (const auto &Base : RD->bases()) { + if (Base.isVirtual()) + continue; + + // Bases can be zero-sized even if not technically empty if they + // contain only a trailing array member. + const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); + if (!BaseDecl->isEmpty() && + !Context.getASTRecordLayout(BaseDecl).getNonVirtualSize().isZero()) + Members.push_back(MemberInfo(Layout.getBaseClassOffset(BaseDecl), + MemberInfo::Base, getStorageType(BaseDecl), BaseDecl)); + } +} + +void CGRecordLowering::accumulateVPtrs() { + if (Layout.hasOwnVFPtr()) + Members.push_back(MemberInfo(CharUnits::Zero(), MemberInfo::VFPtr, + llvm::FunctionType::get(getIntNType(32), /*isVarArg=*/true)-> + getPointerTo()->getPointerTo())); + if (Layout.hasOwnVBPtr()) + Members.push_back(MemberInfo(Layout.getVBPtrOffset(), MemberInfo::VBPtr, + llvm::Type::getInt32PtrTy(Types.getLLVMContext()))); +} + +void CGRecordLowering::accumulateVBases() { + CharUnits ScissorOffset = Layout.getNonVirtualSize(); + // In the itanium ABI, it's possible to place a vbase at a dsize that is + // smaller than the nvsize. Here we check to see if such a base is placed + // before the nvsize and set the scissor offset to that, instead of the + // nvsize. + if (isOverlappingVBaseABI()) + for (const auto &Base : RD->vbases()) { + const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); + if (BaseDecl->isEmpty()) + continue; + // If the vbase is a primary virtual base of some base, then it doesn't + // get its own storage location but instead lives inside of that base. + if (Context.isNearlyEmpty(BaseDecl) && !hasOwnStorage(RD, BaseDecl)) + continue; + ScissorOffset = std::min(ScissorOffset, + Layout.getVBaseClassOffset(BaseDecl)); + } + Members.push_back(MemberInfo(ScissorOffset, MemberInfo::Scissor, nullptr, + RD)); + for (const auto &Base : RD->vbases()) { + const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); + if (BaseDecl->isEmpty()) + continue; + CharUnits Offset = Layout.getVBaseClassOffset(BaseDecl); + // If the vbase is a primary virtual base of some base, then it doesn't + // get its own storage location but instead lives inside of that base. + if (isOverlappingVBaseABI() && + Context.isNearlyEmpty(BaseDecl) && + !hasOwnStorage(RD, BaseDecl)) { + Members.push_back(MemberInfo(Offset, MemberInfo::VBase, nullptr, + BaseDecl)); + continue; + } + // If we've got a vtordisp, add it as a storage type. + if (Layout.getVBaseOffsetsMap().find(BaseDecl)->second.hasVtorDisp()) + Members.push_back(StorageInfo(Offset - CharUnits::fromQuantity(4), + getIntNType(32))); + Members.push_back(MemberInfo(Offset, MemberInfo::VBase, + getStorageType(BaseDecl), BaseDecl)); + } +} + +bool CGRecordLowering::hasOwnStorage(const CXXRecordDecl *Decl, + const CXXRecordDecl *Query) { + const ASTRecordLayout &DeclLayout = Context.getASTRecordLayout(Decl); + if (DeclLayout.isPrimaryBaseVirtual() && DeclLayout.getPrimaryBase() == Query) + return false; + for (const auto &Base : Decl->bases()) + if (!hasOwnStorage(Base.getType()->getAsCXXRecordDecl(), Query)) + return false; + return true; +} + +void CGRecordLowering::calculateZeroInit() { + for (std::vector<MemberInfo>::const_iterator Member = Members.begin(), + MemberEnd = Members.end(); + IsZeroInitializableAsBase && Member != MemberEnd; ++Member) { + if (Member->Kind == MemberInfo::Field) { + if (!Member->FD || isZeroInitializable(Member->FD)) + continue; + IsZeroInitializable = IsZeroInitializableAsBase = false; + } else if (Member->Kind == MemberInfo::Base || + Member->Kind == MemberInfo::VBase) { + if (isZeroInitializable(Member->RD)) + continue; + IsZeroInitializable = false; + if (Member->Kind == MemberInfo::Base) + IsZeroInitializableAsBase = false; + } + } +} + +void CGRecordLowering::clipTailPadding() { + std::vector<MemberInfo>::iterator Prior = Members.begin(); + CharUnits Tail = getSize(Prior->Data); + for (std::vector<MemberInfo>::iterator Member = Prior + 1, + MemberEnd = Members.end(); + Member != MemberEnd; ++Member) { + // Only members with data and the scissor can cut into tail padding. + if (!Member->Data && Member->Kind != MemberInfo::Scissor) + continue; + if (Member->Offset < Tail) { + assert(Prior->Kind == MemberInfo::Field && + "Only storage fields have tail padding!"); + if (!Prior->FD || Prior->FD->isBitField()) + Prior->Data = getByteArrayType(bitsToCharUnits(llvm::alignTo( + cast<llvm::IntegerType>(Prior->Data)->getIntegerBitWidth(), 8))); + else { + assert(Prior->FD->hasAttr<NoUniqueAddressAttr>() && + "should not have reused this field's tail padding"); + Prior->Data = getByteArrayType( + Context.getTypeInfoDataSizeInChars(Prior->FD->getType()).first); + } + } + if (Member->Data) + Prior = Member; + Tail = Prior->Offset + getSize(Prior->Data); + } +} + +void CGRecordLowering::determinePacked(bool NVBaseType) { + if (Packed) + return; + CharUnits Alignment = CharUnits::One(); + CharUnits NVAlignment = CharUnits::One(); + CharUnits NVSize = + !NVBaseType && RD ? Layout.getNonVirtualSize() : CharUnits::Zero(); + for (std::vector<MemberInfo>::const_iterator Member = Members.begin(), + MemberEnd = Members.end(); + Member != MemberEnd; ++Member) { + if (!Member->Data) + continue; + // If any member falls at an offset that it not a multiple of its alignment, + // then the entire record must be packed. + if (Member->Offset % getAlignment(Member->Data)) + Packed = true; + if (Member->Offset < NVSize) + NVAlignment = std::max(NVAlignment, getAlignment(Member->Data)); + Alignment = std::max(Alignment, getAlignment(Member->Data)); + } + // If the size of the record (the capstone's offset) is not a multiple of the + // record's alignment, it must be packed. + if (Members.back().Offset % Alignment) + Packed = true; + // If the non-virtual sub-object is not a multiple of the non-virtual + // sub-object's alignment, it must be packed. We cannot have a packed + // non-virtual sub-object and an unpacked complete object or vise versa. + if (NVSize % NVAlignment) + Packed = true; + // Update the alignment of the sentinel. + if (!Packed) + Members.back().Data = getIntNType(Context.toBits(Alignment)); +} + +void CGRecordLowering::insertPadding() { + std::vector<std::pair<CharUnits, CharUnits> > Padding; + CharUnits Size = CharUnits::Zero(); + for (std::vector<MemberInfo>::const_iterator Member = Members.begin(), + MemberEnd = Members.end(); + Member != MemberEnd; ++Member) { + if (!Member->Data) + continue; + CharUnits Offset = Member->Offset; + assert(Offset >= Size); + // Insert padding if we need to. + if (Offset != + Size.alignTo(Packed ? CharUnits::One() : getAlignment(Member->Data))) + Padding.push_back(std::make_pair(Size, Offset - Size)); + Size = Offset + getSize(Member->Data); + } + if (Padding.empty()) + return; + // Add the padding to the Members list and sort it. + for (std::vector<std::pair<CharUnits, CharUnits> >::const_iterator + Pad = Padding.begin(), PadEnd = Padding.end(); + Pad != PadEnd; ++Pad) + Members.push_back(StorageInfo(Pad->first, getByteArrayType(Pad->second))); + llvm::stable_sort(Members); +} + +void CGRecordLowering::fillOutputFields() { + for (std::vector<MemberInfo>::const_iterator Member = Members.begin(), + MemberEnd = Members.end(); + Member != MemberEnd; ++Member) { + if (Member->Data) + FieldTypes.push_back(Member->Data); + if (Member->Kind == MemberInfo::Field) { + if (Member->FD) + Fields[Member->FD->getCanonicalDecl()] = FieldTypes.size() - 1; + // A field without storage must be a bitfield. + if (!Member->Data) + setBitFieldInfo(Member->FD, Member->Offset, FieldTypes.back()); + } else if (Member->Kind == MemberInfo::Base) + NonVirtualBases[Member->RD] = FieldTypes.size() - 1; + else if (Member->Kind == MemberInfo::VBase) + VirtualBases[Member->RD] = FieldTypes.size() - 1; + } +} + +CGBitFieldInfo CGBitFieldInfo::MakeInfo(CodeGenTypes &Types, + const FieldDecl *FD, + uint64_t Offset, uint64_t Size, + uint64_t StorageSize, + CharUnits StorageOffset) { + // This function is vestigial from CGRecordLayoutBuilder days but is still + // used in GCObjCRuntime.cpp. That usage has a "fixme" attached to it that + // when addressed will allow for the removal of this function. + llvm::Type *Ty = Types.ConvertTypeForMem(FD->getType()); + CharUnits TypeSizeInBytes = + CharUnits::fromQuantity(Types.getDataLayout().getTypeAllocSize(Ty)); + uint64_t TypeSizeInBits = Types.getContext().toBits(TypeSizeInBytes); + + bool IsSigned = FD->getType()->isSignedIntegerOrEnumerationType(); + + if (Size > TypeSizeInBits) { + // We have a wide bit-field. The extra bits are only used for padding, so + // if we have a bitfield of type T, with size N: + // + // T t : N; + // + // We can just assume that it's: + // + // T t : sizeof(T); + // + Size = TypeSizeInBits; + } + + // Reverse the bit offsets for big endian machines. Because we represent + // a bitfield as a single large integer load, we can imagine the bits + // counting from the most-significant-bit instead of the + // least-significant-bit. + if (Types.getDataLayout().isBigEndian()) { + Offset = StorageSize - (Offset + Size); + } + + return CGBitFieldInfo(Offset, Size, IsSigned, StorageSize, StorageOffset); +} + +CGRecordLayout *CodeGenTypes::ComputeRecordLayout(const RecordDecl *D, + llvm::StructType *Ty) { + CGRecordLowering Builder(*this, D, /*Packed=*/false); + + Builder.lower(/*NonVirtualBaseType=*/false); + + // If we're in C++, compute the base subobject type. + llvm::StructType *BaseTy = nullptr; + if (isa<CXXRecordDecl>(D) && !D->isUnion() && !D->hasAttr<FinalAttr>()) { + BaseTy = Ty; + if (Builder.Layout.getNonVirtualSize() != Builder.Layout.getSize()) { + CGRecordLowering BaseBuilder(*this, D, /*Packed=*/Builder.Packed); + BaseBuilder.lower(/*NonVirtualBaseType=*/true); + BaseTy = llvm::StructType::create( + getLLVMContext(), BaseBuilder.FieldTypes, "", BaseBuilder.Packed); + addRecordTypeName(D, BaseTy, ".base"); + // BaseTy and Ty must agree on their packedness for getLLVMFieldNo to work + // on both of them with the same index. + assert(Builder.Packed == BaseBuilder.Packed && + "Non-virtual and complete types must agree on packedness"); + } + } + + // Fill in the struct *after* computing the base type. Filling in the body + // signifies that the type is no longer opaque and record layout is complete, + // but we may need to recursively layout D while laying D out as a base type. + Ty->setBody(Builder.FieldTypes, Builder.Packed); + + CGRecordLayout *RL = + new CGRecordLayout(Ty, BaseTy, Builder.IsZeroInitializable, + Builder.IsZeroInitializableAsBase); + + RL->NonVirtualBases.swap(Builder.NonVirtualBases); + RL->CompleteObjectVirtualBases.swap(Builder.VirtualBases); + + // Add all the field numbers. + RL->FieldInfo.swap(Builder.Fields); + + // Add bitfield info. + RL->BitFields.swap(Builder.BitFields); + + // Dump the layout, if requested. + if (getContext().getLangOpts().DumpRecordLayouts) { + llvm::outs() << "\n*** Dumping IRgen Record Layout\n"; + llvm::outs() << "Record: "; + D->dump(llvm::outs()); + llvm::outs() << "\nLayout: "; + RL->print(llvm::outs()); + } + +#ifndef NDEBUG + // Verify that the computed LLVM struct size matches the AST layout size. + const ASTRecordLayout &Layout = getContext().getASTRecordLayout(D); + + uint64_t TypeSizeInBits = getContext().toBits(Layout.getSize()); + assert(TypeSizeInBits == getDataLayout().getTypeAllocSizeInBits(Ty) && + "Type size mismatch!"); + + if (BaseTy) { + CharUnits NonVirtualSize = Layout.getNonVirtualSize(); + + uint64_t AlignedNonVirtualTypeSizeInBits = + getContext().toBits(NonVirtualSize); + + assert(AlignedNonVirtualTypeSizeInBits == + getDataLayout().getTypeAllocSizeInBits(BaseTy) && + "Type size mismatch!"); + } + + // Verify that the LLVM and AST field offsets agree. + llvm::StructType *ST = RL->getLLVMType(); + const llvm::StructLayout *SL = getDataLayout().getStructLayout(ST); + + const ASTRecordLayout &AST_RL = getContext().getASTRecordLayout(D); + RecordDecl::field_iterator it = D->field_begin(); + for (unsigned i = 0, e = AST_RL.getFieldCount(); i != e; ++i, ++it) { + const FieldDecl *FD = *it; + + // Ignore zero-sized fields. + if (FD->isZeroSize(getContext())) + continue; + + // For non-bit-fields, just check that the LLVM struct offset matches the + // AST offset. + if (!FD->isBitField()) { + unsigned FieldNo = RL->getLLVMFieldNo(FD); + assert(AST_RL.getFieldOffset(i) == SL->getElementOffsetInBits(FieldNo) && + "Invalid field offset!"); + continue; + } + + // Ignore unnamed bit-fields. + if (!FD->getDeclName()) + continue; + + const CGBitFieldInfo &Info = RL->getBitFieldInfo(FD); + llvm::Type *ElementTy = ST->getTypeAtIndex(RL->getLLVMFieldNo(FD)); + + // Unions have overlapping elements dictating their layout, but for + // non-unions we can verify that this section of the layout is the exact + // expected size. + if (D->isUnion()) { + // For unions we verify that the start is zero and the size + // is in-bounds. However, on BE systems, the offset may be non-zero, but + // the size + offset should match the storage size in that case as it + // "starts" at the back. + if (getDataLayout().isBigEndian()) + assert(static_cast<unsigned>(Info.Offset + Info.Size) == + Info.StorageSize && + "Big endian union bitfield does not end at the back"); + else + assert(Info.Offset == 0 && + "Little endian union bitfield with a non-zero offset"); + assert(Info.StorageSize <= SL->getSizeInBits() && + "Union not large enough for bitfield storage"); + } else { + assert(Info.StorageSize == + getDataLayout().getTypeAllocSizeInBits(ElementTy) && + "Storage size does not match the element type size"); + } + assert(Info.Size > 0 && "Empty bitfield!"); + assert(static_cast<unsigned>(Info.Offset) + Info.Size <= Info.StorageSize && + "Bitfield outside of its allocated storage"); + } +#endif + + return RL; +} + +void CGRecordLayout::print(raw_ostream &OS) const { + OS << "<CGRecordLayout\n"; + OS << " LLVMType:" << *CompleteObjectType << "\n"; + if (BaseSubobjectType) + OS << " NonVirtualBaseLLVMType:" << *BaseSubobjectType << "\n"; + OS << " IsZeroInitializable:" << IsZeroInitializable << "\n"; + OS << " BitFields:[\n"; + + // Print bit-field infos in declaration order. + std::vector<std::pair<unsigned, const CGBitFieldInfo*> > BFIs; + for (llvm::DenseMap<const FieldDecl*, CGBitFieldInfo>::const_iterator + it = BitFields.begin(), ie = BitFields.end(); + it != ie; ++it) { + const RecordDecl *RD = it->first->getParent(); + unsigned Index = 0; + for (RecordDecl::field_iterator + it2 = RD->field_begin(); *it2 != it->first; ++it2) + ++Index; + BFIs.push_back(std::make_pair(Index, &it->second)); + } + llvm::array_pod_sort(BFIs.begin(), BFIs.end()); + for (unsigned i = 0, e = BFIs.size(); i != e; ++i) { + OS.indent(4); + BFIs[i].second->print(OS); + OS << "\n"; + } + + OS << "]>\n"; +} + +LLVM_DUMP_METHOD void CGRecordLayout::dump() const { + print(llvm::errs()); +} + +void CGBitFieldInfo::print(raw_ostream &OS) const { + OS << "<CGBitFieldInfo" + << " Offset:" << Offset + << " Size:" << Size + << " IsSigned:" << IsSigned + << " StorageSize:" << StorageSize + << " StorageOffset:" << StorageOffset.getQuantity() << ">"; +} + +LLVM_DUMP_METHOD void CGBitFieldInfo::dump() const { + print(llvm::errs()); +} |