summaryrefslogtreecommitdiffstats
path: root/gnu/llvm/clang/lib/CodeGen/CGRecordLayoutBuilder.cpp
diff options
context:
space:
mode:
authorpatrick <patrick@openbsd.org>2020-08-03 14:31:31 +0000
committerpatrick <patrick@openbsd.org>2020-08-03 14:31:31 +0000
commite5dd70708596ae51455a0ffa086a00c5b29f8583 (patch)
tree5d676f27b570bacf71e786c3b5cff3e6f6679b59 /gnu/llvm/clang/lib/CodeGen/CGRecordLayoutBuilder.cpp
parentImport LLVM 10.0.0 release including clang, lld and lldb. (diff)
downloadwireguard-openbsd-e5dd70708596ae51455a0ffa086a00c5b29f8583.tar.xz
wireguard-openbsd-e5dd70708596ae51455a0ffa086a00c5b29f8583.zip
Import LLVM 10.0.0 release including clang, lld and lldb.
ok hackroom tested by plenty
Diffstat (limited to 'gnu/llvm/clang/lib/CodeGen/CGRecordLayoutBuilder.cpp')
-rw-r--r--gnu/llvm/clang/lib/CodeGen/CGRecordLayoutBuilder.cpp906
1 files changed, 906 insertions, 0 deletions
diff --git a/gnu/llvm/clang/lib/CodeGen/CGRecordLayoutBuilder.cpp b/gnu/llvm/clang/lib/CodeGen/CGRecordLayoutBuilder.cpp
new file mode 100644
index 00000000000..4de64a32f2a
--- /dev/null
+++ b/gnu/llvm/clang/lib/CodeGen/CGRecordLayoutBuilder.cpp
@@ -0,0 +1,906 @@
+//===--- CGRecordLayoutBuilder.cpp - CGRecordLayout builder ----*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// Builder implementation for CGRecordLayout objects.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CGRecordLayout.h"
+#include "CGCXXABI.h"
+#include "CodeGenTypes.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/Attr.h"
+#include "clang/AST/CXXInheritance.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/RecordLayout.h"
+#include "clang/Basic/CodeGenOptions.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Type.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+using namespace clang;
+using namespace CodeGen;
+
+namespace {
+/// The CGRecordLowering is responsible for lowering an ASTRecordLayout to an
+/// llvm::Type. Some of the lowering is straightforward, some is not. Here we
+/// detail some of the complexities and weirdnesses here.
+/// * LLVM does not have unions - Unions can, in theory be represented by any
+/// llvm::Type with correct size. We choose a field via a specific heuristic
+/// and add padding if necessary.
+/// * LLVM does not have bitfields - Bitfields are collected into contiguous
+/// runs and allocated as a single storage type for the run. ASTRecordLayout
+/// contains enough information to determine where the runs break. Microsoft
+/// and Itanium follow different rules and use different codepaths.
+/// * It is desired that, when possible, bitfields use the appropriate iN type
+/// when lowered to llvm types. For example unsigned x : 24 gets lowered to
+/// i24. This isn't always possible because i24 has storage size of 32 bit
+/// and if it is possible to use that extra byte of padding we must use
+/// [i8 x 3] instead of i24. The function clipTailPadding does this.
+/// C++ examples that require clipping:
+/// struct { int a : 24; char b; }; // a must be clipped, b goes at offset 3
+/// struct A { int a : 24; }; // a must be clipped because a struct like B
+// could exist: struct B : A { char b; }; // b goes at offset 3
+/// * Clang ignores 0 sized bitfields and 0 sized bases but *not* zero sized
+/// fields. The existing asserts suggest that LLVM assumes that *every* field
+/// has an underlying storage type. Therefore empty structures containing
+/// zero sized subobjects such as empty records or zero sized arrays still get
+/// a zero sized (empty struct) storage type.
+/// * Clang reads the complete type rather than the base type when generating
+/// code to access fields. Bitfields in tail position with tail padding may
+/// be clipped in the base class but not the complete class (we may discover
+/// that the tail padding is not used in the complete class.) However,
+/// because LLVM reads from the complete type it can generate incorrect code
+/// if we do not clip the tail padding off of the bitfield in the complete
+/// layout. This introduces a somewhat awkward extra unnecessary clip stage.
+/// The location of the clip is stored internally as a sentinel of type
+/// SCISSOR. If LLVM were updated to read base types (which it probably
+/// should because locations of things such as VBases are bogus in the llvm
+/// type anyway) then we could eliminate the SCISSOR.
+/// * Itanium allows nearly empty primary virtual bases. These bases don't get
+/// get their own storage because they're laid out as part of another base
+/// or at the beginning of the structure. Determining if a VBase actually
+/// gets storage awkwardly involves a walk of all bases.
+/// * VFPtrs and VBPtrs do *not* make a record NotZeroInitializable.
+struct CGRecordLowering {
+ // MemberInfo is a helper structure that contains information about a record
+ // member. In additional to the standard member types, there exists a
+ // sentinel member type that ensures correct rounding.
+ struct MemberInfo {
+ CharUnits Offset;
+ enum InfoKind { VFPtr, VBPtr, Field, Base, VBase, Scissor } Kind;
+ llvm::Type *Data;
+ union {
+ const FieldDecl *FD;
+ const CXXRecordDecl *RD;
+ };
+ MemberInfo(CharUnits Offset, InfoKind Kind, llvm::Type *Data,
+ const FieldDecl *FD = nullptr)
+ : Offset(Offset), Kind(Kind), Data(Data), FD(FD) {}
+ MemberInfo(CharUnits Offset, InfoKind Kind, llvm::Type *Data,
+ const CXXRecordDecl *RD)
+ : Offset(Offset), Kind(Kind), Data(Data), RD(RD) {}
+ // MemberInfos are sorted so we define a < operator.
+ bool operator <(const MemberInfo& a) const { return Offset < a.Offset; }
+ };
+ // The constructor.
+ CGRecordLowering(CodeGenTypes &Types, const RecordDecl *D, bool Packed);
+ // Short helper routines.
+ /// Constructs a MemberInfo instance from an offset and llvm::Type *.
+ MemberInfo StorageInfo(CharUnits Offset, llvm::Type *Data) {
+ return MemberInfo(Offset, MemberInfo::Field, Data);
+ }
+
+ /// The Microsoft bitfield layout rule allocates discrete storage
+ /// units of the field's formal type and only combines adjacent
+ /// fields of the same formal type. We want to emit a layout with
+ /// these discrete storage units instead of combining them into a
+ /// continuous run.
+ bool isDiscreteBitFieldABI() {
+ return Context.getTargetInfo().getCXXABI().isMicrosoft() ||
+ D->isMsStruct(Context);
+ }
+
+ /// The Itanium base layout rule allows virtual bases to overlap
+ /// other bases, which complicates layout in specific ways.
+ ///
+ /// Note specifically that the ms_struct attribute doesn't change this.
+ bool isOverlappingVBaseABI() {
+ return !Context.getTargetInfo().getCXXABI().isMicrosoft();
+ }
+
+ /// Wraps llvm::Type::getIntNTy with some implicit arguments.
+ llvm::Type *getIntNType(uint64_t NumBits) {
+ return llvm::Type::getIntNTy(Types.getLLVMContext(),
+ (unsigned)llvm::alignTo(NumBits, 8));
+ }
+ /// Gets an llvm type of size NumBytes and alignment 1.
+ llvm::Type *getByteArrayType(CharUnits NumBytes) {
+ assert(!NumBytes.isZero() && "Empty byte arrays aren't allowed.");
+ llvm::Type *Type = llvm::Type::getInt8Ty(Types.getLLVMContext());
+ return NumBytes == CharUnits::One() ? Type :
+ (llvm::Type *)llvm::ArrayType::get(Type, NumBytes.getQuantity());
+ }
+ /// Gets the storage type for a field decl and handles storage
+ /// for itanium bitfields that are smaller than their declared type.
+ llvm::Type *getStorageType(const FieldDecl *FD) {
+ llvm::Type *Type = Types.ConvertTypeForMem(FD->getType());
+ if (!FD->isBitField()) return Type;
+ if (isDiscreteBitFieldABI()) return Type;
+ return getIntNType(std::min(FD->getBitWidthValue(Context),
+ (unsigned)Context.toBits(getSize(Type))));
+ }
+ /// Gets the llvm Basesubobject type from a CXXRecordDecl.
+ llvm::Type *getStorageType(const CXXRecordDecl *RD) {
+ return Types.getCGRecordLayout(RD).getBaseSubobjectLLVMType();
+ }
+ CharUnits bitsToCharUnits(uint64_t BitOffset) {
+ return Context.toCharUnitsFromBits(BitOffset);
+ }
+ CharUnits getSize(llvm::Type *Type) {
+ return CharUnits::fromQuantity(DataLayout.getTypeAllocSize(Type));
+ }
+ CharUnits getAlignment(llvm::Type *Type) {
+ return CharUnits::fromQuantity(DataLayout.getABITypeAlignment(Type));
+ }
+ bool isZeroInitializable(const FieldDecl *FD) {
+ return Types.isZeroInitializable(FD->getType());
+ }
+ bool isZeroInitializable(const RecordDecl *RD) {
+ return Types.isZeroInitializable(RD);
+ }
+ void appendPaddingBytes(CharUnits Size) {
+ if (!Size.isZero())
+ FieldTypes.push_back(getByteArrayType(Size));
+ }
+ uint64_t getFieldBitOffset(const FieldDecl *FD) {
+ return Layout.getFieldOffset(FD->getFieldIndex());
+ }
+ // Layout routines.
+ void setBitFieldInfo(const FieldDecl *FD, CharUnits StartOffset,
+ llvm::Type *StorageType);
+ /// Lowers an ASTRecordLayout to a llvm type.
+ void lower(bool NonVirtualBaseType);
+ void lowerUnion();
+ void accumulateFields();
+ void accumulateBitFields(RecordDecl::field_iterator Field,
+ RecordDecl::field_iterator FieldEnd);
+ void accumulateBases();
+ void accumulateVPtrs();
+ void accumulateVBases();
+ /// Recursively searches all of the bases to find out if a vbase is
+ /// not the primary vbase of some base class.
+ bool hasOwnStorage(const CXXRecordDecl *Decl, const CXXRecordDecl *Query);
+ void calculateZeroInit();
+ /// Lowers bitfield storage types to I8 arrays for bitfields with tail
+ /// padding that is or can potentially be used.
+ void clipTailPadding();
+ /// Determines if we need a packed llvm struct.
+ void determinePacked(bool NVBaseType);
+ /// Inserts padding everywhere it's needed.
+ void insertPadding();
+ /// Fills out the structures that are ultimately consumed.
+ void fillOutputFields();
+ // Input memoization fields.
+ CodeGenTypes &Types;
+ const ASTContext &Context;
+ const RecordDecl *D;
+ const CXXRecordDecl *RD;
+ const ASTRecordLayout &Layout;
+ const llvm::DataLayout &DataLayout;
+ // Helpful intermediate data-structures.
+ std::vector<MemberInfo> Members;
+ // Output fields, consumed by CodeGenTypes::ComputeRecordLayout.
+ SmallVector<llvm::Type *, 16> FieldTypes;
+ llvm::DenseMap<const FieldDecl *, unsigned> Fields;
+ llvm::DenseMap<const FieldDecl *, CGBitFieldInfo> BitFields;
+ llvm::DenseMap<const CXXRecordDecl *, unsigned> NonVirtualBases;
+ llvm::DenseMap<const CXXRecordDecl *, unsigned> VirtualBases;
+ bool IsZeroInitializable : 1;
+ bool IsZeroInitializableAsBase : 1;
+ bool Packed : 1;
+private:
+ CGRecordLowering(const CGRecordLowering &) = delete;
+ void operator =(const CGRecordLowering &) = delete;
+};
+} // namespace {
+
+CGRecordLowering::CGRecordLowering(CodeGenTypes &Types, const RecordDecl *D,
+ bool Packed)
+ : Types(Types), Context(Types.getContext()), D(D),
+ RD(dyn_cast<CXXRecordDecl>(D)),
+ Layout(Types.getContext().getASTRecordLayout(D)),
+ DataLayout(Types.getDataLayout()), IsZeroInitializable(true),
+ IsZeroInitializableAsBase(true), Packed(Packed) {}
+
+void CGRecordLowering::setBitFieldInfo(
+ const FieldDecl *FD, CharUnits StartOffset, llvm::Type *StorageType) {
+ CGBitFieldInfo &Info = BitFields[FD->getCanonicalDecl()];
+ Info.IsSigned = FD->getType()->isSignedIntegerOrEnumerationType();
+ Info.Offset = (unsigned)(getFieldBitOffset(FD) - Context.toBits(StartOffset));
+ Info.Size = FD->getBitWidthValue(Context);
+ Info.StorageSize = (unsigned)DataLayout.getTypeAllocSizeInBits(StorageType);
+ Info.StorageOffset = StartOffset;
+ if (Info.Size > Info.StorageSize)
+ Info.Size = Info.StorageSize;
+ // Reverse the bit offsets for big endian machines. Because we represent
+ // a bitfield as a single large integer load, we can imagine the bits
+ // counting from the most-significant-bit instead of the
+ // least-significant-bit.
+ if (DataLayout.isBigEndian())
+ Info.Offset = Info.StorageSize - (Info.Offset + Info.Size);
+}
+
+void CGRecordLowering::lower(bool NVBaseType) {
+ // The lowering process implemented in this function takes a variety of
+ // carefully ordered phases.
+ // 1) Store all members (fields and bases) in a list and sort them by offset.
+ // 2) Add a 1-byte capstone member at the Size of the structure.
+ // 3) Clip bitfield storages members if their tail padding is or might be
+ // used by another field or base. The clipping process uses the capstone
+ // by treating it as another object that occurs after the record.
+ // 4) Determine if the llvm-struct requires packing. It's important that this
+ // phase occur after clipping, because clipping changes the llvm type.
+ // This phase reads the offset of the capstone when determining packedness
+ // and updates the alignment of the capstone to be equal of the alignment
+ // of the record after doing so.
+ // 5) Insert padding everywhere it is needed. This phase requires 'Packed' to
+ // have been computed and needs to know the alignment of the record in
+ // order to understand if explicit tail padding is needed.
+ // 6) Remove the capstone, we don't need it anymore.
+ // 7) Determine if this record can be zero-initialized. This phase could have
+ // been placed anywhere after phase 1.
+ // 8) Format the complete list of members in a way that can be consumed by
+ // CodeGenTypes::ComputeRecordLayout.
+ CharUnits Size = NVBaseType ? Layout.getNonVirtualSize() : Layout.getSize();
+ if (D->isUnion())
+ return lowerUnion();
+ accumulateFields();
+ // RD implies C++.
+ if (RD) {
+ accumulateVPtrs();
+ accumulateBases();
+ if (Members.empty())
+ return appendPaddingBytes(Size);
+ if (!NVBaseType)
+ accumulateVBases();
+ }
+ llvm::stable_sort(Members);
+ Members.push_back(StorageInfo(Size, getIntNType(8)));
+ clipTailPadding();
+ determinePacked(NVBaseType);
+ insertPadding();
+ Members.pop_back();
+ calculateZeroInit();
+ fillOutputFields();
+}
+
+void CGRecordLowering::lowerUnion() {
+ CharUnits LayoutSize = Layout.getSize();
+ llvm::Type *StorageType = nullptr;
+ bool SeenNamedMember = false;
+ // Iterate through the fields setting bitFieldInfo and the Fields array. Also
+ // locate the "most appropriate" storage type. The heuristic for finding the
+ // storage type isn't necessary, the first (non-0-length-bitfield) field's
+ // type would work fine and be simpler but would be different than what we've
+ // been doing and cause lit tests to change.
+ for (const auto *Field : D->fields()) {
+ if (Field->isBitField()) {
+ if (Field->isZeroLengthBitField(Context))
+ continue;
+ llvm::Type *FieldType = getStorageType(Field);
+ if (LayoutSize < getSize(FieldType))
+ FieldType = getByteArrayType(LayoutSize);
+ setBitFieldInfo(Field, CharUnits::Zero(), FieldType);
+ }
+ Fields[Field->getCanonicalDecl()] = 0;
+ llvm::Type *FieldType = getStorageType(Field);
+ // Compute zero-initializable status.
+ // This union might not be zero initialized: it may contain a pointer to
+ // data member which might have some exotic initialization sequence.
+ // If this is the case, then we aught not to try and come up with a "better"
+ // type, it might not be very easy to come up with a Constant which
+ // correctly initializes it.
+ if (!SeenNamedMember) {
+ SeenNamedMember = Field->getIdentifier();
+ if (!SeenNamedMember)
+ if (const auto *FieldRD = Field->getType()->getAsRecordDecl())
+ SeenNamedMember = FieldRD->findFirstNamedDataMember();
+ if (SeenNamedMember && !isZeroInitializable(Field)) {
+ IsZeroInitializable = IsZeroInitializableAsBase = false;
+ StorageType = FieldType;
+ }
+ }
+ // Because our union isn't zero initializable, we won't be getting a better
+ // storage type.
+ if (!IsZeroInitializable)
+ continue;
+ // Conditionally update our storage type if we've got a new "better" one.
+ if (!StorageType ||
+ getAlignment(FieldType) > getAlignment(StorageType) ||
+ (getAlignment(FieldType) == getAlignment(StorageType) &&
+ getSize(FieldType) > getSize(StorageType)))
+ StorageType = FieldType;
+ }
+ // If we have no storage type just pad to the appropriate size and return.
+ if (!StorageType)
+ return appendPaddingBytes(LayoutSize);
+ // If our storage size was bigger than our required size (can happen in the
+ // case of packed bitfields on Itanium) then just use an I8 array.
+ if (LayoutSize < getSize(StorageType))
+ StorageType = getByteArrayType(LayoutSize);
+ FieldTypes.push_back(StorageType);
+ appendPaddingBytes(LayoutSize - getSize(StorageType));
+ // Set packed if we need it.
+ if (LayoutSize % getAlignment(StorageType))
+ Packed = true;
+}
+
+void CGRecordLowering::accumulateFields() {
+ for (RecordDecl::field_iterator Field = D->field_begin(),
+ FieldEnd = D->field_end();
+ Field != FieldEnd;) {
+ if (Field->isBitField()) {
+ RecordDecl::field_iterator Start = Field;
+ // Iterate to gather the list of bitfields.
+ for (++Field; Field != FieldEnd && Field->isBitField(); ++Field);
+ accumulateBitFields(Start, Field);
+ } else if (!Field->isZeroSize(Context)) {
+ Members.push_back(MemberInfo(
+ bitsToCharUnits(getFieldBitOffset(*Field)), MemberInfo::Field,
+ getStorageType(*Field), *Field));
+ ++Field;
+ } else {
+ ++Field;
+ }
+ }
+}
+
+void
+CGRecordLowering::accumulateBitFields(RecordDecl::field_iterator Field,
+ RecordDecl::field_iterator FieldEnd) {
+ // Run stores the first element of the current run of bitfields. FieldEnd is
+ // used as a special value to note that we don't have a current run. A
+ // bitfield run is a contiguous collection of bitfields that can be stored in
+ // the same storage block. Zero-sized bitfields and bitfields that would
+ // cross an alignment boundary break a run and start a new one.
+ RecordDecl::field_iterator Run = FieldEnd;
+ // Tail is the offset of the first bit off the end of the current run. It's
+ // used to determine if the ASTRecordLayout is treating these two bitfields as
+ // contiguous. StartBitOffset is offset of the beginning of the Run.
+ uint64_t StartBitOffset, Tail = 0;
+ if (isDiscreteBitFieldABI()) {
+ for (; Field != FieldEnd; ++Field) {
+ uint64_t BitOffset = getFieldBitOffset(*Field);
+ // Zero-width bitfields end runs.
+ if (Field->isZeroLengthBitField(Context)) {
+ Run = FieldEnd;
+ continue;
+ }
+ llvm::Type *Type = Types.ConvertTypeForMem(Field->getType());
+ // If we don't have a run yet, or don't live within the previous run's
+ // allocated storage then we allocate some storage and start a new run.
+ if (Run == FieldEnd || BitOffset >= Tail) {
+ Run = Field;
+ StartBitOffset = BitOffset;
+ Tail = StartBitOffset + DataLayout.getTypeAllocSizeInBits(Type);
+ // Add the storage member to the record. This must be added to the
+ // record before the bitfield members so that it gets laid out before
+ // the bitfields it contains get laid out.
+ Members.push_back(StorageInfo(bitsToCharUnits(StartBitOffset), Type));
+ }
+ // Bitfields get the offset of their storage but come afterward and remain
+ // there after a stable sort.
+ Members.push_back(MemberInfo(bitsToCharUnits(StartBitOffset),
+ MemberInfo::Field, nullptr, *Field));
+ }
+ return;
+ }
+
+ // Check if OffsetInRecord is better as a single field run. When OffsetInRecord
+ // has legal integer width, and its bitfield offset is naturally aligned, it
+ // is better to make the bitfield a separate storage component so as it can be
+ // accessed directly with lower cost.
+ auto IsBetterAsSingleFieldRun = [&](uint64_t OffsetInRecord,
+ uint64_t StartBitOffset) {
+ if (!Types.getCodeGenOpts().FineGrainedBitfieldAccesses)
+ return false;
+ if (!DataLayout.isLegalInteger(OffsetInRecord))
+ return false;
+ // Make sure StartBitOffset is natually aligned if it is treated as an
+ // IType integer.
+ if (StartBitOffset %
+ Context.toBits(getAlignment(getIntNType(OffsetInRecord))) !=
+ 0)
+ return false;
+ return true;
+ };
+
+ // The start field is better as a single field run.
+ bool StartFieldAsSingleRun = false;
+ for (;;) {
+ // Check to see if we need to start a new run.
+ if (Run == FieldEnd) {
+ // If we're out of fields, return.
+ if (Field == FieldEnd)
+ break;
+ // Any non-zero-length bitfield can start a new run.
+ if (!Field->isZeroLengthBitField(Context)) {
+ Run = Field;
+ StartBitOffset = getFieldBitOffset(*Field);
+ Tail = StartBitOffset + Field->getBitWidthValue(Context);
+ StartFieldAsSingleRun = IsBetterAsSingleFieldRun(Tail - StartBitOffset,
+ StartBitOffset);
+ }
+ ++Field;
+ continue;
+ }
+
+ // If the start field of a new run is better as a single run, or
+ // if current field (or consecutive fields) is better as a single run, or
+ // if current field has zero width bitfield and either
+ // UseZeroLengthBitfieldAlignment or UseBitFieldTypeAlignment is set to
+ // true, or
+ // if the offset of current field is inconsistent with the offset of
+ // previous field plus its offset,
+ // skip the block below and go ahead to emit the storage.
+ // Otherwise, try to add bitfields to the run.
+ if (!StartFieldAsSingleRun && Field != FieldEnd &&
+ !IsBetterAsSingleFieldRun(Tail - StartBitOffset, StartBitOffset) &&
+ (!Field->isZeroLengthBitField(Context) ||
+ (!Context.getTargetInfo().useZeroLengthBitfieldAlignment() &&
+ !Context.getTargetInfo().useBitFieldTypeAlignment())) &&
+ Tail == getFieldBitOffset(*Field)) {
+ Tail += Field->getBitWidthValue(Context);
+ ++Field;
+ continue;
+ }
+
+ // We've hit a break-point in the run and need to emit a storage field.
+ llvm::Type *Type = getIntNType(Tail - StartBitOffset);
+ // Add the storage member to the record and set the bitfield info for all of
+ // the bitfields in the run. Bitfields get the offset of their storage but
+ // come afterward and remain there after a stable sort.
+ Members.push_back(StorageInfo(bitsToCharUnits(StartBitOffset), Type));
+ for (; Run != Field; ++Run)
+ Members.push_back(MemberInfo(bitsToCharUnits(StartBitOffset),
+ MemberInfo::Field, nullptr, *Run));
+ Run = FieldEnd;
+ StartFieldAsSingleRun = false;
+ }
+}
+
+void CGRecordLowering::accumulateBases() {
+ // If we've got a primary virtual base, we need to add it with the bases.
+ if (Layout.isPrimaryBaseVirtual()) {
+ const CXXRecordDecl *BaseDecl = Layout.getPrimaryBase();
+ Members.push_back(MemberInfo(CharUnits::Zero(), MemberInfo::Base,
+ getStorageType(BaseDecl), BaseDecl));
+ }
+ // Accumulate the non-virtual bases.
+ for (const auto &Base : RD->bases()) {
+ if (Base.isVirtual())
+ continue;
+
+ // Bases can be zero-sized even if not technically empty if they
+ // contain only a trailing array member.
+ const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
+ if (!BaseDecl->isEmpty() &&
+ !Context.getASTRecordLayout(BaseDecl).getNonVirtualSize().isZero())
+ Members.push_back(MemberInfo(Layout.getBaseClassOffset(BaseDecl),
+ MemberInfo::Base, getStorageType(BaseDecl), BaseDecl));
+ }
+}
+
+void CGRecordLowering::accumulateVPtrs() {
+ if (Layout.hasOwnVFPtr())
+ Members.push_back(MemberInfo(CharUnits::Zero(), MemberInfo::VFPtr,
+ llvm::FunctionType::get(getIntNType(32), /*isVarArg=*/true)->
+ getPointerTo()->getPointerTo()));
+ if (Layout.hasOwnVBPtr())
+ Members.push_back(MemberInfo(Layout.getVBPtrOffset(), MemberInfo::VBPtr,
+ llvm::Type::getInt32PtrTy(Types.getLLVMContext())));
+}
+
+void CGRecordLowering::accumulateVBases() {
+ CharUnits ScissorOffset = Layout.getNonVirtualSize();
+ // In the itanium ABI, it's possible to place a vbase at a dsize that is
+ // smaller than the nvsize. Here we check to see if such a base is placed
+ // before the nvsize and set the scissor offset to that, instead of the
+ // nvsize.
+ if (isOverlappingVBaseABI())
+ for (const auto &Base : RD->vbases()) {
+ const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
+ if (BaseDecl->isEmpty())
+ continue;
+ // If the vbase is a primary virtual base of some base, then it doesn't
+ // get its own storage location but instead lives inside of that base.
+ if (Context.isNearlyEmpty(BaseDecl) && !hasOwnStorage(RD, BaseDecl))
+ continue;
+ ScissorOffset = std::min(ScissorOffset,
+ Layout.getVBaseClassOffset(BaseDecl));
+ }
+ Members.push_back(MemberInfo(ScissorOffset, MemberInfo::Scissor, nullptr,
+ RD));
+ for (const auto &Base : RD->vbases()) {
+ const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
+ if (BaseDecl->isEmpty())
+ continue;
+ CharUnits Offset = Layout.getVBaseClassOffset(BaseDecl);
+ // If the vbase is a primary virtual base of some base, then it doesn't
+ // get its own storage location but instead lives inside of that base.
+ if (isOverlappingVBaseABI() &&
+ Context.isNearlyEmpty(BaseDecl) &&
+ !hasOwnStorage(RD, BaseDecl)) {
+ Members.push_back(MemberInfo(Offset, MemberInfo::VBase, nullptr,
+ BaseDecl));
+ continue;
+ }
+ // If we've got a vtordisp, add it as a storage type.
+ if (Layout.getVBaseOffsetsMap().find(BaseDecl)->second.hasVtorDisp())
+ Members.push_back(StorageInfo(Offset - CharUnits::fromQuantity(4),
+ getIntNType(32)));
+ Members.push_back(MemberInfo(Offset, MemberInfo::VBase,
+ getStorageType(BaseDecl), BaseDecl));
+ }
+}
+
+bool CGRecordLowering::hasOwnStorage(const CXXRecordDecl *Decl,
+ const CXXRecordDecl *Query) {
+ const ASTRecordLayout &DeclLayout = Context.getASTRecordLayout(Decl);
+ if (DeclLayout.isPrimaryBaseVirtual() && DeclLayout.getPrimaryBase() == Query)
+ return false;
+ for (const auto &Base : Decl->bases())
+ if (!hasOwnStorage(Base.getType()->getAsCXXRecordDecl(), Query))
+ return false;
+ return true;
+}
+
+void CGRecordLowering::calculateZeroInit() {
+ for (std::vector<MemberInfo>::const_iterator Member = Members.begin(),
+ MemberEnd = Members.end();
+ IsZeroInitializableAsBase && Member != MemberEnd; ++Member) {
+ if (Member->Kind == MemberInfo::Field) {
+ if (!Member->FD || isZeroInitializable(Member->FD))
+ continue;
+ IsZeroInitializable = IsZeroInitializableAsBase = false;
+ } else if (Member->Kind == MemberInfo::Base ||
+ Member->Kind == MemberInfo::VBase) {
+ if (isZeroInitializable(Member->RD))
+ continue;
+ IsZeroInitializable = false;
+ if (Member->Kind == MemberInfo::Base)
+ IsZeroInitializableAsBase = false;
+ }
+ }
+}
+
+void CGRecordLowering::clipTailPadding() {
+ std::vector<MemberInfo>::iterator Prior = Members.begin();
+ CharUnits Tail = getSize(Prior->Data);
+ for (std::vector<MemberInfo>::iterator Member = Prior + 1,
+ MemberEnd = Members.end();
+ Member != MemberEnd; ++Member) {
+ // Only members with data and the scissor can cut into tail padding.
+ if (!Member->Data && Member->Kind != MemberInfo::Scissor)
+ continue;
+ if (Member->Offset < Tail) {
+ assert(Prior->Kind == MemberInfo::Field &&
+ "Only storage fields have tail padding!");
+ if (!Prior->FD || Prior->FD->isBitField())
+ Prior->Data = getByteArrayType(bitsToCharUnits(llvm::alignTo(
+ cast<llvm::IntegerType>(Prior->Data)->getIntegerBitWidth(), 8)));
+ else {
+ assert(Prior->FD->hasAttr<NoUniqueAddressAttr>() &&
+ "should not have reused this field's tail padding");
+ Prior->Data = getByteArrayType(
+ Context.getTypeInfoDataSizeInChars(Prior->FD->getType()).first);
+ }
+ }
+ if (Member->Data)
+ Prior = Member;
+ Tail = Prior->Offset + getSize(Prior->Data);
+ }
+}
+
+void CGRecordLowering::determinePacked(bool NVBaseType) {
+ if (Packed)
+ return;
+ CharUnits Alignment = CharUnits::One();
+ CharUnits NVAlignment = CharUnits::One();
+ CharUnits NVSize =
+ !NVBaseType && RD ? Layout.getNonVirtualSize() : CharUnits::Zero();
+ for (std::vector<MemberInfo>::const_iterator Member = Members.begin(),
+ MemberEnd = Members.end();
+ Member != MemberEnd; ++Member) {
+ if (!Member->Data)
+ continue;
+ // If any member falls at an offset that it not a multiple of its alignment,
+ // then the entire record must be packed.
+ if (Member->Offset % getAlignment(Member->Data))
+ Packed = true;
+ if (Member->Offset < NVSize)
+ NVAlignment = std::max(NVAlignment, getAlignment(Member->Data));
+ Alignment = std::max(Alignment, getAlignment(Member->Data));
+ }
+ // If the size of the record (the capstone's offset) is not a multiple of the
+ // record's alignment, it must be packed.
+ if (Members.back().Offset % Alignment)
+ Packed = true;
+ // If the non-virtual sub-object is not a multiple of the non-virtual
+ // sub-object's alignment, it must be packed. We cannot have a packed
+ // non-virtual sub-object and an unpacked complete object or vise versa.
+ if (NVSize % NVAlignment)
+ Packed = true;
+ // Update the alignment of the sentinel.
+ if (!Packed)
+ Members.back().Data = getIntNType(Context.toBits(Alignment));
+}
+
+void CGRecordLowering::insertPadding() {
+ std::vector<std::pair<CharUnits, CharUnits> > Padding;
+ CharUnits Size = CharUnits::Zero();
+ for (std::vector<MemberInfo>::const_iterator Member = Members.begin(),
+ MemberEnd = Members.end();
+ Member != MemberEnd; ++Member) {
+ if (!Member->Data)
+ continue;
+ CharUnits Offset = Member->Offset;
+ assert(Offset >= Size);
+ // Insert padding if we need to.
+ if (Offset !=
+ Size.alignTo(Packed ? CharUnits::One() : getAlignment(Member->Data)))
+ Padding.push_back(std::make_pair(Size, Offset - Size));
+ Size = Offset + getSize(Member->Data);
+ }
+ if (Padding.empty())
+ return;
+ // Add the padding to the Members list and sort it.
+ for (std::vector<std::pair<CharUnits, CharUnits> >::const_iterator
+ Pad = Padding.begin(), PadEnd = Padding.end();
+ Pad != PadEnd; ++Pad)
+ Members.push_back(StorageInfo(Pad->first, getByteArrayType(Pad->second)));
+ llvm::stable_sort(Members);
+}
+
+void CGRecordLowering::fillOutputFields() {
+ for (std::vector<MemberInfo>::const_iterator Member = Members.begin(),
+ MemberEnd = Members.end();
+ Member != MemberEnd; ++Member) {
+ if (Member->Data)
+ FieldTypes.push_back(Member->Data);
+ if (Member->Kind == MemberInfo::Field) {
+ if (Member->FD)
+ Fields[Member->FD->getCanonicalDecl()] = FieldTypes.size() - 1;
+ // A field without storage must be a bitfield.
+ if (!Member->Data)
+ setBitFieldInfo(Member->FD, Member->Offset, FieldTypes.back());
+ } else if (Member->Kind == MemberInfo::Base)
+ NonVirtualBases[Member->RD] = FieldTypes.size() - 1;
+ else if (Member->Kind == MemberInfo::VBase)
+ VirtualBases[Member->RD] = FieldTypes.size() - 1;
+ }
+}
+
+CGBitFieldInfo CGBitFieldInfo::MakeInfo(CodeGenTypes &Types,
+ const FieldDecl *FD,
+ uint64_t Offset, uint64_t Size,
+ uint64_t StorageSize,
+ CharUnits StorageOffset) {
+ // This function is vestigial from CGRecordLayoutBuilder days but is still
+ // used in GCObjCRuntime.cpp. That usage has a "fixme" attached to it that
+ // when addressed will allow for the removal of this function.
+ llvm::Type *Ty = Types.ConvertTypeForMem(FD->getType());
+ CharUnits TypeSizeInBytes =
+ CharUnits::fromQuantity(Types.getDataLayout().getTypeAllocSize(Ty));
+ uint64_t TypeSizeInBits = Types.getContext().toBits(TypeSizeInBytes);
+
+ bool IsSigned = FD->getType()->isSignedIntegerOrEnumerationType();
+
+ if (Size > TypeSizeInBits) {
+ // We have a wide bit-field. The extra bits are only used for padding, so
+ // if we have a bitfield of type T, with size N:
+ //
+ // T t : N;
+ //
+ // We can just assume that it's:
+ //
+ // T t : sizeof(T);
+ //
+ Size = TypeSizeInBits;
+ }
+
+ // Reverse the bit offsets for big endian machines. Because we represent
+ // a bitfield as a single large integer load, we can imagine the bits
+ // counting from the most-significant-bit instead of the
+ // least-significant-bit.
+ if (Types.getDataLayout().isBigEndian()) {
+ Offset = StorageSize - (Offset + Size);
+ }
+
+ return CGBitFieldInfo(Offset, Size, IsSigned, StorageSize, StorageOffset);
+}
+
+CGRecordLayout *CodeGenTypes::ComputeRecordLayout(const RecordDecl *D,
+ llvm::StructType *Ty) {
+ CGRecordLowering Builder(*this, D, /*Packed=*/false);
+
+ Builder.lower(/*NonVirtualBaseType=*/false);
+
+ // If we're in C++, compute the base subobject type.
+ llvm::StructType *BaseTy = nullptr;
+ if (isa<CXXRecordDecl>(D) && !D->isUnion() && !D->hasAttr<FinalAttr>()) {
+ BaseTy = Ty;
+ if (Builder.Layout.getNonVirtualSize() != Builder.Layout.getSize()) {
+ CGRecordLowering BaseBuilder(*this, D, /*Packed=*/Builder.Packed);
+ BaseBuilder.lower(/*NonVirtualBaseType=*/true);
+ BaseTy = llvm::StructType::create(
+ getLLVMContext(), BaseBuilder.FieldTypes, "", BaseBuilder.Packed);
+ addRecordTypeName(D, BaseTy, ".base");
+ // BaseTy and Ty must agree on their packedness for getLLVMFieldNo to work
+ // on both of them with the same index.
+ assert(Builder.Packed == BaseBuilder.Packed &&
+ "Non-virtual and complete types must agree on packedness");
+ }
+ }
+
+ // Fill in the struct *after* computing the base type. Filling in the body
+ // signifies that the type is no longer opaque and record layout is complete,
+ // but we may need to recursively layout D while laying D out as a base type.
+ Ty->setBody(Builder.FieldTypes, Builder.Packed);
+
+ CGRecordLayout *RL =
+ new CGRecordLayout(Ty, BaseTy, Builder.IsZeroInitializable,
+ Builder.IsZeroInitializableAsBase);
+
+ RL->NonVirtualBases.swap(Builder.NonVirtualBases);
+ RL->CompleteObjectVirtualBases.swap(Builder.VirtualBases);
+
+ // Add all the field numbers.
+ RL->FieldInfo.swap(Builder.Fields);
+
+ // Add bitfield info.
+ RL->BitFields.swap(Builder.BitFields);
+
+ // Dump the layout, if requested.
+ if (getContext().getLangOpts().DumpRecordLayouts) {
+ llvm::outs() << "\n*** Dumping IRgen Record Layout\n";
+ llvm::outs() << "Record: ";
+ D->dump(llvm::outs());
+ llvm::outs() << "\nLayout: ";
+ RL->print(llvm::outs());
+ }
+
+#ifndef NDEBUG
+ // Verify that the computed LLVM struct size matches the AST layout size.
+ const ASTRecordLayout &Layout = getContext().getASTRecordLayout(D);
+
+ uint64_t TypeSizeInBits = getContext().toBits(Layout.getSize());
+ assert(TypeSizeInBits == getDataLayout().getTypeAllocSizeInBits(Ty) &&
+ "Type size mismatch!");
+
+ if (BaseTy) {
+ CharUnits NonVirtualSize = Layout.getNonVirtualSize();
+
+ uint64_t AlignedNonVirtualTypeSizeInBits =
+ getContext().toBits(NonVirtualSize);
+
+ assert(AlignedNonVirtualTypeSizeInBits ==
+ getDataLayout().getTypeAllocSizeInBits(BaseTy) &&
+ "Type size mismatch!");
+ }
+
+ // Verify that the LLVM and AST field offsets agree.
+ llvm::StructType *ST = RL->getLLVMType();
+ const llvm::StructLayout *SL = getDataLayout().getStructLayout(ST);
+
+ const ASTRecordLayout &AST_RL = getContext().getASTRecordLayout(D);
+ RecordDecl::field_iterator it = D->field_begin();
+ for (unsigned i = 0, e = AST_RL.getFieldCount(); i != e; ++i, ++it) {
+ const FieldDecl *FD = *it;
+
+ // Ignore zero-sized fields.
+ if (FD->isZeroSize(getContext()))
+ continue;
+
+ // For non-bit-fields, just check that the LLVM struct offset matches the
+ // AST offset.
+ if (!FD->isBitField()) {
+ unsigned FieldNo = RL->getLLVMFieldNo(FD);
+ assert(AST_RL.getFieldOffset(i) == SL->getElementOffsetInBits(FieldNo) &&
+ "Invalid field offset!");
+ continue;
+ }
+
+ // Ignore unnamed bit-fields.
+ if (!FD->getDeclName())
+ continue;
+
+ const CGBitFieldInfo &Info = RL->getBitFieldInfo(FD);
+ llvm::Type *ElementTy = ST->getTypeAtIndex(RL->getLLVMFieldNo(FD));
+
+ // Unions have overlapping elements dictating their layout, but for
+ // non-unions we can verify that this section of the layout is the exact
+ // expected size.
+ if (D->isUnion()) {
+ // For unions we verify that the start is zero and the size
+ // is in-bounds. However, on BE systems, the offset may be non-zero, but
+ // the size + offset should match the storage size in that case as it
+ // "starts" at the back.
+ if (getDataLayout().isBigEndian())
+ assert(static_cast<unsigned>(Info.Offset + Info.Size) ==
+ Info.StorageSize &&
+ "Big endian union bitfield does not end at the back");
+ else
+ assert(Info.Offset == 0 &&
+ "Little endian union bitfield with a non-zero offset");
+ assert(Info.StorageSize <= SL->getSizeInBits() &&
+ "Union not large enough for bitfield storage");
+ } else {
+ assert(Info.StorageSize ==
+ getDataLayout().getTypeAllocSizeInBits(ElementTy) &&
+ "Storage size does not match the element type size");
+ }
+ assert(Info.Size > 0 && "Empty bitfield!");
+ assert(static_cast<unsigned>(Info.Offset) + Info.Size <= Info.StorageSize &&
+ "Bitfield outside of its allocated storage");
+ }
+#endif
+
+ return RL;
+}
+
+void CGRecordLayout::print(raw_ostream &OS) const {
+ OS << "<CGRecordLayout\n";
+ OS << " LLVMType:" << *CompleteObjectType << "\n";
+ if (BaseSubobjectType)
+ OS << " NonVirtualBaseLLVMType:" << *BaseSubobjectType << "\n";
+ OS << " IsZeroInitializable:" << IsZeroInitializable << "\n";
+ OS << " BitFields:[\n";
+
+ // Print bit-field infos in declaration order.
+ std::vector<std::pair<unsigned, const CGBitFieldInfo*> > BFIs;
+ for (llvm::DenseMap<const FieldDecl*, CGBitFieldInfo>::const_iterator
+ it = BitFields.begin(), ie = BitFields.end();
+ it != ie; ++it) {
+ const RecordDecl *RD = it->first->getParent();
+ unsigned Index = 0;
+ for (RecordDecl::field_iterator
+ it2 = RD->field_begin(); *it2 != it->first; ++it2)
+ ++Index;
+ BFIs.push_back(std::make_pair(Index, &it->second));
+ }
+ llvm::array_pod_sort(BFIs.begin(), BFIs.end());
+ for (unsigned i = 0, e = BFIs.size(); i != e; ++i) {
+ OS.indent(4);
+ BFIs[i].second->print(OS);
+ OS << "\n";
+ }
+
+ OS << "]>\n";
+}
+
+LLVM_DUMP_METHOD void CGRecordLayout::dump() const {
+ print(llvm::errs());
+}
+
+void CGBitFieldInfo::print(raw_ostream &OS) const {
+ OS << "<CGBitFieldInfo"
+ << " Offset:" << Offset
+ << " Size:" << Size
+ << " IsSigned:" << IsSigned
+ << " StorageSize:" << StorageSize
+ << " StorageOffset:" << StorageOffset.getQuantity() << ">";
+}
+
+LLVM_DUMP_METHOD void CGBitFieldInfo::dump() const {
+ print(llvm::errs());
+}