diff options
author | 2020-08-03 14:31:31 +0000 | |
---|---|---|
committer | 2020-08-03 14:31:31 +0000 | |
commit | e5dd70708596ae51455a0ffa086a00c5b29f8583 (patch) | |
tree | 5d676f27b570bacf71e786c3b5cff3e6f6679b59 /gnu/llvm/clang/lib/CodeGen/CodeGenFunction.h | |
parent | Import LLVM 10.0.0 release including clang, lld and lldb. (diff) | |
download | wireguard-openbsd-e5dd70708596ae51455a0ffa086a00c5b29f8583.tar.xz wireguard-openbsd-e5dd70708596ae51455a0ffa086a00c5b29f8583.zip |
Import LLVM 10.0.0 release including clang, lld and lldb.
ok hackroom
tested by plenty
Diffstat (limited to 'gnu/llvm/clang/lib/CodeGen/CodeGenFunction.h')
-rw-r--r-- | gnu/llvm/clang/lib/CodeGen/CodeGenFunction.h | 4420 |
1 files changed, 4420 insertions, 0 deletions
diff --git a/gnu/llvm/clang/lib/CodeGen/CodeGenFunction.h b/gnu/llvm/clang/lib/CodeGen/CodeGenFunction.h new file mode 100644 index 00000000000..3d8bc93eb96 --- /dev/null +++ b/gnu/llvm/clang/lib/CodeGen/CodeGenFunction.h @@ -0,0 +1,4420 @@ +//===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This is the internal per-function state used for llvm translation. +// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H +#define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H + +#include "CGBuilder.h" +#include "CGDebugInfo.h" +#include "CGLoopInfo.h" +#include "CGValue.h" +#include "CodeGenModule.h" +#include "CodeGenPGO.h" +#include "EHScopeStack.h" +#include "VarBypassDetector.h" +#include "clang/AST/CharUnits.h" +#include "clang/AST/CurrentSourceLocExprScope.h" +#include "clang/AST/ExprCXX.h" +#include "clang/AST/ExprObjC.h" +#include "clang/AST/ExprOpenMP.h" +#include "clang/AST/Type.h" +#include "clang/Basic/ABI.h" +#include "clang/Basic/CapturedStmt.h" +#include "clang/Basic/CodeGenOptions.h" +#include "clang/Basic/OpenMPKinds.h" +#include "clang/Basic/TargetInfo.h" +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/MapVector.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/IR/ValueHandle.h" +#include "llvm/Support/Debug.h" +#include "llvm/Transforms/Utils/SanitizerStats.h" + +namespace llvm { +class BasicBlock; +class LLVMContext; +class MDNode; +class Module; +class SwitchInst; +class Twine; +class Value; +} + +namespace clang { +class ASTContext; +class BlockDecl; +class CXXDestructorDecl; +class CXXForRangeStmt; +class CXXTryStmt; +class Decl; +class LabelDecl; +class EnumConstantDecl; +class FunctionDecl; +class FunctionProtoType; +class LabelStmt; +class ObjCContainerDecl; +class ObjCInterfaceDecl; +class ObjCIvarDecl; +class ObjCMethodDecl; +class ObjCImplementationDecl; +class ObjCPropertyImplDecl; +class TargetInfo; +class VarDecl; +class ObjCForCollectionStmt; +class ObjCAtTryStmt; +class ObjCAtThrowStmt; +class ObjCAtSynchronizedStmt; +class ObjCAutoreleasePoolStmt; +class ReturnsNonNullAttr; + +namespace analyze_os_log { +class OSLogBufferLayout; +} + +namespace CodeGen { +class CodeGenTypes; +class CGCallee; +class CGFunctionInfo; +class CGRecordLayout; +class CGBlockInfo; +class CGCXXABI; +class BlockByrefHelpers; +class BlockByrefInfo; +class BlockFlags; +class BlockFieldFlags; +class RegionCodeGenTy; +class TargetCodeGenInfo; +struct OMPTaskDataTy; +struct CGCoroData; + +/// The kind of evaluation to perform on values of a particular +/// type. Basically, is the code in CGExprScalar, CGExprComplex, or +/// CGExprAgg? +/// +/// TODO: should vectors maybe be split out into their own thing? +enum TypeEvaluationKind { + TEK_Scalar, + TEK_Complex, + TEK_Aggregate +}; + +#define LIST_SANITIZER_CHECKS \ + SANITIZER_CHECK(AddOverflow, add_overflow, 0) \ + SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0) \ + SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0) \ + SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0) \ + SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0) \ + SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0) \ + SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 1) \ + SANITIZER_CHECK(ImplicitConversion, implicit_conversion, 0) \ + SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0) \ + SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0) \ + SANITIZER_CHECK(MissingReturn, missing_return, 0) \ + SANITIZER_CHECK(MulOverflow, mul_overflow, 0) \ + SANITIZER_CHECK(NegateOverflow, negate_overflow, 0) \ + SANITIZER_CHECK(NullabilityArg, nullability_arg, 0) \ + SANITIZER_CHECK(NullabilityReturn, nullability_return, 1) \ + SANITIZER_CHECK(NonnullArg, nonnull_arg, 0) \ + SANITIZER_CHECK(NonnullReturn, nonnull_return, 1) \ + SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0) \ + SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0) \ + SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0) \ + SANITIZER_CHECK(SubOverflow, sub_overflow, 0) \ + SANITIZER_CHECK(TypeMismatch, type_mismatch, 1) \ + SANITIZER_CHECK(AlignmentAssumption, alignment_assumption, 0) \ + SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0) + +enum SanitizerHandler { +#define SANITIZER_CHECK(Enum, Name, Version) Enum, + LIST_SANITIZER_CHECKS +#undef SANITIZER_CHECK +}; + +/// Helper class with most of the code for saving a value for a +/// conditional expression cleanup. +struct DominatingLLVMValue { + typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; + + /// Answer whether the given value needs extra work to be saved. + static bool needsSaving(llvm::Value *value) { + // If it's not an instruction, we don't need to save. + if (!isa<llvm::Instruction>(value)) return false; + + // If it's an instruction in the entry block, we don't need to save. + llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); + return (block != &block->getParent()->getEntryBlock()); + } + + static saved_type save(CodeGenFunction &CGF, llvm::Value *value); + static llvm::Value *restore(CodeGenFunction &CGF, saved_type value); +}; + +/// A partial specialization of DominatingValue for llvm::Values that +/// might be llvm::Instructions. +template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { + typedef T *type; + static type restore(CodeGenFunction &CGF, saved_type value) { + return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); + } +}; + +/// A specialization of DominatingValue for Address. +template <> struct DominatingValue<Address> { + typedef Address type; + + struct saved_type { + DominatingLLVMValue::saved_type SavedValue; + CharUnits Alignment; + }; + + static bool needsSaving(type value) { + return DominatingLLVMValue::needsSaving(value.getPointer()); + } + static saved_type save(CodeGenFunction &CGF, type value) { + return { DominatingLLVMValue::save(CGF, value.getPointer()), + value.getAlignment() }; + } + static type restore(CodeGenFunction &CGF, saved_type value) { + return Address(DominatingLLVMValue::restore(CGF, value.SavedValue), + value.Alignment); + } +}; + +/// A specialization of DominatingValue for RValue. +template <> struct DominatingValue<RValue> { + typedef RValue type; + class saved_type { + enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, + AggregateAddress, ComplexAddress }; + + llvm::Value *Value; + unsigned K : 3; + unsigned Align : 29; + saved_type(llvm::Value *v, Kind k, unsigned a = 0) + : Value(v), K(k), Align(a) {} + + public: + static bool needsSaving(RValue value); + static saved_type save(CodeGenFunction &CGF, RValue value); + RValue restore(CodeGenFunction &CGF); + + // implementations in CGCleanup.cpp + }; + + static bool needsSaving(type value) { + return saved_type::needsSaving(value); + } + static saved_type save(CodeGenFunction &CGF, type value) { + return saved_type::save(CGF, value); + } + static type restore(CodeGenFunction &CGF, saved_type value) { + return value.restore(CGF); + } +}; + +/// CodeGenFunction - This class organizes the per-function state that is used +/// while generating LLVM code. +class CodeGenFunction : public CodeGenTypeCache { + CodeGenFunction(const CodeGenFunction &) = delete; + void operator=(const CodeGenFunction &) = delete; + + friend class CGCXXABI; +public: + /// A jump destination is an abstract label, branching to which may + /// require a jump out through normal cleanups. + struct JumpDest { + JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {} + JumpDest(llvm::BasicBlock *Block, + EHScopeStack::stable_iterator Depth, + unsigned Index) + : Block(Block), ScopeDepth(Depth), Index(Index) {} + + bool isValid() const { return Block != nullptr; } + llvm::BasicBlock *getBlock() const { return Block; } + EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } + unsigned getDestIndex() const { return Index; } + + // This should be used cautiously. + void setScopeDepth(EHScopeStack::stable_iterator depth) { + ScopeDepth = depth; + } + + private: + llvm::BasicBlock *Block; + EHScopeStack::stable_iterator ScopeDepth; + unsigned Index; + }; + + CodeGenModule &CGM; // Per-module state. + const TargetInfo &Target; + + typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; + LoopInfoStack LoopStack; + CGBuilderTy Builder; + + // Stores variables for which we can't generate correct lifetime markers + // because of jumps. + VarBypassDetector Bypasses; + + // CodeGen lambda for loops and support for ordered clause + typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &, + JumpDest)> + CodeGenLoopTy; + typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation, + const unsigned, const bool)> + CodeGenOrderedTy; + + // Codegen lambda for loop bounds in worksharing loop constructs + typedef llvm::function_ref<std::pair<LValue, LValue>( + CodeGenFunction &, const OMPExecutableDirective &S)> + CodeGenLoopBoundsTy; + + // Codegen lambda for loop bounds in dispatch-based loop implementation + typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>( + CodeGenFunction &, const OMPExecutableDirective &S, Address LB, + Address UB)> + CodeGenDispatchBoundsTy; + + /// CGBuilder insert helper. This function is called after an + /// instruction is created using Builder. + void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name, + llvm::BasicBlock *BB, + llvm::BasicBlock::iterator InsertPt) const; + + /// CurFuncDecl - Holds the Decl for the current outermost + /// non-closure context. + const Decl *CurFuncDecl; + /// CurCodeDecl - This is the inner-most code context, which includes blocks. + const Decl *CurCodeDecl; + const CGFunctionInfo *CurFnInfo; + QualType FnRetTy; + llvm::Function *CurFn = nullptr; + + // Holds coroutine data if the current function is a coroutine. We use a + // wrapper to manage its lifetime, so that we don't have to define CGCoroData + // in this header. + struct CGCoroInfo { + std::unique_ptr<CGCoroData> Data; + CGCoroInfo(); + ~CGCoroInfo(); + }; + CGCoroInfo CurCoro; + + bool isCoroutine() const { + return CurCoro.Data != nullptr; + } + + /// CurGD - The GlobalDecl for the current function being compiled. + GlobalDecl CurGD; + + /// PrologueCleanupDepth - The cleanup depth enclosing all the + /// cleanups associated with the parameters. + EHScopeStack::stable_iterator PrologueCleanupDepth; + + /// ReturnBlock - Unified return block. + JumpDest ReturnBlock; + + /// ReturnValue - The temporary alloca to hold the return + /// value. This is invalid iff the function has no return value. + Address ReturnValue = Address::invalid(); + + /// ReturnValuePointer - The temporary alloca to hold a pointer to sret. + /// This is invalid if sret is not in use. + Address ReturnValuePointer = Address::invalid(); + + /// Return true if a label was seen in the current scope. + bool hasLabelBeenSeenInCurrentScope() const { + if (CurLexicalScope) + return CurLexicalScope->hasLabels(); + return !LabelMap.empty(); + } + + /// AllocaInsertPoint - This is an instruction in the entry block before which + /// we prefer to insert allocas. + llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; + + /// API for captured statement code generation. + class CGCapturedStmtInfo { + public: + explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default) + : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {} + explicit CGCapturedStmtInfo(const CapturedStmt &S, + CapturedRegionKind K = CR_Default) + : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) { + + RecordDecl::field_iterator Field = + S.getCapturedRecordDecl()->field_begin(); + for (CapturedStmt::const_capture_iterator I = S.capture_begin(), + E = S.capture_end(); + I != E; ++I, ++Field) { + if (I->capturesThis()) + CXXThisFieldDecl = *Field; + else if (I->capturesVariable()) + CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; + else if (I->capturesVariableByCopy()) + CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; + } + } + + virtual ~CGCapturedStmtInfo(); + + CapturedRegionKind getKind() const { return Kind; } + + virtual void setContextValue(llvm::Value *V) { ThisValue = V; } + // Retrieve the value of the context parameter. + virtual llvm::Value *getContextValue() const { return ThisValue; } + + /// Lookup the captured field decl for a variable. + virtual const FieldDecl *lookup(const VarDecl *VD) const { + return CaptureFields.lookup(VD->getCanonicalDecl()); + } + + bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; } + virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; } + + static bool classof(const CGCapturedStmtInfo *) { + return true; + } + + /// Emit the captured statement body. + virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) { + CGF.incrementProfileCounter(S); + CGF.EmitStmt(S); + } + + /// Get the name of the capture helper. + virtual StringRef getHelperName() const { return "__captured_stmt"; } + + private: + /// The kind of captured statement being generated. + CapturedRegionKind Kind; + + /// Keep the map between VarDecl and FieldDecl. + llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields; + + /// The base address of the captured record, passed in as the first + /// argument of the parallel region function. + llvm::Value *ThisValue; + + /// Captured 'this' type. + FieldDecl *CXXThisFieldDecl; + }; + CGCapturedStmtInfo *CapturedStmtInfo = nullptr; + + /// RAII for correct setting/restoring of CapturedStmtInfo. + class CGCapturedStmtRAII { + private: + CodeGenFunction &CGF; + CGCapturedStmtInfo *PrevCapturedStmtInfo; + public: + CGCapturedStmtRAII(CodeGenFunction &CGF, + CGCapturedStmtInfo *NewCapturedStmtInfo) + : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) { + CGF.CapturedStmtInfo = NewCapturedStmtInfo; + } + ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; } + }; + + /// An abstract representation of regular/ObjC call/message targets. + class AbstractCallee { + /// The function declaration of the callee. + const Decl *CalleeDecl; + + public: + AbstractCallee() : CalleeDecl(nullptr) {} + AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {} + AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {} + bool hasFunctionDecl() const { + return dyn_cast_or_null<FunctionDecl>(CalleeDecl); + } + const Decl *getDecl() const { return CalleeDecl; } + unsigned getNumParams() const { + if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) + return FD->getNumParams(); + return cast<ObjCMethodDecl>(CalleeDecl)->param_size(); + } + const ParmVarDecl *getParamDecl(unsigned I) const { + if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) + return FD->getParamDecl(I); + return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I); + } + }; + + /// Sanitizers enabled for this function. + SanitizerSet SanOpts; + + /// True if CodeGen currently emits code implementing sanitizer checks. + bool IsSanitizerScope = false; + + /// RAII object to set/unset CodeGenFunction::IsSanitizerScope. + class SanitizerScope { + CodeGenFunction *CGF; + public: + SanitizerScope(CodeGenFunction *CGF); + ~SanitizerScope(); + }; + + /// In C++, whether we are code generating a thunk. This controls whether we + /// should emit cleanups. + bool CurFuncIsThunk = false; + + /// In ARC, whether we should autorelease the return value. + bool AutoreleaseResult = false; + + /// Whether we processed a Microsoft-style asm block during CodeGen. These can + /// potentially set the return value. + bool SawAsmBlock = false; + + const NamedDecl *CurSEHParent = nullptr; + + /// True if the current function is an outlined SEH helper. This can be a + /// finally block or filter expression. + bool IsOutlinedSEHHelper = false; + + /// True if CodeGen currently emits code inside presereved access index + /// region. + bool IsInPreservedAIRegion = false; + + const CodeGen::CGBlockInfo *BlockInfo = nullptr; + llvm::Value *BlockPointer = nullptr; + + llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; + FieldDecl *LambdaThisCaptureField = nullptr; + + /// A mapping from NRVO variables to the flags used to indicate + /// when the NRVO has been applied to this variable. + llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; + + EHScopeStack EHStack; + llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack; + llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack; + + llvm::Instruction *CurrentFuncletPad = nullptr; + + class CallLifetimeEnd final : public EHScopeStack::Cleanup { + llvm::Value *Addr; + llvm::Value *Size; + + public: + CallLifetimeEnd(Address addr, llvm::Value *size) + : Addr(addr.getPointer()), Size(size) {} + + void Emit(CodeGenFunction &CGF, Flags flags) override { + CGF.EmitLifetimeEnd(Size, Addr); + } + }; + + /// Header for data within LifetimeExtendedCleanupStack. + struct LifetimeExtendedCleanupHeader { + /// The size of the following cleanup object. + unsigned Size; + /// The kind of cleanup to push: a value from the CleanupKind enumeration. + unsigned Kind : 31; + /// Whether this is a conditional cleanup. + unsigned IsConditional : 1; + + size_t getSize() const { return Size; } + CleanupKind getKind() const { return (CleanupKind)Kind; } + bool isConditional() const { return IsConditional; } + }; + + /// i32s containing the indexes of the cleanup destinations. + Address NormalCleanupDest = Address::invalid(); + + unsigned NextCleanupDestIndex = 1; + + /// FirstBlockInfo - The head of a singly-linked-list of block layouts. + CGBlockInfo *FirstBlockInfo = nullptr; + + /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. + llvm::BasicBlock *EHResumeBlock = nullptr; + + /// The exception slot. All landing pads write the current exception pointer + /// into this alloca. + llvm::Value *ExceptionSlot = nullptr; + + /// The selector slot. Under the MandatoryCleanup model, all landing pads + /// write the current selector value into this alloca. + llvm::AllocaInst *EHSelectorSlot = nullptr; + + /// A stack of exception code slots. Entering an __except block pushes a slot + /// on the stack and leaving pops one. The __exception_code() intrinsic loads + /// a value from the top of the stack. + SmallVector<Address, 1> SEHCodeSlotStack; + + /// Value returned by __exception_info intrinsic. + llvm::Value *SEHInfo = nullptr; + + /// Emits a landing pad for the current EH stack. + llvm::BasicBlock *EmitLandingPad(); + + llvm::BasicBlock *getInvokeDestImpl(); + + template <class T> + typename DominatingValue<T>::saved_type saveValueInCond(T value) { + return DominatingValue<T>::save(*this, value); + } + +public: + /// ObjCEHValueStack - Stack of Objective-C exception values, used for + /// rethrows. + SmallVector<llvm::Value*, 8> ObjCEHValueStack; + + /// A class controlling the emission of a finally block. + class FinallyInfo { + /// Where the catchall's edge through the cleanup should go. + JumpDest RethrowDest; + + /// A function to call to enter the catch. + llvm::FunctionCallee BeginCatchFn; + + /// An i1 variable indicating whether or not the @finally is + /// running for an exception. + llvm::AllocaInst *ForEHVar; + + /// An i8* variable into which the exception pointer to rethrow + /// has been saved. + llvm::AllocaInst *SavedExnVar; + + public: + void enter(CodeGenFunction &CGF, const Stmt *Finally, + llvm::FunctionCallee beginCatchFn, + llvm::FunctionCallee endCatchFn, llvm::FunctionCallee rethrowFn); + void exit(CodeGenFunction &CGF); + }; + + /// Returns true inside SEH __try blocks. + bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); } + + /// Returns true while emitting a cleanuppad. + bool isCleanupPadScope() const { + return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad); + } + + /// pushFullExprCleanup - Push a cleanup to be run at the end of the + /// current full-expression. Safe against the possibility that + /// we're currently inside a conditionally-evaluated expression. + template <class T, class... As> + void pushFullExprCleanup(CleanupKind kind, As... A) { + // If we're not in a conditional branch, or if none of the + // arguments requires saving, then use the unconditional cleanup. + if (!isInConditionalBranch()) + return EHStack.pushCleanup<T>(kind, A...); + + // Stash values in a tuple so we can guarantee the order of saves. + typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; + SavedTuple Saved{saveValueInCond(A)...}; + + typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; + EHStack.pushCleanupTuple<CleanupType>(kind, Saved); + initFullExprCleanup(); + } + + /// Queue a cleanup to be pushed after finishing the current + /// full-expression. + template <class T, class... As> + void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) { + if (!isInConditionalBranch()) + return pushCleanupAfterFullExprImpl<T>(Kind, Address::invalid(), A...); + + Address ActiveFlag = createCleanupActiveFlag(); + assert(!DominatingValue<Address>::needsSaving(ActiveFlag) && + "cleanup active flag should never need saving"); + + typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; + SavedTuple Saved{saveValueInCond(A)...}; + + typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; + pushCleanupAfterFullExprImpl<CleanupType>(Kind, ActiveFlag, Saved); + } + + template <class T, class... As> + void pushCleanupAfterFullExprImpl(CleanupKind Kind, Address ActiveFlag, + As... A) { + LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind, + ActiveFlag.isValid()}; + + size_t OldSize = LifetimeExtendedCleanupStack.size(); + LifetimeExtendedCleanupStack.resize( + LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size + + (Header.IsConditional ? sizeof(ActiveFlag) : 0)); + + static_assert(sizeof(Header) % alignof(T) == 0, + "Cleanup will be allocated on misaligned address"); + char *Buffer = &LifetimeExtendedCleanupStack[OldSize]; + new (Buffer) LifetimeExtendedCleanupHeader(Header); + new (Buffer + sizeof(Header)) T(A...); + if (Header.IsConditional) + new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag); + } + + /// Set up the last cleanup that was pushed as a conditional + /// full-expression cleanup. + void initFullExprCleanup() { + initFullExprCleanupWithFlag(createCleanupActiveFlag()); + } + + void initFullExprCleanupWithFlag(Address ActiveFlag); + Address createCleanupActiveFlag(); + + /// PushDestructorCleanup - Push a cleanup to call the + /// complete-object destructor of an object of the given type at the + /// given address. Does nothing if T is not a C++ class type with a + /// non-trivial destructor. + void PushDestructorCleanup(QualType T, Address Addr); + + /// PushDestructorCleanup - Push a cleanup to call the + /// complete-object variant of the given destructor on the object at + /// the given address. + void PushDestructorCleanup(const CXXDestructorDecl *Dtor, QualType T, + Address Addr); + + /// PopCleanupBlock - Will pop the cleanup entry on the stack and + /// process all branch fixups. + void PopCleanupBlock(bool FallThroughIsBranchThrough = false); + + /// DeactivateCleanupBlock - Deactivates the given cleanup block. + /// The block cannot be reactivated. Pops it if it's the top of the + /// stack. + /// + /// \param DominatingIP - An instruction which is known to + /// dominate the current IP (if set) and which lies along + /// all paths of execution between the current IP and the + /// the point at which the cleanup comes into scope. + void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, + llvm::Instruction *DominatingIP); + + /// ActivateCleanupBlock - Activates an initially-inactive cleanup. + /// Cannot be used to resurrect a deactivated cleanup. + /// + /// \param DominatingIP - An instruction which is known to + /// dominate the current IP (if set) and which lies along + /// all paths of execution between the current IP and the + /// the point at which the cleanup comes into scope. + void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, + llvm::Instruction *DominatingIP); + + /// Enters a new scope for capturing cleanups, all of which + /// will be executed once the scope is exited. + class RunCleanupsScope { + EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth; + size_t LifetimeExtendedCleanupStackSize; + bool OldDidCallStackSave; + protected: + bool PerformCleanup; + private: + + RunCleanupsScope(const RunCleanupsScope &) = delete; + void operator=(const RunCleanupsScope &) = delete; + + protected: + CodeGenFunction& CGF; + + public: + /// Enter a new cleanup scope. + explicit RunCleanupsScope(CodeGenFunction &CGF) + : PerformCleanup(true), CGF(CGF) + { + CleanupStackDepth = CGF.EHStack.stable_begin(); + LifetimeExtendedCleanupStackSize = + CGF.LifetimeExtendedCleanupStack.size(); + OldDidCallStackSave = CGF.DidCallStackSave; + CGF.DidCallStackSave = false; + OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth; + CGF.CurrentCleanupScopeDepth = CleanupStackDepth; + } + + /// Exit this cleanup scope, emitting any accumulated cleanups. + ~RunCleanupsScope() { + if (PerformCleanup) + ForceCleanup(); + } + + /// Determine whether this scope requires any cleanups. + bool requiresCleanups() const { + return CGF.EHStack.stable_begin() != CleanupStackDepth; + } + + /// Force the emission of cleanups now, instead of waiting + /// until this object is destroyed. + /// \param ValuesToReload - A list of values that need to be available at + /// the insertion point after cleanup emission. If cleanup emission created + /// a shared cleanup block, these value pointers will be rewritten. + /// Otherwise, they not will be modified. + void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) { + assert(PerformCleanup && "Already forced cleanup"); + CGF.DidCallStackSave = OldDidCallStackSave; + CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize, + ValuesToReload); + PerformCleanup = false; + CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth; + } + }; + + // Cleanup stack depth of the RunCleanupsScope that was pushed most recently. + EHScopeStack::stable_iterator CurrentCleanupScopeDepth = + EHScopeStack::stable_end(); + + class LexicalScope : public RunCleanupsScope { + SourceRange Range; + SmallVector<const LabelDecl*, 4> Labels; + LexicalScope *ParentScope; + + LexicalScope(const LexicalScope &) = delete; + void operator=(const LexicalScope &) = delete; + + public: + /// Enter a new cleanup scope. + explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) + : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) { + CGF.CurLexicalScope = this; + if (CGDebugInfo *DI = CGF.getDebugInfo()) + DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); + } + + void addLabel(const LabelDecl *label) { + assert(PerformCleanup && "adding label to dead scope?"); + Labels.push_back(label); + } + + /// Exit this cleanup scope, emitting any accumulated + /// cleanups. + ~LexicalScope() { + if (CGDebugInfo *DI = CGF.getDebugInfo()) + DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); + + // If we should perform a cleanup, force them now. Note that + // this ends the cleanup scope before rescoping any labels. + if (PerformCleanup) { + ApplyDebugLocation DL(CGF, Range.getEnd()); + ForceCleanup(); + } + } + + /// Force the emission of cleanups now, instead of waiting + /// until this object is destroyed. + void ForceCleanup() { + CGF.CurLexicalScope = ParentScope; + RunCleanupsScope::ForceCleanup(); + + if (!Labels.empty()) + rescopeLabels(); + } + + bool hasLabels() const { + return !Labels.empty(); + } + + void rescopeLabels(); + }; + + typedef llvm::DenseMap<const Decl *, Address> DeclMapTy; + + /// The class used to assign some variables some temporarily addresses. + class OMPMapVars { + DeclMapTy SavedLocals; + DeclMapTy SavedTempAddresses; + OMPMapVars(const OMPMapVars &) = delete; + void operator=(const OMPMapVars &) = delete; + + public: + explicit OMPMapVars() = default; + ~OMPMapVars() { + assert(SavedLocals.empty() && "Did not restored original addresses."); + }; + + /// Sets the address of the variable \p LocalVD to be \p TempAddr in + /// function \p CGF. + /// \return true if at least one variable was set already, false otherwise. + bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD, + Address TempAddr) { + LocalVD = LocalVD->getCanonicalDecl(); + // Only save it once. + if (SavedLocals.count(LocalVD)) return false; + + // Copy the existing local entry to SavedLocals. + auto it = CGF.LocalDeclMap.find(LocalVD); + if (it != CGF.LocalDeclMap.end()) + SavedLocals.try_emplace(LocalVD, it->second); + else + SavedLocals.try_emplace(LocalVD, Address::invalid()); + + // Generate the private entry. + QualType VarTy = LocalVD->getType(); + if (VarTy->isReferenceType()) { + Address Temp = CGF.CreateMemTemp(VarTy); + CGF.Builder.CreateStore(TempAddr.getPointer(), Temp); + TempAddr = Temp; + } + SavedTempAddresses.try_emplace(LocalVD, TempAddr); + + return true; + } + + /// Applies new addresses to the list of the variables. + /// \return true if at least one variable is using new address, false + /// otherwise. + bool apply(CodeGenFunction &CGF) { + copyInto(SavedTempAddresses, CGF.LocalDeclMap); + SavedTempAddresses.clear(); + return !SavedLocals.empty(); + } + + /// Restores original addresses of the variables. + void restore(CodeGenFunction &CGF) { + if (!SavedLocals.empty()) { + copyInto(SavedLocals, CGF.LocalDeclMap); + SavedLocals.clear(); + } + } + + private: + /// Copy all the entries in the source map over the corresponding + /// entries in the destination, which must exist. + static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) { + for (auto &Pair : Src) { + if (!Pair.second.isValid()) { + Dest.erase(Pair.first); + continue; + } + + auto I = Dest.find(Pair.first); + if (I != Dest.end()) + I->second = Pair.second; + else + Dest.insert(Pair); + } + } + }; + + /// The scope used to remap some variables as private in the OpenMP loop body + /// (or other captured region emitted without outlining), and to restore old + /// vars back on exit. + class OMPPrivateScope : public RunCleanupsScope { + OMPMapVars MappedVars; + OMPPrivateScope(const OMPPrivateScope &) = delete; + void operator=(const OMPPrivateScope &) = delete; + + public: + /// Enter a new OpenMP private scope. + explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {} + + /// Registers \p LocalVD variable as a private and apply \p PrivateGen + /// function for it to generate corresponding private variable. \p + /// PrivateGen returns an address of the generated private variable. + /// \return true if the variable is registered as private, false if it has + /// been privatized already. + bool addPrivate(const VarDecl *LocalVD, + const llvm::function_ref<Address()> PrivateGen) { + assert(PerformCleanup && "adding private to dead scope"); + return MappedVars.setVarAddr(CGF, LocalVD, PrivateGen()); + } + + /// Privatizes local variables previously registered as private. + /// Registration is separate from the actual privatization to allow + /// initializers use values of the original variables, not the private one. + /// This is important, for example, if the private variable is a class + /// variable initialized by a constructor that references other private + /// variables. But at initialization original variables must be used, not + /// private copies. + /// \return true if at least one variable was privatized, false otherwise. + bool Privatize() { return MappedVars.apply(CGF); } + + void ForceCleanup() { + RunCleanupsScope::ForceCleanup(); + MappedVars.restore(CGF); + } + + /// Exit scope - all the mapped variables are restored. + ~OMPPrivateScope() { + if (PerformCleanup) + ForceCleanup(); + } + + /// Checks if the global variable is captured in current function. + bool isGlobalVarCaptured(const VarDecl *VD) const { + VD = VD->getCanonicalDecl(); + return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0; + } + }; + + /// Save/restore original map of previously emitted local vars in case when we + /// need to duplicate emission of the same code several times in the same + /// function for OpenMP code. + class OMPLocalDeclMapRAII { + CodeGenFunction &CGF; + DeclMapTy SavedMap; + + public: + OMPLocalDeclMapRAII(CodeGenFunction &CGF) + : CGF(CGF), SavedMap(CGF.LocalDeclMap) {} + ~OMPLocalDeclMapRAII() { SavedMap.swap(CGF.LocalDeclMap); } + }; + + /// Takes the old cleanup stack size and emits the cleanup blocks + /// that have been added. + void + PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, + std::initializer_list<llvm::Value **> ValuesToReload = {}); + + /// Takes the old cleanup stack size and emits the cleanup blocks + /// that have been added, then adds all lifetime-extended cleanups from + /// the given position to the stack. + void + PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, + size_t OldLifetimeExtendedStackSize, + std::initializer_list<llvm::Value **> ValuesToReload = {}); + + void ResolveBranchFixups(llvm::BasicBlock *Target); + + /// The given basic block lies in the current EH scope, but may be a + /// target of a potentially scope-crossing jump; get a stable handle + /// to which we can perform this jump later. + JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { + return JumpDest(Target, + EHStack.getInnermostNormalCleanup(), + NextCleanupDestIndex++); + } + + /// The given basic block lies in the current EH scope, but may be a + /// target of a potentially scope-crossing jump; get a stable handle + /// to which we can perform this jump later. + JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { + return getJumpDestInCurrentScope(createBasicBlock(Name)); + } + + /// EmitBranchThroughCleanup - Emit a branch from the current insert + /// block through the normal cleanup handling code (if any) and then + /// on to \arg Dest. + void EmitBranchThroughCleanup(JumpDest Dest); + + /// isObviouslyBranchWithoutCleanups - Return true if a branch to the + /// specified destination obviously has no cleanups to run. 'false' is always + /// a conservatively correct answer for this method. + bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; + + /// popCatchScope - Pops the catch scope at the top of the EHScope + /// stack, emitting any required code (other than the catch handlers + /// themselves). + void popCatchScope(); + + llvm::BasicBlock *getEHResumeBlock(bool isCleanup); + llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); + llvm::BasicBlock * + getFuncletEHDispatchBlock(EHScopeStack::stable_iterator scope); + + /// An object to manage conditionally-evaluated expressions. + class ConditionalEvaluation { + llvm::BasicBlock *StartBB; + + public: + ConditionalEvaluation(CodeGenFunction &CGF) + : StartBB(CGF.Builder.GetInsertBlock()) {} + + void begin(CodeGenFunction &CGF) { + assert(CGF.OutermostConditional != this); + if (!CGF.OutermostConditional) + CGF.OutermostConditional = this; + } + + void end(CodeGenFunction &CGF) { + assert(CGF.OutermostConditional != nullptr); + if (CGF.OutermostConditional == this) + CGF.OutermostConditional = nullptr; + } + + /// Returns a block which will be executed prior to each + /// evaluation of the conditional code. + llvm::BasicBlock *getStartingBlock() const { + return StartBB; + } + }; + + /// isInConditionalBranch - Return true if we're currently emitting + /// one branch or the other of a conditional expression. + bool isInConditionalBranch() const { return OutermostConditional != nullptr; } + + void setBeforeOutermostConditional(llvm::Value *value, Address addr) { + assert(isInConditionalBranch()); + llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); + auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back()); + store->setAlignment(addr.getAlignment().getAsAlign()); + } + + /// An RAII object to record that we're evaluating a statement + /// expression. + class StmtExprEvaluation { + CodeGenFunction &CGF; + + /// We have to save the outermost conditional: cleanups in a + /// statement expression aren't conditional just because the + /// StmtExpr is. + ConditionalEvaluation *SavedOutermostConditional; + + public: + StmtExprEvaluation(CodeGenFunction &CGF) + : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { + CGF.OutermostConditional = nullptr; + } + + ~StmtExprEvaluation() { + CGF.OutermostConditional = SavedOutermostConditional; + CGF.EnsureInsertPoint(); + } + }; + + /// An object which temporarily prevents a value from being + /// destroyed by aggressive peephole optimizations that assume that + /// all uses of a value have been realized in the IR. + class PeepholeProtection { + llvm::Instruction *Inst; + friend class CodeGenFunction; + + public: + PeepholeProtection() : Inst(nullptr) {} + }; + + /// A non-RAII class containing all the information about a bound + /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for + /// this which makes individual mappings very simple; using this + /// class directly is useful when you have a variable number of + /// opaque values or don't want the RAII functionality for some + /// reason. + class OpaqueValueMappingData { + const OpaqueValueExpr *OpaqueValue; + bool BoundLValue; + CodeGenFunction::PeepholeProtection Protection; + + OpaqueValueMappingData(const OpaqueValueExpr *ov, + bool boundLValue) + : OpaqueValue(ov), BoundLValue(boundLValue) {} + public: + OpaqueValueMappingData() : OpaqueValue(nullptr) {} + + static bool shouldBindAsLValue(const Expr *expr) { + // gl-values should be bound as l-values for obvious reasons. + // Records should be bound as l-values because IR generation + // always keeps them in memory. Expressions of function type + // act exactly like l-values but are formally required to be + // r-values in C. + return expr->isGLValue() || + expr->getType()->isFunctionType() || + hasAggregateEvaluationKind(expr->getType()); + } + + static OpaqueValueMappingData bind(CodeGenFunction &CGF, + const OpaqueValueExpr *ov, + const Expr *e) { + if (shouldBindAsLValue(ov)) + return bind(CGF, ov, CGF.EmitLValue(e)); + return bind(CGF, ov, CGF.EmitAnyExpr(e)); + } + + static OpaqueValueMappingData bind(CodeGenFunction &CGF, + const OpaqueValueExpr *ov, + const LValue &lv) { + assert(shouldBindAsLValue(ov)); + CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); + return OpaqueValueMappingData(ov, true); + } + + static OpaqueValueMappingData bind(CodeGenFunction &CGF, + const OpaqueValueExpr *ov, + const RValue &rv) { + assert(!shouldBindAsLValue(ov)); + CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); + + OpaqueValueMappingData data(ov, false); + + // Work around an extremely aggressive peephole optimization in + // EmitScalarConversion which assumes that all other uses of a + // value are extant. + data.Protection = CGF.protectFromPeepholes(rv); + + return data; + } + + bool isValid() const { return OpaqueValue != nullptr; } + void clear() { OpaqueValue = nullptr; } + + void unbind(CodeGenFunction &CGF) { + assert(OpaqueValue && "no data to unbind!"); + + if (BoundLValue) { + CGF.OpaqueLValues.erase(OpaqueValue); + } else { + CGF.OpaqueRValues.erase(OpaqueValue); + CGF.unprotectFromPeepholes(Protection); + } + } + }; + + /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. + class OpaqueValueMapping { + CodeGenFunction &CGF; + OpaqueValueMappingData Data; + + public: + static bool shouldBindAsLValue(const Expr *expr) { + return OpaqueValueMappingData::shouldBindAsLValue(expr); + } + + /// Build the opaque value mapping for the given conditional + /// operator if it's the GNU ?: extension. This is a common + /// enough pattern that the convenience operator is really + /// helpful. + /// + OpaqueValueMapping(CodeGenFunction &CGF, + const AbstractConditionalOperator *op) : CGF(CGF) { + if (isa<ConditionalOperator>(op)) + // Leave Data empty. + return; + + const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); + Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), + e->getCommon()); + } + + /// Build the opaque value mapping for an OpaqueValueExpr whose source + /// expression is set to the expression the OVE represents. + OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV) + : CGF(CGF) { + if (OV) { + assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used " + "for OVE with no source expression"); + Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr()); + } + } + + OpaqueValueMapping(CodeGenFunction &CGF, + const OpaqueValueExpr *opaqueValue, + LValue lvalue) + : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { + } + + OpaqueValueMapping(CodeGenFunction &CGF, + const OpaqueValueExpr *opaqueValue, + RValue rvalue) + : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { + } + + void pop() { + Data.unbind(CGF); + Data.clear(); + } + + ~OpaqueValueMapping() { + if (Data.isValid()) Data.unbind(CGF); + } + }; + +private: + CGDebugInfo *DebugInfo; + /// Used to create unique names for artificial VLA size debug info variables. + unsigned VLAExprCounter = 0; + bool DisableDebugInfo = false; + + /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid + /// calling llvm.stacksave for multiple VLAs in the same scope. + bool DidCallStackSave = false; + + /// IndirectBranch - The first time an indirect goto is seen we create a block + /// with an indirect branch. Every time we see the address of a label taken, + /// we add the label to the indirect goto. Every subsequent indirect goto is + /// codegen'd as a jump to the IndirectBranch's basic block. + llvm::IndirectBrInst *IndirectBranch = nullptr; + + /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C + /// decls. + DeclMapTy LocalDeclMap; + + // Keep track of the cleanups for callee-destructed parameters pushed to the + // cleanup stack so that they can be deactivated later. + llvm::DenseMap<const ParmVarDecl *, EHScopeStack::stable_iterator> + CalleeDestructedParamCleanups; + + /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this + /// will contain a mapping from said ParmVarDecl to its implicit "object_size" + /// parameter. + llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2> + SizeArguments; + + /// Track escaped local variables with auto storage. Used during SEH + /// outlining to produce a call to llvm.localescape. + llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals; + + /// LabelMap - This keeps track of the LLVM basic block for each C label. + llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; + + // BreakContinueStack - This keeps track of where break and continue + // statements should jump to. + struct BreakContinue { + BreakContinue(JumpDest Break, JumpDest Continue) + : BreakBlock(Break), ContinueBlock(Continue) {} + + JumpDest BreakBlock; + JumpDest ContinueBlock; + }; + SmallVector<BreakContinue, 8> BreakContinueStack; + + /// Handles cancellation exit points in OpenMP-related constructs. + class OpenMPCancelExitStack { + /// Tracks cancellation exit point and join point for cancel-related exit + /// and normal exit. + struct CancelExit { + CancelExit() = default; + CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock, + JumpDest ContBlock) + : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {} + OpenMPDirectiveKind Kind = llvm::omp::OMPD_unknown; + /// true if the exit block has been emitted already by the special + /// emitExit() call, false if the default codegen is used. + bool HasBeenEmitted = false; + JumpDest ExitBlock; + JumpDest ContBlock; + }; + + SmallVector<CancelExit, 8> Stack; + + public: + OpenMPCancelExitStack() : Stack(1) {} + ~OpenMPCancelExitStack() = default; + /// Fetches the exit block for the current OpenMP construct. + JumpDest getExitBlock() const { return Stack.back().ExitBlock; } + /// Emits exit block with special codegen procedure specific for the related + /// OpenMP construct + emits code for normal construct cleanup. + void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, + const llvm::function_ref<void(CodeGenFunction &)> CodeGen) { + if (Stack.back().Kind == Kind && getExitBlock().isValid()) { + assert(CGF.getOMPCancelDestination(Kind).isValid()); + assert(CGF.HaveInsertPoint()); + assert(!Stack.back().HasBeenEmitted); + auto IP = CGF.Builder.saveAndClearIP(); + CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); + CodeGen(CGF); + CGF.EmitBranch(Stack.back().ContBlock.getBlock()); + CGF.Builder.restoreIP(IP); + Stack.back().HasBeenEmitted = true; + } + CodeGen(CGF); + } + /// Enter the cancel supporting \a Kind construct. + /// \param Kind OpenMP directive that supports cancel constructs. + /// \param HasCancel true, if the construct has inner cancel directive, + /// false otherwise. + void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) { + Stack.push_back({Kind, + HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit") + : JumpDest(), + HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont") + : JumpDest()}); + } + /// Emits default exit point for the cancel construct (if the special one + /// has not be used) + join point for cancel/normal exits. + void exit(CodeGenFunction &CGF) { + if (getExitBlock().isValid()) { + assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid()); + bool HaveIP = CGF.HaveInsertPoint(); + if (!Stack.back().HasBeenEmitted) { + if (HaveIP) + CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); + CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); + CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); + } + CGF.EmitBlock(Stack.back().ContBlock.getBlock()); + if (!HaveIP) { + CGF.Builder.CreateUnreachable(); + CGF.Builder.ClearInsertionPoint(); + } + } + Stack.pop_back(); + } + }; + OpenMPCancelExitStack OMPCancelStack; + + CodeGenPGO PGO; + + /// Calculate branch weights appropriate for PGO data + llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount); + llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights); + llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond, + uint64_t LoopCount); + +public: + /// Increment the profiler's counter for the given statement by \p StepV. + /// If \p StepV is null, the default increment is 1. + void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) { + if (CGM.getCodeGenOpts().hasProfileClangInstr()) + PGO.emitCounterIncrement(Builder, S, StepV); + PGO.setCurrentStmt(S); + } + + /// Get the profiler's count for the given statement. + uint64_t getProfileCount(const Stmt *S) { + Optional<uint64_t> Count = PGO.getStmtCount(S); + if (!Count.hasValue()) + return 0; + return *Count; + } + + /// Set the profiler's current count. + void setCurrentProfileCount(uint64_t Count) { + PGO.setCurrentRegionCount(Count); + } + + /// Get the profiler's current count. This is generally the count for the most + /// recently incremented counter. + uint64_t getCurrentProfileCount() { + return PGO.getCurrentRegionCount(); + } + +private: + + /// SwitchInsn - This is nearest current switch instruction. It is null if + /// current context is not in a switch. + llvm::SwitchInst *SwitchInsn = nullptr; + /// The branch weights of SwitchInsn when doing instrumentation based PGO. + SmallVector<uint64_t, 16> *SwitchWeights = nullptr; + + /// CaseRangeBlock - This block holds if condition check for last case + /// statement range in current switch instruction. + llvm::BasicBlock *CaseRangeBlock = nullptr; + + /// OpaqueLValues - Keeps track of the current set of opaque value + /// expressions. + llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; + llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; + + // VLASizeMap - This keeps track of the associated size for each VLA type. + // We track this by the size expression rather than the type itself because + // in certain situations, like a const qualifier applied to an VLA typedef, + // multiple VLA types can share the same size expression. + // FIXME: Maybe this could be a stack of maps that is pushed/popped as we + // enter/leave scopes. + llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; + + /// A block containing a single 'unreachable' instruction. Created + /// lazily by getUnreachableBlock(). + llvm::BasicBlock *UnreachableBlock = nullptr; + + /// Counts of the number return expressions in the function. + unsigned NumReturnExprs = 0; + + /// Count the number of simple (constant) return expressions in the function. + unsigned NumSimpleReturnExprs = 0; + + /// The last regular (non-return) debug location (breakpoint) in the function. + SourceLocation LastStopPoint; + +public: + /// Source location information about the default argument or member + /// initializer expression we're evaluating, if any. + CurrentSourceLocExprScope CurSourceLocExprScope; + using SourceLocExprScopeGuard = + CurrentSourceLocExprScope::SourceLocExprScopeGuard; + + /// A scope within which we are constructing the fields of an object which + /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use + /// if we need to evaluate a CXXDefaultInitExpr within the evaluation. + class FieldConstructionScope { + public: + FieldConstructionScope(CodeGenFunction &CGF, Address This) + : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) { + CGF.CXXDefaultInitExprThis = This; + } + ~FieldConstructionScope() { + CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis; + } + + private: + CodeGenFunction &CGF; + Address OldCXXDefaultInitExprThis; + }; + + /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this' + /// is overridden to be the object under construction. + class CXXDefaultInitExprScope { + public: + CXXDefaultInitExprScope(CodeGenFunction &CGF, const CXXDefaultInitExpr *E) + : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue), + OldCXXThisAlignment(CGF.CXXThisAlignment), + SourceLocScope(E, CGF.CurSourceLocExprScope) { + CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer(); + CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment(); + } + ~CXXDefaultInitExprScope() { + CGF.CXXThisValue = OldCXXThisValue; + CGF.CXXThisAlignment = OldCXXThisAlignment; + } + + public: + CodeGenFunction &CGF; + llvm::Value *OldCXXThisValue; + CharUnits OldCXXThisAlignment; + SourceLocExprScopeGuard SourceLocScope; + }; + + struct CXXDefaultArgExprScope : SourceLocExprScopeGuard { + CXXDefaultArgExprScope(CodeGenFunction &CGF, const CXXDefaultArgExpr *E) + : SourceLocExprScopeGuard(E, CGF.CurSourceLocExprScope) {} + }; + + /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the + /// current loop index is overridden. + class ArrayInitLoopExprScope { + public: + ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index) + : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) { + CGF.ArrayInitIndex = Index; + } + ~ArrayInitLoopExprScope() { + CGF.ArrayInitIndex = OldArrayInitIndex; + } + + private: + CodeGenFunction &CGF; + llvm::Value *OldArrayInitIndex; + }; + + class InlinedInheritingConstructorScope { + public: + InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD) + : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl), + OldCurCodeDecl(CGF.CurCodeDecl), + OldCXXABIThisDecl(CGF.CXXABIThisDecl), + OldCXXABIThisValue(CGF.CXXABIThisValue), + OldCXXThisValue(CGF.CXXThisValue), + OldCXXABIThisAlignment(CGF.CXXABIThisAlignment), + OldCXXThisAlignment(CGF.CXXThisAlignment), + OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy), + OldCXXInheritedCtorInitExprArgs( + std::move(CGF.CXXInheritedCtorInitExprArgs)) { + CGF.CurGD = GD; + CGF.CurFuncDecl = CGF.CurCodeDecl = + cast<CXXConstructorDecl>(GD.getDecl()); + CGF.CXXABIThisDecl = nullptr; + CGF.CXXABIThisValue = nullptr; + CGF.CXXThisValue = nullptr; + CGF.CXXABIThisAlignment = CharUnits(); + CGF.CXXThisAlignment = CharUnits(); + CGF.ReturnValue = Address::invalid(); + CGF.FnRetTy = QualType(); + CGF.CXXInheritedCtorInitExprArgs.clear(); + } + ~InlinedInheritingConstructorScope() { + CGF.CurGD = OldCurGD; + CGF.CurFuncDecl = OldCurFuncDecl; + CGF.CurCodeDecl = OldCurCodeDecl; + CGF.CXXABIThisDecl = OldCXXABIThisDecl; + CGF.CXXABIThisValue = OldCXXABIThisValue; + CGF.CXXThisValue = OldCXXThisValue; + CGF.CXXABIThisAlignment = OldCXXABIThisAlignment; + CGF.CXXThisAlignment = OldCXXThisAlignment; + CGF.ReturnValue = OldReturnValue; + CGF.FnRetTy = OldFnRetTy; + CGF.CXXInheritedCtorInitExprArgs = + std::move(OldCXXInheritedCtorInitExprArgs); + } + + private: + CodeGenFunction &CGF; + GlobalDecl OldCurGD; + const Decl *OldCurFuncDecl; + const Decl *OldCurCodeDecl; + ImplicitParamDecl *OldCXXABIThisDecl; + llvm::Value *OldCXXABIThisValue; + llvm::Value *OldCXXThisValue; + CharUnits OldCXXABIThisAlignment; + CharUnits OldCXXThisAlignment; + Address OldReturnValue; + QualType OldFnRetTy; + CallArgList OldCXXInheritedCtorInitExprArgs; + }; + +private: + /// CXXThisDecl - When generating code for a C++ member function, + /// this will hold the implicit 'this' declaration. + ImplicitParamDecl *CXXABIThisDecl = nullptr; + llvm::Value *CXXABIThisValue = nullptr; + llvm::Value *CXXThisValue = nullptr; + CharUnits CXXABIThisAlignment; + CharUnits CXXThisAlignment; + + /// The value of 'this' to use when evaluating CXXDefaultInitExprs within + /// this expression. + Address CXXDefaultInitExprThis = Address::invalid(); + + /// The current array initialization index when evaluating an + /// ArrayInitIndexExpr within an ArrayInitLoopExpr. + llvm::Value *ArrayInitIndex = nullptr; + + /// The values of function arguments to use when evaluating + /// CXXInheritedCtorInitExprs within this context. + CallArgList CXXInheritedCtorInitExprArgs; + + /// CXXStructorImplicitParamDecl - When generating code for a constructor or + /// destructor, this will hold the implicit argument (e.g. VTT). + ImplicitParamDecl *CXXStructorImplicitParamDecl = nullptr; + llvm::Value *CXXStructorImplicitParamValue = nullptr; + + /// OutermostConditional - Points to the outermost active + /// conditional control. This is used so that we know if a + /// temporary should be destroyed conditionally. + ConditionalEvaluation *OutermostConditional = nullptr; + + /// The current lexical scope. + LexicalScope *CurLexicalScope = nullptr; + + /// The current source location that should be used for exception + /// handling code. + SourceLocation CurEHLocation; + + /// BlockByrefInfos - For each __block variable, contains + /// information about the layout of the variable. + llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos; + + /// Used by -fsanitize=nullability-return to determine whether the return + /// value can be checked. + llvm::Value *RetValNullabilityPrecondition = nullptr; + + /// Check if -fsanitize=nullability-return instrumentation is required for + /// this function. + bool requiresReturnValueNullabilityCheck() const { + return RetValNullabilityPrecondition; + } + + /// Used to store precise source locations for return statements by the + /// runtime return value checks. + Address ReturnLocation = Address::invalid(); + + /// Check if the return value of this function requires sanitization. + bool requiresReturnValueCheck() const; + + llvm::BasicBlock *TerminateLandingPad = nullptr; + llvm::BasicBlock *TerminateHandler = nullptr; + llvm::BasicBlock *TrapBB = nullptr; + + /// Terminate funclets keyed by parent funclet pad. + llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets; + + /// Largest vector width used in ths function. Will be used to create a + /// function attribute. + unsigned LargestVectorWidth = 0; + + /// True if we need emit the life-time markers. + const bool ShouldEmitLifetimeMarkers; + + /// Add OpenCL kernel arg metadata and the kernel attribute metadata to + /// the function metadata. + void EmitOpenCLKernelMetadata(const FunctionDecl *FD, + llvm::Function *Fn); + +public: + CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false); + ~CodeGenFunction(); + + CodeGenTypes &getTypes() const { return CGM.getTypes(); } + ASTContext &getContext() const { return CGM.getContext(); } + CGDebugInfo *getDebugInfo() { + if (DisableDebugInfo) + return nullptr; + return DebugInfo; + } + void disableDebugInfo() { DisableDebugInfo = true; } + void enableDebugInfo() { DisableDebugInfo = false; } + + bool shouldUseFusedARCCalls() { + return CGM.getCodeGenOpts().OptimizationLevel == 0; + } + + const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } + + /// Returns a pointer to the function's exception object and selector slot, + /// which is assigned in every landing pad. + Address getExceptionSlot(); + Address getEHSelectorSlot(); + + /// Returns the contents of the function's exception object and selector + /// slots. + llvm::Value *getExceptionFromSlot(); + llvm::Value *getSelectorFromSlot(); + + Address getNormalCleanupDestSlot(); + + llvm::BasicBlock *getUnreachableBlock() { + if (!UnreachableBlock) { + UnreachableBlock = createBasicBlock("unreachable"); + new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); + } + return UnreachableBlock; + } + + llvm::BasicBlock *getInvokeDest() { + if (!EHStack.requiresLandingPad()) return nullptr; + return getInvokeDestImpl(); + } + + bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; } + + const TargetInfo &getTarget() const { return Target; } + llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } + const TargetCodeGenInfo &getTargetHooks() const { + return CGM.getTargetCodeGenInfo(); + } + + //===--------------------------------------------------------------------===// + // Cleanups + //===--------------------------------------------------------------------===// + + typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty); + + void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, + Address arrayEndPointer, + QualType elementType, + CharUnits elementAlignment, + Destroyer *destroyer); + void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, + llvm::Value *arrayEnd, + QualType elementType, + CharUnits elementAlignment, + Destroyer *destroyer); + + void pushDestroy(QualType::DestructionKind dtorKind, + Address addr, QualType type); + void pushEHDestroy(QualType::DestructionKind dtorKind, + Address addr, QualType type); + void pushDestroy(CleanupKind kind, Address addr, QualType type, + Destroyer *destroyer, bool useEHCleanupForArray); + void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr, + QualType type, Destroyer *destroyer, + bool useEHCleanupForArray); + void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, + llvm::Value *CompletePtr, + QualType ElementType); + void pushStackRestore(CleanupKind kind, Address SPMem); + void emitDestroy(Address addr, QualType type, Destroyer *destroyer, + bool useEHCleanupForArray); + llvm::Function *generateDestroyHelper(Address addr, QualType type, + Destroyer *destroyer, + bool useEHCleanupForArray, + const VarDecl *VD); + void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, + QualType elementType, CharUnits elementAlign, + Destroyer *destroyer, + bool checkZeroLength, bool useEHCleanup); + + Destroyer *getDestroyer(QualType::DestructionKind destructionKind); + + /// Determines whether an EH cleanup is required to destroy a type + /// with the given destruction kind. + bool needsEHCleanup(QualType::DestructionKind kind) { + switch (kind) { + case QualType::DK_none: + return false; + case QualType::DK_cxx_destructor: + case QualType::DK_objc_weak_lifetime: + case QualType::DK_nontrivial_c_struct: + return getLangOpts().Exceptions; + case QualType::DK_objc_strong_lifetime: + return getLangOpts().Exceptions && + CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; + } + llvm_unreachable("bad destruction kind"); + } + + CleanupKind getCleanupKind(QualType::DestructionKind kind) { + return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); + } + + //===--------------------------------------------------------------------===// + // Objective-C + //===--------------------------------------------------------------------===// + + void GenerateObjCMethod(const ObjCMethodDecl *OMD); + + void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD); + + /// GenerateObjCGetter - Synthesize an Objective-C property getter function. + void GenerateObjCGetter(ObjCImplementationDecl *IMP, + const ObjCPropertyImplDecl *PID); + void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, + const ObjCPropertyImplDecl *propImpl, + const ObjCMethodDecl *GetterMothodDecl, + llvm::Constant *AtomicHelperFn); + + void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, + ObjCMethodDecl *MD, bool ctor); + + /// GenerateObjCSetter - Synthesize an Objective-C property setter function + /// for the given property. + void GenerateObjCSetter(ObjCImplementationDecl *IMP, + const ObjCPropertyImplDecl *PID); + void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, + const ObjCPropertyImplDecl *propImpl, + llvm::Constant *AtomicHelperFn); + + //===--------------------------------------------------------------------===// + // Block Bits + //===--------------------------------------------------------------------===// + + /// Emit block literal. + /// \return an LLVM value which is a pointer to a struct which contains + /// information about the block, including the block invoke function, the + /// captured variables, etc. + llvm::Value *EmitBlockLiteral(const BlockExpr *); + static void destroyBlockInfos(CGBlockInfo *info); + + llvm::Function *GenerateBlockFunction(GlobalDecl GD, + const CGBlockInfo &Info, + const DeclMapTy &ldm, + bool IsLambdaConversionToBlock, + bool BuildGlobalBlock); + + /// Check if \p T is a C++ class that has a destructor that can throw. + static bool cxxDestructorCanThrow(QualType T); + + llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); + llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); + llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction( + const ObjCPropertyImplDecl *PID); + llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction( + const ObjCPropertyImplDecl *PID); + llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); + + void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags, + bool CanThrow); + + class AutoVarEmission; + + void emitByrefStructureInit(const AutoVarEmission &emission); + + /// Enter a cleanup to destroy a __block variable. Note that this + /// cleanup should be a no-op if the variable hasn't left the stack + /// yet; if a cleanup is required for the variable itself, that needs + /// to be done externally. + /// + /// \param Kind Cleanup kind. + /// + /// \param Addr When \p LoadBlockVarAddr is false, the address of the __block + /// structure that will be passed to _Block_object_dispose. When + /// \p LoadBlockVarAddr is true, the address of the field of the block + /// structure that holds the address of the __block structure. + /// + /// \param Flags The flag that will be passed to _Block_object_dispose. + /// + /// \param LoadBlockVarAddr Indicates whether we need to emit a load from + /// \p Addr to get the address of the __block structure. + void enterByrefCleanup(CleanupKind Kind, Address Addr, BlockFieldFlags Flags, + bool LoadBlockVarAddr, bool CanThrow); + + void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum, + llvm::Value *ptr); + + Address LoadBlockStruct(); + Address GetAddrOfBlockDecl(const VarDecl *var); + + /// BuildBlockByrefAddress - Computes the location of the + /// data in a variable which is declared as __block. + Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V, + bool followForward = true); + Address emitBlockByrefAddress(Address baseAddr, + const BlockByrefInfo &info, + bool followForward, + const llvm::Twine &name); + + const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var); + + QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args); + + void GenerateCode(GlobalDecl GD, llvm::Function *Fn, + const CGFunctionInfo &FnInfo); + + /// Annotate the function with an attribute that disables TSan checking at + /// runtime. + void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn); + + /// Emit code for the start of a function. + /// \param Loc The location to be associated with the function. + /// \param StartLoc The location of the function body. + void StartFunction(GlobalDecl GD, + QualType RetTy, + llvm::Function *Fn, + const CGFunctionInfo &FnInfo, + const FunctionArgList &Args, + SourceLocation Loc = SourceLocation(), + SourceLocation StartLoc = SourceLocation()); + + static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor); + + void EmitConstructorBody(FunctionArgList &Args); + void EmitDestructorBody(FunctionArgList &Args); + void emitImplicitAssignmentOperatorBody(FunctionArgList &Args); + void EmitFunctionBody(const Stmt *Body); + void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S); + + void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator, + CallArgList &CallArgs); + void EmitLambdaBlockInvokeBody(); + void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD); + void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD); + void EmitLambdaVLACapture(const VariableArrayType *VAT, LValue LV) { + EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV); + } + void EmitAsanPrologueOrEpilogue(bool Prologue); + + /// Emit the unified return block, trying to avoid its emission when + /// possible. + /// \return The debug location of the user written return statement if the + /// return block is is avoided. + llvm::DebugLoc EmitReturnBlock(); + + /// FinishFunction - Complete IR generation of the current function. It is + /// legal to call this function even if there is no current insertion point. + void FinishFunction(SourceLocation EndLoc=SourceLocation()); + + void StartThunk(llvm::Function *Fn, GlobalDecl GD, + const CGFunctionInfo &FnInfo, bool IsUnprototyped); + + void EmitCallAndReturnForThunk(llvm::FunctionCallee Callee, + const ThunkInfo *Thunk, bool IsUnprototyped); + + void FinishThunk(); + + /// Emit a musttail call for a thunk with a potentially adjusted this pointer. + void EmitMustTailThunk(GlobalDecl GD, llvm::Value *AdjustedThisPtr, + llvm::FunctionCallee Callee); + + /// Generate a thunk for the given method. + void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, + GlobalDecl GD, const ThunkInfo &Thunk, + bool IsUnprototyped); + + llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn, + const CGFunctionInfo &FnInfo, + GlobalDecl GD, const ThunkInfo &Thunk); + + void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, + FunctionArgList &Args); + + void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init); + + /// Struct with all information about dynamic [sub]class needed to set vptr. + struct VPtr { + BaseSubobject Base; + const CXXRecordDecl *NearestVBase; + CharUnits OffsetFromNearestVBase; + const CXXRecordDecl *VTableClass; + }; + + /// Initialize the vtable pointer of the given subobject. + void InitializeVTablePointer(const VPtr &vptr); + + typedef llvm::SmallVector<VPtr, 4> VPtrsVector; + + typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; + VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass); + + void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase, + CharUnits OffsetFromNearestVBase, + bool BaseIsNonVirtualPrimaryBase, + const CXXRecordDecl *VTableClass, + VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs); + + void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); + + /// GetVTablePtr - Return the Value of the vtable pointer member pointed + /// to by This. + llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy, + const CXXRecordDecl *VTableClass); + + enum CFITypeCheckKind { + CFITCK_VCall, + CFITCK_NVCall, + CFITCK_DerivedCast, + CFITCK_UnrelatedCast, + CFITCK_ICall, + CFITCK_NVMFCall, + CFITCK_VMFCall, + }; + + /// Derived is the presumed address of an object of type T after a + /// cast. If T is a polymorphic class type, emit a check that the virtual + /// table for Derived belongs to a class derived from T. + void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived, + bool MayBeNull, CFITypeCheckKind TCK, + SourceLocation Loc); + + /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable. + /// If vptr CFI is enabled, emit a check that VTable is valid. + void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable, + CFITypeCheckKind TCK, SourceLocation Loc); + + /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for + /// RD using llvm.type.test. + void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable, + CFITypeCheckKind TCK, SourceLocation Loc); + + /// If whole-program virtual table optimization is enabled, emit an assumption + /// that VTable is a member of RD's type identifier. Or, if vptr CFI is + /// enabled, emit a check that VTable is a member of RD's type identifier. + void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, + llvm::Value *VTable, SourceLocation Loc); + + /// Returns whether we should perform a type checked load when loading a + /// virtual function for virtual calls to members of RD. This is generally + /// true when both vcall CFI and whole-program-vtables are enabled. + bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD); + + /// Emit a type checked load from the given vtable. + llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable, + uint64_t VTableByteOffset); + + /// EnterDtorCleanups - Enter the cleanups necessary to complete the + /// given phase of destruction for a destructor. The end result + /// should call destructors on members and base classes in reverse + /// order of their construction. + void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); + + /// ShouldInstrumentFunction - Return true if the current function should be + /// instrumented with __cyg_profile_func_* calls + bool ShouldInstrumentFunction(); + + /// ShouldXRayInstrument - Return true if the current function should be + /// instrumented with XRay nop sleds. + bool ShouldXRayInstrumentFunction() const; + + /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit + /// XRay custom event handling calls. + bool AlwaysEmitXRayCustomEvents() const; + + /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit + /// XRay typed event handling calls. + bool AlwaysEmitXRayTypedEvents() const; + + /// Encode an address into a form suitable for use in a function prologue. + llvm::Constant *EncodeAddrForUseInPrologue(llvm::Function *F, + llvm::Constant *Addr); + + /// Decode an address used in a function prologue, encoded by \c + /// EncodeAddrForUseInPrologue. + llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F, + llvm::Value *EncodedAddr); + + /// EmitFunctionProlog - Emit the target specific LLVM code to load the + /// arguments for the given function. This is also responsible for naming the + /// LLVM function arguments. + void EmitFunctionProlog(const CGFunctionInfo &FI, + llvm::Function *Fn, + const FunctionArgList &Args); + + /// EmitFunctionEpilog - Emit the target specific LLVM code to return the + /// given temporary. + void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc, + SourceLocation EndLoc); + + /// Emit a test that checks if the return value \p RV is nonnull. + void EmitReturnValueCheck(llvm::Value *RV); + + /// EmitStartEHSpec - Emit the start of the exception spec. + void EmitStartEHSpec(const Decl *D); + + /// EmitEndEHSpec - Emit the end of the exception spec. + void EmitEndEHSpec(const Decl *D); + + /// getTerminateLandingPad - Return a landing pad that just calls terminate. + llvm::BasicBlock *getTerminateLandingPad(); + + /// getTerminateLandingPad - Return a cleanup funclet that just calls + /// terminate. + llvm::BasicBlock *getTerminateFunclet(); + + /// getTerminateHandler - Return a handler (not a landing pad, just + /// a catch handler) that just calls terminate. This is used when + /// a terminate scope encloses a try. + llvm::BasicBlock *getTerminateHandler(); + + llvm::Type *ConvertTypeForMem(QualType T); + llvm::Type *ConvertType(QualType T); + llvm::Type *ConvertType(const TypeDecl *T) { + return ConvertType(getContext().getTypeDeclType(T)); + } + + /// LoadObjCSelf - Load the value of self. This function is only valid while + /// generating code for an Objective-C method. + llvm::Value *LoadObjCSelf(); + + /// TypeOfSelfObject - Return type of object that this self represents. + QualType TypeOfSelfObject(); + + /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T. + static TypeEvaluationKind getEvaluationKind(QualType T); + + static bool hasScalarEvaluationKind(QualType T) { + return getEvaluationKind(T) == TEK_Scalar; + } + + static bool hasAggregateEvaluationKind(QualType T) { + return getEvaluationKind(T) == TEK_Aggregate; + } + + /// createBasicBlock - Create an LLVM basic block. + llvm::BasicBlock *createBasicBlock(const Twine &name = "", + llvm::Function *parent = nullptr, + llvm::BasicBlock *before = nullptr) { + return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); + } + + /// getBasicBlockForLabel - Return the LLVM basicblock that the specified + /// label maps to. + JumpDest getJumpDestForLabel(const LabelDecl *S); + + /// SimplifyForwardingBlocks - If the given basic block is only a branch to + /// another basic block, simplify it. This assumes that no other code could + /// potentially reference the basic block. + void SimplifyForwardingBlocks(llvm::BasicBlock *BB); + + /// EmitBlock - Emit the given block \arg BB and set it as the insert point, + /// adding a fall-through branch from the current insert block if + /// necessary. It is legal to call this function even if there is no current + /// insertion point. + /// + /// IsFinished - If true, indicates that the caller has finished emitting + /// branches to the given block and does not expect to emit code into it. This + /// means the block can be ignored if it is unreachable. + void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); + + /// EmitBlockAfterUses - Emit the given block somewhere hopefully + /// near its uses, and leave the insertion point in it. + void EmitBlockAfterUses(llvm::BasicBlock *BB); + + /// EmitBranch - Emit a branch to the specified basic block from the current + /// insert block, taking care to avoid creation of branches from dummy + /// blocks. It is legal to call this function even if there is no current + /// insertion point. + /// + /// This function clears the current insertion point. The caller should follow + /// calls to this function with calls to Emit*Block prior to generation new + /// code. + void EmitBranch(llvm::BasicBlock *Block); + + /// HaveInsertPoint - True if an insertion point is defined. If not, this + /// indicates that the current code being emitted is unreachable. + bool HaveInsertPoint() const { + return Builder.GetInsertBlock() != nullptr; + } + + /// EnsureInsertPoint - Ensure that an insertion point is defined so that + /// emitted IR has a place to go. Note that by definition, if this function + /// creates a block then that block is unreachable; callers may do better to + /// detect when no insertion point is defined and simply skip IR generation. + void EnsureInsertPoint() { + if (!HaveInsertPoint()) + EmitBlock(createBasicBlock()); + } + + /// ErrorUnsupported - Print out an error that codegen doesn't support the + /// specified stmt yet. + void ErrorUnsupported(const Stmt *S, const char *Type); + + //===--------------------------------------------------------------------===// + // Helpers + //===--------------------------------------------------------------------===// + + LValue MakeAddrLValue(Address Addr, QualType T, + AlignmentSource Source = AlignmentSource::Type) { + return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source), + CGM.getTBAAAccessInfo(T)); + } + + LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo, + TBAAAccessInfo TBAAInfo) { + return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo); + } + + LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, + AlignmentSource Source = AlignmentSource::Type) { + return LValue::MakeAddr(Address(V, Alignment), T, getContext(), + LValueBaseInfo(Source), CGM.getTBAAAccessInfo(T)); + } + + LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, + LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) { + return LValue::MakeAddr(Address(V, Alignment), T, getContext(), + BaseInfo, TBAAInfo); + } + + LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T); + LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T); + CharUnits getNaturalTypeAlignment(QualType T, + LValueBaseInfo *BaseInfo = nullptr, + TBAAAccessInfo *TBAAInfo = nullptr, + bool forPointeeType = false); + CharUnits getNaturalPointeeTypeAlignment(QualType T, + LValueBaseInfo *BaseInfo = nullptr, + TBAAAccessInfo *TBAAInfo = nullptr); + + Address EmitLoadOfReference(LValue RefLVal, + LValueBaseInfo *PointeeBaseInfo = nullptr, + TBAAAccessInfo *PointeeTBAAInfo = nullptr); + LValue EmitLoadOfReferenceLValue(LValue RefLVal); + LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy, + AlignmentSource Source = + AlignmentSource::Type) { + LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source), + CGM.getTBAAAccessInfo(RefTy)); + return EmitLoadOfReferenceLValue(RefLVal); + } + + Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy, + LValueBaseInfo *BaseInfo = nullptr, + TBAAAccessInfo *TBAAInfo = nullptr); + LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy); + + /// CreateTempAlloca - This creates an alloca and inserts it into the entry + /// block if \p ArraySize is nullptr, otherwise inserts it at the current + /// insertion point of the builder. The caller is responsible for setting an + /// appropriate alignment on + /// the alloca. + /// + /// \p ArraySize is the number of array elements to be allocated if it + /// is not nullptr. + /// + /// LangAS::Default is the address space of pointers to local variables and + /// temporaries, as exposed in the source language. In certain + /// configurations, this is not the same as the alloca address space, and a + /// cast is needed to lift the pointer from the alloca AS into + /// LangAS::Default. This can happen when the target uses a restricted + /// address space for the stack but the source language requires + /// LangAS::Default to be a generic address space. The latter condition is + /// common for most programming languages; OpenCL is an exception in that + /// LangAS::Default is the private address space, which naturally maps + /// to the stack. + /// + /// Because the address of a temporary is often exposed to the program in + /// various ways, this function will perform the cast. The original alloca + /// instruction is returned through \p Alloca if it is not nullptr. + /// + /// The cast is not performaed in CreateTempAllocaWithoutCast. This is + /// more efficient if the caller knows that the address will not be exposed. + llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp", + llvm::Value *ArraySize = nullptr); + Address CreateTempAlloca(llvm::Type *Ty, CharUnits align, + const Twine &Name = "tmp", + llvm::Value *ArraySize = nullptr, + Address *Alloca = nullptr); + Address CreateTempAllocaWithoutCast(llvm::Type *Ty, CharUnits align, + const Twine &Name = "tmp", + llvm::Value *ArraySize = nullptr); + + /// CreateDefaultAlignedTempAlloca - This creates an alloca with the + /// default ABI alignment of the given LLVM type. + /// + /// IMPORTANT NOTE: This is *not* generally the right alignment for + /// any given AST type that happens to have been lowered to the + /// given IR type. This should only ever be used for function-local, + /// IR-driven manipulations like saving and restoring a value. Do + /// not hand this address off to arbitrary IRGen routines, and especially + /// do not pass it as an argument to a function that might expect a + /// properly ABI-aligned value. + Address CreateDefaultAlignTempAlloca(llvm::Type *Ty, + const Twine &Name = "tmp"); + + /// InitTempAlloca - Provide an initial value for the given alloca which + /// will be observable at all locations in the function. + /// + /// The address should be something that was returned from one of + /// the CreateTempAlloca or CreateMemTemp routines, and the + /// initializer must be valid in the entry block (i.e. it must + /// either be a constant or an argument value). + void InitTempAlloca(Address Alloca, llvm::Value *Value); + + /// CreateIRTemp - Create a temporary IR object of the given type, with + /// appropriate alignment. This routine should only be used when an temporary + /// value needs to be stored into an alloca (for example, to avoid explicit + /// PHI construction), but the type is the IR type, not the type appropriate + /// for storing in memory. + /// + /// That is, this is exactly equivalent to CreateMemTemp, but calling + /// ConvertType instead of ConvertTypeForMem. + Address CreateIRTemp(QualType T, const Twine &Name = "tmp"); + + /// CreateMemTemp - Create a temporary memory object of the given type, with + /// appropriate alignmen and cast it to the default address space. Returns + /// the original alloca instruction by \p Alloca if it is not nullptr. + Address CreateMemTemp(QualType T, const Twine &Name = "tmp", + Address *Alloca = nullptr); + Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp", + Address *Alloca = nullptr); + + /// CreateMemTemp - Create a temporary memory object of the given type, with + /// appropriate alignmen without casting it to the default address space. + Address CreateMemTempWithoutCast(QualType T, const Twine &Name = "tmp"); + Address CreateMemTempWithoutCast(QualType T, CharUnits Align, + const Twine &Name = "tmp"); + + /// CreateAggTemp - Create a temporary memory object for the given + /// aggregate type. + AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") { + return AggValueSlot::forAddr(CreateMemTemp(T, Name), + T.getQualifiers(), + AggValueSlot::IsNotDestructed, + AggValueSlot::DoesNotNeedGCBarriers, + AggValueSlot::IsNotAliased, + AggValueSlot::DoesNotOverlap); + } + + /// Emit a cast to void* in the appropriate address space. + llvm::Value *EmitCastToVoidPtr(llvm::Value *value); + + /// EvaluateExprAsBool - Perform the usual unary conversions on the specified + /// expression and compare the result against zero, returning an Int1Ty value. + llvm::Value *EvaluateExprAsBool(const Expr *E); + + /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. + void EmitIgnoredExpr(const Expr *E); + + /// EmitAnyExpr - Emit code to compute the specified expression which can have + /// any type. The result is returned as an RValue struct. If this is an + /// aggregate expression, the aggloc/agglocvolatile arguments indicate where + /// the result should be returned. + /// + /// \param ignoreResult True if the resulting value isn't used. + RValue EmitAnyExpr(const Expr *E, + AggValueSlot aggSlot = AggValueSlot::ignored(), + bool ignoreResult = false); + + // EmitVAListRef - Emit a "reference" to a va_list; this is either the address + // or the value of the expression, depending on how va_list is defined. + Address EmitVAListRef(const Expr *E); + + /// Emit a "reference" to a __builtin_ms_va_list; this is + /// always the value of the expression, because a __builtin_ms_va_list is a + /// pointer to a char. + Address EmitMSVAListRef(const Expr *E); + + /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will + /// always be accessible even if no aggregate location is provided. + RValue EmitAnyExprToTemp(const Expr *E); + + /// EmitAnyExprToMem - Emits the code necessary to evaluate an + /// arbitrary expression into the given memory location. + void EmitAnyExprToMem(const Expr *E, Address Location, + Qualifiers Quals, bool IsInitializer); + + void EmitAnyExprToExn(const Expr *E, Address Addr); + + /// EmitExprAsInit - Emits the code necessary to initialize a + /// location in memory with the given initializer. + void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue, + bool capturedByInit); + + /// hasVolatileMember - returns true if aggregate type has a volatile + /// member. + bool hasVolatileMember(QualType T) { + if (const RecordType *RT = T->getAs<RecordType>()) { + const RecordDecl *RD = cast<RecordDecl>(RT->getDecl()); + return RD->hasVolatileMember(); + } + return false; + } + + /// Determine whether a return value slot may overlap some other object. + AggValueSlot::Overlap_t getOverlapForReturnValue() { + // FIXME: Assuming no overlap here breaks guaranteed copy elision for base + // class subobjects. These cases may need to be revisited depending on the + // resolution of the relevant core issue. + return AggValueSlot::DoesNotOverlap; + } + + /// Determine whether a field initialization may overlap some other object. + AggValueSlot::Overlap_t getOverlapForFieldInit(const FieldDecl *FD); + + /// Determine whether a base class initialization may overlap some other + /// object. + AggValueSlot::Overlap_t getOverlapForBaseInit(const CXXRecordDecl *RD, + const CXXRecordDecl *BaseRD, + bool IsVirtual); + + /// Emit an aggregate assignment. + void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) { + bool IsVolatile = hasVolatileMember(EltTy); + EmitAggregateCopy(Dest, Src, EltTy, AggValueSlot::MayOverlap, IsVolatile); + } + + void EmitAggregateCopyCtor(LValue Dest, LValue Src, + AggValueSlot::Overlap_t MayOverlap) { + EmitAggregateCopy(Dest, Src, Src.getType(), MayOverlap); + } + + /// EmitAggregateCopy - Emit an aggregate copy. + /// + /// \param isVolatile \c true iff either the source or the destination is + /// volatile. + /// \param MayOverlap Whether the tail padding of the destination might be + /// occupied by some other object. More efficient code can often be + /// generated if not. + void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy, + AggValueSlot::Overlap_t MayOverlap, + bool isVolatile = false); + + /// GetAddrOfLocalVar - Return the address of a local variable. + Address GetAddrOfLocalVar(const VarDecl *VD) { + auto it = LocalDeclMap.find(VD); + assert(it != LocalDeclMap.end() && + "Invalid argument to GetAddrOfLocalVar(), no decl!"); + return it->second; + } + + /// Given an opaque value expression, return its LValue mapping if it exists, + /// otherwise create one. + LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e); + + /// Given an opaque value expression, return its RValue mapping if it exists, + /// otherwise create one. + RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e); + + /// Get the index of the current ArrayInitLoopExpr, if any. + llvm::Value *getArrayInitIndex() { return ArrayInitIndex; } + + /// getAccessedFieldNo - Given an encoded value and a result number, return + /// the input field number being accessed. + static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); + + llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); + llvm::BasicBlock *GetIndirectGotoBlock(); + + /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts. + static bool IsWrappedCXXThis(const Expr *E); + + /// EmitNullInitialization - Generate code to set a value of the given type to + /// null, If the type contains data member pointers, they will be initialized + /// to -1 in accordance with the Itanium C++ ABI. + void EmitNullInitialization(Address DestPtr, QualType Ty); + + /// Emits a call to an LLVM variable-argument intrinsic, either + /// \c llvm.va_start or \c llvm.va_end. + /// \param ArgValue A reference to the \c va_list as emitted by either + /// \c EmitVAListRef or \c EmitMSVAListRef. + /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise, + /// calls \c llvm.va_end. + llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart); + + /// Generate code to get an argument from the passed in pointer + /// and update it accordingly. + /// \param VE The \c VAArgExpr for which to generate code. + /// \param VAListAddr Receives a reference to the \c va_list as emitted by + /// either \c EmitVAListRef or \c EmitMSVAListRef. + /// \returns A pointer to the argument. + // FIXME: We should be able to get rid of this method and use the va_arg + // instruction in LLVM instead once it works well enough. + Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr); + + /// emitArrayLength - Compute the length of an array, even if it's a + /// VLA, and drill down to the base element type. + llvm::Value *emitArrayLength(const ArrayType *arrayType, + QualType &baseType, + Address &addr); + + /// EmitVLASize - Capture all the sizes for the VLA expressions in + /// the given variably-modified type and store them in the VLASizeMap. + /// + /// This function can be called with a null (unreachable) insert point. + void EmitVariablyModifiedType(QualType Ty); + + struct VlaSizePair { + llvm::Value *NumElts; + QualType Type; + + VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {} + }; + + /// Return the number of elements for a single dimension + /// for the given array type. + VlaSizePair getVLAElements1D(const VariableArrayType *vla); + VlaSizePair getVLAElements1D(QualType vla); + + /// Returns an LLVM value that corresponds to the size, + /// in non-variably-sized elements, of a variable length array type, + /// plus that largest non-variably-sized element type. Assumes that + /// the type has already been emitted with EmitVariablyModifiedType. + VlaSizePair getVLASize(const VariableArrayType *vla); + VlaSizePair getVLASize(QualType vla); + + /// LoadCXXThis - Load the value of 'this'. This function is only valid while + /// generating code for an C++ member function. + llvm::Value *LoadCXXThis() { + assert(CXXThisValue && "no 'this' value for this function"); + return CXXThisValue; + } + Address LoadCXXThisAddress(); + + /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have + /// virtual bases. + // FIXME: Every place that calls LoadCXXVTT is something + // that needs to be abstracted properly. + llvm::Value *LoadCXXVTT() { + assert(CXXStructorImplicitParamValue && "no VTT value for this function"); + return CXXStructorImplicitParamValue; + } + + /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a + /// complete class to the given direct base. + Address + GetAddressOfDirectBaseInCompleteClass(Address Value, + const CXXRecordDecl *Derived, + const CXXRecordDecl *Base, + bool BaseIsVirtual); + + static bool ShouldNullCheckClassCastValue(const CastExpr *Cast); + + /// GetAddressOfBaseClass - This function will add the necessary delta to the + /// load of 'this' and returns address of the base class. + Address GetAddressOfBaseClass(Address Value, + const CXXRecordDecl *Derived, + CastExpr::path_const_iterator PathBegin, + CastExpr::path_const_iterator PathEnd, + bool NullCheckValue, SourceLocation Loc); + + Address GetAddressOfDerivedClass(Address Value, + const CXXRecordDecl *Derived, + CastExpr::path_const_iterator PathBegin, + CastExpr::path_const_iterator PathEnd, + bool NullCheckValue); + + /// GetVTTParameter - Return the VTT parameter that should be passed to a + /// base constructor/destructor with virtual bases. + /// FIXME: VTTs are Itanium ABI-specific, so the definition should move + /// to ItaniumCXXABI.cpp together with all the references to VTT. + llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase, + bool Delegating); + + void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, + CXXCtorType CtorType, + const FunctionArgList &Args, + SourceLocation Loc); + // It's important not to confuse this and the previous function. Delegating + // constructors are the C++0x feature. The constructor delegate optimization + // is used to reduce duplication in the base and complete consturctors where + // they are substantially the same. + void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, + const FunctionArgList &Args); + + /// Emit a call to an inheriting constructor (that is, one that invokes a + /// constructor inherited from a base class) by inlining its definition. This + /// is necessary if the ABI does not support forwarding the arguments to the + /// base class constructor (because they're variadic or similar). + void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor, + CXXCtorType CtorType, + bool ForVirtualBase, + bool Delegating, + CallArgList &Args); + + /// Emit a call to a constructor inherited from a base class, passing the + /// current constructor's arguments along unmodified (without even making + /// a copy). + void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D, + bool ForVirtualBase, Address This, + bool InheritedFromVBase, + const CXXInheritedCtorInitExpr *E); + + void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, + bool ForVirtualBase, bool Delegating, + AggValueSlot ThisAVS, const CXXConstructExpr *E); + + void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, + bool ForVirtualBase, bool Delegating, + Address This, CallArgList &Args, + AggValueSlot::Overlap_t Overlap, + SourceLocation Loc, bool NewPointerIsChecked); + + /// Emit assumption load for all bases. Requires to be be called only on + /// most-derived class and not under construction of the object. + void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This); + + /// Emit assumption that vptr load == global vtable. + void EmitVTableAssumptionLoad(const VPtr &vptr, Address This); + + void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, + Address This, Address Src, + const CXXConstructExpr *E); + + void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, + const ArrayType *ArrayTy, + Address ArrayPtr, + const CXXConstructExpr *E, + bool NewPointerIsChecked, + bool ZeroInitialization = false); + + void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, + llvm::Value *NumElements, + Address ArrayPtr, + const CXXConstructExpr *E, + bool NewPointerIsChecked, + bool ZeroInitialization = false); + + static Destroyer destroyCXXObject; + + void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, + bool ForVirtualBase, bool Delegating, Address This, + QualType ThisTy); + + void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, + llvm::Type *ElementTy, Address NewPtr, + llvm::Value *NumElements, + llvm::Value *AllocSizeWithoutCookie); + + void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, + Address Ptr); + + llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr); + void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr); + + llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); + void EmitCXXDeleteExpr(const CXXDeleteExpr *E); + + void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, + QualType DeleteTy, llvm::Value *NumElements = nullptr, + CharUnits CookieSize = CharUnits()); + + RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, + const CallExpr *TheCallExpr, bool IsDelete); + + llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E); + llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE); + Address EmitCXXUuidofExpr(const CXXUuidofExpr *E); + + /// Situations in which we might emit a check for the suitability of a + /// pointer or glvalue. + enum TypeCheckKind { + /// Checking the operand of a load. Must be suitably sized and aligned. + TCK_Load, + /// Checking the destination of a store. Must be suitably sized and aligned. + TCK_Store, + /// Checking the bound value in a reference binding. Must be suitably sized + /// and aligned, but is not required to refer to an object (until the + /// reference is used), per core issue 453. + TCK_ReferenceBinding, + /// Checking the object expression in a non-static data member access. Must + /// be an object within its lifetime. + TCK_MemberAccess, + /// Checking the 'this' pointer for a call to a non-static member function. + /// Must be an object within its lifetime. + TCK_MemberCall, + /// Checking the 'this' pointer for a constructor call. + TCK_ConstructorCall, + /// Checking the operand of a static_cast to a derived pointer type. Must be + /// null or an object within its lifetime. + TCK_DowncastPointer, + /// Checking the operand of a static_cast to a derived reference type. Must + /// be an object within its lifetime. + TCK_DowncastReference, + /// Checking the operand of a cast to a base object. Must be suitably sized + /// and aligned. + TCK_Upcast, + /// Checking the operand of a cast to a virtual base object. Must be an + /// object within its lifetime. + TCK_UpcastToVirtualBase, + /// Checking the value assigned to a _Nonnull pointer. Must not be null. + TCK_NonnullAssign, + /// Checking the operand of a dynamic_cast or a typeid expression. Must be + /// null or an object within its lifetime. + TCK_DynamicOperation + }; + + /// Determine whether the pointer type check \p TCK permits null pointers. + static bool isNullPointerAllowed(TypeCheckKind TCK); + + /// Determine whether the pointer type check \p TCK requires a vptr check. + static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty); + + /// Whether any type-checking sanitizers are enabled. If \c false, + /// calls to EmitTypeCheck can be skipped. + bool sanitizePerformTypeCheck() const; + + /// Emit a check that \p V is the address of storage of the + /// appropriate size and alignment for an object of type \p Type + /// (or if ArraySize is provided, for an array of that bound). + void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, + QualType Type, CharUnits Alignment = CharUnits::Zero(), + SanitizerSet SkippedChecks = SanitizerSet(), + llvm::Value *ArraySize = nullptr); + + /// Emit a check that \p Base points into an array object, which + /// we can access at index \p Index. \p Accessed should be \c false if we + /// this expression is used as an lvalue, for instance in "&Arr[Idx]". + void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index, + QualType IndexType, bool Accessed); + + llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, + bool isInc, bool isPre); + ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, + bool isInc, bool isPre); + + /// Converts Location to a DebugLoc, if debug information is enabled. + llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location); + + /// Get the record field index as represented in debug info. + unsigned getDebugInfoFIndex(const RecordDecl *Rec, unsigned FieldIndex); + + + //===--------------------------------------------------------------------===// + // Declaration Emission + //===--------------------------------------------------------------------===// + + /// EmitDecl - Emit a declaration. + /// + /// This function can be called with a null (unreachable) insert point. + void EmitDecl(const Decl &D); + + /// EmitVarDecl - Emit a local variable declaration. + /// + /// This function can be called with a null (unreachable) insert point. + void EmitVarDecl(const VarDecl &D); + + void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue, + bool capturedByInit); + + typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, + llvm::Value *Address); + + /// Determine whether the given initializer is trivial in the sense + /// that it requires no code to be generated. + bool isTrivialInitializer(const Expr *Init); + + /// EmitAutoVarDecl - Emit an auto variable declaration. + /// + /// This function can be called with a null (unreachable) insert point. + void EmitAutoVarDecl(const VarDecl &D); + + class AutoVarEmission { + friend class CodeGenFunction; + + const VarDecl *Variable; + + /// The address of the alloca for languages with explicit address space + /// (e.g. OpenCL) or alloca casted to generic pointer for address space + /// agnostic languages (e.g. C++). Invalid if the variable was emitted + /// as a global constant. + Address Addr; + + llvm::Value *NRVOFlag; + + /// True if the variable is a __block variable that is captured by an + /// escaping block. + bool IsEscapingByRef; + + /// True if the variable is of aggregate type and has a constant + /// initializer. + bool IsConstantAggregate; + + /// Non-null if we should use lifetime annotations. + llvm::Value *SizeForLifetimeMarkers; + + /// Address with original alloca instruction. Invalid if the variable was + /// emitted as a global constant. + Address AllocaAddr; + + struct Invalid {}; + AutoVarEmission(Invalid) + : Variable(nullptr), Addr(Address::invalid()), + AllocaAddr(Address::invalid()) {} + + AutoVarEmission(const VarDecl &variable) + : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr), + IsEscapingByRef(false), IsConstantAggregate(false), + SizeForLifetimeMarkers(nullptr), AllocaAddr(Address::invalid()) {} + + bool wasEmittedAsGlobal() const { return !Addr.isValid(); } + + public: + static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } + + bool useLifetimeMarkers() const { + return SizeForLifetimeMarkers != nullptr; + } + llvm::Value *getSizeForLifetimeMarkers() const { + assert(useLifetimeMarkers()); + return SizeForLifetimeMarkers; + } + + /// Returns the raw, allocated address, which is not necessarily + /// the address of the object itself. It is casted to default + /// address space for address space agnostic languages. + Address getAllocatedAddress() const { + return Addr; + } + + /// Returns the address for the original alloca instruction. + Address getOriginalAllocatedAddress() const { return AllocaAddr; } + + /// Returns the address of the object within this declaration. + /// Note that this does not chase the forwarding pointer for + /// __block decls. + Address getObjectAddress(CodeGenFunction &CGF) const { + if (!IsEscapingByRef) return Addr; + + return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false); + } + }; + AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); + void EmitAutoVarInit(const AutoVarEmission &emission); + void EmitAutoVarCleanups(const AutoVarEmission &emission); + void emitAutoVarTypeCleanup(const AutoVarEmission &emission, + QualType::DestructionKind dtorKind); + + /// Emits the alloca and debug information for the size expressions for each + /// dimension of an array. It registers the association of its (1-dimensional) + /// QualTypes and size expression's debug node, so that CGDebugInfo can + /// reference this node when creating the DISubrange object to describe the + /// array types. + void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI, + const VarDecl &D, + bool EmitDebugInfo); + + void EmitStaticVarDecl(const VarDecl &D, + llvm::GlobalValue::LinkageTypes Linkage); + + class ParamValue { + llvm::Value *Value; + unsigned Alignment; + ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {} + public: + static ParamValue forDirect(llvm::Value *value) { + return ParamValue(value, 0); + } + static ParamValue forIndirect(Address addr) { + assert(!addr.getAlignment().isZero()); + return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity()); + } + + bool isIndirect() const { return Alignment != 0; } + llvm::Value *getAnyValue() const { return Value; } + + llvm::Value *getDirectValue() const { + assert(!isIndirect()); + return Value; + } + + Address getIndirectAddress() const { + assert(isIndirect()); + return Address(Value, CharUnits::fromQuantity(Alignment)); + } + }; + + /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. + void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo); + + /// protectFromPeepholes - Protect a value that we're intending to + /// store to the side, but which will probably be used later, from + /// aggressive peepholing optimizations that might delete it. + /// + /// Pass the result to unprotectFromPeepholes to declare that + /// protection is no longer required. + /// + /// There's no particular reason why this shouldn't apply to + /// l-values, it's just that no existing peepholes work on pointers. + PeepholeProtection protectFromPeepholes(RValue rvalue); + void unprotectFromPeepholes(PeepholeProtection protection); + + void EmitAlignmentAssumptionCheck(llvm::Value *Ptr, QualType Ty, + SourceLocation Loc, + SourceLocation AssumptionLoc, + llvm::Value *Alignment, + llvm::Value *OffsetValue, + llvm::Value *TheCheck, + llvm::Instruction *Assumption); + + void EmitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty, + SourceLocation Loc, SourceLocation AssumptionLoc, + llvm::Value *Alignment, + llvm::Value *OffsetValue = nullptr); + + void EmitAlignmentAssumption(llvm::Value *PtrValue, const Expr *E, + SourceLocation AssumptionLoc, llvm::Value *Alignment, + llvm::Value *OffsetValue = nullptr); + + //===--------------------------------------------------------------------===// + // Statement Emission + //===--------------------------------------------------------------------===// + + /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. + void EmitStopPoint(const Stmt *S); + + /// EmitStmt - Emit the code for the statement \arg S. It is legal to call + /// this function even if there is no current insertion point. + /// + /// This function may clear the current insertion point; callers should use + /// EnsureInsertPoint if they wish to subsequently generate code without first + /// calling EmitBlock, EmitBranch, or EmitStmt. + void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None); + + /// EmitSimpleStmt - Try to emit a "simple" statement which does not + /// necessarily require an insertion point or debug information; typically + /// because the statement amounts to a jump or a container of other + /// statements. + /// + /// \return True if the statement was handled. + bool EmitSimpleStmt(const Stmt *S); + + Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, + AggValueSlot AVS = AggValueSlot::ignored()); + Address EmitCompoundStmtWithoutScope(const CompoundStmt &S, + bool GetLast = false, + AggValueSlot AVS = + AggValueSlot::ignored()); + + /// EmitLabel - Emit the block for the given label. It is legal to call this + /// function even if there is no current insertion point. + void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. + + void EmitLabelStmt(const LabelStmt &S); + void EmitAttributedStmt(const AttributedStmt &S); + void EmitGotoStmt(const GotoStmt &S); + void EmitIndirectGotoStmt(const IndirectGotoStmt &S); + void EmitIfStmt(const IfStmt &S); + + void EmitWhileStmt(const WhileStmt &S, + ArrayRef<const Attr *> Attrs = None); + void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None); + void EmitForStmt(const ForStmt &S, + ArrayRef<const Attr *> Attrs = None); + void EmitReturnStmt(const ReturnStmt &S); + void EmitDeclStmt(const DeclStmt &S); + void EmitBreakStmt(const BreakStmt &S); + void EmitContinueStmt(const ContinueStmt &S); + void EmitSwitchStmt(const SwitchStmt &S); + void EmitDefaultStmt(const DefaultStmt &S); + void EmitCaseStmt(const CaseStmt &S); + void EmitCaseStmtRange(const CaseStmt &S); + void EmitAsmStmt(const AsmStmt &S); + + void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); + void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); + void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); + void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); + void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); + + void EmitCoroutineBody(const CoroutineBodyStmt &S); + void EmitCoreturnStmt(const CoreturnStmt &S); + RValue EmitCoawaitExpr(const CoawaitExpr &E, + AggValueSlot aggSlot = AggValueSlot::ignored(), + bool ignoreResult = false); + LValue EmitCoawaitLValue(const CoawaitExpr *E); + RValue EmitCoyieldExpr(const CoyieldExpr &E, + AggValueSlot aggSlot = AggValueSlot::ignored(), + bool ignoreResult = false); + LValue EmitCoyieldLValue(const CoyieldExpr *E); + RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID); + + void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); + void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); + + void EmitCXXTryStmt(const CXXTryStmt &S); + void EmitSEHTryStmt(const SEHTryStmt &S); + void EmitSEHLeaveStmt(const SEHLeaveStmt &S); + void EnterSEHTryStmt(const SEHTryStmt &S); + void ExitSEHTryStmt(const SEHTryStmt &S); + + void pushSEHCleanup(CleanupKind kind, + llvm::Function *FinallyFunc); + void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter, + const Stmt *OutlinedStmt); + + llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF, + const SEHExceptStmt &Except); + + llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF, + const SEHFinallyStmt &Finally); + + void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF, + llvm::Value *ParentFP, + llvm::Value *EntryEBP); + llvm::Value *EmitSEHExceptionCode(); + llvm::Value *EmitSEHExceptionInfo(); + llvm::Value *EmitSEHAbnormalTermination(); + + /// Emit simple code for OpenMP directives in Simd-only mode. + void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D); + + /// Scan the outlined statement for captures from the parent function. For + /// each capture, mark the capture as escaped and emit a call to + /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap. + void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt, + bool IsFilter); + + /// Recovers the address of a local in a parent function. ParentVar is the + /// address of the variable used in the immediate parent function. It can + /// either be an alloca or a call to llvm.localrecover if there are nested + /// outlined functions. ParentFP is the frame pointer of the outermost parent + /// frame. + Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF, + Address ParentVar, + llvm::Value *ParentFP); + + void EmitCXXForRangeStmt(const CXXForRangeStmt &S, + ArrayRef<const Attr *> Attrs = None); + + /// Controls insertion of cancellation exit blocks in worksharing constructs. + class OMPCancelStackRAII { + CodeGenFunction &CGF; + + public: + OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, + bool HasCancel) + : CGF(CGF) { + CGF.OMPCancelStack.enter(CGF, Kind, HasCancel); + } + ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); } + }; + + /// Returns calculated size of the specified type. + llvm::Value *getTypeSize(QualType Ty); + LValue InitCapturedStruct(const CapturedStmt &S); + llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K); + llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S); + Address GenerateCapturedStmtArgument(const CapturedStmt &S); + llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S); + void GenerateOpenMPCapturedVars(const CapturedStmt &S, + SmallVectorImpl<llvm::Value *> &CapturedVars); + void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy, + SourceLocation Loc); + /// Perform element by element copying of arrays with type \a + /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure + /// generated by \a CopyGen. + /// + /// \param DestAddr Address of the destination array. + /// \param SrcAddr Address of the source array. + /// \param OriginalType Type of destination and source arrays. + /// \param CopyGen Copying procedure that copies value of single array element + /// to another single array element. + void EmitOMPAggregateAssign( + Address DestAddr, Address SrcAddr, QualType OriginalType, + const llvm::function_ref<void(Address, Address)> CopyGen); + /// Emit proper copying of data from one variable to another. + /// + /// \param OriginalType Original type of the copied variables. + /// \param DestAddr Destination address. + /// \param SrcAddr Source address. + /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has + /// type of the base array element). + /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of + /// the base array element). + /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a + /// DestVD. + void EmitOMPCopy(QualType OriginalType, + Address DestAddr, Address SrcAddr, + const VarDecl *DestVD, const VarDecl *SrcVD, + const Expr *Copy); + /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or + /// \a X = \a E \a BO \a E. + /// + /// \param X Value to be updated. + /// \param E Update value. + /// \param BO Binary operation for update operation. + /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update + /// expression, false otherwise. + /// \param AO Atomic ordering of the generated atomic instructions. + /// \param CommonGen Code generator for complex expressions that cannot be + /// expressed through atomicrmw instruction. + /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was + /// generated, <false, RValue::get(nullptr)> otherwise. + std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr( + LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, + llvm::AtomicOrdering AO, SourceLocation Loc, + const llvm::function_ref<RValue(RValue)> CommonGen); + bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D, + OMPPrivateScope &PrivateScope); + void EmitOMPPrivateClause(const OMPExecutableDirective &D, + OMPPrivateScope &PrivateScope); + void EmitOMPUseDevicePtrClause( + const OMPClause &C, OMPPrivateScope &PrivateScope, + const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap); + /// Emit code for copyin clause in \a D directive. The next code is + /// generated at the start of outlined functions for directives: + /// \code + /// threadprivate_var1 = master_threadprivate_var1; + /// operator=(threadprivate_var2, master_threadprivate_var2); + /// ... + /// __kmpc_barrier(&loc, global_tid); + /// \endcode + /// + /// \param D OpenMP directive possibly with 'copyin' clause(s). + /// \returns true if at least one copyin variable is found, false otherwise. + bool EmitOMPCopyinClause(const OMPExecutableDirective &D); + /// Emit initial code for lastprivate variables. If some variable is + /// not also firstprivate, then the default initialization is used. Otherwise + /// initialization of this variable is performed by EmitOMPFirstprivateClause + /// method. + /// + /// \param D Directive that may have 'lastprivate' directives. + /// \param PrivateScope Private scope for capturing lastprivate variables for + /// proper codegen in internal captured statement. + /// + /// \returns true if there is at least one lastprivate variable, false + /// otherwise. + bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D, + OMPPrivateScope &PrivateScope); + /// Emit final copying of lastprivate values to original variables at + /// the end of the worksharing or simd directive. + /// + /// \param D Directive that has at least one 'lastprivate' directives. + /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if + /// it is the last iteration of the loop code in associated directive, or to + /// 'i1 false' otherwise. If this item is nullptr, no final check is required. + void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D, + bool NoFinals, + llvm::Value *IsLastIterCond = nullptr); + /// Emit initial code for linear clauses. + void EmitOMPLinearClause(const OMPLoopDirective &D, + CodeGenFunction::OMPPrivateScope &PrivateScope); + /// Emit final code for linear clauses. + /// \param CondGen Optional conditional code for final part of codegen for + /// linear clause. + void EmitOMPLinearClauseFinal( + const OMPLoopDirective &D, + const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen); + /// Emit initial code for reduction variables. Creates reduction copies + /// and initializes them with the values according to OpenMP standard. + /// + /// \param D Directive (possibly) with the 'reduction' clause. + /// \param PrivateScope Private scope for capturing reduction variables for + /// proper codegen in internal captured statement. + /// + void EmitOMPReductionClauseInit(const OMPExecutableDirective &D, + OMPPrivateScope &PrivateScope); + /// Emit final update of reduction values to original variables at + /// the end of the directive. + /// + /// \param D Directive that has at least one 'reduction' directives. + /// \param ReductionKind The kind of reduction to perform. + void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D, + const OpenMPDirectiveKind ReductionKind); + /// Emit initial code for linear variables. Creates private copies + /// and initializes them with the values according to OpenMP standard. + /// + /// \param D Directive (possibly) with the 'linear' clause. + /// \return true if at least one linear variable is found that should be + /// initialized with the value of the original variable, false otherwise. + bool EmitOMPLinearClauseInit(const OMPLoopDirective &D); + + typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/, + llvm::Function * /*OutlinedFn*/, + const OMPTaskDataTy & /*Data*/)> + TaskGenTy; + void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S, + const OpenMPDirectiveKind CapturedRegion, + const RegionCodeGenTy &BodyGen, + const TaskGenTy &TaskGen, OMPTaskDataTy &Data); + struct OMPTargetDataInfo { + Address BasePointersArray = Address::invalid(); + Address PointersArray = Address::invalid(); + Address SizesArray = Address::invalid(); + unsigned NumberOfTargetItems = 0; + explicit OMPTargetDataInfo() = default; + OMPTargetDataInfo(Address BasePointersArray, Address PointersArray, + Address SizesArray, unsigned NumberOfTargetItems) + : BasePointersArray(BasePointersArray), PointersArray(PointersArray), + SizesArray(SizesArray), NumberOfTargetItems(NumberOfTargetItems) {} + }; + void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S, + const RegionCodeGenTy &BodyGen, + OMPTargetDataInfo &InputInfo); + + void EmitOMPParallelDirective(const OMPParallelDirective &S); + void EmitOMPSimdDirective(const OMPSimdDirective &S); + void EmitOMPForDirective(const OMPForDirective &S); + void EmitOMPForSimdDirective(const OMPForSimdDirective &S); + void EmitOMPSectionsDirective(const OMPSectionsDirective &S); + void EmitOMPSectionDirective(const OMPSectionDirective &S); + void EmitOMPSingleDirective(const OMPSingleDirective &S); + void EmitOMPMasterDirective(const OMPMasterDirective &S); + void EmitOMPCriticalDirective(const OMPCriticalDirective &S); + void EmitOMPParallelForDirective(const OMPParallelForDirective &S); + void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S); + void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S); + void EmitOMPParallelMasterDirective(const OMPParallelMasterDirective &S); + void EmitOMPTaskDirective(const OMPTaskDirective &S); + void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S); + void EmitOMPBarrierDirective(const OMPBarrierDirective &S); + void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S); + void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S); + void EmitOMPFlushDirective(const OMPFlushDirective &S); + void EmitOMPOrderedDirective(const OMPOrderedDirective &S); + void EmitOMPAtomicDirective(const OMPAtomicDirective &S); + void EmitOMPTargetDirective(const OMPTargetDirective &S); + void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S); + void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S); + void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S); + void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S); + void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S); + void + EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S); + void EmitOMPTeamsDirective(const OMPTeamsDirective &S); + void + EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S); + void EmitOMPCancelDirective(const OMPCancelDirective &S); + void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S); + void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S); + void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S); + void EmitOMPMasterTaskLoopDirective(const OMPMasterTaskLoopDirective &S); + void + EmitOMPMasterTaskLoopSimdDirective(const OMPMasterTaskLoopSimdDirective &S); + void EmitOMPParallelMasterTaskLoopDirective( + const OMPParallelMasterTaskLoopDirective &S); + void EmitOMPParallelMasterTaskLoopSimdDirective( + const OMPParallelMasterTaskLoopSimdDirective &S); + void EmitOMPDistributeDirective(const OMPDistributeDirective &S); + void EmitOMPDistributeParallelForDirective( + const OMPDistributeParallelForDirective &S); + void EmitOMPDistributeParallelForSimdDirective( + const OMPDistributeParallelForSimdDirective &S); + void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S); + void EmitOMPTargetParallelForSimdDirective( + const OMPTargetParallelForSimdDirective &S); + void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S); + void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S); + void + EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S); + void EmitOMPTeamsDistributeParallelForSimdDirective( + const OMPTeamsDistributeParallelForSimdDirective &S); + void EmitOMPTeamsDistributeParallelForDirective( + const OMPTeamsDistributeParallelForDirective &S); + void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S); + void EmitOMPTargetTeamsDistributeDirective( + const OMPTargetTeamsDistributeDirective &S); + void EmitOMPTargetTeamsDistributeParallelForDirective( + const OMPTargetTeamsDistributeParallelForDirective &S); + void EmitOMPTargetTeamsDistributeParallelForSimdDirective( + const OMPTargetTeamsDistributeParallelForSimdDirective &S); + void EmitOMPTargetTeamsDistributeSimdDirective( + const OMPTargetTeamsDistributeSimdDirective &S); + + /// Emit device code for the target directive. + static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM, + StringRef ParentName, + const OMPTargetDirective &S); + static void + EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName, + const OMPTargetParallelDirective &S); + /// Emit device code for the target parallel for directive. + static void EmitOMPTargetParallelForDeviceFunction( + CodeGenModule &CGM, StringRef ParentName, + const OMPTargetParallelForDirective &S); + /// Emit device code for the target parallel for simd directive. + static void EmitOMPTargetParallelForSimdDeviceFunction( + CodeGenModule &CGM, StringRef ParentName, + const OMPTargetParallelForSimdDirective &S); + /// Emit device code for the target teams directive. + static void + EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName, + const OMPTargetTeamsDirective &S); + /// Emit device code for the target teams distribute directive. + static void EmitOMPTargetTeamsDistributeDeviceFunction( + CodeGenModule &CGM, StringRef ParentName, + const OMPTargetTeamsDistributeDirective &S); + /// Emit device code for the target teams distribute simd directive. + static void EmitOMPTargetTeamsDistributeSimdDeviceFunction( + CodeGenModule &CGM, StringRef ParentName, + const OMPTargetTeamsDistributeSimdDirective &S); + /// Emit device code for the target simd directive. + static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM, + StringRef ParentName, + const OMPTargetSimdDirective &S); + /// Emit device code for the target teams distribute parallel for simd + /// directive. + static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( + CodeGenModule &CGM, StringRef ParentName, + const OMPTargetTeamsDistributeParallelForSimdDirective &S); + + static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction( + CodeGenModule &CGM, StringRef ParentName, + const OMPTargetTeamsDistributeParallelForDirective &S); + /// Emit inner loop of the worksharing/simd construct. + /// + /// \param S Directive, for which the inner loop must be emitted. + /// \param RequiresCleanup true, if directive has some associated private + /// variables. + /// \param LoopCond Bollean condition for loop continuation. + /// \param IncExpr Increment expression for loop control variable. + /// \param BodyGen Generator for the inner body of the inner loop. + /// \param PostIncGen Genrator for post-increment code (required for ordered + /// loop directvies). + void EmitOMPInnerLoop( + const Stmt &S, bool RequiresCleanup, const Expr *LoopCond, + const Expr *IncExpr, + const llvm::function_ref<void(CodeGenFunction &)> BodyGen, + const llvm::function_ref<void(CodeGenFunction &)> PostIncGen); + + JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind); + /// Emit initial code for loop counters of loop-based directives. + void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S, + OMPPrivateScope &LoopScope); + + /// Helper for the OpenMP loop directives. + void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit); + + /// Emit code for the worksharing loop-based directive. + /// \return true, if this construct has any lastprivate clause, false - + /// otherwise. + bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB, + const CodeGenLoopBoundsTy &CodeGenLoopBounds, + const CodeGenDispatchBoundsTy &CGDispatchBounds); + + /// Emit code for the distribute loop-based directive. + void EmitOMPDistributeLoop(const OMPLoopDirective &S, + const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr); + + /// Helpers for the OpenMP loop directives. + void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false); + void EmitOMPSimdFinal( + const OMPLoopDirective &D, + const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen); + + /// Emits the lvalue for the expression with possibly captured variable. + LValue EmitOMPSharedLValue(const Expr *E); + +private: + /// Helpers for blocks. + llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); + + /// struct with the values to be passed to the OpenMP loop-related functions + struct OMPLoopArguments { + /// loop lower bound + Address LB = Address::invalid(); + /// loop upper bound + Address UB = Address::invalid(); + /// loop stride + Address ST = Address::invalid(); + /// isLastIteration argument for runtime functions + Address IL = Address::invalid(); + /// Chunk value generated by sema + llvm::Value *Chunk = nullptr; + /// EnsureUpperBound + Expr *EUB = nullptr; + /// IncrementExpression + Expr *IncExpr = nullptr; + /// Loop initialization + Expr *Init = nullptr; + /// Loop exit condition + Expr *Cond = nullptr; + /// Update of LB after a whole chunk has been executed + Expr *NextLB = nullptr; + /// Update of UB after a whole chunk has been executed + Expr *NextUB = nullptr; + OMPLoopArguments() = default; + OMPLoopArguments(Address LB, Address UB, Address ST, Address IL, + llvm::Value *Chunk = nullptr, Expr *EUB = nullptr, + Expr *IncExpr = nullptr, Expr *Init = nullptr, + Expr *Cond = nullptr, Expr *NextLB = nullptr, + Expr *NextUB = nullptr) + : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB), + IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB), + NextUB(NextUB) {} + }; + void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic, + const OMPLoopDirective &S, OMPPrivateScope &LoopScope, + const OMPLoopArguments &LoopArgs, + const CodeGenLoopTy &CodeGenLoop, + const CodeGenOrderedTy &CodeGenOrdered); + void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind, + bool IsMonotonic, const OMPLoopDirective &S, + OMPPrivateScope &LoopScope, bool Ordered, + const OMPLoopArguments &LoopArgs, + const CodeGenDispatchBoundsTy &CGDispatchBounds); + void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind, + const OMPLoopDirective &S, + OMPPrivateScope &LoopScope, + const OMPLoopArguments &LoopArgs, + const CodeGenLoopTy &CodeGenLoopContent); + /// Emit code for sections directive. + void EmitSections(const OMPExecutableDirective &S); + +public: + + //===--------------------------------------------------------------------===// + // LValue Expression Emission + //===--------------------------------------------------------------------===// + + /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. + RValue GetUndefRValue(QualType Ty); + + /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E + /// and issue an ErrorUnsupported style diagnostic (using the + /// provided Name). + RValue EmitUnsupportedRValue(const Expr *E, + const char *Name); + + /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue + /// an ErrorUnsupported style diagnostic (using the provided Name). + LValue EmitUnsupportedLValue(const Expr *E, + const char *Name); + + /// EmitLValue - Emit code to compute a designator that specifies the location + /// of the expression. + /// + /// This can return one of two things: a simple address or a bitfield + /// reference. In either case, the LLVM Value* in the LValue structure is + /// guaranteed to be an LLVM pointer type. + /// + /// If this returns a bitfield reference, nothing about the pointee type of + /// the LLVM value is known: For example, it may not be a pointer to an + /// integer. + /// + /// If this returns a normal address, and if the lvalue's C type is fixed + /// size, this method guarantees that the returned pointer type will point to + /// an LLVM type of the same size of the lvalue's type. If the lvalue has a + /// variable length type, this is not possible. + /// + LValue EmitLValue(const Expr *E); + + /// Same as EmitLValue but additionally we generate checking code to + /// guard against undefined behavior. This is only suitable when we know + /// that the address will be used to access the object. + LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK); + + RValue convertTempToRValue(Address addr, QualType type, + SourceLocation Loc); + + void EmitAtomicInit(Expr *E, LValue lvalue); + + bool LValueIsSuitableForInlineAtomic(LValue Src); + + RValue EmitAtomicLoad(LValue LV, SourceLocation SL, + AggValueSlot Slot = AggValueSlot::ignored()); + + RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc, + llvm::AtomicOrdering AO, bool IsVolatile = false, + AggValueSlot slot = AggValueSlot::ignored()); + + void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit); + + void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO, + bool IsVolatile, bool isInit); + + std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange( + LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc, + llvm::AtomicOrdering Success = + llvm::AtomicOrdering::SequentiallyConsistent, + llvm::AtomicOrdering Failure = + llvm::AtomicOrdering::SequentiallyConsistent, + bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored()); + + void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO, + const llvm::function_ref<RValue(RValue)> &UpdateOp, + bool IsVolatile); + + /// EmitToMemory - Change a scalar value from its value + /// representation to its in-memory representation. + llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); + + /// EmitFromMemory - Change a scalar value from its memory + /// representation to its value representation. + llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); + + /// Check if the scalar \p Value is within the valid range for the given + /// type \p Ty. + /// + /// Returns true if a check is needed (even if the range is unknown). + bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, + SourceLocation Loc); + + /// EmitLoadOfScalar - Load a scalar value from an address, taking + /// care to appropriately convert from the memory representation to + /// the LLVM value representation. + llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, + SourceLocation Loc, + AlignmentSource Source = AlignmentSource::Type, + bool isNontemporal = false) { + return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source), + CGM.getTBAAAccessInfo(Ty), isNontemporal); + } + + llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, + SourceLocation Loc, LValueBaseInfo BaseInfo, + TBAAAccessInfo TBAAInfo, + bool isNontemporal = false); + + /// EmitLoadOfScalar - Load a scalar value from an address, taking + /// care to appropriately convert from the memory representation to + /// the LLVM value representation. The l-value must be a simple + /// l-value. + llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc); + + /// EmitStoreOfScalar - Store a scalar value to an address, taking + /// care to appropriately convert from the memory representation to + /// the LLVM value representation. + void EmitStoreOfScalar(llvm::Value *Value, Address Addr, + bool Volatile, QualType Ty, + AlignmentSource Source = AlignmentSource::Type, + bool isInit = false, bool isNontemporal = false) { + EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source), + CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal); + } + + void EmitStoreOfScalar(llvm::Value *Value, Address Addr, + bool Volatile, QualType Ty, + LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo, + bool isInit = false, bool isNontemporal = false); + + /// EmitStoreOfScalar - Store a scalar value to an address, taking + /// care to appropriately convert from the memory representation to + /// the LLVM value representation. The l-value must be a simple + /// l-value. The isInit flag indicates whether this is an initialization. + /// If so, atomic qualifiers are ignored and the store is always non-atomic. + void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false); + + /// EmitLoadOfLValue - Given an expression that represents a value lvalue, + /// this method emits the address of the lvalue, then loads the result as an + /// rvalue, returning the rvalue. + RValue EmitLoadOfLValue(LValue V, SourceLocation Loc); + RValue EmitLoadOfExtVectorElementLValue(LValue V); + RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc); + RValue EmitLoadOfGlobalRegLValue(LValue LV); + + /// EmitStoreThroughLValue - Store the specified rvalue into the specified + /// lvalue, where both are guaranteed to the have the same type, and that type + /// is 'Ty'. + void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false); + void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); + void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst); + + /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints + /// as EmitStoreThroughLValue. + /// + /// \param Result [out] - If non-null, this will be set to a Value* for the + /// bit-field contents after the store, appropriate for use as the result of + /// an assignment to the bit-field. + void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, + llvm::Value **Result=nullptr); + + /// Emit an l-value for an assignment (simple or compound) of complex type. + LValue EmitComplexAssignmentLValue(const BinaryOperator *E); + LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); + LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, + llvm::Value *&Result); + + // Note: only available for agg return types + LValue EmitBinaryOperatorLValue(const BinaryOperator *E); + LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); + // Note: only available for agg return types + LValue EmitCallExprLValue(const CallExpr *E); + // Note: only available for agg return types + LValue EmitVAArgExprLValue(const VAArgExpr *E); + LValue EmitDeclRefLValue(const DeclRefExpr *E); + LValue EmitStringLiteralLValue(const StringLiteral *E); + LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); + LValue EmitPredefinedLValue(const PredefinedExpr *E); + LValue EmitUnaryOpLValue(const UnaryOperator *E); + LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E, + bool Accessed = false); + LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, + bool IsLowerBound = true); + LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); + LValue EmitMemberExpr(const MemberExpr *E); + LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); + LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); + LValue EmitInitListLValue(const InitListExpr *E); + LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); + LValue EmitCastLValue(const CastExpr *E); + LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); + LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); + + Address EmitExtVectorElementLValue(LValue V); + + RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc); + + Address EmitArrayToPointerDecay(const Expr *Array, + LValueBaseInfo *BaseInfo = nullptr, + TBAAAccessInfo *TBAAInfo = nullptr); + + class ConstantEmission { + llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference; + ConstantEmission(llvm::Constant *C, bool isReference) + : ValueAndIsReference(C, isReference) {} + public: + ConstantEmission() {} + static ConstantEmission forReference(llvm::Constant *C) { + return ConstantEmission(C, true); + } + static ConstantEmission forValue(llvm::Constant *C) { + return ConstantEmission(C, false); + } + + explicit operator bool() const { + return ValueAndIsReference.getOpaqueValue() != nullptr; + } + + bool isReference() const { return ValueAndIsReference.getInt(); } + LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const { + assert(isReference()); + return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(), + refExpr->getType()); + } + + llvm::Constant *getValue() const { + assert(!isReference()); + return ValueAndIsReference.getPointer(); + } + }; + + ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr); + ConstantEmission tryEmitAsConstant(const MemberExpr *ME); + llvm::Value *emitScalarConstant(const ConstantEmission &Constant, Expr *E); + + RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, + AggValueSlot slot = AggValueSlot::ignored()); + LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); + + llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, + const ObjCIvarDecl *Ivar); + LValue EmitLValueForField(LValue Base, const FieldDecl* Field); + LValue EmitLValueForLambdaField(const FieldDecl *Field); + + /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that + /// if the Field is a reference, this will return the address of the reference + /// and not the address of the value stored in the reference. + LValue EmitLValueForFieldInitialization(LValue Base, + const FieldDecl* Field); + + LValue EmitLValueForIvar(QualType ObjectTy, + llvm::Value* Base, const ObjCIvarDecl *Ivar, + unsigned CVRQualifiers); + + LValue EmitCXXConstructLValue(const CXXConstructExpr *E); + LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); + LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); + LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E); + + LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); + LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); + LValue EmitStmtExprLValue(const StmtExpr *E); + LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); + LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); + void EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init); + + //===--------------------------------------------------------------------===// + // Scalar Expression Emission + //===--------------------------------------------------------------------===// + + /// EmitCall - Generate a call of the given function, expecting the given + /// result type, and using the given argument list which specifies both the + /// LLVM arguments and the types they were derived from. + RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, + ReturnValueSlot ReturnValue, const CallArgList &Args, + llvm::CallBase **callOrInvoke, SourceLocation Loc); + RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, + ReturnValueSlot ReturnValue, const CallArgList &Args, + llvm::CallBase **callOrInvoke = nullptr) { + return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke, + SourceLocation()); + } + RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E, + ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr); + RValue EmitCallExpr(const CallExpr *E, + ReturnValueSlot ReturnValue = ReturnValueSlot()); + RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); + CGCallee EmitCallee(const Expr *E); + + void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl); + void checkTargetFeatures(SourceLocation Loc, const FunctionDecl *TargetDecl); + + llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee, + const Twine &name = ""); + llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee, + ArrayRef<llvm::Value *> args, + const Twine &name = ""); + llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee, + const Twine &name = ""); + llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee, + ArrayRef<llvm::Value *> args, + const Twine &name = ""); + + SmallVector<llvm::OperandBundleDef, 1> + getBundlesForFunclet(llvm::Value *Callee); + + llvm::CallBase *EmitCallOrInvoke(llvm::FunctionCallee Callee, + ArrayRef<llvm::Value *> Args, + const Twine &Name = ""); + llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, + ArrayRef<llvm::Value *> args, + const Twine &name = ""); + llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, + const Twine &name = ""); + void EmitNoreturnRuntimeCallOrInvoke(llvm::FunctionCallee callee, + ArrayRef<llvm::Value *> args); + + CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD, + NestedNameSpecifier *Qual, + llvm::Type *Ty); + + CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, + CXXDtorType Type, + const CXXRecordDecl *RD); + + // Return the copy constructor name with the prefix "__copy_constructor_" + // removed. + static std::string getNonTrivialCopyConstructorStr(QualType QT, + CharUnits Alignment, + bool IsVolatile, + ASTContext &Ctx); + + // Return the destructor name with the prefix "__destructor_" removed. + static std::string getNonTrivialDestructorStr(QualType QT, + CharUnits Alignment, + bool IsVolatile, + ASTContext &Ctx); + + // These functions emit calls to the special functions of non-trivial C + // structs. + void defaultInitNonTrivialCStructVar(LValue Dst); + void callCStructDefaultConstructor(LValue Dst); + void callCStructDestructor(LValue Dst); + void callCStructCopyConstructor(LValue Dst, LValue Src); + void callCStructMoveConstructor(LValue Dst, LValue Src); + void callCStructCopyAssignmentOperator(LValue Dst, LValue Src); + void callCStructMoveAssignmentOperator(LValue Dst, LValue Src); + + RValue + EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method, + const CGCallee &Callee, + ReturnValueSlot ReturnValue, llvm::Value *This, + llvm::Value *ImplicitParam, + QualType ImplicitParamTy, const CallExpr *E, + CallArgList *RtlArgs); + RValue EmitCXXDestructorCall(GlobalDecl Dtor, const CGCallee &Callee, + llvm::Value *This, QualType ThisTy, + llvm::Value *ImplicitParam, + QualType ImplicitParamTy, const CallExpr *E); + RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, + ReturnValueSlot ReturnValue); + RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE, + const CXXMethodDecl *MD, + ReturnValueSlot ReturnValue, + bool HasQualifier, + NestedNameSpecifier *Qualifier, + bool IsArrow, const Expr *Base); + // Compute the object pointer. + Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base, + llvm::Value *memberPtr, + const MemberPointerType *memberPtrType, + LValueBaseInfo *BaseInfo = nullptr, + TBAAAccessInfo *TBAAInfo = nullptr); + RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, + ReturnValueSlot ReturnValue); + + RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, + const CXXMethodDecl *MD, + ReturnValueSlot ReturnValue); + RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E); + + RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, + ReturnValueSlot ReturnValue); + + RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E, + ReturnValueSlot ReturnValue); + + RValue EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID, + const CallExpr *E, ReturnValueSlot ReturnValue); + + RValue emitRotate(const CallExpr *E, bool IsRotateRight); + + /// Emit IR for __builtin_os_log_format. + RValue emitBuiltinOSLogFormat(const CallExpr &E); + + /// Emit IR for __builtin_is_aligned. + RValue EmitBuiltinIsAligned(const CallExpr *E); + /// Emit IR for __builtin_align_up/__builtin_align_down. + RValue EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp); + + llvm::Function *generateBuiltinOSLogHelperFunction( + const analyze_os_log::OSLogBufferLayout &Layout, + CharUnits BufferAlignment); + + RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); + + /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call + /// is unhandled by the current target. + llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E, + ReturnValueSlot ReturnValue); + + llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty, + const llvm::CmpInst::Predicate Fp, + const llvm::CmpInst::Predicate Ip, + const llvm::Twine &Name = ""); + llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E, + ReturnValueSlot ReturnValue, + llvm::Triple::ArchType Arch); + llvm::Value *EmitARMMVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E, + ReturnValueSlot ReturnValue, + llvm::Triple::ArchType Arch); + + llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID, + unsigned LLVMIntrinsic, + unsigned AltLLVMIntrinsic, + const char *NameHint, + unsigned Modifier, + const CallExpr *E, + SmallVectorImpl<llvm::Value *> &Ops, + Address PtrOp0, Address PtrOp1, + llvm::Triple::ArchType Arch); + + llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID, + unsigned Modifier, llvm::Type *ArgTy, + const CallExpr *E); + llvm::Value *EmitNeonCall(llvm::Function *F, + SmallVectorImpl<llvm::Value*> &O, + const char *name, + unsigned shift = 0, bool rightshift = false); + llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); + llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, + bool negateForRightShift); + llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt, + llvm::Type *Ty, bool usgn, const char *name); + llvm::Value *vectorWrapScalar16(llvm::Value *Op); + llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E, + llvm::Triple::ArchType Arch); + llvm::Value *EmitBPFBuiltinExpr(unsigned BuiltinID, const CallExpr *E); + + llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops); + llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); + llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); + llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E); + llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E); + llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E); + llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID, + const CallExpr *E); + llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E); + +private: + enum class MSVCIntrin; + +public: + llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E); + + llvm::Value *EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args); + + llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); + llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); + llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E); + llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); + llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); + llvm::Value *EmitObjCCollectionLiteral(const Expr *E, + const ObjCMethodDecl *MethodWithObjects); + llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); + RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, + ReturnValueSlot Return = ReturnValueSlot()); + + /// Retrieves the default cleanup kind for an ARC cleanup. + /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. + CleanupKind getARCCleanupKind() { + return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions + ? NormalAndEHCleanup : NormalCleanup; + } + + // ARC primitives. + void EmitARCInitWeak(Address addr, llvm::Value *value); + void EmitARCDestroyWeak(Address addr); + llvm::Value *EmitARCLoadWeak(Address addr); + llvm::Value *EmitARCLoadWeakRetained(Address addr); + llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored); + void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); + void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); + void EmitARCCopyWeak(Address dst, Address src); + void EmitARCMoveWeak(Address dst, Address src); + llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); + llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); + llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, + bool resultIgnored); + llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value, + bool resultIgnored); + llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); + llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); + llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); + void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise); + void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); + llvm::Value *EmitARCAutorelease(llvm::Value *value); + llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); + llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); + llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); + llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value); + + llvm::Value *EmitObjCAutorelease(llvm::Value *value, llvm::Type *returnType); + llvm::Value *EmitObjCRetainNonBlock(llvm::Value *value, + llvm::Type *returnType); + void EmitObjCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); + + std::pair<LValue,llvm::Value*> + EmitARCStoreAutoreleasing(const BinaryOperator *e); + std::pair<LValue,llvm::Value*> + EmitARCStoreStrong(const BinaryOperator *e, bool ignored); + std::pair<LValue,llvm::Value*> + EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored); + + llvm::Value *EmitObjCAlloc(llvm::Value *value, + llvm::Type *returnType); + llvm::Value *EmitObjCAllocWithZone(llvm::Value *value, + llvm::Type *returnType); + llvm::Value *EmitObjCAllocInit(llvm::Value *value, llvm::Type *resultType); + + llvm::Value *EmitObjCThrowOperand(const Expr *expr); + llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); + llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); + + llvm::Value *EmitARCExtendBlockObject(const Expr *expr); + llvm::Value *EmitARCReclaimReturnedObject(const Expr *e, + bool allowUnsafeClaim); + llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); + llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); + llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr); + + void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values); + + static Destroyer destroyARCStrongImprecise; + static Destroyer destroyARCStrongPrecise; + static Destroyer destroyARCWeak; + static Destroyer emitARCIntrinsicUse; + static Destroyer destroyNonTrivialCStruct; + + void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); + llvm::Value *EmitObjCAutoreleasePoolPush(); + llvm::Value *EmitObjCMRRAutoreleasePoolPush(); + void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); + void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); + + /// Emits a reference binding to the passed in expression. + RValue EmitReferenceBindingToExpr(const Expr *E); + + //===--------------------------------------------------------------------===// + // Expression Emission + //===--------------------------------------------------------------------===// + + // Expressions are broken into three classes: scalar, complex, aggregate. + + /// EmitScalarExpr - Emit the computation of the specified expression of LLVM + /// scalar type, returning the result. + llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); + + /// Emit a conversion from the specified type to the specified destination + /// type, both of which are LLVM scalar types. + llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, + QualType DstTy, SourceLocation Loc); + + /// Emit a conversion from the specified complex type to the specified + /// destination type, where the destination type is an LLVM scalar type. + llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, + QualType DstTy, + SourceLocation Loc); + + /// EmitAggExpr - Emit the computation of the specified expression + /// of aggregate type. The result is computed into the given slot, + /// which may be null to indicate that the value is not needed. + void EmitAggExpr(const Expr *E, AggValueSlot AS); + + /// EmitAggExprToLValue - Emit the computation of the specified expression of + /// aggregate type into a temporary LValue. + LValue EmitAggExprToLValue(const Expr *E); + + /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, + /// make sure it survives garbage collection until this point. + void EmitExtendGCLifetime(llvm::Value *object); + + /// EmitComplexExpr - Emit the computation of the specified expression of + /// complex type, returning the result. + ComplexPairTy EmitComplexExpr(const Expr *E, + bool IgnoreReal = false, + bool IgnoreImag = false); + + /// EmitComplexExprIntoLValue - Emit the given expression of complex + /// type and place its result into the specified l-value. + void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit); + + /// EmitStoreOfComplex - Store a complex number into the specified l-value. + void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit); + + /// EmitLoadOfComplex - Load a complex number from the specified l-value. + ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc); + + Address emitAddrOfRealComponent(Address complex, QualType complexType); + Address emitAddrOfImagComponent(Address complex, QualType complexType); + + /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the + /// global variable that has already been created for it. If the initializer + /// has a different type than GV does, this may free GV and return a different + /// one. Otherwise it just returns GV. + llvm::GlobalVariable * + AddInitializerToStaticVarDecl(const VarDecl &D, + llvm::GlobalVariable *GV); + + // Emit an @llvm.invariant.start call for the given memory region. + void EmitInvariantStart(llvm::Constant *Addr, CharUnits Size); + + /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ + /// variable with global storage. + void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr, + bool PerformInit); + + llvm::Function *createAtExitStub(const VarDecl &VD, llvm::FunctionCallee Dtor, + llvm::Constant *Addr); + + /// Call atexit() with a function that passes the given argument to + /// the given function. + void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::FunctionCallee fn, + llvm::Constant *addr); + + /// Call atexit() with function dtorStub. + void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub); + + /// Emit code in this function to perform a guarded variable + /// initialization. Guarded initializations are used when it's not + /// possible to prove that an initialization will be done exactly + /// once, e.g. with a static local variable or a static data member + /// of a class template. + void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, + bool PerformInit); + + enum class GuardKind { VariableGuard, TlsGuard }; + + /// Emit a branch to select whether or not to perform guarded initialization. + void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit, + llvm::BasicBlock *InitBlock, + llvm::BasicBlock *NoInitBlock, + GuardKind Kind, const VarDecl *D); + + /// GenerateCXXGlobalInitFunc - Generates code for initializing global + /// variables. + void + GenerateCXXGlobalInitFunc(llvm::Function *Fn, + ArrayRef<llvm::Function *> CXXThreadLocals, + ConstantAddress Guard = ConstantAddress::invalid()); + + /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global + /// variables. + void GenerateCXXGlobalDtorsFunc( + llvm::Function *Fn, + const std::vector<std::tuple<llvm::FunctionType *, llvm::WeakTrackingVH, + llvm::Constant *>> &DtorsAndObjects); + + void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, + const VarDecl *D, + llvm::GlobalVariable *Addr, + bool PerformInit); + + void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); + + void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp); + + void enterFullExpression(const FullExpr *E) { + if (const auto *EWC = dyn_cast<ExprWithCleanups>(E)) + if (EWC->getNumObjects() == 0) + return; + enterNonTrivialFullExpression(E); + } + void enterNonTrivialFullExpression(const FullExpr *E); + + void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true); + + RValue EmitAtomicExpr(AtomicExpr *E); + + //===--------------------------------------------------------------------===// + // Annotations Emission + //===--------------------------------------------------------------------===// + + /// Emit an annotation call (intrinsic). + llvm::Value *EmitAnnotationCall(llvm::Function *AnnotationFn, + llvm::Value *AnnotatedVal, + StringRef AnnotationStr, + SourceLocation Location); + + /// Emit local annotations for the local variable V, declared by D. + void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); + + /// Emit field annotations for the given field & value. Returns the + /// annotation result. + Address EmitFieldAnnotations(const FieldDecl *D, Address V); + + //===--------------------------------------------------------------------===// + // Internal Helpers + //===--------------------------------------------------------------------===// + + /// ContainsLabel - Return true if the statement contains a label in it. If + /// this statement is not executed normally, it not containing a label means + /// that we can just remove the code. + static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); + + /// containsBreak - Return true if the statement contains a break out of it. + /// If the statement (recursively) contains a switch or loop with a break + /// inside of it, this is fine. + static bool containsBreak(const Stmt *S); + + /// Determine if the given statement might introduce a declaration into the + /// current scope, by being a (possibly-labelled) DeclStmt. + static bool mightAddDeclToScope(const Stmt *S); + + /// ConstantFoldsToSimpleInteger - If the specified expression does not fold + /// to a constant, or if it does but contains a label, return false. If it + /// constant folds return true and set the boolean result in Result. + bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result, + bool AllowLabels = false); + + /// ConstantFoldsToSimpleInteger - If the specified expression does not fold + /// to a constant, or if it does but contains a label, return false. If it + /// constant folds return true and set the folded value. + bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result, + bool AllowLabels = false); + + /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an + /// if statement) to the specified blocks. Based on the condition, this might + /// try to simplify the codegen of the conditional based on the branch. + /// TrueCount should be the number of times we expect the condition to + /// evaluate to true based on PGO data. + void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, + llvm::BasicBlock *FalseBlock, uint64_t TrueCount); + + /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is + /// nonnull, if \p LHS is marked _Nonnull. + void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc); + + /// An enumeration which makes it easier to specify whether or not an + /// operation is a subtraction. + enum { NotSubtraction = false, IsSubtraction = true }; + + /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to + /// detect undefined behavior when the pointer overflow sanitizer is enabled. + /// \p SignedIndices indicates whether any of the GEP indices are signed. + /// \p IsSubtraction indicates whether the expression used to form the GEP + /// is a subtraction. + llvm::Value *EmitCheckedInBoundsGEP(llvm::Value *Ptr, + ArrayRef<llvm::Value *> IdxList, + bool SignedIndices, + bool IsSubtraction, + SourceLocation Loc, + const Twine &Name = ""); + + /// Specifies which type of sanitizer check to apply when handling a + /// particular builtin. + enum BuiltinCheckKind { + BCK_CTZPassedZero, + BCK_CLZPassedZero, + }; + + /// Emits an argument for a call to a builtin. If the builtin sanitizer is + /// enabled, a runtime check specified by \p Kind is also emitted. + llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind); + + /// Emit a description of a type in a format suitable for passing to + /// a runtime sanitizer handler. + llvm::Constant *EmitCheckTypeDescriptor(QualType T); + + /// Convert a value into a format suitable for passing to a runtime + /// sanitizer handler. + llvm::Value *EmitCheckValue(llvm::Value *V); + + /// Emit a description of a source location in a format suitable for + /// passing to a runtime sanitizer handler. + llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc); + + /// Create a basic block that will either trap or call a handler function in + /// the UBSan runtime with the provided arguments, and create a conditional + /// branch to it. + void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, + SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs, + ArrayRef<llvm::Value *> DynamicArgs); + + /// Emit a slow path cross-DSO CFI check which calls __cfi_slowpath + /// if Cond if false. + void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond, + llvm::ConstantInt *TypeId, llvm::Value *Ptr, + ArrayRef<llvm::Constant *> StaticArgs); + + /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime + /// checking is enabled. Otherwise, just emit an unreachable instruction. + void EmitUnreachable(SourceLocation Loc); + + /// Create a basic block that will call the trap intrinsic, and emit a + /// conditional branch to it, for the -ftrapv checks. + void EmitTrapCheck(llvm::Value *Checked); + + /// Emit a call to trap or debugtrap and attach function attribute + /// "trap-func-name" if specified. + llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID); + + /// Emit a stub for the cross-DSO CFI check function. + void EmitCfiCheckStub(); + + /// Emit a cross-DSO CFI failure handling function. + void EmitCfiCheckFail(); + + /// Create a check for a function parameter that may potentially be + /// declared as non-null. + void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc, + AbstractCallee AC, unsigned ParmNum); + + /// EmitCallArg - Emit a single call argument. + void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); + + /// EmitDelegateCallArg - We are performing a delegate call; that + /// is, the current function is delegating to another one. Produce + /// a r-value suitable for passing the given parameter. + void EmitDelegateCallArg(CallArgList &args, const VarDecl *param, + SourceLocation loc); + + /// SetFPAccuracy - Set the minimum required accuracy of the given floating + /// point operation, expressed as the maximum relative error in ulp. + void SetFPAccuracy(llvm::Value *Val, float Accuracy); + + /// SetFPModel - Control floating point behavior via fp-model settings. + void SetFPModel(); + +private: + llvm::MDNode *getRangeForLoadFromType(QualType Ty); + void EmitReturnOfRValue(RValue RV, QualType Ty); + + void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New); + + llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4> + DeferredReplacements; + + /// Set the address of a local variable. + void setAddrOfLocalVar(const VarDecl *VD, Address Addr) { + assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!"); + LocalDeclMap.insert({VD, Addr}); + } + + /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty + /// from function arguments into \arg Dst. See ABIArgInfo::Expand. + /// + /// \param AI - The first function argument of the expansion. + void ExpandTypeFromArgs(QualType Ty, LValue Dst, + SmallVectorImpl<llvm::Value *>::iterator &AI); + + /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg + /// Ty, into individual arguments on the provided vector \arg IRCallArgs, + /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand. + void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, + SmallVectorImpl<llvm::Value *> &IRCallArgs, + unsigned &IRCallArgPos); + + llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info, + const Expr *InputExpr, std::string &ConstraintStr); + + llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, + LValue InputValue, QualType InputType, + std::string &ConstraintStr, + SourceLocation Loc); + + /// Attempts to statically evaluate the object size of E. If that + /// fails, emits code to figure the size of E out for us. This is + /// pass_object_size aware. + /// + /// If EmittedExpr is non-null, this will use that instead of re-emitting E. + llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type, + llvm::IntegerType *ResType, + llvm::Value *EmittedE, + bool IsDynamic); + + /// Emits the size of E, as required by __builtin_object_size. This + /// function is aware of pass_object_size parameters, and will act accordingly + /// if E is a parameter with the pass_object_size attribute. + llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type, + llvm::IntegerType *ResType, + llvm::Value *EmittedE, + bool IsDynamic); + + void emitZeroOrPatternForAutoVarInit(QualType type, const VarDecl &D, + Address Loc); + +public: +#ifndef NDEBUG + // Determine whether the given argument is an Objective-C method + // that may have type parameters in its signature. + static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) { + const DeclContext *dc = method->getDeclContext(); + if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) { + return classDecl->getTypeParamListAsWritten(); + } + + if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) { + return catDecl->getTypeParamList(); + } + + return false; + } + + template<typename T> + static bool isObjCMethodWithTypeParams(const T *) { return false; } +#endif + + enum class EvaluationOrder { + ///! No language constraints on evaluation order. + Default, + ///! Language semantics require left-to-right evaluation. + ForceLeftToRight, + ///! Language semantics require right-to-left evaluation. + ForceRightToLeft + }; + + /// EmitCallArgs - Emit call arguments for a function. + template <typename T> + void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo, + llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, + AbstractCallee AC = AbstractCallee(), + unsigned ParamsToSkip = 0, + EvaluationOrder Order = EvaluationOrder::Default) { + SmallVector<QualType, 16> ArgTypes; + CallExpr::const_arg_iterator Arg = ArgRange.begin(); + + assert((ParamsToSkip == 0 || CallArgTypeInfo) && + "Can't skip parameters if type info is not provided"); + if (CallArgTypeInfo) { +#ifndef NDEBUG + bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo); +#endif + + // First, use the argument types that the type info knows about + for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip, + E = CallArgTypeInfo->param_type_end(); + I != E; ++I, ++Arg) { + assert(Arg != ArgRange.end() && "Running over edge of argument list!"); + assert((isGenericMethod || + ((*I)->isVariablyModifiedType() || + (*I).getNonReferenceType()->isObjCRetainableType() || + getContext() + .getCanonicalType((*I).getNonReferenceType()) + .getTypePtr() == + getContext() + .getCanonicalType((*Arg)->getType()) + .getTypePtr())) && + "type mismatch in call argument!"); + ArgTypes.push_back(*I); + } + } + + // Either we've emitted all the call args, or we have a call to variadic + // function. + assert((Arg == ArgRange.end() || !CallArgTypeInfo || + CallArgTypeInfo->isVariadic()) && + "Extra arguments in non-variadic function!"); + + // If we still have any arguments, emit them using the type of the argument. + for (auto *A : llvm::make_range(Arg, ArgRange.end())) + ArgTypes.push_back(CallArgTypeInfo ? getVarArgType(A) : A->getType()); + + EmitCallArgs(Args, ArgTypes, ArgRange, AC, ParamsToSkip, Order); + } + + void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes, + llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, + AbstractCallee AC = AbstractCallee(), + unsigned ParamsToSkip = 0, + EvaluationOrder Order = EvaluationOrder::Default); + + /// EmitPointerWithAlignment - Given an expression with a pointer type, + /// emit the value and compute our best estimate of the alignment of the + /// pointee. + /// + /// \param BaseInfo - If non-null, this will be initialized with + /// information about the source of the alignment and the may-alias + /// attribute. Note that this function will conservatively fall back on + /// the type when it doesn't recognize the expression and may-alias will + /// be set to false. + /// + /// One reasonable way to use this information is when there's a language + /// guarantee that the pointer must be aligned to some stricter value, and + /// we're simply trying to ensure that sufficiently obvious uses of under- + /// aligned objects don't get miscompiled; for example, a placement new + /// into the address of a local variable. In such a case, it's quite + /// reasonable to just ignore the returned alignment when it isn't from an + /// explicit source. + Address EmitPointerWithAlignment(const Expr *Addr, + LValueBaseInfo *BaseInfo = nullptr, + TBAAAccessInfo *TBAAInfo = nullptr); + + /// If \p E references a parameter with pass_object_size info or a constant + /// array size modifier, emit the object size divided by the size of \p EltTy. + /// Otherwise return null. + llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy); + + void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK); + + struct MultiVersionResolverOption { + llvm::Function *Function; + FunctionDecl *FD; + struct Conds { + StringRef Architecture; + llvm::SmallVector<StringRef, 8> Features; + + Conds(StringRef Arch, ArrayRef<StringRef> Feats) + : Architecture(Arch), Features(Feats.begin(), Feats.end()) {} + } Conditions; + + MultiVersionResolverOption(llvm::Function *F, StringRef Arch, + ArrayRef<StringRef> Feats) + : Function(F), Conditions(Arch, Feats) {} + }; + + // Emits the body of a multiversion function's resolver. Assumes that the + // options are already sorted in the proper order, with the 'default' option + // last (if it exists). + void EmitMultiVersionResolver(llvm::Function *Resolver, + ArrayRef<MultiVersionResolverOption> Options); + + static uint64_t GetX86CpuSupportsMask(ArrayRef<StringRef> FeatureStrs); + +private: + QualType getVarArgType(const Expr *Arg); + + void EmitDeclMetadata(); + + BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType, + const AutoVarEmission &emission); + + void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); + + llvm::Value *GetValueForARMHint(unsigned BuiltinID); + llvm::Value *EmitX86CpuIs(const CallExpr *E); + llvm::Value *EmitX86CpuIs(StringRef CPUStr); + llvm::Value *EmitX86CpuSupports(const CallExpr *E); + llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs); + llvm::Value *EmitX86CpuSupports(uint64_t Mask); + llvm::Value *EmitX86CpuInit(); + llvm::Value *FormResolverCondition(const MultiVersionResolverOption &RO); +}; + +inline DominatingLLVMValue::saved_type +DominatingLLVMValue::save(CodeGenFunction &CGF, llvm::Value *value) { + if (!needsSaving(value)) return saved_type(value, false); + + // Otherwise, we need an alloca. + auto align = CharUnits::fromQuantity( + CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType())); + Address alloca = + CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save"); + CGF.Builder.CreateStore(value, alloca); + + return saved_type(alloca.getPointer(), true); +} + +inline llvm::Value *DominatingLLVMValue::restore(CodeGenFunction &CGF, + saved_type value) { + // If the value says it wasn't saved, trust that it's still dominating. + if (!value.getInt()) return value.getPointer(); + + // Otherwise, it should be an alloca instruction, as set up in save(). + auto alloca = cast<llvm::AllocaInst>(value.getPointer()); + return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlignment()); +} + +} // end namespace CodeGen +} // end namespace clang + +#endif |