summaryrefslogtreecommitdiffstats
path: root/gnu/llvm/clang/lib/StaticAnalyzer/Checkers/CheckerDocumentation.cpp
diff options
context:
space:
mode:
authorpatrick <patrick@openbsd.org>2020-08-03 14:31:31 +0000
committerpatrick <patrick@openbsd.org>2020-08-03 14:31:31 +0000
commite5dd70708596ae51455a0ffa086a00c5b29f8583 (patch)
tree5d676f27b570bacf71e786c3b5cff3e6f6679b59 /gnu/llvm/clang/lib/StaticAnalyzer/Checkers/CheckerDocumentation.cpp
parentImport LLVM 10.0.0 release including clang, lld and lldb. (diff)
downloadwireguard-openbsd-e5dd70708596ae51455a0ffa086a00c5b29f8583.tar.xz
wireguard-openbsd-e5dd70708596ae51455a0ffa086a00c5b29f8583.zip
Import LLVM 10.0.0 release including clang, lld and lldb.
ok hackroom tested by plenty
Diffstat (limited to 'gnu/llvm/clang/lib/StaticAnalyzer/Checkers/CheckerDocumentation.cpp')
-rw-r--r--gnu/llvm/clang/lib/StaticAnalyzer/Checkers/CheckerDocumentation.cpp334
1 files changed, 334 insertions, 0 deletions
diff --git a/gnu/llvm/clang/lib/StaticAnalyzer/Checkers/CheckerDocumentation.cpp b/gnu/llvm/clang/lib/StaticAnalyzer/Checkers/CheckerDocumentation.cpp
new file mode 100644
index 00000000000..3e5e2b91391
--- /dev/null
+++ b/gnu/llvm/clang/lib/StaticAnalyzer/Checkers/CheckerDocumentation.cpp
@@ -0,0 +1,334 @@
+//===- CheckerDocumentation.cpp - Documentation checker ---------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This checker lists all the checker callbacks and provides documentation for
+// checker writers.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
+#include "clang/StaticAnalyzer/Core/Checker.h"
+#include "clang/StaticAnalyzer/Core/CheckerManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
+
+using namespace clang;
+using namespace ento;
+
+// All checkers should be placed into anonymous namespace.
+// We place the CheckerDocumentation inside ento namespace to make the
+// it visible in doxygen.
+namespace clang {
+namespace ento {
+
+/// This checker documents the callback functions checkers can use to implement
+/// the custom handling of the specific events during path exploration as well
+/// as reporting bugs. Most of the callbacks are targeted at path-sensitive
+/// checking.
+///
+/// \sa CheckerContext
+class CheckerDocumentation : public Checker< check::PreStmt<ReturnStmt>,
+ check::PostStmt<DeclStmt>,
+ check::PreObjCMessage,
+ check::PostObjCMessage,
+ check::ObjCMessageNil,
+ check::PreCall,
+ check::PostCall,
+ check::BranchCondition,
+ check::NewAllocator,
+ check::Location,
+ check::Bind,
+ check::DeadSymbols,
+ check::BeginFunction,
+ check::EndFunction,
+ check::EndAnalysis,
+ check::EndOfTranslationUnit,
+ eval::Call,
+ eval::Assume,
+ check::LiveSymbols,
+ check::RegionChanges,
+ check::PointerEscape,
+ check::ConstPointerEscape,
+ check::Event<ImplicitNullDerefEvent>,
+ check::ASTDecl<FunctionDecl> > {
+public:
+ /// Pre-visit the Statement.
+ ///
+ /// The method will be called before the analyzer core processes the
+ /// statement. The notification is performed for every explored CFGElement,
+ /// which does not include the control flow statements such as IfStmt. The
+ /// callback can be specialized to be called with any subclass of Stmt.
+ ///
+ /// See checkBranchCondition() callback for performing custom processing of
+ /// the branching statements.
+ ///
+ /// check::PreStmt<ReturnStmt>
+ void checkPreStmt(const ReturnStmt *DS, CheckerContext &C) const {}
+
+ /// Post-visit the Statement.
+ ///
+ /// The method will be called after the analyzer core processes the
+ /// statement. The notification is performed for every explored CFGElement,
+ /// which does not include the control flow statements such as IfStmt. The
+ /// callback can be specialized to be called with any subclass of Stmt.
+ ///
+ /// check::PostStmt<DeclStmt>
+ void checkPostStmt(const DeclStmt *DS, CheckerContext &C) const;
+
+ /// Pre-visit the Objective C message.
+ ///
+ /// This will be called before the analyzer core processes the method call.
+ /// This is called for any action which produces an Objective-C message send,
+ /// including explicit message syntax and property access.
+ ///
+ /// check::PreObjCMessage
+ void checkPreObjCMessage(const ObjCMethodCall &M, CheckerContext &C) const {}
+
+ /// Post-visit the Objective C message.
+ /// \sa checkPreObjCMessage()
+ ///
+ /// check::PostObjCMessage
+ void checkPostObjCMessage(const ObjCMethodCall &M, CheckerContext &C) const {}
+
+ /// Visit an Objective-C message whose receiver is nil.
+ ///
+ /// This will be called when the analyzer core processes a method call whose
+ /// receiver is definitely nil. In this case, check{Pre/Post}ObjCMessage and
+ /// check{Pre/Post}Call will not be called.
+ ///
+ /// check::ObjCMessageNil
+ void checkObjCMessageNil(const ObjCMethodCall &M, CheckerContext &C) const {}
+
+ /// Pre-visit an abstract "call" event.
+ ///
+ /// This is used for checkers that want to check arguments or attributed
+ /// behavior for functions and methods no matter how they are being invoked.
+ ///
+ /// Note that this includes ALL cross-body invocations, so if you want to
+ /// limit your checks to, say, function calls, you should test for that at the
+ /// beginning of your callback function.
+ ///
+ /// check::PreCall
+ void checkPreCall(const CallEvent &Call, CheckerContext &C) const {}
+
+ /// Post-visit an abstract "call" event.
+ /// \sa checkPreObjCMessage()
+ ///
+ /// check::PostCall
+ void checkPostCall(const CallEvent &Call, CheckerContext &C) const {}
+
+ /// Pre-visit of the condition statement of a branch (such as IfStmt).
+ void checkBranchCondition(const Stmt *Condition, CheckerContext &Ctx) const {}
+
+ /// Post-visit the C++ operator new's allocation call.
+ ///
+ /// Execution of C++ operator new consists of the following phases: (1) call
+ /// default or overridden operator new() to allocate memory (2) cast the
+ /// return value of operator new() from void pointer type to class pointer
+ /// type, (3) assuming that the value is non-null, call the object's
+ /// constructor over this pointer, (4) declare that the value of the
+ /// new-expression is this pointer. This callback is called between steps
+ /// (2) and (3). Post-call for the allocator is called after step (1).
+ /// Pre-statement for the new-expression is called on step (4) when the value
+ /// of the expression is evaluated.
+ /// \param NE The C++ new-expression that triggered the allocation.
+ /// \param Target The allocated region, casted to the class type.
+ void checkNewAllocator(const CXXNewExpr *NE, SVal Target,
+ CheckerContext &) const {}
+
+ /// Called on a load from and a store to a location.
+ ///
+ /// The method will be called each time a location (pointer) value is
+ /// accessed.
+ /// \param Loc The value of the location (pointer).
+ /// \param IsLoad The flag specifying if the location is a store or a load.
+ /// \param S The load is performed while processing the statement.
+ ///
+ /// check::Location
+ void checkLocation(SVal Loc, bool IsLoad, const Stmt *S,
+ CheckerContext &) const {}
+
+ /// Called on binding of a value to a location.
+ ///
+ /// \param Loc The value of the location (pointer).
+ /// \param Val The value which will be stored at the location Loc.
+ /// \param S The bind is performed while processing the statement S.
+ ///
+ /// check::Bind
+ void checkBind(SVal Loc, SVal Val, const Stmt *S, CheckerContext &) const {}
+
+ /// Called whenever a symbol becomes dead.
+ ///
+ /// This callback should be used by the checkers to aggressively clean
+ /// up/reduce the checker state, which is important for reducing the overall
+ /// memory usage. Specifically, if a checker keeps symbol specific information
+ /// in the state, it can and should be dropped after the symbol becomes dead.
+ /// In addition, reporting a bug as soon as the checker becomes dead leads to
+ /// more precise diagnostics. (For example, one should report that a malloced
+ /// variable is not freed right after it goes out of scope.)
+ ///
+ /// \param SR The SymbolReaper object can be queried to determine which
+ /// symbols are dead.
+ ///
+ /// check::DeadSymbols
+ void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const {}
+
+
+ /// Called when the analyzer core starts analyzing a function,
+ /// regardless of whether it is analyzed at the top level or is inlined.
+ ///
+ /// check::BeginFunction
+ void checkBeginFunction(CheckerContext &Ctx) const {}
+
+ /// Called when the analyzer core reaches the end of a
+ /// function being analyzed regardless of whether it is analyzed at the top
+ /// level or is inlined.
+ ///
+ /// check::EndFunction
+ void checkEndFunction(const ReturnStmt *RS, CheckerContext &Ctx) const {}
+
+ /// Called after all the paths in the ExplodedGraph reach end of path
+ /// - the symbolic execution graph is fully explored.
+ ///
+ /// This callback should be used in cases when a checker needs to have a
+ /// global view of the information generated on all paths. For example, to
+ /// compare execution summary/result several paths.
+ /// See IdempotentOperationChecker for a usage example.
+ ///
+ /// check::EndAnalysis
+ void checkEndAnalysis(ExplodedGraph &G,
+ BugReporter &BR,
+ ExprEngine &Eng) const {}
+
+ /// Called after analysis of a TranslationUnit is complete.
+ ///
+ /// check::EndOfTranslationUnit
+ void checkEndOfTranslationUnit(const TranslationUnitDecl *TU,
+ AnalysisManager &Mgr,
+ BugReporter &BR) const {}
+
+ /// Evaluates function call.
+ ///
+ /// The analysis core treats all function calls in the same way. However, some
+ /// functions have special meaning, which should be reflected in the program
+ /// state. This callback allows a checker to provide domain specific knowledge
+ /// about the particular functions it knows about.
+ ///
+ /// \returns true if the call has been successfully evaluated
+ /// and false otherwise. Note, that only one checker can evaluate a call. If
+ /// more than one checker claims that they can evaluate the same call the
+ /// first one wins.
+ ///
+ /// eval::Call
+ bool evalCall(const CallExpr *CE, CheckerContext &C) const { return true; }
+
+ /// Handles assumptions on symbolic values.
+ ///
+ /// This method is called when a symbolic expression is assumed to be true or
+ /// false. For example, the assumptions are performed when evaluating a
+ /// condition at a branch. The callback allows checkers track the assumptions
+ /// performed on the symbols of interest and change the state accordingly.
+ ///
+ /// eval::Assume
+ ProgramStateRef evalAssume(ProgramStateRef State,
+ SVal Cond,
+ bool Assumption) const { return State; }
+
+ /// Allows modifying SymbolReaper object. For example, checkers can explicitly
+ /// register symbols of interest as live. These symbols will not be marked
+ /// dead and removed.
+ ///
+ /// check::LiveSymbols
+ void checkLiveSymbols(ProgramStateRef State, SymbolReaper &SR) const {}
+
+ /// Called when the contents of one or more regions change.
+ ///
+ /// This can occur in many different ways: an explicit bind, a blanket
+ /// invalidation of the region contents, or by passing a region to a function
+ /// call whose behavior the analyzer cannot model perfectly.
+ ///
+ /// \param State The current program state.
+ /// \param Invalidated A set of all symbols potentially touched by the change.
+ /// \param ExplicitRegions The regions explicitly requested for invalidation.
+ /// For a function call, this would be the arguments. For a bind, this
+ /// would be the region being bound to.
+ /// \param Regions The transitive closure of regions accessible from,
+ /// \p ExplicitRegions, i.e. all regions that may have been touched
+ /// by this change. For a simple bind, this list will be the same as
+ /// \p ExplicitRegions, since a bind does not affect the contents of
+ /// anything accessible through the base region.
+ /// \param LCtx LocationContext that is useful for getting various contextual
+ /// info, like callstack, CFG etc.
+ /// \param Call The opaque call triggering this invalidation. Will be 0 if the
+ /// change was not triggered by a call.
+ ///
+ /// check::RegionChanges
+ ProgramStateRef
+ checkRegionChanges(ProgramStateRef State,
+ const InvalidatedSymbols *Invalidated,
+ ArrayRef<const MemRegion *> ExplicitRegions,
+ ArrayRef<const MemRegion *> Regions,
+ const LocationContext *LCtx,
+ const CallEvent *Call) const {
+ return State;
+ }
+
+ /// Called when pointers escape.
+ ///
+ /// This notifies the checkers about pointer escape, which occurs whenever
+ /// the analyzer cannot track the symbol any more. For example, as a
+ /// result of assigning a pointer into a global or when it's passed to a
+ /// function call the analyzer cannot model.
+ ///
+ /// \param State The state at the point of escape.
+ /// \param Escaped The list of escaped symbols.
+ /// \param Call The corresponding CallEvent, if the symbols escape as
+ /// parameters to the given call.
+ /// \param Kind How the symbols have escaped.
+ /// \returns Checkers can modify the state by returning a new state.
+ ProgramStateRef checkPointerEscape(ProgramStateRef State,
+ const InvalidatedSymbols &Escaped,
+ const CallEvent *Call,
+ PointerEscapeKind Kind) const {
+ return State;
+ }
+
+ /// Called when const pointers escape.
+ ///
+ /// Note: in most cases checkPointerEscape callback is sufficient.
+ /// \sa checkPointerEscape
+ ProgramStateRef checkConstPointerEscape(ProgramStateRef State,
+ const InvalidatedSymbols &Escaped,
+ const CallEvent *Call,
+ PointerEscapeKind Kind) const {
+ return State;
+ }
+
+ /// check::Event<ImplicitNullDerefEvent>
+ void checkEvent(ImplicitNullDerefEvent Event) const {}
+
+ /// Check every declaration in the AST.
+ ///
+ /// An AST traversal callback, which should only be used when the checker is
+ /// not path sensitive. It will be called for every Declaration in the AST and
+ /// can be specialized to only be called on subclasses of Decl, for example,
+ /// FunctionDecl.
+ ///
+ /// check::ASTDecl<FunctionDecl>
+ void checkASTDecl(const FunctionDecl *D,
+ AnalysisManager &Mgr,
+ BugReporter &BR) const {}
+};
+
+void CheckerDocumentation::checkPostStmt(const DeclStmt *DS,
+ CheckerContext &C) const {
+}
+
+} // end namespace ento
+} // end namespace clang