diff options
author | 2020-08-03 14:31:31 +0000 | |
---|---|---|
committer | 2020-08-03 14:31:31 +0000 | |
commit | e5dd70708596ae51455a0ffa086a00c5b29f8583 (patch) | |
tree | 5d676f27b570bacf71e786c3b5cff3e6f6679b59 /gnu/llvm/clang/lib/StaticAnalyzer/Checkers/MallocChecker.cpp | |
parent | Import LLVM 10.0.0 release including clang, lld and lldb. (diff) | |
download | wireguard-openbsd-e5dd70708596ae51455a0ffa086a00c5b29f8583.tar.xz wireguard-openbsd-e5dd70708596ae51455a0ffa086a00c5b29f8583.zip |
Import LLVM 10.0.0 release including clang, lld and lldb.
ok hackroom
tested by plenty
Diffstat (limited to 'gnu/llvm/clang/lib/StaticAnalyzer/Checkers/MallocChecker.cpp')
-rw-r--r-- | gnu/llvm/clang/lib/StaticAnalyzer/Checkers/MallocChecker.cpp | 3428 |
1 files changed, 3428 insertions, 0 deletions
diff --git a/gnu/llvm/clang/lib/StaticAnalyzer/Checkers/MallocChecker.cpp b/gnu/llvm/clang/lib/StaticAnalyzer/Checkers/MallocChecker.cpp new file mode 100644 index 00000000000..09306383d53 --- /dev/null +++ b/gnu/llvm/clang/lib/StaticAnalyzer/Checkers/MallocChecker.cpp @@ -0,0 +1,3428 @@ +//=== MallocChecker.cpp - A malloc/free checker -------------------*- C++ -*--// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file defines a variety of memory management related checkers, such as +// leak, double free, and use-after-free. +// +// The following checkers are defined here: +// +// * MallocChecker +// Despite its name, it models all sorts of memory allocations and +// de- or reallocation, including but not limited to malloc, free, +// relloc, new, delete. It also reports on a variety of memory misuse +// errors. +// Many other checkers interact very closely with this checker, in fact, +// most are merely options to this one. Other checkers may register +// MallocChecker, but do not enable MallocChecker's reports (more details +// to follow around its field, ChecksEnabled). +// It also has a boolean "Optimistic" checker option, which if set to true +// will cause the checker to model user defined memory management related +// functions annotated via the attribute ownership_takes, ownership_holds +// and ownership_returns. +// +// * NewDeleteChecker +// Enables the modeling of new, new[], delete, delete[] in MallocChecker, +// and checks for related double-free and use-after-free errors. +// +// * NewDeleteLeaksChecker +// Checks for leaks related to new, new[], delete, delete[]. +// Depends on NewDeleteChecker. +// +// * MismatchedDeallocatorChecker +// Enables checking whether memory is deallocated with the correspending +// allocation function in MallocChecker, such as malloc() allocated +// regions are only freed by free(), new by delete, new[] by delete[]. +// +// InnerPointerChecker interacts very closely with MallocChecker, but unlike +// the above checkers, it has it's own file, hence the many InnerPointerChecker +// related headers and non-static functions. +// +//===----------------------------------------------------------------------===// + +#include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h" +#include "InterCheckerAPI.h" +#include "clang/AST/Attr.h" +#include "clang/AST/ParentMap.h" +#include "clang/Basic/SourceManager.h" +#include "clang/Basic/TargetInfo.h" +#include "clang/Lex/Lexer.h" +#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" +#include "clang/StaticAnalyzer/Core/BugReporter/CommonBugCategories.h" +#include "clang/StaticAnalyzer/Core/Checker.h" +#include "clang/StaticAnalyzer/Core/CheckerManager.h" +#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" +#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" +#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" +#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" +#include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallString.h" +#include "llvm/ADT/StringExtras.h" +#include "AllocationState.h" +#include <climits> +#include <utility> + +using namespace clang; +using namespace ento; + +//===----------------------------------------------------------------------===// +// The types of allocation we're modeling. +//===----------------------------------------------------------------------===// + +namespace { + +// Used to check correspondence between allocators and deallocators. +enum AllocationFamily { + AF_None, + AF_Malloc, + AF_CXXNew, + AF_CXXNewArray, + AF_IfNameIndex, + AF_Alloca, + AF_InnerBuffer +}; + +struct MemFunctionInfoTy; + +} // end of anonymous namespace + +/// Determine family of a deallocation expression. +static AllocationFamily +getAllocationFamily(const MemFunctionInfoTy &MemFunctionInfo, CheckerContext &C, + const Stmt *S); + +/// Print names of allocators and deallocators. +/// +/// \returns true on success. +static bool printAllocDeallocName(raw_ostream &os, CheckerContext &C, + const Expr *E); + +/// Print expected name of an allocator based on the deallocator's +/// family derived from the DeallocExpr. +static void printExpectedAllocName(raw_ostream &os, + const MemFunctionInfoTy &MemFunctionInfo, + CheckerContext &C, const Expr *E); + +/// Print expected name of a deallocator based on the allocator's +/// family. +static void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family); + +//===----------------------------------------------------------------------===// +// The state of a symbol, in terms of memory management. +//===----------------------------------------------------------------------===// + +namespace { + +class RefState { + enum Kind { + // Reference to allocated memory. + Allocated, + // Reference to zero-allocated memory. + AllocatedOfSizeZero, + // Reference to released/freed memory. + Released, + // The responsibility for freeing resources has transferred from + // this reference. A relinquished symbol should not be freed. + Relinquished, + // We are no longer guaranteed to have observed all manipulations + // of this pointer/memory. For example, it could have been + // passed as a parameter to an opaque function. + Escaped + }; + + const Stmt *S; + + Kind K; + AllocationFamily Family; + + RefState(Kind k, const Stmt *s, AllocationFamily family) + : S(s), K(k), Family(family) { + assert(family != AF_None); + } + +public: + bool isAllocated() const { return K == Allocated; } + bool isAllocatedOfSizeZero() const { return K == AllocatedOfSizeZero; } + bool isReleased() const { return K == Released; } + bool isRelinquished() const { return K == Relinquished; } + bool isEscaped() const { return K == Escaped; } + AllocationFamily getAllocationFamily() const { return Family; } + const Stmt *getStmt() const { return S; } + + bool operator==(const RefState &X) const { + return K == X.K && S == X.S && Family == X.Family; + } + + static RefState getAllocated(AllocationFamily family, const Stmt *s) { + return RefState(Allocated, s, family); + } + static RefState getAllocatedOfSizeZero(const RefState *RS) { + return RefState(AllocatedOfSizeZero, RS->getStmt(), + RS->getAllocationFamily()); + } + static RefState getReleased(AllocationFamily family, const Stmt *s) { + return RefState(Released, s, family); + } + static RefState getRelinquished(AllocationFamily family, const Stmt *s) { + return RefState(Relinquished, s, family); + } + static RefState getEscaped(const RefState *RS) { + return RefState(Escaped, RS->getStmt(), RS->getAllocationFamily()); + } + + void Profile(llvm::FoldingSetNodeID &ID) const { + ID.AddInteger(K); + ID.AddPointer(S); + ID.AddInteger(Family); + } + + LLVM_DUMP_METHOD void dump(raw_ostream &OS) const { + switch (K) { +#define CASE(ID) case ID: OS << #ID; break; + CASE(Allocated) + CASE(AllocatedOfSizeZero) + CASE(Released) + CASE(Relinquished) + CASE(Escaped) + } + } + + LLVM_DUMP_METHOD void dump() const { dump(llvm::errs()); } +}; + +} // end of anonymous namespace + +REGISTER_MAP_WITH_PROGRAMSTATE(RegionState, SymbolRef, RefState) + +/// Check if the memory associated with this symbol was released. +static bool isReleased(SymbolRef Sym, CheckerContext &C); + +/// Update the RefState to reflect the new memory allocation. +/// The optional \p RetVal parameter specifies the newly allocated pointer +/// value; if unspecified, the value of expression \p E is used. +static ProgramStateRef MallocUpdateRefState(CheckerContext &C, const Expr *E, + ProgramStateRef State, + AllocationFamily Family = AF_Malloc, + Optional<SVal> RetVal = None); + +//===----------------------------------------------------------------------===// +// The modeling of memory reallocation. +// +// The terminology 'toPtr' and 'fromPtr' will be used: +// toPtr = realloc(fromPtr, 20); +//===----------------------------------------------------------------------===// + +REGISTER_SET_WITH_PROGRAMSTATE(ReallocSizeZeroSymbols, SymbolRef) + +namespace { + +/// The state of 'fromPtr' after reallocation is known to have failed. +enum OwnershipAfterReallocKind { + // The symbol needs to be freed (e.g.: realloc) + OAR_ToBeFreedAfterFailure, + // The symbol has been freed (e.g.: reallocf) + OAR_FreeOnFailure, + // The symbol doesn't have to freed (e.g.: we aren't sure if, how and where + // 'fromPtr' was allocated: + // void Haha(int *ptr) { + // ptr = realloc(ptr, 67); + // // ... + // } + // ). + OAR_DoNotTrackAfterFailure +}; + +/// Stores information about the 'fromPtr' symbol after reallocation. +/// +/// This is important because realloc may fail, and that needs special modeling. +/// Whether reallocation failed or not will not be known until later, so we'll +/// store whether upon failure 'fromPtr' will be freed, or needs to be freed +/// later, etc. +struct ReallocPair { + + // The 'fromPtr'. + SymbolRef ReallocatedSym; + OwnershipAfterReallocKind Kind; + + ReallocPair(SymbolRef S, OwnershipAfterReallocKind K) + : ReallocatedSym(S), Kind(K) {} + void Profile(llvm::FoldingSetNodeID &ID) const { + ID.AddInteger(Kind); + ID.AddPointer(ReallocatedSym); + } + bool operator==(const ReallocPair &X) const { + return ReallocatedSym == X.ReallocatedSym && + Kind == X.Kind; + } +}; + +} // end of anonymous namespace + +REGISTER_MAP_WITH_PROGRAMSTATE(ReallocPairs, SymbolRef, ReallocPair) + +//===----------------------------------------------------------------------===// +// Kinds of memory operations, information about resource managing functions. +//===----------------------------------------------------------------------===// + +namespace { + +enum class MemoryOperationKind { MOK_Allocate, MOK_Free, MOK_Any }; + +struct MemFunctionInfoTy { + /// The value of the MallocChecker:Optimistic is stored in this variable. + /// + /// In pessimistic mode, the checker assumes that it does not know which + /// functions might free the memory. + /// In optimistic mode, the checker assumes that all user-defined functions + /// which might free a pointer are annotated. + DefaultBool ShouldIncludeOwnershipAnnotatedFunctions; + + // TODO: Change these to CallDescription, and get rid of lazy initialization. + mutable IdentifierInfo *II_alloca = nullptr, *II_win_alloca = nullptr, + *II_malloc = nullptr, *II_free = nullptr, + *II_realloc = nullptr, *II_calloc = nullptr, + *II_valloc = nullptr, *II_reallocf = nullptr, + *II_strndup = nullptr, *II_strdup = nullptr, + *II_win_strdup = nullptr, *II_kmalloc = nullptr, + *II_if_nameindex = nullptr, + *II_if_freenameindex = nullptr, *II_wcsdup = nullptr, + *II_win_wcsdup = nullptr, *II_g_malloc = nullptr, + *II_g_malloc0 = nullptr, *II_g_realloc = nullptr, + *II_g_try_malloc = nullptr, + *II_g_try_malloc0 = nullptr, + *II_g_try_realloc = nullptr, *II_g_free = nullptr, + *II_g_memdup = nullptr, *II_g_malloc_n = nullptr, + *II_g_malloc0_n = nullptr, *II_g_realloc_n = nullptr, + *II_g_try_malloc_n = nullptr, + *II_g_try_malloc0_n = nullptr, *II_kfree = nullptr, + *II_g_try_realloc_n = nullptr; + + void initIdentifierInfo(ASTContext &C) const; + + ///@{ + /// Check if this is one of the functions which can allocate/reallocate + /// memory pointed to by one of its arguments. + bool isMemFunction(const FunctionDecl *FD, ASTContext &C) const; + bool isCMemFunction(const FunctionDecl *FD, ASTContext &C, + AllocationFamily Family, + MemoryOperationKind MemKind) const; + + /// Tells if the callee is one of the builtin new/delete operators, including + /// placement operators and other standard overloads. + bool isStandardNewDelete(const FunctionDecl *FD, ASTContext &C) const; + ///@} +}; + +} // end of anonymous namespace + +//===----------------------------------------------------------------------===// +// Definition of the MallocChecker class. +//===----------------------------------------------------------------------===// + +namespace { + +class MallocChecker + : public Checker<check::DeadSymbols, check::PointerEscape, + check::ConstPointerEscape, check::PreStmt<ReturnStmt>, + check::EndFunction, check::PreCall, + check::PostStmt<CallExpr>, check::PostStmt<CXXNewExpr>, + check::NewAllocator, check::PreStmt<CXXDeleteExpr>, + check::PostStmt<BlockExpr>, check::PostObjCMessage, + check::Location, eval::Assume> { +public: + MemFunctionInfoTy MemFunctionInfo; + + /// Many checkers are essentially built into this one, so enabling them will + /// make MallocChecker perform additional modeling and reporting. + enum CheckKind { + /// When a subchecker is enabled but MallocChecker isn't, model memory + /// management but do not emit warnings emitted with MallocChecker only + /// enabled. + CK_MallocChecker, + CK_NewDeleteChecker, + CK_NewDeleteLeaksChecker, + CK_MismatchedDeallocatorChecker, + CK_InnerPointerChecker, + CK_NumCheckKinds + }; + + using LeakInfo = std::pair<const ExplodedNode *, const MemRegion *>; + + DefaultBool ChecksEnabled[CK_NumCheckKinds]; + CheckerNameRef CheckNames[CK_NumCheckKinds]; + + void checkPreCall(const CallEvent &Call, CheckerContext &C) const; + void checkPostStmt(const CallExpr *CE, CheckerContext &C) const; + void checkPostStmt(const CXXNewExpr *NE, CheckerContext &C) const; + void checkNewAllocator(const CXXNewExpr *NE, SVal Target, + CheckerContext &C) const; + void checkPreStmt(const CXXDeleteExpr *DE, CheckerContext &C) const; + void checkPostObjCMessage(const ObjCMethodCall &Call, CheckerContext &C) const; + void checkPostStmt(const BlockExpr *BE, CheckerContext &C) const; + void checkDeadSymbols(SymbolReaper &SymReaper, CheckerContext &C) const; + void checkPreStmt(const ReturnStmt *S, CheckerContext &C) const; + void checkEndFunction(const ReturnStmt *S, CheckerContext &C) const; + ProgramStateRef evalAssume(ProgramStateRef state, SVal Cond, + bool Assumption) const; + void checkLocation(SVal l, bool isLoad, const Stmt *S, + CheckerContext &C) const; + + ProgramStateRef checkPointerEscape(ProgramStateRef State, + const InvalidatedSymbols &Escaped, + const CallEvent *Call, + PointerEscapeKind Kind) const; + ProgramStateRef checkConstPointerEscape(ProgramStateRef State, + const InvalidatedSymbols &Escaped, + const CallEvent *Call, + PointerEscapeKind Kind) const; + + void printState(raw_ostream &Out, ProgramStateRef State, + const char *NL, const char *Sep) const override; + +private: + mutable std::unique_ptr<BugType> BT_DoubleFree[CK_NumCheckKinds]; + mutable std::unique_ptr<BugType> BT_DoubleDelete; + mutable std::unique_ptr<BugType> BT_Leak[CK_NumCheckKinds]; + mutable std::unique_ptr<BugType> BT_UseFree[CK_NumCheckKinds]; + mutable std::unique_ptr<BugType> BT_BadFree[CK_NumCheckKinds]; + mutable std::unique_ptr<BugType> BT_FreeAlloca[CK_NumCheckKinds]; + mutable std::unique_ptr<BugType> BT_MismatchedDealloc; + mutable std::unique_ptr<BugType> BT_OffsetFree[CK_NumCheckKinds]; + mutable std::unique_ptr<BugType> BT_UseZerroAllocated[CK_NumCheckKinds]; + + // TODO: Remove mutable by moving the initializtaion to the registry function. + mutable Optional<uint64_t> KernelZeroFlagVal; + + /// Process C++ operator new()'s allocation, which is the part of C++ + /// new-expression that goes before the constructor. + void processNewAllocation(const CXXNewExpr *NE, CheckerContext &C, + SVal Target) const; + + /// Perform a zero-allocation check. + /// + /// \param [in] E The expression that allocates memory. + /// \param [in] IndexOfSizeArg Index of the argument that specifies the size + /// of the memory that needs to be allocated. E.g. for malloc, this would be + /// 0. + /// \param [in] RetVal Specifies the newly allocated pointer value; + /// if unspecified, the value of expression \p E is used. + static ProgramStateRef ProcessZeroAllocCheck(CheckerContext &C, const Expr *E, + const unsigned IndexOfSizeArg, + ProgramStateRef State, + Optional<SVal> RetVal = None); + + /// Model functions with the ownership_returns attribute. + /// + /// User-defined function may have the ownership_returns attribute, which + /// annotates that the function returns with an object that was allocated on + /// the heap, and passes the ownertship to the callee. + /// + /// void __attribute((ownership_returns(malloc, 1))) *my_malloc(size_t); + /// + /// It has two parameters: + /// - first: name of the resource (e.g. 'malloc') + /// - (OPTIONAL) second: size of the allocated region + /// + /// \param [in] CE The expression that allocates memory. + /// \param [in] Att The ownership_returns attribute. + /// \param [in] State The \c ProgramState right before allocation. + /// \returns The ProgramState right after allocation. + ProgramStateRef MallocMemReturnsAttr(CheckerContext &C, + const CallExpr *CE, + const OwnershipAttr* Att, + ProgramStateRef State) const; + + /// Models memory allocation. + /// + /// \param [in] CE The expression that allocates memory. + /// \param [in] SizeEx Size of the memory that needs to be allocated. + /// \param [in] Init The value the allocated memory needs to be initialized. + /// with. For example, \c calloc initializes the allocated memory to 0, + /// malloc leaves it undefined. + /// \param [in] State The \c ProgramState right before allocation. + /// \returns The ProgramState right after allocation. + static ProgramStateRef MallocMemAux(CheckerContext &C, const CallExpr *CE, + const Expr *SizeEx, SVal Init, + ProgramStateRef State, + AllocationFamily Family = AF_Malloc); + + /// Models memory allocation. + /// + /// \param [in] CE The expression that allocates memory. + /// \param [in] Size Size of the memory that needs to be allocated. + /// \param [in] Init The value the allocated memory needs to be initialized. + /// with. For example, \c calloc initializes the allocated memory to 0, + /// malloc leaves it undefined. + /// \param [in] State The \c ProgramState right before allocation. + /// \returns The ProgramState right after allocation. + static ProgramStateRef MallocMemAux(CheckerContext &C, const CallExpr *CE, + SVal Size, SVal Init, + ProgramStateRef State, + AllocationFamily Family = AF_Malloc); + + static ProgramStateRef addExtentSize(CheckerContext &C, const CXXNewExpr *NE, + ProgramStateRef State, SVal Target); + + // Check if this malloc() for special flags. At present that means M_ZERO or + // __GFP_ZERO (in which case, treat it like calloc). + llvm::Optional<ProgramStateRef> + performKernelMalloc(const CallExpr *CE, CheckerContext &C, + const ProgramStateRef &State) const; + + /// Model functions with the ownership_takes and ownership_holds attributes. + /// + /// User-defined function may have the ownership_takes and/or ownership_holds + /// attributes, which annotates that the function frees the memory passed as a + /// parameter. + /// + /// void __attribute((ownership_takes(malloc, 1))) my_free(void *); + /// void __attribute((ownership_holds(malloc, 1))) my_hold(void *); + /// + /// They have two parameters: + /// - first: name of the resource (e.g. 'malloc') + /// - second: index of the parameter the attribute applies to + /// + /// \param [in] CE The expression that frees memory. + /// \param [in] Att The ownership_takes or ownership_holds attribute. + /// \param [in] State The \c ProgramState right before allocation. + /// \returns The ProgramState right after deallocation. + ProgramStateRef FreeMemAttr(CheckerContext &C, const CallExpr *CE, + const OwnershipAttr* Att, + ProgramStateRef State) const; + + /// Models memory deallocation. + /// + /// \param [in] CE The expression that frees memory. + /// \param [in] State The \c ProgramState right before allocation. + /// \param [in] Num Index of the argument that needs to be freed. This is + /// normally 0, but for custom free functions it may be different. + /// \param [in] Hold Whether the parameter at \p Index has the ownership_holds + /// attribute. + /// \param [out] IsKnownToBeAllocated Whether the memory to be freed is known + /// to have been allocated, or in other words, the symbol to be freed was + /// registered as allocated by this checker. In the following case, \c ptr + /// isn't known to be allocated. + /// void Haha(int *ptr) { + /// ptr = realloc(ptr, 67); + /// // ... + /// } + /// \param [in] ReturnsNullOnFailure Whether the memory deallocation function + /// we're modeling returns with Null on failure. + /// \returns The ProgramState right after deallocation. + ProgramStateRef FreeMemAux(CheckerContext &C, const CallExpr *CE, + ProgramStateRef State, unsigned Num, bool Hold, + bool &IsKnownToBeAllocated, + bool ReturnsNullOnFailure = false) const; + + /// Models memory deallocation. + /// + /// \param [in] ArgExpr The variable who's pointee needs to be freed. + /// \param [in] ParentExpr The expression that frees the memory. + /// \param [in] State The \c ProgramState right before allocation. + /// normally 0, but for custom free functions it may be different. + /// \param [in] Hold Whether the parameter at \p Index has the ownership_holds + /// attribute. + /// \param [out] IsKnownToBeAllocated Whether the memory to be freed is known + /// to have been allocated, or in other words, the symbol to be freed was + /// registered as allocated by this checker. In the following case, \c ptr + /// isn't known to be allocated. + /// void Haha(int *ptr) { + /// ptr = realloc(ptr, 67); + /// // ... + /// } + /// \param [in] ReturnsNullOnFailure Whether the memory deallocation function + /// we're modeling returns with Null on failure. + /// \returns The ProgramState right after deallocation. + ProgramStateRef FreeMemAux(CheckerContext &C, const Expr *ArgExpr, + const Expr *ParentExpr, ProgramStateRef State, + bool Hold, bool &IsKnownToBeAllocated, + bool ReturnsNullOnFailure = false) const; + + // TODO: Needs some refactoring, as all other deallocation modeling + // functions are suffering from out parameters and messy code due to how + // realloc is handled. + // + /// Models memory reallocation. + /// + /// \param [in] CE The expression that reallocated memory + /// \param [in] ShouldFreeOnFail Whether if reallocation fails, the supplied + /// memory should be freed. + /// \param [in] State The \c ProgramState right before reallocation. + /// \param [in] SuffixWithN Whether the reallocation function we're modeling + /// has an '_n' suffix, such as g_realloc_n. + /// \returns The ProgramState right after reallocation. + ProgramStateRef ReallocMemAux(CheckerContext &C, const CallExpr *CE, + bool ShouldFreeOnFail, ProgramStateRef State, + bool SuffixWithN = false) const; + + /// Evaluates the buffer size that needs to be allocated. + /// + /// \param [in] Blocks The amount of blocks that needs to be allocated. + /// \param [in] BlockBytes The size of a block. + /// \returns The symbolic value of \p Blocks * \p BlockBytes. + static SVal evalMulForBufferSize(CheckerContext &C, const Expr *Blocks, + const Expr *BlockBytes); + + /// Models zero initialized array allocation. + /// + /// \param [in] CE The expression that reallocated memory + /// \param [in] State The \c ProgramState right before reallocation. + /// \returns The ProgramState right after allocation. + static ProgramStateRef CallocMem(CheckerContext &C, const CallExpr *CE, + ProgramStateRef State); + + /// See if deallocation happens in a suspicious context. If so, escape the + /// pointers that otherwise would have been deallocated and return true. + bool suppressDeallocationsInSuspiciousContexts(const CallExpr *CE, + CheckerContext &C) const; + + /// If in \p S \p Sym is used, check whether \p Sym was already freed. + bool checkUseAfterFree(SymbolRef Sym, CheckerContext &C, const Stmt *S) const; + + /// If in \p S \p Sym is used, check whether \p Sym was allocated as a zero + /// sized memory region. + void checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C, + const Stmt *S) const; + + /// If in \p S \p Sym is being freed, check whether \p Sym was already freed. + bool checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const; + + /// Check if the function is known to free memory, or if it is + /// "interesting" and should be modeled explicitly. + /// + /// \param [out] EscapingSymbol A function might not free memory in general, + /// but could be known to free a particular symbol. In this case, false is + /// returned and the single escaping symbol is returned through the out + /// parameter. + /// + /// We assume that pointers do not escape through calls to system functions + /// not handled by this checker. + bool mayFreeAnyEscapedMemoryOrIsModeledExplicitly(const CallEvent *Call, + ProgramStateRef State, + SymbolRef &EscapingSymbol) const; + + /// Implementation of the checkPointerEscape callbacks. + ProgramStateRef checkPointerEscapeAux(ProgramStateRef State, + const InvalidatedSymbols &Escaped, + const CallEvent *Call, + PointerEscapeKind Kind, + bool IsConstPointerEscape) const; + + // Implementation of the checkPreStmt and checkEndFunction callbacks. + void checkEscapeOnReturn(const ReturnStmt *S, CheckerContext &C) const; + + ///@{ + /// Tells if a given family/call/symbol is tracked by the current checker. + /// Sets CheckKind to the kind of the checker responsible for this + /// family/call/symbol. + Optional<CheckKind> getCheckIfTracked(AllocationFamily Family, + bool IsALeakCheck = false) const; + Optional<CheckKind> getCheckIfTracked(CheckerContext &C, + const Stmt *AllocDeallocStmt, + bool IsALeakCheck = false) const; + Optional<CheckKind> getCheckIfTracked(CheckerContext &C, SymbolRef Sym, + bool IsALeakCheck = false) const; + ///@} + static bool SummarizeValue(raw_ostream &os, SVal V); + static bool SummarizeRegion(raw_ostream &os, const MemRegion *MR); + + void ReportBadFree(CheckerContext &C, SVal ArgVal, SourceRange Range, + const Expr *DeallocExpr) const; + void ReportFreeAlloca(CheckerContext &C, SVal ArgVal, + SourceRange Range) const; + void ReportMismatchedDealloc(CheckerContext &C, SourceRange Range, + const Expr *DeallocExpr, const RefState *RS, + SymbolRef Sym, bool OwnershipTransferred) const; + void ReportOffsetFree(CheckerContext &C, SVal ArgVal, SourceRange Range, + const Expr *DeallocExpr, + const Expr *AllocExpr = nullptr) const; + void ReportUseAfterFree(CheckerContext &C, SourceRange Range, + SymbolRef Sym) const; + void ReportDoubleFree(CheckerContext &C, SourceRange Range, bool Released, + SymbolRef Sym, SymbolRef PrevSym) const; + + void ReportDoubleDelete(CheckerContext &C, SymbolRef Sym) const; + + void ReportUseZeroAllocated(CheckerContext &C, SourceRange Range, + SymbolRef Sym) const; + + void ReportFunctionPointerFree(CheckerContext &C, SVal ArgVal, + SourceRange Range, const Expr *FreeExpr) const; + + /// Find the location of the allocation for Sym on the path leading to the + /// exploded node N. + static LeakInfo getAllocationSite(const ExplodedNode *N, SymbolRef Sym, + CheckerContext &C); + + void reportLeak(SymbolRef Sym, ExplodedNode *N, CheckerContext &C) const; +}; + +//===----------------------------------------------------------------------===// +// Definition of MallocBugVisitor. +//===----------------------------------------------------------------------===// + +/// The bug visitor which allows us to print extra diagnostics along the +/// BugReport path. For example, showing the allocation site of the leaked +/// region. +class MallocBugVisitor final : public BugReporterVisitor { +protected: + enum NotificationMode { Normal, ReallocationFailed }; + + // The allocated region symbol tracked by the main analysis. + SymbolRef Sym; + + // The mode we are in, i.e. what kind of diagnostics will be emitted. + NotificationMode Mode; + + // A symbol from when the primary region should have been reallocated. + SymbolRef FailedReallocSymbol; + + // A C++ destructor stack frame in which memory was released. Used for + // miscellaneous false positive suppression. + const StackFrameContext *ReleaseDestructorLC; + + bool IsLeak; + +public: + MallocBugVisitor(SymbolRef S, bool isLeak = false) + : Sym(S), Mode(Normal), FailedReallocSymbol(nullptr), + ReleaseDestructorLC(nullptr), IsLeak(isLeak) {} + + static void *getTag() { + static int Tag = 0; + return &Tag; + } + + void Profile(llvm::FoldingSetNodeID &ID) const override { + ID.AddPointer(getTag()); + ID.AddPointer(Sym); + } + + /// Did not track -> allocated. Other state (released) -> allocated. + static inline bool isAllocated(const RefState *RSCurr, const RefState *RSPrev, + const Stmt *Stmt) { + return (Stmt && (isa<CallExpr>(Stmt) || isa<CXXNewExpr>(Stmt)) && + (RSCurr && + (RSCurr->isAllocated() || RSCurr->isAllocatedOfSizeZero())) && + (!RSPrev || + !(RSPrev->isAllocated() || RSPrev->isAllocatedOfSizeZero()))); + } + + /// Did not track -> released. Other state (allocated) -> released. + /// The statement associated with the release might be missing. + static inline bool isReleased(const RefState *RSCurr, const RefState *RSPrev, + const Stmt *Stmt) { + bool IsReleased = + (RSCurr && RSCurr->isReleased()) && (!RSPrev || !RSPrev->isReleased()); + assert(!IsReleased || + (Stmt && (isa<CallExpr>(Stmt) || isa<CXXDeleteExpr>(Stmt))) || + (!Stmt && RSCurr->getAllocationFamily() == AF_InnerBuffer)); + return IsReleased; + } + + /// Did not track -> relinquished. Other state (allocated) -> relinquished. + static inline bool isRelinquished(const RefState *RSCurr, + const RefState *RSPrev, const Stmt *Stmt) { + return (Stmt && + (isa<CallExpr>(Stmt) || isa<ObjCMessageExpr>(Stmt) || + isa<ObjCPropertyRefExpr>(Stmt)) && + (RSCurr && RSCurr->isRelinquished()) && + (!RSPrev || !RSPrev->isRelinquished())); + } + + /// If the expression is not a call, and the state change is + /// released -> allocated, it must be the realloc return value + /// check. If we have to handle more cases here, it might be cleaner just + /// to track this extra bit in the state itself. + static inline bool hasReallocFailed(const RefState *RSCurr, + const RefState *RSPrev, + const Stmt *Stmt) { + return ((!Stmt || !isa<CallExpr>(Stmt)) && + (RSCurr && + (RSCurr->isAllocated() || RSCurr->isAllocatedOfSizeZero())) && + (RSPrev && + !(RSPrev->isAllocated() || RSPrev->isAllocatedOfSizeZero()))); + } + + PathDiagnosticPieceRef VisitNode(const ExplodedNode *N, + BugReporterContext &BRC, + PathSensitiveBugReport &BR) override; + + PathDiagnosticPieceRef getEndPath(BugReporterContext &BRC, + const ExplodedNode *EndPathNode, + PathSensitiveBugReport &BR) override { + if (!IsLeak) + return nullptr; + + PathDiagnosticLocation L = BR.getLocation(); + // Do not add the statement itself as a range in case of leak. + return std::make_shared<PathDiagnosticEventPiece>(L, BR.getDescription(), + false); + } + +private: + class StackHintGeneratorForReallocationFailed + : public StackHintGeneratorForSymbol { + public: + StackHintGeneratorForReallocationFailed(SymbolRef S, StringRef M) + : StackHintGeneratorForSymbol(S, M) {} + + std::string getMessageForArg(const Expr *ArgE, unsigned ArgIndex) override { + // Printed parameters start at 1, not 0. + ++ArgIndex; + + SmallString<200> buf; + llvm::raw_svector_ostream os(buf); + + os << "Reallocation of " << ArgIndex << llvm::getOrdinalSuffix(ArgIndex) + << " parameter failed"; + + return os.str(); + } + + std::string getMessageForReturn(const CallExpr *CallExpr) override { + return "Reallocation of returned value failed"; + } + }; +}; + +} // end anonymous namespace + +// A map from the freed symbol to the symbol representing the return value of +// the free function. +REGISTER_MAP_WITH_PROGRAMSTATE(FreeReturnValue, SymbolRef, SymbolRef) + +namespace { +class StopTrackingCallback final : public SymbolVisitor { + ProgramStateRef state; +public: + StopTrackingCallback(ProgramStateRef st) : state(std::move(st)) {} + ProgramStateRef getState() const { return state; } + + bool VisitSymbol(SymbolRef sym) override { + state = state->remove<RegionState>(sym); + return true; + } +}; +} // end anonymous namespace + +//===----------------------------------------------------------------------===// +// Methods of MemFunctionInfoTy. +//===----------------------------------------------------------------------===// + +void MemFunctionInfoTy::initIdentifierInfo(ASTContext &Ctx) const { + if (II_malloc) + return; + II_alloca = &Ctx.Idents.get("alloca"); + II_malloc = &Ctx.Idents.get("malloc"); + II_free = &Ctx.Idents.get("free"); + II_realloc = &Ctx.Idents.get("realloc"); + II_reallocf = &Ctx.Idents.get("reallocf"); + II_calloc = &Ctx.Idents.get("calloc"); + II_valloc = &Ctx.Idents.get("valloc"); + II_strdup = &Ctx.Idents.get("strdup"); + II_strndup = &Ctx.Idents.get("strndup"); + II_wcsdup = &Ctx.Idents.get("wcsdup"); + II_kmalloc = &Ctx.Idents.get("kmalloc"); + II_kfree = &Ctx.Idents.get("kfree"); + II_if_nameindex = &Ctx.Idents.get("if_nameindex"); + II_if_freenameindex = &Ctx.Idents.get("if_freenameindex"); + + //MSVC uses `_`-prefixed instead, so we check for them too. + II_win_strdup = &Ctx.Idents.get("_strdup"); + II_win_wcsdup = &Ctx.Idents.get("_wcsdup"); + II_win_alloca = &Ctx.Idents.get("_alloca"); + + // Glib + II_g_malloc = &Ctx.Idents.get("g_malloc"); + II_g_malloc0 = &Ctx.Idents.get("g_malloc0"); + II_g_realloc = &Ctx.Idents.get("g_realloc"); + II_g_try_malloc = &Ctx.Idents.get("g_try_malloc"); + II_g_try_malloc0 = &Ctx.Idents.get("g_try_malloc0"); + II_g_try_realloc = &Ctx.Idents.get("g_try_realloc"); + II_g_free = &Ctx.Idents.get("g_free"); + II_g_memdup = &Ctx.Idents.get("g_memdup"); + II_g_malloc_n = &Ctx.Idents.get("g_malloc_n"); + II_g_malloc0_n = &Ctx.Idents.get("g_malloc0_n"); + II_g_realloc_n = &Ctx.Idents.get("g_realloc_n"); + II_g_try_malloc_n = &Ctx.Idents.get("g_try_malloc_n"); + II_g_try_malloc0_n = &Ctx.Idents.get("g_try_malloc0_n"); + II_g_try_realloc_n = &Ctx.Idents.get("g_try_realloc_n"); +} + +bool MemFunctionInfoTy::isMemFunction(const FunctionDecl *FD, + ASTContext &C) const { + if (isCMemFunction(FD, C, AF_Malloc, MemoryOperationKind::MOK_Any)) + return true; + + if (isCMemFunction(FD, C, AF_IfNameIndex, MemoryOperationKind::MOK_Any)) + return true; + + if (isCMemFunction(FD, C, AF_Alloca, MemoryOperationKind::MOK_Any)) + return true; + + if (isStandardNewDelete(FD, C)) + return true; + + return false; +} + +bool MemFunctionInfoTy::isCMemFunction(const FunctionDecl *FD, ASTContext &C, + AllocationFamily Family, + MemoryOperationKind MemKind) const { + if (!FD) + return false; + + bool CheckFree = (MemKind == MemoryOperationKind::MOK_Any || + MemKind == MemoryOperationKind::MOK_Free); + bool CheckAlloc = (MemKind == MemoryOperationKind::MOK_Any || + MemKind == MemoryOperationKind::MOK_Allocate); + + if (FD->getKind() == Decl::Function) { + const IdentifierInfo *FunI = FD->getIdentifier(); + initIdentifierInfo(C); + + if (Family == AF_Malloc && CheckFree) { + if (FunI == II_free || FunI == II_realloc || FunI == II_reallocf || + FunI == II_g_free || FunI == II_kfree) + return true; + } + + if (Family == AF_Malloc && CheckAlloc) { + if (FunI == II_malloc || FunI == II_realloc || FunI == II_reallocf || + FunI == II_calloc || FunI == II_valloc || FunI == II_strdup || + FunI == II_win_strdup || FunI == II_strndup || FunI == II_wcsdup || + FunI == II_win_wcsdup || FunI == II_kmalloc || + FunI == II_g_malloc || FunI == II_g_malloc0 || + FunI == II_g_realloc || FunI == II_g_try_malloc || + FunI == II_g_try_malloc0 || FunI == II_g_try_realloc || + FunI == II_g_memdup || FunI == II_g_malloc_n || + FunI == II_g_malloc0_n || FunI == II_g_realloc_n || + FunI == II_g_try_malloc_n || FunI == II_g_try_malloc0_n || + FunI == II_g_try_realloc_n) + return true; + } + + if (Family == AF_IfNameIndex && CheckFree) { + if (FunI == II_if_freenameindex) + return true; + } + + if (Family == AF_IfNameIndex && CheckAlloc) { + if (FunI == II_if_nameindex) + return true; + } + + if (Family == AF_Alloca && CheckAlloc) { + if (FunI == II_alloca || FunI == II_win_alloca) + return true; + } + } + + if (Family != AF_Malloc) + return false; + + if (ShouldIncludeOwnershipAnnotatedFunctions && FD->hasAttrs()) { + for (const auto *I : FD->specific_attrs<OwnershipAttr>()) { + OwnershipAttr::OwnershipKind OwnKind = I->getOwnKind(); + if(OwnKind == OwnershipAttr::Takes || OwnKind == OwnershipAttr::Holds) { + if (CheckFree) + return true; + } else if (OwnKind == OwnershipAttr::Returns) { + if (CheckAlloc) + return true; + } + } + } + + return false; +} +bool MemFunctionInfoTy::isStandardNewDelete(const FunctionDecl *FD, + ASTContext &C) const { + if (!FD) + return false; + + OverloadedOperatorKind Kind = FD->getOverloadedOperator(); + if (Kind != OO_New && Kind != OO_Array_New && + Kind != OO_Delete && Kind != OO_Array_Delete) + return false; + + // This is standard if and only if it's not defined in a user file. + SourceLocation L = FD->getLocation(); + // If the header for operator delete is not included, it's still defined + // in an invalid source location. Check to make sure we don't crash. + return !L.isValid() || C.getSourceManager().isInSystemHeader(L); +} + +//===----------------------------------------------------------------------===// +// Methods of MallocChecker and MallocBugVisitor. +//===----------------------------------------------------------------------===// + +llvm::Optional<ProgramStateRef> MallocChecker::performKernelMalloc( + const CallExpr *CE, CheckerContext &C, const ProgramStateRef &State) const { + // 3-argument malloc(), as commonly used in {Free,Net,Open}BSD Kernels: + // + // void *malloc(unsigned long size, struct malloc_type *mtp, int flags); + // + // One of the possible flags is M_ZERO, which means 'give me back an + // allocation which is already zeroed', like calloc. + + // 2-argument kmalloc(), as used in the Linux kernel: + // + // void *kmalloc(size_t size, gfp_t flags); + // + // Has the similar flag value __GFP_ZERO. + + // This logic is largely cloned from O_CREAT in UnixAPIChecker, maybe some + // code could be shared. + + ASTContext &Ctx = C.getASTContext(); + llvm::Triple::OSType OS = Ctx.getTargetInfo().getTriple().getOS(); + + if (!KernelZeroFlagVal.hasValue()) { + if (OS == llvm::Triple::FreeBSD) + KernelZeroFlagVal = 0x0100; + else if (OS == llvm::Triple::NetBSD) + KernelZeroFlagVal = 0x0002; + else if (OS == llvm::Triple::OpenBSD) + KernelZeroFlagVal = 0x0008; + else if (OS == llvm::Triple::Linux) + // __GFP_ZERO + KernelZeroFlagVal = 0x8000; + else + // FIXME: We need a more general way of getting the M_ZERO value. + // See also: O_CREAT in UnixAPIChecker.cpp. + + // Fall back to normal malloc behavior on platforms where we don't + // know M_ZERO. + return None; + } + + // We treat the last argument as the flags argument, and callers fall-back to + // normal malloc on a None return. This works for the FreeBSD kernel malloc + // as well as Linux kmalloc. + if (CE->getNumArgs() < 2) + return None; + + const Expr *FlagsEx = CE->getArg(CE->getNumArgs() - 1); + const SVal V = C.getSVal(FlagsEx); + if (!V.getAs<NonLoc>()) { + // The case where 'V' can be a location can only be due to a bad header, + // so in this case bail out. + return None; + } + + NonLoc Flags = V.castAs<NonLoc>(); + NonLoc ZeroFlag = C.getSValBuilder() + .makeIntVal(KernelZeroFlagVal.getValue(), FlagsEx->getType()) + .castAs<NonLoc>(); + SVal MaskedFlagsUC = C.getSValBuilder().evalBinOpNN(State, BO_And, + Flags, ZeroFlag, + FlagsEx->getType()); + if (MaskedFlagsUC.isUnknownOrUndef()) + return None; + DefinedSVal MaskedFlags = MaskedFlagsUC.castAs<DefinedSVal>(); + + // Check if maskedFlags is non-zero. + ProgramStateRef TrueState, FalseState; + std::tie(TrueState, FalseState) = State->assume(MaskedFlags); + + // If M_ZERO is set, treat this like calloc (initialized). + if (TrueState && !FalseState) { + SVal ZeroVal = C.getSValBuilder().makeZeroVal(Ctx.CharTy); + return MallocMemAux(C, CE, CE->getArg(0), ZeroVal, TrueState); + } + + return None; +} + +SVal MallocChecker::evalMulForBufferSize(CheckerContext &C, const Expr *Blocks, + const Expr *BlockBytes) { + SValBuilder &SB = C.getSValBuilder(); + SVal BlocksVal = C.getSVal(Blocks); + SVal BlockBytesVal = C.getSVal(BlockBytes); + ProgramStateRef State = C.getState(); + SVal TotalSize = SB.evalBinOp(State, BO_Mul, BlocksVal, BlockBytesVal, + SB.getContext().getSizeType()); + return TotalSize; +} + +void MallocChecker::checkPostStmt(const CallExpr *CE, CheckerContext &C) const { + if (C.wasInlined) + return; + + const FunctionDecl *FD = C.getCalleeDecl(CE); + if (!FD) + return; + + ProgramStateRef State = C.getState(); + bool IsKnownToBeAllocatedMemory = false; + + if (FD->getKind() == Decl::Function) { + MemFunctionInfo.initIdentifierInfo(C.getASTContext()); + IdentifierInfo *FunI = FD->getIdentifier(); + + if (FunI == MemFunctionInfo.II_malloc || + FunI == MemFunctionInfo.II_g_malloc || + FunI == MemFunctionInfo.II_g_try_malloc) { + switch (CE->getNumArgs()) { + default: + return; + case 1: + State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); + State = ProcessZeroAllocCheck(C, CE, 0, State); + break; + case 2: + State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); + break; + case 3: + llvm::Optional<ProgramStateRef> MaybeState = + performKernelMalloc(CE, C, State); + if (MaybeState.hasValue()) + State = MaybeState.getValue(); + else + State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); + break; + } + } else if (FunI == MemFunctionInfo.II_kmalloc) { + if (CE->getNumArgs() < 1) + return; + llvm::Optional<ProgramStateRef> MaybeState = + performKernelMalloc(CE, C, State); + if (MaybeState.hasValue()) + State = MaybeState.getValue(); + else + State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); + } else if (FunI == MemFunctionInfo.II_valloc) { + if (CE->getNumArgs() < 1) + return; + State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); + State = ProcessZeroAllocCheck(C, CE, 0, State); + } else if (FunI == MemFunctionInfo.II_realloc || + FunI == MemFunctionInfo.II_g_realloc || + FunI == MemFunctionInfo.II_g_try_realloc) { + State = ReallocMemAux(C, CE, /*ShouldFreeOnFail*/ false, State); + State = ProcessZeroAllocCheck(C, CE, 1, State); + } else if (FunI == MemFunctionInfo.II_reallocf) { + State = ReallocMemAux(C, CE, /*ShouldFreeOnFail*/ true, State); + State = ProcessZeroAllocCheck(C, CE, 1, State); + } else if (FunI == MemFunctionInfo.II_calloc) { + State = CallocMem(C, CE, State); + State = ProcessZeroAllocCheck(C, CE, 0, State); + State = ProcessZeroAllocCheck(C, CE, 1, State); + } else if (FunI == MemFunctionInfo.II_free || + FunI == MemFunctionInfo.II_g_free || + FunI == MemFunctionInfo.II_kfree) { + if (suppressDeallocationsInSuspiciousContexts(CE, C)) + return; + + State = FreeMemAux(C, CE, State, 0, false, IsKnownToBeAllocatedMemory); + } else if (FunI == MemFunctionInfo.II_strdup || + FunI == MemFunctionInfo.II_win_strdup || + FunI == MemFunctionInfo.II_wcsdup || + FunI == MemFunctionInfo.II_win_wcsdup) { + State = MallocUpdateRefState(C, CE, State); + } else if (FunI == MemFunctionInfo.II_strndup) { + State = MallocUpdateRefState(C, CE, State); + } else if (FunI == MemFunctionInfo.II_alloca || + FunI == MemFunctionInfo.II_win_alloca) { + if (CE->getNumArgs() < 1) + return; + State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State, + AF_Alloca); + State = ProcessZeroAllocCheck(C, CE, 0, State); + } else if (MemFunctionInfo.isStandardNewDelete(FD, C.getASTContext())) { + // Process direct calls to operator new/new[]/delete/delete[] functions + // as distinct from new/new[]/delete/delete[] expressions that are + // processed by the checkPostStmt callbacks for CXXNewExpr and + // CXXDeleteExpr. + switch (FD->getOverloadedOperator()) { + case OO_New: + State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State, + AF_CXXNew); + State = ProcessZeroAllocCheck(C, CE, 0, State); + break; + case OO_Array_New: + State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State, + AF_CXXNewArray); + State = ProcessZeroAllocCheck(C, CE, 0, State); + break; + case OO_Delete: + case OO_Array_Delete: + State = FreeMemAux(C, CE, State, 0, false, IsKnownToBeAllocatedMemory); + break; + default: + llvm_unreachable("not a new/delete operator"); + } + } else if (FunI == MemFunctionInfo.II_if_nameindex) { + // Should we model this differently? We can allocate a fixed number of + // elements with zeros in the last one. + State = MallocMemAux(C, CE, UnknownVal(), UnknownVal(), State, + AF_IfNameIndex); + } else if (FunI == MemFunctionInfo.II_if_freenameindex) { + State = FreeMemAux(C, CE, State, 0, false, IsKnownToBeAllocatedMemory); + } else if (FunI == MemFunctionInfo.II_g_malloc0 || + FunI == MemFunctionInfo.II_g_try_malloc0) { + if (CE->getNumArgs() < 1) + return; + SValBuilder &svalBuilder = C.getSValBuilder(); + SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy); + State = MallocMemAux(C, CE, CE->getArg(0), zeroVal, State); + State = ProcessZeroAllocCheck(C, CE, 0, State); + } else if (FunI == MemFunctionInfo.II_g_memdup) { + if (CE->getNumArgs() < 2) + return; + State = MallocMemAux(C, CE, CE->getArg(1), UndefinedVal(), State); + State = ProcessZeroAllocCheck(C, CE, 1, State); + } else if (FunI == MemFunctionInfo.II_g_malloc_n || + FunI == MemFunctionInfo.II_g_try_malloc_n || + FunI == MemFunctionInfo.II_g_malloc0_n || + FunI == MemFunctionInfo.II_g_try_malloc0_n) { + if (CE->getNumArgs() < 2) + return; + SVal Init = UndefinedVal(); + if (FunI == MemFunctionInfo.II_g_malloc0_n || + FunI == MemFunctionInfo.II_g_try_malloc0_n) { + SValBuilder &SB = C.getSValBuilder(); + Init = SB.makeZeroVal(SB.getContext().CharTy); + } + SVal TotalSize = evalMulForBufferSize(C, CE->getArg(0), CE->getArg(1)); + State = MallocMemAux(C, CE, TotalSize, Init, State); + State = ProcessZeroAllocCheck(C, CE, 0, State); + State = ProcessZeroAllocCheck(C, CE, 1, State); + } else if (FunI == MemFunctionInfo.II_g_realloc_n || + FunI == MemFunctionInfo.II_g_try_realloc_n) { + if (CE->getNumArgs() < 3) + return; + State = ReallocMemAux(C, CE, /*ShouldFreeOnFail*/ false, State, + /*SuffixWithN*/ true); + State = ProcessZeroAllocCheck(C, CE, 1, State); + State = ProcessZeroAllocCheck(C, CE, 2, State); + } + } + + if (MemFunctionInfo.ShouldIncludeOwnershipAnnotatedFunctions || + ChecksEnabled[CK_MismatchedDeallocatorChecker]) { + // Check all the attributes, if there are any. + // There can be multiple of these attributes. + if (FD->hasAttrs()) + for (const auto *I : FD->specific_attrs<OwnershipAttr>()) { + switch (I->getOwnKind()) { + case OwnershipAttr::Returns: + State = MallocMemReturnsAttr(C, CE, I, State); + break; + case OwnershipAttr::Takes: + case OwnershipAttr::Holds: + State = FreeMemAttr(C, CE, I, State); + break; + } + } + } + C.addTransition(State); +} + +// Performs a 0-sized allocations check. +ProgramStateRef MallocChecker::ProcessZeroAllocCheck( + CheckerContext &C, const Expr *E, const unsigned IndexOfSizeArg, + ProgramStateRef State, Optional<SVal> RetVal) { + if (!State) + return nullptr; + + if (!RetVal) + RetVal = C.getSVal(E); + + const Expr *Arg = nullptr; + + if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { + Arg = CE->getArg(IndexOfSizeArg); + } + else if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(E)) { + if (NE->isArray()) + Arg = *NE->getArraySize(); + else + return State; + } + else + llvm_unreachable("not a CallExpr or CXXNewExpr"); + + assert(Arg); + + Optional<DefinedSVal> DefArgVal = C.getSVal(Arg).getAs<DefinedSVal>(); + + if (!DefArgVal) + return State; + + // Check if the allocation size is 0. + ProgramStateRef TrueState, FalseState; + SValBuilder &SvalBuilder = C.getSValBuilder(); + DefinedSVal Zero = + SvalBuilder.makeZeroVal(Arg->getType()).castAs<DefinedSVal>(); + + std::tie(TrueState, FalseState) = + State->assume(SvalBuilder.evalEQ(State, *DefArgVal, Zero)); + + if (TrueState && !FalseState) { + SymbolRef Sym = RetVal->getAsLocSymbol(); + if (!Sym) + return State; + + const RefState *RS = State->get<RegionState>(Sym); + if (RS) { + if (RS->isAllocated()) + return TrueState->set<RegionState>(Sym, + RefState::getAllocatedOfSizeZero(RS)); + else + return State; + } else { + // Case of zero-size realloc. Historically 'realloc(ptr, 0)' is treated as + // 'free(ptr)' and the returned value from 'realloc(ptr, 0)' is not + // tracked. Add zero-reallocated Sym to the state to catch references + // to zero-allocated memory. + return TrueState->add<ReallocSizeZeroSymbols>(Sym); + } + } + + // Assume the value is non-zero going forward. + assert(FalseState); + return FalseState; +} + +static QualType getDeepPointeeType(QualType T) { + QualType Result = T, PointeeType = T->getPointeeType(); + while (!PointeeType.isNull()) { + Result = PointeeType; + PointeeType = PointeeType->getPointeeType(); + } + return Result; +} + +/// \returns true if the constructor invoked by \p NE has an argument of a +/// pointer/reference to a record type. +static bool hasNonTrivialConstructorCall(const CXXNewExpr *NE) { + + const CXXConstructExpr *ConstructE = NE->getConstructExpr(); + if (!ConstructE) + return false; + + if (!NE->getAllocatedType()->getAsCXXRecordDecl()) + return false; + + const CXXConstructorDecl *CtorD = ConstructE->getConstructor(); + + // Iterate over the constructor parameters. + for (const auto *CtorParam : CtorD->parameters()) { + + QualType CtorParamPointeeT = CtorParam->getType()->getPointeeType(); + if (CtorParamPointeeT.isNull()) + continue; + + CtorParamPointeeT = getDeepPointeeType(CtorParamPointeeT); + + if (CtorParamPointeeT->getAsCXXRecordDecl()) + return true; + } + + return false; +} + +void MallocChecker::processNewAllocation(const CXXNewExpr *NE, + CheckerContext &C, + SVal Target) const { + if (!MemFunctionInfo.isStandardNewDelete(NE->getOperatorNew(), + C.getASTContext())) + return; + + const ParentMap &PM = C.getLocationContext()->getParentMap(); + + // Non-trivial constructors have a chance to escape 'this', but marking all + // invocations of trivial constructors as escaped would cause too great of + // reduction of true positives, so let's just do that for constructors that + // have an argument of a pointer-to-record type. + if (!PM.isConsumedExpr(NE) && hasNonTrivialConstructorCall(NE)) + return; + + ProgramStateRef State = C.getState(); + // The return value from operator new is bound to a specified initialization + // value (if any) and we don't want to loose this value. So we call + // MallocUpdateRefState() instead of MallocMemAux() which breaks the + // existing binding. + State = MallocUpdateRefState(C, NE, State, NE->isArray() ? AF_CXXNewArray + : AF_CXXNew, Target); + State = addExtentSize(C, NE, State, Target); + State = ProcessZeroAllocCheck(C, NE, 0, State, Target); + C.addTransition(State); +} + +void MallocChecker::checkPostStmt(const CXXNewExpr *NE, + CheckerContext &C) const { + if (!C.getAnalysisManager().getAnalyzerOptions().MayInlineCXXAllocator) + processNewAllocation(NE, C, C.getSVal(NE)); +} + +void MallocChecker::checkNewAllocator(const CXXNewExpr *NE, SVal Target, + CheckerContext &C) const { + if (!C.wasInlined) + processNewAllocation(NE, C, Target); +} + +// Sets the extent value of the MemRegion allocated by +// new expression NE to its size in Bytes. +// +ProgramStateRef MallocChecker::addExtentSize(CheckerContext &C, + const CXXNewExpr *NE, + ProgramStateRef State, + SVal Target) { + if (!State) + return nullptr; + SValBuilder &svalBuilder = C.getSValBuilder(); + SVal ElementCount; + const SubRegion *Region; + if (NE->isArray()) { + const Expr *SizeExpr = *NE->getArraySize(); + ElementCount = C.getSVal(SizeExpr); + // Store the extent size for the (symbolic)region + // containing the elements. + Region = Target.getAsRegion() + ->castAs<SubRegion>() + ->StripCasts() + ->castAs<SubRegion>(); + } else { + ElementCount = svalBuilder.makeIntVal(1, true); + Region = Target.getAsRegion()->castAs<SubRegion>(); + } + + // Set the region's extent equal to the Size in Bytes. + QualType ElementType = NE->getAllocatedType(); + ASTContext &AstContext = C.getASTContext(); + CharUnits TypeSize = AstContext.getTypeSizeInChars(ElementType); + + if (ElementCount.getAs<NonLoc>()) { + DefinedOrUnknownSVal Extent = Region->getExtent(svalBuilder); + // size in Bytes = ElementCount*TypeSize + SVal SizeInBytes = svalBuilder.evalBinOpNN( + State, BO_Mul, ElementCount.castAs<NonLoc>(), + svalBuilder.makeArrayIndex(TypeSize.getQuantity()), + svalBuilder.getArrayIndexType()); + DefinedOrUnknownSVal extentMatchesSize = svalBuilder.evalEQ( + State, Extent, SizeInBytes.castAs<DefinedOrUnknownSVal>()); + State = State->assume(extentMatchesSize, true); + } + return State; +} + +void MallocChecker::checkPreStmt(const CXXDeleteExpr *DE, + CheckerContext &C) const { + + if (!ChecksEnabled[CK_NewDeleteChecker]) + if (SymbolRef Sym = C.getSVal(DE->getArgument()).getAsSymbol()) + checkUseAfterFree(Sym, C, DE->getArgument()); + + if (!MemFunctionInfo.isStandardNewDelete(DE->getOperatorDelete(), + C.getASTContext())) + return; + + ProgramStateRef State = C.getState(); + bool IsKnownToBeAllocated; + State = FreeMemAux(C, DE->getArgument(), DE, State, + /*Hold*/ false, IsKnownToBeAllocated); + + C.addTransition(State); +} + +static bool isKnownDeallocObjCMethodName(const ObjCMethodCall &Call) { + // If the first selector piece is one of the names below, assume that the + // object takes ownership of the memory, promising to eventually deallocate it + // with free(). + // Ex: [NSData dataWithBytesNoCopy:bytes length:10]; + // (...unless a 'freeWhenDone' parameter is false, but that's checked later.) + StringRef FirstSlot = Call.getSelector().getNameForSlot(0); + return FirstSlot == "dataWithBytesNoCopy" || + FirstSlot == "initWithBytesNoCopy" || + FirstSlot == "initWithCharactersNoCopy"; +} + +static Optional<bool> getFreeWhenDoneArg(const ObjCMethodCall &Call) { + Selector S = Call.getSelector(); + + // FIXME: We should not rely on fully-constrained symbols being folded. + for (unsigned i = 1; i < S.getNumArgs(); ++i) + if (S.getNameForSlot(i).equals("freeWhenDone")) + return !Call.getArgSVal(i).isZeroConstant(); + + return None; +} + +void MallocChecker::checkPostObjCMessage(const ObjCMethodCall &Call, + CheckerContext &C) const { + if (C.wasInlined) + return; + + if (!isKnownDeallocObjCMethodName(Call)) + return; + + if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(Call)) + if (!*FreeWhenDone) + return; + + if (Call.hasNonZeroCallbackArg()) + return; + + bool IsKnownToBeAllocatedMemory; + ProgramStateRef State = + FreeMemAux(C, Call.getArgExpr(0), Call.getOriginExpr(), C.getState(), + /*Hold=*/true, IsKnownToBeAllocatedMemory, + /*RetNullOnFailure=*/true); + + C.addTransition(State); +} + +ProgramStateRef +MallocChecker::MallocMemReturnsAttr(CheckerContext &C, const CallExpr *CE, + const OwnershipAttr *Att, + ProgramStateRef State) const { + if (!State) + return nullptr; + + if (Att->getModule() != MemFunctionInfo.II_malloc) + return nullptr; + + OwnershipAttr::args_iterator I = Att->args_begin(), E = Att->args_end(); + if (I != E) { + return MallocMemAux(C, CE, CE->getArg(I->getASTIndex()), UndefinedVal(), + State); + } + return MallocMemAux(C, CE, UnknownVal(), UndefinedVal(), State); +} + +ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C, + const CallExpr *CE, + const Expr *SizeEx, SVal Init, + ProgramStateRef State, + AllocationFamily Family) { + if (!State) + return nullptr; + + return MallocMemAux(C, CE, C.getSVal(SizeEx), Init, State, Family); +} + +ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C, + const CallExpr *CE, + SVal Size, SVal Init, + ProgramStateRef State, + AllocationFamily Family) { + if (!State) + return nullptr; + + // We expect the malloc functions to return a pointer. + if (!Loc::isLocType(CE->getType())) + return nullptr; + + // Bind the return value to the symbolic value from the heap region. + // TODO: We could rewrite post visit to eval call; 'malloc' does not have + // side effects other than what we model here. + unsigned Count = C.blockCount(); + SValBuilder &svalBuilder = C.getSValBuilder(); + const LocationContext *LCtx = C.getPredecessor()->getLocationContext(); + DefinedSVal RetVal = svalBuilder.getConjuredHeapSymbolVal(CE, LCtx, Count) + .castAs<DefinedSVal>(); + State = State->BindExpr(CE, C.getLocationContext(), RetVal); + + // Fill the region with the initialization value. + State = State->bindDefaultInitial(RetVal, Init, LCtx); + + // Set the region's extent equal to the Size parameter. + const SymbolicRegion *R = + dyn_cast_or_null<SymbolicRegion>(RetVal.getAsRegion()); + if (!R) + return nullptr; + if (Optional<DefinedOrUnknownSVal> DefinedSize = + Size.getAs<DefinedOrUnknownSVal>()) { + SValBuilder &svalBuilder = C.getSValBuilder(); + DefinedOrUnknownSVal Extent = R->getExtent(svalBuilder); + DefinedOrUnknownSVal extentMatchesSize = + svalBuilder.evalEQ(State, Extent, *DefinedSize); + + State = State->assume(extentMatchesSize, true); + assert(State); + } + + return MallocUpdateRefState(C, CE, State, Family); +} + +static ProgramStateRef MallocUpdateRefState(CheckerContext &C, const Expr *E, + ProgramStateRef State, + AllocationFamily Family, + Optional<SVal> RetVal) { + if (!State) + return nullptr; + + // Get the return value. + if (!RetVal) + RetVal = C.getSVal(E); + + // We expect the malloc functions to return a pointer. + if (!RetVal->getAs<Loc>()) + return nullptr; + + SymbolRef Sym = RetVal->getAsLocSymbol(); + // This is a return value of a function that was not inlined, such as malloc() + // or new(). We've checked that in the caller. Therefore, it must be a symbol. + assert(Sym); + + // Set the symbol's state to Allocated. + return State->set<RegionState>(Sym, RefState::getAllocated(Family, E)); +} + +ProgramStateRef MallocChecker::FreeMemAttr(CheckerContext &C, + const CallExpr *CE, + const OwnershipAttr *Att, + ProgramStateRef State) const { + if (!State) + return nullptr; + + if (Att->getModule() != MemFunctionInfo.II_malloc) + return nullptr; + + bool IsKnownToBeAllocated = false; + + for (const auto &Arg : Att->args()) { + ProgramStateRef StateI = FreeMemAux( + C, CE, State, Arg.getASTIndex(), + Att->getOwnKind() == OwnershipAttr::Holds, IsKnownToBeAllocated); + if (StateI) + State = StateI; + } + return State; +} + +ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C, const CallExpr *CE, + ProgramStateRef State, unsigned Num, + bool Hold, bool &IsKnownToBeAllocated, + bool ReturnsNullOnFailure) const { + if (!State) + return nullptr; + + if (CE->getNumArgs() < (Num + 1)) + return nullptr; + + return FreeMemAux(C, CE->getArg(Num), CE, State, Hold, IsKnownToBeAllocated, + ReturnsNullOnFailure); +} + +/// Checks if the previous call to free on the given symbol failed - if free +/// failed, returns true. Also, returns the corresponding return value symbol. +static bool didPreviousFreeFail(ProgramStateRef State, + SymbolRef Sym, SymbolRef &RetStatusSymbol) { + const SymbolRef *Ret = State->get<FreeReturnValue>(Sym); + if (Ret) { + assert(*Ret && "We should not store the null return symbol"); + ConstraintManager &CMgr = State->getConstraintManager(); + ConditionTruthVal FreeFailed = CMgr.isNull(State, *Ret); + RetStatusSymbol = *Ret; + return FreeFailed.isConstrainedTrue(); + } + return false; +} + +static AllocationFamily +getAllocationFamily(const MemFunctionInfoTy &MemFunctionInfo, CheckerContext &C, + const Stmt *S) { + + if (!S) + return AF_None; + + if (const CallExpr *CE = dyn_cast<CallExpr>(S)) { + const FunctionDecl *FD = C.getCalleeDecl(CE); + + if (!FD) + FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl()); + + ASTContext &Ctx = C.getASTContext(); + + if (MemFunctionInfo.isCMemFunction(FD, Ctx, AF_Malloc, + MemoryOperationKind::MOK_Any)) + return AF_Malloc; + + if (MemFunctionInfo.isStandardNewDelete(FD, Ctx)) { + OverloadedOperatorKind Kind = FD->getOverloadedOperator(); + if (Kind == OO_New || Kind == OO_Delete) + return AF_CXXNew; + else if (Kind == OO_Array_New || Kind == OO_Array_Delete) + return AF_CXXNewArray; + } + + if (MemFunctionInfo.isCMemFunction(FD, Ctx, AF_IfNameIndex, + MemoryOperationKind::MOK_Any)) + return AF_IfNameIndex; + + if (MemFunctionInfo.isCMemFunction(FD, Ctx, AF_Alloca, + MemoryOperationKind::MOK_Any)) + return AF_Alloca; + + return AF_None; + } + + if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(S)) + return NE->isArray() ? AF_CXXNewArray : AF_CXXNew; + + if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(S)) + return DE->isArrayForm() ? AF_CXXNewArray : AF_CXXNew; + + if (isa<ObjCMessageExpr>(S)) + return AF_Malloc; + + return AF_None; +} + +static bool printAllocDeallocName(raw_ostream &os, CheckerContext &C, + const Expr *E) { + if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { + // FIXME: This doesn't handle indirect calls. + const FunctionDecl *FD = CE->getDirectCallee(); + if (!FD) + return false; + + os << *FD; + if (!FD->isOverloadedOperator()) + os << "()"; + return true; + } + + if (const ObjCMessageExpr *Msg = dyn_cast<ObjCMessageExpr>(E)) { + if (Msg->isInstanceMessage()) + os << "-"; + else + os << "+"; + Msg->getSelector().print(os); + return true; + } + + if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(E)) { + os << "'" + << getOperatorSpelling(NE->getOperatorNew()->getOverloadedOperator()) + << "'"; + return true; + } + + if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(E)) { + os << "'" + << getOperatorSpelling(DE->getOperatorDelete()->getOverloadedOperator()) + << "'"; + return true; + } + + return false; +} + +static void printExpectedAllocName(raw_ostream &os, + const MemFunctionInfoTy &MemFunctionInfo, + CheckerContext &C, const Expr *E) { + AllocationFamily Family = getAllocationFamily(MemFunctionInfo, C, E); + + switch(Family) { + case AF_Malloc: os << "malloc()"; return; + case AF_CXXNew: os << "'new'"; return; + case AF_CXXNewArray: os << "'new[]'"; return; + case AF_IfNameIndex: os << "'if_nameindex()'"; return; + case AF_InnerBuffer: os << "container-specific allocator"; return; + case AF_Alloca: + case AF_None: llvm_unreachable("not a deallocation expression"); + } +} + +static void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family) { + switch(Family) { + case AF_Malloc: os << "free()"; return; + case AF_CXXNew: os << "'delete'"; return; + case AF_CXXNewArray: os << "'delete[]'"; return; + case AF_IfNameIndex: os << "'if_freenameindex()'"; return; + case AF_InnerBuffer: os << "container-specific deallocator"; return; + case AF_Alloca: + case AF_None: llvm_unreachable("suspicious argument"); + } +} + +ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C, + const Expr *ArgExpr, + const Expr *ParentExpr, + ProgramStateRef State, bool Hold, + bool &IsKnownToBeAllocated, + bool ReturnsNullOnFailure) const { + + if (!State) + return nullptr; + + SVal ArgVal = C.getSVal(ArgExpr); + if (!ArgVal.getAs<DefinedOrUnknownSVal>()) + return nullptr; + DefinedOrUnknownSVal location = ArgVal.castAs<DefinedOrUnknownSVal>(); + + // Check for null dereferences. + if (!location.getAs<Loc>()) + return nullptr; + + // The explicit NULL case, no operation is performed. + ProgramStateRef notNullState, nullState; + std::tie(notNullState, nullState) = State->assume(location); + if (nullState && !notNullState) + return nullptr; + + // Unknown values could easily be okay + // Undefined values are handled elsewhere + if (ArgVal.isUnknownOrUndef()) + return nullptr; + + const MemRegion *R = ArgVal.getAsRegion(); + + // Nonlocs can't be freed, of course. + // Non-region locations (labels and fixed addresses) also shouldn't be freed. + if (!R) { + ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr); + return nullptr; + } + + R = R->StripCasts(); + + // Blocks might show up as heap data, but should not be free()d + if (isa<BlockDataRegion>(R)) { + ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr); + return nullptr; + } + + const MemSpaceRegion *MS = R->getMemorySpace(); + + // Parameters, locals, statics, globals, and memory returned by + // __builtin_alloca() shouldn't be freed. + if (!(isa<UnknownSpaceRegion>(MS) || isa<HeapSpaceRegion>(MS))) { + // FIXME: at the time this code was written, malloc() regions were + // represented by conjured symbols, which are all in UnknownSpaceRegion. + // This means that there isn't actually anything from HeapSpaceRegion + // that should be freed, even though we allow it here. + // Of course, free() can work on memory allocated outside the current + // function, so UnknownSpaceRegion is always a possibility. + // False negatives are better than false positives. + + if (isa<AllocaRegion>(R)) + ReportFreeAlloca(C, ArgVal, ArgExpr->getSourceRange()); + else + ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr); + + return nullptr; + } + + const SymbolicRegion *SrBase = dyn_cast<SymbolicRegion>(R->getBaseRegion()); + // Various cases could lead to non-symbol values here. + // For now, ignore them. + if (!SrBase) + return nullptr; + + SymbolRef SymBase = SrBase->getSymbol(); + const RefState *RsBase = State->get<RegionState>(SymBase); + SymbolRef PreviousRetStatusSymbol = nullptr; + + IsKnownToBeAllocated = + RsBase && (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero()); + + if (RsBase) { + + // Memory returned by alloca() shouldn't be freed. + if (RsBase->getAllocationFamily() == AF_Alloca) { + ReportFreeAlloca(C, ArgVal, ArgExpr->getSourceRange()); + return nullptr; + } + + // Check for double free first. + if ((RsBase->isReleased() || RsBase->isRelinquished()) && + !didPreviousFreeFail(State, SymBase, PreviousRetStatusSymbol)) { + ReportDoubleFree(C, ParentExpr->getSourceRange(), RsBase->isReleased(), + SymBase, PreviousRetStatusSymbol); + return nullptr; + + // If the pointer is allocated or escaped, but we are now trying to free it, + // check that the call to free is proper. + } else if (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero() || + RsBase->isEscaped()) { + + // Check if an expected deallocation function matches the real one. + bool DeallocMatchesAlloc = + RsBase->getAllocationFamily() == + getAllocationFamily(MemFunctionInfo, C, ParentExpr); + if (!DeallocMatchesAlloc) { + ReportMismatchedDealloc(C, ArgExpr->getSourceRange(), + ParentExpr, RsBase, SymBase, Hold); + return nullptr; + } + + // Check if the memory location being freed is the actual location + // allocated, or an offset. + RegionOffset Offset = R->getAsOffset(); + if (Offset.isValid() && + !Offset.hasSymbolicOffset() && + Offset.getOffset() != 0) { + const Expr *AllocExpr = cast<Expr>(RsBase->getStmt()); + ReportOffsetFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, + AllocExpr); + return nullptr; + } + } + } + + if (SymBase->getType()->isFunctionPointerType()) { + ReportFunctionPointerFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr); + return nullptr; + } + + // Clean out the info on previous call to free return info. + State = State->remove<FreeReturnValue>(SymBase); + + // Keep track of the return value. If it is NULL, we will know that free + // failed. + if (ReturnsNullOnFailure) { + SVal RetVal = C.getSVal(ParentExpr); + SymbolRef RetStatusSymbol = RetVal.getAsSymbol(); + if (RetStatusSymbol) { + C.getSymbolManager().addSymbolDependency(SymBase, RetStatusSymbol); + State = State->set<FreeReturnValue>(SymBase, RetStatusSymbol); + } + } + + AllocationFamily Family = + RsBase ? RsBase->getAllocationFamily() + : getAllocationFamily(MemFunctionInfo, C, ParentExpr); + // Normal free. + if (Hold) + return State->set<RegionState>(SymBase, + RefState::getRelinquished(Family, + ParentExpr)); + + return State->set<RegionState>(SymBase, + RefState::getReleased(Family, ParentExpr)); +} + +Optional<MallocChecker::CheckKind> +MallocChecker::getCheckIfTracked(AllocationFamily Family, + bool IsALeakCheck) const { + switch (Family) { + case AF_Malloc: + case AF_Alloca: + case AF_IfNameIndex: { + if (ChecksEnabled[CK_MallocChecker]) + return CK_MallocChecker; + return None; + } + case AF_CXXNew: + case AF_CXXNewArray: { + if (IsALeakCheck) { + if (ChecksEnabled[CK_NewDeleteLeaksChecker]) + return CK_NewDeleteLeaksChecker; + } + else { + if (ChecksEnabled[CK_NewDeleteChecker]) + return CK_NewDeleteChecker; + } + return None; + } + case AF_InnerBuffer: { + if (ChecksEnabled[CK_InnerPointerChecker]) + return CK_InnerPointerChecker; + return None; + } + case AF_None: { + llvm_unreachable("no family"); + } + } + llvm_unreachable("unhandled family"); +} + +Optional<MallocChecker::CheckKind> +MallocChecker::getCheckIfTracked(CheckerContext &C, + const Stmt *AllocDeallocStmt, + bool IsALeakCheck) const { + return getCheckIfTracked( + getAllocationFamily(MemFunctionInfo, C, AllocDeallocStmt), IsALeakCheck); +} + +Optional<MallocChecker::CheckKind> +MallocChecker::getCheckIfTracked(CheckerContext &C, SymbolRef Sym, + bool IsALeakCheck) const { + if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) + return CK_MallocChecker; + + const RefState *RS = C.getState()->get<RegionState>(Sym); + assert(RS); + return getCheckIfTracked(RS->getAllocationFamily(), IsALeakCheck); +} + +bool MallocChecker::SummarizeValue(raw_ostream &os, SVal V) { + if (Optional<nonloc::ConcreteInt> IntVal = V.getAs<nonloc::ConcreteInt>()) + os << "an integer (" << IntVal->getValue() << ")"; + else if (Optional<loc::ConcreteInt> ConstAddr = V.getAs<loc::ConcreteInt>()) + os << "a constant address (" << ConstAddr->getValue() << ")"; + else if (Optional<loc::GotoLabel> Label = V.getAs<loc::GotoLabel>()) + os << "the address of the label '" << Label->getLabel()->getName() << "'"; + else + return false; + + return true; +} + +bool MallocChecker::SummarizeRegion(raw_ostream &os, + const MemRegion *MR) { + switch (MR->getKind()) { + case MemRegion::FunctionCodeRegionKind: { + const NamedDecl *FD = cast<FunctionCodeRegion>(MR)->getDecl(); + if (FD) + os << "the address of the function '" << *FD << '\''; + else + os << "the address of a function"; + return true; + } + case MemRegion::BlockCodeRegionKind: + os << "block text"; + return true; + case MemRegion::BlockDataRegionKind: + // FIXME: where the block came from? + os << "a block"; + return true; + default: { + const MemSpaceRegion *MS = MR->getMemorySpace(); + + if (isa<StackLocalsSpaceRegion>(MS)) { + const VarRegion *VR = dyn_cast<VarRegion>(MR); + const VarDecl *VD; + if (VR) + VD = VR->getDecl(); + else + VD = nullptr; + + if (VD) + os << "the address of the local variable '" << VD->getName() << "'"; + else + os << "the address of a local stack variable"; + return true; + } + + if (isa<StackArgumentsSpaceRegion>(MS)) { + const VarRegion *VR = dyn_cast<VarRegion>(MR); + const VarDecl *VD; + if (VR) + VD = VR->getDecl(); + else + VD = nullptr; + + if (VD) + os << "the address of the parameter '" << VD->getName() << "'"; + else + os << "the address of a parameter"; + return true; + } + + if (isa<GlobalsSpaceRegion>(MS)) { + const VarRegion *VR = dyn_cast<VarRegion>(MR); + const VarDecl *VD; + if (VR) + VD = VR->getDecl(); + else + VD = nullptr; + + if (VD) { + if (VD->isStaticLocal()) + os << "the address of the static variable '" << VD->getName() << "'"; + else + os << "the address of the global variable '" << VD->getName() << "'"; + } else + os << "the address of a global variable"; + return true; + } + + return false; + } + } +} + +void MallocChecker::ReportBadFree(CheckerContext &C, SVal ArgVal, + SourceRange Range, + const Expr *DeallocExpr) const { + + if (!ChecksEnabled[CK_MallocChecker] && + !ChecksEnabled[CK_NewDeleteChecker]) + return; + + Optional<MallocChecker::CheckKind> CheckKind = + getCheckIfTracked(C, DeallocExpr); + if (!CheckKind.hasValue()) + return; + + if (ExplodedNode *N = C.generateErrorNode()) { + if (!BT_BadFree[*CheckKind]) + BT_BadFree[*CheckKind].reset(new BugType( + CheckNames[*CheckKind], "Bad free", categories::MemoryError)); + + SmallString<100> buf; + llvm::raw_svector_ostream os(buf); + + const MemRegion *MR = ArgVal.getAsRegion(); + while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR)) + MR = ER->getSuperRegion(); + + os << "Argument to "; + if (!printAllocDeallocName(os, C, DeallocExpr)) + os << "deallocator"; + + os << " is "; + bool Summarized = MR ? SummarizeRegion(os, MR) + : SummarizeValue(os, ArgVal); + if (Summarized) + os << ", which is not memory allocated by "; + else + os << "not memory allocated by "; + + printExpectedAllocName(os, MemFunctionInfo, C, DeallocExpr); + + auto R = std::make_unique<PathSensitiveBugReport>(*BT_BadFree[*CheckKind], + os.str(), N); + R->markInteresting(MR); + R->addRange(Range); + C.emitReport(std::move(R)); + } +} + +void MallocChecker::ReportFreeAlloca(CheckerContext &C, SVal ArgVal, + SourceRange Range) const { + + Optional<MallocChecker::CheckKind> CheckKind; + + if (ChecksEnabled[CK_MallocChecker]) + CheckKind = CK_MallocChecker; + else if (ChecksEnabled[CK_MismatchedDeallocatorChecker]) + CheckKind = CK_MismatchedDeallocatorChecker; + else + return; + + if (ExplodedNode *N = C.generateErrorNode()) { + if (!BT_FreeAlloca[*CheckKind]) + BT_FreeAlloca[*CheckKind].reset(new BugType( + CheckNames[*CheckKind], "Free alloca()", categories::MemoryError)); + + auto R = std::make_unique<PathSensitiveBugReport>( + *BT_FreeAlloca[*CheckKind], + "Memory allocated by alloca() should not be deallocated", N); + R->markInteresting(ArgVal.getAsRegion()); + R->addRange(Range); + C.emitReport(std::move(R)); + } +} + +void MallocChecker::ReportMismatchedDealloc(CheckerContext &C, + SourceRange Range, + const Expr *DeallocExpr, + const RefState *RS, + SymbolRef Sym, + bool OwnershipTransferred) const { + + if (!ChecksEnabled[CK_MismatchedDeallocatorChecker]) + return; + + if (ExplodedNode *N = C.generateErrorNode()) { + if (!BT_MismatchedDealloc) + BT_MismatchedDealloc.reset( + new BugType(CheckNames[CK_MismatchedDeallocatorChecker], + "Bad deallocator", categories::MemoryError)); + + SmallString<100> buf; + llvm::raw_svector_ostream os(buf); + + const Expr *AllocExpr = cast<Expr>(RS->getStmt()); + SmallString<20> AllocBuf; + llvm::raw_svector_ostream AllocOs(AllocBuf); + SmallString<20> DeallocBuf; + llvm::raw_svector_ostream DeallocOs(DeallocBuf); + + if (OwnershipTransferred) { + if (printAllocDeallocName(DeallocOs, C, DeallocExpr)) + os << DeallocOs.str() << " cannot"; + else + os << "Cannot"; + + os << " take ownership of memory"; + + if (printAllocDeallocName(AllocOs, C, AllocExpr)) + os << " allocated by " << AllocOs.str(); + } else { + os << "Memory"; + if (printAllocDeallocName(AllocOs, C, AllocExpr)) + os << " allocated by " << AllocOs.str(); + + os << " should be deallocated by "; + printExpectedDeallocName(os, RS->getAllocationFamily()); + + if (printAllocDeallocName(DeallocOs, C, DeallocExpr)) + os << ", not " << DeallocOs.str(); + } + + auto R = std::make_unique<PathSensitiveBugReport>(*BT_MismatchedDealloc, + os.str(), N); + R->markInteresting(Sym); + R->addRange(Range); + R->addVisitor(std::make_unique<MallocBugVisitor>(Sym)); + C.emitReport(std::move(R)); + } +} + +void MallocChecker::ReportOffsetFree(CheckerContext &C, SVal ArgVal, + SourceRange Range, const Expr *DeallocExpr, + const Expr *AllocExpr) const { + + + if (!ChecksEnabled[CK_MallocChecker] && + !ChecksEnabled[CK_NewDeleteChecker]) + return; + + Optional<MallocChecker::CheckKind> CheckKind = + getCheckIfTracked(C, AllocExpr); + if (!CheckKind.hasValue()) + return; + + ExplodedNode *N = C.generateErrorNode(); + if (!N) + return; + + if (!BT_OffsetFree[*CheckKind]) + BT_OffsetFree[*CheckKind].reset(new BugType( + CheckNames[*CheckKind], "Offset free", categories::MemoryError)); + + SmallString<100> buf; + llvm::raw_svector_ostream os(buf); + SmallString<20> AllocNameBuf; + llvm::raw_svector_ostream AllocNameOs(AllocNameBuf); + + const MemRegion *MR = ArgVal.getAsRegion(); + assert(MR && "Only MemRegion based symbols can have offset free errors"); + + RegionOffset Offset = MR->getAsOffset(); + assert((Offset.isValid() && + !Offset.hasSymbolicOffset() && + Offset.getOffset() != 0) && + "Only symbols with a valid offset can have offset free errors"); + + int offsetBytes = Offset.getOffset() / C.getASTContext().getCharWidth(); + + os << "Argument to "; + if (!printAllocDeallocName(os, C, DeallocExpr)) + os << "deallocator"; + os << " is offset by " + << offsetBytes + << " " + << ((abs(offsetBytes) > 1) ? "bytes" : "byte") + << " from the start of "; + if (AllocExpr && printAllocDeallocName(AllocNameOs, C, AllocExpr)) + os << "memory allocated by " << AllocNameOs.str(); + else + os << "allocated memory"; + + auto R = std::make_unique<PathSensitiveBugReport>(*BT_OffsetFree[*CheckKind], + os.str(), N); + R->markInteresting(MR->getBaseRegion()); + R->addRange(Range); + C.emitReport(std::move(R)); +} + +void MallocChecker::ReportUseAfterFree(CheckerContext &C, SourceRange Range, + SymbolRef Sym) const { + + if (!ChecksEnabled[CK_MallocChecker] && + !ChecksEnabled[CK_NewDeleteChecker] && + !ChecksEnabled[CK_InnerPointerChecker]) + return; + + Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); + if (!CheckKind.hasValue()) + return; + + if (ExplodedNode *N = C.generateErrorNode()) { + if (!BT_UseFree[*CheckKind]) + BT_UseFree[*CheckKind].reset(new BugType( + CheckNames[*CheckKind], "Use-after-free", categories::MemoryError)); + + AllocationFamily AF = + C.getState()->get<RegionState>(Sym)->getAllocationFamily(); + + auto R = std::make_unique<PathSensitiveBugReport>( + *BT_UseFree[*CheckKind], + AF == AF_InnerBuffer + ? "Inner pointer of container used after re/deallocation" + : "Use of memory after it is freed", + N); + + R->markInteresting(Sym); + R->addRange(Range); + R->addVisitor(std::make_unique<MallocBugVisitor>(Sym)); + + if (AF == AF_InnerBuffer) + R->addVisitor(allocation_state::getInnerPointerBRVisitor(Sym)); + + C.emitReport(std::move(R)); + } +} + +void MallocChecker::ReportDoubleFree(CheckerContext &C, SourceRange Range, + bool Released, SymbolRef Sym, + SymbolRef PrevSym) const { + + if (!ChecksEnabled[CK_MallocChecker] && + !ChecksEnabled[CK_NewDeleteChecker]) + return; + + Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); + if (!CheckKind.hasValue()) + return; + + if (ExplodedNode *N = C.generateErrorNode()) { + if (!BT_DoubleFree[*CheckKind]) + BT_DoubleFree[*CheckKind].reset(new BugType( + CheckNames[*CheckKind], "Double free", categories::MemoryError)); + + auto R = std::make_unique<PathSensitiveBugReport>( + *BT_DoubleFree[*CheckKind], + (Released ? "Attempt to free released memory" + : "Attempt to free non-owned memory"), + N); + R->addRange(Range); + R->markInteresting(Sym); + if (PrevSym) + R->markInteresting(PrevSym); + R->addVisitor(std::make_unique<MallocBugVisitor>(Sym)); + C.emitReport(std::move(R)); + } +} + +void MallocChecker::ReportDoubleDelete(CheckerContext &C, SymbolRef Sym) const { + + if (!ChecksEnabled[CK_NewDeleteChecker]) + return; + + Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); + if (!CheckKind.hasValue()) + return; + + if (ExplodedNode *N = C.generateErrorNode()) { + if (!BT_DoubleDelete) + BT_DoubleDelete.reset(new BugType(CheckNames[CK_NewDeleteChecker], + "Double delete", + categories::MemoryError)); + + auto R = std::make_unique<PathSensitiveBugReport>( + *BT_DoubleDelete, "Attempt to delete released memory", N); + + R->markInteresting(Sym); + R->addVisitor(std::make_unique<MallocBugVisitor>(Sym)); + C.emitReport(std::move(R)); + } +} + +void MallocChecker::ReportUseZeroAllocated(CheckerContext &C, + SourceRange Range, + SymbolRef Sym) const { + + if (!ChecksEnabled[CK_MallocChecker] && + !ChecksEnabled[CK_NewDeleteChecker]) + return; + + Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); + + if (!CheckKind.hasValue()) + return; + + if (ExplodedNode *N = C.generateErrorNode()) { + if (!BT_UseZerroAllocated[*CheckKind]) + BT_UseZerroAllocated[*CheckKind].reset( + new BugType(CheckNames[*CheckKind], "Use of zero allocated", + categories::MemoryError)); + + auto R = std::make_unique<PathSensitiveBugReport>( + *BT_UseZerroAllocated[*CheckKind], "Use of zero-allocated memory", N); + + R->addRange(Range); + if (Sym) { + R->markInteresting(Sym); + R->addVisitor(std::make_unique<MallocBugVisitor>(Sym)); + } + C.emitReport(std::move(R)); + } +} + +void MallocChecker::ReportFunctionPointerFree(CheckerContext &C, SVal ArgVal, + SourceRange Range, + const Expr *FreeExpr) const { + if (!ChecksEnabled[CK_MallocChecker]) + return; + + Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, FreeExpr); + if (!CheckKind.hasValue()) + return; + + if (ExplodedNode *N = C.generateErrorNode()) { + if (!BT_BadFree[*CheckKind]) + BT_BadFree[*CheckKind].reset(new BugType( + CheckNames[*CheckKind], "Bad free", categories::MemoryError)); + + SmallString<100> Buf; + llvm::raw_svector_ostream Os(Buf); + + const MemRegion *MR = ArgVal.getAsRegion(); + while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR)) + MR = ER->getSuperRegion(); + + Os << "Argument to "; + if (!printAllocDeallocName(Os, C, FreeExpr)) + Os << "deallocator"; + + Os << " is a function pointer"; + + auto R = std::make_unique<PathSensitiveBugReport>(*BT_BadFree[*CheckKind], + Os.str(), N); + R->markInteresting(MR); + R->addRange(Range); + C.emitReport(std::move(R)); + } +} + +ProgramStateRef MallocChecker::ReallocMemAux(CheckerContext &C, + const CallExpr *CE, + bool ShouldFreeOnFail, + ProgramStateRef State, + bool SuffixWithN) const { + if (!State) + return nullptr; + + if (SuffixWithN && CE->getNumArgs() < 3) + return nullptr; + else if (CE->getNumArgs() < 2) + return nullptr; + + const Expr *arg0Expr = CE->getArg(0); + SVal Arg0Val = C.getSVal(arg0Expr); + if (!Arg0Val.getAs<DefinedOrUnknownSVal>()) + return nullptr; + DefinedOrUnknownSVal arg0Val = Arg0Val.castAs<DefinedOrUnknownSVal>(); + + SValBuilder &svalBuilder = C.getSValBuilder(); + + DefinedOrUnknownSVal PtrEQ = + svalBuilder.evalEQ(State, arg0Val, svalBuilder.makeNull()); + + // Get the size argument. + const Expr *Arg1 = CE->getArg(1); + + // Get the value of the size argument. + SVal TotalSize = C.getSVal(Arg1); + if (SuffixWithN) + TotalSize = evalMulForBufferSize(C, Arg1, CE->getArg(2)); + if (!TotalSize.getAs<DefinedOrUnknownSVal>()) + return nullptr; + + // Compare the size argument to 0. + DefinedOrUnknownSVal SizeZero = + svalBuilder.evalEQ(State, TotalSize.castAs<DefinedOrUnknownSVal>(), + svalBuilder.makeIntValWithPtrWidth(0, false)); + + ProgramStateRef StatePtrIsNull, StatePtrNotNull; + std::tie(StatePtrIsNull, StatePtrNotNull) = State->assume(PtrEQ); + ProgramStateRef StateSizeIsZero, StateSizeNotZero; + std::tie(StateSizeIsZero, StateSizeNotZero) = State->assume(SizeZero); + // We only assume exceptional states if they are definitely true; if the + // state is under-constrained, assume regular realloc behavior. + bool PrtIsNull = StatePtrIsNull && !StatePtrNotNull; + bool SizeIsZero = StateSizeIsZero && !StateSizeNotZero; + + // If the ptr is NULL and the size is not 0, the call is equivalent to + // malloc(size). + if (PrtIsNull && !SizeIsZero) { + ProgramStateRef stateMalloc = MallocMemAux(C, CE, TotalSize, + UndefinedVal(), StatePtrIsNull); + return stateMalloc; + } + + if (PrtIsNull && SizeIsZero) + return State; + + // Get the from and to pointer symbols as in toPtr = realloc(fromPtr, size). + assert(!PrtIsNull); + SymbolRef FromPtr = arg0Val.getAsSymbol(); + SVal RetVal = C.getSVal(CE); + SymbolRef ToPtr = RetVal.getAsSymbol(); + if (!FromPtr || !ToPtr) + return nullptr; + + bool IsKnownToBeAllocated = false; + + // If the size is 0, free the memory. + if (SizeIsZero) + // The semantics of the return value are: + // If size was equal to 0, either NULL or a pointer suitable to be passed + // to free() is returned. We just free the input pointer and do not add + // any constrains on the output pointer. + if (ProgramStateRef stateFree = + FreeMemAux(C, CE, StateSizeIsZero, 0, false, IsKnownToBeAllocated)) + return stateFree; + + // Default behavior. + if (ProgramStateRef stateFree = + FreeMemAux(C, CE, State, 0, false, IsKnownToBeAllocated)) { + + ProgramStateRef stateRealloc = MallocMemAux(C, CE, TotalSize, + UnknownVal(), stateFree); + if (!stateRealloc) + return nullptr; + + OwnershipAfterReallocKind Kind = OAR_ToBeFreedAfterFailure; + if (ShouldFreeOnFail) + Kind = OAR_FreeOnFailure; + else if (!IsKnownToBeAllocated) + Kind = OAR_DoNotTrackAfterFailure; + + // Record the info about the reallocated symbol so that we could properly + // process failed reallocation. + stateRealloc = stateRealloc->set<ReallocPairs>(ToPtr, + ReallocPair(FromPtr, Kind)); + // The reallocated symbol should stay alive for as long as the new symbol. + C.getSymbolManager().addSymbolDependency(ToPtr, FromPtr); + return stateRealloc; + } + return nullptr; +} + +ProgramStateRef MallocChecker::CallocMem(CheckerContext &C, const CallExpr *CE, + ProgramStateRef State) { + if (!State) + return nullptr; + + if (CE->getNumArgs() < 2) + return nullptr; + + SValBuilder &svalBuilder = C.getSValBuilder(); + SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy); + SVal TotalSize = evalMulForBufferSize(C, CE->getArg(0), CE->getArg(1)); + + return MallocMemAux(C, CE, TotalSize, zeroVal, State); +} + +MallocChecker::LeakInfo MallocChecker::getAllocationSite(const ExplodedNode *N, + SymbolRef Sym, + CheckerContext &C) { + const LocationContext *LeakContext = N->getLocationContext(); + // Walk the ExplodedGraph backwards and find the first node that referred to + // the tracked symbol. + const ExplodedNode *AllocNode = N; + const MemRegion *ReferenceRegion = nullptr; + + while (N) { + ProgramStateRef State = N->getState(); + if (!State->get<RegionState>(Sym)) + break; + + // Find the most recent expression bound to the symbol in the current + // context. + if (!ReferenceRegion) { + if (const MemRegion *MR = C.getLocationRegionIfPostStore(N)) { + SVal Val = State->getSVal(MR); + if (Val.getAsLocSymbol() == Sym) { + const VarRegion *VR = MR->getBaseRegion()->getAs<VarRegion>(); + // Do not show local variables belonging to a function other than + // where the error is reported. + if (!VR || (VR->getStackFrame() == LeakContext->getStackFrame())) + ReferenceRegion = MR; + } + } + } + + // Allocation node, is the last node in the current or parent context in + // which the symbol was tracked. + const LocationContext *NContext = N->getLocationContext(); + if (NContext == LeakContext || + NContext->isParentOf(LeakContext)) + AllocNode = N; + N = N->pred_empty() ? nullptr : *(N->pred_begin()); + } + + return LeakInfo(AllocNode, ReferenceRegion); +} + +void MallocChecker::reportLeak(SymbolRef Sym, ExplodedNode *N, + CheckerContext &C) const { + + if (!ChecksEnabled[CK_MallocChecker] && + !ChecksEnabled[CK_NewDeleteLeaksChecker]) + return; + + const RefState *RS = C.getState()->get<RegionState>(Sym); + assert(RS && "cannot leak an untracked symbol"); + AllocationFamily Family = RS->getAllocationFamily(); + + if (Family == AF_Alloca) + return; + + Optional<MallocChecker::CheckKind> + CheckKind = getCheckIfTracked(Family, true); + + if (!CheckKind.hasValue()) + return; + + assert(N); + if (!BT_Leak[*CheckKind]) { + // Leaks should not be reported if they are post-dominated by a sink: + // (1) Sinks are higher importance bugs. + // (2) NoReturnFunctionChecker uses sink nodes to represent paths ending + // with __noreturn functions such as assert() or exit(). We choose not + // to report leaks on such paths. + BT_Leak[*CheckKind].reset(new BugType(CheckNames[*CheckKind], "Memory leak", + categories::MemoryError, + /*SuppressOnSink=*/true)); + } + + // Most bug reports are cached at the location where they occurred. + // With leaks, we want to unique them by the location where they were + // allocated, and only report a single path. + PathDiagnosticLocation LocUsedForUniqueing; + const ExplodedNode *AllocNode = nullptr; + const MemRegion *Region = nullptr; + std::tie(AllocNode, Region) = getAllocationSite(N, Sym, C); + + const Stmt *AllocationStmt = AllocNode->getStmtForDiagnostics(); + if (AllocationStmt) + LocUsedForUniqueing = PathDiagnosticLocation::createBegin(AllocationStmt, + C.getSourceManager(), + AllocNode->getLocationContext()); + + SmallString<200> buf; + llvm::raw_svector_ostream os(buf); + if (Region && Region->canPrintPretty()) { + os << "Potential leak of memory pointed to by "; + Region->printPretty(os); + } else { + os << "Potential memory leak"; + } + + auto R = std::make_unique<PathSensitiveBugReport>( + *BT_Leak[*CheckKind], os.str(), N, LocUsedForUniqueing, + AllocNode->getLocationContext()->getDecl()); + R->markInteresting(Sym); + R->addVisitor(std::make_unique<MallocBugVisitor>(Sym, true)); + C.emitReport(std::move(R)); +} + +void MallocChecker::checkDeadSymbols(SymbolReaper &SymReaper, + CheckerContext &C) const +{ + ProgramStateRef state = C.getState(); + RegionStateTy OldRS = state->get<RegionState>(); + RegionStateTy::Factory &F = state->get_context<RegionState>(); + + RegionStateTy RS = OldRS; + SmallVector<SymbolRef, 2> Errors; + for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { + if (SymReaper.isDead(I->first)) { + if (I->second.isAllocated() || I->second.isAllocatedOfSizeZero()) + Errors.push_back(I->first); + // Remove the dead symbol from the map. + RS = F.remove(RS, I->first); + } + } + + if (RS == OldRS) { + // We shouldn't have touched other maps yet. + assert(state->get<ReallocPairs>() == + C.getState()->get<ReallocPairs>()); + assert(state->get<FreeReturnValue>() == + C.getState()->get<FreeReturnValue>()); + return; + } + + // Cleanup the Realloc Pairs Map. + ReallocPairsTy RP = state->get<ReallocPairs>(); + for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) { + if (SymReaper.isDead(I->first) || + SymReaper.isDead(I->second.ReallocatedSym)) { + state = state->remove<ReallocPairs>(I->first); + } + } + + // Cleanup the FreeReturnValue Map. + FreeReturnValueTy FR = state->get<FreeReturnValue>(); + for (FreeReturnValueTy::iterator I = FR.begin(), E = FR.end(); I != E; ++I) { + if (SymReaper.isDead(I->first) || + SymReaper.isDead(I->second)) { + state = state->remove<FreeReturnValue>(I->first); + } + } + + // Generate leak node. + ExplodedNode *N = C.getPredecessor(); + if (!Errors.empty()) { + static CheckerProgramPointTag Tag("MallocChecker", "DeadSymbolsLeak"); + N = C.generateNonFatalErrorNode(C.getState(), &Tag); + if (N) { + for (SmallVectorImpl<SymbolRef>::iterator + I = Errors.begin(), E = Errors.end(); I != E; ++I) { + reportLeak(*I, N, C); + } + } + } + + C.addTransition(state->set<RegionState>(RS), N); +} + +void MallocChecker::checkPreCall(const CallEvent &Call, + CheckerContext &C) const { + + if (const CXXDestructorCall *DC = dyn_cast<CXXDestructorCall>(&Call)) { + SymbolRef Sym = DC->getCXXThisVal().getAsSymbol(); + if (!Sym || checkDoubleDelete(Sym, C)) + return; + } + + // We will check for double free in the post visit. + if (const AnyFunctionCall *FC = dyn_cast<AnyFunctionCall>(&Call)) { + const FunctionDecl *FD = FC->getDecl(); + if (!FD) + return; + + ASTContext &Ctx = C.getASTContext(); + if (ChecksEnabled[CK_MallocChecker] && + (MemFunctionInfo.isCMemFunction(FD, Ctx, AF_Malloc, + MemoryOperationKind::MOK_Free) || + MemFunctionInfo.isCMemFunction(FD, Ctx, AF_IfNameIndex, + MemoryOperationKind::MOK_Free))) + return; + } + + // Check if the callee of a method is deleted. + if (const CXXInstanceCall *CC = dyn_cast<CXXInstanceCall>(&Call)) { + SymbolRef Sym = CC->getCXXThisVal().getAsSymbol(); + if (!Sym || checkUseAfterFree(Sym, C, CC->getCXXThisExpr())) + return; + } + + // Check arguments for being used after free. + for (unsigned I = 0, E = Call.getNumArgs(); I != E; ++I) { + SVal ArgSVal = Call.getArgSVal(I); + if (ArgSVal.getAs<Loc>()) { + SymbolRef Sym = ArgSVal.getAsSymbol(); + if (!Sym) + continue; + if (checkUseAfterFree(Sym, C, Call.getArgExpr(I))) + return; + } + } +} + +void MallocChecker::checkPreStmt(const ReturnStmt *S, + CheckerContext &C) const { + checkEscapeOnReturn(S, C); +} + +// In the CFG, automatic destructors come after the return statement. +// This callback checks for returning memory that is freed by automatic +// destructors, as those cannot be reached in checkPreStmt(). +void MallocChecker::checkEndFunction(const ReturnStmt *S, + CheckerContext &C) const { + checkEscapeOnReturn(S, C); +} + +void MallocChecker::checkEscapeOnReturn(const ReturnStmt *S, + CheckerContext &C) const { + if (!S) + return; + + const Expr *E = S->getRetValue(); + if (!E) + return; + + // Check if we are returning a symbol. + ProgramStateRef State = C.getState(); + SVal RetVal = C.getSVal(E); + SymbolRef Sym = RetVal.getAsSymbol(); + if (!Sym) + // If we are returning a field of the allocated struct or an array element, + // the callee could still free the memory. + // TODO: This logic should be a part of generic symbol escape callback. + if (const MemRegion *MR = RetVal.getAsRegion()) + if (isa<FieldRegion>(MR) || isa<ElementRegion>(MR)) + if (const SymbolicRegion *BMR = + dyn_cast<SymbolicRegion>(MR->getBaseRegion())) + Sym = BMR->getSymbol(); + + // Check if we are returning freed memory. + if (Sym) + checkUseAfterFree(Sym, C, E); +} + +// TODO: Blocks should be either inlined or should call invalidate regions +// upon invocation. After that's in place, special casing here will not be +// needed. +void MallocChecker::checkPostStmt(const BlockExpr *BE, + CheckerContext &C) const { + + // Scan the BlockDecRefExprs for any object the retain count checker + // may be tracking. + if (!BE->getBlockDecl()->hasCaptures()) + return; + + ProgramStateRef state = C.getState(); + const BlockDataRegion *R = + cast<BlockDataRegion>(C.getSVal(BE).getAsRegion()); + + BlockDataRegion::referenced_vars_iterator I = R->referenced_vars_begin(), + E = R->referenced_vars_end(); + + if (I == E) + return; + + SmallVector<const MemRegion*, 10> Regions; + const LocationContext *LC = C.getLocationContext(); + MemRegionManager &MemMgr = C.getSValBuilder().getRegionManager(); + + for ( ; I != E; ++I) { + const VarRegion *VR = I.getCapturedRegion(); + if (VR->getSuperRegion() == R) { + VR = MemMgr.getVarRegion(VR->getDecl(), LC); + } + Regions.push_back(VR); + } + + state = + state->scanReachableSymbols<StopTrackingCallback>(Regions).getState(); + C.addTransition(state); +} + +static bool isReleased(SymbolRef Sym, CheckerContext &C) { + assert(Sym); + const RefState *RS = C.getState()->get<RegionState>(Sym); + return (RS && RS->isReleased()); +} + +bool MallocChecker::suppressDeallocationsInSuspiciousContexts( + const CallExpr *CE, CheckerContext &C) const { + if (CE->getNumArgs() == 0) + return false; + + StringRef FunctionStr = ""; + if (const auto *FD = dyn_cast<FunctionDecl>(C.getStackFrame()->getDecl())) + if (const Stmt *Body = FD->getBody()) + if (Body->getBeginLoc().isValid()) + FunctionStr = + Lexer::getSourceText(CharSourceRange::getTokenRange( + {FD->getBeginLoc(), Body->getBeginLoc()}), + C.getSourceManager(), C.getLangOpts()); + + // We do not model the Integer Set Library's retain-count based allocation. + if (!FunctionStr.contains("__isl_")) + return false; + + ProgramStateRef State = C.getState(); + + for (const Expr *Arg : CE->arguments()) + if (SymbolRef Sym = C.getSVal(Arg).getAsSymbol()) + if (const RefState *RS = State->get<RegionState>(Sym)) + State = State->set<RegionState>(Sym, RefState::getEscaped(RS)); + + C.addTransition(State); + return true; +} + +bool MallocChecker::checkUseAfterFree(SymbolRef Sym, CheckerContext &C, + const Stmt *S) const { + + if (isReleased(Sym, C)) { + ReportUseAfterFree(C, S->getSourceRange(), Sym); + return true; + } + + return false; +} + +void MallocChecker::checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C, + const Stmt *S) const { + assert(Sym); + + if (const RefState *RS = C.getState()->get<RegionState>(Sym)) { + if (RS->isAllocatedOfSizeZero()) + ReportUseZeroAllocated(C, RS->getStmt()->getSourceRange(), Sym); + } + else if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) { + ReportUseZeroAllocated(C, S->getSourceRange(), Sym); + } +} + +bool MallocChecker::checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const { + + if (isReleased(Sym, C)) { + ReportDoubleDelete(C, Sym); + return true; + } + return false; +} + +// Check if the location is a freed symbolic region. +void MallocChecker::checkLocation(SVal l, bool isLoad, const Stmt *S, + CheckerContext &C) const { + SymbolRef Sym = l.getLocSymbolInBase(); + if (Sym) { + checkUseAfterFree(Sym, C, S); + checkUseZeroAllocated(Sym, C, S); + } +} + +// If a symbolic region is assumed to NULL (or another constant), stop tracking +// it - assuming that allocation failed on this path. +ProgramStateRef MallocChecker::evalAssume(ProgramStateRef state, + SVal Cond, + bool Assumption) const { + RegionStateTy RS = state->get<RegionState>(); + for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { + // If the symbol is assumed to be NULL, remove it from consideration. + ConstraintManager &CMgr = state->getConstraintManager(); + ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey()); + if (AllocFailed.isConstrainedTrue()) + state = state->remove<RegionState>(I.getKey()); + } + + // Realloc returns 0 when reallocation fails, which means that we should + // restore the state of the pointer being reallocated. + ReallocPairsTy RP = state->get<ReallocPairs>(); + for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) { + // If the symbol is assumed to be NULL, remove it from consideration. + ConstraintManager &CMgr = state->getConstraintManager(); + ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey()); + if (!AllocFailed.isConstrainedTrue()) + continue; + + SymbolRef ReallocSym = I.getData().ReallocatedSym; + if (const RefState *RS = state->get<RegionState>(ReallocSym)) { + if (RS->isReleased()) { + switch (I.getData().Kind) { + case OAR_ToBeFreedAfterFailure: + state = state->set<RegionState>(ReallocSym, + RefState::getAllocated(RS->getAllocationFamily(), RS->getStmt())); + break; + case OAR_DoNotTrackAfterFailure: + state = state->remove<RegionState>(ReallocSym); + break; + default: + assert(I.getData().Kind == OAR_FreeOnFailure); + } + } + } + state = state->remove<ReallocPairs>(I.getKey()); + } + + return state; +} + +bool MallocChecker::mayFreeAnyEscapedMemoryOrIsModeledExplicitly( + const CallEvent *Call, + ProgramStateRef State, + SymbolRef &EscapingSymbol) const { + assert(Call); + EscapingSymbol = nullptr; + + // For now, assume that any C++ or block call can free memory. + // TODO: If we want to be more optimistic here, we'll need to make sure that + // regions escape to C++ containers. They seem to do that even now, but for + // mysterious reasons. + if (!(isa<SimpleFunctionCall>(Call) || isa<ObjCMethodCall>(Call))) + return true; + + // Check Objective-C messages by selector name. + if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(Call)) { + // If it's not a framework call, or if it takes a callback, assume it + // can free memory. + if (!Call->isInSystemHeader() || Call->argumentsMayEscape()) + return true; + + // If it's a method we know about, handle it explicitly post-call. + // This should happen before the "freeWhenDone" check below. + if (isKnownDeallocObjCMethodName(*Msg)) + return false; + + // If there's a "freeWhenDone" parameter, but the method isn't one we know + // about, we can't be sure that the object will use free() to deallocate the + // memory, so we can't model it explicitly. The best we can do is use it to + // decide whether the pointer escapes. + if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(*Msg)) + return *FreeWhenDone; + + // If the first selector piece ends with "NoCopy", and there is no + // "freeWhenDone" parameter set to zero, we know ownership is being + // transferred. Again, though, we can't be sure that the object will use + // free() to deallocate the memory, so we can't model it explicitly. + StringRef FirstSlot = Msg->getSelector().getNameForSlot(0); + if (FirstSlot.endswith("NoCopy")) + return true; + + // If the first selector starts with addPointer, insertPointer, + // or replacePointer, assume we are dealing with NSPointerArray or similar. + // This is similar to C++ containers (vector); we still might want to check + // that the pointers get freed by following the container itself. + if (FirstSlot.startswith("addPointer") || + FirstSlot.startswith("insertPointer") || + FirstSlot.startswith("replacePointer") || + FirstSlot.equals("valueWithPointer")) { + return true; + } + + // We should escape receiver on call to 'init'. This is especially relevant + // to the receiver, as the corresponding symbol is usually not referenced + // after the call. + if (Msg->getMethodFamily() == OMF_init) { + EscapingSymbol = Msg->getReceiverSVal().getAsSymbol(); + return true; + } + + // Otherwise, assume that the method does not free memory. + // Most framework methods do not free memory. + return false; + } + + // At this point the only thing left to handle is straight function calls. + const FunctionDecl *FD = cast<SimpleFunctionCall>(Call)->getDecl(); + if (!FD) + return true; + + ASTContext &ASTC = State->getStateManager().getContext(); + + // If it's one of the allocation functions we can reason about, we model + // its behavior explicitly. + if (MemFunctionInfo.isMemFunction(FD, ASTC)) + return false; + + // If it's not a system call, assume it frees memory. + if (!Call->isInSystemHeader()) + return true; + + // White list the system functions whose arguments escape. + const IdentifierInfo *II = FD->getIdentifier(); + if (!II) + return true; + StringRef FName = II->getName(); + + // White list the 'XXXNoCopy' CoreFoundation functions. + // We specifically check these before + if (FName.endswith("NoCopy")) { + // Look for the deallocator argument. We know that the memory ownership + // is not transferred only if the deallocator argument is + // 'kCFAllocatorNull'. + for (unsigned i = 1; i < Call->getNumArgs(); ++i) { + const Expr *ArgE = Call->getArgExpr(i)->IgnoreParenCasts(); + if (const DeclRefExpr *DE = dyn_cast<DeclRefExpr>(ArgE)) { + StringRef DeallocatorName = DE->getFoundDecl()->getName(); + if (DeallocatorName == "kCFAllocatorNull") + return false; + } + } + return true; + } + + // Associating streams with malloced buffers. The pointer can escape if + // 'closefn' is specified (and if that function does free memory), + // but it will not if closefn is not specified. + // Currently, we do not inspect the 'closefn' function (PR12101). + if (FName == "funopen") + if (Call->getNumArgs() >= 4 && Call->getArgSVal(4).isConstant(0)) + return false; + + // Do not warn on pointers passed to 'setbuf' when used with std streams, + // these leaks might be intentional when setting the buffer for stdio. + // http://stackoverflow.com/questions/2671151/who-frees-setvbuf-buffer + if (FName == "setbuf" || FName =="setbuffer" || + FName == "setlinebuf" || FName == "setvbuf") { + if (Call->getNumArgs() >= 1) { + const Expr *ArgE = Call->getArgExpr(0)->IgnoreParenCasts(); + if (const DeclRefExpr *ArgDRE = dyn_cast<DeclRefExpr>(ArgE)) + if (const VarDecl *D = dyn_cast<VarDecl>(ArgDRE->getDecl())) + if (D->getCanonicalDecl()->getName().find("std") != StringRef::npos) + return true; + } + } + + // A bunch of other functions which either take ownership of a pointer or + // wrap the result up in a struct or object, meaning it can be freed later. + // (See RetainCountChecker.) Not all the parameters here are invalidated, + // but the Malloc checker cannot differentiate between them. The right way + // of doing this would be to implement a pointer escapes callback. + if (FName == "CGBitmapContextCreate" || + FName == "CGBitmapContextCreateWithData" || + FName == "CVPixelBufferCreateWithBytes" || + FName == "CVPixelBufferCreateWithPlanarBytes" || + FName == "OSAtomicEnqueue") { + return true; + } + + if (FName == "postEvent" && + FD->getQualifiedNameAsString() == "QCoreApplication::postEvent") { + return true; + } + + if (FName == "postEvent" && + FD->getQualifiedNameAsString() == "QCoreApplication::postEvent") { + return true; + } + + if (FName == "connectImpl" && + FD->getQualifiedNameAsString() == "QObject::connectImpl") { + return true; + } + + // Handle cases where we know a buffer's /address/ can escape. + // Note that the above checks handle some special cases where we know that + // even though the address escapes, it's still our responsibility to free the + // buffer. + if (Call->argumentsMayEscape()) + return true; + + // Otherwise, assume that the function does not free memory. + // Most system calls do not free the memory. + return false; +} + +ProgramStateRef MallocChecker::checkPointerEscape(ProgramStateRef State, + const InvalidatedSymbols &Escaped, + const CallEvent *Call, + PointerEscapeKind Kind) const { + return checkPointerEscapeAux(State, Escaped, Call, Kind, + /*IsConstPointerEscape*/ false); +} + +ProgramStateRef MallocChecker::checkConstPointerEscape(ProgramStateRef State, + const InvalidatedSymbols &Escaped, + const CallEvent *Call, + PointerEscapeKind Kind) const { + // If a const pointer escapes, it may not be freed(), but it could be deleted. + return checkPointerEscapeAux(State, Escaped, Call, Kind, + /*IsConstPointerEscape*/ true); +} + +static bool checkIfNewOrNewArrayFamily(const RefState *RS) { + return (RS->getAllocationFamily() == AF_CXXNewArray || + RS->getAllocationFamily() == AF_CXXNew); +} + +ProgramStateRef MallocChecker::checkPointerEscapeAux( + ProgramStateRef State, const InvalidatedSymbols &Escaped, + const CallEvent *Call, PointerEscapeKind Kind, + bool IsConstPointerEscape) const { + // If we know that the call does not free memory, or we want to process the + // call later, keep tracking the top level arguments. + SymbolRef EscapingSymbol = nullptr; + if (Kind == PSK_DirectEscapeOnCall && + !mayFreeAnyEscapedMemoryOrIsModeledExplicitly(Call, State, + EscapingSymbol) && + !EscapingSymbol) { + return State; + } + + for (InvalidatedSymbols::const_iterator I = Escaped.begin(), + E = Escaped.end(); + I != E; ++I) { + SymbolRef sym = *I; + + if (EscapingSymbol && EscapingSymbol != sym) + continue; + + if (const RefState *RS = State->get<RegionState>(sym)) + if (RS->isAllocated() || RS->isAllocatedOfSizeZero()) + if (!IsConstPointerEscape || checkIfNewOrNewArrayFamily(RS)) + State = State->set<RegionState>(sym, RefState::getEscaped(RS)); + } + return State; +} + +static SymbolRef findFailedReallocSymbol(ProgramStateRef currState, + ProgramStateRef prevState) { + ReallocPairsTy currMap = currState->get<ReallocPairs>(); + ReallocPairsTy prevMap = prevState->get<ReallocPairs>(); + + for (const ReallocPairsTy::value_type &Pair : prevMap) { + SymbolRef sym = Pair.first; + if (!currMap.lookup(sym)) + return sym; + } + + return nullptr; +} + +static bool isReferenceCountingPointerDestructor(const CXXDestructorDecl *DD) { + if (const IdentifierInfo *II = DD->getParent()->getIdentifier()) { + StringRef N = II->getName(); + if (N.contains_lower("ptr") || N.contains_lower("pointer")) { + if (N.contains_lower("ref") || N.contains_lower("cnt") || + N.contains_lower("intrusive") || N.contains_lower("shared")) { + return true; + } + } + } + return false; +} + +PathDiagnosticPieceRef MallocBugVisitor::VisitNode(const ExplodedNode *N, + BugReporterContext &BRC, + PathSensitiveBugReport &BR) { + ProgramStateRef state = N->getState(); + ProgramStateRef statePrev = N->getFirstPred()->getState(); + + const RefState *RSCurr = state->get<RegionState>(Sym); + const RefState *RSPrev = statePrev->get<RegionState>(Sym); + + const Stmt *S = N->getStmtForDiagnostics(); + // When dealing with containers, we sometimes want to give a note + // even if the statement is missing. + if (!S && (!RSCurr || RSCurr->getAllocationFamily() != AF_InnerBuffer)) + return nullptr; + + const LocationContext *CurrentLC = N->getLocationContext(); + + // If we find an atomic fetch_add or fetch_sub within the destructor in which + // the pointer was released (before the release), this is likely a destructor + // of a shared pointer. + // Because we don't model atomics, and also because we don't know that the + // original reference count is positive, we should not report use-after-frees + // on objects deleted in such destructors. This can probably be improved + // through better shared pointer modeling. + if (ReleaseDestructorLC) { + if (const auto *AE = dyn_cast<AtomicExpr>(S)) { + AtomicExpr::AtomicOp Op = AE->getOp(); + if (Op == AtomicExpr::AO__c11_atomic_fetch_add || + Op == AtomicExpr::AO__c11_atomic_fetch_sub) { + if (ReleaseDestructorLC == CurrentLC || + ReleaseDestructorLC->isParentOf(CurrentLC)) { + BR.markInvalid(getTag(), S); + } + } + } + } + + // FIXME: We will eventually need to handle non-statement-based events + // (__attribute__((cleanup))). + + // Find out if this is an interesting point and what is the kind. + StringRef Msg; + std::unique_ptr<StackHintGeneratorForSymbol> StackHint = nullptr; + SmallString<256> Buf; + llvm::raw_svector_ostream OS(Buf); + + if (Mode == Normal) { + if (isAllocated(RSCurr, RSPrev, S)) { + Msg = "Memory is allocated"; + StackHint = std::make_unique<StackHintGeneratorForSymbol>( + Sym, "Returned allocated memory"); + } else if (isReleased(RSCurr, RSPrev, S)) { + const auto Family = RSCurr->getAllocationFamily(); + switch (Family) { + case AF_Alloca: + case AF_Malloc: + case AF_CXXNew: + case AF_CXXNewArray: + case AF_IfNameIndex: + Msg = "Memory is released"; + StackHint = std::make_unique<StackHintGeneratorForSymbol>( + Sym, "Returning; memory was released"); + break; + case AF_InnerBuffer: { + const MemRegion *ObjRegion = + allocation_state::getContainerObjRegion(statePrev, Sym); + const auto *TypedRegion = cast<TypedValueRegion>(ObjRegion); + QualType ObjTy = TypedRegion->getValueType(); + OS << "Inner buffer of '" << ObjTy.getAsString() << "' "; + + if (N->getLocation().getKind() == ProgramPoint::PostImplicitCallKind) { + OS << "deallocated by call to destructor"; + StackHint = std::make_unique<StackHintGeneratorForSymbol>( + Sym, "Returning; inner buffer was deallocated"); + } else { + OS << "reallocated by call to '"; + const Stmt *S = RSCurr->getStmt(); + if (const auto *MemCallE = dyn_cast<CXXMemberCallExpr>(S)) { + OS << MemCallE->getMethodDecl()->getNameAsString(); + } else if (const auto *OpCallE = dyn_cast<CXXOperatorCallExpr>(S)) { + OS << OpCallE->getDirectCallee()->getNameAsString(); + } else if (const auto *CallE = dyn_cast<CallExpr>(S)) { + auto &CEMgr = BRC.getStateManager().getCallEventManager(); + CallEventRef<> Call = CEMgr.getSimpleCall(CallE, state, CurrentLC); + const auto *D = dyn_cast_or_null<NamedDecl>(Call->getDecl()); + OS << (D ? D->getNameAsString() : "unknown"); + } + OS << "'"; + StackHint = std::make_unique<StackHintGeneratorForSymbol>( + Sym, "Returning; inner buffer was reallocated"); + } + Msg = OS.str(); + break; + } + case AF_None: + llvm_unreachable("Unhandled allocation family!"); + } + + // See if we're releasing memory while inlining a destructor + // (or one of its callees). This turns on various common + // false positive suppressions. + bool FoundAnyDestructor = false; + for (const LocationContext *LC = CurrentLC; LC; LC = LC->getParent()) { + if (const auto *DD = dyn_cast<CXXDestructorDecl>(LC->getDecl())) { + if (isReferenceCountingPointerDestructor(DD)) { + // This immediately looks like a reference-counting destructor. + // We're bad at guessing the original reference count of the object, + // so suppress the report for now. + BR.markInvalid(getTag(), DD); + } else if (!FoundAnyDestructor) { + assert(!ReleaseDestructorLC && + "There can be only one release point!"); + // Suspect that it's a reference counting pointer destructor. + // On one of the next nodes might find out that it has atomic + // reference counting operations within it (see the code above), + // and if so, we'd conclude that it likely is a reference counting + // pointer destructor. + ReleaseDestructorLC = LC->getStackFrame(); + // It is unlikely that releasing memory is delegated to a destructor + // inside a destructor of a shared pointer, because it's fairly hard + // to pass the information that the pointer indeed needs to be + // released into it. So we're only interested in the innermost + // destructor. + FoundAnyDestructor = true; + } + } + } + } else if (isRelinquished(RSCurr, RSPrev, S)) { + Msg = "Memory ownership is transferred"; + StackHint = std::make_unique<StackHintGeneratorForSymbol>(Sym, ""); + } else if (hasReallocFailed(RSCurr, RSPrev, S)) { + Mode = ReallocationFailed; + Msg = "Reallocation failed"; + StackHint = std::make_unique<StackHintGeneratorForReallocationFailed>( + Sym, "Reallocation failed"); + + if (SymbolRef sym = findFailedReallocSymbol(state, statePrev)) { + // Is it possible to fail two reallocs WITHOUT testing in between? + assert((!FailedReallocSymbol || FailedReallocSymbol == sym) && + "We only support one failed realloc at a time."); + BR.markInteresting(sym); + FailedReallocSymbol = sym; + } + } + + // We are in a special mode if a reallocation failed later in the path. + } else if (Mode == ReallocationFailed) { + assert(FailedReallocSymbol && "No symbol to look for."); + + // Is this is the first appearance of the reallocated symbol? + if (!statePrev->get<RegionState>(FailedReallocSymbol)) { + // We're at the reallocation point. + Msg = "Attempt to reallocate memory"; + StackHint = std::make_unique<StackHintGeneratorForSymbol>( + Sym, "Returned reallocated memory"); + FailedReallocSymbol = nullptr; + Mode = Normal; + } + } + + if (Msg.empty()) { + assert(!StackHint); + return nullptr; + } + + assert(StackHint); + + // Generate the extra diagnostic. + PathDiagnosticLocation Pos; + if (!S) { + assert(RSCurr->getAllocationFamily() == AF_InnerBuffer); + auto PostImplCall = N->getLocation().getAs<PostImplicitCall>(); + if (!PostImplCall) + return nullptr; + Pos = PathDiagnosticLocation(PostImplCall->getLocation(), + BRC.getSourceManager()); + } else { + Pos = PathDiagnosticLocation(S, BRC.getSourceManager(), + N->getLocationContext()); + } + + auto P = std::make_shared<PathDiagnosticEventPiece>(Pos, Msg, true); + BR.addCallStackHint(P, std::move(StackHint)); + return P; +} + +void MallocChecker::printState(raw_ostream &Out, ProgramStateRef State, + const char *NL, const char *Sep) const { + + RegionStateTy RS = State->get<RegionState>(); + + if (!RS.isEmpty()) { + Out << Sep << "MallocChecker :" << NL; + for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { + const RefState *RefS = State->get<RegionState>(I.getKey()); + AllocationFamily Family = RefS->getAllocationFamily(); + Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); + if (!CheckKind.hasValue()) + CheckKind = getCheckIfTracked(Family, true); + + I.getKey()->dumpToStream(Out); + Out << " : "; + I.getData().dump(Out); + if (CheckKind.hasValue()) + Out << " (" << CheckNames[*CheckKind].getName() << ")"; + Out << NL; + } + } +} + +namespace clang { +namespace ento { +namespace allocation_state { + +ProgramStateRef +markReleased(ProgramStateRef State, SymbolRef Sym, const Expr *Origin) { + AllocationFamily Family = AF_InnerBuffer; + return State->set<RegionState>(Sym, RefState::getReleased(Family, Origin)); +} + +} // end namespace allocation_state +} // end namespace ento +} // end namespace clang + +// Intended to be used in InnerPointerChecker to register the part of +// MallocChecker connected to it. +void ento::registerInnerPointerCheckerAux(CheckerManager &mgr) { + MallocChecker *checker = mgr.getChecker<MallocChecker>(); + checker->ChecksEnabled[MallocChecker::CK_InnerPointerChecker] = true; + checker->CheckNames[MallocChecker::CK_InnerPointerChecker] = + mgr.getCurrentCheckerName(); +} + +void ento::registerDynamicMemoryModeling(CheckerManager &mgr) { + auto *checker = mgr.registerChecker<MallocChecker>(); + checker->MemFunctionInfo.ShouldIncludeOwnershipAnnotatedFunctions = + mgr.getAnalyzerOptions().getCheckerBooleanOption(checker, "Optimistic"); +} + +bool ento::shouldRegisterDynamicMemoryModeling(const LangOptions &LO) { + return true; +} + +#define REGISTER_CHECKER(name) \ + void ento::register##name(CheckerManager &mgr) { \ + MallocChecker *checker = mgr.getChecker<MallocChecker>(); \ + checker->ChecksEnabled[MallocChecker::CK_##name] = true; \ + checker->CheckNames[MallocChecker::CK_##name] = \ + mgr.getCurrentCheckerName(); \ + } \ + \ + bool ento::shouldRegister##name(const LangOptions &LO) { return true; } + +REGISTER_CHECKER(MallocChecker) +REGISTER_CHECKER(NewDeleteChecker) +REGISTER_CHECKER(NewDeleteLeaksChecker) +REGISTER_CHECKER(MismatchedDeallocatorChecker) |