summaryrefslogtreecommitdiffstats
path: root/gnu/llvm/clang/lib/StaticAnalyzer/Checkers/MallocChecker.cpp
diff options
context:
space:
mode:
authorpatrick <patrick@openbsd.org>2020-08-03 14:31:31 +0000
committerpatrick <patrick@openbsd.org>2020-08-03 14:31:31 +0000
commite5dd70708596ae51455a0ffa086a00c5b29f8583 (patch)
tree5d676f27b570bacf71e786c3b5cff3e6f6679b59 /gnu/llvm/clang/lib/StaticAnalyzer/Checkers/MallocChecker.cpp
parentImport LLVM 10.0.0 release including clang, lld and lldb. (diff)
downloadwireguard-openbsd-e5dd70708596ae51455a0ffa086a00c5b29f8583.tar.xz
wireguard-openbsd-e5dd70708596ae51455a0ffa086a00c5b29f8583.zip
Import LLVM 10.0.0 release including clang, lld and lldb.
ok hackroom tested by plenty
Diffstat (limited to 'gnu/llvm/clang/lib/StaticAnalyzer/Checkers/MallocChecker.cpp')
-rw-r--r--gnu/llvm/clang/lib/StaticAnalyzer/Checkers/MallocChecker.cpp3428
1 files changed, 3428 insertions, 0 deletions
diff --git a/gnu/llvm/clang/lib/StaticAnalyzer/Checkers/MallocChecker.cpp b/gnu/llvm/clang/lib/StaticAnalyzer/Checkers/MallocChecker.cpp
new file mode 100644
index 00000000000..09306383d53
--- /dev/null
+++ b/gnu/llvm/clang/lib/StaticAnalyzer/Checkers/MallocChecker.cpp
@@ -0,0 +1,3428 @@
+//=== MallocChecker.cpp - A malloc/free checker -------------------*- C++ -*--//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines a variety of memory management related checkers, such as
+// leak, double free, and use-after-free.
+//
+// The following checkers are defined here:
+//
+// * MallocChecker
+// Despite its name, it models all sorts of memory allocations and
+// de- or reallocation, including but not limited to malloc, free,
+// relloc, new, delete. It also reports on a variety of memory misuse
+// errors.
+// Many other checkers interact very closely with this checker, in fact,
+// most are merely options to this one. Other checkers may register
+// MallocChecker, but do not enable MallocChecker's reports (more details
+// to follow around its field, ChecksEnabled).
+// It also has a boolean "Optimistic" checker option, which if set to true
+// will cause the checker to model user defined memory management related
+// functions annotated via the attribute ownership_takes, ownership_holds
+// and ownership_returns.
+//
+// * NewDeleteChecker
+// Enables the modeling of new, new[], delete, delete[] in MallocChecker,
+// and checks for related double-free and use-after-free errors.
+//
+// * NewDeleteLeaksChecker
+// Checks for leaks related to new, new[], delete, delete[].
+// Depends on NewDeleteChecker.
+//
+// * MismatchedDeallocatorChecker
+// Enables checking whether memory is deallocated with the correspending
+// allocation function in MallocChecker, such as malloc() allocated
+// regions are only freed by free(), new by delete, new[] by delete[].
+//
+// InnerPointerChecker interacts very closely with MallocChecker, but unlike
+// the above checkers, it has it's own file, hence the many InnerPointerChecker
+// related headers and non-static functions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
+#include "InterCheckerAPI.h"
+#include "clang/AST/Attr.h"
+#include "clang/AST/ParentMap.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/Lex/Lexer.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/CommonBugCategories.h"
+#include "clang/StaticAnalyzer/Core/Checker.h"
+#include "clang/StaticAnalyzer/Core/CheckerManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/StringExtras.h"
+#include "AllocationState.h"
+#include <climits>
+#include <utility>
+
+using namespace clang;
+using namespace ento;
+
+//===----------------------------------------------------------------------===//
+// The types of allocation we're modeling.
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+// Used to check correspondence between allocators and deallocators.
+enum AllocationFamily {
+ AF_None,
+ AF_Malloc,
+ AF_CXXNew,
+ AF_CXXNewArray,
+ AF_IfNameIndex,
+ AF_Alloca,
+ AF_InnerBuffer
+};
+
+struct MemFunctionInfoTy;
+
+} // end of anonymous namespace
+
+/// Determine family of a deallocation expression.
+static AllocationFamily
+getAllocationFamily(const MemFunctionInfoTy &MemFunctionInfo, CheckerContext &C,
+ const Stmt *S);
+
+/// Print names of allocators and deallocators.
+///
+/// \returns true on success.
+static bool printAllocDeallocName(raw_ostream &os, CheckerContext &C,
+ const Expr *E);
+
+/// Print expected name of an allocator based on the deallocator's
+/// family derived from the DeallocExpr.
+static void printExpectedAllocName(raw_ostream &os,
+ const MemFunctionInfoTy &MemFunctionInfo,
+ CheckerContext &C, const Expr *E);
+
+/// Print expected name of a deallocator based on the allocator's
+/// family.
+static void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family);
+
+//===----------------------------------------------------------------------===//
+// The state of a symbol, in terms of memory management.
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+class RefState {
+ enum Kind {
+ // Reference to allocated memory.
+ Allocated,
+ // Reference to zero-allocated memory.
+ AllocatedOfSizeZero,
+ // Reference to released/freed memory.
+ Released,
+ // The responsibility for freeing resources has transferred from
+ // this reference. A relinquished symbol should not be freed.
+ Relinquished,
+ // We are no longer guaranteed to have observed all manipulations
+ // of this pointer/memory. For example, it could have been
+ // passed as a parameter to an opaque function.
+ Escaped
+ };
+
+ const Stmt *S;
+
+ Kind K;
+ AllocationFamily Family;
+
+ RefState(Kind k, const Stmt *s, AllocationFamily family)
+ : S(s), K(k), Family(family) {
+ assert(family != AF_None);
+ }
+
+public:
+ bool isAllocated() const { return K == Allocated; }
+ bool isAllocatedOfSizeZero() const { return K == AllocatedOfSizeZero; }
+ bool isReleased() const { return K == Released; }
+ bool isRelinquished() const { return K == Relinquished; }
+ bool isEscaped() const { return K == Escaped; }
+ AllocationFamily getAllocationFamily() const { return Family; }
+ const Stmt *getStmt() const { return S; }
+
+ bool operator==(const RefState &X) const {
+ return K == X.K && S == X.S && Family == X.Family;
+ }
+
+ static RefState getAllocated(AllocationFamily family, const Stmt *s) {
+ return RefState(Allocated, s, family);
+ }
+ static RefState getAllocatedOfSizeZero(const RefState *RS) {
+ return RefState(AllocatedOfSizeZero, RS->getStmt(),
+ RS->getAllocationFamily());
+ }
+ static RefState getReleased(AllocationFamily family, const Stmt *s) {
+ return RefState(Released, s, family);
+ }
+ static RefState getRelinquished(AllocationFamily family, const Stmt *s) {
+ return RefState(Relinquished, s, family);
+ }
+ static RefState getEscaped(const RefState *RS) {
+ return RefState(Escaped, RS->getStmt(), RS->getAllocationFamily());
+ }
+
+ void Profile(llvm::FoldingSetNodeID &ID) const {
+ ID.AddInteger(K);
+ ID.AddPointer(S);
+ ID.AddInteger(Family);
+ }
+
+ LLVM_DUMP_METHOD void dump(raw_ostream &OS) const {
+ switch (K) {
+#define CASE(ID) case ID: OS << #ID; break;
+ CASE(Allocated)
+ CASE(AllocatedOfSizeZero)
+ CASE(Released)
+ CASE(Relinquished)
+ CASE(Escaped)
+ }
+ }
+
+ LLVM_DUMP_METHOD void dump() const { dump(llvm::errs()); }
+};
+
+} // end of anonymous namespace
+
+REGISTER_MAP_WITH_PROGRAMSTATE(RegionState, SymbolRef, RefState)
+
+/// Check if the memory associated with this symbol was released.
+static bool isReleased(SymbolRef Sym, CheckerContext &C);
+
+/// Update the RefState to reflect the new memory allocation.
+/// The optional \p RetVal parameter specifies the newly allocated pointer
+/// value; if unspecified, the value of expression \p E is used.
+static ProgramStateRef MallocUpdateRefState(CheckerContext &C, const Expr *E,
+ ProgramStateRef State,
+ AllocationFamily Family = AF_Malloc,
+ Optional<SVal> RetVal = None);
+
+//===----------------------------------------------------------------------===//
+// The modeling of memory reallocation.
+//
+// The terminology 'toPtr' and 'fromPtr' will be used:
+// toPtr = realloc(fromPtr, 20);
+//===----------------------------------------------------------------------===//
+
+REGISTER_SET_WITH_PROGRAMSTATE(ReallocSizeZeroSymbols, SymbolRef)
+
+namespace {
+
+/// The state of 'fromPtr' after reallocation is known to have failed.
+enum OwnershipAfterReallocKind {
+ // The symbol needs to be freed (e.g.: realloc)
+ OAR_ToBeFreedAfterFailure,
+ // The symbol has been freed (e.g.: reallocf)
+ OAR_FreeOnFailure,
+ // The symbol doesn't have to freed (e.g.: we aren't sure if, how and where
+ // 'fromPtr' was allocated:
+ // void Haha(int *ptr) {
+ // ptr = realloc(ptr, 67);
+ // // ...
+ // }
+ // ).
+ OAR_DoNotTrackAfterFailure
+};
+
+/// Stores information about the 'fromPtr' symbol after reallocation.
+///
+/// This is important because realloc may fail, and that needs special modeling.
+/// Whether reallocation failed or not will not be known until later, so we'll
+/// store whether upon failure 'fromPtr' will be freed, or needs to be freed
+/// later, etc.
+struct ReallocPair {
+
+ // The 'fromPtr'.
+ SymbolRef ReallocatedSym;
+ OwnershipAfterReallocKind Kind;
+
+ ReallocPair(SymbolRef S, OwnershipAfterReallocKind K)
+ : ReallocatedSym(S), Kind(K) {}
+ void Profile(llvm::FoldingSetNodeID &ID) const {
+ ID.AddInteger(Kind);
+ ID.AddPointer(ReallocatedSym);
+ }
+ bool operator==(const ReallocPair &X) const {
+ return ReallocatedSym == X.ReallocatedSym &&
+ Kind == X.Kind;
+ }
+};
+
+} // end of anonymous namespace
+
+REGISTER_MAP_WITH_PROGRAMSTATE(ReallocPairs, SymbolRef, ReallocPair)
+
+//===----------------------------------------------------------------------===//
+// Kinds of memory operations, information about resource managing functions.
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+enum class MemoryOperationKind { MOK_Allocate, MOK_Free, MOK_Any };
+
+struct MemFunctionInfoTy {
+ /// The value of the MallocChecker:Optimistic is stored in this variable.
+ ///
+ /// In pessimistic mode, the checker assumes that it does not know which
+ /// functions might free the memory.
+ /// In optimistic mode, the checker assumes that all user-defined functions
+ /// which might free a pointer are annotated.
+ DefaultBool ShouldIncludeOwnershipAnnotatedFunctions;
+
+ // TODO: Change these to CallDescription, and get rid of lazy initialization.
+ mutable IdentifierInfo *II_alloca = nullptr, *II_win_alloca = nullptr,
+ *II_malloc = nullptr, *II_free = nullptr,
+ *II_realloc = nullptr, *II_calloc = nullptr,
+ *II_valloc = nullptr, *II_reallocf = nullptr,
+ *II_strndup = nullptr, *II_strdup = nullptr,
+ *II_win_strdup = nullptr, *II_kmalloc = nullptr,
+ *II_if_nameindex = nullptr,
+ *II_if_freenameindex = nullptr, *II_wcsdup = nullptr,
+ *II_win_wcsdup = nullptr, *II_g_malloc = nullptr,
+ *II_g_malloc0 = nullptr, *II_g_realloc = nullptr,
+ *II_g_try_malloc = nullptr,
+ *II_g_try_malloc0 = nullptr,
+ *II_g_try_realloc = nullptr, *II_g_free = nullptr,
+ *II_g_memdup = nullptr, *II_g_malloc_n = nullptr,
+ *II_g_malloc0_n = nullptr, *II_g_realloc_n = nullptr,
+ *II_g_try_malloc_n = nullptr,
+ *II_g_try_malloc0_n = nullptr, *II_kfree = nullptr,
+ *II_g_try_realloc_n = nullptr;
+
+ void initIdentifierInfo(ASTContext &C) const;
+
+ ///@{
+ /// Check if this is one of the functions which can allocate/reallocate
+ /// memory pointed to by one of its arguments.
+ bool isMemFunction(const FunctionDecl *FD, ASTContext &C) const;
+ bool isCMemFunction(const FunctionDecl *FD, ASTContext &C,
+ AllocationFamily Family,
+ MemoryOperationKind MemKind) const;
+
+ /// Tells if the callee is one of the builtin new/delete operators, including
+ /// placement operators and other standard overloads.
+ bool isStandardNewDelete(const FunctionDecl *FD, ASTContext &C) const;
+ ///@}
+};
+
+} // end of anonymous namespace
+
+//===----------------------------------------------------------------------===//
+// Definition of the MallocChecker class.
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+class MallocChecker
+ : public Checker<check::DeadSymbols, check::PointerEscape,
+ check::ConstPointerEscape, check::PreStmt<ReturnStmt>,
+ check::EndFunction, check::PreCall,
+ check::PostStmt<CallExpr>, check::PostStmt<CXXNewExpr>,
+ check::NewAllocator, check::PreStmt<CXXDeleteExpr>,
+ check::PostStmt<BlockExpr>, check::PostObjCMessage,
+ check::Location, eval::Assume> {
+public:
+ MemFunctionInfoTy MemFunctionInfo;
+
+ /// Many checkers are essentially built into this one, so enabling them will
+ /// make MallocChecker perform additional modeling and reporting.
+ enum CheckKind {
+ /// When a subchecker is enabled but MallocChecker isn't, model memory
+ /// management but do not emit warnings emitted with MallocChecker only
+ /// enabled.
+ CK_MallocChecker,
+ CK_NewDeleteChecker,
+ CK_NewDeleteLeaksChecker,
+ CK_MismatchedDeallocatorChecker,
+ CK_InnerPointerChecker,
+ CK_NumCheckKinds
+ };
+
+ using LeakInfo = std::pair<const ExplodedNode *, const MemRegion *>;
+
+ DefaultBool ChecksEnabled[CK_NumCheckKinds];
+ CheckerNameRef CheckNames[CK_NumCheckKinds];
+
+ void checkPreCall(const CallEvent &Call, CheckerContext &C) const;
+ void checkPostStmt(const CallExpr *CE, CheckerContext &C) const;
+ void checkPostStmt(const CXXNewExpr *NE, CheckerContext &C) const;
+ void checkNewAllocator(const CXXNewExpr *NE, SVal Target,
+ CheckerContext &C) const;
+ void checkPreStmt(const CXXDeleteExpr *DE, CheckerContext &C) const;
+ void checkPostObjCMessage(const ObjCMethodCall &Call, CheckerContext &C) const;
+ void checkPostStmt(const BlockExpr *BE, CheckerContext &C) const;
+ void checkDeadSymbols(SymbolReaper &SymReaper, CheckerContext &C) const;
+ void checkPreStmt(const ReturnStmt *S, CheckerContext &C) const;
+ void checkEndFunction(const ReturnStmt *S, CheckerContext &C) const;
+ ProgramStateRef evalAssume(ProgramStateRef state, SVal Cond,
+ bool Assumption) const;
+ void checkLocation(SVal l, bool isLoad, const Stmt *S,
+ CheckerContext &C) const;
+
+ ProgramStateRef checkPointerEscape(ProgramStateRef State,
+ const InvalidatedSymbols &Escaped,
+ const CallEvent *Call,
+ PointerEscapeKind Kind) const;
+ ProgramStateRef checkConstPointerEscape(ProgramStateRef State,
+ const InvalidatedSymbols &Escaped,
+ const CallEvent *Call,
+ PointerEscapeKind Kind) const;
+
+ void printState(raw_ostream &Out, ProgramStateRef State,
+ const char *NL, const char *Sep) const override;
+
+private:
+ mutable std::unique_ptr<BugType> BT_DoubleFree[CK_NumCheckKinds];
+ mutable std::unique_ptr<BugType> BT_DoubleDelete;
+ mutable std::unique_ptr<BugType> BT_Leak[CK_NumCheckKinds];
+ mutable std::unique_ptr<BugType> BT_UseFree[CK_NumCheckKinds];
+ mutable std::unique_ptr<BugType> BT_BadFree[CK_NumCheckKinds];
+ mutable std::unique_ptr<BugType> BT_FreeAlloca[CK_NumCheckKinds];
+ mutable std::unique_ptr<BugType> BT_MismatchedDealloc;
+ mutable std::unique_ptr<BugType> BT_OffsetFree[CK_NumCheckKinds];
+ mutable std::unique_ptr<BugType> BT_UseZerroAllocated[CK_NumCheckKinds];
+
+ // TODO: Remove mutable by moving the initializtaion to the registry function.
+ mutable Optional<uint64_t> KernelZeroFlagVal;
+
+ /// Process C++ operator new()'s allocation, which is the part of C++
+ /// new-expression that goes before the constructor.
+ void processNewAllocation(const CXXNewExpr *NE, CheckerContext &C,
+ SVal Target) const;
+
+ /// Perform a zero-allocation check.
+ ///
+ /// \param [in] E The expression that allocates memory.
+ /// \param [in] IndexOfSizeArg Index of the argument that specifies the size
+ /// of the memory that needs to be allocated. E.g. for malloc, this would be
+ /// 0.
+ /// \param [in] RetVal Specifies the newly allocated pointer value;
+ /// if unspecified, the value of expression \p E is used.
+ static ProgramStateRef ProcessZeroAllocCheck(CheckerContext &C, const Expr *E,
+ const unsigned IndexOfSizeArg,
+ ProgramStateRef State,
+ Optional<SVal> RetVal = None);
+
+ /// Model functions with the ownership_returns attribute.
+ ///
+ /// User-defined function may have the ownership_returns attribute, which
+ /// annotates that the function returns with an object that was allocated on
+ /// the heap, and passes the ownertship to the callee.
+ ///
+ /// void __attribute((ownership_returns(malloc, 1))) *my_malloc(size_t);
+ ///
+ /// It has two parameters:
+ /// - first: name of the resource (e.g. 'malloc')
+ /// - (OPTIONAL) second: size of the allocated region
+ ///
+ /// \param [in] CE The expression that allocates memory.
+ /// \param [in] Att The ownership_returns attribute.
+ /// \param [in] State The \c ProgramState right before allocation.
+ /// \returns The ProgramState right after allocation.
+ ProgramStateRef MallocMemReturnsAttr(CheckerContext &C,
+ const CallExpr *CE,
+ const OwnershipAttr* Att,
+ ProgramStateRef State) const;
+
+ /// Models memory allocation.
+ ///
+ /// \param [in] CE The expression that allocates memory.
+ /// \param [in] SizeEx Size of the memory that needs to be allocated.
+ /// \param [in] Init The value the allocated memory needs to be initialized.
+ /// with. For example, \c calloc initializes the allocated memory to 0,
+ /// malloc leaves it undefined.
+ /// \param [in] State The \c ProgramState right before allocation.
+ /// \returns The ProgramState right after allocation.
+ static ProgramStateRef MallocMemAux(CheckerContext &C, const CallExpr *CE,
+ const Expr *SizeEx, SVal Init,
+ ProgramStateRef State,
+ AllocationFamily Family = AF_Malloc);
+
+ /// Models memory allocation.
+ ///
+ /// \param [in] CE The expression that allocates memory.
+ /// \param [in] Size Size of the memory that needs to be allocated.
+ /// \param [in] Init The value the allocated memory needs to be initialized.
+ /// with. For example, \c calloc initializes the allocated memory to 0,
+ /// malloc leaves it undefined.
+ /// \param [in] State The \c ProgramState right before allocation.
+ /// \returns The ProgramState right after allocation.
+ static ProgramStateRef MallocMemAux(CheckerContext &C, const CallExpr *CE,
+ SVal Size, SVal Init,
+ ProgramStateRef State,
+ AllocationFamily Family = AF_Malloc);
+
+ static ProgramStateRef addExtentSize(CheckerContext &C, const CXXNewExpr *NE,
+ ProgramStateRef State, SVal Target);
+
+ // Check if this malloc() for special flags. At present that means M_ZERO or
+ // __GFP_ZERO (in which case, treat it like calloc).
+ llvm::Optional<ProgramStateRef>
+ performKernelMalloc(const CallExpr *CE, CheckerContext &C,
+ const ProgramStateRef &State) const;
+
+ /// Model functions with the ownership_takes and ownership_holds attributes.
+ ///
+ /// User-defined function may have the ownership_takes and/or ownership_holds
+ /// attributes, which annotates that the function frees the memory passed as a
+ /// parameter.
+ ///
+ /// void __attribute((ownership_takes(malloc, 1))) my_free(void *);
+ /// void __attribute((ownership_holds(malloc, 1))) my_hold(void *);
+ ///
+ /// They have two parameters:
+ /// - first: name of the resource (e.g. 'malloc')
+ /// - second: index of the parameter the attribute applies to
+ ///
+ /// \param [in] CE The expression that frees memory.
+ /// \param [in] Att The ownership_takes or ownership_holds attribute.
+ /// \param [in] State The \c ProgramState right before allocation.
+ /// \returns The ProgramState right after deallocation.
+ ProgramStateRef FreeMemAttr(CheckerContext &C, const CallExpr *CE,
+ const OwnershipAttr* Att,
+ ProgramStateRef State) const;
+
+ /// Models memory deallocation.
+ ///
+ /// \param [in] CE The expression that frees memory.
+ /// \param [in] State The \c ProgramState right before allocation.
+ /// \param [in] Num Index of the argument that needs to be freed. This is
+ /// normally 0, but for custom free functions it may be different.
+ /// \param [in] Hold Whether the parameter at \p Index has the ownership_holds
+ /// attribute.
+ /// \param [out] IsKnownToBeAllocated Whether the memory to be freed is known
+ /// to have been allocated, or in other words, the symbol to be freed was
+ /// registered as allocated by this checker. In the following case, \c ptr
+ /// isn't known to be allocated.
+ /// void Haha(int *ptr) {
+ /// ptr = realloc(ptr, 67);
+ /// // ...
+ /// }
+ /// \param [in] ReturnsNullOnFailure Whether the memory deallocation function
+ /// we're modeling returns with Null on failure.
+ /// \returns The ProgramState right after deallocation.
+ ProgramStateRef FreeMemAux(CheckerContext &C, const CallExpr *CE,
+ ProgramStateRef State, unsigned Num, bool Hold,
+ bool &IsKnownToBeAllocated,
+ bool ReturnsNullOnFailure = false) const;
+
+ /// Models memory deallocation.
+ ///
+ /// \param [in] ArgExpr The variable who's pointee needs to be freed.
+ /// \param [in] ParentExpr The expression that frees the memory.
+ /// \param [in] State The \c ProgramState right before allocation.
+ /// normally 0, but for custom free functions it may be different.
+ /// \param [in] Hold Whether the parameter at \p Index has the ownership_holds
+ /// attribute.
+ /// \param [out] IsKnownToBeAllocated Whether the memory to be freed is known
+ /// to have been allocated, or in other words, the symbol to be freed was
+ /// registered as allocated by this checker. In the following case, \c ptr
+ /// isn't known to be allocated.
+ /// void Haha(int *ptr) {
+ /// ptr = realloc(ptr, 67);
+ /// // ...
+ /// }
+ /// \param [in] ReturnsNullOnFailure Whether the memory deallocation function
+ /// we're modeling returns with Null on failure.
+ /// \returns The ProgramState right after deallocation.
+ ProgramStateRef FreeMemAux(CheckerContext &C, const Expr *ArgExpr,
+ const Expr *ParentExpr, ProgramStateRef State,
+ bool Hold, bool &IsKnownToBeAllocated,
+ bool ReturnsNullOnFailure = false) const;
+
+ // TODO: Needs some refactoring, as all other deallocation modeling
+ // functions are suffering from out parameters and messy code due to how
+ // realloc is handled.
+ //
+ /// Models memory reallocation.
+ ///
+ /// \param [in] CE The expression that reallocated memory
+ /// \param [in] ShouldFreeOnFail Whether if reallocation fails, the supplied
+ /// memory should be freed.
+ /// \param [in] State The \c ProgramState right before reallocation.
+ /// \param [in] SuffixWithN Whether the reallocation function we're modeling
+ /// has an '_n' suffix, such as g_realloc_n.
+ /// \returns The ProgramState right after reallocation.
+ ProgramStateRef ReallocMemAux(CheckerContext &C, const CallExpr *CE,
+ bool ShouldFreeOnFail, ProgramStateRef State,
+ bool SuffixWithN = false) const;
+
+ /// Evaluates the buffer size that needs to be allocated.
+ ///
+ /// \param [in] Blocks The amount of blocks that needs to be allocated.
+ /// \param [in] BlockBytes The size of a block.
+ /// \returns The symbolic value of \p Blocks * \p BlockBytes.
+ static SVal evalMulForBufferSize(CheckerContext &C, const Expr *Blocks,
+ const Expr *BlockBytes);
+
+ /// Models zero initialized array allocation.
+ ///
+ /// \param [in] CE The expression that reallocated memory
+ /// \param [in] State The \c ProgramState right before reallocation.
+ /// \returns The ProgramState right after allocation.
+ static ProgramStateRef CallocMem(CheckerContext &C, const CallExpr *CE,
+ ProgramStateRef State);
+
+ /// See if deallocation happens in a suspicious context. If so, escape the
+ /// pointers that otherwise would have been deallocated and return true.
+ bool suppressDeallocationsInSuspiciousContexts(const CallExpr *CE,
+ CheckerContext &C) const;
+
+ /// If in \p S \p Sym is used, check whether \p Sym was already freed.
+ bool checkUseAfterFree(SymbolRef Sym, CheckerContext &C, const Stmt *S) const;
+
+ /// If in \p S \p Sym is used, check whether \p Sym was allocated as a zero
+ /// sized memory region.
+ void checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C,
+ const Stmt *S) const;
+
+ /// If in \p S \p Sym is being freed, check whether \p Sym was already freed.
+ bool checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const;
+
+ /// Check if the function is known to free memory, or if it is
+ /// "interesting" and should be modeled explicitly.
+ ///
+ /// \param [out] EscapingSymbol A function might not free memory in general,
+ /// but could be known to free a particular symbol. In this case, false is
+ /// returned and the single escaping symbol is returned through the out
+ /// parameter.
+ ///
+ /// We assume that pointers do not escape through calls to system functions
+ /// not handled by this checker.
+ bool mayFreeAnyEscapedMemoryOrIsModeledExplicitly(const CallEvent *Call,
+ ProgramStateRef State,
+ SymbolRef &EscapingSymbol) const;
+
+ /// Implementation of the checkPointerEscape callbacks.
+ ProgramStateRef checkPointerEscapeAux(ProgramStateRef State,
+ const InvalidatedSymbols &Escaped,
+ const CallEvent *Call,
+ PointerEscapeKind Kind,
+ bool IsConstPointerEscape) const;
+
+ // Implementation of the checkPreStmt and checkEndFunction callbacks.
+ void checkEscapeOnReturn(const ReturnStmt *S, CheckerContext &C) const;
+
+ ///@{
+ /// Tells if a given family/call/symbol is tracked by the current checker.
+ /// Sets CheckKind to the kind of the checker responsible for this
+ /// family/call/symbol.
+ Optional<CheckKind> getCheckIfTracked(AllocationFamily Family,
+ bool IsALeakCheck = false) const;
+ Optional<CheckKind> getCheckIfTracked(CheckerContext &C,
+ const Stmt *AllocDeallocStmt,
+ bool IsALeakCheck = false) const;
+ Optional<CheckKind> getCheckIfTracked(CheckerContext &C, SymbolRef Sym,
+ bool IsALeakCheck = false) const;
+ ///@}
+ static bool SummarizeValue(raw_ostream &os, SVal V);
+ static bool SummarizeRegion(raw_ostream &os, const MemRegion *MR);
+
+ void ReportBadFree(CheckerContext &C, SVal ArgVal, SourceRange Range,
+ const Expr *DeallocExpr) const;
+ void ReportFreeAlloca(CheckerContext &C, SVal ArgVal,
+ SourceRange Range) const;
+ void ReportMismatchedDealloc(CheckerContext &C, SourceRange Range,
+ const Expr *DeallocExpr, const RefState *RS,
+ SymbolRef Sym, bool OwnershipTransferred) const;
+ void ReportOffsetFree(CheckerContext &C, SVal ArgVal, SourceRange Range,
+ const Expr *DeallocExpr,
+ const Expr *AllocExpr = nullptr) const;
+ void ReportUseAfterFree(CheckerContext &C, SourceRange Range,
+ SymbolRef Sym) const;
+ void ReportDoubleFree(CheckerContext &C, SourceRange Range, bool Released,
+ SymbolRef Sym, SymbolRef PrevSym) const;
+
+ void ReportDoubleDelete(CheckerContext &C, SymbolRef Sym) const;
+
+ void ReportUseZeroAllocated(CheckerContext &C, SourceRange Range,
+ SymbolRef Sym) const;
+
+ void ReportFunctionPointerFree(CheckerContext &C, SVal ArgVal,
+ SourceRange Range, const Expr *FreeExpr) const;
+
+ /// Find the location of the allocation for Sym on the path leading to the
+ /// exploded node N.
+ static LeakInfo getAllocationSite(const ExplodedNode *N, SymbolRef Sym,
+ CheckerContext &C);
+
+ void reportLeak(SymbolRef Sym, ExplodedNode *N, CheckerContext &C) const;
+};
+
+//===----------------------------------------------------------------------===//
+// Definition of MallocBugVisitor.
+//===----------------------------------------------------------------------===//
+
+/// The bug visitor which allows us to print extra diagnostics along the
+/// BugReport path. For example, showing the allocation site of the leaked
+/// region.
+class MallocBugVisitor final : public BugReporterVisitor {
+protected:
+ enum NotificationMode { Normal, ReallocationFailed };
+
+ // The allocated region symbol tracked by the main analysis.
+ SymbolRef Sym;
+
+ // The mode we are in, i.e. what kind of diagnostics will be emitted.
+ NotificationMode Mode;
+
+ // A symbol from when the primary region should have been reallocated.
+ SymbolRef FailedReallocSymbol;
+
+ // A C++ destructor stack frame in which memory was released. Used for
+ // miscellaneous false positive suppression.
+ const StackFrameContext *ReleaseDestructorLC;
+
+ bool IsLeak;
+
+public:
+ MallocBugVisitor(SymbolRef S, bool isLeak = false)
+ : Sym(S), Mode(Normal), FailedReallocSymbol(nullptr),
+ ReleaseDestructorLC(nullptr), IsLeak(isLeak) {}
+
+ static void *getTag() {
+ static int Tag = 0;
+ return &Tag;
+ }
+
+ void Profile(llvm::FoldingSetNodeID &ID) const override {
+ ID.AddPointer(getTag());
+ ID.AddPointer(Sym);
+ }
+
+ /// Did not track -> allocated. Other state (released) -> allocated.
+ static inline bool isAllocated(const RefState *RSCurr, const RefState *RSPrev,
+ const Stmt *Stmt) {
+ return (Stmt && (isa<CallExpr>(Stmt) || isa<CXXNewExpr>(Stmt)) &&
+ (RSCurr &&
+ (RSCurr->isAllocated() || RSCurr->isAllocatedOfSizeZero())) &&
+ (!RSPrev ||
+ !(RSPrev->isAllocated() || RSPrev->isAllocatedOfSizeZero())));
+ }
+
+ /// Did not track -> released. Other state (allocated) -> released.
+ /// The statement associated with the release might be missing.
+ static inline bool isReleased(const RefState *RSCurr, const RefState *RSPrev,
+ const Stmt *Stmt) {
+ bool IsReleased =
+ (RSCurr && RSCurr->isReleased()) && (!RSPrev || !RSPrev->isReleased());
+ assert(!IsReleased ||
+ (Stmt && (isa<CallExpr>(Stmt) || isa<CXXDeleteExpr>(Stmt))) ||
+ (!Stmt && RSCurr->getAllocationFamily() == AF_InnerBuffer));
+ return IsReleased;
+ }
+
+ /// Did not track -> relinquished. Other state (allocated) -> relinquished.
+ static inline bool isRelinquished(const RefState *RSCurr,
+ const RefState *RSPrev, const Stmt *Stmt) {
+ return (Stmt &&
+ (isa<CallExpr>(Stmt) || isa<ObjCMessageExpr>(Stmt) ||
+ isa<ObjCPropertyRefExpr>(Stmt)) &&
+ (RSCurr && RSCurr->isRelinquished()) &&
+ (!RSPrev || !RSPrev->isRelinquished()));
+ }
+
+ /// If the expression is not a call, and the state change is
+ /// released -> allocated, it must be the realloc return value
+ /// check. If we have to handle more cases here, it might be cleaner just
+ /// to track this extra bit in the state itself.
+ static inline bool hasReallocFailed(const RefState *RSCurr,
+ const RefState *RSPrev,
+ const Stmt *Stmt) {
+ return ((!Stmt || !isa<CallExpr>(Stmt)) &&
+ (RSCurr &&
+ (RSCurr->isAllocated() || RSCurr->isAllocatedOfSizeZero())) &&
+ (RSPrev &&
+ !(RSPrev->isAllocated() || RSPrev->isAllocatedOfSizeZero())));
+ }
+
+ PathDiagnosticPieceRef VisitNode(const ExplodedNode *N,
+ BugReporterContext &BRC,
+ PathSensitiveBugReport &BR) override;
+
+ PathDiagnosticPieceRef getEndPath(BugReporterContext &BRC,
+ const ExplodedNode *EndPathNode,
+ PathSensitiveBugReport &BR) override {
+ if (!IsLeak)
+ return nullptr;
+
+ PathDiagnosticLocation L = BR.getLocation();
+ // Do not add the statement itself as a range in case of leak.
+ return std::make_shared<PathDiagnosticEventPiece>(L, BR.getDescription(),
+ false);
+ }
+
+private:
+ class StackHintGeneratorForReallocationFailed
+ : public StackHintGeneratorForSymbol {
+ public:
+ StackHintGeneratorForReallocationFailed(SymbolRef S, StringRef M)
+ : StackHintGeneratorForSymbol(S, M) {}
+
+ std::string getMessageForArg(const Expr *ArgE, unsigned ArgIndex) override {
+ // Printed parameters start at 1, not 0.
+ ++ArgIndex;
+
+ SmallString<200> buf;
+ llvm::raw_svector_ostream os(buf);
+
+ os << "Reallocation of " << ArgIndex << llvm::getOrdinalSuffix(ArgIndex)
+ << " parameter failed";
+
+ return os.str();
+ }
+
+ std::string getMessageForReturn(const CallExpr *CallExpr) override {
+ return "Reallocation of returned value failed";
+ }
+ };
+};
+
+} // end anonymous namespace
+
+// A map from the freed symbol to the symbol representing the return value of
+// the free function.
+REGISTER_MAP_WITH_PROGRAMSTATE(FreeReturnValue, SymbolRef, SymbolRef)
+
+namespace {
+class StopTrackingCallback final : public SymbolVisitor {
+ ProgramStateRef state;
+public:
+ StopTrackingCallback(ProgramStateRef st) : state(std::move(st)) {}
+ ProgramStateRef getState() const { return state; }
+
+ bool VisitSymbol(SymbolRef sym) override {
+ state = state->remove<RegionState>(sym);
+ return true;
+ }
+};
+} // end anonymous namespace
+
+//===----------------------------------------------------------------------===//
+// Methods of MemFunctionInfoTy.
+//===----------------------------------------------------------------------===//
+
+void MemFunctionInfoTy::initIdentifierInfo(ASTContext &Ctx) const {
+ if (II_malloc)
+ return;
+ II_alloca = &Ctx.Idents.get("alloca");
+ II_malloc = &Ctx.Idents.get("malloc");
+ II_free = &Ctx.Idents.get("free");
+ II_realloc = &Ctx.Idents.get("realloc");
+ II_reallocf = &Ctx.Idents.get("reallocf");
+ II_calloc = &Ctx.Idents.get("calloc");
+ II_valloc = &Ctx.Idents.get("valloc");
+ II_strdup = &Ctx.Idents.get("strdup");
+ II_strndup = &Ctx.Idents.get("strndup");
+ II_wcsdup = &Ctx.Idents.get("wcsdup");
+ II_kmalloc = &Ctx.Idents.get("kmalloc");
+ II_kfree = &Ctx.Idents.get("kfree");
+ II_if_nameindex = &Ctx.Idents.get("if_nameindex");
+ II_if_freenameindex = &Ctx.Idents.get("if_freenameindex");
+
+ //MSVC uses `_`-prefixed instead, so we check for them too.
+ II_win_strdup = &Ctx.Idents.get("_strdup");
+ II_win_wcsdup = &Ctx.Idents.get("_wcsdup");
+ II_win_alloca = &Ctx.Idents.get("_alloca");
+
+ // Glib
+ II_g_malloc = &Ctx.Idents.get("g_malloc");
+ II_g_malloc0 = &Ctx.Idents.get("g_malloc0");
+ II_g_realloc = &Ctx.Idents.get("g_realloc");
+ II_g_try_malloc = &Ctx.Idents.get("g_try_malloc");
+ II_g_try_malloc0 = &Ctx.Idents.get("g_try_malloc0");
+ II_g_try_realloc = &Ctx.Idents.get("g_try_realloc");
+ II_g_free = &Ctx.Idents.get("g_free");
+ II_g_memdup = &Ctx.Idents.get("g_memdup");
+ II_g_malloc_n = &Ctx.Idents.get("g_malloc_n");
+ II_g_malloc0_n = &Ctx.Idents.get("g_malloc0_n");
+ II_g_realloc_n = &Ctx.Idents.get("g_realloc_n");
+ II_g_try_malloc_n = &Ctx.Idents.get("g_try_malloc_n");
+ II_g_try_malloc0_n = &Ctx.Idents.get("g_try_malloc0_n");
+ II_g_try_realloc_n = &Ctx.Idents.get("g_try_realloc_n");
+}
+
+bool MemFunctionInfoTy::isMemFunction(const FunctionDecl *FD,
+ ASTContext &C) const {
+ if (isCMemFunction(FD, C, AF_Malloc, MemoryOperationKind::MOK_Any))
+ return true;
+
+ if (isCMemFunction(FD, C, AF_IfNameIndex, MemoryOperationKind::MOK_Any))
+ return true;
+
+ if (isCMemFunction(FD, C, AF_Alloca, MemoryOperationKind::MOK_Any))
+ return true;
+
+ if (isStandardNewDelete(FD, C))
+ return true;
+
+ return false;
+}
+
+bool MemFunctionInfoTy::isCMemFunction(const FunctionDecl *FD, ASTContext &C,
+ AllocationFamily Family,
+ MemoryOperationKind MemKind) const {
+ if (!FD)
+ return false;
+
+ bool CheckFree = (MemKind == MemoryOperationKind::MOK_Any ||
+ MemKind == MemoryOperationKind::MOK_Free);
+ bool CheckAlloc = (MemKind == MemoryOperationKind::MOK_Any ||
+ MemKind == MemoryOperationKind::MOK_Allocate);
+
+ if (FD->getKind() == Decl::Function) {
+ const IdentifierInfo *FunI = FD->getIdentifier();
+ initIdentifierInfo(C);
+
+ if (Family == AF_Malloc && CheckFree) {
+ if (FunI == II_free || FunI == II_realloc || FunI == II_reallocf ||
+ FunI == II_g_free || FunI == II_kfree)
+ return true;
+ }
+
+ if (Family == AF_Malloc && CheckAlloc) {
+ if (FunI == II_malloc || FunI == II_realloc || FunI == II_reallocf ||
+ FunI == II_calloc || FunI == II_valloc || FunI == II_strdup ||
+ FunI == II_win_strdup || FunI == II_strndup || FunI == II_wcsdup ||
+ FunI == II_win_wcsdup || FunI == II_kmalloc ||
+ FunI == II_g_malloc || FunI == II_g_malloc0 ||
+ FunI == II_g_realloc || FunI == II_g_try_malloc ||
+ FunI == II_g_try_malloc0 || FunI == II_g_try_realloc ||
+ FunI == II_g_memdup || FunI == II_g_malloc_n ||
+ FunI == II_g_malloc0_n || FunI == II_g_realloc_n ||
+ FunI == II_g_try_malloc_n || FunI == II_g_try_malloc0_n ||
+ FunI == II_g_try_realloc_n)
+ return true;
+ }
+
+ if (Family == AF_IfNameIndex && CheckFree) {
+ if (FunI == II_if_freenameindex)
+ return true;
+ }
+
+ if (Family == AF_IfNameIndex && CheckAlloc) {
+ if (FunI == II_if_nameindex)
+ return true;
+ }
+
+ if (Family == AF_Alloca && CheckAlloc) {
+ if (FunI == II_alloca || FunI == II_win_alloca)
+ return true;
+ }
+ }
+
+ if (Family != AF_Malloc)
+ return false;
+
+ if (ShouldIncludeOwnershipAnnotatedFunctions && FD->hasAttrs()) {
+ for (const auto *I : FD->specific_attrs<OwnershipAttr>()) {
+ OwnershipAttr::OwnershipKind OwnKind = I->getOwnKind();
+ if(OwnKind == OwnershipAttr::Takes || OwnKind == OwnershipAttr::Holds) {
+ if (CheckFree)
+ return true;
+ } else if (OwnKind == OwnershipAttr::Returns) {
+ if (CheckAlloc)
+ return true;
+ }
+ }
+ }
+
+ return false;
+}
+bool MemFunctionInfoTy::isStandardNewDelete(const FunctionDecl *FD,
+ ASTContext &C) const {
+ if (!FD)
+ return false;
+
+ OverloadedOperatorKind Kind = FD->getOverloadedOperator();
+ if (Kind != OO_New && Kind != OO_Array_New &&
+ Kind != OO_Delete && Kind != OO_Array_Delete)
+ return false;
+
+ // This is standard if and only if it's not defined in a user file.
+ SourceLocation L = FD->getLocation();
+ // If the header for operator delete is not included, it's still defined
+ // in an invalid source location. Check to make sure we don't crash.
+ return !L.isValid() || C.getSourceManager().isInSystemHeader(L);
+}
+
+//===----------------------------------------------------------------------===//
+// Methods of MallocChecker and MallocBugVisitor.
+//===----------------------------------------------------------------------===//
+
+llvm::Optional<ProgramStateRef> MallocChecker::performKernelMalloc(
+ const CallExpr *CE, CheckerContext &C, const ProgramStateRef &State) const {
+ // 3-argument malloc(), as commonly used in {Free,Net,Open}BSD Kernels:
+ //
+ // void *malloc(unsigned long size, struct malloc_type *mtp, int flags);
+ //
+ // One of the possible flags is M_ZERO, which means 'give me back an
+ // allocation which is already zeroed', like calloc.
+
+ // 2-argument kmalloc(), as used in the Linux kernel:
+ //
+ // void *kmalloc(size_t size, gfp_t flags);
+ //
+ // Has the similar flag value __GFP_ZERO.
+
+ // This logic is largely cloned from O_CREAT in UnixAPIChecker, maybe some
+ // code could be shared.
+
+ ASTContext &Ctx = C.getASTContext();
+ llvm::Triple::OSType OS = Ctx.getTargetInfo().getTriple().getOS();
+
+ if (!KernelZeroFlagVal.hasValue()) {
+ if (OS == llvm::Triple::FreeBSD)
+ KernelZeroFlagVal = 0x0100;
+ else if (OS == llvm::Triple::NetBSD)
+ KernelZeroFlagVal = 0x0002;
+ else if (OS == llvm::Triple::OpenBSD)
+ KernelZeroFlagVal = 0x0008;
+ else if (OS == llvm::Triple::Linux)
+ // __GFP_ZERO
+ KernelZeroFlagVal = 0x8000;
+ else
+ // FIXME: We need a more general way of getting the M_ZERO value.
+ // See also: O_CREAT in UnixAPIChecker.cpp.
+
+ // Fall back to normal malloc behavior on platforms where we don't
+ // know M_ZERO.
+ return None;
+ }
+
+ // We treat the last argument as the flags argument, and callers fall-back to
+ // normal malloc on a None return. This works for the FreeBSD kernel malloc
+ // as well as Linux kmalloc.
+ if (CE->getNumArgs() < 2)
+ return None;
+
+ const Expr *FlagsEx = CE->getArg(CE->getNumArgs() - 1);
+ const SVal V = C.getSVal(FlagsEx);
+ if (!V.getAs<NonLoc>()) {
+ // The case where 'V' can be a location can only be due to a bad header,
+ // so in this case bail out.
+ return None;
+ }
+
+ NonLoc Flags = V.castAs<NonLoc>();
+ NonLoc ZeroFlag = C.getSValBuilder()
+ .makeIntVal(KernelZeroFlagVal.getValue(), FlagsEx->getType())
+ .castAs<NonLoc>();
+ SVal MaskedFlagsUC = C.getSValBuilder().evalBinOpNN(State, BO_And,
+ Flags, ZeroFlag,
+ FlagsEx->getType());
+ if (MaskedFlagsUC.isUnknownOrUndef())
+ return None;
+ DefinedSVal MaskedFlags = MaskedFlagsUC.castAs<DefinedSVal>();
+
+ // Check if maskedFlags is non-zero.
+ ProgramStateRef TrueState, FalseState;
+ std::tie(TrueState, FalseState) = State->assume(MaskedFlags);
+
+ // If M_ZERO is set, treat this like calloc (initialized).
+ if (TrueState && !FalseState) {
+ SVal ZeroVal = C.getSValBuilder().makeZeroVal(Ctx.CharTy);
+ return MallocMemAux(C, CE, CE->getArg(0), ZeroVal, TrueState);
+ }
+
+ return None;
+}
+
+SVal MallocChecker::evalMulForBufferSize(CheckerContext &C, const Expr *Blocks,
+ const Expr *BlockBytes) {
+ SValBuilder &SB = C.getSValBuilder();
+ SVal BlocksVal = C.getSVal(Blocks);
+ SVal BlockBytesVal = C.getSVal(BlockBytes);
+ ProgramStateRef State = C.getState();
+ SVal TotalSize = SB.evalBinOp(State, BO_Mul, BlocksVal, BlockBytesVal,
+ SB.getContext().getSizeType());
+ return TotalSize;
+}
+
+void MallocChecker::checkPostStmt(const CallExpr *CE, CheckerContext &C) const {
+ if (C.wasInlined)
+ return;
+
+ const FunctionDecl *FD = C.getCalleeDecl(CE);
+ if (!FD)
+ return;
+
+ ProgramStateRef State = C.getState();
+ bool IsKnownToBeAllocatedMemory = false;
+
+ if (FD->getKind() == Decl::Function) {
+ MemFunctionInfo.initIdentifierInfo(C.getASTContext());
+ IdentifierInfo *FunI = FD->getIdentifier();
+
+ if (FunI == MemFunctionInfo.II_malloc ||
+ FunI == MemFunctionInfo.II_g_malloc ||
+ FunI == MemFunctionInfo.II_g_try_malloc) {
+ switch (CE->getNumArgs()) {
+ default:
+ return;
+ case 1:
+ State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State);
+ State = ProcessZeroAllocCheck(C, CE, 0, State);
+ break;
+ case 2:
+ State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State);
+ break;
+ case 3:
+ llvm::Optional<ProgramStateRef> MaybeState =
+ performKernelMalloc(CE, C, State);
+ if (MaybeState.hasValue())
+ State = MaybeState.getValue();
+ else
+ State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State);
+ break;
+ }
+ } else if (FunI == MemFunctionInfo.II_kmalloc) {
+ if (CE->getNumArgs() < 1)
+ return;
+ llvm::Optional<ProgramStateRef> MaybeState =
+ performKernelMalloc(CE, C, State);
+ if (MaybeState.hasValue())
+ State = MaybeState.getValue();
+ else
+ State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State);
+ } else if (FunI == MemFunctionInfo.II_valloc) {
+ if (CE->getNumArgs() < 1)
+ return;
+ State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State);
+ State = ProcessZeroAllocCheck(C, CE, 0, State);
+ } else if (FunI == MemFunctionInfo.II_realloc ||
+ FunI == MemFunctionInfo.II_g_realloc ||
+ FunI == MemFunctionInfo.II_g_try_realloc) {
+ State = ReallocMemAux(C, CE, /*ShouldFreeOnFail*/ false, State);
+ State = ProcessZeroAllocCheck(C, CE, 1, State);
+ } else if (FunI == MemFunctionInfo.II_reallocf) {
+ State = ReallocMemAux(C, CE, /*ShouldFreeOnFail*/ true, State);
+ State = ProcessZeroAllocCheck(C, CE, 1, State);
+ } else if (FunI == MemFunctionInfo.II_calloc) {
+ State = CallocMem(C, CE, State);
+ State = ProcessZeroAllocCheck(C, CE, 0, State);
+ State = ProcessZeroAllocCheck(C, CE, 1, State);
+ } else if (FunI == MemFunctionInfo.II_free ||
+ FunI == MemFunctionInfo.II_g_free ||
+ FunI == MemFunctionInfo.II_kfree) {
+ if (suppressDeallocationsInSuspiciousContexts(CE, C))
+ return;
+
+ State = FreeMemAux(C, CE, State, 0, false, IsKnownToBeAllocatedMemory);
+ } else if (FunI == MemFunctionInfo.II_strdup ||
+ FunI == MemFunctionInfo.II_win_strdup ||
+ FunI == MemFunctionInfo.II_wcsdup ||
+ FunI == MemFunctionInfo.II_win_wcsdup) {
+ State = MallocUpdateRefState(C, CE, State);
+ } else if (FunI == MemFunctionInfo.II_strndup) {
+ State = MallocUpdateRefState(C, CE, State);
+ } else if (FunI == MemFunctionInfo.II_alloca ||
+ FunI == MemFunctionInfo.II_win_alloca) {
+ if (CE->getNumArgs() < 1)
+ return;
+ State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State,
+ AF_Alloca);
+ State = ProcessZeroAllocCheck(C, CE, 0, State);
+ } else if (MemFunctionInfo.isStandardNewDelete(FD, C.getASTContext())) {
+ // Process direct calls to operator new/new[]/delete/delete[] functions
+ // as distinct from new/new[]/delete/delete[] expressions that are
+ // processed by the checkPostStmt callbacks for CXXNewExpr and
+ // CXXDeleteExpr.
+ switch (FD->getOverloadedOperator()) {
+ case OO_New:
+ State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State,
+ AF_CXXNew);
+ State = ProcessZeroAllocCheck(C, CE, 0, State);
+ break;
+ case OO_Array_New:
+ State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State,
+ AF_CXXNewArray);
+ State = ProcessZeroAllocCheck(C, CE, 0, State);
+ break;
+ case OO_Delete:
+ case OO_Array_Delete:
+ State = FreeMemAux(C, CE, State, 0, false, IsKnownToBeAllocatedMemory);
+ break;
+ default:
+ llvm_unreachable("not a new/delete operator");
+ }
+ } else if (FunI == MemFunctionInfo.II_if_nameindex) {
+ // Should we model this differently? We can allocate a fixed number of
+ // elements with zeros in the last one.
+ State = MallocMemAux(C, CE, UnknownVal(), UnknownVal(), State,
+ AF_IfNameIndex);
+ } else if (FunI == MemFunctionInfo.II_if_freenameindex) {
+ State = FreeMemAux(C, CE, State, 0, false, IsKnownToBeAllocatedMemory);
+ } else if (FunI == MemFunctionInfo.II_g_malloc0 ||
+ FunI == MemFunctionInfo.II_g_try_malloc0) {
+ if (CE->getNumArgs() < 1)
+ return;
+ SValBuilder &svalBuilder = C.getSValBuilder();
+ SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy);
+ State = MallocMemAux(C, CE, CE->getArg(0), zeroVal, State);
+ State = ProcessZeroAllocCheck(C, CE, 0, State);
+ } else if (FunI == MemFunctionInfo.II_g_memdup) {
+ if (CE->getNumArgs() < 2)
+ return;
+ State = MallocMemAux(C, CE, CE->getArg(1), UndefinedVal(), State);
+ State = ProcessZeroAllocCheck(C, CE, 1, State);
+ } else if (FunI == MemFunctionInfo.II_g_malloc_n ||
+ FunI == MemFunctionInfo.II_g_try_malloc_n ||
+ FunI == MemFunctionInfo.II_g_malloc0_n ||
+ FunI == MemFunctionInfo.II_g_try_malloc0_n) {
+ if (CE->getNumArgs() < 2)
+ return;
+ SVal Init = UndefinedVal();
+ if (FunI == MemFunctionInfo.II_g_malloc0_n ||
+ FunI == MemFunctionInfo.II_g_try_malloc0_n) {
+ SValBuilder &SB = C.getSValBuilder();
+ Init = SB.makeZeroVal(SB.getContext().CharTy);
+ }
+ SVal TotalSize = evalMulForBufferSize(C, CE->getArg(0), CE->getArg(1));
+ State = MallocMemAux(C, CE, TotalSize, Init, State);
+ State = ProcessZeroAllocCheck(C, CE, 0, State);
+ State = ProcessZeroAllocCheck(C, CE, 1, State);
+ } else if (FunI == MemFunctionInfo.II_g_realloc_n ||
+ FunI == MemFunctionInfo.II_g_try_realloc_n) {
+ if (CE->getNumArgs() < 3)
+ return;
+ State = ReallocMemAux(C, CE, /*ShouldFreeOnFail*/ false, State,
+ /*SuffixWithN*/ true);
+ State = ProcessZeroAllocCheck(C, CE, 1, State);
+ State = ProcessZeroAllocCheck(C, CE, 2, State);
+ }
+ }
+
+ if (MemFunctionInfo.ShouldIncludeOwnershipAnnotatedFunctions ||
+ ChecksEnabled[CK_MismatchedDeallocatorChecker]) {
+ // Check all the attributes, if there are any.
+ // There can be multiple of these attributes.
+ if (FD->hasAttrs())
+ for (const auto *I : FD->specific_attrs<OwnershipAttr>()) {
+ switch (I->getOwnKind()) {
+ case OwnershipAttr::Returns:
+ State = MallocMemReturnsAttr(C, CE, I, State);
+ break;
+ case OwnershipAttr::Takes:
+ case OwnershipAttr::Holds:
+ State = FreeMemAttr(C, CE, I, State);
+ break;
+ }
+ }
+ }
+ C.addTransition(State);
+}
+
+// Performs a 0-sized allocations check.
+ProgramStateRef MallocChecker::ProcessZeroAllocCheck(
+ CheckerContext &C, const Expr *E, const unsigned IndexOfSizeArg,
+ ProgramStateRef State, Optional<SVal> RetVal) {
+ if (!State)
+ return nullptr;
+
+ if (!RetVal)
+ RetVal = C.getSVal(E);
+
+ const Expr *Arg = nullptr;
+
+ if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
+ Arg = CE->getArg(IndexOfSizeArg);
+ }
+ else if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(E)) {
+ if (NE->isArray())
+ Arg = *NE->getArraySize();
+ else
+ return State;
+ }
+ else
+ llvm_unreachable("not a CallExpr or CXXNewExpr");
+
+ assert(Arg);
+
+ Optional<DefinedSVal> DefArgVal = C.getSVal(Arg).getAs<DefinedSVal>();
+
+ if (!DefArgVal)
+ return State;
+
+ // Check if the allocation size is 0.
+ ProgramStateRef TrueState, FalseState;
+ SValBuilder &SvalBuilder = C.getSValBuilder();
+ DefinedSVal Zero =
+ SvalBuilder.makeZeroVal(Arg->getType()).castAs<DefinedSVal>();
+
+ std::tie(TrueState, FalseState) =
+ State->assume(SvalBuilder.evalEQ(State, *DefArgVal, Zero));
+
+ if (TrueState && !FalseState) {
+ SymbolRef Sym = RetVal->getAsLocSymbol();
+ if (!Sym)
+ return State;
+
+ const RefState *RS = State->get<RegionState>(Sym);
+ if (RS) {
+ if (RS->isAllocated())
+ return TrueState->set<RegionState>(Sym,
+ RefState::getAllocatedOfSizeZero(RS));
+ else
+ return State;
+ } else {
+ // Case of zero-size realloc. Historically 'realloc(ptr, 0)' is treated as
+ // 'free(ptr)' and the returned value from 'realloc(ptr, 0)' is not
+ // tracked. Add zero-reallocated Sym to the state to catch references
+ // to zero-allocated memory.
+ return TrueState->add<ReallocSizeZeroSymbols>(Sym);
+ }
+ }
+
+ // Assume the value is non-zero going forward.
+ assert(FalseState);
+ return FalseState;
+}
+
+static QualType getDeepPointeeType(QualType T) {
+ QualType Result = T, PointeeType = T->getPointeeType();
+ while (!PointeeType.isNull()) {
+ Result = PointeeType;
+ PointeeType = PointeeType->getPointeeType();
+ }
+ return Result;
+}
+
+/// \returns true if the constructor invoked by \p NE has an argument of a
+/// pointer/reference to a record type.
+static bool hasNonTrivialConstructorCall(const CXXNewExpr *NE) {
+
+ const CXXConstructExpr *ConstructE = NE->getConstructExpr();
+ if (!ConstructE)
+ return false;
+
+ if (!NE->getAllocatedType()->getAsCXXRecordDecl())
+ return false;
+
+ const CXXConstructorDecl *CtorD = ConstructE->getConstructor();
+
+ // Iterate over the constructor parameters.
+ for (const auto *CtorParam : CtorD->parameters()) {
+
+ QualType CtorParamPointeeT = CtorParam->getType()->getPointeeType();
+ if (CtorParamPointeeT.isNull())
+ continue;
+
+ CtorParamPointeeT = getDeepPointeeType(CtorParamPointeeT);
+
+ if (CtorParamPointeeT->getAsCXXRecordDecl())
+ return true;
+ }
+
+ return false;
+}
+
+void MallocChecker::processNewAllocation(const CXXNewExpr *NE,
+ CheckerContext &C,
+ SVal Target) const {
+ if (!MemFunctionInfo.isStandardNewDelete(NE->getOperatorNew(),
+ C.getASTContext()))
+ return;
+
+ const ParentMap &PM = C.getLocationContext()->getParentMap();
+
+ // Non-trivial constructors have a chance to escape 'this', but marking all
+ // invocations of trivial constructors as escaped would cause too great of
+ // reduction of true positives, so let's just do that for constructors that
+ // have an argument of a pointer-to-record type.
+ if (!PM.isConsumedExpr(NE) && hasNonTrivialConstructorCall(NE))
+ return;
+
+ ProgramStateRef State = C.getState();
+ // The return value from operator new is bound to a specified initialization
+ // value (if any) and we don't want to loose this value. So we call
+ // MallocUpdateRefState() instead of MallocMemAux() which breaks the
+ // existing binding.
+ State = MallocUpdateRefState(C, NE, State, NE->isArray() ? AF_CXXNewArray
+ : AF_CXXNew, Target);
+ State = addExtentSize(C, NE, State, Target);
+ State = ProcessZeroAllocCheck(C, NE, 0, State, Target);
+ C.addTransition(State);
+}
+
+void MallocChecker::checkPostStmt(const CXXNewExpr *NE,
+ CheckerContext &C) const {
+ if (!C.getAnalysisManager().getAnalyzerOptions().MayInlineCXXAllocator)
+ processNewAllocation(NE, C, C.getSVal(NE));
+}
+
+void MallocChecker::checkNewAllocator(const CXXNewExpr *NE, SVal Target,
+ CheckerContext &C) const {
+ if (!C.wasInlined)
+ processNewAllocation(NE, C, Target);
+}
+
+// Sets the extent value of the MemRegion allocated by
+// new expression NE to its size in Bytes.
+//
+ProgramStateRef MallocChecker::addExtentSize(CheckerContext &C,
+ const CXXNewExpr *NE,
+ ProgramStateRef State,
+ SVal Target) {
+ if (!State)
+ return nullptr;
+ SValBuilder &svalBuilder = C.getSValBuilder();
+ SVal ElementCount;
+ const SubRegion *Region;
+ if (NE->isArray()) {
+ const Expr *SizeExpr = *NE->getArraySize();
+ ElementCount = C.getSVal(SizeExpr);
+ // Store the extent size for the (symbolic)region
+ // containing the elements.
+ Region = Target.getAsRegion()
+ ->castAs<SubRegion>()
+ ->StripCasts()
+ ->castAs<SubRegion>();
+ } else {
+ ElementCount = svalBuilder.makeIntVal(1, true);
+ Region = Target.getAsRegion()->castAs<SubRegion>();
+ }
+
+ // Set the region's extent equal to the Size in Bytes.
+ QualType ElementType = NE->getAllocatedType();
+ ASTContext &AstContext = C.getASTContext();
+ CharUnits TypeSize = AstContext.getTypeSizeInChars(ElementType);
+
+ if (ElementCount.getAs<NonLoc>()) {
+ DefinedOrUnknownSVal Extent = Region->getExtent(svalBuilder);
+ // size in Bytes = ElementCount*TypeSize
+ SVal SizeInBytes = svalBuilder.evalBinOpNN(
+ State, BO_Mul, ElementCount.castAs<NonLoc>(),
+ svalBuilder.makeArrayIndex(TypeSize.getQuantity()),
+ svalBuilder.getArrayIndexType());
+ DefinedOrUnknownSVal extentMatchesSize = svalBuilder.evalEQ(
+ State, Extent, SizeInBytes.castAs<DefinedOrUnknownSVal>());
+ State = State->assume(extentMatchesSize, true);
+ }
+ return State;
+}
+
+void MallocChecker::checkPreStmt(const CXXDeleteExpr *DE,
+ CheckerContext &C) const {
+
+ if (!ChecksEnabled[CK_NewDeleteChecker])
+ if (SymbolRef Sym = C.getSVal(DE->getArgument()).getAsSymbol())
+ checkUseAfterFree(Sym, C, DE->getArgument());
+
+ if (!MemFunctionInfo.isStandardNewDelete(DE->getOperatorDelete(),
+ C.getASTContext()))
+ return;
+
+ ProgramStateRef State = C.getState();
+ bool IsKnownToBeAllocated;
+ State = FreeMemAux(C, DE->getArgument(), DE, State,
+ /*Hold*/ false, IsKnownToBeAllocated);
+
+ C.addTransition(State);
+}
+
+static bool isKnownDeallocObjCMethodName(const ObjCMethodCall &Call) {
+ // If the first selector piece is one of the names below, assume that the
+ // object takes ownership of the memory, promising to eventually deallocate it
+ // with free().
+ // Ex: [NSData dataWithBytesNoCopy:bytes length:10];
+ // (...unless a 'freeWhenDone' parameter is false, but that's checked later.)
+ StringRef FirstSlot = Call.getSelector().getNameForSlot(0);
+ return FirstSlot == "dataWithBytesNoCopy" ||
+ FirstSlot == "initWithBytesNoCopy" ||
+ FirstSlot == "initWithCharactersNoCopy";
+}
+
+static Optional<bool> getFreeWhenDoneArg(const ObjCMethodCall &Call) {
+ Selector S = Call.getSelector();
+
+ // FIXME: We should not rely on fully-constrained symbols being folded.
+ for (unsigned i = 1; i < S.getNumArgs(); ++i)
+ if (S.getNameForSlot(i).equals("freeWhenDone"))
+ return !Call.getArgSVal(i).isZeroConstant();
+
+ return None;
+}
+
+void MallocChecker::checkPostObjCMessage(const ObjCMethodCall &Call,
+ CheckerContext &C) const {
+ if (C.wasInlined)
+ return;
+
+ if (!isKnownDeallocObjCMethodName(Call))
+ return;
+
+ if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(Call))
+ if (!*FreeWhenDone)
+ return;
+
+ if (Call.hasNonZeroCallbackArg())
+ return;
+
+ bool IsKnownToBeAllocatedMemory;
+ ProgramStateRef State =
+ FreeMemAux(C, Call.getArgExpr(0), Call.getOriginExpr(), C.getState(),
+ /*Hold=*/true, IsKnownToBeAllocatedMemory,
+ /*RetNullOnFailure=*/true);
+
+ C.addTransition(State);
+}
+
+ProgramStateRef
+MallocChecker::MallocMemReturnsAttr(CheckerContext &C, const CallExpr *CE,
+ const OwnershipAttr *Att,
+ ProgramStateRef State) const {
+ if (!State)
+ return nullptr;
+
+ if (Att->getModule() != MemFunctionInfo.II_malloc)
+ return nullptr;
+
+ OwnershipAttr::args_iterator I = Att->args_begin(), E = Att->args_end();
+ if (I != E) {
+ return MallocMemAux(C, CE, CE->getArg(I->getASTIndex()), UndefinedVal(),
+ State);
+ }
+ return MallocMemAux(C, CE, UnknownVal(), UndefinedVal(), State);
+}
+
+ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C,
+ const CallExpr *CE,
+ const Expr *SizeEx, SVal Init,
+ ProgramStateRef State,
+ AllocationFamily Family) {
+ if (!State)
+ return nullptr;
+
+ return MallocMemAux(C, CE, C.getSVal(SizeEx), Init, State, Family);
+}
+
+ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C,
+ const CallExpr *CE,
+ SVal Size, SVal Init,
+ ProgramStateRef State,
+ AllocationFamily Family) {
+ if (!State)
+ return nullptr;
+
+ // We expect the malloc functions to return a pointer.
+ if (!Loc::isLocType(CE->getType()))
+ return nullptr;
+
+ // Bind the return value to the symbolic value from the heap region.
+ // TODO: We could rewrite post visit to eval call; 'malloc' does not have
+ // side effects other than what we model here.
+ unsigned Count = C.blockCount();
+ SValBuilder &svalBuilder = C.getSValBuilder();
+ const LocationContext *LCtx = C.getPredecessor()->getLocationContext();
+ DefinedSVal RetVal = svalBuilder.getConjuredHeapSymbolVal(CE, LCtx, Count)
+ .castAs<DefinedSVal>();
+ State = State->BindExpr(CE, C.getLocationContext(), RetVal);
+
+ // Fill the region with the initialization value.
+ State = State->bindDefaultInitial(RetVal, Init, LCtx);
+
+ // Set the region's extent equal to the Size parameter.
+ const SymbolicRegion *R =
+ dyn_cast_or_null<SymbolicRegion>(RetVal.getAsRegion());
+ if (!R)
+ return nullptr;
+ if (Optional<DefinedOrUnknownSVal> DefinedSize =
+ Size.getAs<DefinedOrUnknownSVal>()) {
+ SValBuilder &svalBuilder = C.getSValBuilder();
+ DefinedOrUnknownSVal Extent = R->getExtent(svalBuilder);
+ DefinedOrUnknownSVal extentMatchesSize =
+ svalBuilder.evalEQ(State, Extent, *DefinedSize);
+
+ State = State->assume(extentMatchesSize, true);
+ assert(State);
+ }
+
+ return MallocUpdateRefState(C, CE, State, Family);
+}
+
+static ProgramStateRef MallocUpdateRefState(CheckerContext &C, const Expr *E,
+ ProgramStateRef State,
+ AllocationFamily Family,
+ Optional<SVal> RetVal) {
+ if (!State)
+ return nullptr;
+
+ // Get the return value.
+ if (!RetVal)
+ RetVal = C.getSVal(E);
+
+ // We expect the malloc functions to return a pointer.
+ if (!RetVal->getAs<Loc>())
+ return nullptr;
+
+ SymbolRef Sym = RetVal->getAsLocSymbol();
+ // This is a return value of a function that was not inlined, such as malloc()
+ // or new(). We've checked that in the caller. Therefore, it must be a symbol.
+ assert(Sym);
+
+ // Set the symbol's state to Allocated.
+ return State->set<RegionState>(Sym, RefState::getAllocated(Family, E));
+}
+
+ProgramStateRef MallocChecker::FreeMemAttr(CheckerContext &C,
+ const CallExpr *CE,
+ const OwnershipAttr *Att,
+ ProgramStateRef State) const {
+ if (!State)
+ return nullptr;
+
+ if (Att->getModule() != MemFunctionInfo.II_malloc)
+ return nullptr;
+
+ bool IsKnownToBeAllocated = false;
+
+ for (const auto &Arg : Att->args()) {
+ ProgramStateRef StateI = FreeMemAux(
+ C, CE, State, Arg.getASTIndex(),
+ Att->getOwnKind() == OwnershipAttr::Holds, IsKnownToBeAllocated);
+ if (StateI)
+ State = StateI;
+ }
+ return State;
+}
+
+ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C, const CallExpr *CE,
+ ProgramStateRef State, unsigned Num,
+ bool Hold, bool &IsKnownToBeAllocated,
+ bool ReturnsNullOnFailure) const {
+ if (!State)
+ return nullptr;
+
+ if (CE->getNumArgs() < (Num + 1))
+ return nullptr;
+
+ return FreeMemAux(C, CE->getArg(Num), CE, State, Hold, IsKnownToBeAllocated,
+ ReturnsNullOnFailure);
+}
+
+/// Checks if the previous call to free on the given symbol failed - if free
+/// failed, returns true. Also, returns the corresponding return value symbol.
+static bool didPreviousFreeFail(ProgramStateRef State,
+ SymbolRef Sym, SymbolRef &RetStatusSymbol) {
+ const SymbolRef *Ret = State->get<FreeReturnValue>(Sym);
+ if (Ret) {
+ assert(*Ret && "We should not store the null return symbol");
+ ConstraintManager &CMgr = State->getConstraintManager();
+ ConditionTruthVal FreeFailed = CMgr.isNull(State, *Ret);
+ RetStatusSymbol = *Ret;
+ return FreeFailed.isConstrainedTrue();
+ }
+ return false;
+}
+
+static AllocationFamily
+getAllocationFamily(const MemFunctionInfoTy &MemFunctionInfo, CheckerContext &C,
+ const Stmt *S) {
+
+ if (!S)
+ return AF_None;
+
+ if (const CallExpr *CE = dyn_cast<CallExpr>(S)) {
+ const FunctionDecl *FD = C.getCalleeDecl(CE);
+
+ if (!FD)
+ FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
+
+ ASTContext &Ctx = C.getASTContext();
+
+ if (MemFunctionInfo.isCMemFunction(FD, Ctx, AF_Malloc,
+ MemoryOperationKind::MOK_Any))
+ return AF_Malloc;
+
+ if (MemFunctionInfo.isStandardNewDelete(FD, Ctx)) {
+ OverloadedOperatorKind Kind = FD->getOverloadedOperator();
+ if (Kind == OO_New || Kind == OO_Delete)
+ return AF_CXXNew;
+ else if (Kind == OO_Array_New || Kind == OO_Array_Delete)
+ return AF_CXXNewArray;
+ }
+
+ if (MemFunctionInfo.isCMemFunction(FD, Ctx, AF_IfNameIndex,
+ MemoryOperationKind::MOK_Any))
+ return AF_IfNameIndex;
+
+ if (MemFunctionInfo.isCMemFunction(FD, Ctx, AF_Alloca,
+ MemoryOperationKind::MOK_Any))
+ return AF_Alloca;
+
+ return AF_None;
+ }
+
+ if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(S))
+ return NE->isArray() ? AF_CXXNewArray : AF_CXXNew;
+
+ if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(S))
+ return DE->isArrayForm() ? AF_CXXNewArray : AF_CXXNew;
+
+ if (isa<ObjCMessageExpr>(S))
+ return AF_Malloc;
+
+ return AF_None;
+}
+
+static bool printAllocDeallocName(raw_ostream &os, CheckerContext &C,
+ const Expr *E) {
+ if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
+ // FIXME: This doesn't handle indirect calls.
+ const FunctionDecl *FD = CE->getDirectCallee();
+ if (!FD)
+ return false;
+
+ os << *FD;
+ if (!FD->isOverloadedOperator())
+ os << "()";
+ return true;
+ }
+
+ if (const ObjCMessageExpr *Msg = dyn_cast<ObjCMessageExpr>(E)) {
+ if (Msg->isInstanceMessage())
+ os << "-";
+ else
+ os << "+";
+ Msg->getSelector().print(os);
+ return true;
+ }
+
+ if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(E)) {
+ os << "'"
+ << getOperatorSpelling(NE->getOperatorNew()->getOverloadedOperator())
+ << "'";
+ return true;
+ }
+
+ if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(E)) {
+ os << "'"
+ << getOperatorSpelling(DE->getOperatorDelete()->getOverloadedOperator())
+ << "'";
+ return true;
+ }
+
+ return false;
+}
+
+static void printExpectedAllocName(raw_ostream &os,
+ const MemFunctionInfoTy &MemFunctionInfo,
+ CheckerContext &C, const Expr *E) {
+ AllocationFamily Family = getAllocationFamily(MemFunctionInfo, C, E);
+
+ switch(Family) {
+ case AF_Malloc: os << "malloc()"; return;
+ case AF_CXXNew: os << "'new'"; return;
+ case AF_CXXNewArray: os << "'new[]'"; return;
+ case AF_IfNameIndex: os << "'if_nameindex()'"; return;
+ case AF_InnerBuffer: os << "container-specific allocator"; return;
+ case AF_Alloca:
+ case AF_None: llvm_unreachable("not a deallocation expression");
+ }
+}
+
+static void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family) {
+ switch(Family) {
+ case AF_Malloc: os << "free()"; return;
+ case AF_CXXNew: os << "'delete'"; return;
+ case AF_CXXNewArray: os << "'delete[]'"; return;
+ case AF_IfNameIndex: os << "'if_freenameindex()'"; return;
+ case AF_InnerBuffer: os << "container-specific deallocator"; return;
+ case AF_Alloca:
+ case AF_None: llvm_unreachable("suspicious argument");
+ }
+}
+
+ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C,
+ const Expr *ArgExpr,
+ const Expr *ParentExpr,
+ ProgramStateRef State, bool Hold,
+ bool &IsKnownToBeAllocated,
+ bool ReturnsNullOnFailure) const {
+
+ if (!State)
+ return nullptr;
+
+ SVal ArgVal = C.getSVal(ArgExpr);
+ if (!ArgVal.getAs<DefinedOrUnknownSVal>())
+ return nullptr;
+ DefinedOrUnknownSVal location = ArgVal.castAs<DefinedOrUnknownSVal>();
+
+ // Check for null dereferences.
+ if (!location.getAs<Loc>())
+ return nullptr;
+
+ // The explicit NULL case, no operation is performed.
+ ProgramStateRef notNullState, nullState;
+ std::tie(notNullState, nullState) = State->assume(location);
+ if (nullState && !notNullState)
+ return nullptr;
+
+ // Unknown values could easily be okay
+ // Undefined values are handled elsewhere
+ if (ArgVal.isUnknownOrUndef())
+ return nullptr;
+
+ const MemRegion *R = ArgVal.getAsRegion();
+
+ // Nonlocs can't be freed, of course.
+ // Non-region locations (labels and fixed addresses) also shouldn't be freed.
+ if (!R) {
+ ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr);
+ return nullptr;
+ }
+
+ R = R->StripCasts();
+
+ // Blocks might show up as heap data, but should not be free()d
+ if (isa<BlockDataRegion>(R)) {
+ ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr);
+ return nullptr;
+ }
+
+ const MemSpaceRegion *MS = R->getMemorySpace();
+
+ // Parameters, locals, statics, globals, and memory returned by
+ // __builtin_alloca() shouldn't be freed.
+ if (!(isa<UnknownSpaceRegion>(MS) || isa<HeapSpaceRegion>(MS))) {
+ // FIXME: at the time this code was written, malloc() regions were
+ // represented by conjured symbols, which are all in UnknownSpaceRegion.
+ // This means that there isn't actually anything from HeapSpaceRegion
+ // that should be freed, even though we allow it here.
+ // Of course, free() can work on memory allocated outside the current
+ // function, so UnknownSpaceRegion is always a possibility.
+ // False negatives are better than false positives.
+
+ if (isa<AllocaRegion>(R))
+ ReportFreeAlloca(C, ArgVal, ArgExpr->getSourceRange());
+ else
+ ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr);
+
+ return nullptr;
+ }
+
+ const SymbolicRegion *SrBase = dyn_cast<SymbolicRegion>(R->getBaseRegion());
+ // Various cases could lead to non-symbol values here.
+ // For now, ignore them.
+ if (!SrBase)
+ return nullptr;
+
+ SymbolRef SymBase = SrBase->getSymbol();
+ const RefState *RsBase = State->get<RegionState>(SymBase);
+ SymbolRef PreviousRetStatusSymbol = nullptr;
+
+ IsKnownToBeAllocated =
+ RsBase && (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero());
+
+ if (RsBase) {
+
+ // Memory returned by alloca() shouldn't be freed.
+ if (RsBase->getAllocationFamily() == AF_Alloca) {
+ ReportFreeAlloca(C, ArgVal, ArgExpr->getSourceRange());
+ return nullptr;
+ }
+
+ // Check for double free first.
+ if ((RsBase->isReleased() || RsBase->isRelinquished()) &&
+ !didPreviousFreeFail(State, SymBase, PreviousRetStatusSymbol)) {
+ ReportDoubleFree(C, ParentExpr->getSourceRange(), RsBase->isReleased(),
+ SymBase, PreviousRetStatusSymbol);
+ return nullptr;
+
+ // If the pointer is allocated or escaped, but we are now trying to free it,
+ // check that the call to free is proper.
+ } else if (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero() ||
+ RsBase->isEscaped()) {
+
+ // Check if an expected deallocation function matches the real one.
+ bool DeallocMatchesAlloc =
+ RsBase->getAllocationFamily() ==
+ getAllocationFamily(MemFunctionInfo, C, ParentExpr);
+ if (!DeallocMatchesAlloc) {
+ ReportMismatchedDealloc(C, ArgExpr->getSourceRange(),
+ ParentExpr, RsBase, SymBase, Hold);
+ return nullptr;
+ }
+
+ // Check if the memory location being freed is the actual location
+ // allocated, or an offset.
+ RegionOffset Offset = R->getAsOffset();
+ if (Offset.isValid() &&
+ !Offset.hasSymbolicOffset() &&
+ Offset.getOffset() != 0) {
+ const Expr *AllocExpr = cast<Expr>(RsBase->getStmt());
+ ReportOffsetFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr,
+ AllocExpr);
+ return nullptr;
+ }
+ }
+ }
+
+ if (SymBase->getType()->isFunctionPointerType()) {
+ ReportFunctionPointerFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr);
+ return nullptr;
+ }
+
+ // Clean out the info on previous call to free return info.
+ State = State->remove<FreeReturnValue>(SymBase);
+
+ // Keep track of the return value. If it is NULL, we will know that free
+ // failed.
+ if (ReturnsNullOnFailure) {
+ SVal RetVal = C.getSVal(ParentExpr);
+ SymbolRef RetStatusSymbol = RetVal.getAsSymbol();
+ if (RetStatusSymbol) {
+ C.getSymbolManager().addSymbolDependency(SymBase, RetStatusSymbol);
+ State = State->set<FreeReturnValue>(SymBase, RetStatusSymbol);
+ }
+ }
+
+ AllocationFamily Family =
+ RsBase ? RsBase->getAllocationFamily()
+ : getAllocationFamily(MemFunctionInfo, C, ParentExpr);
+ // Normal free.
+ if (Hold)
+ return State->set<RegionState>(SymBase,
+ RefState::getRelinquished(Family,
+ ParentExpr));
+
+ return State->set<RegionState>(SymBase,
+ RefState::getReleased(Family, ParentExpr));
+}
+
+Optional<MallocChecker::CheckKind>
+MallocChecker::getCheckIfTracked(AllocationFamily Family,
+ bool IsALeakCheck) const {
+ switch (Family) {
+ case AF_Malloc:
+ case AF_Alloca:
+ case AF_IfNameIndex: {
+ if (ChecksEnabled[CK_MallocChecker])
+ return CK_MallocChecker;
+ return None;
+ }
+ case AF_CXXNew:
+ case AF_CXXNewArray: {
+ if (IsALeakCheck) {
+ if (ChecksEnabled[CK_NewDeleteLeaksChecker])
+ return CK_NewDeleteLeaksChecker;
+ }
+ else {
+ if (ChecksEnabled[CK_NewDeleteChecker])
+ return CK_NewDeleteChecker;
+ }
+ return None;
+ }
+ case AF_InnerBuffer: {
+ if (ChecksEnabled[CK_InnerPointerChecker])
+ return CK_InnerPointerChecker;
+ return None;
+ }
+ case AF_None: {
+ llvm_unreachable("no family");
+ }
+ }
+ llvm_unreachable("unhandled family");
+}
+
+Optional<MallocChecker::CheckKind>
+MallocChecker::getCheckIfTracked(CheckerContext &C,
+ const Stmt *AllocDeallocStmt,
+ bool IsALeakCheck) const {
+ return getCheckIfTracked(
+ getAllocationFamily(MemFunctionInfo, C, AllocDeallocStmt), IsALeakCheck);
+}
+
+Optional<MallocChecker::CheckKind>
+MallocChecker::getCheckIfTracked(CheckerContext &C, SymbolRef Sym,
+ bool IsALeakCheck) const {
+ if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym))
+ return CK_MallocChecker;
+
+ const RefState *RS = C.getState()->get<RegionState>(Sym);
+ assert(RS);
+ return getCheckIfTracked(RS->getAllocationFamily(), IsALeakCheck);
+}
+
+bool MallocChecker::SummarizeValue(raw_ostream &os, SVal V) {
+ if (Optional<nonloc::ConcreteInt> IntVal = V.getAs<nonloc::ConcreteInt>())
+ os << "an integer (" << IntVal->getValue() << ")";
+ else if (Optional<loc::ConcreteInt> ConstAddr = V.getAs<loc::ConcreteInt>())
+ os << "a constant address (" << ConstAddr->getValue() << ")";
+ else if (Optional<loc::GotoLabel> Label = V.getAs<loc::GotoLabel>())
+ os << "the address of the label '" << Label->getLabel()->getName() << "'";
+ else
+ return false;
+
+ return true;
+}
+
+bool MallocChecker::SummarizeRegion(raw_ostream &os,
+ const MemRegion *MR) {
+ switch (MR->getKind()) {
+ case MemRegion::FunctionCodeRegionKind: {
+ const NamedDecl *FD = cast<FunctionCodeRegion>(MR)->getDecl();
+ if (FD)
+ os << "the address of the function '" << *FD << '\'';
+ else
+ os << "the address of a function";
+ return true;
+ }
+ case MemRegion::BlockCodeRegionKind:
+ os << "block text";
+ return true;
+ case MemRegion::BlockDataRegionKind:
+ // FIXME: where the block came from?
+ os << "a block";
+ return true;
+ default: {
+ const MemSpaceRegion *MS = MR->getMemorySpace();
+
+ if (isa<StackLocalsSpaceRegion>(MS)) {
+ const VarRegion *VR = dyn_cast<VarRegion>(MR);
+ const VarDecl *VD;
+ if (VR)
+ VD = VR->getDecl();
+ else
+ VD = nullptr;
+
+ if (VD)
+ os << "the address of the local variable '" << VD->getName() << "'";
+ else
+ os << "the address of a local stack variable";
+ return true;
+ }
+
+ if (isa<StackArgumentsSpaceRegion>(MS)) {
+ const VarRegion *VR = dyn_cast<VarRegion>(MR);
+ const VarDecl *VD;
+ if (VR)
+ VD = VR->getDecl();
+ else
+ VD = nullptr;
+
+ if (VD)
+ os << "the address of the parameter '" << VD->getName() << "'";
+ else
+ os << "the address of a parameter";
+ return true;
+ }
+
+ if (isa<GlobalsSpaceRegion>(MS)) {
+ const VarRegion *VR = dyn_cast<VarRegion>(MR);
+ const VarDecl *VD;
+ if (VR)
+ VD = VR->getDecl();
+ else
+ VD = nullptr;
+
+ if (VD) {
+ if (VD->isStaticLocal())
+ os << "the address of the static variable '" << VD->getName() << "'";
+ else
+ os << "the address of the global variable '" << VD->getName() << "'";
+ } else
+ os << "the address of a global variable";
+ return true;
+ }
+
+ return false;
+ }
+ }
+}
+
+void MallocChecker::ReportBadFree(CheckerContext &C, SVal ArgVal,
+ SourceRange Range,
+ const Expr *DeallocExpr) const {
+
+ if (!ChecksEnabled[CK_MallocChecker] &&
+ !ChecksEnabled[CK_NewDeleteChecker])
+ return;
+
+ Optional<MallocChecker::CheckKind> CheckKind =
+ getCheckIfTracked(C, DeallocExpr);
+ if (!CheckKind.hasValue())
+ return;
+
+ if (ExplodedNode *N = C.generateErrorNode()) {
+ if (!BT_BadFree[*CheckKind])
+ BT_BadFree[*CheckKind].reset(new BugType(
+ CheckNames[*CheckKind], "Bad free", categories::MemoryError));
+
+ SmallString<100> buf;
+ llvm::raw_svector_ostream os(buf);
+
+ const MemRegion *MR = ArgVal.getAsRegion();
+ while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR))
+ MR = ER->getSuperRegion();
+
+ os << "Argument to ";
+ if (!printAllocDeallocName(os, C, DeallocExpr))
+ os << "deallocator";
+
+ os << " is ";
+ bool Summarized = MR ? SummarizeRegion(os, MR)
+ : SummarizeValue(os, ArgVal);
+ if (Summarized)
+ os << ", which is not memory allocated by ";
+ else
+ os << "not memory allocated by ";
+
+ printExpectedAllocName(os, MemFunctionInfo, C, DeallocExpr);
+
+ auto R = std::make_unique<PathSensitiveBugReport>(*BT_BadFree[*CheckKind],
+ os.str(), N);
+ R->markInteresting(MR);
+ R->addRange(Range);
+ C.emitReport(std::move(R));
+ }
+}
+
+void MallocChecker::ReportFreeAlloca(CheckerContext &C, SVal ArgVal,
+ SourceRange Range) const {
+
+ Optional<MallocChecker::CheckKind> CheckKind;
+
+ if (ChecksEnabled[CK_MallocChecker])
+ CheckKind = CK_MallocChecker;
+ else if (ChecksEnabled[CK_MismatchedDeallocatorChecker])
+ CheckKind = CK_MismatchedDeallocatorChecker;
+ else
+ return;
+
+ if (ExplodedNode *N = C.generateErrorNode()) {
+ if (!BT_FreeAlloca[*CheckKind])
+ BT_FreeAlloca[*CheckKind].reset(new BugType(
+ CheckNames[*CheckKind], "Free alloca()", categories::MemoryError));
+
+ auto R = std::make_unique<PathSensitiveBugReport>(
+ *BT_FreeAlloca[*CheckKind],
+ "Memory allocated by alloca() should not be deallocated", N);
+ R->markInteresting(ArgVal.getAsRegion());
+ R->addRange(Range);
+ C.emitReport(std::move(R));
+ }
+}
+
+void MallocChecker::ReportMismatchedDealloc(CheckerContext &C,
+ SourceRange Range,
+ const Expr *DeallocExpr,
+ const RefState *RS,
+ SymbolRef Sym,
+ bool OwnershipTransferred) const {
+
+ if (!ChecksEnabled[CK_MismatchedDeallocatorChecker])
+ return;
+
+ if (ExplodedNode *N = C.generateErrorNode()) {
+ if (!BT_MismatchedDealloc)
+ BT_MismatchedDealloc.reset(
+ new BugType(CheckNames[CK_MismatchedDeallocatorChecker],
+ "Bad deallocator", categories::MemoryError));
+
+ SmallString<100> buf;
+ llvm::raw_svector_ostream os(buf);
+
+ const Expr *AllocExpr = cast<Expr>(RS->getStmt());
+ SmallString<20> AllocBuf;
+ llvm::raw_svector_ostream AllocOs(AllocBuf);
+ SmallString<20> DeallocBuf;
+ llvm::raw_svector_ostream DeallocOs(DeallocBuf);
+
+ if (OwnershipTransferred) {
+ if (printAllocDeallocName(DeallocOs, C, DeallocExpr))
+ os << DeallocOs.str() << " cannot";
+ else
+ os << "Cannot";
+
+ os << " take ownership of memory";
+
+ if (printAllocDeallocName(AllocOs, C, AllocExpr))
+ os << " allocated by " << AllocOs.str();
+ } else {
+ os << "Memory";
+ if (printAllocDeallocName(AllocOs, C, AllocExpr))
+ os << " allocated by " << AllocOs.str();
+
+ os << " should be deallocated by ";
+ printExpectedDeallocName(os, RS->getAllocationFamily());
+
+ if (printAllocDeallocName(DeallocOs, C, DeallocExpr))
+ os << ", not " << DeallocOs.str();
+ }
+
+ auto R = std::make_unique<PathSensitiveBugReport>(*BT_MismatchedDealloc,
+ os.str(), N);
+ R->markInteresting(Sym);
+ R->addRange(Range);
+ R->addVisitor(std::make_unique<MallocBugVisitor>(Sym));
+ C.emitReport(std::move(R));
+ }
+}
+
+void MallocChecker::ReportOffsetFree(CheckerContext &C, SVal ArgVal,
+ SourceRange Range, const Expr *DeallocExpr,
+ const Expr *AllocExpr) const {
+
+
+ if (!ChecksEnabled[CK_MallocChecker] &&
+ !ChecksEnabled[CK_NewDeleteChecker])
+ return;
+
+ Optional<MallocChecker::CheckKind> CheckKind =
+ getCheckIfTracked(C, AllocExpr);
+ if (!CheckKind.hasValue())
+ return;
+
+ ExplodedNode *N = C.generateErrorNode();
+ if (!N)
+ return;
+
+ if (!BT_OffsetFree[*CheckKind])
+ BT_OffsetFree[*CheckKind].reset(new BugType(
+ CheckNames[*CheckKind], "Offset free", categories::MemoryError));
+
+ SmallString<100> buf;
+ llvm::raw_svector_ostream os(buf);
+ SmallString<20> AllocNameBuf;
+ llvm::raw_svector_ostream AllocNameOs(AllocNameBuf);
+
+ const MemRegion *MR = ArgVal.getAsRegion();
+ assert(MR && "Only MemRegion based symbols can have offset free errors");
+
+ RegionOffset Offset = MR->getAsOffset();
+ assert((Offset.isValid() &&
+ !Offset.hasSymbolicOffset() &&
+ Offset.getOffset() != 0) &&
+ "Only symbols with a valid offset can have offset free errors");
+
+ int offsetBytes = Offset.getOffset() / C.getASTContext().getCharWidth();
+
+ os << "Argument to ";
+ if (!printAllocDeallocName(os, C, DeallocExpr))
+ os << "deallocator";
+ os << " is offset by "
+ << offsetBytes
+ << " "
+ << ((abs(offsetBytes) > 1) ? "bytes" : "byte")
+ << " from the start of ";
+ if (AllocExpr && printAllocDeallocName(AllocNameOs, C, AllocExpr))
+ os << "memory allocated by " << AllocNameOs.str();
+ else
+ os << "allocated memory";
+
+ auto R = std::make_unique<PathSensitiveBugReport>(*BT_OffsetFree[*CheckKind],
+ os.str(), N);
+ R->markInteresting(MR->getBaseRegion());
+ R->addRange(Range);
+ C.emitReport(std::move(R));
+}
+
+void MallocChecker::ReportUseAfterFree(CheckerContext &C, SourceRange Range,
+ SymbolRef Sym) const {
+
+ if (!ChecksEnabled[CK_MallocChecker] &&
+ !ChecksEnabled[CK_NewDeleteChecker] &&
+ !ChecksEnabled[CK_InnerPointerChecker])
+ return;
+
+ Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym);
+ if (!CheckKind.hasValue())
+ return;
+
+ if (ExplodedNode *N = C.generateErrorNode()) {
+ if (!BT_UseFree[*CheckKind])
+ BT_UseFree[*CheckKind].reset(new BugType(
+ CheckNames[*CheckKind], "Use-after-free", categories::MemoryError));
+
+ AllocationFamily AF =
+ C.getState()->get<RegionState>(Sym)->getAllocationFamily();
+
+ auto R = std::make_unique<PathSensitiveBugReport>(
+ *BT_UseFree[*CheckKind],
+ AF == AF_InnerBuffer
+ ? "Inner pointer of container used after re/deallocation"
+ : "Use of memory after it is freed",
+ N);
+
+ R->markInteresting(Sym);
+ R->addRange(Range);
+ R->addVisitor(std::make_unique<MallocBugVisitor>(Sym));
+
+ if (AF == AF_InnerBuffer)
+ R->addVisitor(allocation_state::getInnerPointerBRVisitor(Sym));
+
+ C.emitReport(std::move(R));
+ }
+}
+
+void MallocChecker::ReportDoubleFree(CheckerContext &C, SourceRange Range,
+ bool Released, SymbolRef Sym,
+ SymbolRef PrevSym) const {
+
+ if (!ChecksEnabled[CK_MallocChecker] &&
+ !ChecksEnabled[CK_NewDeleteChecker])
+ return;
+
+ Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym);
+ if (!CheckKind.hasValue())
+ return;
+
+ if (ExplodedNode *N = C.generateErrorNode()) {
+ if (!BT_DoubleFree[*CheckKind])
+ BT_DoubleFree[*CheckKind].reset(new BugType(
+ CheckNames[*CheckKind], "Double free", categories::MemoryError));
+
+ auto R = std::make_unique<PathSensitiveBugReport>(
+ *BT_DoubleFree[*CheckKind],
+ (Released ? "Attempt to free released memory"
+ : "Attempt to free non-owned memory"),
+ N);
+ R->addRange(Range);
+ R->markInteresting(Sym);
+ if (PrevSym)
+ R->markInteresting(PrevSym);
+ R->addVisitor(std::make_unique<MallocBugVisitor>(Sym));
+ C.emitReport(std::move(R));
+ }
+}
+
+void MallocChecker::ReportDoubleDelete(CheckerContext &C, SymbolRef Sym) const {
+
+ if (!ChecksEnabled[CK_NewDeleteChecker])
+ return;
+
+ Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym);
+ if (!CheckKind.hasValue())
+ return;
+
+ if (ExplodedNode *N = C.generateErrorNode()) {
+ if (!BT_DoubleDelete)
+ BT_DoubleDelete.reset(new BugType(CheckNames[CK_NewDeleteChecker],
+ "Double delete",
+ categories::MemoryError));
+
+ auto R = std::make_unique<PathSensitiveBugReport>(
+ *BT_DoubleDelete, "Attempt to delete released memory", N);
+
+ R->markInteresting(Sym);
+ R->addVisitor(std::make_unique<MallocBugVisitor>(Sym));
+ C.emitReport(std::move(R));
+ }
+}
+
+void MallocChecker::ReportUseZeroAllocated(CheckerContext &C,
+ SourceRange Range,
+ SymbolRef Sym) const {
+
+ if (!ChecksEnabled[CK_MallocChecker] &&
+ !ChecksEnabled[CK_NewDeleteChecker])
+ return;
+
+ Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym);
+
+ if (!CheckKind.hasValue())
+ return;
+
+ if (ExplodedNode *N = C.generateErrorNode()) {
+ if (!BT_UseZerroAllocated[*CheckKind])
+ BT_UseZerroAllocated[*CheckKind].reset(
+ new BugType(CheckNames[*CheckKind], "Use of zero allocated",
+ categories::MemoryError));
+
+ auto R = std::make_unique<PathSensitiveBugReport>(
+ *BT_UseZerroAllocated[*CheckKind], "Use of zero-allocated memory", N);
+
+ R->addRange(Range);
+ if (Sym) {
+ R->markInteresting(Sym);
+ R->addVisitor(std::make_unique<MallocBugVisitor>(Sym));
+ }
+ C.emitReport(std::move(R));
+ }
+}
+
+void MallocChecker::ReportFunctionPointerFree(CheckerContext &C, SVal ArgVal,
+ SourceRange Range,
+ const Expr *FreeExpr) const {
+ if (!ChecksEnabled[CK_MallocChecker])
+ return;
+
+ Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, FreeExpr);
+ if (!CheckKind.hasValue())
+ return;
+
+ if (ExplodedNode *N = C.generateErrorNode()) {
+ if (!BT_BadFree[*CheckKind])
+ BT_BadFree[*CheckKind].reset(new BugType(
+ CheckNames[*CheckKind], "Bad free", categories::MemoryError));
+
+ SmallString<100> Buf;
+ llvm::raw_svector_ostream Os(Buf);
+
+ const MemRegion *MR = ArgVal.getAsRegion();
+ while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR))
+ MR = ER->getSuperRegion();
+
+ Os << "Argument to ";
+ if (!printAllocDeallocName(Os, C, FreeExpr))
+ Os << "deallocator";
+
+ Os << " is a function pointer";
+
+ auto R = std::make_unique<PathSensitiveBugReport>(*BT_BadFree[*CheckKind],
+ Os.str(), N);
+ R->markInteresting(MR);
+ R->addRange(Range);
+ C.emitReport(std::move(R));
+ }
+}
+
+ProgramStateRef MallocChecker::ReallocMemAux(CheckerContext &C,
+ const CallExpr *CE,
+ bool ShouldFreeOnFail,
+ ProgramStateRef State,
+ bool SuffixWithN) const {
+ if (!State)
+ return nullptr;
+
+ if (SuffixWithN && CE->getNumArgs() < 3)
+ return nullptr;
+ else if (CE->getNumArgs() < 2)
+ return nullptr;
+
+ const Expr *arg0Expr = CE->getArg(0);
+ SVal Arg0Val = C.getSVal(arg0Expr);
+ if (!Arg0Val.getAs<DefinedOrUnknownSVal>())
+ return nullptr;
+ DefinedOrUnknownSVal arg0Val = Arg0Val.castAs<DefinedOrUnknownSVal>();
+
+ SValBuilder &svalBuilder = C.getSValBuilder();
+
+ DefinedOrUnknownSVal PtrEQ =
+ svalBuilder.evalEQ(State, arg0Val, svalBuilder.makeNull());
+
+ // Get the size argument.
+ const Expr *Arg1 = CE->getArg(1);
+
+ // Get the value of the size argument.
+ SVal TotalSize = C.getSVal(Arg1);
+ if (SuffixWithN)
+ TotalSize = evalMulForBufferSize(C, Arg1, CE->getArg(2));
+ if (!TotalSize.getAs<DefinedOrUnknownSVal>())
+ return nullptr;
+
+ // Compare the size argument to 0.
+ DefinedOrUnknownSVal SizeZero =
+ svalBuilder.evalEQ(State, TotalSize.castAs<DefinedOrUnknownSVal>(),
+ svalBuilder.makeIntValWithPtrWidth(0, false));
+
+ ProgramStateRef StatePtrIsNull, StatePtrNotNull;
+ std::tie(StatePtrIsNull, StatePtrNotNull) = State->assume(PtrEQ);
+ ProgramStateRef StateSizeIsZero, StateSizeNotZero;
+ std::tie(StateSizeIsZero, StateSizeNotZero) = State->assume(SizeZero);
+ // We only assume exceptional states if they are definitely true; if the
+ // state is under-constrained, assume regular realloc behavior.
+ bool PrtIsNull = StatePtrIsNull && !StatePtrNotNull;
+ bool SizeIsZero = StateSizeIsZero && !StateSizeNotZero;
+
+ // If the ptr is NULL and the size is not 0, the call is equivalent to
+ // malloc(size).
+ if (PrtIsNull && !SizeIsZero) {
+ ProgramStateRef stateMalloc = MallocMemAux(C, CE, TotalSize,
+ UndefinedVal(), StatePtrIsNull);
+ return stateMalloc;
+ }
+
+ if (PrtIsNull && SizeIsZero)
+ return State;
+
+ // Get the from and to pointer symbols as in toPtr = realloc(fromPtr, size).
+ assert(!PrtIsNull);
+ SymbolRef FromPtr = arg0Val.getAsSymbol();
+ SVal RetVal = C.getSVal(CE);
+ SymbolRef ToPtr = RetVal.getAsSymbol();
+ if (!FromPtr || !ToPtr)
+ return nullptr;
+
+ bool IsKnownToBeAllocated = false;
+
+ // If the size is 0, free the memory.
+ if (SizeIsZero)
+ // The semantics of the return value are:
+ // If size was equal to 0, either NULL or a pointer suitable to be passed
+ // to free() is returned. We just free the input pointer and do not add
+ // any constrains on the output pointer.
+ if (ProgramStateRef stateFree =
+ FreeMemAux(C, CE, StateSizeIsZero, 0, false, IsKnownToBeAllocated))
+ return stateFree;
+
+ // Default behavior.
+ if (ProgramStateRef stateFree =
+ FreeMemAux(C, CE, State, 0, false, IsKnownToBeAllocated)) {
+
+ ProgramStateRef stateRealloc = MallocMemAux(C, CE, TotalSize,
+ UnknownVal(), stateFree);
+ if (!stateRealloc)
+ return nullptr;
+
+ OwnershipAfterReallocKind Kind = OAR_ToBeFreedAfterFailure;
+ if (ShouldFreeOnFail)
+ Kind = OAR_FreeOnFailure;
+ else if (!IsKnownToBeAllocated)
+ Kind = OAR_DoNotTrackAfterFailure;
+
+ // Record the info about the reallocated symbol so that we could properly
+ // process failed reallocation.
+ stateRealloc = stateRealloc->set<ReallocPairs>(ToPtr,
+ ReallocPair(FromPtr, Kind));
+ // The reallocated symbol should stay alive for as long as the new symbol.
+ C.getSymbolManager().addSymbolDependency(ToPtr, FromPtr);
+ return stateRealloc;
+ }
+ return nullptr;
+}
+
+ProgramStateRef MallocChecker::CallocMem(CheckerContext &C, const CallExpr *CE,
+ ProgramStateRef State) {
+ if (!State)
+ return nullptr;
+
+ if (CE->getNumArgs() < 2)
+ return nullptr;
+
+ SValBuilder &svalBuilder = C.getSValBuilder();
+ SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy);
+ SVal TotalSize = evalMulForBufferSize(C, CE->getArg(0), CE->getArg(1));
+
+ return MallocMemAux(C, CE, TotalSize, zeroVal, State);
+}
+
+MallocChecker::LeakInfo MallocChecker::getAllocationSite(const ExplodedNode *N,
+ SymbolRef Sym,
+ CheckerContext &C) {
+ const LocationContext *LeakContext = N->getLocationContext();
+ // Walk the ExplodedGraph backwards and find the first node that referred to
+ // the tracked symbol.
+ const ExplodedNode *AllocNode = N;
+ const MemRegion *ReferenceRegion = nullptr;
+
+ while (N) {
+ ProgramStateRef State = N->getState();
+ if (!State->get<RegionState>(Sym))
+ break;
+
+ // Find the most recent expression bound to the symbol in the current
+ // context.
+ if (!ReferenceRegion) {
+ if (const MemRegion *MR = C.getLocationRegionIfPostStore(N)) {
+ SVal Val = State->getSVal(MR);
+ if (Val.getAsLocSymbol() == Sym) {
+ const VarRegion *VR = MR->getBaseRegion()->getAs<VarRegion>();
+ // Do not show local variables belonging to a function other than
+ // where the error is reported.
+ if (!VR || (VR->getStackFrame() == LeakContext->getStackFrame()))
+ ReferenceRegion = MR;
+ }
+ }
+ }
+
+ // Allocation node, is the last node in the current or parent context in
+ // which the symbol was tracked.
+ const LocationContext *NContext = N->getLocationContext();
+ if (NContext == LeakContext ||
+ NContext->isParentOf(LeakContext))
+ AllocNode = N;
+ N = N->pred_empty() ? nullptr : *(N->pred_begin());
+ }
+
+ return LeakInfo(AllocNode, ReferenceRegion);
+}
+
+void MallocChecker::reportLeak(SymbolRef Sym, ExplodedNode *N,
+ CheckerContext &C) const {
+
+ if (!ChecksEnabled[CK_MallocChecker] &&
+ !ChecksEnabled[CK_NewDeleteLeaksChecker])
+ return;
+
+ const RefState *RS = C.getState()->get<RegionState>(Sym);
+ assert(RS && "cannot leak an untracked symbol");
+ AllocationFamily Family = RS->getAllocationFamily();
+
+ if (Family == AF_Alloca)
+ return;
+
+ Optional<MallocChecker::CheckKind>
+ CheckKind = getCheckIfTracked(Family, true);
+
+ if (!CheckKind.hasValue())
+ return;
+
+ assert(N);
+ if (!BT_Leak[*CheckKind]) {
+ // Leaks should not be reported if they are post-dominated by a sink:
+ // (1) Sinks are higher importance bugs.
+ // (2) NoReturnFunctionChecker uses sink nodes to represent paths ending
+ // with __noreturn functions such as assert() or exit(). We choose not
+ // to report leaks on such paths.
+ BT_Leak[*CheckKind].reset(new BugType(CheckNames[*CheckKind], "Memory leak",
+ categories::MemoryError,
+ /*SuppressOnSink=*/true));
+ }
+
+ // Most bug reports are cached at the location where they occurred.
+ // With leaks, we want to unique them by the location where they were
+ // allocated, and only report a single path.
+ PathDiagnosticLocation LocUsedForUniqueing;
+ const ExplodedNode *AllocNode = nullptr;
+ const MemRegion *Region = nullptr;
+ std::tie(AllocNode, Region) = getAllocationSite(N, Sym, C);
+
+ const Stmt *AllocationStmt = AllocNode->getStmtForDiagnostics();
+ if (AllocationStmt)
+ LocUsedForUniqueing = PathDiagnosticLocation::createBegin(AllocationStmt,
+ C.getSourceManager(),
+ AllocNode->getLocationContext());
+
+ SmallString<200> buf;
+ llvm::raw_svector_ostream os(buf);
+ if (Region && Region->canPrintPretty()) {
+ os << "Potential leak of memory pointed to by ";
+ Region->printPretty(os);
+ } else {
+ os << "Potential memory leak";
+ }
+
+ auto R = std::make_unique<PathSensitiveBugReport>(
+ *BT_Leak[*CheckKind], os.str(), N, LocUsedForUniqueing,
+ AllocNode->getLocationContext()->getDecl());
+ R->markInteresting(Sym);
+ R->addVisitor(std::make_unique<MallocBugVisitor>(Sym, true));
+ C.emitReport(std::move(R));
+}
+
+void MallocChecker::checkDeadSymbols(SymbolReaper &SymReaper,
+ CheckerContext &C) const
+{
+ ProgramStateRef state = C.getState();
+ RegionStateTy OldRS = state->get<RegionState>();
+ RegionStateTy::Factory &F = state->get_context<RegionState>();
+
+ RegionStateTy RS = OldRS;
+ SmallVector<SymbolRef, 2> Errors;
+ for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) {
+ if (SymReaper.isDead(I->first)) {
+ if (I->second.isAllocated() || I->second.isAllocatedOfSizeZero())
+ Errors.push_back(I->first);
+ // Remove the dead symbol from the map.
+ RS = F.remove(RS, I->first);
+ }
+ }
+
+ if (RS == OldRS) {
+ // We shouldn't have touched other maps yet.
+ assert(state->get<ReallocPairs>() ==
+ C.getState()->get<ReallocPairs>());
+ assert(state->get<FreeReturnValue>() ==
+ C.getState()->get<FreeReturnValue>());
+ return;
+ }
+
+ // Cleanup the Realloc Pairs Map.
+ ReallocPairsTy RP = state->get<ReallocPairs>();
+ for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) {
+ if (SymReaper.isDead(I->first) ||
+ SymReaper.isDead(I->second.ReallocatedSym)) {
+ state = state->remove<ReallocPairs>(I->first);
+ }
+ }
+
+ // Cleanup the FreeReturnValue Map.
+ FreeReturnValueTy FR = state->get<FreeReturnValue>();
+ for (FreeReturnValueTy::iterator I = FR.begin(), E = FR.end(); I != E; ++I) {
+ if (SymReaper.isDead(I->first) ||
+ SymReaper.isDead(I->second)) {
+ state = state->remove<FreeReturnValue>(I->first);
+ }
+ }
+
+ // Generate leak node.
+ ExplodedNode *N = C.getPredecessor();
+ if (!Errors.empty()) {
+ static CheckerProgramPointTag Tag("MallocChecker", "DeadSymbolsLeak");
+ N = C.generateNonFatalErrorNode(C.getState(), &Tag);
+ if (N) {
+ for (SmallVectorImpl<SymbolRef>::iterator
+ I = Errors.begin(), E = Errors.end(); I != E; ++I) {
+ reportLeak(*I, N, C);
+ }
+ }
+ }
+
+ C.addTransition(state->set<RegionState>(RS), N);
+}
+
+void MallocChecker::checkPreCall(const CallEvent &Call,
+ CheckerContext &C) const {
+
+ if (const CXXDestructorCall *DC = dyn_cast<CXXDestructorCall>(&Call)) {
+ SymbolRef Sym = DC->getCXXThisVal().getAsSymbol();
+ if (!Sym || checkDoubleDelete(Sym, C))
+ return;
+ }
+
+ // We will check for double free in the post visit.
+ if (const AnyFunctionCall *FC = dyn_cast<AnyFunctionCall>(&Call)) {
+ const FunctionDecl *FD = FC->getDecl();
+ if (!FD)
+ return;
+
+ ASTContext &Ctx = C.getASTContext();
+ if (ChecksEnabled[CK_MallocChecker] &&
+ (MemFunctionInfo.isCMemFunction(FD, Ctx, AF_Malloc,
+ MemoryOperationKind::MOK_Free) ||
+ MemFunctionInfo.isCMemFunction(FD, Ctx, AF_IfNameIndex,
+ MemoryOperationKind::MOK_Free)))
+ return;
+ }
+
+ // Check if the callee of a method is deleted.
+ if (const CXXInstanceCall *CC = dyn_cast<CXXInstanceCall>(&Call)) {
+ SymbolRef Sym = CC->getCXXThisVal().getAsSymbol();
+ if (!Sym || checkUseAfterFree(Sym, C, CC->getCXXThisExpr()))
+ return;
+ }
+
+ // Check arguments for being used after free.
+ for (unsigned I = 0, E = Call.getNumArgs(); I != E; ++I) {
+ SVal ArgSVal = Call.getArgSVal(I);
+ if (ArgSVal.getAs<Loc>()) {
+ SymbolRef Sym = ArgSVal.getAsSymbol();
+ if (!Sym)
+ continue;
+ if (checkUseAfterFree(Sym, C, Call.getArgExpr(I)))
+ return;
+ }
+ }
+}
+
+void MallocChecker::checkPreStmt(const ReturnStmt *S,
+ CheckerContext &C) const {
+ checkEscapeOnReturn(S, C);
+}
+
+// In the CFG, automatic destructors come after the return statement.
+// This callback checks for returning memory that is freed by automatic
+// destructors, as those cannot be reached in checkPreStmt().
+void MallocChecker::checkEndFunction(const ReturnStmt *S,
+ CheckerContext &C) const {
+ checkEscapeOnReturn(S, C);
+}
+
+void MallocChecker::checkEscapeOnReturn(const ReturnStmt *S,
+ CheckerContext &C) const {
+ if (!S)
+ return;
+
+ const Expr *E = S->getRetValue();
+ if (!E)
+ return;
+
+ // Check if we are returning a symbol.
+ ProgramStateRef State = C.getState();
+ SVal RetVal = C.getSVal(E);
+ SymbolRef Sym = RetVal.getAsSymbol();
+ if (!Sym)
+ // If we are returning a field of the allocated struct or an array element,
+ // the callee could still free the memory.
+ // TODO: This logic should be a part of generic symbol escape callback.
+ if (const MemRegion *MR = RetVal.getAsRegion())
+ if (isa<FieldRegion>(MR) || isa<ElementRegion>(MR))
+ if (const SymbolicRegion *BMR =
+ dyn_cast<SymbolicRegion>(MR->getBaseRegion()))
+ Sym = BMR->getSymbol();
+
+ // Check if we are returning freed memory.
+ if (Sym)
+ checkUseAfterFree(Sym, C, E);
+}
+
+// TODO: Blocks should be either inlined or should call invalidate regions
+// upon invocation. After that's in place, special casing here will not be
+// needed.
+void MallocChecker::checkPostStmt(const BlockExpr *BE,
+ CheckerContext &C) const {
+
+ // Scan the BlockDecRefExprs for any object the retain count checker
+ // may be tracking.
+ if (!BE->getBlockDecl()->hasCaptures())
+ return;
+
+ ProgramStateRef state = C.getState();
+ const BlockDataRegion *R =
+ cast<BlockDataRegion>(C.getSVal(BE).getAsRegion());
+
+ BlockDataRegion::referenced_vars_iterator I = R->referenced_vars_begin(),
+ E = R->referenced_vars_end();
+
+ if (I == E)
+ return;
+
+ SmallVector<const MemRegion*, 10> Regions;
+ const LocationContext *LC = C.getLocationContext();
+ MemRegionManager &MemMgr = C.getSValBuilder().getRegionManager();
+
+ for ( ; I != E; ++I) {
+ const VarRegion *VR = I.getCapturedRegion();
+ if (VR->getSuperRegion() == R) {
+ VR = MemMgr.getVarRegion(VR->getDecl(), LC);
+ }
+ Regions.push_back(VR);
+ }
+
+ state =
+ state->scanReachableSymbols<StopTrackingCallback>(Regions).getState();
+ C.addTransition(state);
+}
+
+static bool isReleased(SymbolRef Sym, CheckerContext &C) {
+ assert(Sym);
+ const RefState *RS = C.getState()->get<RegionState>(Sym);
+ return (RS && RS->isReleased());
+}
+
+bool MallocChecker::suppressDeallocationsInSuspiciousContexts(
+ const CallExpr *CE, CheckerContext &C) const {
+ if (CE->getNumArgs() == 0)
+ return false;
+
+ StringRef FunctionStr = "";
+ if (const auto *FD = dyn_cast<FunctionDecl>(C.getStackFrame()->getDecl()))
+ if (const Stmt *Body = FD->getBody())
+ if (Body->getBeginLoc().isValid())
+ FunctionStr =
+ Lexer::getSourceText(CharSourceRange::getTokenRange(
+ {FD->getBeginLoc(), Body->getBeginLoc()}),
+ C.getSourceManager(), C.getLangOpts());
+
+ // We do not model the Integer Set Library's retain-count based allocation.
+ if (!FunctionStr.contains("__isl_"))
+ return false;
+
+ ProgramStateRef State = C.getState();
+
+ for (const Expr *Arg : CE->arguments())
+ if (SymbolRef Sym = C.getSVal(Arg).getAsSymbol())
+ if (const RefState *RS = State->get<RegionState>(Sym))
+ State = State->set<RegionState>(Sym, RefState::getEscaped(RS));
+
+ C.addTransition(State);
+ return true;
+}
+
+bool MallocChecker::checkUseAfterFree(SymbolRef Sym, CheckerContext &C,
+ const Stmt *S) const {
+
+ if (isReleased(Sym, C)) {
+ ReportUseAfterFree(C, S->getSourceRange(), Sym);
+ return true;
+ }
+
+ return false;
+}
+
+void MallocChecker::checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C,
+ const Stmt *S) const {
+ assert(Sym);
+
+ if (const RefState *RS = C.getState()->get<RegionState>(Sym)) {
+ if (RS->isAllocatedOfSizeZero())
+ ReportUseZeroAllocated(C, RS->getStmt()->getSourceRange(), Sym);
+ }
+ else if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) {
+ ReportUseZeroAllocated(C, S->getSourceRange(), Sym);
+ }
+}
+
+bool MallocChecker::checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const {
+
+ if (isReleased(Sym, C)) {
+ ReportDoubleDelete(C, Sym);
+ return true;
+ }
+ return false;
+}
+
+// Check if the location is a freed symbolic region.
+void MallocChecker::checkLocation(SVal l, bool isLoad, const Stmt *S,
+ CheckerContext &C) const {
+ SymbolRef Sym = l.getLocSymbolInBase();
+ if (Sym) {
+ checkUseAfterFree(Sym, C, S);
+ checkUseZeroAllocated(Sym, C, S);
+ }
+}
+
+// If a symbolic region is assumed to NULL (or another constant), stop tracking
+// it - assuming that allocation failed on this path.
+ProgramStateRef MallocChecker::evalAssume(ProgramStateRef state,
+ SVal Cond,
+ bool Assumption) const {
+ RegionStateTy RS = state->get<RegionState>();
+ for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) {
+ // If the symbol is assumed to be NULL, remove it from consideration.
+ ConstraintManager &CMgr = state->getConstraintManager();
+ ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey());
+ if (AllocFailed.isConstrainedTrue())
+ state = state->remove<RegionState>(I.getKey());
+ }
+
+ // Realloc returns 0 when reallocation fails, which means that we should
+ // restore the state of the pointer being reallocated.
+ ReallocPairsTy RP = state->get<ReallocPairs>();
+ for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) {
+ // If the symbol is assumed to be NULL, remove it from consideration.
+ ConstraintManager &CMgr = state->getConstraintManager();
+ ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey());
+ if (!AllocFailed.isConstrainedTrue())
+ continue;
+
+ SymbolRef ReallocSym = I.getData().ReallocatedSym;
+ if (const RefState *RS = state->get<RegionState>(ReallocSym)) {
+ if (RS->isReleased()) {
+ switch (I.getData().Kind) {
+ case OAR_ToBeFreedAfterFailure:
+ state = state->set<RegionState>(ReallocSym,
+ RefState::getAllocated(RS->getAllocationFamily(), RS->getStmt()));
+ break;
+ case OAR_DoNotTrackAfterFailure:
+ state = state->remove<RegionState>(ReallocSym);
+ break;
+ default:
+ assert(I.getData().Kind == OAR_FreeOnFailure);
+ }
+ }
+ }
+ state = state->remove<ReallocPairs>(I.getKey());
+ }
+
+ return state;
+}
+
+bool MallocChecker::mayFreeAnyEscapedMemoryOrIsModeledExplicitly(
+ const CallEvent *Call,
+ ProgramStateRef State,
+ SymbolRef &EscapingSymbol) const {
+ assert(Call);
+ EscapingSymbol = nullptr;
+
+ // For now, assume that any C++ or block call can free memory.
+ // TODO: If we want to be more optimistic here, we'll need to make sure that
+ // regions escape to C++ containers. They seem to do that even now, but for
+ // mysterious reasons.
+ if (!(isa<SimpleFunctionCall>(Call) || isa<ObjCMethodCall>(Call)))
+ return true;
+
+ // Check Objective-C messages by selector name.
+ if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(Call)) {
+ // If it's not a framework call, or if it takes a callback, assume it
+ // can free memory.
+ if (!Call->isInSystemHeader() || Call->argumentsMayEscape())
+ return true;
+
+ // If it's a method we know about, handle it explicitly post-call.
+ // This should happen before the "freeWhenDone" check below.
+ if (isKnownDeallocObjCMethodName(*Msg))
+ return false;
+
+ // If there's a "freeWhenDone" parameter, but the method isn't one we know
+ // about, we can't be sure that the object will use free() to deallocate the
+ // memory, so we can't model it explicitly. The best we can do is use it to
+ // decide whether the pointer escapes.
+ if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(*Msg))
+ return *FreeWhenDone;
+
+ // If the first selector piece ends with "NoCopy", and there is no
+ // "freeWhenDone" parameter set to zero, we know ownership is being
+ // transferred. Again, though, we can't be sure that the object will use
+ // free() to deallocate the memory, so we can't model it explicitly.
+ StringRef FirstSlot = Msg->getSelector().getNameForSlot(0);
+ if (FirstSlot.endswith("NoCopy"))
+ return true;
+
+ // If the first selector starts with addPointer, insertPointer,
+ // or replacePointer, assume we are dealing with NSPointerArray or similar.
+ // This is similar to C++ containers (vector); we still might want to check
+ // that the pointers get freed by following the container itself.
+ if (FirstSlot.startswith("addPointer") ||
+ FirstSlot.startswith("insertPointer") ||
+ FirstSlot.startswith("replacePointer") ||
+ FirstSlot.equals("valueWithPointer")) {
+ return true;
+ }
+
+ // We should escape receiver on call to 'init'. This is especially relevant
+ // to the receiver, as the corresponding symbol is usually not referenced
+ // after the call.
+ if (Msg->getMethodFamily() == OMF_init) {
+ EscapingSymbol = Msg->getReceiverSVal().getAsSymbol();
+ return true;
+ }
+
+ // Otherwise, assume that the method does not free memory.
+ // Most framework methods do not free memory.
+ return false;
+ }
+
+ // At this point the only thing left to handle is straight function calls.
+ const FunctionDecl *FD = cast<SimpleFunctionCall>(Call)->getDecl();
+ if (!FD)
+ return true;
+
+ ASTContext &ASTC = State->getStateManager().getContext();
+
+ // If it's one of the allocation functions we can reason about, we model
+ // its behavior explicitly.
+ if (MemFunctionInfo.isMemFunction(FD, ASTC))
+ return false;
+
+ // If it's not a system call, assume it frees memory.
+ if (!Call->isInSystemHeader())
+ return true;
+
+ // White list the system functions whose arguments escape.
+ const IdentifierInfo *II = FD->getIdentifier();
+ if (!II)
+ return true;
+ StringRef FName = II->getName();
+
+ // White list the 'XXXNoCopy' CoreFoundation functions.
+ // We specifically check these before
+ if (FName.endswith("NoCopy")) {
+ // Look for the deallocator argument. We know that the memory ownership
+ // is not transferred only if the deallocator argument is
+ // 'kCFAllocatorNull'.
+ for (unsigned i = 1; i < Call->getNumArgs(); ++i) {
+ const Expr *ArgE = Call->getArgExpr(i)->IgnoreParenCasts();
+ if (const DeclRefExpr *DE = dyn_cast<DeclRefExpr>(ArgE)) {
+ StringRef DeallocatorName = DE->getFoundDecl()->getName();
+ if (DeallocatorName == "kCFAllocatorNull")
+ return false;
+ }
+ }
+ return true;
+ }
+
+ // Associating streams with malloced buffers. The pointer can escape if
+ // 'closefn' is specified (and if that function does free memory),
+ // but it will not if closefn is not specified.
+ // Currently, we do not inspect the 'closefn' function (PR12101).
+ if (FName == "funopen")
+ if (Call->getNumArgs() >= 4 && Call->getArgSVal(4).isConstant(0))
+ return false;
+
+ // Do not warn on pointers passed to 'setbuf' when used with std streams,
+ // these leaks might be intentional when setting the buffer for stdio.
+ // http://stackoverflow.com/questions/2671151/who-frees-setvbuf-buffer
+ if (FName == "setbuf" || FName =="setbuffer" ||
+ FName == "setlinebuf" || FName == "setvbuf") {
+ if (Call->getNumArgs() >= 1) {
+ const Expr *ArgE = Call->getArgExpr(0)->IgnoreParenCasts();
+ if (const DeclRefExpr *ArgDRE = dyn_cast<DeclRefExpr>(ArgE))
+ if (const VarDecl *D = dyn_cast<VarDecl>(ArgDRE->getDecl()))
+ if (D->getCanonicalDecl()->getName().find("std") != StringRef::npos)
+ return true;
+ }
+ }
+
+ // A bunch of other functions which either take ownership of a pointer or
+ // wrap the result up in a struct or object, meaning it can be freed later.
+ // (See RetainCountChecker.) Not all the parameters here are invalidated,
+ // but the Malloc checker cannot differentiate between them. The right way
+ // of doing this would be to implement a pointer escapes callback.
+ if (FName == "CGBitmapContextCreate" ||
+ FName == "CGBitmapContextCreateWithData" ||
+ FName == "CVPixelBufferCreateWithBytes" ||
+ FName == "CVPixelBufferCreateWithPlanarBytes" ||
+ FName == "OSAtomicEnqueue") {
+ return true;
+ }
+
+ if (FName == "postEvent" &&
+ FD->getQualifiedNameAsString() == "QCoreApplication::postEvent") {
+ return true;
+ }
+
+ if (FName == "postEvent" &&
+ FD->getQualifiedNameAsString() == "QCoreApplication::postEvent") {
+ return true;
+ }
+
+ if (FName == "connectImpl" &&
+ FD->getQualifiedNameAsString() == "QObject::connectImpl") {
+ return true;
+ }
+
+ // Handle cases where we know a buffer's /address/ can escape.
+ // Note that the above checks handle some special cases where we know that
+ // even though the address escapes, it's still our responsibility to free the
+ // buffer.
+ if (Call->argumentsMayEscape())
+ return true;
+
+ // Otherwise, assume that the function does not free memory.
+ // Most system calls do not free the memory.
+ return false;
+}
+
+ProgramStateRef MallocChecker::checkPointerEscape(ProgramStateRef State,
+ const InvalidatedSymbols &Escaped,
+ const CallEvent *Call,
+ PointerEscapeKind Kind) const {
+ return checkPointerEscapeAux(State, Escaped, Call, Kind,
+ /*IsConstPointerEscape*/ false);
+}
+
+ProgramStateRef MallocChecker::checkConstPointerEscape(ProgramStateRef State,
+ const InvalidatedSymbols &Escaped,
+ const CallEvent *Call,
+ PointerEscapeKind Kind) const {
+ // If a const pointer escapes, it may not be freed(), but it could be deleted.
+ return checkPointerEscapeAux(State, Escaped, Call, Kind,
+ /*IsConstPointerEscape*/ true);
+}
+
+static bool checkIfNewOrNewArrayFamily(const RefState *RS) {
+ return (RS->getAllocationFamily() == AF_CXXNewArray ||
+ RS->getAllocationFamily() == AF_CXXNew);
+}
+
+ProgramStateRef MallocChecker::checkPointerEscapeAux(
+ ProgramStateRef State, const InvalidatedSymbols &Escaped,
+ const CallEvent *Call, PointerEscapeKind Kind,
+ bool IsConstPointerEscape) const {
+ // If we know that the call does not free memory, or we want to process the
+ // call later, keep tracking the top level arguments.
+ SymbolRef EscapingSymbol = nullptr;
+ if (Kind == PSK_DirectEscapeOnCall &&
+ !mayFreeAnyEscapedMemoryOrIsModeledExplicitly(Call, State,
+ EscapingSymbol) &&
+ !EscapingSymbol) {
+ return State;
+ }
+
+ for (InvalidatedSymbols::const_iterator I = Escaped.begin(),
+ E = Escaped.end();
+ I != E; ++I) {
+ SymbolRef sym = *I;
+
+ if (EscapingSymbol && EscapingSymbol != sym)
+ continue;
+
+ if (const RefState *RS = State->get<RegionState>(sym))
+ if (RS->isAllocated() || RS->isAllocatedOfSizeZero())
+ if (!IsConstPointerEscape || checkIfNewOrNewArrayFamily(RS))
+ State = State->set<RegionState>(sym, RefState::getEscaped(RS));
+ }
+ return State;
+}
+
+static SymbolRef findFailedReallocSymbol(ProgramStateRef currState,
+ ProgramStateRef prevState) {
+ ReallocPairsTy currMap = currState->get<ReallocPairs>();
+ ReallocPairsTy prevMap = prevState->get<ReallocPairs>();
+
+ for (const ReallocPairsTy::value_type &Pair : prevMap) {
+ SymbolRef sym = Pair.first;
+ if (!currMap.lookup(sym))
+ return sym;
+ }
+
+ return nullptr;
+}
+
+static bool isReferenceCountingPointerDestructor(const CXXDestructorDecl *DD) {
+ if (const IdentifierInfo *II = DD->getParent()->getIdentifier()) {
+ StringRef N = II->getName();
+ if (N.contains_lower("ptr") || N.contains_lower("pointer")) {
+ if (N.contains_lower("ref") || N.contains_lower("cnt") ||
+ N.contains_lower("intrusive") || N.contains_lower("shared")) {
+ return true;
+ }
+ }
+ }
+ return false;
+}
+
+PathDiagnosticPieceRef MallocBugVisitor::VisitNode(const ExplodedNode *N,
+ BugReporterContext &BRC,
+ PathSensitiveBugReport &BR) {
+ ProgramStateRef state = N->getState();
+ ProgramStateRef statePrev = N->getFirstPred()->getState();
+
+ const RefState *RSCurr = state->get<RegionState>(Sym);
+ const RefState *RSPrev = statePrev->get<RegionState>(Sym);
+
+ const Stmt *S = N->getStmtForDiagnostics();
+ // When dealing with containers, we sometimes want to give a note
+ // even if the statement is missing.
+ if (!S && (!RSCurr || RSCurr->getAllocationFamily() != AF_InnerBuffer))
+ return nullptr;
+
+ const LocationContext *CurrentLC = N->getLocationContext();
+
+ // If we find an atomic fetch_add or fetch_sub within the destructor in which
+ // the pointer was released (before the release), this is likely a destructor
+ // of a shared pointer.
+ // Because we don't model atomics, and also because we don't know that the
+ // original reference count is positive, we should not report use-after-frees
+ // on objects deleted in such destructors. This can probably be improved
+ // through better shared pointer modeling.
+ if (ReleaseDestructorLC) {
+ if (const auto *AE = dyn_cast<AtomicExpr>(S)) {
+ AtomicExpr::AtomicOp Op = AE->getOp();
+ if (Op == AtomicExpr::AO__c11_atomic_fetch_add ||
+ Op == AtomicExpr::AO__c11_atomic_fetch_sub) {
+ if (ReleaseDestructorLC == CurrentLC ||
+ ReleaseDestructorLC->isParentOf(CurrentLC)) {
+ BR.markInvalid(getTag(), S);
+ }
+ }
+ }
+ }
+
+ // FIXME: We will eventually need to handle non-statement-based events
+ // (__attribute__((cleanup))).
+
+ // Find out if this is an interesting point and what is the kind.
+ StringRef Msg;
+ std::unique_ptr<StackHintGeneratorForSymbol> StackHint = nullptr;
+ SmallString<256> Buf;
+ llvm::raw_svector_ostream OS(Buf);
+
+ if (Mode == Normal) {
+ if (isAllocated(RSCurr, RSPrev, S)) {
+ Msg = "Memory is allocated";
+ StackHint = std::make_unique<StackHintGeneratorForSymbol>(
+ Sym, "Returned allocated memory");
+ } else if (isReleased(RSCurr, RSPrev, S)) {
+ const auto Family = RSCurr->getAllocationFamily();
+ switch (Family) {
+ case AF_Alloca:
+ case AF_Malloc:
+ case AF_CXXNew:
+ case AF_CXXNewArray:
+ case AF_IfNameIndex:
+ Msg = "Memory is released";
+ StackHint = std::make_unique<StackHintGeneratorForSymbol>(
+ Sym, "Returning; memory was released");
+ break;
+ case AF_InnerBuffer: {
+ const MemRegion *ObjRegion =
+ allocation_state::getContainerObjRegion(statePrev, Sym);
+ const auto *TypedRegion = cast<TypedValueRegion>(ObjRegion);
+ QualType ObjTy = TypedRegion->getValueType();
+ OS << "Inner buffer of '" << ObjTy.getAsString() << "' ";
+
+ if (N->getLocation().getKind() == ProgramPoint::PostImplicitCallKind) {
+ OS << "deallocated by call to destructor";
+ StackHint = std::make_unique<StackHintGeneratorForSymbol>(
+ Sym, "Returning; inner buffer was deallocated");
+ } else {
+ OS << "reallocated by call to '";
+ const Stmt *S = RSCurr->getStmt();
+ if (const auto *MemCallE = dyn_cast<CXXMemberCallExpr>(S)) {
+ OS << MemCallE->getMethodDecl()->getNameAsString();
+ } else if (const auto *OpCallE = dyn_cast<CXXOperatorCallExpr>(S)) {
+ OS << OpCallE->getDirectCallee()->getNameAsString();
+ } else if (const auto *CallE = dyn_cast<CallExpr>(S)) {
+ auto &CEMgr = BRC.getStateManager().getCallEventManager();
+ CallEventRef<> Call = CEMgr.getSimpleCall(CallE, state, CurrentLC);
+ const auto *D = dyn_cast_or_null<NamedDecl>(Call->getDecl());
+ OS << (D ? D->getNameAsString() : "unknown");
+ }
+ OS << "'";
+ StackHint = std::make_unique<StackHintGeneratorForSymbol>(
+ Sym, "Returning; inner buffer was reallocated");
+ }
+ Msg = OS.str();
+ break;
+ }
+ case AF_None:
+ llvm_unreachable("Unhandled allocation family!");
+ }
+
+ // See if we're releasing memory while inlining a destructor
+ // (or one of its callees). This turns on various common
+ // false positive suppressions.
+ bool FoundAnyDestructor = false;
+ for (const LocationContext *LC = CurrentLC; LC; LC = LC->getParent()) {
+ if (const auto *DD = dyn_cast<CXXDestructorDecl>(LC->getDecl())) {
+ if (isReferenceCountingPointerDestructor(DD)) {
+ // This immediately looks like a reference-counting destructor.
+ // We're bad at guessing the original reference count of the object,
+ // so suppress the report for now.
+ BR.markInvalid(getTag(), DD);
+ } else if (!FoundAnyDestructor) {
+ assert(!ReleaseDestructorLC &&
+ "There can be only one release point!");
+ // Suspect that it's a reference counting pointer destructor.
+ // On one of the next nodes might find out that it has atomic
+ // reference counting operations within it (see the code above),
+ // and if so, we'd conclude that it likely is a reference counting
+ // pointer destructor.
+ ReleaseDestructorLC = LC->getStackFrame();
+ // It is unlikely that releasing memory is delegated to a destructor
+ // inside a destructor of a shared pointer, because it's fairly hard
+ // to pass the information that the pointer indeed needs to be
+ // released into it. So we're only interested in the innermost
+ // destructor.
+ FoundAnyDestructor = true;
+ }
+ }
+ }
+ } else if (isRelinquished(RSCurr, RSPrev, S)) {
+ Msg = "Memory ownership is transferred";
+ StackHint = std::make_unique<StackHintGeneratorForSymbol>(Sym, "");
+ } else if (hasReallocFailed(RSCurr, RSPrev, S)) {
+ Mode = ReallocationFailed;
+ Msg = "Reallocation failed";
+ StackHint = std::make_unique<StackHintGeneratorForReallocationFailed>(
+ Sym, "Reallocation failed");
+
+ if (SymbolRef sym = findFailedReallocSymbol(state, statePrev)) {
+ // Is it possible to fail two reallocs WITHOUT testing in between?
+ assert((!FailedReallocSymbol || FailedReallocSymbol == sym) &&
+ "We only support one failed realloc at a time.");
+ BR.markInteresting(sym);
+ FailedReallocSymbol = sym;
+ }
+ }
+
+ // We are in a special mode if a reallocation failed later in the path.
+ } else if (Mode == ReallocationFailed) {
+ assert(FailedReallocSymbol && "No symbol to look for.");
+
+ // Is this is the first appearance of the reallocated symbol?
+ if (!statePrev->get<RegionState>(FailedReallocSymbol)) {
+ // We're at the reallocation point.
+ Msg = "Attempt to reallocate memory";
+ StackHint = std::make_unique<StackHintGeneratorForSymbol>(
+ Sym, "Returned reallocated memory");
+ FailedReallocSymbol = nullptr;
+ Mode = Normal;
+ }
+ }
+
+ if (Msg.empty()) {
+ assert(!StackHint);
+ return nullptr;
+ }
+
+ assert(StackHint);
+
+ // Generate the extra diagnostic.
+ PathDiagnosticLocation Pos;
+ if (!S) {
+ assert(RSCurr->getAllocationFamily() == AF_InnerBuffer);
+ auto PostImplCall = N->getLocation().getAs<PostImplicitCall>();
+ if (!PostImplCall)
+ return nullptr;
+ Pos = PathDiagnosticLocation(PostImplCall->getLocation(),
+ BRC.getSourceManager());
+ } else {
+ Pos = PathDiagnosticLocation(S, BRC.getSourceManager(),
+ N->getLocationContext());
+ }
+
+ auto P = std::make_shared<PathDiagnosticEventPiece>(Pos, Msg, true);
+ BR.addCallStackHint(P, std::move(StackHint));
+ return P;
+}
+
+void MallocChecker::printState(raw_ostream &Out, ProgramStateRef State,
+ const char *NL, const char *Sep) const {
+
+ RegionStateTy RS = State->get<RegionState>();
+
+ if (!RS.isEmpty()) {
+ Out << Sep << "MallocChecker :" << NL;
+ for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) {
+ const RefState *RefS = State->get<RegionState>(I.getKey());
+ AllocationFamily Family = RefS->getAllocationFamily();
+ Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family);
+ if (!CheckKind.hasValue())
+ CheckKind = getCheckIfTracked(Family, true);
+
+ I.getKey()->dumpToStream(Out);
+ Out << " : ";
+ I.getData().dump(Out);
+ if (CheckKind.hasValue())
+ Out << " (" << CheckNames[*CheckKind].getName() << ")";
+ Out << NL;
+ }
+ }
+}
+
+namespace clang {
+namespace ento {
+namespace allocation_state {
+
+ProgramStateRef
+markReleased(ProgramStateRef State, SymbolRef Sym, const Expr *Origin) {
+ AllocationFamily Family = AF_InnerBuffer;
+ return State->set<RegionState>(Sym, RefState::getReleased(Family, Origin));
+}
+
+} // end namespace allocation_state
+} // end namespace ento
+} // end namespace clang
+
+// Intended to be used in InnerPointerChecker to register the part of
+// MallocChecker connected to it.
+void ento::registerInnerPointerCheckerAux(CheckerManager &mgr) {
+ MallocChecker *checker = mgr.getChecker<MallocChecker>();
+ checker->ChecksEnabled[MallocChecker::CK_InnerPointerChecker] = true;
+ checker->CheckNames[MallocChecker::CK_InnerPointerChecker] =
+ mgr.getCurrentCheckerName();
+}
+
+void ento::registerDynamicMemoryModeling(CheckerManager &mgr) {
+ auto *checker = mgr.registerChecker<MallocChecker>();
+ checker->MemFunctionInfo.ShouldIncludeOwnershipAnnotatedFunctions =
+ mgr.getAnalyzerOptions().getCheckerBooleanOption(checker, "Optimistic");
+}
+
+bool ento::shouldRegisterDynamicMemoryModeling(const LangOptions &LO) {
+ return true;
+}
+
+#define REGISTER_CHECKER(name) \
+ void ento::register##name(CheckerManager &mgr) { \
+ MallocChecker *checker = mgr.getChecker<MallocChecker>(); \
+ checker->ChecksEnabled[MallocChecker::CK_##name] = true; \
+ checker->CheckNames[MallocChecker::CK_##name] = \
+ mgr.getCurrentCheckerName(); \
+ } \
+ \
+ bool ento::shouldRegister##name(const LangOptions &LO) { return true; }
+
+REGISTER_CHECKER(MallocChecker)
+REGISTER_CHECKER(NewDeleteChecker)
+REGISTER_CHECKER(NewDeleteLeaksChecker)
+REGISTER_CHECKER(MismatchedDeallocatorChecker)