summaryrefslogtreecommitdiffstats
path: root/gnu/llvm/clang/lib/StaticAnalyzer/Core/RangeConstraintManager.cpp
diff options
context:
space:
mode:
authorpatrick <patrick@openbsd.org>2020-08-03 14:31:31 +0000
committerpatrick <patrick@openbsd.org>2020-08-03 14:31:31 +0000
commite5dd70708596ae51455a0ffa086a00c5b29f8583 (patch)
tree5d676f27b570bacf71e786c3b5cff3e6f6679b59 /gnu/llvm/clang/lib/StaticAnalyzer/Core/RangeConstraintManager.cpp
parentImport LLVM 10.0.0 release including clang, lld and lldb. (diff)
downloadwireguard-openbsd-e5dd70708596ae51455a0ffa086a00c5b29f8583.tar.xz
wireguard-openbsd-e5dd70708596ae51455a0ffa086a00c5b29f8583.zip
Import LLVM 10.0.0 release including clang, lld and lldb.
ok hackroom tested by plenty
Diffstat (limited to 'gnu/llvm/clang/lib/StaticAnalyzer/Core/RangeConstraintManager.cpp')
-rw-r--r--gnu/llvm/clang/lib/StaticAnalyzer/Core/RangeConstraintManager.cpp789
1 files changed, 789 insertions, 0 deletions
diff --git a/gnu/llvm/clang/lib/StaticAnalyzer/Core/RangeConstraintManager.cpp b/gnu/llvm/clang/lib/StaticAnalyzer/Core/RangeConstraintManager.cpp
new file mode 100644
index 00000000000..9752a0e2283
--- /dev/null
+++ b/gnu/llvm/clang/lib/StaticAnalyzer/Core/RangeConstraintManager.cpp
@@ -0,0 +1,789 @@
+//== RangeConstraintManager.cpp - Manage range constraints.------*- C++ -*--==//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines RangeConstraintManager, a class that tracks simple
+// equality and inequality constraints on symbolic values of ProgramState.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Basic/JsonSupport.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/RangedConstraintManager.h"
+#include "llvm/ADT/FoldingSet.h"
+#include "llvm/ADT/ImmutableSet.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace clang;
+using namespace ento;
+
+void RangeSet::IntersectInRange(BasicValueFactory &BV, Factory &F,
+ const llvm::APSInt &Lower, const llvm::APSInt &Upper,
+ PrimRangeSet &newRanges, PrimRangeSet::iterator &i,
+ PrimRangeSet::iterator &e) const {
+ // There are six cases for each range R in the set:
+ // 1. R is entirely before the intersection range.
+ // 2. R is entirely after the intersection range.
+ // 3. R contains the entire intersection range.
+ // 4. R starts before the intersection range and ends in the middle.
+ // 5. R starts in the middle of the intersection range and ends after it.
+ // 6. R is entirely contained in the intersection range.
+ // These correspond to each of the conditions below.
+ for (/* i = begin(), e = end() */; i != e; ++i) {
+ if (i->To() < Lower) {
+ continue;
+ }
+ if (i->From() > Upper) {
+ break;
+ }
+
+ if (i->Includes(Lower)) {
+ if (i->Includes(Upper)) {
+ newRanges =
+ F.add(newRanges, Range(BV.getValue(Lower), BV.getValue(Upper)));
+ break;
+ } else
+ newRanges = F.add(newRanges, Range(BV.getValue(Lower), i->To()));
+ } else {
+ if (i->Includes(Upper)) {
+ newRanges = F.add(newRanges, Range(i->From(), BV.getValue(Upper)));
+ break;
+ } else
+ newRanges = F.add(newRanges, *i);
+ }
+ }
+}
+
+const llvm::APSInt &RangeSet::getMinValue() const {
+ assert(!isEmpty());
+ return ranges.begin()->From();
+}
+
+bool RangeSet::pin(llvm::APSInt &Lower, llvm::APSInt &Upper) const {
+ // This function has nine cases, the cartesian product of range-testing
+ // both the upper and lower bounds against the symbol's type.
+ // Each case requires a different pinning operation.
+ // The function returns false if the described range is entirely outside
+ // the range of values for the associated symbol.
+ APSIntType Type(getMinValue());
+ APSIntType::RangeTestResultKind LowerTest = Type.testInRange(Lower, true);
+ APSIntType::RangeTestResultKind UpperTest = Type.testInRange(Upper, true);
+
+ switch (LowerTest) {
+ case APSIntType::RTR_Below:
+ switch (UpperTest) {
+ case APSIntType::RTR_Below:
+ // The entire range is outside the symbol's set of possible values.
+ // If this is a conventionally-ordered range, the state is infeasible.
+ if (Lower <= Upper)
+ return false;
+
+ // However, if the range wraps around, it spans all possible values.
+ Lower = Type.getMinValue();
+ Upper = Type.getMaxValue();
+ break;
+ case APSIntType::RTR_Within:
+ // The range starts below what's possible but ends within it. Pin.
+ Lower = Type.getMinValue();
+ Type.apply(Upper);
+ break;
+ case APSIntType::RTR_Above:
+ // The range spans all possible values for the symbol. Pin.
+ Lower = Type.getMinValue();
+ Upper = Type.getMaxValue();
+ break;
+ }
+ break;
+ case APSIntType::RTR_Within:
+ switch (UpperTest) {
+ case APSIntType::RTR_Below:
+ // The range wraps around, but all lower values are not possible.
+ Type.apply(Lower);
+ Upper = Type.getMaxValue();
+ break;
+ case APSIntType::RTR_Within:
+ // The range may or may not wrap around, but both limits are valid.
+ Type.apply(Lower);
+ Type.apply(Upper);
+ break;
+ case APSIntType::RTR_Above:
+ // The range starts within what's possible but ends above it. Pin.
+ Type.apply(Lower);
+ Upper = Type.getMaxValue();
+ break;
+ }
+ break;
+ case APSIntType::RTR_Above:
+ switch (UpperTest) {
+ case APSIntType::RTR_Below:
+ // The range wraps but is outside the symbol's set of possible values.
+ return false;
+ case APSIntType::RTR_Within:
+ // The range starts above what's possible but ends within it (wrap).
+ Lower = Type.getMinValue();
+ Type.apply(Upper);
+ break;
+ case APSIntType::RTR_Above:
+ // The entire range is outside the symbol's set of possible values.
+ // If this is a conventionally-ordered range, the state is infeasible.
+ if (Lower <= Upper)
+ return false;
+
+ // However, if the range wraps around, it spans all possible values.
+ Lower = Type.getMinValue();
+ Upper = Type.getMaxValue();
+ break;
+ }
+ break;
+ }
+
+ return true;
+}
+
+// Returns a set containing the values in the receiving set, intersected with
+// the closed range [Lower, Upper]. Unlike the Range type, this range uses
+// modular arithmetic, corresponding to the common treatment of C integer
+// overflow. Thus, if the Lower bound is greater than the Upper bound, the
+// range is taken to wrap around. This is equivalent to taking the
+// intersection with the two ranges [Min, Upper] and [Lower, Max],
+// or, alternatively, /removing/ all integers between Upper and Lower.
+RangeSet RangeSet::Intersect(BasicValueFactory &BV, Factory &F,
+ llvm::APSInt Lower, llvm::APSInt Upper) const {
+ if (!pin(Lower, Upper))
+ return F.getEmptySet();
+
+ PrimRangeSet newRanges = F.getEmptySet();
+
+ PrimRangeSet::iterator i = begin(), e = end();
+ if (Lower <= Upper)
+ IntersectInRange(BV, F, Lower, Upper, newRanges, i, e);
+ else {
+ // The order of the next two statements is important!
+ // IntersectInRange() does not reset the iteration state for i and e.
+ // Therefore, the lower range most be handled first.
+ IntersectInRange(BV, F, BV.getMinValue(Upper), Upper, newRanges, i, e);
+ IntersectInRange(BV, F, Lower, BV.getMaxValue(Lower), newRanges, i, e);
+ }
+
+ return newRanges;
+}
+
+// Returns a set containing the values in the receiving set, intersected with
+// the range set passed as parameter.
+RangeSet RangeSet::Intersect(BasicValueFactory &BV, Factory &F,
+ const RangeSet &Other) const {
+ PrimRangeSet newRanges = F.getEmptySet();
+
+ for (iterator i = Other.begin(), e = Other.end(); i != e; ++i) {
+ RangeSet newPiece = Intersect(BV, F, i->From(), i->To());
+ for (iterator j = newPiece.begin(), ee = newPiece.end(); j != ee; ++j) {
+ newRanges = F.add(newRanges, *j);
+ }
+ }
+
+ return newRanges;
+}
+
+// Turn all [A, B] ranges to [-B, -A]. Ranges [MIN, B] are turned to range set
+// [MIN, MIN] U [-B, MAX], when MIN and MAX are the minimal and the maximal
+// signed values of the type.
+RangeSet RangeSet::Negate(BasicValueFactory &BV, Factory &F) const {
+ PrimRangeSet newRanges = F.getEmptySet();
+
+ for (iterator i = begin(), e = end(); i != e; ++i) {
+ const llvm::APSInt &from = i->From(), &to = i->To();
+ const llvm::APSInt &newTo = (from.isMinSignedValue() ?
+ BV.getMaxValue(from) :
+ BV.getValue(- from));
+ if (to.isMaxSignedValue() && !newRanges.isEmpty() &&
+ newRanges.begin()->From().isMinSignedValue()) {
+ assert(newRanges.begin()->To().isMinSignedValue() &&
+ "Ranges should not overlap");
+ assert(!from.isMinSignedValue() && "Ranges should not overlap");
+ const llvm::APSInt &newFrom = newRanges.begin()->From();
+ newRanges =
+ F.add(F.remove(newRanges, *newRanges.begin()), Range(newFrom, newTo));
+ } else if (!to.isMinSignedValue()) {
+ const llvm::APSInt &newFrom = BV.getValue(- to);
+ newRanges = F.add(newRanges, Range(newFrom, newTo));
+ }
+ if (from.isMinSignedValue()) {
+ newRanges = F.add(newRanges, Range(BV.getMinValue(from),
+ BV.getMinValue(from)));
+ }
+ }
+
+ return newRanges;
+}
+
+void RangeSet::print(raw_ostream &os) const {
+ bool isFirst = true;
+ os << "{ ";
+ for (iterator i = begin(), e = end(); i != e; ++i) {
+ if (isFirst)
+ isFirst = false;
+ else
+ os << ", ";
+
+ os << '[' << i->From().toString(10) << ", " << i->To().toString(10)
+ << ']';
+ }
+ os << " }";
+}
+
+namespace {
+class RangeConstraintManager : public RangedConstraintManager {
+public:
+ RangeConstraintManager(SubEngine *SE, SValBuilder &SVB)
+ : RangedConstraintManager(SE, SVB) {}
+
+ //===------------------------------------------------------------------===//
+ // Implementation for interface from ConstraintManager.
+ //===------------------------------------------------------------------===//
+
+ bool haveEqualConstraints(ProgramStateRef S1,
+ ProgramStateRef S2) const override {
+ return S1->get<ConstraintRange>() == S2->get<ConstraintRange>();
+ }
+
+ bool canReasonAbout(SVal X) const override;
+
+ ConditionTruthVal checkNull(ProgramStateRef State, SymbolRef Sym) override;
+
+ const llvm::APSInt *getSymVal(ProgramStateRef State,
+ SymbolRef Sym) const override;
+
+ ProgramStateRef removeDeadBindings(ProgramStateRef State,
+ SymbolReaper &SymReaper) override;
+
+ void printJson(raw_ostream &Out, ProgramStateRef State, const char *NL = "\n",
+ unsigned int Space = 0, bool IsDot = false) const override;
+
+ //===------------------------------------------------------------------===//
+ // Implementation for interface from RangedConstraintManager.
+ //===------------------------------------------------------------------===//
+
+ ProgramStateRef assumeSymNE(ProgramStateRef State, SymbolRef Sym,
+ const llvm::APSInt &V,
+ const llvm::APSInt &Adjustment) override;
+
+ ProgramStateRef assumeSymEQ(ProgramStateRef State, SymbolRef Sym,
+ const llvm::APSInt &V,
+ const llvm::APSInt &Adjustment) override;
+
+ ProgramStateRef assumeSymLT(ProgramStateRef State, SymbolRef Sym,
+ const llvm::APSInt &V,
+ const llvm::APSInt &Adjustment) override;
+
+ ProgramStateRef assumeSymGT(ProgramStateRef State, SymbolRef Sym,
+ const llvm::APSInt &V,
+ const llvm::APSInt &Adjustment) override;
+
+ ProgramStateRef assumeSymLE(ProgramStateRef State, SymbolRef Sym,
+ const llvm::APSInt &V,
+ const llvm::APSInt &Adjustment) override;
+
+ ProgramStateRef assumeSymGE(ProgramStateRef State, SymbolRef Sym,
+ const llvm::APSInt &V,
+ const llvm::APSInt &Adjustment) override;
+
+ ProgramStateRef assumeSymWithinInclusiveRange(
+ ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
+ const llvm::APSInt &To, const llvm::APSInt &Adjustment) override;
+
+ ProgramStateRef assumeSymOutsideInclusiveRange(
+ ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
+ const llvm::APSInt &To, const llvm::APSInt &Adjustment) override;
+
+private:
+ RangeSet::Factory F;
+
+ RangeSet getRange(ProgramStateRef State, SymbolRef Sym);
+ const RangeSet* getRangeForMinusSymbol(ProgramStateRef State,
+ SymbolRef Sym);
+
+ RangeSet getSymLTRange(ProgramStateRef St, SymbolRef Sym,
+ const llvm::APSInt &Int,
+ const llvm::APSInt &Adjustment);
+ RangeSet getSymGTRange(ProgramStateRef St, SymbolRef Sym,
+ const llvm::APSInt &Int,
+ const llvm::APSInt &Adjustment);
+ RangeSet getSymLERange(ProgramStateRef St, SymbolRef Sym,
+ const llvm::APSInt &Int,
+ const llvm::APSInt &Adjustment);
+ RangeSet getSymLERange(llvm::function_ref<RangeSet()> RS,
+ const llvm::APSInt &Int,
+ const llvm::APSInt &Adjustment);
+ RangeSet getSymGERange(ProgramStateRef St, SymbolRef Sym,
+ const llvm::APSInt &Int,
+ const llvm::APSInt &Adjustment);
+
+};
+
+} // end anonymous namespace
+
+std::unique_ptr<ConstraintManager>
+ento::CreateRangeConstraintManager(ProgramStateManager &StMgr, SubEngine *Eng) {
+ return std::make_unique<RangeConstraintManager>(Eng, StMgr.getSValBuilder());
+}
+
+bool RangeConstraintManager::canReasonAbout(SVal X) const {
+ Optional<nonloc::SymbolVal> SymVal = X.getAs<nonloc::SymbolVal>();
+ if (SymVal && SymVal->isExpression()) {
+ const SymExpr *SE = SymVal->getSymbol();
+
+ if (const SymIntExpr *SIE = dyn_cast<SymIntExpr>(SE)) {
+ switch (SIE->getOpcode()) {
+ // We don't reason yet about bitwise-constraints on symbolic values.
+ case BO_And:
+ case BO_Or:
+ case BO_Xor:
+ return false;
+ // We don't reason yet about these arithmetic constraints on
+ // symbolic values.
+ case BO_Mul:
+ case BO_Div:
+ case BO_Rem:
+ case BO_Shl:
+ case BO_Shr:
+ return false;
+ // All other cases.
+ default:
+ return true;
+ }
+ }
+
+ if (const SymSymExpr *SSE = dyn_cast<SymSymExpr>(SE)) {
+ // FIXME: Handle <=> here.
+ if (BinaryOperator::isEqualityOp(SSE->getOpcode()) ||
+ BinaryOperator::isRelationalOp(SSE->getOpcode())) {
+ // We handle Loc <> Loc comparisons, but not (yet) NonLoc <> NonLoc.
+ // We've recently started producing Loc <> NonLoc comparisons (that
+ // result from casts of one of the operands between eg. intptr_t and
+ // void *), but we can't reason about them yet.
+ if (Loc::isLocType(SSE->getLHS()->getType())) {
+ return Loc::isLocType(SSE->getRHS()->getType());
+ }
+ }
+ }
+
+ return false;
+ }
+
+ return true;
+}
+
+ConditionTruthVal RangeConstraintManager::checkNull(ProgramStateRef State,
+ SymbolRef Sym) {
+ const RangeSet *Ranges = State->get<ConstraintRange>(Sym);
+
+ // If we don't have any information about this symbol, it's underconstrained.
+ if (!Ranges)
+ return ConditionTruthVal();
+
+ // If we have a concrete value, see if it's zero.
+ if (const llvm::APSInt *Value = Ranges->getConcreteValue())
+ return *Value == 0;
+
+ BasicValueFactory &BV = getBasicVals();
+ APSIntType IntType = BV.getAPSIntType(Sym->getType());
+ llvm::APSInt Zero = IntType.getZeroValue();
+
+ // Check if zero is in the set of possible values.
+ if (Ranges->Intersect(BV, F, Zero, Zero).isEmpty())
+ return false;
+
+ // Zero is a possible value, but it is not the /only/ possible value.
+ return ConditionTruthVal();
+}
+
+const llvm::APSInt *RangeConstraintManager::getSymVal(ProgramStateRef St,
+ SymbolRef Sym) const {
+ const ConstraintRangeTy::data_type *T = St->get<ConstraintRange>(Sym);
+ return T ? T->getConcreteValue() : nullptr;
+}
+
+/// Scan all symbols referenced by the constraints. If the symbol is not alive
+/// as marked in LSymbols, mark it as dead in DSymbols.
+ProgramStateRef
+RangeConstraintManager::removeDeadBindings(ProgramStateRef State,
+ SymbolReaper &SymReaper) {
+ bool Changed = false;
+ ConstraintRangeTy CR = State->get<ConstraintRange>();
+ ConstraintRangeTy::Factory &CRFactory = State->get_context<ConstraintRange>();
+
+ for (ConstraintRangeTy::iterator I = CR.begin(), E = CR.end(); I != E; ++I) {
+ SymbolRef Sym = I.getKey();
+ if (SymReaper.isDead(Sym)) {
+ Changed = true;
+ CR = CRFactory.remove(CR, Sym);
+ }
+ }
+
+ return Changed ? State->set<ConstraintRange>(CR) : State;
+}
+
+/// Return a range set subtracting zero from \p Domain.
+static RangeSet assumeNonZero(
+ BasicValueFactory &BV,
+ RangeSet::Factory &F,
+ SymbolRef Sym,
+ RangeSet Domain) {
+ APSIntType IntType = BV.getAPSIntType(Sym->getType());
+ return Domain.Intersect(BV, F, ++IntType.getZeroValue(),
+ --IntType.getZeroValue());
+}
+
+/// Apply implicit constraints for bitwise OR- and AND-.
+/// For unsigned types, bitwise OR with a constant always returns
+/// a value greater-or-equal than the constant, and bitwise AND
+/// returns a value less-or-equal then the constant.
+///
+/// Pattern matches the expression \p Sym against those rule,
+/// and applies the required constraints.
+/// \p Input Previously established expression range set
+static RangeSet applyBitwiseConstraints(
+ BasicValueFactory &BV,
+ RangeSet::Factory &F,
+ RangeSet Input,
+ const SymIntExpr* SIE) {
+ QualType T = SIE->getType();
+ bool IsUnsigned = T->isUnsignedIntegerType();
+ const llvm::APSInt &RHS = SIE->getRHS();
+ const llvm::APSInt &Zero = BV.getAPSIntType(T).getZeroValue();
+ BinaryOperator::Opcode Operator = SIE->getOpcode();
+
+ // For unsigned types, the output of bitwise-or is bigger-or-equal than RHS.
+ if (Operator == BO_Or && IsUnsigned)
+ return Input.Intersect(BV, F, RHS, BV.getMaxValue(T));
+
+ // Bitwise-or with a non-zero constant is always non-zero.
+ if (Operator == BO_Or && RHS != Zero)
+ return assumeNonZero(BV, F, SIE, Input);
+
+ // For unsigned types, or positive RHS,
+ // bitwise-and output is always smaller-or-equal than RHS (assuming two's
+ // complement representation of signed types).
+ if (Operator == BO_And && (IsUnsigned || RHS >= Zero))
+ return Input.Intersect(BV, F, BV.getMinValue(T), RHS);
+
+ return Input;
+}
+
+RangeSet RangeConstraintManager::getRange(ProgramStateRef State,
+ SymbolRef Sym) {
+ ConstraintRangeTy::data_type *V = State->get<ConstraintRange>(Sym);
+
+ // If Sym is a difference of symbols A - B, then maybe we have range set
+ // stored for B - A.
+ BasicValueFactory &BV = getBasicVals();
+ const RangeSet *R = getRangeForMinusSymbol(State, Sym);
+
+ // If we have range set stored for both A - B and B - A then calculate the
+ // effective range set by intersecting the range set for A - B and the
+ // negated range set of B - A.
+ if (V && R)
+ return V->Intersect(BV, F, R->Negate(BV, F));
+ if (V)
+ return *V;
+ if (R)
+ return R->Negate(BV, F);
+
+ // Lazily generate a new RangeSet representing all possible values for the
+ // given symbol type.
+ QualType T = Sym->getType();
+
+ RangeSet Result(F, BV.getMinValue(T), BV.getMaxValue(T));
+
+ // References are known to be non-zero.
+ if (T->isReferenceType())
+ return assumeNonZero(BV, F, Sym, Result);
+
+ // Known constraints on ranges of bitwise expressions.
+ if (const SymIntExpr* SIE = dyn_cast<SymIntExpr>(Sym))
+ return applyBitwiseConstraints(BV, F, Result, SIE);
+
+ return Result;
+}
+
+// FIXME: Once SValBuilder supports unary minus, we should use SValBuilder to
+// obtain the negated symbolic expression instead of constructing the
+// symbol manually. This will allow us to support finding ranges of not
+// only negated SymSymExpr-type expressions, but also of other, simpler
+// expressions which we currently do not know how to negate.
+const RangeSet*
+RangeConstraintManager::getRangeForMinusSymbol(ProgramStateRef State,
+ SymbolRef Sym) {
+ if (const SymSymExpr *SSE = dyn_cast<SymSymExpr>(Sym)) {
+ if (SSE->getOpcode() == BO_Sub) {
+ QualType T = Sym->getType();
+ SymbolManager &SymMgr = State->getSymbolManager();
+ SymbolRef negSym = SymMgr.getSymSymExpr(SSE->getRHS(), BO_Sub,
+ SSE->getLHS(), T);
+ if (const RangeSet *negV = State->get<ConstraintRange>(negSym)) {
+ // Unsigned range set cannot be negated, unless it is [0, 0].
+ if ((negV->getConcreteValue() &&
+ (*negV->getConcreteValue() == 0)) ||
+ T->isSignedIntegerOrEnumerationType())
+ return negV;
+ }
+ }
+ }
+ return nullptr;
+}
+
+//===------------------------------------------------------------------------===
+// assumeSymX methods: protected interface for RangeConstraintManager.
+//===------------------------------------------------------------------------===/
+
+// The syntax for ranges below is mathematical, using [x, y] for closed ranges
+// and (x, y) for open ranges. These ranges are modular, corresponding with
+// a common treatment of C integer overflow. This means that these methods
+// do not have to worry about overflow; RangeSet::Intersect can handle such a
+// "wraparound" range.
+// As an example, the range [UINT_MAX-1, 3) contains five values: UINT_MAX-1,
+// UINT_MAX, 0, 1, and 2.
+
+ProgramStateRef
+RangeConstraintManager::assumeSymNE(ProgramStateRef St, SymbolRef Sym,
+ const llvm::APSInt &Int,
+ const llvm::APSInt &Adjustment) {
+ // Before we do any real work, see if the value can even show up.
+ APSIntType AdjustmentType(Adjustment);
+ if (AdjustmentType.testInRange(Int, true) != APSIntType::RTR_Within)
+ return St;
+
+ llvm::APSInt Lower = AdjustmentType.convert(Int) - Adjustment;
+ llvm::APSInt Upper = Lower;
+ --Lower;
+ ++Upper;
+
+ // [Int-Adjustment+1, Int-Adjustment-1]
+ // Notice that the lower bound is greater than the upper bound.
+ RangeSet New = getRange(St, Sym).Intersect(getBasicVals(), F, Upper, Lower);
+ return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
+}
+
+ProgramStateRef
+RangeConstraintManager::assumeSymEQ(ProgramStateRef St, SymbolRef Sym,
+ const llvm::APSInt &Int,
+ const llvm::APSInt &Adjustment) {
+ // Before we do any real work, see if the value can even show up.
+ APSIntType AdjustmentType(Adjustment);
+ if (AdjustmentType.testInRange(Int, true) != APSIntType::RTR_Within)
+ return nullptr;
+
+ // [Int-Adjustment, Int-Adjustment]
+ llvm::APSInt AdjInt = AdjustmentType.convert(Int) - Adjustment;
+ RangeSet New = getRange(St, Sym).Intersect(getBasicVals(), F, AdjInt, AdjInt);
+ return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
+}
+
+RangeSet RangeConstraintManager::getSymLTRange(ProgramStateRef St,
+ SymbolRef Sym,
+ const llvm::APSInt &Int,
+ const llvm::APSInt &Adjustment) {
+ // Before we do any real work, see if the value can even show up.
+ APSIntType AdjustmentType(Adjustment);
+ switch (AdjustmentType.testInRange(Int, true)) {
+ case APSIntType::RTR_Below:
+ return F.getEmptySet();
+ case APSIntType::RTR_Within:
+ break;
+ case APSIntType::RTR_Above:
+ return getRange(St, Sym);
+ }
+
+ // Special case for Int == Min. This is always false.
+ llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
+ llvm::APSInt Min = AdjustmentType.getMinValue();
+ if (ComparisonVal == Min)
+ return F.getEmptySet();
+
+ llvm::APSInt Lower = Min - Adjustment;
+ llvm::APSInt Upper = ComparisonVal - Adjustment;
+ --Upper;
+
+ return getRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper);
+}
+
+ProgramStateRef
+RangeConstraintManager::assumeSymLT(ProgramStateRef St, SymbolRef Sym,
+ const llvm::APSInt &Int,
+ const llvm::APSInt &Adjustment) {
+ RangeSet New = getSymLTRange(St, Sym, Int, Adjustment);
+ return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
+}
+
+RangeSet RangeConstraintManager::getSymGTRange(ProgramStateRef St,
+ SymbolRef Sym,
+ const llvm::APSInt &Int,
+ const llvm::APSInt &Adjustment) {
+ // Before we do any real work, see if the value can even show up.
+ APSIntType AdjustmentType(Adjustment);
+ switch (AdjustmentType.testInRange(Int, true)) {
+ case APSIntType::RTR_Below:
+ return getRange(St, Sym);
+ case APSIntType::RTR_Within:
+ break;
+ case APSIntType::RTR_Above:
+ return F.getEmptySet();
+ }
+
+ // Special case for Int == Max. This is always false.
+ llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
+ llvm::APSInt Max = AdjustmentType.getMaxValue();
+ if (ComparisonVal == Max)
+ return F.getEmptySet();
+
+ llvm::APSInt Lower = ComparisonVal - Adjustment;
+ llvm::APSInt Upper = Max - Adjustment;
+ ++Lower;
+
+ return getRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper);
+}
+
+ProgramStateRef
+RangeConstraintManager::assumeSymGT(ProgramStateRef St, SymbolRef Sym,
+ const llvm::APSInt &Int,
+ const llvm::APSInt &Adjustment) {
+ RangeSet New = getSymGTRange(St, Sym, Int, Adjustment);
+ return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
+}
+
+RangeSet RangeConstraintManager::getSymGERange(ProgramStateRef St,
+ SymbolRef Sym,
+ const llvm::APSInt &Int,
+ const llvm::APSInt &Adjustment) {
+ // Before we do any real work, see if the value can even show up.
+ APSIntType AdjustmentType(Adjustment);
+ switch (AdjustmentType.testInRange(Int, true)) {
+ case APSIntType::RTR_Below:
+ return getRange(St, Sym);
+ case APSIntType::RTR_Within:
+ break;
+ case APSIntType::RTR_Above:
+ return F.getEmptySet();
+ }
+
+ // Special case for Int == Min. This is always feasible.
+ llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
+ llvm::APSInt Min = AdjustmentType.getMinValue();
+ if (ComparisonVal == Min)
+ return getRange(St, Sym);
+
+ llvm::APSInt Max = AdjustmentType.getMaxValue();
+ llvm::APSInt Lower = ComparisonVal - Adjustment;
+ llvm::APSInt Upper = Max - Adjustment;
+
+ return getRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper);
+}
+
+ProgramStateRef
+RangeConstraintManager::assumeSymGE(ProgramStateRef St, SymbolRef Sym,
+ const llvm::APSInt &Int,
+ const llvm::APSInt &Adjustment) {
+ RangeSet New = getSymGERange(St, Sym, Int, Adjustment);
+ return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
+}
+
+RangeSet RangeConstraintManager::getSymLERange(
+ llvm::function_ref<RangeSet()> RS,
+ const llvm::APSInt &Int,
+ const llvm::APSInt &Adjustment) {
+ // Before we do any real work, see if the value can even show up.
+ APSIntType AdjustmentType(Adjustment);
+ switch (AdjustmentType.testInRange(Int, true)) {
+ case APSIntType::RTR_Below:
+ return F.getEmptySet();
+ case APSIntType::RTR_Within:
+ break;
+ case APSIntType::RTR_Above:
+ return RS();
+ }
+
+ // Special case for Int == Max. This is always feasible.
+ llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
+ llvm::APSInt Max = AdjustmentType.getMaxValue();
+ if (ComparisonVal == Max)
+ return RS();
+
+ llvm::APSInt Min = AdjustmentType.getMinValue();
+ llvm::APSInt Lower = Min - Adjustment;
+ llvm::APSInt Upper = ComparisonVal - Adjustment;
+
+ return RS().Intersect(getBasicVals(), F, Lower, Upper);
+}
+
+RangeSet RangeConstraintManager::getSymLERange(ProgramStateRef St,
+ SymbolRef Sym,
+ const llvm::APSInt &Int,
+ const llvm::APSInt &Adjustment) {
+ return getSymLERange([&] { return getRange(St, Sym); }, Int, Adjustment);
+}
+
+ProgramStateRef
+RangeConstraintManager::assumeSymLE(ProgramStateRef St, SymbolRef Sym,
+ const llvm::APSInt &Int,
+ const llvm::APSInt &Adjustment) {
+ RangeSet New = getSymLERange(St, Sym, Int, Adjustment);
+ return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
+}
+
+ProgramStateRef RangeConstraintManager::assumeSymWithinInclusiveRange(
+ ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
+ const llvm::APSInt &To, const llvm::APSInt &Adjustment) {
+ RangeSet New = getSymGERange(State, Sym, From, Adjustment);
+ if (New.isEmpty())
+ return nullptr;
+ RangeSet Out = getSymLERange([&] { return New; }, To, Adjustment);
+ return Out.isEmpty() ? nullptr : State->set<ConstraintRange>(Sym, Out);
+}
+
+ProgramStateRef RangeConstraintManager::assumeSymOutsideInclusiveRange(
+ ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
+ const llvm::APSInt &To, const llvm::APSInt &Adjustment) {
+ RangeSet RangeLT = getSymLTRange(State, Sym, From, Adjustment);
+ RangeSet RangeGT = getSymGTRange(State, Sym, To, Adjustment);
+ RangeSet New(RangeLT.addRange(F, RangeGT));
+ return New.isEmpty() ? nullptr : State->set<ConstraintRange>(Sym, New);
+}
+
+//===----------------------------------------------------------------------===//
+// Pretty-printing.
+//===----------------------------------------------------------------------===//
+
+void RangeConstraintManager::printJson(raw_ostream &Out, ProgramStateRef State,
+ const char *NL, unsigned int Space,
+ bool IsDot) const {
+ ConstraintRangeTy Constraints = State->get<ConstraintRange>();
+
+ Indent(Out, Space, IsDot) << "\"constraints\": ";
+ if (Constraints.isEmpty()) {
+ Out << "null," << NL;
+ return;
+ }
+
+ ++Space;
+ Out << '[' << NL;
+ for (ConstraintRangeTy::iterator I = Constraints.begin();
+ I != Constraints.end(); ++I) {
+ Indent(Out, Space, IsDot)
+ << "{ \"symbol\": \"" << I.getKey() << "\", \"range\": \"";
+ I.getData().print(Out);
+ Out << "\" }";
+
+ if (std::next(I) != Constraints.end())
+ Out << ',';
+ Out << NL;
+ }
+
+ --Space;
+ Indent(Out, Space, IsDot) << "]," << NL;
+}