summaryrefslogtreecommitdiffstats
path: root/gnu/llvm/clang/lib/Tooling/ASTDiff/ASTDiff.cpp
diff options
context:
space:
mode:
authorpatrick <patrick@openbsd.org>2020-08-03 14:31:31 +0000
committerpatrick <patrick@openbsd.org>2020-08-03 14:31:31 +0000
commite5dd70708596ae51455a0ffa086a00c5b29f8583 (patch)
tree5d676f27b570bacf71e786c3b5cff3e6f6679b59 /gnu/llvm/clang/lib/Tooling/ASTDiff/ASTDiff.cpp
parentImport LLVM 10.0.0 release including clang, lld and lldb. (diff)
downloadwireguard-openbsd-e5dd70708596ae51455a0ffa086a00c5b29f8583.tar.xz
wireguard-openbsd-e5dd70708596ae51455a0ffa086a00c5b29f8583.zip
Import LLVM 10.0.0 release including clang, lld and lldb.
ok hackroom tested by plenty
Diffstat (limited to 'gnu/llvm/clang/lib/Tooling/ASTDiff/ASTDiff.cpp')
-rw-r--r--gnu/llvm/clang/lib/Tooling/ASTDiff/ASTDiff.cpp1019
1 files changed, 1019 insertions, 0 deletions
diff --git a/gnu/llvm/clang/lib/Tooling/ASTDiff/ASTDiff.cpp b/gnu/llvm/clang/lib/Tooling/ASTDiff/ASTDiff.cpp
new file mode 100644
index 00000000000..4d495228cb5
--- /dev/null
+++ b/gnu/llvm/clang/lib/Tooling/ASTDiff/ASTDiff.cpp
@@ -0,0 +1,1019 @@
+//===- ASTDiff.cpp - AST differencing implementation-----------*- C++ -*- -===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains definitons for the AST differencing interface.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Tooling/ASTDiff/ASTDiff.h"
+
+#include "clang/AST/RecursiveASTVisitor.h"
+#include "clang/Lex/Lexer.h"
+#include "llvm/ADT/PriorityQueue.h"
+
+#include <limits>
+#include <memory>
+#include <unordered_set>
+
+using namespace llvm;
+using namespace clang;
+
+namespace clang {
+namespace diff {
+
+namespace {
+/// Maps nodes of the left tree to ones on the right, and vice versa.
+class Mapping {
+public:
+ Mapping() = default;
+ Mapping(Mapping &&Other) = default;
+ Mapping &operator=(Mapping &&Other) = default;
+
+ Mapping(size_t Size) {
+ SrcToDst = std::make_unique<NodeId[]>(Size);
+ DstToSrc = std::make_unique<NodeId[]>(Size);
+ }
+
+ void link(NodeId Src, NodeId Dst) {
+ SrcToDst[Src] = Dst, DstToSrc[Dst] = Src;
+ }
+
+ NodeId getDst(NodeId Src) const { return SrcToDst[Src]; }
+ NodeId getSrc(NodeId Dst) const { return DstToSrc[Dst]; }
+ bool hasSrc(NodeId Src) const { return getDst(Src).isValid(); }
+ bool hasDst(NodeId Dst) const { return getSrc(Dst).isValid(); }
+
+private:
+ std::unique_ptr<NodeId[]> SrcToDst, DstToSrc;
+};
+} // end anonymous namespace
+
+class ASTDiff::Impl {
+public:
+ SyntaxTree::Impl &T1, &T2;
+ Mapping TheMapping;
+
+ Impl(SyntaxTree::Impl &T1, SyntaxTree::Impl &T2,
+ const ComparisonOptions &Options);
+
+ /// Matches nodes one-by-one based on their similarity.
+ void computeMapping();
+
+ // Compute Change for each node based on similarity.
+ void computeChangeKinds(Mapping &M);
+
+ NodeId getMapped(const std::unique_ptr<SyntaxTree::Impl> &Tree,
+ NodeId Id) const {
+ if (&*Tree == &T1)
+ return TheMapping.getDst(Id);
+ assert(&*Tree == &T2 && "Invalid tree.");
+ return TheMapping.getSrc(Id);
+ }
+
+private:
+ // Returns true if the two subtrees are identical.
+ bool identical(NodeId Id1, NodeId Id2) const;
+
+ // Returns false if the nodes must not be mached.
+ bool isMatchingPossible(NodeId Id1, NodeId Id2) const;
+
+ // Returns true if the nodes' parents are matched.
+ bool haveSameParents(const Mapping &M, NodeId Id1, NodeId Id2) const;
+
+ // Uses an optimal albeit slow algorithm to compute a mapping between two
+ // subtrees, but only if both have fewer nodes than MaxSize.
+ void addOptimalMapping(Mapping &M, NodeId Id1, NodeId Id2) const;
+
+ // Computes the ratio of common descendants between the two nodes.
+ // Descendants are only considered to be equal when they are mapped in M.
+ double getJaccardSimilarity(const Mapping &M, NodeId Id1, NodeId Id2) const;
+
+ // Returns the node that has the highest degree of similarity.
+ NodeId findCandidate(const Mapping &M, NodeId Id1) const;
+
+ // Returns a mapping of identical subtrees.
+ Mapping matchTopDown() const;
+
+ // Tries to match any yet unmapped nodes, in a bottom-up fashion.
+ void matchBottomUp(Mapping &M) const;
+
+ const ComparisonOptions &Options;
+
+ friend class ZhangShashaMatcher;
+};
+
+/// Represents the AST of a TranslationUnit.
+class SyntaxTree::Impl {
+public:
+ Impl(SyntaxTree *Parent, ASTContext &AST);
+ /// Constructs a tree from an AST node.
+ Impl(SyntaxTree *Parent, Decl *N, ASTContext &AST);
+ Impl(SyntaxTree *Parent, Stmt *N, ASTContext &AST);
+ template <class T>
+ Impl(SyntaxTree *Parent,
+ typename std::enable_if<std::is_base_of<Stmt, T>::value, T>::type *Node,
+ ASTContext &AST)
+ : Impl(Parent, dyn_cast<Stmt>(Node), AST) {}
+ template <class T>
+ Impl(SyntaxTree *Parent,
+ typename std::enable_if<std::is_base_of<Decl, T>::value, T>::type *Node,
+ ASTContext &AST)
+ : Impl(Parent, dyn_cast<Decl>(Node), AST) {}
+
+ SyntaxTree *Parent;
+ ASTContext &AST;
+ PrintingPolicy TypePP;
+ /// Nodes in preorder.
+ std::vector<Node> Nodes;
+ std::vector<NodeId> Leaves;
+ // Maps preorder indices to postorder ones.
+ std::vector<int> PostorderIds;
+ std::vector<NodeId> NodesBfs;
+
+ int getSize() const { return Nodes.size(); }
+ NodeId getRootId() const { return 0; }
+ PreorderIterator begin() const { return getRootId(); }
+ PreorderIterator end() const { return getSize(); }
+
+ const Node &getNode(NodeId Id) const { return Nodes[Id]; }
+ Node &getMutableNode(NodeId Id) { return Nodes[Id]; }
+ bool isValidNodeId(NodeId Id) const { return Id >= 0 && Id < getSize(); }
+ void addNode(Node &N) { Nodes.push_back(N); }
+ int getNumberOfDescendants(NodeId Id) const;
+ bool isInSubtree(NodeId Id, NodeId SubtreeRoot) const;
+ int findPositionInParent(NodeId Id, bool Shifted = false) const;
+
+ std::string getRelativeName(const NamedDecl *ND,
+ const DeclContext *Context) const;
+ std::string getRelativeName(const NamedDecl *ND) const;
+
+ std::string getNodeValue(NodeId Id) const;
+ std::string getNodeValue(const Node &Node) const;
+ std::string getDeclValue(const Decl *D) const;
+ std::string getStmtValue(const Stmt *S) const;
+
+private:
+ void initTree();
+ void setLeftMostDescendants();
+};
+
+static bool isSpecializedNodeExcluded(const Decl *D) { return D->isImplicit(); }
+static bool isSpecializedNodeExcluded(const Stmt *S) { return false; }
+static bool isSpecializedNodeExcluded(CXXCtorInitializer *I) {
+ return !I->isWritten();
+}
+
+template <class T>
+static bool isNodeExcluded(const SourceManager &SrcMgr, T *N) {
+ if (!N)
+ return true;
+ SourceLocation SLoc = N->getSourceRange().getBegin();
+ if (SLoc.isValid()) {
+ // Ignore everything from other files.
+ if (!SrcMgr.isInMainFile(SLoc))
+ return true;
+ // Ignore macros.
+ if (SLoc != SrcMgr.getSpellingLoc(SLoc))
+ return true;
+ }
+ return isSpecializedNodeExcluded(N);
+}
+
+namespace {
+// Sets Height, Parent and Children for each node.
+struct PreorderVisitor : public RecursiveASTVisitor<PreorderVisitor> {
+ int Id = 0, Depth = 0;
+ NodeId Parent;
+ SyntaxTree::Impl &Tree;
+
+ PreorderVisitor(SyntaxTree::Impl &Tree) : Tree(Tree) {}
+
+ template <class T> std::tuple<NodeId, NodeId> PreTraverse(T *ASTNode) {
+ NodeId MyId = Id;
+ Tree.Nodes.emplace_back();
+ Node &N = Tree.getMutableNode(MyId);
+ N.Parent = Parent;
+ N.Depth = Depth;
+ N.ASTNode = DynTypedNode::create(*ASTNode);
+ assert(!N.ASTNode.getNodeKind().isNone() &&
+ "Expected nodes to have a valid kind.");
+ if (Parent.isValid()) {
+ Node &P = Tree.getMutableNode(Parent);
+ P.Children.push_back(MyId);
+ }
+ Parent = MyId;
+ ++Id;
+ ++Depth;
+ return std::make_tuple(MyId, Tree.getNode(MyId).Parent);
+ }
+ void PostTraverse(std::tuple<NodeId, NodeId> State) {
+ NodeId MyId, PreviousParent;
+ std::tie(MyId, PreviousParent) = State;
+ assert(MyId.isValid() && "Expecting to only traverse valid nodes.");
+ Parent = PreviousParent;
+ --Depth;
+ Node &N = Tree.getMutableNode(MyId);
+ N.RightMostDescendant = Id - 1;
+ assert(N.RightMostDescendant >= 0 &&
+ N.RightMostDescendant < Tree.getSize() &&
+ "Rightmost descendant must be a valid tree node.");
+ if (N.isLeaf())
+ Tree.Leaves.push_back(MyId);
+ N.Height = 1;
+ for (NodeId Child : N.Children)
+ N.Height = std::max(N.Height, 1 + Tree.getNode(Child).Height);
+ }
+ bool TraverseDecl(Decl *D) {
+ if (isNodeExcluded(Tree.AST.getSourceManager(), D))
+ return true;
+ auto SavedState = PreTraverse(D);
+ RecursiveASTVisitor<PreorderVisitor>::TraverseDecl(D);
+ PostTraverse(SavedState);
+ return true;
+ }
+ bool TraverseStmt(Stmt *S) {
+ if (auto *E = dyn_cast_or_null<Expr>(S))
+ S = E->IgnoreImplicit();
+ if (isNodeExcluded(Tree.AST.getSourceManager(), S))
+ return true;
+ auto SavedState = PreTraverse(S);
+ RecursiveASTVisitor<PreorderVisitor>::TraverseStmt(S);
+ PostTraverse(SavedState);
+ return true;
+ }
+ bool TraverseType(QualType T) { return true; }
+ bool TraverseConstructorInitializer(CXXCtorInitializer *Init) {
+ if (isNodeExcluded(Tree.AST.getSourceManager(), Init))
+ return true;
+ auto SavedState = PreTraverse(Init);
+ RecursiveASTVisitor<PreorderVisitor>::TraverseConstructorInitializer(Init);
+ PostTraverse(SavedState);
+ return true;
+ }
+};
+} // end anonymous namespace
+
+SyntaxTree::Impl::Impl(SyntaxTree *Parent, ASTContext &AST)
+ : Parent(Parent), AST(AST), TypePP(AST.getLangOpts()) {
+ TypePP.AnonymousTagLocations = false;
+}
+
+SyntaxTree::Impl::Impl(SyntaxTree *Parent, Decl *N, ASTContext &AST)
+ : Impl(Parent, AST) {
+ PreorderVisitor PreorderWalker(*this);
+ PreorderWalker.TraverseDecl(N);
+ initTree();
+}
+
+SyntaxTree::Impl::Impl(SyntaxTree *Parent, Stmt *N, ASTContext &AST)
+ : Impl(Parent, AST) {
+ PreorderVisitor PreorderWalker(*this);
+ PreorderWalker.TraverseStmt(N);
+ initTree();
+}
+
+static std::vector<NodeId> getSubtreePostorder(const SyntaxTree::Impl &Tree,
+ NodeId Root) {
+ std::vector<NodeId> Postorder;
+ std::function<void(NodeId)> Traverse = [&](NodeId Id) {
+ const Node &N = Tree.getNode(Id);
+ for (NodeId Child : N.Children)
+ Traverse(Child);
+ Postorder.push_back(Id);
+ };
+ Traverse(Root);
+ return Postorder;
+}
+
+static std::vector<NodeId> getSubtreeBfs(const SyntaxTree::Impl &Tree,
+ NodeId Root) {
+ std::vector<NodeId> Ids;
+ size_t Expanded = 0;
+ Ids.push_back(Root);
+ while (Expanded < Ids.size())
+ for (NodeId Child : Tree.getNode(Ids[Expanded++]).Children)
+ Ids.push_back(Child);
+ return Ids;
+}
+
+void SyntaxTree::Impl::initTree() {
+ setLeftMostDescendants();
+ int PostorderId = 0;
+ PostorderIds.resize(getSize());
+ std::function<void(NodeId)> PostorderTraverse = [&](NodeId Id) {
+ for (NodeId Child : getNode(Id).Children)
+ PostorderTraverse(Child);
+ PostorderIds[Id] = PostorderId;
+ ++PostorderId;
+ };
+ PostorderTraverse(getRootId());
+ NodesBfs = getSubtreeBfs(*this, getRootId());
+}
+
+void SyntaxTree::Impl::setLeftMostDescendants() {
+ for (NodeId Leaf : Leaves) {
+ getMutableNode(Leaf).LeftMostDescendant = Leaf;
+ NodeId Parent, Cur = Leaf;
+ while ((Parent = getNode(Cur).Parent).isValid() &&
+ getNode(Parent).Children[0] == Cur) {
+ Cur = Parent;
+ getMutableNode(Cur).LeftMostDescendant = Leaf;
+ }
+ }
+}
+
+int SyntaxTree::Impl::getNumberOfDescendants(NodeId Id) const {
+ return getNode(Id).RightMostDescendant - Id + 1;
+}
+
+bool SyntaxTree::Impl::isInSubtree(NodeId Id, NodeId SubtreeRoot) const {
+ return Id >= SubtreeRoot && Id <= getNode(SubtreeRoot).RightMostDescendant;
+}
+
+int SyntaxTree::Impl::findPositionInParent(NodeId Id, bool Shifted) const {
+ NodeId Parent = getNode(Id).Parent;
+ if (Parent.isInvalid())
+ return 0;
+ const auto &Siblings = getNode(Parent).Children;
+ int Position = 0;
+ for (size_t I = 0, E = Siblings.size(); I < E; ++I) {
+ if (Shifted)
+ Position += getNode(Siblings[I]).Shift;
+ if (Siblings[I] == Id) {
+ Position += I;
+ return Position;
+ }
+ }
+ llvm_unreachable("Node not found in parent's children.");
+}
+
+// Returns the qualified name of ND. If it is subordinate to Context,
+// then the prefix of the latter is removed from the returned value.
+std::string
+SyntaxTree::Impl::getRelativeName(const NamedDecl *ND,
+ const DeclContext *Context) const {
+ std::string Val = ND->getQualifiedNameAsString();
+ std::string ContextPrefix;
+ if (!Context)
+ return Val;
+ if (auto *Namespace = dyn_cast<NamespaceDecl>(Context))
+ ContextPrefix = Namespace->getQualifiedNameAsString();
+ else if (auto *Record = dyn_cast<RecordDecl>(Context))
+ ContextPrefix = Record->getQualifiedNameAsString();
+ else if (AST.getLangOpts().CPlusPlus11)
+ if (auto *Tag = dyn_cast<TagDecl>(Context))
+ ContextPrefix = Tag->getQualifiedNameAsString();
+ // Strip the qualifier, if Val refers to something in the current scope.
+ // But leave one leading ':' in place, so that we know that this is a
+ // relative path.
+ if (!ContextPrefix.empty() && StringRef(Val).startswith(ContextPrefix))
+ Val = Val.substr(ContextPrefix.size() + 1);
+ return Val;
+}
+
+std::string SyntaxTree::Impl::getRelativeName(const NamedDecl *ND) const {
+ return getRelativeName(ND, ND->getDeclContext());
+}
+
+static const DeclContext *getEnclosingDeclContext(ASTContext &AST,
+ const Stmt *S) {
+ while (S) {
+ const auto &Parents = AST.getParents(*S);
+ if (Parents.empty())
+ return nullptr;
+ const auto &P = Parents[0];
+ if (const auto *D = P.get<Decl>())
+ return D->getDeclContext();
+ S = P.get<Stmt>();
+ }
+ return nullptr;
+}
+
+static std::string getInitializerValue(const CXXCtorInitializer *Init,
+ const PrintingPolicy &TypePP) {
+ if (Init->isAnyMemberInitializer())
+ return Init->getAnyMember()->getName();
+ if (Init->isBaseInitializer())
+ return QualType(Init->getBaseClass(), 0).getAsString(TypePP);
+ if (Init->isDelegatingInitializer())
+ return Init->getTypeSourceInfo()->getType().getAsString(TypePP);
+ llvm_unreachable("Unknown initializer type");
+}
+
+std::string SyntaxTree::Impl::getNodeValue(NodeId Id) const {
+ return getNodeValue(getNode(Id));
+}
+
+std::string SyntaxTree::Impl::getNodeValue(const Node &N) const {
+ const DynTypedNode &DTN = N.ASTNode;
+ if (auto *S = DTN.get<Stmt>())
+ return getStmtValue(S);
+ if (auto *D = DTN.get<Decl>())
+ return getDeclValue(D);
+ if (auto *Init = DTN.get<CXXCtorInitializer>())
+ return getInitializerValue(Init, TypePP);
+ llvm_unreachable("Fatal: unhandled AST node.\n");
+}
+
+std::string SyntaxTree::Impl::getDeclValue(const Decl *D) const {
+ std::string Value;
+ if (auto *V = dyn_cast<ValueDecl>(D))
+ return getRelativeName(V) + "(" + V->getType().getAsString(TypePP) + ")";
+ if (auto *N = dyn_cast<NamedDecl>(D))
+ Value += getRelativeName(N) + ";";
+ if (auto *T = dyn_cast<TypedefNameDecl>(D))
+ return Value + T->getUnderlyingType().getAsString(TypePP) + ";";
+ if (auto *T = dyn_cast<TypeDecl>(D))
+ if (T->getTypeForDecl())
+ Value +=
+ T->getTypeForDecl()->getCanonicalTypeInternal().getAsString(TypePP) +
+ ";";
+ if (auto *U = dyn_cast<UsingDirectiveDecl>(D))
+ return U->getNominatedNamespace()->getName();
+ if (auto *A = dyn_cast<AccessSpecDecl>(D)) {
+ CharSourceRange Range(A->getSourceRange(), false);
+ return Lexer::getSourceText(Range, AST.getSourceManager(),
+ AST.getLangOpts());
+ }
+ return Value;
+}
+
+std::string SyntaxTree::Impl::getStmtValue(const Stmt *S) const {
+ if (auto *U = dyn_cast<UnaryOperator>(S))
+ return UnaryOperator::getOpcodeStr(U->getOpcode());
+ if (auto *B = dyn_cast<BinaryOperator>(S))
+ return B->getOpcodeStr();
+ if (auto *M = dyn_cast<MemberExpr>(S))
+ return getRelativeName(M->getMemberDecl());
+ if (auto *I = dyn_cast<IntegerLiteral>(S)) {
+ SmallString<256> Str;
+ I->getValue().toString(Str, /*Radix=*/10, /*Signed=*/false);
+ return Str.str();
+ }
+ if (auto *F = dyn_cast<FloatingLiteral>(S)) {
+ SmallString<256> Str;
+ F->getValue().toString(Str);
+ return Str.str();
+ }
+ if (auto *D = dyn_cast<DeclRefExpr>(S))
+ return getRelativeName(D->getDecl(), getEnclosingDeclContext(AST, S));
+ if (auto *String = dyn_cast<StringLiteral>(S))
+ return String->getString();
+ if (auto *B = dyn_cast<CXXBoolLiteralExpr>(S))
+ return B->getValue() ? "true" : "false";
+ return "";
+}
+
+/// Identifies a node in a subtree by its postorder offset, starting at 1.
+struct SNodeId {
+ int Id = 0;
+
+ explicit SNodeId(int Id) : Id(Id) {}
+ explicit SNodeId() = default;
+
+ operator int() const { return Id; }
+ SNodeId &operator++() { return ++Id, *this; }
+ SNodeId &operator--() { return --Id, *this; }
+ SNodeId operator+(int Other) const { return SNodeId(Id + Other); }
+};
+
+class Subtree {
+private:
+ /// The parent tree.
+ const SyntaxTree::Impl &Tree;
+ /// Maps SNodeIds to original ids.
+ std::vector<NodeId> RootIds;
+ /// Maps subtree nodes to their leftmost descendants wtihin the subtree.
+ std::vector<SNodeId> LeftMostDescendants;
+
+public:
+ std::vector<SNodeId> KeyRoots;
+
+ Subtree(const SyntaxTree::Impl &Tree, NodeId SubtreeRoot) : Tree(Tree) {
+ RootIds = getSubtreePostorder(Tree, SubtreeRoot);
+ int NumLeaves = setLeftMostDescendants();
+ computeKeyRoots(NumLeaves);
+ }
+ int getSize() const { return RootIds.size(); }
+ NodeId getIdInRoot(SNodeId Id) const {
+ assert(Id > 0 && Id <= getSize() && "Invalid subtree node index.");
+ return RootIds[Id - 1];
+ }
+ const Node &getNode(SNodeId Id) const {
+ return Tree.getNode(getIdInRoot(Id));
+ }
+ SNodeId getLeftMostDescendant(SNodeId Id) const {
+ assert(Id > 0 && Id <= getSize() && "Invalid subtree node index.");
+ return LeftMostDescendants[Id - 1];
+ }
+ /// Returns the postorder index of the leftmost descendant in the subtree.
+ NodeId getPostorderOffset() const {
+ return Tree.PostorderIds[getIdInRoot(SNodeId(1))];
+ }
+ std::string getNodeValue(SNodeId Id) const {
+ return Tree.getNodeValue(getIdInRoot(Id));
+ }
+
+private:
+ /// Returns the number of leafs in the subtree.
+ int setLeftMostDescendants() {
+ int NumLeaves = 0;
+ LeftMostDescendants.resize(getSize());
+ for (int I = 0; I < getSize(); ++I) {
+ SNodeId SI(I + 1);
+ const Node &N = getNode(SI);
+ NumLeaves += N.isLeaf();
+ assert(I == Tree.PostorderIds[getIdInRoot(SI)] - getPostorderOffset() &&
+ "Postorder traversal in subtree should correspond to traversal in "
+ "the root tree by a constant offset.");
+ LeftMostDescendants[I] = SNodeId(Tree.PostorderIds[N.LeftMostDescendant] -
+ getPostorderOffset());
+ }
+ return NumLeaves;
+ }
+ void computeKeyRoots(int Leaves) {
+ KeyRoots.resize(Leaves);
+ std::unordered_set<int> Visited;
+ int K = Leaves - 1;
+ for (SNodeId I(getSize()); I > 0; --I) {
+ SNodeId LeftDesc = getLeftMostDescendant(I);
+ if (Visited.count(LeftDesc))
+ continue;
+ assert(K >= 0 && "K should be non-negative");
+ KeyRoots[K] = I;
+ Visited.insert(LeftDesc);
+ --K;
+ }
+ }
+};
+
+/// Implementation of Zhang and Shasha's Algorithm for tree edit distance.
+/// Computes an optimal mapping between two trees using only insertion,
+/// deletion and update as edit actions (similar to the Levenshtein distance).
+class ZhangShashaMatcher {
+ const ASTDiff::Impl &DiffImpl;
+ Subtree S1;
+ Subtree S2;
+ std::unique_ptr<std::unique_ptr<double[]>[]> TreeDist, ForestDist;
+
+public:
+ ZhangShashaMatcher(const ASTDiff::Impl &DiffImpl, const SyntaxTree::Impl &T1,
+ const SyntaxTree::Impl &T2, NodeId Id1, NodeId Id2)
+ : DiffImpl(DiffImpl), S1(T1, Id1), S2(T2, Id2) {
+ TreeDist = std::make_unique<std::unique_ptr<double[]>[]>(
+ size_t(S1.getSize()) + 1);
+ ForestDist = std::make_unique<std::unique_ptr<double[]>[]>(
+ size_t(S1.getSize()) + 1);
+ for (int I = 0, E = S1.getSize() + 1; I < E; ++I) {
+ TreeDist[I] = std::make_unique<double[]>(size_t(S2.getSize()) + 1);
+ ForestDist[I] = std::make_unique<double[]>(size_t(S2.getSize()) + 1);
+ }
+ }
+
+ std::vector<std::pair<NodeId, NodeId>> getMatchingNodes() {
+ std::vector<std::pair<NodeId, NodeId>> Matches;
+ std::vector<std::pair<SNodeId, SNodeId>> TreePairs;
+
+ computeTreeDist();
+
+ bool RootNodePair = true;
+
+ TreePairs.emplace_back(SNodeId(S1.getSize()), SNodeId(S2.getSize()));
+
+ while (!TreePairs.empty()) {
+ SNodeId LastRow, LastCol, FirstRow, FirstCol, Row, Col;
+ std::tie(LastRow, LastCol) = TreePairs.back();
+ TreePairs.pop_back();
+
+ if (!RootNodePair) {
+ computeForestDist(LastRow, LastCol);
+ }
+
+ RootNodePair = false;
+
+ FirstRow = S1.getLeftMostDescendant(LastRow);
+ FirstCol = S2.getLeftMostDescendant(LastCol);
+
+ Row = LastRow;
+ Col = LastCol;
+
+ while (Row > FirstRow || Col > FirstCol) {
+ if (Row > FirstRow &&
+ ForestDist[Row - 1][Col] + 1 == ForestDist[Row][Col]) {
+ --Row;
+ } else if (Col > FirstCol &&
+ ForestDist[Row][Col - 1] + 1 == ForestDist[Row][Col]) {
+ --Col;
+ } else {
+ SNodeId LMD1 = S1.getLeftMostDescendant(Row);
+ SNodeId LMD2 = S2.getLeftMostDescendant(Col);
+ if (LMD1 == S1.getLeftMostDescendant(LastRow) &&
+ LMD2 == S2.getLeftMostDescendant(LastCol)) {
+ NodeId Id1 = S1.getIdInRoot(Row);
+ NodeId Id2 = S2.getIdInRoot(Col);
+ assert(DiffImpl.isMatchingPossible(Id1, Id2) &&
+ "These nodes must not be matched.");
+ Matches.emplace_back(Id1, Id2);
+ --Row;
+ --Col;
+ } else {
+ TreePairs.emplace_back(Row, Col);
+ Row = LMD1;
+ Col = LMD2;
+ }
+ }
+ }
+ }
+ return Matches;
+ }
+
+private:
+ /// We use a simple cost model for edit actions, which seems good enough.
+ /// Simple cost model for edit actions. This seems to make the matching
+ /// algorithm perform reasonably well.
+ /// The values range between 0 and 1, or infinity if this edit action should
+ /// always be avoided.
+ static constexpr double DeletionCost = 1;
+ static constexpr double InsertionCost = 1;
+
+ double getUpdateCost(SNodeId Id1, SNodeId Id2) {
+ if (!DiffImpl.isMatchingPossible(S1.getIdInRoot(Id1), S2.getIdInRoot(Id2)))
+ return std::numeric_limits<double>::max();
+ return S1.getNodeValue(Id1) != S2.getNodeValue(Id2);
+ }
+
+ void computeTreeDist() {
+ for (SNodeId Id1 : S1.KeyRoots)
+ for (SNodeId Id2 : S2.KeyRoots)
+ computeForestDist(Id1, Id2);
+ }
+
+ void computeForestDist(SNodeId Id1, SNodeId Id2) {
+ assert(Id1 > 0 && Id2 > 0 && "Expecting offsets greater than 0.");
+ SNodeId LMD1 = S1.getLeftMostDescendant(Id1);
+ SNodeId LMD2 = S2.getLeftMostDescendant(Id2);
+
+ ForestDist[LMD1][LMD2] = 0;
+ for (SNodeId D1 = LMD1 + 1; D1 <= Id1; ++D1) {
+ ForestDist[D1][LMD2] = ForestDist[D1 - 1][LMD2] + DeletionCost;
+ for (SNodeId D2 = LMD2 + 1; D2 <= Id2; ++D2) {
+ ForestDist[LMD1][D2] = ForestDist[LMD1][D2 - 1] + InsertionCost;
+ SNodeId DLMD1 = S1.getLeftMostDescendant(D1);
+ SNodeId DLMD2 = S2.getLeftMostDescendant(D2);
+ if (DLMD1 == LMD1 && DLMD2 == LMD2) {
+ double UpdateCost = getUpdateCost(D1, D2);
+ ForestDist[D1][D2] =
+ std::min({ForestDist[D1 - 1][D2] + DeletionCost,
+ ForestDist[D1][D2 - 1] + InsertionCost,
+ ForestDist[D1 - 1][D2 - 1] + UpdateCost});
+ TreeDist[D1][D2] = ForestDist[D1][D2];
+ } else {
+ ForestDist[D1][D2] =
+ std::min({ForestDist[D1 - 1][D2] + DeletionCost,
+ ForestDist[D1][D2 - 1] + InsertionCost,
+ ForestDist[DLMD1][DLMD2] + TreeDist[D1][D2]});
+ }
+ }
+ }
+ }
+};
+
+ast_type_traits::ASTNodeKind Node::getType() const {
+ return ASTNode.getNodeKind();
+}
+
+StringRef Node::getTypeLabel() const { return getType().asStringRef(); }
+
+llvm::Optional<std::string> Node::getQualifiedIdentifier() const {
+ if (auto *ND = ASTNode.get<NamedDecl>()) {
+ if (ND->getDeclName().isIdentifier())
+ return ND->getQualifiedNameAsString();
+ }
+ return llvm::None;
+}
+
+llvm::Optional<StringRef> Node::getIdentifier() const {
+ if (auto *ND = ASTNode.get<NamedDecl>()) {
+ if (ND->getDeclName().isIdentifier())
+ return ND->getName();
+ }
+ return llvm::None;
+}
+
+namespace {
+// Compares nodes by their depth.
+struct HeightLess {
+ const SyntaxTree::Impl &Tree;
+ HeightLess(const SyntaxTree::Impl &Tree) : Tree(Tree) {}
+ bool operator()(NodeId Id1, NodeId Id2) const {
+ return Tree.getNode(Id1).Height < Tree.getNode(Id2).Height;
+ }
+};
+} // end anonymous namespace
+
+namespace {
+// Priority queue for nodes, sorted descendingly by their height.
+class PriorityList {
+ const SyntaxTree::Impl &Tree;
+ HeightLess Cmp;
+ std::vector<NodeId> Container;
+ PriorityQueue<NodeId, std::vector<NodeId>, HeightLess> List;
+
+public:
+ PriorityList(const SyntaxTree::Impl &Tree)
+ : Tree(Tree), Cmp(Tree), List(Cmp, Container) {}
+
+ void push(NodeId id) { List.push(id); }
+
+ std::vector<NodeId> pop() {
+ int Max = peekMax();
+ std::vector<NodeId> Result;
+ if (Max == 0)
+ return Result;
+ while (peekMax() == Max) {
+ Result.push_back(List.top());
+ List.pop();
+ }
+ // TODO this is here to get a stable output, not a good heuristic
+ llvm::sort(Result);
+ return Result;
+ }
+ int peekMax() const {
+ if (List.empty())
+ return 0;
+ return Tree.getNode(List.top()).Height;
+ }
+ void open(NodeId Id) {
+ for (NodeId Child : Tree.getNode(Id).Children)
+ push(Child);
+ }
+};
+} // end anonymous namespace
+
+bool ASTDiff::Impl::identical(NodeId Id1, NodeId Id2) const {
+ const Node &N1 = T1.getNode(Id1);
+ const Node &N2 = T2.getNode(Id2);
+ if (N1.Children.size() != N2.Children.size() ||
+ !isMatchingPossible(Id1, Id2) ||
+ T1.getNodeValue(Id1) != T2.getNodeValue(Id2))
+ return false;
+ for (size_t Id = 0, E = N1.Children.size(); Id < E; ++Id)
+ if (!identical(N1.Children[Id], N2.Children[Id]))
+ return false;
+ return true;
+}
+
+bool ASTDiff::Impl::isMatchingPossible(NodeId Id1, NodeId Id2) const {
+ return Options.isMatchingAllowed(T1.getNode(Id1), T2.getNode(Id2));
+}
+
+bool ASTDiff::Impl::haveSameParents(const Mapping &M, NodeId Id1,
+ NodeId Id2) const {
+ NodeId P1 = T1.getNode(Id1).Parent;
+ NodeId P2 = T2.getNode(Id2).Parent;
+ return (P1.isInvalid() && P2.isInvalid()) ||
+ (P1.isValid() && P2.isValid() && M.getDst(P1) == P2);
+}
+
+void ASTDiff::Impl::addOptimalMapping(Mapping &M, NodeId Id1,
+ NodeId Id2) const {
+ if (std::max(T1.getNumberOfDescendants(Id1), T2.getNumberOfDescendants(Id2)) >
+ Options.MaxSize)
+ return;
+ ZhangShashaMatcher Matcher(*this, T1, T2, Id1, Id2);
+ std::vector<std::pair<NodeId, NodeId>> R = Matcher.getMatchingNodes();
+ for (const auto &Tuple : R) {
+ NodeId Src = Tuple.first;
+ NodeId Dst = Tuple.second;
+ if (!M.hasSrc(Src) && !M.hasDst(Dst))
+ M.link(Src, Dst);
+ }
+}
+
+double ASTDiff::Impl::getJaccardSimilarity(const Mapping &M, NodeId Id1,
+ NodeId Id2) const {
+ int CommonDescendants = 0;
+ const Node &N1 = T1.getNode(Id1);
+ // Count the common descendants, excluding the subtree root.
+ for (NodeId Src = Id1 + 1; Src <= N1.RightMostDescendant; ++Src) {
+ NodeId Dst = M.getDst(Src);
+ CommonDescendants += int(Dst.isValid() && T2.isInSubtree(Dst, Id2));
+ }
+ // We need to subtract 1 to get the number of descendants excluding the root.
+ double Denominator = T1.getNumberOfDescendants(Id1) - 1 +
+ T2.getNumberOfDescendants(Id2) - 1 - CommonDescendants;
+ // CommonDescendants is less than the size of one subtree.
+ assert(Denominator >= 0 && "Expected non-negative denominator.");
+ if (Denominator == 0)
+ return 0;
+ return CommonDescendants / Denominator;
+}
+
+NodeId ASTDiff::Impl::findCandidate(const Mapping &M, NodeId Id1) const {
+ NodeId Candidate;
+ double HighestSimilarity = 0.0;
+ for (NodeId Id2 : T2) {
+ if (!isMatchingPossible(Id1, Id2))
+ continue;
+ if (M.hasDst(Id2))
+ continue;
+ double Similarity = getJaccardSimilarity(M, Id1, Id2);
+ if (Similarity >= Options.MinSimilarity && Similarity > HighestSimilarity) {
+ HighestSimilarity = Similarity;
+ Candidate = Id2;
+ }
+ }
+ return Candidate;
+}
+
+void ASTDiff::Impl::matchBottomUp(Mapping &M) const {
+ std::vector<NodeId> Postorder = getSubtreePostorder(T1, T1.getRootId());
+ for (NodeId Id1 : Postorder) {
+ if (Id1 == T1.getRootId() && !M.hasSrc(T1.getRootId()) &&
+ !M.hasDst(T2.getRootId())) {
+ if (isMatchingPossible(T1.getRootId(), T2.getRootId())) {
+ M.link(T1.getRootId(), T2.getRootId());
+ addOptimalMapping(M, T1.getRootId(), T2.getRootId());
+ }
+ break;
+ }
+ bool Matched = M.hasSrc(Id1);
+ const Node &N1 = T1.getNode(Id1);
+ bool MatchedChildren = llvm::any_of(
+ N1.Children, [&](NodeId Child) { return M.hasSrc(Child); });
+ if (Matched || !MatchedChildren)
+ continue;
+ NodeId Id2 = findCandidate(M, Id1);
+ if (Id2.isValid()) {
+ M.link(Id1, Id2);
+ addOptimalMapping(M, Id1, Id2);
+ }
+ }
+}
+
+Mapping ASTDiff::Impl::matchTopDown() const {
+ PriorityList L1(T1);
+ PriorityList L2(T2);
+
+ Mapping M(T1.getSize() + T2.getSize());
+
+ L1.push(T1.getRootId());
+ L2.push(T2.getRootId());
+
+ int Max1, Max2;
+ while (std::min(Max1 = L1.peekMax(), Max2 = L2.peekMax()) >
+ Options.MinHeight) {
+ if (Max1 > Max2) {
+ for (NodeId Id : L1.pop())
+ L1.open(Id);
+ continue;
+ }
+ if (Max2 > Max1) {
+ for (NodeId Id : L2.pop())
+ L2.open(Id);
+ continue;
+ }
+ std::vector<NodeId> H1, H2;
+ H1 = L1.pop();
+ H2 = L2.pop();
+ for (NodeId Id1 : H1) {
+ for (NodeId Id2 : H2) {
+ if (identical(Id1, Id2) && !M.hasSrc(Id1) && !M.hasDst(Id2)) {
+ for (int I = 0, E = T1.getNumberOfDescendants(Id1); I < E; ++I)
+ M.link(Id1 + I, Id2 + I);
+ }
+ }
+ }
+ for (NodeId Id1 : H1) {
+ if (!M.hasSrc(Id1))
+ L1.open(Id1);
+ }
+ for (NodeId Id2 : H2) {
+ if (!M.hasDst(Id2))
+ L2.open(Id2);
+ }
+ }
+ return M;
+}
+
+ASTDiff::Impl::Impl(SyntaxTree::Impl &T1, SyntaxTree::Impl &T2,
+ const ComparisonOptions &Options)
+ : T1(T1), T2(T2), Options(Options) {
+ computeMapping();
+ computeChangeKinds(TheMapping);
+}
+
+void ASTDiff::Impl::computeMapping() {
+ TheMapping = matchTopDown();
+ if (Options.StopAfterTopDown)
+ return;
+ matchBottomUp(TheMapping);
+}
+
+void ASTDiff::Impl::computeChangeKinds(Mapping &M) {
+ for (NodeId Id1 : T1) {
+ if (!M.hasSrc(Id1)) {
+ T1.getMutableNode(Id1).Change = Delete;
+ T1.getMutableNode(Id1).Shift -= 1;
+ }
+ }
+ for (NodeId Id2 : T2) {
+ if (!M.hasDst(Id2)) {
+ T2.getMutableNode(Id2).Change = Insert;
+ T2.getMutableNode(Id2).Shift -= 1;
+ }
+ }
+ for (NodeId Id1 : T1.NodesBfs) {
+ NodeId Id2 = M.getDst(Id1);
+ if (Id2.isInvalid())
+ continue;
+ if (!haveSameParents(M, Id1, Id2) ||
+ T1.findPositionInParent(Id1, true) !=
+ T2.findPositionInParent(Id2, true)) {
+ T1.getMutableNode(Id1).Shift -= 1;
+ T2.getMutableNode(Id2).Shift -= 1;
+ }
+ }
+ for (NodeId Id2 : T2.NodesBfs) {
+ NodeId Id1 = M.getSrc(Id2);
+ if (Id1.isInvalid())
+ continue;
+ Node &N1 = T1.getMutableNode(Id1);
+ Node &N2 = T2.getMutableNode(Id2);
+ if (Id1.isInvalid())
+ continue;
+ if (!haveSameParents(M, Id1, Id2) ||
+ T1.findPositionInParent(Id1, true) !=
+ T2.findPositionInParent(Id2, true)) {
+ N1.Change = N2.Change = Move;
+ }
+ if (T1.getNodeValue(Id1) != T2.getNodeValue(Id2)) {
+ N1.Change = N2.Change = (N1.Change == Move ? UpdateMove : Update);
+ }
+ }
+}
+
+ASTDiff::ASTDiff(SyntaxTree &T1, SyntaxTree &T2,
+ const ComparisonOptions &Options)
+ : DiffImpl(std::make_unique<Impl>(*T1.TreeImpl, *T2.TreeImpl, Options)) {}
+
+ASTDiff::~ASTDiff() = default;
+
+NodeId ASTDiff::getMapped(const SyntaxTree &SourceTree, NodeId Id) const {
+ return DiffImpl->getMapped(SourceTree.TreeImpl, Id);
+}
+
+SyntaxTree::SyntaxTree(ASTContext &AST)
+ : TreeImpl(std::make_unique<SyntaxTree::Impl>(
+ this, AST.getTranslationUnitDecl(), AST)) {}
+
+SyntaxTree::~SyntaxTree() = default;
+
+const ASTContext &SyntaxTree::getASTContext() const { return TreeImpl->AST; }
+
+const Node &SyntaxTree::getNode(NodeId Id) const {
+ return TreeImpl->getNode(Id);
+}
+
+int SyntaxTree::getSize() const { return TreeImpl->getSize(); }
+NodeId SyntaxTree::getRootId() const { return TreeImpl->getRootId(); }
+SyntaxTree::PreorderIterator SyntaxTree::begin() const {
+ return TreeImpl->begin();
+}
+SyntaxTree::PreorderIterator SyntaxTree::end() const { return TreeImpl->end(); }
+
+int SyntaxTree::findPositionInParent(NodeId Id) const {
+ return TreeImpl->findPositionInParent(Id);
+}
+
+std::pair<unsigned, unsigned>
+SyntaxTree::getSourceRangeOffsets(const Node &N) const {
+ const SourceManager &SrcMgr = TreeImpl->AST.getSourceManager();
+ SourceRange Range = N.ASTNode.getSourceRange();
+ SourceLocation BeginLoc = Range.getBegin();
+ SourceLocation EndLoc = Lexer::getLocForEndOfToken(
+ Range.getEnd(), /*Offset=*/0, SrcMgr, TreeImpl->AST.getLangOpts());
+ if (auto *ThisExpr = N.ASTNode.get<CXXThisExpr>()) {
+ if (ThisExpr->isImplicit())
+ EndLoc = BeginLoc;
+ }
+ unsigned Begin = SrcMgr.getFileOffset(SrcMgr.getExpansionLoc(BeginLoc));
+ unsigned End = SrcMgr.getFileOffset(SrcMgr.getExpansionLoc(EndLoc));
+ return {Begin, End};
+}
+
+std::string SyntaxTree::getNodeValue(NodeId Id) const {
+ return TreeImpl->getNodeValue(Id);
+}
+
+std::string SyntaxTree::getNodeValue(const Node &N) const {
+ return TreeImpl->getNodeValue(N);
+}
+
+} // end namespace diff
+} // end namespace clang