diff options
author | 2020-08-10 21:03:40 +0000 | |
---|---|---|
committer | 2020-08-10 21:03:40 +0000 | |
commit | 3cab2bb3f667058bece8e38b12449a63a9d73c4b (patch) | |
tree | 732ebd68e507f798225d97f4f2dd7ff8468d3e17 /gnu/llvm/compiler-rt/lib/builtins/comparesf2.c | |
parent | Reduce log spam. (diff) | |
download | wireguard-openbsd-3cab2bb3f667058bece8e38b12449a63a9d73c4b.tar.xz wireguard-openbsd-3cab2bb3f667058bece8e38b12449a63a9d73c4b.zip |
Import compiler-rt 10.0.1 release.
ok kettenis@
Diffstat (limited to 'gnu/llvm/compiler-rt/lib/builtins/comparesf2.c')
-rw-r--r-- | gnu/llvm/compiler-rt/lib/builtins/comparesf2.c | 151 |
1 files changed, 151 insertions, 0 deletions
diff --git a/gnu/llvm/compiler-rt/lib/builtins/comparesf2.c b/gnu/llvm/compiler-rt/lib/builtins/comparesf2.c new file mode 100644 index 00000000000..1cb99e468c1 --- /dev/null +++ b/gnu/llvm/compiler-rt/lib/builtins/comparesf2.c @@ -0,0 +1,151 @@ +//===-- lib/comparesf2.c - Single-precision comparisons -----------*- C -*-===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file implements the following soft-fp_t comparison routines: +// +// __eqsf2 __gesf2 __unordsf2 +// __lesf2 __gtsf2 +// __ltsf2 +// __nesf2 +// +// The semantics of the routines grouped in each column are identical, so there +// is a single implementation for each, and wrappers to provide the other names. +// +// The main routines behave as follows: +// +// __lesf2(a,b) returns -1 if a < b +// 0 if a == b +// 1 if a > b +// 1 if either a or b is NaN +// +// __gesf2(a,b) returns -1 if a < b +// 0 if a == b +// 1 if a > b +// -1 if either a or b is NaN +// +// __unordsf2(a,b) returns 0 if both a and b are numbers +// 1 if either a or b is NaN +// +// Note that __lesf2( ) and __gesf2( ) are identical except in their handling of +// NaN values. +// +//===----------------------------------------------------------------------===// + +#define SINGLE_PRECISION +#include "fp_lib.h" + +enum LE_RESULT { LE_LESS = -1, LE_EQUAL = 0, LE_GREATER = 1, LE_UNORDERED = 1 }; + +COMPILER_RT_ABI enum LE_RESULT __lesf2(fp_t a, fp_t b) { + + const srep_t aInt = toRep(a); + const srep_t bInt = toRep(b); + const rep_t aAbs = aInt & absMask; + const rep_t bAbs = bInt & absMask; + + // If either a or b is NaN, they are unordered. + if (aAbs > infRep || bAbs > infRep) + return LE_UNORDERED; + + // If a and b are both zeros, they are equal. + if ((aAbs | bAbs) == 0) + return LE_EQUAL; + + // If at least one of a and b is positive, we get the same result comparing + // a and b as signed integers as we would with a fp_ting-point compare. + if ((aInt & bInt) >= 0) { + if (aInt < bInt) + return LE_LESS; + else if (aInt == bInt) + return LE_EQUAL; + else + return LE_GREATER; + } + + // Otherwise, both are negative, so we need to flip the sense of the + // comparison to get the correct result. (This assumes a twos- or ones- + // complement integer representation; if integers are represented in a + // sign-magnitude representation, then this flip is incorrect). + else { + if (aInt > bInt) + return LE_LESS; + else if (aInt == bInt) + return LE_EQUAL; + else + return LE_GREATER; + } +} + +#if defined(__ELF__) +// Alias for libgcc compatibility +COMPILER_RT_ALIAS(__lesf2, __cmpsf2) +#endif +COMPILER_RT_ALIAS(__lesf2, __eqsf2) +COMPILER_RT_ALIAS(__lesf2, __ltsf2) +COMPILER_RT_ALIAS(__lesf2, __nesf2) + +enum GE_RESULT { + GE_LESS = -1, + GE_EQUAL = 0, + GE_GREATER = 1, + GE_UNORDERED = -1 // Note: different from LE_UNORDERED +}; + +COMPILER_RT_ABI enum GE_RESULT __gesf2(fp_t a, fp_t b) { + + const srep_t aInt = toRep(a); + const srep_t bInt = toRep(b); + const rep_t aAbs = aInt & absMask; + const rep_t bAbs = bInt & absMask; + + if (aAbs > infRep || bAbs > infRep) + return GE_UNORDERED; + if ((aAbs | bAbs) == 0) + return GE_EQUAL; + if ((aInt & bInt) >= 0) { + if (aInt < bInt) + return GE_LESS; + else if (aInt == bInt) + return GE_EQUAL; + else + return GE_GREATER; + } else { + if (aInt > bInt) + return GE_LESS; + else if (aInt == bInt) + return GE_EQUAL; + else + return GE_GREATER; + } +} + +COMPILER_RT_ALIAS(__gesf2, __gtsf2) + +COMPILER_RT_ABI int +__unordsf2(fp_t a, fp_t b) { + const rep_t aAbs = toRep(a) & absMask; + const rep_t bAbs = toRep(b) & absMask; + return aAbs > infRep || bAbs > infRep; +} + +#if defined(__ARM_EABI__) +#if defined(COMPILER_RT_ARMHF_TARGET) +AEABI_RTABI int __aeabi_fcmpun(fp_t a, fp_t b) { return __unordsf2(a, b); } +#else +COMPILER_RT_ALIAS(__unordsf2, __aeabi_fcmpun) +#endif +#endif + +#if defined(_WIN32) && !defined(__MINGW32__) +// The alias mechanism doesn't work on Windows except for MinGW, so emit +// wrapper functions. +int __eqsf2(fp_t a, fp_t b) { return __lesf2(a, b); } +int __ltsf2(fp_t a, fp_t b) { return __lesf2(a, b); } +int __nesf2(fp_t a, fp_t b) { return __lesf2(a, b); } +int __gtsf2(fp_t a, fp_t b) { return __gesf2(a, b); } +#endif |