summaryrefslogtreecommitdiffstats
path: root/gnu/llvm/compiler-rt/lib/builtins/comparesf2.c
diff options
context:
space:
mode:
authorpatrick <patrick@openbsd.org>2020-08-10 21:03:40 +0000
committerpatrick <patrick@openbsd.org>2020-08-10 21:03:40 +0000
commit3cab2bb3f667058bece8e38b12449a63a9d73c4b (patch)
tree732ebd68e507f798225d97f4f2dd7ff8468d3e17 /gnu/llvm/compiler-rt/lib/builtins/comparesf2.c
parentReduce log spam. (diff)
downloadwireguard-openbsd-3cab2bb3f667058bece8e38b12449a63a9d73c4b.tar.xz
wireguard-openbsd-3cab2bb3f667058bece8e38b12449a63a9d73c4b.zip
Import compiler-rt 10.0.1 release.
ok kettenis@
Diffstat (limited to 'gnu/llvm/compiler-rt/lib/builtins/comparesf2.c')
-rw-r--r--gnu/llvm/compiler-rt/lib/builtins/comparesf2.c151
1 files changed, 151 insertions, 0 deletions
diff --git a/gnu/llvm/compiler-rt/lib/builtins/comparesf2.c b/gnu/llvm/compiler-rt/lib/builtins/comparesf2.c
new file mode 100644
index 00000000000..1cb99e468c1
--- /dev/null
+++ b/gnu/llvm/compiler-rt/lib/builtins/comparesf2.c
@@ -0,0 +1,151 @@
+//===-- lib/comparesf2.c - Single-precision comparisons -----------*- C -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the following soft-fp_t comparison routines:
+//
+// __eqsf2 __gesf2 __unordsf2
+// __lesf2 __gtsf2
+// __ltsf2
+// __nesf2
+//
+// The semantics of the routines grouped in each column are identical, so there
+// is a single implementation for each, and wrappers to provide the other names.
+//
+// The main routines behave as follows:
+//
+// __lesf2(a,b) returns -1 if a < b
+// 0 if a == b
+// 1 if a > b
+// 1 if either a or b is NaN
+//
+// __gesf2(a,b) returns -1 if a < b
+// 0 if a == b
+// 1 if a > b
+// -1 if either a or b is NaN
+//
+// __unordsf2(a,b) returns 0 if both a and b are numbers
+// 1 if either a or b is NaN
+//
+// Note that __lesf2( ) and __gesf2( ) are identical except in their handling of
+// NaN values.
+//
+//===----------------------------------------------------------------------===//
+
+#define SINGLE_PRECISION
+#include "fp_lib.h"
+
+enum LE_RESULT { LE_LESS = -1, LE_EQUAL = 0, LE_GREATER = 1, LE_UNORDERED = 1 };
+
+COMPILER_RT_ABI enum LE_RESULT __lesf2(fp_t a, fp_t b) {
+
+ const srep_t aInt = toRep(a);
+ const srep_t bInt = toRep(b);
+ const rep_t aAbs = aInt & absMask;
+ const rep_t bAbs = bInt & absMask;
+
+ // If either a or b is NaN, they are unordered.
+ if (aAbs > infRep || bAbs > infRep)
+ return LE_UNORDERED;
+
+ // If a and b are both zeros, they are equal.
+ if ((aAbs | bAbs) == 0)
+ return LE_EQUAL;
+
+ // If at least one of a and b is positive, we get the same result comparing
+ // a and b as signed integers as we would with a fp_ting-point compare.
+ if ((aInt & bInt) >= 0) {
+ if (aInt < bInt)
+ return LE_LESS;
+ else if (aInt == bInt)
+ return LE_EQUAL;
+ else
+ return LE_GREATER;
+ }
+
+ // Otherwise, both are negative, so we need to flip the sense of the
+ // comparison to get the correct result. (This assumes a twos- or ones-
+ // complement integer representation; if integers are represented in a
+ // sign-magnitude representation, then this flip is incorrect).
+ else {
+ if (aInt > bInt)
+ return LE_LESS;
+ else if (aInt == bInt)
+ return LE_EQUAL;
+ else
+ return LE_GREATER;
+ }
+}
+
+#if defined(__ELF__)
+// Alias for libgcc compatibility
+COMPILER_RT_ALIAS(__lesf2, __cmpsf2)
+#endif
+COMPILER_RT_ALIAS(__lesf2, __eqsf2)
+COMPILER_RT_ALIAS(__lesf2, __ltsf2)
+COMPILER_RT_ALIAS(__lesf2, __nesf2)
+
+enum GE_RESULT {
+ GE_LESS = -1,
+ GE_EQUAL = 0,
+ GE_GREATER = 1,
+ GE_UNORDERED = -1 // Note: different from LE_UNORDERED
+};
+
+COMPILER_RT_ABI enum GE_RESULT __gesf2(fp_t a, fp_t b) {
+
+ const srep_t aInt = toRep(a);
+ const srep_t bInt = toRep(b);
+ const rep_t aAbs = aInt & absMask;
+ const rep_t bAbs = bInt & absMask;
+
+ if (aAbs > infRep || bAbs > infRep)
+ return GE_UNORDERED;
+ if ((aAbs | bAbs) == 0)
+ return GE_EQUAL;
+ if ((aInt & bInt) >= 0) {
+ if (aInt < bInt)
+ return GE_LESS;
+ else if (aInt == bInt)
+ return GE_EQUAL;
+ else
+ return GE_GREATER;
+ } else {
+ if (aInt > bInt)
+ return GE_LESS;
+ else if (aInt == bInt)
+ return GE_EQUAL;
+ else
+ return GE_GREATER;
+ }
+}
+
+COMPILER_RT_ALIAS(__gesf2, __gtsf2)
+
+COMPILER_RT_ABI int
+__unordsf2(fp_t a, fp_t b) {
+ const rep_t aAbs = toRep(a) & absMask;
+ const rep_t bAbs = toRep(b) & absMask;
+ return aAbs > infRep || bAbs > infRep;
+}
+
+#if defined(__ARM_EABI__)
+#if defined(COMPILER_RT_ARMHF_TARGET)
+AEABI_RTABI int __aeabi_fcmpun(fp_t a, fp_t b) { return __unordsf2(a, b); }
+#else
+COMPILER_RT_ALIAS(__unordsf2, __aeabi_fcmpun)
+#endif
+#endif
+
+#if defined(_WIN32) && !defined(__MINGW32__)
+// The alias mechanism doesn't work on Windows except for MinGW, so emit
+// wrapper functions.
+int __eqsf2(fp_t a, fp_t b) { return __lesf2(a, b); }
+int __ltsf2(fp_t a, fp_t b) { return __lesf2(a, b); }
+int __nesf2(fp_t a, fp_t b) { return __lesf2(a, b); }
+int __gtsf2(fp_t a, fp_t b) { return __gesf2(a, b); }
+#endif