diff options
| author | 2020-08-03 15:06:44 +0000 | |
|---|---|---|
| committer | 2020-08-03 15:06:44 +0000 | |
| commit | b64793999546ed8adebaeebd9d8345d18db8927d (patch) | |
| tree | 4357c27b561d73b0e089727c6ed659f2ceff5f47 /gnu/llvm/docs/tutorial/OCamlLangImpl7.rst | |
| parent | Add support for UTF-8 DISPLAY-HINTs with octet length. For now only (diff) | |
| download | wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.tar.xz wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.zip | |
Remove LLVM 8.0.1 files.
Diffstat (limited to 'gnu/llvm/docs/tutorial/OCamlLangImpl7.rst')
| -rw-r--r-- | gnu/llvm/docs/tutorial/OCamlLangImpl7.rst | 1723 |
1 files changed, 0 insertions, 1723 deletions
diff --git a/gnu/llvm/docs/tutorial/OCamlLangImpl7.rst b/gnu/llvm/docs/tutorial/OCamlLangImpl7.rst deleted file mode 100644 index f36845c5234..00000000000 --- a/gnu/llvm/docs/tutorial/OCamlLangImpl7.rst +++ /dev/null @@ -1,1723 +0,0 @@ -======================================================= -Kaleidoscope: Extending the Language: Mutable Variables -======================================================= - -.. contents:: - :local: - -Chapter 7 Introduction -====================== - -Welcome to Chapter 7 of the "`Implementing a language with -LLVM <index.html>`_" tutorial. In chapters 1 through 6, we've built a -very respectable, albeit simple, `functional programming -language <http://en.wikipedia.org/wiki/Functional_programming>`_. In our -journey, we learned some parsing techniques, how to build and represent -an AST, how to build LLVM IR, and how to optimize the resultant code as -well as JIT compile it. - -While Kaleidoscope is interesting as a functional language, the fact -that it is functional makes it "too easy" to generate LLVM IR for it. In -particular, a functional language makes it very easy to build LLVM IR -directly in `SSA -form <http://en.wikipedia.org/wiki/Static_single_assignment_form>`_. -Since LLVM requires that the input code be in SSA form, this is a very -nice property and it is often unclear to newcomers how to generate code -for an imperative language with mutable variables. - -The short (and happy) summary of this chapter is that there is no need -for your front-end to build SSA form: LLVM provides highly tuned and -well tested support for this, though the way it works is a bit -unexpected for some. - -Why is this a hard problem? -=========================== - -To understand why mutable variables cause complexities in SSA -construction, consider this extremely simple C example: - -.. code-block:: c - - int G, H; - int test(_Bool Condition) { - int X; - if (Condition) - X = G; - else - X = H; - return X; - } - -In this case, we have the variable "X", whose value depends on the path -executed in the program. Because there are two different possible values -for X before the return instruction, a PHI node is inserted to merge the -two values. The LLVM IR that we want for this example looks like this: - -.. code-block:: llvm - - @G = weak global i32 0 ; type of @G is i32* - @H = weak global i32 0 ; type of @H is i32* - - define i32 @test(i1 %Condition) { - entry: - br i1 %Condition, label %cond_true, label %cond_false - - cond_true: - %X.0 = load i32* @G - br label %cond_next - - cond_false: - %X.1 = load i32* @H - br label %cond_next - - cond_next: - %X.2 = phi i32 [ %X.1, %cond_false ], [ %X.0, %cond_true ] - ret i32 %X.2 - } - -In this example, the loads from the G and H global variables are -explicit in the LLVM IR, and they live in the then/else branches of the -if statement (cond\_true/cond\_false). In order to merge the incoming -values, the X.2 phi node in the cond\_next block selects the right value -to use based on where control flow is coming from: if control flow comes -from the cond\_false block, X.2 gets the value of X.1. Alternatively, if -control flow comes from cond\_true, it gets the value of X.0. The intent -of this chapter is not to explain the details of SSA form. For more -information, see one of the many `online -references <http://en.wikipedia.org/wiki/Static_single_assignment_form>`_. - -The question for this article is "who places the phi nodes when lowering -assignments to mutable variables?". The issue here is that LLVM -*requires* that its IR be in SSA form: there is no "non-ssa" mode for -it. However, SSA construction requires non-trivial algorithms and data -structures, so it is inconvenient and wasteful for every front-end to -have to reproduce this logic. - -Memory in LLVM -============== - -The 'trick' here is that while LLVM does require all register values to -be in SSA form, it does not require (or permit) memory objects to be in -SSA form. In the example above, note that the loads from G and H are -direct accesses to G and H: they are not renamed or versioned. This -differs from some other compiler systems, which do try to version memory -objects. In LLVM, instead of encoding dataflow analysis of memory into -the LLVM IR, it is handled with `Analysis -Passes <../WritingAnLLVMPass.html>`_ which are computed on demand. - -With this in mind, the high-level idea is that we want to make a stack -variable (which lives in memory, because it is on the stack) for each -mutable object in a function. To take advantage of this trick, we need -to talk about how LLVM represents stack variables. - -In LLVM, all memory accesses are explicit with load/store instructions, -and it is carefully designed not to have (or need) an "address-of" -operator. Notice how the type of the @G/@H global variables is actually -"i32\*" even though the variable is defined as "i32". What this means is -that @G defines *space* for an i32 in the global data area, but its -*name* actually refers to the address for that space. Stack variables -work the same way, except that instead of being declared with global -variable definitions, they are declared with the `LLVM alloca -instruction <../LangRef.html#alloca-instruction>`_: - -.. code-block:: llvm - - define i32 @example() { - entry: - %X = alloca i32 ; type of %X is i32*. - ... - %tmp = load i32* %X ; load the stack value %X from the stack. - %tmp2 = add i32 %tmp, 1 ; increment it - store i32 %tmp2, i32* %X ; store it back - ... - -This code shows an example of how you can declare and manipulate a stack -variable in the LLVM IR. Stack memory allocated with the alloca -instruction is fully general: you can pass the address of the stack slot -to functions, you can store it in other variables, etc. In our example -above, we could rewrite the example to use the alloca technique to avoid -using a PHI node: - -.. code-block:: llvm - - @G = weak global i32 0 ; type of @G is i32* - @H = weak global i32 0 ; type of @H is i32* - - define i32 @test(i1 %Condition) { - entry: - %X = alloca i32 ; type of %X is i32*. - br i1 %Condition, label %cond_true, label %cond_false - - cond_true: - %X.0 = load i32* @G - store i32 %X.0, i32* %X ; Update X - br label %cond_next - - cond_false: - %X.1 = load i32* @H - store i32 %X.1, i32* %X ; Update X - br label %cond_next - - cond_next: - %X.2 = load i32* %X ; Read X - ret i32 %X.2 - } - -With this, we have discovered a way to handle arbitrary mutable -variables without the need to create Phi nodes at all: - -#. Each mutable variable becomes a stack allocation. -#. Each read of the variable becomes a load from the stack. -#. Each update of the variable becomes a store to the stack. -#. Taking the address of a variable just uses the stack address - directly. - -While this solution has solved our immediate problem, it introduced -another one: we have now apparently introduced a lot of stack traffic -for very simple and common operations, a major performance problem. -Fortunately for us, the LLVM optimizer has a highly-tuned optimization -pass named "mem2reg" that handles this case, promoting allocas like this -into SSA registers, inserting Phi nodes as appropriate. If you run this -example through the pass, for example, you'll get: - -.. code-block:: bash - - $ llvm-as < example.ll | opt -mem2reg | llvm-dis - @G = weak global i32 0 - @H = weak global i32 0 - - define i32 @test(i1 %Condition) { - entry: - br i1 %Condition, label %cond_true, label %cond_false - - cond_true: - %X.0 = load i32* @G - br label %cond_next - - cond_false: - %X.1 = load i32* @H - br label %cond_next - - cond_next: - %X.01 = phi i32 [ %X.1, %cond_false ], [ %X.0, %cond_true ] - ret i32 %X.01 - } - -The mem2reg pass implements the standard "iterated dominance frontier" -algorithm for constructing SSA form and has a number of optimizations -that speed up (very common) degenerate cases. The mem2reg optimization -pass is the answer to dealing with mutable variables, and we highly -recommend that you depend on it. Note that mem2reg only works on -variables in certain circumstances: - -#. mem2reg is alloca-driven: it looks for allocas and if it can handle - them, it promotes them. It does not apply to global variables or heap - allocations. -#. mem2reg only looks for alloca instructions in the entry block of the - function. Being in the entry block guarantees that the alloca is only - executed once, which makes analysis simpler. -#. mem2reg only promotes allocas whose uses are direct loads and stores. - If the address of the stack object is passed to a function, or if any - funny pointer arithmetic is involved, the alloca will not be - promoted. -#. mem2reg only works on allocas of `first - class <../LangRef.html#first-class-types>`_ values (such as pointers, - scalars and vectors), and only if the array size of the allocation is - 1 (or missing in the .ll file). mem2reg is not capable of promoting - structs or arrays to registers. Note that the "sroa" pass is - more powerful and can promote structs, "unions", and arrays in many - cases. - -All of these properties are easy to satisfy for most imperative -languages, and we'll illustrate it below with Kaleidoscope. The final -question you may be asking is: should I bother with this nonsense for my -front-end? Wouldn't it be better if I just did SSA construction -directly, avoiding use of the mem2reg optimization pass? In short, we -strongly recommend that you use this technique for building SSA form, -unless there is an extremely good reason not to. Using this technique -is: - -- Proven and well tested: clang uses this technique - for local mutable variables. As such, the most common clients of LLVM - are using this to handle a bulk of their variables. You can be sure - that bugs are found fast and fixed early. -- Extremely Fast: mem2reg has a number of special cases that make it - fast in common cases as well as fully general. For example, it has - fast-paths for variables that are only used in a single block, - variables that only have one assignment point, good heuristics to - avoid insertion of unneeded phi nodes, etc. -- Needed for debug info generation: `Debug information in - LLVM <../SourceLevelDebugging.html>`_ relies on having the address of - the variable exposed so that debug info can be attached to it. This - technique dovetails very naturally with this style of debug info. - -If nothing else, this makes it much easier to get your front-end up and -running, and is very simple to implement. Lets extend Kaleidoscope with -mutable variables now! - -Mutable Variables in Kaleidoscope -================================= - -Now that we know the sort of problem we want to tackle, lets see what -this looks like in the context of our little Kaleidoscope language. -We're going to add two features: - -#. The ability to mutate variables with the '=' operator. -#. The ability to define new variables. - -While the first item is really what this is about, we only have -variables for incoming arguments as well as for induction variables, and -redefining those only goes so far :). Also, the ability to define new -variables is a useful thing regardless of whether you will be mutating -them. Here's a motivating example that shows how we could use these: - -:: - - # Define ':' for sequencing: as a low-precedence operator that ignores operands - # and just returns the RHS. - def binary : 1 (x y) y; - - # Recursive fib, we could do this before. - def fib(x) - if (x < 3) then - 1 - else - fib(x-1)+fib(x-2); - - # Iterative fib. - def fibi(x) - var a = 1, b = 1, c in - (for i = 3, i < x in - c = a + b : - a = b : - b = c) : - b; - - # Call it. - fibi(10); - -In order to mutate variables, we have to change our existing variables -to use the "alloca trick". Once we have that, we'll add our new -operator, then extend Kaleidoscope to support new variable definitions. - -Adjusting Existing Variables for Mutation -========================================= - -The symbol table in Kaleidoscope is managed at code generation time by -the '``named_values``' map. This map currently keeps track of the LLVM -"Value\*" that holds the double value for the named variable. In order -to support mutation, we need to change this slightly, so that it -``named_values`` holds the *memory location* of the variable in -question. Note that this change is a refactoring: it changes the -structure of the code, but does not (by itself) change the behavior of -the compiler. All of these changes are isolated in the Kaleidoscope code -generator. - -At this point in Kaleidoscope's development, it only supports variables -for two things: incoming arguments to functions and the induction -variable of 'for' loops. For consistency, we'll allow mutation of these -variables in addition to other user-defined variables. This means that -these will both need memory locations. - -To start our transformation of Kaleidoscope, we'll change the -``named_values`` map so that it maps to AllocaInst\* instead of Value\*. -Once we do this, the C++ compiler will tell us what parts of the code we -need to update: - -**Note:** the ocaml bindings currently model both ``Value*``'s and -``AllocInst*``'s as ``Llvm.llvalue``'s, but this may change in the future -to be more type safe. - -.. code-block:: ocaml - - let named_values:(string, llvalue) Hashtbl.t = Hashtbl.create 10 - -Also, since we will need to create these alloca's, we'll use a helper -function that ensures that the allocas are created in the entry block of -the function: - -.. code-block:: ocaml - - (* Create an alloca instruction in the entry block of the function. This - * is used for mutable variables etc. *) - let create_entry_block_alloca the_function var_name = - let builder = builder_at (instr_begin (entry_block the_function)) in - build_alloca double_type var_name builder - -This funny looking code creates an ``Llvm.llbuilder`` object that is -pointing at the first instruction of the entry block. It then creates an -alloca with the expected name and returns it. Because all values in -Kaleidoscope are doubles, there is no need to pass in a type to use. - -With this in place, the first functionality change we want to make is to -variable references. In our new scheme, variables live on the stack, so -code generating a reference to them actually needs to produce a load -from the stack slot: - -.. code-block:: ocaml - - let rec codegen_expr = function - ... - | Ast.Variable name -> - let v = try Hashtbl.find named_values name with - | Not_found -> raise (Error "unknown variable name") - in - (* Load the value. *) - build_load v name builder - -As you can see, this is pretty straightforward. Now we need to update -the things that define the variables to set up the alloca. We'll start -with ``codegen_expr Ast.For ...`` (see the `full code listing <#id1>`_ -for the unabridged code): - -.. code-block:: ocaml - - | Ast.For (var_name, start, end_, step, body) -> - let the_function = block_parent (insertion_block builder) in - - (* Create an alloca for the variable in the entry block. *) - let alloca = create_entry_block_alloca the_function var_name in - - (* Emit the start code first, without 'variable' in scope. *) - let start_val = codegen_expr start in - - (* Store the value into the alloca. *) - ignore(build_store start_val alloca builder); - - ... - - (* Within the loop, the variable is defined equal to the PHI node. If it - * shadows an existing variable, we have to restore it, so save it - * now. *) - let old_val = - try Some (Hashtbl.find named_values var_name) with Not_found -> None - in - Hashtbl.add named_values var_name alloca; - - ... - - (* Compute the end condition. *) - let end_cond = codegen_expr end_ in - - (* Reload, increment, and restore the alloca. This handles the case where - * the body of the loop mutates the variable. *) - let cur_var = build_load alloca var_name builder in - let next_var = build_add cur_var step_val "nextvar" builder in - ignore(build_store next_var alloca builder); - ... - -This code is virtually identical to the code `before we allowed mutable -variables <OCamlLangImpl5.html#code-generation-for-the-for-loop>`_. The big difference is that -we no longer have to construct a PHI node, and we use load/store to -access the variable as needed. - -To support mutable argument variables, we need to also make allocas for -them. The code for this is also pretty simple: - -.. code-block:: ocaml - - (* Create an alloca for each argument and register the argument in the symbol - * table so that references to it will succeed. *) - let create_argument_allocas the_function proto = - let args = match proto with - | Ast.Prototype (_, args) | Ast.BinOpPrototype (_, args, _) -> args - in - Array.iteri (fun i ai -> - let var_name = args.(i) in - (* Create an alloca for this variable. *) - let alloca = create_entry_block_alloca the_function var_name in - - (* Store the initial value into the alloca. *) - ignore(build_store ai alloca builder); - - (* Add arguments to variable symbol table. *) - Hashtbl.add named_values var_name alloca; - ) (params the_function) - -For each argument, we make an alloca, store the input value to the -function into the alloca, and register the alloca as the memory location -for the argument. This method gets invoked by ``Codegen.codegen_func`` -right after it sets up the entry block for the function. - -The final missing piece is adding the mem2reg pass, which allows us to -get good codegen once again: - -.. code-block:: ocaml - - let main () = - ... - let the_fpm = PassManager.create_function Codegen.the_module in - - (* Set up the optimizer pipeline. Start with registering info about how the - * target lays out data structures. *) - DataLayout.add (ExecutionEngine.target_data the_execution_engine) the_fpm; - - (* Promote allocas to registers. *) - add_memory_to_register_promotion the_fpm; - - (* Do simple "peephole" optimizations and bit-twiddling optzn. *) - add_instruction_combining the_fpm; - - (* reassociate expressions. *) - add_reassociation the_fpm; - -It is interesting to see what the code looks like before and after the -mem2reg optimization runs. For example, this is the before/after code -for our recursive fib function. Before the optimization: - -.. code-block:: llvm - - define double @fib(double %x) { - entry: - %x1 = alloca double - store double %x, double* %x1 - %x2 = load double* %x1 - %cmptmp = fcmp ult double %x2, 3.000000e+00 - %booltmp = uitofp i1 %cmptmp to double - %ifcond = fcmp one double %booltmp, 0.000000e+00 - br i1 %ifcond, label %then, label %else - - then: ; preds = %entry - br label %ifcont - - else: ; preds = %entry - %x3 = load double* %x1 - %subtmp = fsub double %x3, 1.000000e+00 - %calltmp = call double @fib(double %subtmp) - %x4 = load double* %x1 - %subtmp5 = fsub double %x4, 2.000000e+00 - %calltmp6 = call double @fib(double %subtmp5) - %addtmp = fadd double %calltmp, %calltmp6 - br label %ifcont - - ifcont: ; preds = %else, %then - %iftmp = phi double [ 1.000000e+00, %then ], [ %addtmp, %else ] - ret double %iftmp - } - -Here there is only one variable (x, the input argument) but you can -still see the extremely simple-minded code generation strategy we are -using. In the entry block, an alloca is created, and the initial input -value is stored into it. Each reference to the variable does a reload -from the stack. Also, note that we didn't modify the if/then/else -expression, so it still inserts a PHI node. While we could make an -alloca for it, it is actually easier to create a PHI node for it, so we -still just make the PHI. - -Here is the code after the mem2reg pass runs: - -.. code-block:: llvm - - define double @fib(double %x) { - entry: - %cmptmp = fcmp ult double %x, 3.000000e+00 - %booltmp = uitofp i1 %cmptmp to double - %ifcond = fcmp one double %booltmp, 0.000000e+00 - br i1 %ifcond, label %then, label %else - - then: - br label %ifcont - - else: - %subtmp = fsub double %x, 1.000000e+00 - %calltmp = call double @fib(double %subtmp) - %subtmp5 = fsub double %x, 2.000000e+00 - %calltmp6 = call double @fib(double %subtmp5) - %addtmp = fadd double %calltmp, %calltmp6 - br label %ifcont - - ifcont: ; preds = %else, %then - %iftmp = phi double [ 1.000000e+00, %then ], [ %addtmp, %else ] - ret double %iftmp - } - -This is a trivial case for mem2reg, since there are no redefinitions of -the variable. The point of showing this is to calm your tension about -inserting such blatent inefficiencies :). - -After the rest of the optimizers run, we get: - -.. code-block:: llvm - - define double @fib(double %x) { - entry: - %cmptmp = fcmp ult double %x, 3.000000e+00 - %booltmp = uitofp i1 %cmptmp to double - %ifcond = fcmp ueq double %booltmp, 0.000000e+00 - br i1 %ifcond, label %else, label %ifcont - - else: - %subtmp = fsub double %x, 1.000000e+00 - %calltmp = call double @fib(double %subtmp) - %subtmp5 = fsub double %x, 2.000000e+00 - %calltmp6 = call double @fib(double %subtmp5) - %addtmp = fadd double %calltmp, %calltmp6 - ret double %addtmp - - ifcont: - ret double 1.000000e+00 - } - -Here we see that the simplifycfg pass decided to clone the return -instruction into the end of the 'else' block. This allowed it to -eliminate some branches and the PHI node. - -Now that all symbol table references are updated to use stack variables, -we'll add the assignment operator. - -New Assignment Operator -======================= - -With our current framework, adding a new assignment operator is really -simple. We will parse it just like any other binary operator, but handle -it internally (instead of allowing the user to define it). The first -step is to set a precedence: - -.. code-block:: ocaml - - let main () = - (* Install standard binary operators. - * 1 is the lowest precedence. *) - Hashtbl.add Parser.binop_precedence '=' 2; - Hashtbl.add Parser.binop_precedence '<' 10; - Hashtbl.add Parser.binop_precedence '+' 20; - Hashtbl.add Parser.binop_precedence '-' 20; - ... - -Now that the parser knows the precedence of the binary operator, it -takes care of all the parsing and AST generation. We just need to -implement codegen for the assignment operator. This looks like: - -.. code-block:: ocaml - - let rec codegen_expr = function - begin match op with - | '=' -> - (* Special case '=' because we don't want to emit the LHS as an - * expression. *) - let name = - match lhs with - | Ast.Variable name -> name - | _ -> raise (Error "destination of '=' must be a variable") - in - -Unlike the rest of the binary operators, our assignment operator doesn't -follow the "emit LHS, emit RHS, do computation" model. As such, it is -handled as a special case before the other binary operators are handled. -The other strange thing is that it requires the LHS to be a variable. It -is invalid to have "(x+1) = expr" - only things like "x = expr" are -allowed. - -.. code-block:: ocaml - - (* Codegen the rhs. *) - let val_ = codegen_expr rhs in - - (* Lookup the name. *) - let variable = try Hashtbl.find named_values name with - | Not_found -> raise (Error "unknown variable name") - in - ignore(build_store val_ variable builder); - val_ - | _ -> - ... - -Once we have the variable, codegen'ing the assignment is -straightforward: we emit the RHS of the assignment, create a store, and -return the computed value. Returning a value allows for chained -assignments like "X = (Y = Z)". - -Now that we have an assignment operator, we can mutate loop variables -and arguments. For example, we can now run code like this: - -:: - - # Function to print a double. - extern printd(x); - - # Define ':' for sequencing: as a low-precedence operator that ignores operands - # and just returns the RHS. - def binary : 1 (x y) y; - - def test(x) - printd(x) : - x = 4 : - printd(x); - - test(123); - -When run, this example prints "123" and then "4", showing that we did -actually mutate the value! Okay, we have now officially implemented our -goal: getting this to work requires SSA construction in the general -case. However, to be really useful, we want the ability to define our -own local variables, lets add this next! - -User-defined Local Variables -============================ - -Adding var/in is just like any other other extensions we made to -Kaleidoscope: we extend the lexer, the parser, the AST and the code -generator. The first step for adding our new 'var/in' construct is to -extend the lexer. As before, this is pretty trivial, the code looks like -this: - -.. code-block:: ocaml - - type token = - ... - (* var definition *) - | Var - - ... - - and lex_ident buffer = parser - ... - | "in" -> [< 'Token.In; stream >] - | "binary" -> [< 'Token.Binary; stream >] - | "unary" -> [< 'Token.Unary; stream >] - | "var" -> [< 'Token.Var; stream >] - ... - -The next step is to define the AST node that we will construct. For -var/in, it looks like this: - -.. code-block:: ocaml - - type expr = - ... - (* variant for var/in. *) - | Var of (string * expr option) array * expr - ... - -var/in allows a list of names to be defined all at once, and each name -can optionally have an initializer value. As such, we capture this -information in the VarNames vector. Also, var/in has a body, this body -is allowed to access the variables defined by the var/in. - -With this in place, we can define the parser pieces. The first thing we -do is add it as a primary expression: - -.. code-block:: ocaml - - (* primary - * ::= identifier - * ::= numberexpr - * ::= parenexpr - * ::= ifexpr - * ::= forexpr - * ::= varexpr *) - let rec parse_primary = parser - ... - (* varexpr - * ::= 'var' identifier ('=' expression? - * (',' identifier ('=' expression)?)* 'in' expression *) - | [< 'Token.Var; - (* At least one variable name is required. *) - 'Token.Ident id ?? "expected identifier after var"; - init=parse_var_init; - var_names=parse_var_names [(id, init)]; - (* At this point, we have to have 'in'. *) - 'Token.In ?? "expected 'in' keyword after 'var'"; - body=parse_expr >] -> - Ast.Var (Array.of_list (List.rev var_names), body) - - ... - - and parse_var_init = parser - (* read in the optional initializer. *) - | [< 'Token.Kwd '='; e=parse_expr >] -> Some e - | [< >] -> None - - and parse_var_names accumulator = parser - | [< 'Token.Kwd ','; - 'Token.Ident id ?? "expected identifier list after var"; - init=parse_var_init; - e=parse_var_names ((id, init) :: accumulator) >] -> e - | [< >] -> accumulator - -Now that we can parse and represent the code, we need to support -emission of LLVM IR for it. This code starts out with: - -.. code-block:: ocaml - - let rec codegen_expr = function - ... - | Ast.Var (var_names, body) - let old_bindings = ref [] in - - let the_function = block_parent (insertion_block builder) in - - (* Register all variables and emit their initializer. *) - Array.iter (fun (var_name, init) -> - -Basically it loops over all the variables, installing them one at a -time. For each variable we put into the symbol table, we remember the -previous value that we replace in OldBindings. - -.. code-block:: ocaml - - (* Emit the initializer before adding the variable to scope, this - * prevents the initializer from referencing the variable itself, and - * permits stuff like this: - * var a = 1 in - * var a = a in ... # refers to outer 'a'. *) - let init_val = - match init with - | Some init -> codegen_expr init - (* If not specified, use 0.0. *) - | None -> const_float double_type 0.0 - in - - let alloca = create_entry_block_alloca the_function var_name in - ignore(build_store init_val alloca builder); - - (* Remember the old variable binding so that we can restore the binding - * when we unrecurse. *) - - begin - try - let old_value = Hashtbl.find named_values var_name in - old_bindings := (var_name, old_value) :: !old_bindings; - with Not_found > () - end; - - (* Remember this binding. *) - Hashtbl.add named_values var_name alloca; - ) var_names; - -There are more comments here than code. The basic idea is that we emit -the initializer, create the alloca, then update the symbol table to -point to it. Once all the variables are installed in the symbol table, -we evaluate the body of the var/in expression: - -.. code-block:: ocaml - - (* Codegen the body, now that all vars are in scope. *) - let body_val = codegen_expr body in - -Finally, before returning, we restore the previous variable bindings: - -.. code-block:: ocaml - - (* Pop all our variables from scope. *) - List.iter (fun (var_name, old_value) -> - Hashtbl.add named_values var_name old_value - ) !old_bindings; - - (* Return the body computation. *) - body_val - -The end result of all of this is that we get properly scoped variable -definitions, and we even (trivially) allow mutation of them :). - -With this, we completed what we set out to do. Our nice iterative fib -example from the intro compiles and runs just fine. The mem2reg pass -optimizes all of our stack variables into SSA registers, inserting PHI -nodes where needed, and our front-end remains simple: no "iterated -dominance frontier" computation anywhere in sight. - -Full Code Listing -================= - -Here is the complete code listing for our running example, enhanced with -mutable variables and var/in support. To build this example, use: - -.. code-block:: bash - - # Compile - ocamlbuild toy.byte - # Run - ./toy.byte - -Here is the code: - -\_tags: - :: - - <{lexer,parser}.ml>: use_camlp4, pp(camlp4of) - <*.{byte,native}>: g++, use_llvm, use_llvm_analysis - <*.{byte,native}>: use_llvm_executionengine, use_llvm_target - <*.{byte,native}>: use_llvm_scalar_opts, use_bindings - -myocamlbuild.ml: - .. code-block:: ocaml - - open Ocamlbuild_plugin;; - - ocaml_lib ~extern:true "llvm";; - ocaml_lib ~extern:true "llvm_analysis";; - ocaml_lib ~extern:true "llvm_executionengine";; - ocaml_lib ~extern:true "llvm_target";; - ocaml_lib ~extern:true "llvm_scalar_opts";; - - flag ["link"; "ocaml"; "g++"] (S[A"-cc"; A"g++"; A"-cclib"; A"-rdynamic"]);; - dep ["link"; "ocaml"; "use_bindings"] ["bindings.o"];; - -token.ml: - .. code-block:: ocaml - - (*===----------------------------------------------------------------------=== - * Lexer Tokens - *===----------------------------------------------------------------------===*) - - (* The lexer returns these 'Kwd' if it is an unknown character, otherwise one of - * these others for known things. *) - type token = - (* commands *) - | Def | Extern - - (* primary *) - | Ident of string | Number of float - - (* unknown *) - | Kwd of char - - (* control *) - | If | Then | Else - | For | In - - (* operators *) - | Binary | Unary - - (* var definition *) - | Var - -lexer.ml: - .. code-block:: ocaml - - (*===----------------------------------------------------------------------=== - * Lexer - *===----------------------------------------------------------------------===*) - - let rec lex = parser - (* Skip any whitespace. *) - | [< ' (' ' | '\n' | '\r' | '\t'); stream >] -> lex stream - - (* identifier: [a-zA-Z][a-zA-Z0-9] *) - | [< ' ('A' .. 'Z' | 'a' .. 'z' as c); stream >] -> - let buffer = Buffer.create 1 in - Buffer.add_char buffer c; - lex_ident buffer stream - - (* number: [0-9.]+ *) - | [< ' ('0' .. '9' as c); stream >] -> - let buffer = Buffer.create 1 in - Buffer.add_char buffer c; - lex_number buffer stream - - (* Comment until end of line. *) - | [< ' ('#'); stream >] -> - lex_comment stream - - (* Otherwise, just return the character as its ascii value. *) - | [< 'c; stream >] -> - [< 'Token.Kwd c; lex stream >] - - (* end of stream. *) - | [< >] -> [< >] - - and lex_number buffer = parser - | [< ' ('0' .. '9' | '.' as c); stream >] -> - Buffer.add_char buffer c; - lex_number buffer stream - | [< stream=lex >] -> - [< 'Token.Number (float_of_string (Buffer.contents buffer)); stream >] - - and lex_ident buffer = parser - | [< ' ('A' .. 'Z' | 'a' .. 'z' | '0' .. '9' as c); stream >] -> - Buffer.add_char buffer c; - lex_ident buffer stream - | [< stream=lex >] -> - match Buffer.contents buffer with - | "def" -> [< 'Token.Def; stream >] - | "extern" -> [< 'Token.Extern; stream >] - | "if" -> [< 'Token.If; stream >] - | "then" -> [< 'Token.Then; stream >] - | "else" -> [< 'Token.Else; stream >] - | "for" -> [< 'Token.For; stream >] - | "in" -> [< 'Token.In; stream >] - | "binary" -> [< 'Token.Binary; stream >] - | "unary" -> [< 'Token.Unary; stream >] - | "var" -> [< 'Token.Var; stream >] - | id -> [< 'Token.Ident id; stream >] - - and lex_comment = parser - | [< ' ('\n'); stream=lex >] -> stream - | [< 'c; e=lex_comment >] -> e - | [< >] -> [< >] - -ast.ml: - .. code-block:: ocaml - - (*===----------------------------------------------------------------------=== - * Abstract Syntax Tree (aka Parse Tree) - *===----------------------------------------------------------------------===*) - - (* expr - Base type for all expression nodes. *) - type expr = - (* variant for numeric literals like "1.0". *) - | Number of float - - (* variant for referencing a variable, like "a". *) - | Variable of string - - (* variant for a unary operator. *) - | Unary of char * expr - - (* variant for a binary operator. *) - | Binary of char * expr * expr - - (* variant for function calls. *) - | Call of string * expr array - - (* variant for if/then/else. *) - | If of expr * expr * expr - - (* variant for for/in. *) - | For of string * expr * expr * expr option * expr - - (* variant for var/in. *) - | Var of (string * expr option) array * expr - - (* proto - This type represents the "prototype" for a function, which captures - * its name, and its argument names (thus implicitly the number of arguments the - * function takes). *) - type proto = - | Prototype of string * string array - | BinOpPrototype of string * string array * int - - (* func - This type represents a function definition itself. *) - type func = Function of proto * expr - -parser.ml: - .. code-block:: ocaml - - (*===---------------------------------------------------------------------=== - * Parser - *===---------------------------------------------------------------------===*) - - (* binop_precedence - This holds the precedence for each binary operator that is - * defined *) - let binop_precedence:(char, int) Hashtbl.t = Hashtbl.create 10 - - (* precedence - Get the precedence of the pending binary operator token. *) - let precedence c = try Hashtbl.find binop_precedence c with Not_found -> -1 - - (* primary - * ::= identifier - * ::= numberexpr - * ::= parenexpr - * ::= ifexpr - * ::= forexpr - * ::= varexpr *) - let rec parse_primary = parser - (* numberexpr ::= number *) - | [< 'Token.Number n >] -> Ast.Number n - - (* parenexpr ::= '(' expression ')' *) - | [< 'Token.Kwd '('; e=parse_expr; 'Token.Kwd ')' ?? "expected ')'" >] -> e - - (* identifierexpr - * ::= identifier - * ::= identifier '(' argumentexpr ')' *) - | [< 'Token.Ident id; stream >] -> - let rec parse_args accumulator = parser - | [< e=parse_expr; stream >] -> - begin parser - | [< 'Token.Kwd ','; e=parse_args (e :: accumulator) >] -> e - | [< >] -> e :: accumulator - end stream - | [< >] -> accumulator - in - let rec parse_ident id = parser - (* Call. *) - | [< 'Token.Kwd '('; - args=parse_args []; - 'Token.Kwd ')' ?? "expected ')'">] -> - Ast.Call (id, Array.of_list (List.rev args)) - - (* Simple variable ref. *) - | [< >] -> Ast.Variable id - in - parse_ident id stream - - (* ifexpr ::= 'if' expr 'then' expr 'else' expr *) - | [< 'Token.If; c=parse_expr; - 'Token.Then ?? "expected 'then'"; t=parse_expr; - 'Token.Else ?? "expected 'else'"; e=parse_expr >] -> - Ast.If (c, t, e) - - (* forexpr - ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression *) - | [< 'Token.For; - 'Token.Ident id ?? "expected identifier after for"; - 'Token.Kwd '=' ?? "expected '=' after for"; - stream >] -> - begin parser - | [< - start=parse_expr; - 'Token.Kwd ',' ?? "expected ',' after for"; - end_=parse_expr; - stream >] -> - let step = - begin parser - | [< 'Token.Kwd ','; step=parse_expr >] -> Some step - | [< >] -> None - end stream - in - begin parser - | [< 'Token.In; body=parse_expr >] -> - Ast.For (id, start, end_, step, body) - | [< >] -> - raise (Stream.Error "expected 'in' after for") - end stream - | [< >] -> - raise (Stream.Error "expected '=' after for") - end stream - - (* varexpr - * ::= 'var' identifier ('=' expression? - * (',' identifier ('=' expression)?)* 'in' expression *) - | [< 'Token.Var; - (* At least one variable name is required. *) - 'Token.Ident id ?? "expected identifier after var"; - init=parse_var_init; - var_names=parse_var_names [(id, init)]; - (* At this point, we have to have 'in'. *) - 'Token.In ?? "expected 'in' keyword after 'var'"; - body=parse_expr >] -> - Ast.Var (Array.of_list (List.rev var_names), body) - - | [< >] -> raise (Stream.Error "unknown token when expecting an expression.") - - (* unary - * ::= primary - * ::= '!' unary *) - and parse_unary = parser - (* If this is a unary operator, read it. *) - | [< 'Token.Kwd op when op != '(' && op != ')'; operand=parse_expr >] -> - Ast.Unary (op, operand) - - (* If the current token is not an operator, it must be a primary expr. *) - | [< stream >] -> parse_primary stream - - (* binoprhs - * ::= ('+' primary)* *) - and parse_bin_rhs expr_prec lhs stream = - match Stream.peek stream with - (* If this is a binop, find its precedence. *) - | Some (Token.Kwd c) when Hashtbl.mem binop_precedence c -> - let token_prec = precedence c in - - (* If this is a binop that binds at least as tightly as the current binop, - * consume it, otherwise we are done. *) - if token_prec < expr_prec then lhs else begin - (* Eat the binop. *) - Stream.junk stream; - - (* Parse the primary expression after the binary operator. *) - let rhs = parse_unary stream in - - (* Okay, we know this is a binop. *) - let rhs = - match Stream.peek stream with - | Some (Token.Kwd c2) -> - (* If BinOp binds less tightly with rhs than the operator after - * rhs, let the pending operator take rhs as its lhs. *) - let next_prec = precedence c2 in - if token_prec < next_prec - then parse_bin_rhs (token_prec + 1) rhs stream - else rhs - | _ -> rhs - in - - (* Merge lhs/rhs. *) - let lhs = Ast.Binary (c, lhs, rhs) in - parse_bin_rhs expr_prec lhs stream - end - | _ -> lhs - - and parse_var_init = parser - (* read in the optional initializer. *) - | [< 'Token.Kwd '='; e=parse_expr >] -> Some e - | [< >] -> None - - and parse_var_names accumulator = parser - | [< 'Token.Kwd ','; - 'Token.Ident id ?? "expected identifier list after var"; - init=parse_var_init; - e=parse_var_names ((id, init) :: accumulator) >] -> e - | [< >] -> accumulator - - (* expression - * ::= primary binoprhs *) - and parse_expr = parser - | [< lhs=parse_unary; stream >] -> parse_bin_rhs 0 lhs stream - - (* prototype - * ::= id '(' id* ')' - * ::= binary LETTER number? (id, id) - * ::= unary LETTER number? (id) *) - let parse_prototype = - let rec parse_args accumulator = parser - | [< 'Token.Ident id; e=parse_args (id::accumulator) >] -> e - | [< >] -> accumulator - in - let parse_operator = parser - | [< 'Token.Unary >] -> "unary", 1 - | [< 'Token.Binary >] -> "binary", 2 - in - let parse_binary_precedence = parser - | [< 'Token.Number n >] -> int_of_float n - | [< >] -> 30 - in - parser - | [< 'Token.Ident id; - 'Token.Kwd '(' ?? "expected '(' in prototype"; - args=parse_args []; - 'Token.Kwd ')' ?? "expected ')' in prototype" >] -> - (* success. *) - Ast.Prototype (id, Array.of_list (List.rev args)) - | [< (prefix, kind)=parse_operator; - 'Token.Kwd op ?? "expected an operator"; - (* Read the precedence if present. *) - binary_precedence=parse_binary_precedence; - 'Token.Kwd '(' ?? "expected '(' in prototype"; - args=parse_args []; - 'Token.Kwd ')' ?? "expected ')' in prototype" >] -> - let name = prefix ^ (String.make 1 op) in - let args = Array.of_list (List.rev args) in - - (* Verify right number of arguments for operator. *) - if Array.length args != kind - then raise (Stream.Error "invalid number of operands for operator") - else - if kind == 1 then - Ast.Prototype (name, args) - else - Ast.BinOpPrototype (name, args, binary_precedence) - | [< >] -> - raise (Stream.Error "expected function name in prototype") - - (* definition ::= 'def' prototype expression *) - let parse_definition = parser - | [< 'Token.Def; p=parse_prototype; e=parse_expr >] -> - Ast.Function (p, e) - - (* toplevelexpr ::= expression *) - let parse_toplevel = parser - | [< e=parse_expr >] -> - (* Make an anonymous proto. *) - Ast.Function (Ast.Prototype ("", [||]), e) - - (* external ::= 'extern' prototype *) - let parse_extern = parser - | [< 'Token.Extern; e=parse_prototype >] -> e - -codegen.ml: - .. code-block:: ocaml - - (*===----------------------------------------------------------------------=== - * Code Generation - *===----------------------------------------------------------------------===*) - - open Llvm - - exception Error of string - - let context = global_context () - let the_module = create_module context "my cool jit" - let builder = builder context - let named_values:(string, llvalue) Hashtbl.t = Hashtbl.create 10 - let double_type = double_type context - - (* Create an alloca instruction in the entry block of the function. This - * is used for mutable variables etc. *) - let create_entry_block_alloca the_function var_name = - let builder = builder_at context (instr_begin (entry_block the_function)) in - build_alloca double_type var_name builder - - let rec codegen_expr = function - | Ast.Number n -> const_float double_type n - | Ast.Variable name -> - let v = try Hashtbl.find named_values name with - | Not_found -> raise (Error "unknown variable name") - in - (* Load the value. *) - build_load v name builder - | Ast.Unary (op, operand) -> - let operand = codegen_expr operand in - let callee = "unary" ^ (String.make 1 op) in - let callee = - match lookup_function callee the_module with - | Some callee -> callee - | None -> raise (Error "unknown unary operator") - in - build_call callee [|operand|] "unop" builder - | Ast.Binary (op, lhs, rhs) -> - begin match op with - | '=' -> - (* Special case '=' because we don't want to emit the LHS as an - * expression. *) - let name = - match lhs with - | Ast.Variable name -> name - | _ -> raise (Error "destination of '=' must be a variable") - in - - (* Codegen the rhs. *) - let val_ = codegen_expr rhs in - - (* Lookup the name. *) - let variable = try Hashtbl.find named_values name with - | Not_found -> raise (Error "unknown variable name") - in - ignore(build_store val_ variable builder); - val_ - | _ -> - let lhs_val = codegen_expr lhs in - let rhs_val = codegen_expr rhs in - begin - match op with - | '+' -> build_add lhs_val rhs_val "addtmp" builder - | '-' -> build_sub lhs_val rhs_val "subtmp" builder - | '*' -> build_mul lhs_val rhs_val "multmp" builder - | '<' -> - (* Convert bool 0/1 to double 0.0 or 1.0 *) - let i = build_fcmp Fcmp.Ult lhs_val rhs_val "cmptmp" builder in - build_uitofp i double_type "booltmp" builder - | _ -> - (* If it wasn't a builtin binary operator, it must be a user defined - * one. Emit a call to it. *) - let callee = "binary" ^ (String.make 1 op) in - let callee = - match lookup_function callee the_module with - | Some callee -> callee - | None -> raise (Error "binary operator not found!") - in - build_call callee [|lhs_val; rhs_val|] "binop" builder - end - end - | Ast.Call (callee, args) -> - (* Look up the name in the module table. *) - let callee = - match lookup_function callee the_module with - | Some callee -> callee - | None -> raise (Error "unknown function referenced") - in - let params = params callee in - - (* If argument mismatch error. *) - if Array.length params == Array.length args then () else - raise (Error "incorrect # arguments passed"); - let args = Array.map codegen_expr args in - build_call callee args "calltmp" builder - | Ast.If (cond, then_, else_) -> - let cond = codegen_expr cond in - - (* Convert condition to a bool by comparing equal to 0.0 *) - let zero = const_float double_type 0.0 in - let cond_val = build_fcmp Fcmp.One cond zero "ifcond" builder in - - (* Grab the first block so that we might later add the conditional branch - * to it at the end of the function. *) - let start_bb = insertion_block builder in - let the_function = block_parent start_bb in - - let then_bb = append_block context "then" the_function in - - (* Emit 'then' value. *) - position_at_end then_bb builder; - let then_val = codegen_expr then_ in - - (* Codegen of 'then' can change the current block, update then_bb for the - * phi. We create a new name because one is used for the phi node, and the - * other is used for the conditional branch. *) - let new_then_bb = insertion_block builder in - - (* Emit 'else' value. *) - let else_bb = append_block context "else" the_function in - position_at_end else_bb builder; - let else_val = codegen_expr else_ in - - (* Codegen of 'else' can change the current block, update else_bb for the - * phi. *) - let new_else_bb = insertion_block builder in - - (* Emit merge block. *) - let merge_bb = append_block context "ifcont" the_function in - position_at_end merge_bb builder; - let incoming = [(then_val, new_then_bb); (else_val, new_else_bb)] in - let phi = build_phi incoming "iftmp" builder in - - (* Return to the start block to add the conditional branch. *) - position_at_end start_bb builder; - ignore (build_cond_br cond_val then_bb else_bb builder); - - (* Set a unconditional branch at the end of the 'then' block and the - * 'else' block to the 'merge' block. *) - position_at_end new_then_bb builder; ignore (build_br merge_bb builder); - position_at_end new_else_bb builder; ignore (build_br merge_bb builder); - - (* Finally, set the builder to the end of the merge block. *) - position_at_end merge_bb builder; - - phi - | Ast.For (var_name, start, end_, step, body) -> - (* Output this as: - * var = alloca double - * ... - * start = startexpr - * store start -> var - * goto loop - * loop: - * ... - * bodyexpr - * ... - * loopend: - * step = stepexpr - * endcond = endexpr - * - * curvar = load var - * nextvar = curvar + step - * store nextvar -> var - * br endcond, loop, endloop - * outloop: *) - - let the_function = block_parent (insertion_block builder) in - - (* Create an alloca for the variable in the entry block. *) - let alloca = create_entry_block_alloca the_function var_name in - - (* Emit the start code first, without 'variable' in scope. *) - let start_val = codegen_expr start in - - (* Store the value into the alloca. *) - ignore(build_store start_val alloca builder); - - (* Make the new basic block for the loop header, inserting after current - * block. *) - let loop_bb = append_block context "loop" the_function in - - (* Insert an explicit fall through from the current block to the - * loop_bb. *) - ignore (build_br loop_bb builder); - - (* Start insertion in loop_bb. *) - position_at_end loop_bb builder; - - (* Within the loop, the variable is defined equal to the PHI node. If it - * shadows an existing variable, we have to restore it, so save it - * now. *) - let old_val = - try Some (Hashtbl.find named_values var_name) with Not_found -> None - in - Hashtbl.add named_values var_name alloca; - - (* Emit the body of the loop. This, like any other expr, can change the - * current BB. Note that we ignore the value computed by the body, but - * don't allow an error *) - ignore (codegen_expr body); - - (* Emit the step value. *) - let step_val = - match step with - | Some step -> codegen_expr step - (* If not specified, use 1.0. *) - | None -> const_float double_type 1.0 - in - - (* Compute the end condition. *) - let end_cond = codegen_expr end_ in - - (* Reload, increment, and restore the alloca. This handles the case where - * the body of the loop mutates the variable. *) - let cur_var = build_load alloca var_name builder in - let next_var = build_add cur_var step_val "nextvar" builder in - ignore(build_store next_var alloca builder); - - (* Convert condition to a bool by comparing equal to 0.0. *) - let zero = const_float double_type 0.0 in - let end_cond = build_fcmp Fcmp.One end_cond zero "loopcond" builder in - - (* Create the "after loop" block and insert it. *) - let after_bb = append_block context "afterloop" the_function in - - (* Insert the conditional branch into the end of loop_end_bb. *) - ignore (build_cond_br end_cond loop_bb after_bb builder); - - (* Any new code will be inserted in after_bb. *) - position_at_end after_bb builder; - - (* Restore the unshadowed variable. *) - begin match old_val with - | Some old_val -> Hashtbl.add named_values var_name old_val - | None -> () - end; - - (* for expr always returns 0.0. *) - const_null double_type - | Ast.Var (var_names, body) -> - let old_bindings = ref [] in - - let the_function = block_parent (insertion_block builder) in - - (* Register all variables and emit their initializer. *) - Array.iter (fun (var_name, init) -> - (* Emit the initializer before adding the variable to scope, this - * prevents the initializer from referencing the variable itself, and - * permits stuff like this: - * var a = 1 in - * var a = a in ... # refers to outer 'a'. *) - let init_val = - match init with - | Some init -> codegen_expr init - (* If not specified, use 0.0. *) - | None -> const_float double_type 0.0 - in - - let alloca = create_entry_block_alloca the_function var_name in - ignore(build_store init_val alloca builder); - - (* Remember the old variable binding so that we can restore the binding - * when we unrecurse. *) - begin - try - let old_value = Hashtbl.find named_values var_name in - old_bindings := (var_name, old_value) :: !old_bindings; - with Not_found -> () - end; - - (* Remember this binding. *) - Hashtbl.add named_values var_name alloca; - ) var_names; - - (* Codegen the body, now that all vars are in scope. *) - let body_val = codegen_expr body in - - (* Pop all our variables from scope. *) - List.iter (fun (var_name, old_value) -> - Hashtbl.add named_values var_name old_value - ) !old_bindings; - - (* Return the body computation. *) - body_val - - let codegen_proto = function - | Ast.Prototype (name, args) | Ast.BinOpPrototype (name, args, _) -> - (* Make the function type: double(double,double) etc. *) - let doubles = Array.make (Array.length args) double_type in - let ft = function_type double_type doubles in - let f = - match lookup_function name the_module with - | None -> declare_function name ft the_module - - (* If 'f' conflicted, there was already something named 'name'. If it - * has a body, don't allow redefinition or reextern. *) - | Some f -> - (* If 'f' already has a body, reject this. *) - if block_begin f <> At_end f then - raise (Error "redefinition of function"); - - (* If 'f' took a different number of arguments, reject. *) - if element_type (type_of f) <> ft then - raise (Error "redefinition of function with different # args"); - f - in - - (* Set names for all arguments. *) - Array.iteri (fun i a -> - let n = args.(i) in - set_value_name n a; - Hashtbl.add named_values n a; - ) (params f); - f - - (* Create an alloca for each argument and register the argument in the symbol - * table so that references to it will succeed. *) - let create_argument_allocas the_function proto = - let args = match proto with - | Ast.Prototype (_, args) | Ast.BinOpPrototype (_, args, _) -> args - in - Array.iteri (fun i ai -> - let var_name = args.(i) in - (* Create an alloca for this variable. *) - let alloca = create_entry_block_alloca the_function var_name in - - (* Store the initial value into the alloca. *) - ignore(build_store ai alloca builder); - - (* Add arguments to variable symbol table. *) - Hashtbl.add named_values var_name alloca; - ) (params the_function) - - let codegen_func the_fpm = function - | Ast.Function (proto, body) -> - Hashtbl.clear named_values; - let the_function = codegen_proto proto in - - (* If this is an operator, install it. *) - begin match proto with - | Ast.BinOpPrototype (name, args, prec) -> - let op = name.[String.length name - 1] in - Hashtbl.add Parser.binop_precedence op prec; - | _ -> () - end; - - (* Create a new basic block to start insertion into. *) - let bb = append_block context "entry" the_function in - position_at_end bb builder; - - try - (* Add all arguments to the symbol table and create their allocas. *) - create_argument_allocas the_function proto; - - let ret_val = codegen_expr body in - - (* Finish off the function. *) - let _ = build_ret ret_val builder in - - (* Validate the generated code, checking for consistency. *) - Llvm_analysis.assert_valid_function the_function; - - (* Optimize the function. *) - let _ = PassManager.run_function the_function the_fpm in - - the_function - with e -> - delete_function the_function; - raise e - -toplevel.ml: - .. code-block:: ocaml - - (*===----------------------------------------------------------------------=== - * Top-Level parsing and JIT Driver - *===----------------------------------------------------------------------===*) - - open Llvm - open Llvm_executionengine - - (* top ::= definition | external | expression | ';' *) - let rec main_loop the_fpm the_execution_engine stream = - match Stream.peek stream with - | None -> () - - (* ignore top-level semicolons. *) - | Some (Token.Kwd ';') -> - Stream.junk stream; - main_loop the_fpm the_execution_engine stream - - | Some token -> - begin - try match token with - | Token.Def -> - let e = Parser.parse_definition stream in - print_endline "parsed a function definition."; - dump_value (Codegen.codegen_func the_fpm e); - | Token.Extern -> - let e = Parser.parse_extern stream in - print_endline "parsed an extern."; - dump_value (Codegen.codegen_proto e); - | _ -> - (* Evaluate a top-level expression into an anonymous function. *) - let e = Parser.parse_toplevel stream in - print_endline "parsed a top-level expr"; - let the_function = Codegen.codegen_func the_fpm e in - dump_value the_function; - - (* JIT the function, returning a function pointer. *) - let result = ExecutionEngine.run_function the_function [||] - the_execution_engine in - - print_string "Evaluated to "; - print_float (GenericValue.as_float Codegen.double_type result); - print_newline (); - with Stream.Error s | Codegen.Error s -> - (* Skip token for error recovery. *) - Stream.junk stream; - print_endline s; - end; - print_string "ready> "; flush stdout; - main_loop the_fpm the_execution_engine stream - -toy.ml: - .. code-block:: ocaml - - (*===----------------------------------------------------------------------=== - * Main driver code. - *===----------------------------------------------------------------------===*) - - open Llvm - open Llvm_executionengine - open Llvm_target - open Llvm_scalar_opts - - let main () = - ignore (initialize_native_target ()); - - (* Install standard binary operators. - * 1 is the lowest precedence. *) - Hashtbl.add Parser.binop_precedence '=' 2; - Hashtbl.add Parser.binop_precedence '<' 10; - Hashtbl.add Parser.binop_precedence '+' 20; - Hashtbl.add Parser.binop_precedence '-' 20; - Hashtbl.add Parser.binop_precedence '*' 40; (* highest. *) - - (* Prime the first token. *) - print_string "ready> "; flush stdout; - let stream = Lexer.lex (Stream.of_channel stdin) in - - (* Create the JIT. *) - let the_execution_engine = ExecutionEngine.create Codegen.the_module in - let the_fpm = PassManager.create_function Codegen.the_module in - - (* Set up the optimizer pipeline. Start with registering info about how the - * target lays out data structures. *) - DataLayout.add (ExecutionEngine.target_data the_execution_engine) the_fpm; - - (* Promote allocas to registers. *) - add_memory_to_register_promotion the_fpm; - - (* Do simple "peephole" optimizations and bit-twiddling optzn. *) - add_instruction_combination the_fpm; - - (* reassociate expressions. *) - add_reassociation the_fpm; - - (* Eliminate Common SubExpressions. *) - add_gvn the_fpm; - - (* Simplify the control flow graph (deleting unreachable blocks, etc). *) - add_cfg_simplification the_fpm; - - ignore (PassManager.initialize the_fpm); - - (* Run the main "interpreter loop" now. *) - Toplevel.main_loop the_fpm the_execution_engine stream; - - (* Print out all the generated code. *) - dump_module Codegen.the_module - ;; - - main () - -bindings.c - .. code-block:: c - - #include <stdio.h> - - /* putchard - putchar that takes a double and returns 0. */ - extern double putchard(double X) { - putchar((char)X); - return 0; - } - - /* printd - printf that takes a double prints it as "%f\n", returning 0. */ - extern double printd(double X) { - printf("%f\n", X); - return 0; - } - -`Next: Conclusion and other useful LLVM tidbits <OCamlLangImpl8.html>`_ - |
