summaryrefslogtreecommitdiffstats
path: root/gnu/llvm/include/llvm/Transforms/Utils/BasicBlockUtils.h
diff options
context:
space:
mode:
authorpascal <pascal@openbsd.org>2016-09-03 22:46:54 +0000
committerpascal <pascal@openbsd.org>2016-09-03 22:46:54 +0000
commitb5500b9ca0102f1ccaf32f0e77e96d0739aded9b (patch)
treee1b7ebb5a0231f9e6d8d3f6f719582cebd64dc98 /gnu/llvm/include/llvm/Transforms/Utils/BasicBlockUtils.h
parentclarify purpose of src/gnu/ directory. (diff)
downloadwireguard-openbsd-b5500b9ca0102f1ccaf32f0e77e96d0739aded9b.tar.xz
wireguard-openbsd-b5500b9ca0102f1ccaf32f0e77e96d0739aded9b.zip
Use the space freed up by sparc and zaurus to import LLVM.
ok hackroom@
Diffstat (limited to 'gnu/llvm/include/llvm/Transforms/Utils/BasicBlockUtils.h')
-rw-r--r--gnu/llvm/include/llvm/Transforms/Utils/BasicBlockUtils.h297
1 files changed, 297 insertions, 0 deletions
diff --git a/gnu/llvm/include/llvm/Transforms/Utils/BasicBlockUtils.h b/gnu/llvm/include/llvm/Transforms/Utils/BasicBlockUtils.h
new file mode 100644
index 00000000000..13c856dfdc9
--- /dev/null
+++ b/gnu/llvm/include/llvm/Transforms/Utils/BasicBlockUtils.h
@@ -0,0 +1,297 @@
+//===-- Transform/Utils/BasicBlockUtils.h - BasicBlock Utils ----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This family of functions perform manipulations on basic blocks, and
+// instructions contained within basic blocks.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_TRANSFORMS_UTILS_BASICBLOCKUTILS_H
+#define LLVM_TRANSFORMS_UTILS_BASICBLOCKUTILS_H
+
+// FIXME: Move to this file: BasicBlock::removePredecessor, BB::splitBasicBlock
+
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/CFG.h"
+
+namespace llvm {
+
+class MemoryDependenceAnalysis;
+class DominatorTree;
+class LoopInfo;
+class Instruction;
+class MDNode;
+class ReturnInst;
+class TargetLibraryInfo;
+class TerminatorInst;
+
+/// DeleteDeadBlock - Delete the specified block, which must have no
+/// predecessors.
+void DeleteDeadBlock(BasicBlock *BB);
+
+/// FoldSingleEntryPHINodes - We know that BB has one predecessor. If there are
+/// any single-entry PHI nodes in it, fold them away. This handles the case
+/// when all entries to the PHI nodes in a block are guaranteed equal, such as
+/// when the block has exactly one predecessor.
+void FoldSingleEntryPHINodes(BasicBlock *BB,
+ MemoryDependenceAnalysis *MemDep = nullptr);
+
+/// DeleteDeadPHIs - Examine each PHI in the given block and delete it if it
+/// is dead. Also recursively delete any operands that become dead as
+/// a result. This includes tracing the def-use list from the PHI to see if
+/// it is ultimately unused or if it reaches an unused cycle. Return true
+/// if any PHIs were deleted.
+bool DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI = nullptr);
+
+/// MergeBlockIntoPredecessor - Attempts to merge a block into its predecessor,
+/// if possible. The return value indicates success or failure.
+bool MergeBlockIntoPredecessor(BasicBlock *BB, DominatorTree *DT = nullptr,
+ LoopInfo *LI = nullptr,
+ MemoryDependenceAnalysis *MemDep = nullptr);
+
+// ReplaceInstWithValue - Replace all uses of an instruction (specified by BI)
+// with a value, then remove and delete the original instruction.
+//
+void ReplaceInstWithValue(BasicBlock::InstListType &BIL,
+ BasicBlock::iterator &BI, Value *V);
+
+// ReplaceInstWithInst - Replace the instruction specified by BI with the
+// instruction specified by I. Copies DebugLoc from BI to I, if I doesn't
+// already have a DebugLoc. The original instruction is deleted and BI is
+// updated to point to the new instruction.
+//
+void ReplaceInstWithInst(BasicBlock::InstListType &BIL,
+ BasicBlock::iterator &BI, Instruction *I);
+
+// ReplaceInstWithInst - Replace the instruction specified by From with the
+// instruction specified by To. Copies DebugLoc from BI to I, if I doesn't
+// already have a DebugLoc.
+//
+void ReplaceInstWithInst(Instruction *From, Instruction *To);
+
+/// \brief Option class for critical edge splitting.
+///
+/// This provides a builder interface for overriding the default options used
+/// during critical edge splitting.
+struct CriticalEdgeSplittingOptions {
+ DominatorTree *DT;
+ LoopInfo *LI;
+ bool MergeIdenticalEdges;
+ bool DontDeleteUselessPHIs;
+ bool PreserveLCSSA;
+
+ CriticalEdgeSplittingOptions(DominatorTree *DT = nullptr,
+ LoopInfo *LI = nullptr)
+ : DT(DT), LI(LI), MergeIdenticalEdges(false),
+ DontDeleteUselessPHIs(false), PreserveLCSSA(false) {}
+
+ CriticalEdgeSplittingOptions &setMergeIdenticalEdges() {
+ MergeIdenticalEdges = true;
+ return *this;
+ }
+
+ CriticalEdgeSplittingOptions &setDontDeleteUselessPHIs() {
+ DontDeleteUselessPHIs = true;
+ return *this;
+ }
+
+ CriticalEdgeSplittingOptions &setPreserveLCSSA() {
+ PreserveLCSSA = true;
+ return *this;
+ }
+};
+
+/// SplitCriticalEdge - If this edge is a critical edge, insert a new node to
+/// split the critical edge. This will update the analyses passed in through
+/// the option struct. This returns the new block if the edge was split, null
+/// otherwise.
+///
+/// If MergeIdenticalEdges in the options struct is true (not the default),
+/// *all* edges from TI to the specified successor will be merged into the same
+/// critical edge block. This is most commonly interesting with switch
+/// instructions, which may have many edges to any one destination. This
+/// ensures that all edges to that dest go to one block instead of each going
+/// to a different block, but isn't the standard definition of a "critical
+/// edge".
+///
+/// It is invalid to call this function on a critical edge that starts at an
+/// IndirectBrInst. Splitting these edges will almost always create an invalid
+/// program because the address of the new block won't be the one that is jumped
+/// to.
+///
+BasicBlock *SplitCriticalEdge(TerminatorInst *TI, unsigned SuccNum,
+ const CriticalEdgeSplittingOptions &Options =
+ CriticalEdgeSplittingOptions());
+
+inline BasicBlock *
+SplitCriticalEdge(BasicBlock *BB, succ_iterator SI,
+ const CriticalEdgeSplittingOptions &Options =
+ CriticalEdgeSplittingOptions()) {
+ return SplitCriticalEdge(BB->getTerminator(), SI.getSuccessorIndex(),
+ Options);
+}
+
+/// SplitCriticalEdge - If the edge from *PI to BB is not critical, return
+/// false. Otherwise, split all edges between the two blocks and return true.
+/// This updates all of the same analyses as the other SplitCriticalEdge
+/// function. If P is specified, it updates the analyses
+/// described above.
+inline bool SplitCriticalEdge(BasicBlock *Succ, pred_iterator PI,
+ const CriticalEdgeSplittingOptions &Options =
+ CriticalEdgeSplittingOptions()) {
+ bool MadeChange = false;
+ TerminatorInst *TI = (*PI)->getTerminator();
+ for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
+ if (TI->getSuccessor(i) == Succ)
+ MadeChange |= !!SplitCriticalEdge(TI, i, Options);
+ return MadeChange;
+}
+
+/// SplitCriticalEdge - If an edge from Src to Dst is critical, split the edge
+/// and return true, otherwise return false. This method requires that there be
+/// an edge between the two blocks. It updates the analyses
+/// passed in the options struct
+inline BasicBlock *
+SplitCriticalEdge(BasicBlock *Src, BasicBlock *Dst,
+ const CriticalEdgeSplittingOptions &Options =
+ CriticalEdgeSplittingOptions()) {
+ TerminatorInst *TI = Src->getTerminator();
+ unsigned i = 0;
+ while (1) {
+ assert(i != TI->getNumSuccessors() && "Edge doesn't exist!");
+ if (TI->getSuccessor(i) == Dst)
+ return SplitCriticalEdge(TI, i, Options);
+ ++i;
+ }
+}
+
+// SplitAllCriticalEdges - Loop over all of the edges in the CFG,
+// breaking critical edges as they are found.
+// Returns the number of broken edges.
+unsigned SplitAllCriticalEdges(Function &F,
+ const CriticalEdgeSplittingOptions &Options =
+ CriticalEdgeSplittingOptions());
+
+/// SplitEdge - Split the edge connecting specified block.
+BasicBlock *SplitEdge(BasicBlock *From, BasicBlock *To,
+ DominatorTree *DT = nullptr, LoopInfo *LI = nullptr);
+
+/// SplitBlock - Split the specified block at the specified instruction - every
+/// thing before SplitPt stays in Old and everything starting with SplitPt moves
+/// to a new block. The two blocks are joined by an unconditional branch and
+/// the loop info is updated.
+///
+BasicBlock *SplitBlock(BasicBlock *Old, Instruction *SplitPt,
+ DominatorTree *DT = nullptr, LoopInfo *LI = nullptr);
+
+/// SplitBlockPredecessors - This method introduces at least one new basic block
+/// into the function and moves some of the predecessors of BB to be
+/// predecessors of the new block. The new predecessors are indicated by the
+/// Preds array. The new block is given a suffix of 'Suffix'. Returns new basic
+/// block to which predecessors from Preds are now pointing.
+///
+/// If BB is a landingpad block then additional basicblock might be introduced.
+/// It will have Suffix+".split_lp". See SplitLandingPadPredecessors for more
+/// details on this case.
+///
+/// This currently updates the LLVM IR, DominatorTree, LoopInfo, and LCCSA but
+/// no other analyses. In particular, it does not preserve LoopSimplify
+/// (because it's complicated to handle the case where one of the edges being
+/// split is an exit of a loop with other exits).
+///
+BasicBlock *SplitBlockPredecessors(BasicBlock *BB, ArrayRef<BasicBlock *> Preds,
+ const char *Suffix,
+ DominatorTree *DT = nullptr,
+ LoopInfo *LI = nullptr,
+ bool PreserveLCSSA = false);
+
+/// SplitLandingPadPredecessors - This method transforms the landing pad,
+/// OrigBB, by introducing two new basic blocks into the function. One of those
+/// new basic blocks gets the predecessors listed in Preds. The other basic
+/// block gets the remaining predecessors of OrigBB. The landingpad instruction
+/// OrigBB is clone into both of the new basic blocks. The new blocks are given
+/// the suffixes 'Suffix1' and 'Suffix2', and are returned in the NewBBs vector.
+///
+/// This currently updates the LLVM IR, DominatorTree, LoopInfo, and LCCSA but
+/// no other analyses. In particular, it does not preserve LoopSimplify
+/// (because it's complicated to handle the case where one of the edges being
+/// split is an exit of a loop with other exits).
+///
+void SplitLandingPadPredecessors(BasicBlock *OrigBB,
+ ArrayRef<BasicBlock *> Preds,
+ const char *Suffix, const char *Suffix2,
+ SmallVectorImpl<BasicBlock *> &NewBBs,
+ DominatorTree *DT = nullptr,
+ LoopInfo *LI = nullptr,
+ bool PreserveLCSSA = false);
+
+/// FoldReturnIntoUncondBranch - This method duplicates the specified return
+/// instruction into a predecessor which ends in an unconditional branch. If
+/// the return instruction returns a value defined by a PHI, propagate the
+/// right value into the return. It returns the new return instruction in the
+/// predecessor.
+ReturnInst *FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
+ BasicBlock *Pred);
+
+/// SplitBlockAndInsertIfThen - Split the containing block at the
+/// specified instruction - everything before and including SplitBefore stays
+/// in the old basic block, and everything after SplitBefore is moved to a
+/// new block. The two blocks are connected by a conditional branch
+/// (with value of Cmp being the condition).
+/// Before:
+/// Head
+/// SplitBefore
+/// Tail
+/// After:
+/// Head
+/// if (Cond)
+/// ThenBlock
+/// SplitBefore
+/// Tail
+///
+/// If Unreachable is true, then ThenBlock ends with
+/// UnreachableInst, otherwise it branches to Tail.
+/// Returns the NewBasicBlock's terminator.
+///
+/// Updates DT if given.
+TerminatorInst *SplitBlockAndInsertIfThen(Value *Cond, Instruction *SplitBefore,
+ bool Unreachable,
+ MDNode *BranchWeights = nullptr,
+ DominatorTree *DT = nullptr);
+
+/// SplitBlockAndInsertIfThenElse is similar to SplitBlockAndInsertIfThen,
+/// but also creates the ElseBlock.
+/// Before:
+/// Head
+/// SplitBefore
+/// Tail
+/// After:
+/// Head
+/// if (Cond)
+/// ThenBlock
+/// else
+/// ElseBlock
+/// SplitBefore
+/// Tail
+void SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore,
+ TerminatorInst **ThenTerm,
+ TerminatorInst **ElseTerm,
+ MDNode *BranchWeights = nullptr);
+
+///
+/// GetIfCondition - Check whether BB is the merge point of a if-region.
+/// If so, return the boolean condition that determines which entry into
+/// BB will be taken. Also, return by references the block that will be
+/// entered from if the condition is true, and the block that will be
+/// entered if the condition is false.
+Value *GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
+ BasicBlock *&IfFalse);
+} // End llvm namespace
+
+#endif