summaryrefslogtreecommitdiffstats
path: root/gnu/llvm/lib/Analysis/CFLAndersAliasAnalysis.cpp
diff options
context:
space:
mode:
authorpatrick <patrick@openbsd.org>2020-08-03 15:06:44 +0000
committerpatrick <patrick@openbsd.org>2020-08-03 15:06:44 +0000
commitb64793999546ed8adebaeebd9d8345d18db8927d (patch)
tree4357c27b561d73b0e089727c6ed659f2ceff5f47 /gnu/llvm/lib/Analysis/CFLAndersAliasAnalysis.cpp
parentAdd support for UTF-8 DISPLAY-HINTs with octet length. For now only (diff)
downloadwireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.tar.xz
wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.zip
Remove LLVM 8.0.1 files.
Diffstat (limited to 'gnu/llvm/lib/Analysis/CFLAndersAliasAnalysis.cpp')
-rw-r--r--gnu/llvm/lib/Analysis/CFLAndersAliasAnalysis.cpp924
1 files changed, 0 insertions, 924 deletions
diff --git a/gnu/llvm/lib/Analysis/CFLAndersAliasAnalysis.cpp b/gnu/llvm/lib/Analysis/CFLAndersAliasAnalysis.cpp
deleted file mode 100644
index 1c61dd369a0..00000000000
--- a/gnu/llvm/lib/Analysis/CFLAndersAliasAnalysis.cpp
+++ /dev/null
@@ -1,924 +0,0 @@
-//===- CFLAndersAliasAnalysis.cpp - Unification-based Alias Analysis ------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements a CFL-based, summary-based alias analysis algorithm. It
-// differs from CFLSteensAliasAnalysis in its inclusion-based nature while
-// CFLSteensAliasAnalysis is unification-based. This pass has worse performance
-// than CFLSteensAliasAnalysis (the worst case complexity of
-// CFLAndersAliasAnalysis is cubic, while the worst case complexity of
-// CFLSteensAliasAnalysis is almost linear), but it is able to yield more
-// precise analysis result. The precision of this analysis is roughly the same
-// as that of an one level context-sensitive Andersen's algorithm.
-//
-// The algorithm used here is based on recursive state machine matching scheme
-// proposed in "Demand-driven alias analysis for C" by Xin Zheng and Radu
-// Rugina. The general idea is to extend the traditional transitive closure
-// algorithm to perform CFL matching along the way: instead of recording
-// "whether X is reachable from Y", we keep track of "whether X is reachable
-// from Y at state Z", where the "state" field indicates where we are in the CFL
-// matching process. To understand the matching better, it is advisable to have
-// the state machine shown in Figure 3 of the paper available when reading the
-// codes: all we do here is to selectively expand the transitive closure by
-// discarding edges that are not recognized by the state machine.
-//
-// There are two differences between our current implementation and the one
-// described in the paper:
-// - Our algorithm eagerly computes all alias pairs after the CFLGraph is built,
-// while in the paper the authors did the computation in a demand-driven
-// fashion. We did not implement the demand-driven algorithm due to the
-// additional coding complexity and higher memory profile, but if we found it
-// necessary we may switch to it eventually.
-// - In the paper the authors use a state machine that does not distinguish
-// value reads from value writes. For example, if Y is reachable from X at state
-// S3, it may be the case that X is written into Y, or it may be the case that
-// there's a third value Z that writes into both X and Y. To make that
-// distinction (which is crucial in building function summary as well as
-// retrieving mod-ref info), we choose to duplicate some of the states in the
-// paper's proposed state machine. The duplication does not change the set the
-// machine accepts. Given a pair of reachable values, it only provides more
-// detailed information on which value is being written into and which is being
-// read from.
-//
-//===----------------------------------------------------------------------===//
-
-// N.B. AliasAnalysis as a whole is phrased as a FunctionPass at the moment, and
-// CFLAndersAA is interprocedural. This is *technically* A Bad Thing, because
-// FunctionPasses are only allowed to inspect the Function that they're being
-// run on. Realistically, this likely isn't a problem until we allow
-// FunctionPasses to run concurrently.
-
-#include "llvm/Analysis/CFLAndersAliasAnalysis.h"
-#include "AliasAnalysisSummary.h"
-#include "CFLGraph.h"
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/DenseMapInfo.h"
-#include "llvm/ADT/DenseSet.h"
-#include "llvm/ADT/None.h"
-#include "llvm/ADT/Optional.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/iterator_range.h"
-#include "llvm/Analysis/AliasAnalysis.h"
-#include "llvm/Analysis/MemoryLocation.h"
-#include "llvm/IR/Argument.h"
-#include "llvm/IR/Function.h"
-#include "llvm/IR/PassManager.h"
-#include "llvm/IR/Type.h"
-#include "llvm/Pass.h"
-#include "llvm/Support/Casting.h"
-#include "llvm/Support/Compiler.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/raw_ostream.h"
-#include <algorithm>
-#include <bitset>
-#include <cassert>
-#include <cstddef>
-#include <cstdint>
-#include <functional>
-#include <utility>
-#include <vector>
-
-using namespace llvm;
-using namespace llvm::cflaa;
-
-#define DEBUG_TYPE "cfl-anders-aa"
-
-CFLAndersAAResult::CFLAndersAAResult(const TargetLibraryInfo &TLI) : TLI(TLI) {}
-CFLAndersAAResult::CFLAndersAAResult(CFLAndersAAResult &&RHS)
- : AAResultBase(std::move(RHS)), TLI(RHS.TLI) {}
-CFLAndersAAResult::~CFLAndersAAResult() = default;
-
-namespace {
-
-enum class MatchState : uint8_t {
- // The following state represents S1 in the paper.
- FlowFromReadOnly = 0,
- // The following two states together represent S2 in the paper.
- // The 'NoReadWrite' suffix indicates that there exists an alias path that
- // does not contain assignment and reverse assignment edges.
- // The 'ReadOnly' suffix indicates that there exists an alias path that
- // contains reverse assignment edges only.
- FlowFromMemAliasNoReadWrite,
- FlowFromMemAliasReadOnly,
- // The following two states together represent S3 in the paper.
- // The 'WriteOnly' suffix indicates that there exists an alias path that
- // contains assignment edges only.
- // The 'ReadWrite' suffix indicates that there exists an alias path that
- // contains both assignment and reverse assignment edges. Note that if X and Y
- // are reachable at 'ReadWrite' state, it does NOT mean X is both read from
- // and written to Y. Instead, it means that a third value Z is written to both
- // X and Y.
- FlowToWriteOnly,
- FlowToReadWrite,
- // The following two states together represent S4 in the paper.
- FlowToMemAliasWriteOnly,
- FlowToMemAliasReadWrite,
-};
-
-using StateSet = std::bitset<7>;
-
-const unsigned ReadOnlyStateMask =
- (1U << static_cast<uint8_t>(MatchState::FlowFromReadOnly)) |
- (1U << static_cast<uint8_t>(MatchState::FlowFromMemAliasReadOnly));
-const unsigned WriteOnlyStateMask =
- (1U << static_cast<uint8_t>(MatchState::FlowToWriteOnly)) |
- (1U << static_cast<uint8_t>(MatchState::FlowToMemAliasWriteOnly));
-
-// A pair that consists of a value and an offset
-struct OffsetValue {
- const Value *Val;
- int64_t Offset;
-};
-
-bool operator==(OffsetValue LHS, OffsetValue RHS) {
- return LHS.Val == RHS.Val && LHS.Offset == RHS.Offset;
-}
-bool operator<(OffsetValue LHS, OffsetValue RHS) {
- return std::less<const Value *>()(LHS.Val, RHS.Val) ||
- (LHS.Val == RHS.Val && LHS.Offset < RHS.Offset);
-}
-
-// A pair that consists of an InstantiatedValue and an offset
-struct OffsetInstantiatedValue {
- InstantiatedValue IVal;
- int64_t Offset;
-};
-
-bool operator==(OffsetInstantiatedValue LHS, OffsetInstantiatedValue RHS) {
- return LHS.IVal == RHS.IVal && LHS.Offset == RHS.Offset;
-}
-
-// We use ReachabilitySet to keep track of value aliases (The nonterminal "V" in
-// the paper) during the analysis.
-class ReachabilitySet {
- using ValueStateMap = DenseMap<InstantiatedValue, StateSet>;
- using ValueReachMap = DenseMap<InstantiatedValue, ValueStateMap>;
-
- ValueReachMap ReachMap;
-
-public:
- using const_valuestate_iterator = ValueStateMap::const_iterator;
- using const_value_iterator = ValueReachMap::const_iterator;
-
- // Insert edge 'From->To' at state 'State'
- bool insert(InstantiatedValue From, InstantiatedValue To, MatchState State) {
- assert(From != To);
- auto &States = ReachMap[To][From];
- auto Idx = static_cast<size_t>(State);
- if (!States.test(Idx)) {
- States.set(Idx);
- return true;
- }
- return false;
- }
-
- // Return the set of all ('From', 'State') pair for a given node 'To'
- iterator_range<const_valuestate_iterator>
- reachableValueAliases(InstantiatedValue V) const {
- auto Itr = ReachMap.find(V);
- if (Itr == ReachMap.end())
- return make_range<const_valuestate_iterator>(const_valuestate_iterator(),
- const_valuestate_iterator());
- return make_range<const_valuestate_iterator>(Itr->second.begin(),
- Itr->second.end());
- }
-
- iterator_range<const_value_iterator> value_mappings() const {
- return make_range<const_value_iterator>(ReachMap.begin(), ReachMap.end());
- }
-};
-
-// We use AliasMemSet to keep track of all memory aliases (the nonterminal "M"
-// in the paper) during the analysis.
-class AliasMemSet {
- using MemSet = DenseSet<InstantiatedValue>;
- using MemMapType = DenseMap<InstantiatedValue, MemSet>;
-
- MemMapType MemMap;
-
-public:
- using const_mem_iterator = MemSet::const_iterator;
-
- bool insert(InstantiatedValue LHS, InstantiatedValue RHS) {
- // Top-level values can never be memory aliases because one cannot take the
- // addresses of them
- assert(LHS.DerefLevel > 0 && RHS.DerefLevel > 0);
- return MemMap[LHS].insert(RHS).second;
- }
-
- const MemSet *getMemoryAliases(InstantiatedValue V) const {
- auto Itr = MemMap.find(V);
- if (Itr == MemMap.end())
- return nullptr;
- return &Itr->second;
- }
-};
-
-// We use AliasAttrMap to keep track of the AliasAttr of each node.
-class AliasAttrMap {
- using MapType = DenseMap<InstantiatedValue, AliasAttrs>;
-
- MapType AttrMap;
-
-public:
- using const_iterator = MapType::const_iterator;
-
- bool add(InstantiatedValue V, AliasAttrs Attr) {
- auto &OldAttr = AttrMap[V];
- auto NewAttr = OldAttr | Attr;
- if (OldAttr == NewAttr)
- return false;
- OldAttr = NewAttr;
- return true;
- }
-
- AliasAttrs getAttrs(InstantiatedValue V) const {
- AliasAttrs Attr;
- auto Itr = AttrMap.find(V);
- if (Itr != AttrMap.end())
- Attr = Itr->second;
- return Attr;
- }
-
- iterator_range<const_iterator> mappings() const {
- return make_range<const_iterator>(AttrMap.begin(), AttrMap.end());
- }
-};
-
-struct WorkListItem {
- InstantiatedValue From;
- InstantiatedValue To;
- MatchState State;
-};
-
-struct ValueSummary {
- struct Record {
- InterfaceValue IValue;
- unsigned DerefLevel;
- };
- SmallVector<Record, 4> FromRecords, ToRecords;
-};
-
-} // end anonymous namespace
-
-namespace llvm {
-
-// Specialize DenseMapInfo for OffsetValue.
-template <> struct DenseMapInfo<OffsetValue> {
- static OffsetValue getEmptyKey() {
- return OffsetValue{DenseMapInfo<const Value *>::getEmptyKey(),
- DenseMapInfo<int64_t>::getEmptyKey()};
- }
-
- static OffsetValue getTombstoneKey() {
- return OffsetValue{DenseMapInfo<const Value *>::getTombstoneKey(),
- DenseMapInfo<int64_t>::getEmptyKey()};
- }
-
- static unsigned getHashValue(const OffsetValue &OVal) {
- return DenseMapInfo<std::pair<const Value *, int64_t>>::getHashValue(
- std::make_pair(OVal.Val, OVal.Offset));
- }
-
- static bool isEqual(const OffsetValue &LHS, const OffsetValue &RHS) {
- return LHS == RHS;
- }
-};
-
-// Specialize DenseMapInfo for OffsetInstantiatedValue.
-template <> struct DenseMapInfo<OffsetInstantiatedValue> {
- static OffsetInstantiatedValue getEmptyKey() {
- return OffsetInstantiatedValue{
- DenseMapInfo<InstantiatedValue>::getEmptyKey(),
- DenseMapInfo<int64_t>::getEmptyKey()};
- }
-
- static OffsetInstantiatedValue getTombstoneKey() {
- return OffsetInstantiatedValue{
- DenseMapInfo<InstantiatedValue>::getTombstoneKey(),
- DenseMapInfo<int64_t>::getEmptyKey()};
- }
-
- static unsigned getHashValue(const OffsetInstantiatedValue &OVal) {
- return DenseMapInfo<std::pair<InstantiatedValue, int64_t>>::getHashValue(
- std::make_pair(OVal.IVal, OVal.Offset));
- }
-
- static bool isEqual(const OffsetInstantiatedValue &LHS,
- const OffsetInstantiatedValue &RHS) {
- return LHS == RHS;
- }
-};
-
-} // end namespace llvm
-
-class CFLAndersAAResult::FunctionInfo {
- /// Map a value to other values that may alias it
- /// Since the alias relation is symmetric, to save some space we assume values
- /// are properly ordered: if a and b alias each other, and a < b, then b is in
- /// AliasMap[a] but not vice versa.
- DenseMap<const Value *, std::vector<OffsetValue>> AliasMap;
-
- /// Map a value to its corresponding AliasAttrs
- DenseMap<const Value *, AliasAttrs> AttrMap;
-
- /// Summary of externally visible effects.
- AliasSummary Summary;
-
- Optional<AliasAttrs> getAttrs(const Value *) const;
-
-public:
- FunctionInfo(const Function &, const SmallVectorImpl<Value *> &,
- const ReachabilitySet &, const AliasAttrMap &);
-
- bool mayAlias(const Value *, LocationSize, const Value *, LocationSize) const;
- const AliasSummary &getAliasSummary() const { return Summary; }
-};
-
-static bool hasReadOnlyState(StateSet Set) {
- return (Set & StateSet(ReadOnlyStateMask)).any();
-}
-
-static bool hasWriteOnlyState(StateSet Set) {
- return (Set & StateSet(WriteOnlyStateMask)).any();
-}
-
-static Optional<InterfaceValue>
-getInterfaceValue(InstantiatedValue IValue,
- const SmallVectorImpl<Value *> &RetVals) {
- auto Val = IValue.Val;
-
- Optional<unsigned> Index;
- if (auto Arg = dyn_cast<Argument>(Val))
- Index = Arg->getArgNo() + 1;
- else if (is_contained(RetVals, Val))
- Index = 0;
-
- if (Index)
- return InterfaceValue{*Index, IValue.DerefLevel};
- return None;
-}
-
-static void populateAttrMap(DenseMap<const Value *, AliasAttrs> &AttrMap,
- const AliasAttrMap &AMap) {
- for (const auto &Mapping : AMap.mappings()) {
- auto IVal = Mapping.first;
-
- // Insert IVal into the map
- auto &Attr = AttrMap[IVal.Val];
- // AttrMap only cares about top-level values
- if (IVal.DerefLevel == 0)
- Attr |= Mapping.second;
- }
-}
-
-static void
-populateAliasMap(DenseMap<const Value *, std::vector<OffsetValue>> &AliasMap,
- const ReachabilitySet &ReachSet) {
- for (const auto &OuterMapping : ReachSet.value_mappings()) {
- // AliasMap only cares about top-level values
- if (OuterMapping.first.DerefLevel > 0)
- continue;
-
- auto Val = OuterMapping.first.Val;
- auto &AliasList = AliasMap[Val];
- for (const auto &InnerMapping : OuterMapping.second) {
- // Again, AliasMap only cares about top-level values
- if (InnerMapping.first.DerefLevel == 0)
- AliasList.push_back(OffsetValue{InnerMapping.first.Val, UnknownOffset});
- }
-
- // Sort AliasList for faster lookup
- llvm::sort(AliasList);
- }
-}
-
-static void populateExternalRelations(
- SmallVectorImpl<ExternalRelation> &ExtRelations, const Function &Fn,
- const SmallVectorImpl<Value *> &RetVals, const ReachabilitySet &ReachSet) {
- // If a function only returns one of its argument X, then X will be both an
- // argument and a return value at the same time. This is an edge case that
- // needs special handling here.
- for (const auto &Arg : Fn.args()) {
- if (is_contained(RetVals, &Arg)) {
- auto ArgVal = InterfaceValue{Arg.getArgNo() + 1, 0};
- auto RetVal = InterfaceValue{0, 0};
- ExtRelations.push_back(ExternalRelation{ArgVal, RetVal, 0});
- }
- }
-
- // Below is the core summary construction logic.
- // A naive solution of adding only the value aliases that are parameters or
- // return values in ReachSet to the summary won't work: It is possible that a
- // parameter P is written into an intermediate value I, and the function
- // subsequently returns *I. In that case, *I is does not value alias anything
- // in ReachSet, and the naive solution will miss a summary edge from (P, 1) to
- // (I, 1).
- // To account for the aforementioned case, we need to check each non-parameter
- // and non-return value for the possibility of acting as an intermediate.
- // 'ValueMap' here records, for each value, which InterfaceValues read from or
- // write into it. If both the read list and the write list of a given value
- // are non-empty, we know that a particular value is an intermidate and we
- // need to add summary edges from the writes to the reads.
- DenseMap<Value *, ValueSummary> ValueMap;
- for (const auto &OuterMapping : ReachSet.value_mappings()) {
- if (auto Dst = getInterfaceValue(OuterMapping.first, RetVals)) {
- for (const auto &InnerMapping : OuterMapping.second) {
- // If Src is a param/return value, we get a same-level assignment.
- if (auto Src = getInterfaceValue(InnerMapping.first, RetVals)) {
- // This may happen if both Dst and Src are return values
- if (*Dst == *Src)
- continue;
-
- if (hasReadOnlyState(InnerMapping.second))
- ExtRelations.push_back(ExternalRelation{*Dst, *Src, UnknownOffset});
- // No need to check for WriteOnly state, since ReachSet is symmetric
- } else {
- // If Src is not a param/return, add it to ValueMap
- auto SrcIVal = InnerMapping.first;
- if (hasReadOnlyState(InnerMapping.second))
- ValueMap[SrcIVal.Val].FromRecords.push_back(
- ValueSummary::Record{*Dst, SrcIVal.DerefLevel});
- if (hasWriteOnlyState(InnerMapping.second))
- ValueMap[SrcIVal.Val].ToRecords.push_back(
- ValueSummary::Record{*Dst, SrcIVal.DerefLevel});
- }
- }
- }
- }
-
- for (const auto &Mapping : ValueMap) {
- for (const auto &FromRecord : Mapping.second.FromRecords) {
- for (const auto &ToRecord : Mapping.second.ToRecords) {
- auto ToLevel = ToRecord.DerefLevel;
- auto FromLevel = FromRecord.DerefLevel;
- // Same-level assignments should have already been processed by now
- if (ToLevel == FromLevel)
- continue;
-
- auto SrcIndex = FromRecord.IValue.Index;
- auto SrcLevel = FromRecord.IValue.DerefLevel;
- auto DstIndex = ToRecord.IValue.Index;
- auto DstLevel = ToRecord.IValue.DerefLevel;
- if (ToLevel > FromLevel)
- SrcLevel += ToLevel - FromLevel;
- else
- DstLevel += FromLevel - ToLevel;
-
- ExtRelations.push_back(ExternalRelation{
- InterfaceValue{SrcIndex, SrcLevel},
- InterfaceValue{DstIndex, DstLevel}, UnknownOffset});
- }
- }
- }
-
- // Remove duplicates in ExtRelations
- llvm::sort(ExtRelations);
- ExtRelations.erase(std::unique(ExtRelations.begin(), ExtRelations.end()),
- ExtRelations.end());
-}
-
-static void populateExternalAttributes(
- SmallVectorImpl<ExternalAttribute> &ExtAttributes, const Function &Fn,
- const SmallVectorImpl<Value *> &RetVals, const AliasAttrMap &AMap) {
- for (const auto &Mapping : AMap.mappings()) {
- if (auto IVal = getInterfaceValue(Mapping.first, RetVals)) {
- auto Attr = getExternallyVisibleAttrs(Mapping.second);
- if (Attr.any())
- ExtAttributes.push_back(ExternalAttribute{*IVal, Attr});
- }
- }
-}
-
-CFLAndersAAResult::FunctionInfo::FunctionInfo(
- const Function &Fn, const SmallVectorImpl<Value *> &RetVals,
- const ReachabilitySet &ReachSet, const AliasAttrMap &AMap) {
- populateAttrMap(AttrMap, AMap);
- populateExternalAttributes(Summary.RetParamAttributes, Fn, RetVals, AMap);
- populateAliasMap(AliasMap, ReachSet);
- populateExternalRelations(Summary.RetParamRelations, Fn, RetVals, ReachSet);
-}
-
-Optional<AliasAttrs>
-CFLAndersAAResult::FunctionInfo::getAttrs(const Value *V) const {
- assert(V != nullptr);
-
- auto Itr = AttrMap.find(V);
- if (Itr != AttrMap.end())
- return Itr->second;
- return None;
-}
-
-bool CFLAndersAAResult::FunctionInfo::mayAlias(
- const Value *LHS, LocationSize MaybeLHSSize, const Value *RHS,
- LocationSize MaybeRHSSize) const {
- assert(LHS && RHS);
-
- // Check if we've seen LHS and RHS before. Sometimes LHS or RHS can be created
- // after the analysis gets executed, and we want to be conservative in those
- // cases.
- auto MaybeAttrsA = getAttrs(LHS);
- auto MaybeAttrsB = getAttrs(RHS);
- if (!MaybeAttrsA || !MaybeAttrsB)
- return true;
-
- // Check AliasAttrs before AliasMap lookup since it's cheaper
- auto AttrsA = *MaybeAttrsA;
- auto AttrsB = *MaybeAttrsB;
- if (hasUnknownOrCallerAttr(AttrsA))
- return AttrsB.any();
- if (hasUnknownOrCallerAttr(AttrsB))
- return AttrsA.any();
- if (isGlobalOrArgAttr(AttrsA))
- return isGlobalOrArgAttr(AttrsB);
- if (isGlobalOrArgAttr(AttrsB))
- return isGlobalOrArgAttr(AttrsA);
-
- // At this point both LHS and RHS should point to locally allocated objects
-
- auto Itr = AliasMap.find(LHS);
- if (Itr != AliasMap.end()) {
-
- // Find out all (X, Offset) where X == RHS
- auto Comparator = [](OffsetValue LHS, OffsetValue RHS) {
- return std::less<const Value *>()(LHS.Val, RHS.Val);
- };
-#ifdef EXPENSIVE_CHECKS
- assert(std::is_sorted(Itr->second.begin(), Itr->second.end(), Comparator));
-#endif
- auto RangePair = std::equal_range(Itr->second.begin(), Itr->second.end(),
- OffsetValue{RHS, 0}, Comparator);
-
- if (RangePair.first != RangePair.second) {
- // Be conservative about unknown sizes
- if (MaybeLHSSize == LocationSize::unknown() ||
- MaybeRHSSize == LocationSize::unknown())
- return true;
-
- const uint64_t LHSSize = MaybeLHSSize.getValue();
- const uint64_t RHSSize = MaybeRHSSize.getValue();
-
- for (const auto &OVal : make_range(RangePair)) {
- // Be conservative about UnknownOffset
- if (OVal.Offset == UnknownOffset)
- return true;
-
- // We know that LHS aliases (RHS + OVal.Offset) if the control flow
- // reaches here. The may-alias query essentially becomes integer
- // range-overlap queries over two ranges [OVal.Offset, OVal.Offset +
- // LHSSize) and [0, RHSSize).
-
- // Try to be conservative on super large offsets
- if (LLVM_UNLIKELY(LHSSize > INT64_MAX || RHSSize > INT64_MAX))
- return true;
-
- auto LHSStart = OVal.Offset;
- // FIXME: Do we need to guard against integer overflow?
- auto LHSEnd = OVal.Offset + static_cast<int64_t>(LHSSize);
- auto RHSStart = 0;
- auto RHSEnd = static_cast<int64_t>(RHSSize);
- if (LHSEnd > RHSStart && LHSStart < RHSEnd)
- return true;
- }
- }
- }
-
- return false;
-}
-
-static void propagate(InstantiatedValue From, InstantiatedValue To,
- MatchState State, ReachabilitySet &ReachSet,
- std::vector<WorkListItem> &WorkList) {
- if (From == To)
- return;
- if (ReachSet.insert(From, To, State))
- WorkList.push_back(WorkListItem{From, To, State});
-}
-
-static void initializeWorkList(std::vector<WorkListItem> &WorkList,
- ReachabilitySet &ReachSet,
- const CFLGraph &Graph) {
- for (const auto &Mapping : Graph.value_mappings()) {
- auto Val = Mapping.first;
- auto &ValueInfo = Mapping.second;
- assert(ValueInfo.getNumLevels() > 0);
-
- // Insert all immediate assignment neighbors to the worklist
- for (unsigned I = 0, E = ValueInfo.getNumLevels(); I < E; ++I) {
- auto Src = InstantiatedValue{Val, I};
- // If there's an assignment edge from X to Y, it means Y is reachable from
- // X at S2 and X is reachable from Y at S1
- for (auto &Edge : ValueInfo.getNodeInfoAtLevel(I).Edges) {
- propagate(Edge.Other, Src, MatchState::FlowFromReadOnly, ReachSet,
- WorkList);
- propagate(Src, Edge.Other, MatchState::FlowToWriteOnly, ReachSet,
- WorkList);
- }
- }
- }
-}
-
-static Optional<InstantiatedValue> getNodeBelow(const CFLGraph &Graph,
- InstantiatedValue V) {
- auto NodeBelow = InstantiatedValue{V.Val, V.DerefLevel + 1};
- if (Graph.getNode(NodeBelow))
- return NodeBelow;
- return None;
-}
-
-static void processWorkListItem(const WorkListItem &Item, const CFLGraph &Graph,
- ReachabilitySet &ReachSet, AliasMemSet &MemSet,
- std::vector<WorkListItem> &WorkList) {
- auto FromNode = Item.From;
- auto ToNode = Item.To;
-
- auto NodeInfo = Graph.getNode(ToNode);
- assert(NodeInfo != nullptr);
-
- // TODO: propagate field offsets
-
- // FIXME: Here is a neat trick we can do: since both ReachSet and MemSet holds
- // relations that are symmetric, we could actually cut the storage by half by
- // sorting FromNode and ToNode before insertion happens.
-
- // The newly added value alias pair may potentially generate more memory
- // alias pairs. Check for them here.
- auto FromNodeBelow = getNodeBelow(Graph, FromNode);
- auto ToNodeBelow = getNodeBelow(Graph, ToNode);
- if (FromNodeBelow && ToNodeBelow &&
- MemSet.insert(*FromNodeBelow, *ToNodeBelow)) {
- propagate(*FromNodeBelow, *ToNodeBelow,
- MatchState::FlowFromMemAliasNoReadWrite, ReachSet, WorkList);
- for (const auto &Mapping : ReachSet.reachableValueAliases(*FromNodeBelow)) {
- auto Src = Mapping.first;
- auto MemAliasPropagate = [&](MatchState FromState, MatchState ToState) {
- if (Mapping.second.test(static_cast<size_t>(FromState)))
- propagate(Src, *ToNodeBelow, ToState, ReachSet, WorkList);
- };
-
- MemAliasPropagate(MatchState::FlowFromReadOnly,
- MatchState::FlowFromMemAliasReadOnly);
- MemAliasPropagate(MatchState::FlowToWriteOnly,
- MatchState::FlowToMemAliasWriteOnly);
- MemAliasPropagate(MatchState::FlowToReadWrite,
- MatchState::FlowToMemAliasReadWrite);
- }
- }
-
- // This is the core of the state machine walking algorithm. We expand ReachSet
- // based on which state we are at (which in turn dictates what edges we
- // should examine)
- // From a high-level point of view, the state machine here guarantees two
- // properties:
- // - If *X and *Y are memory aliases, then X and Y are value aliases
- // - If Y is an alias of X, then reverse assignment edges (if there is any)
- // should precede any assignment edges on the path from X to Y.
- auto NextAssignState = [&](MatchState State) {
- for (const auto &AssignEdge : NodeInfo->Edges)
- propagate(FromNode, AssignEdge.Other, State, ReachSet, WorkList);
- };
- auto NextRevAssignState = [&](MatchState State) {
- for (const auto &RevAssignEdge : NodeInfo->ReverseEdges)
- propagate(FromNode, RevAssignEdge.Other, State, ReachSet, WorkList);
- };
- auto NextMemState = [&](MatchState State) {
- if (auto AliasSet = MemSet.getMemoryAliases(ToNode)) {
- for (const auto &MemAlias : *AliasSet)
- propagate(FromNode, MemAlias, State, ReachSet, WorkList);
- }
- };
-
- switch (Item.State) {
- case MatchState::FlowFromReadOnly:
- NextRevAssignState(MatchState::FlowFromReadOnly);
- NextAssignState(MatchState::FlowToReadWrite);
- NextMemState(MatchState::FlowFromMemAliasReadOnly);
- break;
-
- case MatchState::FlowFromMemAliasNoReadWrite:
- NextRevAssignState(MatchState::FlowFromReadOnly);
- NextAssignState(MatchState::FlowToWriteOnly);
- break;
-
- case MatchState::FlowFromMemAliasReadOnly:
- NextRevAssignState(MatchState::FlowFromReadOnly);
- NextAssignState(MatchState::FlowToReadWrite);
- break;
-
- case MatchState::FlowToWriteOnly:
- NextAssignState(MatchState::FlowToWriteOnly);
- NextMemState(MatchState::FlowToMemAliasWriteOnly);
- break;
-
- case MatchState::FlowToReadWrite:
- NextAssignState(MatchState::FlowToReadWrite);
- NextMemState(MatchState::FlowToMemAliasReadWrite);
- break;
-
- case MatchState::FlowToMemAliasWriteOnly:
- NextAssignState(MatchState::FlowToWriteOnly);
- break;
-
- case MatchState::FlowToMemAliasReadWrite:
- NextAssignState(MatchState::FlowToReadWrite);
- break;
- }
-}
-
-static AliasAttrMap buildAttrMap(const CFLGraph &Graph,
- const ReachabilitySet &ReachSet) {
- AliasAttrMap AttrMap;
- std::vector<InstantiatedValue> WorkList, NextList;
-
- // Initialize each node with its original AliasAttrs in CFLGraph
- for (const auto &Mapping : Graph.value_mappings()) {
- auto Val = Mapping.first;
- auto &ValueInfo = Mapping.second;
- for (unsigned I = 0, E = ValueInfo.getNumLevels(); I < E; ++I) {
- auto Node = InstantiatedValue{Val, I};
- AttrMap.add(Node, ValueInfo.getNodeInfoAtLevel(I).Attr);
- WorkList.push_back(Node);
- }
- }
-
- while (!WorkList.empty()) {
- for (const auto &Dst : WorkList) {
- auto DstAttr = AttrMap.getAttrs(Dst);
- if (DstAttr.none())
- continue;
-
- // Propagate attr on the same level
- for (const auto &Mapping : ReachSet.reachableValueAliases(Dst)) {
- auto Src = Mapping.first;
- if (AttrMap.add(Src, DstAttr))
- NextList.push_back(Src);
- }
-
- // Propagate attr to the levels below
- auto DstBelow = getNodeBelow(Graph, Dst);
- while (DstBelow) {
- if (AttrMap.add(*DstBelow, DstAttr)) {
- NextList.push_back(*DstBelow);
- break;
- }
- DstBelow = getNodeBelow(Graph, *DstBelow);
- }
- }
- WorkList.swap(NextList);
- NextList.clear();
- }
-
- return AttrMap;
-}
-
-CFLAndersAAResult::FunctionInfo
-CFLAndersAAResult::buildInfoFrom(const Function &Fn) {
- CFLGraphBuilder<CFLAndersAAResult> GraphBuilder(
- *this, TLI,
- // Cast away the constness here due to GraphBuilder's API requirement
- const_cast<Function &>(Fn));
- auto &Graph = GraphBuilder.getCFLGraph();
-
- ReachabilitySet ReachSet;
- AliasMemSet MemSet;
-
- std::vector<WorkListItem> WorkList, NextList;
- initializeWorkList(WorkList, ReachSet, Graph);
- // TODO: make sure we don't stop before the fix point is reached
- while (!WorkList.empty()) {
- for (const auto &Item : WorkList)
- processWorkListItem(Item, Graph, ReachSet, MemSet, NextList);
-
- NextList.swap(WorkList);
- NextList.clear();
- }
-
- // Now that we have all the reachability info, propagate AliasAttrs according
- // to it
- auto IValueAttrMap = buildAttrMap(Graph, ReachSet);
-
- return FunctionInfo(Fn, GraphBuilder.getReturnValues(), ReachSet,
- std::move(IValueAttrMap));
-}
-
-void CFLAndersAAResult::scan(const Function &Fn) {
- auto InsertPair = Cache.insert(std::make_pair(&Fn, Optional<FunctionInfo>()));
- (void)InsertPair;
- assert(InsertPair.second &&
- "Trying to scan a function that has already been cached");
-
- // Note that we can't do Cache[Fn] = buildSetsFrom(Fn) here: the function call
- // may get evaluated after operator[], potentially triggering a DenseMap
- // resize and invalidating the reference returned by operator[]
- auto FunInfo = buildInfoFrom(Fn);
- Cache[&Fn] = std::move(FunInfo);
- Handles.emplace_front(const_cast<Function *>(&Fn), this);
-}
-
-void CFLAndersAAResult::evict(const Function *Fn) { Cache.erase(Fn); }
-
-const Optional<CFLAndersAAResult::FunctionInfo> &
-CFLAndersAAResult::ensureCached(const Function &Fn) {
- auto Iter = Cache.find(&Fn);
- if (Iter == Cache.end()) {
- scan(Fn);
- Iter = Cache.find(&Fn);
- assert(Iter != Cache.end());
- assert(Iter->second.hasValue());
- }
- return Iter->second;
-}
-
-const AliasSummary *CFLAndersAAResult::getAliasSummary(const Function &Fn) {
- auto &FunInfo = ensureCached(Fn);
- if (FunInfo.hasValue())
- return &FunInfo->getAliasSummary();
- else
- return nullptr;
-}
-
-AliasResult CFLAndersAAResult::query(const MemoryLocation &LocA,
- const MemoryLocation &LocB) {
- auto *ValA = LocA.Ptr;
- auto *ValB = LocB.Ptr;
-
- if (!ValA->getType()->isPointerTy() || !ValB->getType()->isPointerTy())
- return NoAlias;
-
- auto *Fn = parentFunctionOfValue(ValA);
- if (!Fn) {
- Fn = parentFunctionOfValue(ValB);
- if (!Fn) {
- // The only times this is known to happen are when globals + InlineAsm are
- // involved
- LLVM_DEBUG(
- dbgs()
- << "CFLAndersAA: could not extract parent function information.\n");
- return MayAlias;
- }
- } else {
- assert(!parentFunctionOfValue(ValB) || parentFunctionOfValue(ValB) == Fn);
- }
-
- assert(Fn != nullptr);
- auto &FunInfo = ensureCached(*Fn);
-
- // AliasMap lookup
- if (FunInfo->mayAlias(ValA, LocA.Size, ValB, LocB.Size))
- return MayAlias;
- return NoAlias;
-}
-
-AliasResult CFLAndersAAResult::alias(const MemoryLocation &LocA,
- const MemoryLocation &LocB) {
- if (LocA.Ptr == LocB.Ptr)
- return MustAlias;
-
- // Comparisons between global variables and other constants should be
- // handled by BasicAA.
- // CFLAndersAA may report NoAlias when comparing a GlobalValue and
- // ConstantExpr, but every query needs to have at least one Value tied to a
- // Function, and neither GlobalValues nor ConstantExprs are.
- if (isa<Constant>(LocA.Ptr) && isa<Constant>(LocB.Ptr))
- return AAResultBase::alias(LocA, LocB);
-
- AliasResult QueryResult = query(LocA, LocB);
- if (QueryResult == MayAlias)
- return AAResultBase::alias(LocA, LocB);
-
- return QueryResult;
-}
-
-AnalysisKey CFLAndersAA::Key;
-
-CFLAndersAAResult CFLAndersAA::run(Function &F, FunctionAnalysisManager &AM) {
- return CFLAndersAAResult(AM.getResult<TargetLibraryAnalysis>(F));
-}
-
-char CFLAndersAAWrapperPass::ID = 0;
-INITIALIZE_PASS(CFLAndersAAWrapperPass, "cfl-anders-aa",
- "Inclusion-Based CFL Alias Analysis", false, true)
-
-ImmutablePass *llvm::createCFLAndersAAWrapperPass() {
- return new CFLAndersAAWrapperPass();
-}
-
-CFLAndersAAWrapperPass::CFLAndersAAWrapperPass() : ImmutablePass(ID) {
- initializeCFLAndersAAWrapperPassPass(*PassRegistry::getPassRegistry());
-}
-
-void CFLAndersAAWrapperPass::initializePass() {
- auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>();
- Result.reset(new CFLAndersAAResult(TLIWP.getTLI()));
-}
-
-void CFLAndersAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
- AU.setPreservesAll();
- AU.addRequired<TargetLibraryInfoWrapperPass>();
-}