summaryrefslogtreecommitdiffstats
path: root/gnu/llvm/lib/Analysis/GlobalsModRef.cpp
diff options
context:
space:
mode:
authorpatrick <patrick@openbsd.org>2020-08-03 15:06:44 +0000
committerpatrick <patrick@openbsd.org>2020-08-03 15:06:44 +0000
commitb64793999546ed8adebaeebd9d8345d18db8927d (patch)
tree4357c27b561d73b0e089727c6ed659f2ceff5f47 /gnu/llvm/lib/Analysis/GlobalsModRef.cpp
parentAdd support for UTF-8 DISPLAY-HINTs with octet length. For now only (diff)
downloadwireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.tar.xz
wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.zip
Remove LLVM 8.0.1 files.
Diffstat (limited to 'gnu/llvm/lib/Analysis/GlobalsModRef.cpp')
-rw-r--r--gnu/llvm/lib/Analysis/GlobalsModRef.cpp1014
1 files changed, 0 insertions, 1014 deletions
diff --git a/gnu/llvm/lib/Analysis/GlobalsModRef.cpp b/gnu/llvm/lib/Analysis/GlobalsModRef.cpp
deleted file mode 100644
index b28abcadca4..00000000000
--- a/gnu/llvm/lib/Analysis/GlobalsModRef.cpp
+++ /dev/null
@@ -1,1014 +0,0 @@
-//===- GlobalsModRef.cpp - Simple Mod/Ref Analysis for Globals ------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This simple pass provides alias and mod/ref information for global values
-// that do not have their address taken, and keeps track of whether functions
-// read or write memory (are "pure"). For this simple (but very common) case,
-// we can provide pretty accurate and useful information.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Analysis/GlobalsModRef.h"
-#include "llvm/ADT/SCCIterator.h"
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/Analysis/MemoryBuiltins.h"
-#include "llvm/Analysis/TargetLibraryInfo.h"
-#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/IR/DerivedTypes.h"
-#include "llvm/IR/InstIterator.h"
-#include "llvm/IR/Instructions.h"
-#include "llvm/IR/IntrinsicInst.h"
-#include "llvm/IR/Module.h"
-#include "llvm/Pass.h"
-#include "llvm/Support/CommandLine.h"
-using namespace llvm;
-
-#define DEBUG_TYPE "globalsmodref-aa"
-
-STATISTIC(NumNonAddrTakenGlobalVars,
- "Number of global vars without address taken");
-STATISTIC(NumNonAddrTakenFunctions,"Number of functions without address taken");
-STATISTIC(NumNoMemFunctions, "Number of functions that do not access memory");
-STATISTIC(NumReadMemFunctions, "Number of functions that only read memory");
-STATISTIC(NumIndirectGlobalVars, "Number of indirect global objects");
-
-// An option to enable unsafe alias results from the GlobalsModRef analysis.
-// When enabled, GlobalsModRef will provide no-alias results which in extremely
-// rare cases may not be conservatively correct. In particular, in the face of
-// transforms which cause assymetry between how effective GetUnderlyingObject
-// is for two pointers, it may produce incorrect results.
-//
-// These unsafe results have been returned by GMR for many years without
-// causing significant issues in the wild and so we provide a mechanism to
-// re-enable them for users of LLVM that have a particular performance
-// sensitivity and no known issues. The option also makes it easy to evaluate
-// the performance impact of these results.
-static cl::opt<bool> EnableUnsafeGlobalsModRefAliasResults(
- "enable-unsafe-globalsmodref-alias-results", cl::init(false), cl::Hidden);
-
-/// The mod/ref information collected for a particular function.
-///
-/// We collect information about mod/ref behavior of a function here, both in
-/// general and as pertains to specific globals. We only have this detailed
-/// information when we know *something* useful about the behavior. If we
-/// saturate to fully general mod/ref, we remove the info for the function.
-class GlobalsAAResult::FunctionInfo {
- typedef SmallDenseMap<const GlobalValue *, ModRefInfo, 16> GlobalInfoMapType;
-
- /// Build a wrapper struct that has 8-byte alignment. All heap allocations
- /// should provide this much alignment at least, but this makes it clear we
- /// specifically rely on this amount of alignment.
- struct alignas(8) AlignedMap {
- AlignedMap() {}
- AlignedMap(const AlignedMap &Arg) : Map(Arg.Map) {}
- GlobalInfoMapType Map;
- };
-
- /// Pointer traits for our aligned map.
- struct AlignedMapPointerTraits {
- static inline void *getAsVoidPointer(AlignedMap *P) { return P; }
- static inline AlignedMap *getFromVoidPointer(void *P) {
- return (AlignedMap *)P;
- }
- enum { NumLowBitsAvailable = 3 };
- static_assert(alignof(AlignedMap) >= (1 << NumLowBitsAvailable),
- "AlignedMap insufficiently aligned to have enough low bits.");
- };
-
- /// The bit that flags that this function may read any global. This is
- /// chosen to mix together with ModRefInfo bits.
- /// FIXME: This assumes ModRefInfo lattice will remain 4 bits!
- /// It overlaps with ModRefInfo::Must bit!
- /// FunctionInfo.getModRefInfo() masks out everything except ModRef so
- /// this remains correct, but the Must info is lost.
- enum { MayReadAnyGlobal = 4 };
-
- /// Checks to document the invariants of the bit packing here.
- static_assert((MayReadAnyGlobal & static_cast<int>(ModRefInfo::MustModRef)) ==
- 0,
- "ModRef and the MayReadAnyGlobal flag bits overlap.");
- static_assert(((MayReadAnyGlobal |
- static_cast<int>(ModRefInfo::MustModRef)) >>
- AlignedMapPointerTraits::NumLowBitsAvailable) == 0,
- "Insufficient low bits to store our flag and ModRef info.");
-
-public:
- FunctionInfo() : Info() {}
- ~FunctionInfo() {
- delete Info.getPointer();
- }
- // Spell out the copy ond move constructors and assignment operators to get
- // deep copy semantics and correct move semantics in the face of the
- // pointer-int pair.
- FunctionInfo(const FunctionInfo &Arg)
- : Info(nullptr, Arg.Info.getInt()) {
- if (const auto *ArgPtr = Arg.Info.getPointer())
- Info.setPointer(new AlignedMap(*ArgPtr));
- }
- FunctionInfo(FunctionInfo &&Arg)
- : Info(Arg.Info.getPointer(), Arg.Info.getInt()) {
- Arg.Info.setPointerAndInt(nullptr, 0);
- }
- FunctionInfo &operator=(const FunctionInfo &RHS) {
- delete Info.getPointer();
- Info.setPointerAndInt(nullptr, RHS.Info.getInt());
- if (const auto *RHSPtr = RHS.Info.getPointer())
- Info.setPointer(new AlignedMap(*RHSPtr));
- return *this;
- }
- FunctionInfo &operator=(FunctionInfo &&RHS) {
- delete Info.getPointer();
- Info.setPointerAndInt(RHS.Info.getPointer(), RHS.Info.getInt());
- RHS.Info.setPointerAndInt(nullptr, 0);
- return *this;
- }
-
- /// This method clears MayReadAnyGlobal bit added by GlobalsAAResult to return
- /// the corresponding ModRefInfo. It must align in functionality with
- /// clearMust().
- ModRefInfo globalClearMayReadAnyGlobal(int I) const {
- return ModRefInfo((I & static_cast<int>(ModRefInfo::ModRef)) |
- static_cast<int>(ModRefInfo::NoModRef));
- }
-
- /// Returns the \c ModRefInfo info for this function.
- ModRefInfo getModRefInfo() const {
- return globalClearMayReadAnyGlobal(Info.getInt());
- }
-
- /// Adds new \c ModRefInfo for this function to its state.
- void addModRefInfo(ModRefInfo NewMRI) {
- Info.setInt(Info.getInt() | static_cast<int>(setMust(NewMRI)));
- }
-
- /// Returns whether this function may read any global variable, and we don't
- /// know which global.
- bool mayReadAnyGlobal() const { return Info.getInt() & MayReadAnyGlobal; }
-
- /// Sets this function as potentially reading from any global.
- void setMayReadAnyGlobal() { Info.setInt(Info.getInt() | MayReadAnyGlobal); }
-
- /// Returns the \c ModRefInfo info for this function w.r.t. a particular
- /// global, which may be more precise than the general information above.
- ModRefInfo getModRefInfoForGlobal(const GlobalValue &GV) const {
- ModRefInfo GlobalMRI =
- mayReadAnyGlobal() ? ModRefInfo::Ref : ModRefInfo::NoModRef;
- if (AlignedMap *P = Info.getPointer()) {
- auto I = P->Map.find(&GV);
- if (I != P->Map.end())
- GlobalMRI = unionModRef(GlobalMRI, I->second);
- }
- return GlobalMRI;
- }
-
- /// Add mod/ref info from another function into ours, saturating towards
- /// ModRef.
- void addFunctionInfo(const FunctionInfo &FI) {
- addModRefInfo(FI.getModRefInfo());
-
- if (FI.mayReadAnyGlobal())
- setMayReadAnyGlobal();
-
- if (AlignedMap *P = FI.Info.getPointer())
- for (const auto &G : P->Map)
- addModRefInfoForGlobal(*G.first, G.second);
- }
-
- void addModRefInfoForGlobal(const GlobalValue &GV, ModRefInfo NewMRI) {
- AlignedMap *P = Info.getPointer();
- if (!P) {
- P = new AlignedMap();
- Info.setPointer(P);
- }
- auto &GlobalMRI = P->Map[&GV];
- GlobalMRI = unionModRef(GlobalMRI, NewMRI);
- }
-
- /// Clear a global's ModRef info. Should be used when a global is being
- /// deleted.
- void eraseModRefInfoForGlobal(const GlobalValue &GV) {
- if (AlignedMap *P = Info.getPointer())
- P->Map.erase(&GV);
- }
-
-private:
- /// All of the information is encoded into a single pointer, with a three bit
- /// integer in the low three bits. The high bit provides a flag for when this
- /// function may read any global. The low two bits are the ModRefInfo. And
- /// the pointer, when non-null, points to a map from GlobalValue to
- /// ModRefInfo specific to that GlobalValue.
- PointerIntPair<AlignedMap *, 3, unsigned, AlignedMapPointerTraits> Info;
-};
-
-void GlobalsAAResult::DeletionCallbackHandle::deleted() {
- Value *V = getValPtr();
- if (auto *F = dyn_cast<Function>(V))
- GAR->FunctionInfos.erase(F);
-
- if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
- if (GAR->NonAddressTakenGlobals.erase(GV)) {
- // This global might be an indirect global. If so, remove it and
- // remove any AllocRelatedValues for it.
- if (GAR->IndirectGlobals.erase(GV)) {
- // Remove any entries in AllocsForIndirectGlobals for this global.
- for (auto I = GAR->AllocsForIndirectGlobals.begin(),
- E = GAR->AllocsForIndirectGlobals.end();
- I != E; ++I)
- if (I->second == GV)
- GAR->AllocsForIndirectGlobals.erase(I);
- }
-
- // Scan the function info we have collected and remove this global
- // from all of them.
- for (auto &FIPair : GAR->FunctionInfos)
- FIPair.second.eraseModRefInfoForGlobal(*GV);
- }
- }
-
- // If this is an allocation related to an indirect global, remove it.
- GAR->AllocsForIndirectGlobals.erase(V);
-
- // And clear out the handle.
- setValPtr(nullptr);
- GAR->Handles.erase(I);
- // This object is now destroyed!
-}
-
-FunctionModRefBehavior GlobalsAAResult::getModRefBehavior(const Function *F) {
- FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
-
- if (FunctionInfo *FI = getFunctionInfo(F)) {
- if (!isModOrRefSet(FI->getModRefInfo()))
- Min = FMRB_DoesNotAccessMemory;
- else if (!isModSet(FI->getModRefInfo()))
- Min = FMRB_OnlyReadsMemory;
- }
-
- return FunctionModRefBehavior(AAResultBase::getModRefBehavior(F) & Min);
-}
-
-FunctionModRefBehavior
-GlobalsAAResult::getModRefBehavior(const CallBase *Call) {
- FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
-
- if (!Call->hasOperandBundles())
- if (const Function *F = Call->getCalledFunction())
- if (FunctionInfo *FI = getFunctionInfo(F)) {
- if (!isModOrRefSet(FI->getModRefInfo()))
- Min = FMRB_DoesNotAccessMemory;
- else if (!isModSet(FI->getModRefInfo()))
- Min = FMRB_OnlyReadsMemory;
- }
-
- return FunctionModRefBehavior(AAResultBase::getModRefBehavior(Call) & Min);
-}
-
-/// Returns the function info for the function, or null if we don't have
-/// anything useful to say about it.
-GlobalsAAResult::FunctionInfo *
-GlobalsAAResult::getFunctionInfo(const Function *F) {
- auto I = FunctionInfos.find(F);
- if (I != FunctionInfos.end())
- return &I->second;
- return nullptr;
-}
-
-/// AnalyzeGlobals - Scan through the users of all of the internal
-/// GlobalValue's in the program. If none of them have their "address taken"
-/// (really, their address passed to something nontrivial), record this fact,
-/// and record the functions that they are used directly in.
-void GlobalsAAResult::AnalyzeGlobals(Module &M) {
- SmallPtrSet<Function *, 32> TrackedFunctions;
- for (Function &F : M)
- if (F.hasLocalLinkage())
- if (!AnalyzeUsesOfPointer(&F)) {
- // Remember that we are tracking this global.
- NonAddressTakenGlobals.insert(&F);
- TrackedFunctions.insert(&F);
- Handles.emplace_front(*this, &F);
- Handles.front().I = Handles.begin();
- ++NumNonAddrTakenFunctions;
- }
-
- SmallPtrSet<Function *, 16> Readers, Writers;
- for (GlobalVariable &GV : M.globals())
- if (GV.hasLocalLinkage()) {
- if (!AnalyzeUsesOfPointer(&GV, &Readers,
- GV.isConstant() ? nullptr : &Writers)) {
- // Remember that we are tracking this global, and the mod/ref fns
- NonAddressTakenGlobals.insert(&GV);
- Handles.emplace_front(*this, &GV);
- Handles.front().I = Handles.begin();
-
- for (Function *Reader : Readers) {
- if (TrackedFunctions.insert(Reader).second) {
- Handles.emplace_front(*this, Reader);
- Handles.front().I = Handles.begin();
- }
- FunctionInfos[Reader].addModRefInfoForGlobal(GV, ModRefInfo::Ref);
- }
-
- if (!GV.isConstant()) // No need to keep track of writers to constants
- for (Function *Writer : Writers) {
- if (TrackedFunctions.insert(Writer).second) {
- Handles.emplace_front(*this, Writer);
- Handles.front().I = Handles.begin();
- }
- FunctionInfos[Writer].addModRefInfoForGlobal(GV, ModRefInfo::Mod);
- }
- ++NumNonAddrTakenGlobalVars;
-
- // If this global holds a pointer type, see if it is an indirect global.
- if (GV.getValueType()->isPointerTy() &&
- AnalyzeIndirectGlobalMemory(&GV))
- ++NumIndirectGlobalVars;
- }
- Readers.clear();
- Writers.clear();
- }
-}
-
-/// AnalyzeUsesOfPointer - Look at all of the users of the specified pointer.
-/// If this is used by anything complex (i.e., the address escapes), return
-/// true. Also, while we are at it, keep track of those functions that read and
-/// write to the value.
-///
-/// If OkayStoreDest is non-null, stores into this global are allowed.
-bool GlobalsAAResult::AnalyzeUsesOfPointer(Value *V,
- SmallPtrSetImpl<Function *> *Readers,
- SmallPtrSetImpl<Function *> *Writers,
- GlobalValue *OkayStoreDest) {
- if (!V->getType()->isPointerTy())
- return true;
-
- for (Use &U : V->uses()) {
- User *I = U.getUser();
- if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
- if (Readers)
- Readers->insert(LI->getParent()->getParent());
- } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
- if (V == SI->getOperand(1)) {
- if (Writers)
- Writers->insert(SI->getParent()->getParent());
- } else if (SI->getOperand(1) != OkayStoreDest) {
- return true; // Storing the pointer
- }
- } else if (Operator::getOpcode(I) == Instruction::GetElementPtr) {
- if (AnalyzeUsesOfPointer(I, Readers, Writers))
- return true;
- } else if (Operator::getOpcode(I) == Instruction::BitCast) {
- if (AnalyzeUsesOfPointer(I, Readers, Writers, OkayStoreDest))
- return true;
- } else if (auto *Call = dyn_cast<CallBase>(I)) {
- // Make sure that this is just the function being called, not that it is
- // passing into the function.
- if (Call->isDataOperand(&U)) {
- // Detect calls to free.
- if (Call->isArgOperand(&U) && isFreeCall(I, &TLI)) {
- if (Writers)
- Writers->insert(Call->getParent()->getParent());
- } else {
- return true; // Argument of an unknown call.
- }
- }
- } else if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) {
- if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
- return true; // Allow comparison against null.
- } else if (Constant *C = dyn_cast<Constant>(I)) {
- // Ignore constants which don't have any live uses.
- if (isa<GlobalValue>(C) || C->isConstantUsed())
- return true;
- } else {
- return true;
- }
- }
-
- return false;
-}
-
-/// AnalyzeIndirectGlobalMemory - We found an non-address-taken global variable
-/// which holds a pointer type. See if the global always points to non-aliased
-/// heap memory: that is, all initializers of the globals are allocations, and
-/// those allocations have no use other than initialization of the global.
-/// Further, all loads out of GV must directly use the memory, not store the
-/// pointer somewhere. If this is true, we consider the memory pointed to by
-/// GV to be owned by GV and can disambiguate other pointers from it.
-bool GlobalsAAResult::AnalyzeIndirectGlobalMemory(GlobalVariable *GV) {
- // Keep track of values related to the allocation of the memory, f.e. the
- // value produced by the malloc call and any casts.
- std::vector<Value *> AllocRelatedValues;
-
- // If the initializer is a valid pointer, bail.
- if (Constant *C = GV->getInitializer())
- if (!C->isNullValue())
- return false;
-
- // Walk the user list of the global. If we find anything other than a direct
- // load or store, bail out.
- for (User *U : GV->users()) {
- if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
- // The pointer loaded from the global can only be used in simple ways:
- // we allow addressing of it and loading storing to it. We do *not* allow
- // storing the loaded pointer somewhere else or passing to a function.
- if (AnalyzeUsesOfPointer(LI))
- return false; // Loaded pointer escapes.
- // TODO: Could try some IP mod/ref of the loaded pointer.
- } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
- // Storing the global itself.
- if (SI->getOperand(0) == GV)
- return false;
-
- // If storing the null pointer, ignore it.
- if (isa<ConstantPointerNull>(SI->getOperand(0)))
- continue;
-
- // Check the value being stored.
- Value *Ptr = GetUnderlyingObject(SI->getOperand(0),
- GV->getParent()->getDataLayout());
-
- if (!isAllocLikeFn(Ptr, &TLI))
- return false; // Too hard to analyze.
-
- // Analyze all uses of the allocation. If any of them are used in a
- // non-simple way (e.g. stored to another global) bail out.
- if (AnalyzeUsesOfPointer(Ptr, /*Readers*/ nullptr, /*Writers*/ nullptr,
- GV))
- return false; // Loaded pointer escapes.
-
- // Remember that this allocation is related to the indirect global.
- AllocRelatedValues.push_back(Ptr);
- } else {
- // Something complex, bail out.
- return false;
- }
- }
-
- // Okay, this is an indirect global. Remember all of the allocations for
- // this global in AllocsForIndirectGlobals.
- while (!AllocRelatedValues.empty()) {
- AllocsForIndirectGlobals[AllocRelatedValues.back()] = GV;
- Handles.emplace_front(*this, AllocRelatedValues.back());
- Handles.front().I = Handles.begin();
- AllocRelatedValues.pop_back();
- }
- IndirectGlobals.insert(GV);
- Handles.emplace_front(*this, GV);
- Handles.front().I = Handles.begin();
- return true;
-}
-
-void GlobalsAAResult::CollectSCCMembership(CallGraph &CG) {
- // We do a bottom-up SCC traversal of the call graph. In other words, we
- // visit all callees before callers (leaf-first).
- unsigned SCCID = 0;
- for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) {
- const std::vector<CallGraphNode *> &SCC = *I;
- assert(!SCC.empty() && "SCC with no functions?");
-
- for (auto *CGN : SCC)
- if (Function *F = CGN->getFunction())
- FunctionToSCCMap[F] = SCCID;
- ++SCCID;
- }
-}
-
-/// AnalyzeCallGraph - At this point, we know the functions where globals are
-/// immediately stored to and read from. Propagate this information up the call
-/// graph to all callers and compute the mod/ref info for all memory for each
-/// function.
-void GlobalsAAResult::AnalyzeCallGraph(CallGraph &CG, Module &M) {
- // We do a bottom-up SCC traversal of the call graph. In other words, we
- // visit all callees before callers (leaf-first).
- for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) {
- const std::vector<CallGraphNode *> &SCC = *I;
- assert(!SCC.empty() && "SCC with no functions?");
-
- Function *F = SCC[0]->getFunction();
-
- if (!F || !F->isDefinitionExact()) {
- // Calls externally or not exact - can't say anything useful. Remove any
- // existing function records (may have been created when scanning
- // globals).
- for (auto *Node : SCC)
- FunctionInfos.erase(Node->getFunction());
- continue;
- }
-
- FunctionInfo &FI = FunctionInfos[F];
- Handles.emplace_front(*this, F);
- Handles.front().I = Handles.begin();
- bool KnowNothing = false;
-
- // Collect the mod/ref properties due to called functions. We only compute
- // one mod-ref set.
- for (unsigned i = 0, e = SCC.size(); i != e && !KnowNothing; ++i) {
- if (!F) {
- KnowNothing = true;
- break;
- }
-
- if (F->isDeclaration() || F->hasFnAttribute(Attribute::OptimizeNone)) {
- // Try to get mod/ref behaviour from function attributes.
- if (F->doesNotAccessMemory()) {
- // Can't do better than that!
- } else if (F->onlyReadsMemory()) {
- FI.addModRefInfo(ModRefInfo::Ref);
- if (!F->isIntrinsic() && !F->onlyAccessesArgMemory())
- // This function might call back into the module and read a global -
- // consider every global as possibly being read by this function.
- FI.setMayReadAnyGlobal();
- } else {
- FI.addModRefInfo(ModRefInfo::ModRef);
- // Can't say anything useful unless it's an intrinsic - they don't
- // read or write global variables of the kind considered here.
- KnowNothing = !F->isIntrinsic();
- }
- continue;
- }
-
- for (CallGraphNode::iterator CI = SCC[i]->begin(), E = SCC[i]->end();
- CI != E && !KnowNothing; ++CI)
- if (Function *Callee = CI->second->getFunction()) {
- if (FunctionInfo *CalleeFI = getFunctionInfo(Callee)) {
- // Propagate function effect up.
- FI.addFunctionInfo(*CalleeFI);
- } else {
- // Can't say anything about it. However, if it is inside our SCC,
- // then nothing needs to be done.
- CallGraphNode *CalleeNode = CG[Callee];
- if (!is_contained(SCC, CalleeNode))
- KnowNothing = true;
- }
- } else {
- KnowNothing = true;
- }
- }
-
- // If we can't say anything useful about this SCC, remove all SCC functions
- // from the FunctionInfos map.
- if (KnowNothing) {
- for (auto *Node : SCC)
- FunctionInfos.erase(Node->getFunction());
- continue;
- }
-
- // Scan the function bodies for explicit loads or stores.
- for (auto *Node : SCC) {
- if (isModAndRefSet(FI.getModRefInfo()))
- break; // The mod/ref lattice saturates here.
-
- // Don't prove any properties based on the implementation of an optnone
- // function. Function attributes were already used as a best approximation
- // above.
- if (Node->getFunction()->hasFnAttribute(Attribute::OptimizeNone))
- continue;
-
- for (Instruction &I : instructions(Node->getFunction())) {
- if (isModAndRefSet(FI.getModRefInfo()))
- break; // The mod/ref lattice saturates here.
-
- // We handle calls specially because the graph-relevant aspects are
- // handled above.
- if (auto *Call = dyn_cast<CallBase>(&I)) {
- if (isAllocationFn(Call, &TLI) || isFreeCall(Call, &TLI)) {
- // FIXME: It is completely unclear why this is necessary and not
- // handled by the above graph code.
- FI.addModRefInfo(ModRefInfo::ModRef);
- } else if (Function *Callee = Call->getCalledFunction()) {
- // The callgraph doesn't include intrinsic calls.
- if (Callee->isIntrinsic()) {
- if (isa<DbgInfoIntrinsic>(Call))
- // Don't let dbg intrinsics affect alias info.
- continue;
-
- FunctionModRefBehavior Behaviour =
- AAResultBase::getModRefBehavior(Callee);
- FI.addModRefInfo(createModRefInfo(Behaviour));
- }
- }
- continue;
- }
-
- // All non-call instructions we use the primary predicates for whether
- // thay read or write memory.
- if (I.mayReadFromMemory())
- FI.addModRefInfo(ModRefInfo::Ref);
- if (I.mayWriteToMemory())
- FI.addModRefInfo(ModRefInfo::Mod);
- }
- }
-
- if (!isModSet(FI.getModRefInfo()))
- ++NumReadMemFunctions;
- if (!isModOrRefSet(FI.getModRefInfo()))
- ++NumNoMemFunctions;
-
- // Finally, now that we know the full effect on this SCC, clone the
- // information to each function in the SCC.
- // FI is a reference into FunctionInfos, so copy it now so that it doesn't
- // get invalidated if DenseMap decides to re-hash.
- FunctionInfo CachedFI = FI;
- for (unsigned i = 1, e = SCC.size(); i != e; ++i)
- FunctionInfos[SCC[i]->getFunction()] = CachedFI;
- }
-}
-
-// GV is a non-escaping global. V is a pointer address that has been loaded from.
-// If we can prove that V must escape, we can conclude that a load from V cannot
-// alias GV.
-static bool isNonEscapingGlobalNoAliasWithLoad(const GlobalValue *GV,
- const Value *V,
- int &Depth,
- const DataLayout &DL) {
- SmallPtrSet<const Value *, 8> Visited;
- SmallVector<const Value *, 8> Inputs;
- Visited.insert(V);
- Inputs.push_back(V);
- do {
- const Value *Input = Inputs.pop_back_val();
-
- if (isa<GlobalValue>(Input) || isa<Argument>(Input) || isa<CallInst>(Input) ||
- isa<InvokeInst>(Input))
- // Arguments to functions or returns from functions are inherently
- // escaping, so we can immediately classify those as not aliasing any
- // non-addr-taken globals.
- //
- // (Transitive) loads from a global are also safe - if this aliased
- // another global, its address would escape, so no alias.
- continue;
-
- // Recurse through a limited number of selects, loads and PHIs. This is an
- // arbitrary depth of 4, lower numbers could be used to fix compile time
- // issues if needed, but this is generally expected to be only be important
- // for small depths.
- if (++Depth > 4)
- return false;
-
- if (auto *LI = dyn_cast<LoadInst>(Input)) {
- Inputs.push_back(GetUnderlyingObject(LI->getPointerOperand(), DL));
- continue;
- }
- if (auto *SI = dyn_cast<SelectInst>(Input)) {
- const Value *LHS = GetUnderlyingObject(SI->getTrueValue(), DL);
- const Value *RHS = GetUnderlyingObject(SI->getFalseValue(), DL);
- if (Visited.insert(LHS).second)
- Inputs.push_back(LHS);
- if (Visited.insert(RHS).second)
- Inputs.push_back(RHS);
- continue;
- }
- if (auto *PN = dyn_cast<PHINode>(Input)) {
- for (const Value *Op : PN->incoming_values()) {
- Op = GetUnderlyingObject(Op, DL);
- if (Visited.insert(Op).second)
- Inputs.push_back(Op);
- }
- continue;
- }
-
- return false;
- } while (!Inputs.empty());
-
- // All inputs were known to be no-alias.
- return true;
-}
-
-// There are particular cases where we can conclude no-alias between
-// a non-addr-taken global and some other underlying object. Specifically,
-// a non-addr-taken global is known to not be escaped from any function. It is
-// also incorrect for a transformation to introduce an escape of a global in
-// a way that is observable when it was not there previously. One function
-// being transformed to introduce an escape which could possibly be observed
-// (via loading from a global or the return value for example) within another
-// function is never safe. If the observation is made through non-atomic
-// operations on different threads, it is a data-race and UB. If the
-// observation is well defined, by being observed the transformation would have
-// changed program behavior by introducing the observed escape, making it an
-// invalid transform.
-//
-// This property does require that transformations which *temporarily* escape
-// a global that was not previously escaped, prior to restoring it, cannot rely
-// on the results of GMR::alias. This seems a reasonable restriction, although
-// currently there is no way to enforce it. There is also no realistic
-// optimization pass that would make this mistake. The closest example is
-// a transformation pass which does reg2mem of SSA values but stores them into
-// global variables temporarily before restoring the global variable's value.
-// This could be useful to expose "benign" races for example. However, it seems
-// reasonable to require that a pass which introduces escapes of global
-// variables in this way to either not trust AA results while the escape is
-// active, or to be forced to operate as a module pass that cannot co-exist
-// with an alias analysis such as GMR.
-bool GlobalsAAResult::isNonEscapingGlobalNoAlias(const GlobalValue *GV,
- const Value *V) {
- // In order to know that the underlying object cannot alias the
- // non-addr-taken global, we must know that it would have to be an escape.
- // Thus if the underlying object is a function argument, a load from
- // a global, or the return of a function, it cannot alias. We can also
- // recurse through PHI nodes and select nodes provided all of their inputs
- // resolve to one of these known-escaping roots.
- SmallPtrSet<const Value *, 8> Visited;
- SmallVector<const Value *, 8> Inputs;
- Visited.insert(V);
- Inputs.push_back(V);
- int Depth = 0;
- do {
- const Value *Input = Inputs.pop_back_val();
-
- if (auto *InputGV = dyn_cast<GlobalValue>(Input)) {
- // If one input is the very global we're querying against, then we can't
- // conclude no-alias.
- if (InputGV == GV)
- return false;
-
- // Distinct GlobalVariables never alias, unless overriden or zero-sized.
- // FIXME: The condition can be refined, but be conservative for now.
- auto *GVar = dyn_cast<GlobalVariable>(GV);
- auto *InputGVar = dyn_cast<GlobalVariable>(InputGV);
- if (GVar && InputGVar &&
- !GVar->isDeclaration() && !InputGVar->isDeclaration() &&
- !GVar->isInterposable() && !InputGVar->isInterposable()) {
- Type *GVType = GVar->getInitializer()->getType();
- Type *InputGVType = InputGVar->getInitializer()->getType();
- if (GVType->isSized() && InputGVType->isSized() &&
- (DL.getTypeAllocSize(GVType) > 0) &&
- (DL.getTypeAllocSize(InputGVType) > 0))
- continue;
- }
-
- // Conservatively return false, even though we could be smarter
- // (e.g. look through GlobalAliases).
- return false;
- }
-
- if (isa<Argument>(Input) || isa<CallInst>(Input) ||
- isa<InvokeInst>(Input)) {
- // Arguments to functions or returns from functions are inherently
- // escaping, so we can immediately classify those as not aliasing any
- // non-addr-taken globals.
- continue;
- }
-
- // Recurse through a limited number of selects, loads and PHIs. This is an
- // arbitrary depth of 4, lower numbers could be used to fix compile time
- // issues if needed, but this is generally expected to be only be important
- // for small depths.
- if (++Depth > 4)
- return false;
-
- if (auto *LI = dyn_cast<LoadInst>(Input)) {
- // A pointer loaded from a global would have been captured, and we know
- // that the global is non-escaping, so no alias.
- const Value *Ptr = GetUnderlyingObject(LI->getPointerOperand(), DL);
- if (isNonEscapingGlobalNoAliasWithLoad(GV, Ptr, Depth, DL))
- // The load does not alias with GV.
- continue;
- // Otherwise, a load could come from anywhere, so bail.
- return false;
- }
- if (auto *SI = dyn_cast<SelectInst>(Input)) {
- const Value *LHS = GetUnderlyingObject(SI->getTrueValue(), DL);
- const Value *RHS = GetUnderlyingObject(SI->getFalseValue(), DL);
- if (Visited.insert(LHS).second)
- Inputs.push_back(LHS);
- if (Visited.insert(RHS).second)
- Inputs.push_back(RHS);
- continue;
- }
- if (auto *PN = dyn_cast<PHINode>(Input)) {
- for (const Value *Op : PN->incoming_values()) {
- Op = GetUnderlyingObject(Op, DL);
- if (Visited.insert(Op).second)
- Inputs.push_back(Op);
- }
- continue;
- }
-
- // FIXME: It would be good to handle other obvious no-alias cases here, but
- // it isn't clear how to do so reasonbly without building a small version
- // of BasicAA into this code. We could recurse into AAResultBase::alias
- // here but that seems likely to go poorly as we're inside the
- // implementation of such a query. Until then, just conservatievly retun
- // false.
- return false;
- } while (!Inputs.empty());
-
- // If all the inputs to V were definitively no-alias, then V is no-alias.
- return true;
-}
-
-/// alias - If one of the pointers is to a global that we are tracking, and the
-/// other is some random pointer, we know there cannot be an alias, because the
-/// address of the global isn't taken.
-AliasResult GlobalsAAResult::alias(const MemoryLocation &LocA,
- const MemoryLocation &LocB) {
- // Get the base object these pointers point to.
- const Value *UV1 = GetUnderlyingObject(LocA.Ptr, DL);
- const Value *UV2 = GetUnderlyingObject(LocB.Ptr, DL);
-
- // If either of the underlying values is a global, they may be non-addr-taken
- // globals, which we can answer queries about.
- const GlobalValue *GV1 = dyn_cast<GlobalValue>(UV1);
- const GlobalValue *GV2 = dyn_cast<GlobalValue>(UV2);
- if (GV1 || GV2) {
- // If the global's address is taken, pretend we don't know it's a pointer to
- // the global.
- if (GV1 && !NonAddressTakenGlobals.count(GV1))
- GV1 = nullptr;
- if (GV2 && !NonAddressTakenGlobals.count(GV2))
- GV2 = nullptr;
-
- // If the two pointers are derived from two different non-addr-taken
- // globals we know these can't alias.
- if (GV1 && GV2 && GV1 != GV2)
- return NoAlias;
-
- // If one is and the other isn't, it isn't strictly safe but we can fake
- // this result if necessary for performance. This does not appear to be
- // a common problem in practice.
- if (EnableUnsafeGlobalsModRefAliasResults)
- if ((GV1 || GV2) && GV1 != GV2)
- return NoAlias;
-
- // Check for a special case where a non-escaping global can be used to
- // conclude no-alias.
- if ((GV1 || GV2) && GV1 != GV2) {
- const GlobalValue *GV = GV1 ? GV1 : GV2;
- const Value *UV = GV1 ? UV2 : UV1;
- if (isNonEscapingGlobalNoAlias(GV, UV))
- return NoAlias;
- }
-
- // Otherwise if they are both derived from the same addr-taken global, we
- // can't know the two accesses don't overlap.
- }
-
- // These pointers may be based on the memory owned by an indirect global. If
- // so, we may be able to handle this. First check to see if the base pointer
- // is a direct load from an indirect global.
- GV1 = GV2 = nullptr;
- if (const LoadInst *LI = dyn_cast<LoadInst>(UV1))
- if (GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
- if (IndirectGlobals.count(GV))
- GV1 = GV;
- if (const LoadInst *LI = dyn_cast<LoadInst>(UV2))
- if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
- if (IndirectGlobals.count(GV))
- GV2 = GV;
-
- // These pointers may also be from an allocation for the indirect global. If
- // so, also handle them.
- if (!GV1)
- GV1 = AllocsForIndirectGlobals.lookup(UV1);
- if (!GV2)
- GV2 = AllocsForIndirectGlobals.lookup(UV2);
-
- // Now that we know whether the two pointers are related to indirect globals,
- // use this to disambiguate the pointers. If the pointers are based on
- // different indirect globals they cannot alias.
- if (GV1 && GV2 && GV1 != GV2)
- return NoAlias;
-
- // If one is based on an indirect global and the other isn't, it isn't
- // strictly safe but we can fake this result if necessary for performance.
- // This does not appear to be a common problem in practice.
- if (EnableUnsafeGlobalsModRefAliasResults)
- if ((GV1 || GV2) && GV1 != GV2)
- return NoAlias;
-
- return AAResultBase::alias(LocA, LocB);
-}
-
-ModRefInfo GlobalsAAResult::getModRefInfoForArgument(const CallBase *Call,
- const GlobalValue *GV) {
- if (Call->doesNotAccessMemory())
- return ModRefInfo::NoModRef;
- ModRefInfo ConservativeResult =
- Call->onlyReadsMemory() ? ModRefInfo::Ref : ModRefInfo::ModRef;
-
- // Iterate through all the arguments to the called function. If any argument
- // is based on GV, return the conservative result.
- for (auto &A : Call->args()) {
- SmallVector<Value*, 4> Objects;
- GetUnderlyingObjects(A, Objects, DL);
-
- // All objects must be identified.
- if (!all_of(Objects, isIdentifiedObject) &&
- // Try ::alias to see if all objects are known not to alias GV.
- !all_of(Objects, [&](Value *V) {
- return this->alias(MemoryLocation(V), MemoryLocation(GV)) == NoAlias;
- }))
- return ConservativeResult;
-
- if (is_contained(Objects, GV))
- return ConservativeResult;
- }
-
- // We identified all objects in the argument list, and none of them were GV.
- return ModRefInfo::NoModRef;
-}
-
-ModRefInfo GlobalsAAResult::getModRefInfo(const CallBase *Call,
- const MemoryLocation &Loc) {
- ModRefInfo Known = ModRefInfo::ModRef;
-
- // If we are asking for mod/ref info of a direct call with a pointer to a
- // global we are tracking, return information if we have it.
- if (const GlobalValue *GV =
- dyn_cast<GlobalValue>(GetUnderlyingObject(Loc.Ptr, DL)))
- if (GV->hasLocalLinkage())
- if (const Function *F = Call->getCalledFunction())
- if (NonAddressTakenGlobals.count(GV))
- if (const FunctionInfo *FI = getFunctionInfo(F))
- Known = unionModRef(FI->getModRefInfoForGlobal(*GV),
- getModRefInfoForArgument(Call, GV));
-
- if (!isModOrRefSet(Known))
- return ModRefInfo::NoModRef; // No need to query other mod/ref analyses
- return intersectModRef(Known, AAResultBase::getModRefInfo(Call, Loc));
-}
-
-GlobalsAAResult::GlobalsAAResult(const DataLayout &DL,
- const TargetLibraryInfo &TLI)
- : AAResultBase(), DL(DL), TLI(TLI) {}
-
-GlobalsAAResult::GlobalsAAResult(GlobalsAAResult &&Arg)
- : AAResultBase(std::move(Arg)), DL(Arg.DL), TLI(Arg.TLI),
- NonAddressTakenGlobals(std::move(Arg.NonAddressTakenGlobals)),
- IndirectGlobals(std::move(Arg.IndirectGlobals)),
- AllocsForIndirectGlobals(std::move(Arg.AllocsForIndirectGlobals)),
- FunctionInfos(std::move(Arg.FunctionInfos)),
- Handles(std::move(Arg.Handles)) {
- // Update the parent for each DeletionCallbackHandle.
- for (auto &H : Handles) {
- assert(H.GAR == &Arg);
- H.GAR = this;
- }
-}
-
-GlobalsAAResult::~GlobalsAAResult() {}
-
-/*static*/ GlobalsAAResult
-GlobalsAAResult::analyzeModule(Module &M, const TargetLibraryInfo &TLI,
- CallGraph &CG) {
- GlobalsAAResult Result(M.getDataLayout(), TLI);
-
- // Discover which functions aren't recursive, to feed into AnalyzeGlobals.
- Result.CollectSCCMembership(CG);
-
- // Find non-addr taken globals.
- Result.AnalyzeGlobals(M);
-
- // Propagate on CG.
- Result.AnalyzeCallGraph(CG, M);
-
- return Result;
-}
-
-AnalysisKey GlobalsAA::Key;
-
-GlobalsAAResult GlobalsAA::run(Module &M, ModuleAnalysisManager &AM) {
- return GlobalsAAResult::analyzeModule(M,
- AM.getResult<TargetLibraryAnalysis>(M),
- AM.getResult<CallGraphAnalysis>(M));
-}
-
-char GlobalsAAWrapperPass::ID = 0;
-INITIALIZE_PASS_BEGIN(GlobalsAAWrapperPass, "globals-aa",
- "Globals Alias Analysis", false, true)
-INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
-INITIALIZE_PASS_END(GlobalsAAWrapperPass, "globals-aa",
- "Globals Alias Analysis", false, true)
-
-ModulePass *llvm::createGlobalsAAWrapperPass() {
- return new GlobalsAAWrapperPass();
-}
-
-GlobalsAAWrapperPass::GlobalsAAWrapperPass() : ModulePass(ID) {
- initializeGlobalsAAWrapperPassPass(*PassRegistry::getPassRegistry());
-}
-
-bool GlobalsAAWrapperPass::runOnModule(Module &M) {
- Result.reset(new GlobalsAAResult(GlobalsAAResult::analyzeModule(
- M, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
- getAnalysis<CallGraphWrapperPass>().getCallGraph())));
- return false;
-}
-
-bool GlobalsAAWrapperPass::doFinalization(Module &M) {
- Result.reset();
- return false;
-}
-
-void GlobalsAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
- AU.setPreservesAll();
- AU.addRequired<CallGraphWrapperPass>();
- AU.addRequired<TargetLibraryInfoWrapperPass>();
-}