diff options
| author | 2020-08-03 15:06:44 +0000 | |
|---|---|---|
| committer | 2020-08-03 15:06:44 +0000 | |
| commit | b64793999546ed8adebaeebd9d8345d18db8927d (patch) | |
| tree | 4357c27b561d73b0e089727c6ed659f2ceff5f47 /gnu/llvm/lib/Analysis/GlobalsModRef.cpp | |
| parent | Add support for UTF-8 DISPLAY-HINTs with octet length. For now only (diff) | |
| download | wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.tar.xz wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.zip | |
Remove LLVM 8.0.1 files.
Diffstat (limited to 'gnu/llvm/lib/Analysis/GlobalsModRef.cpp')
| -rw-r--r-- | gnu/llvm/lib/Analysis/GlobalsModRef.cpp | 1014 |
1 files changed, 0 insertions, 1014 deletions
diff --git a/gnu/llvm/lib/Analysis/GlobalsModRef.cpp b/gnu/llvm/lib/Analysis/GlobalsModRef.cpp deleted file mode 100644 index b28abcadca4..00000000000 --- a/gnu/llvm/lib/Analysis/GlobalsModRef.cpp +++ /dev/null @@ -1,1014 +0,0 @@ -//===- GlobalsModRef.cpp - Simple Mod/Ref Analysis for Globals ------------===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This simple pass provides alias and mod/ref information for global values -// that do not have their address taken, and keeps track of whether functions -// read or write memory (are "pure"). For this simple (but very common) case, -// we can provide pretty accurate and useful information. -// -//===----------------------------------------------------------------------===// - -#include "llvm/Analysis/GlobalsModRef.h" -#include "llvm/ADT/SCCIterator.h" -#include "llvm/ADT/SmallPtrSet.h" -#include "llvm/ADT/Statistic.h" -#include "llvm/Analysis/MemoryBuiltins.h" -#include "llvm/Analysis/TargetLibraryInfo.h" -#include "llvm/Analysis/ValueTracking.h" -#include "llvm/IR/DerivedTypes.h" -#include "llvm/IR/InstIterator.h" -#include "llvm/IR/Instructions.h" -#include "llvm/IR/IntrinsicInst.h" -#include "llvm/IR/Module.h" -#include "llvm/Pass.h" -#include "llvm/Support/CommandLine.h" -using namespace llvm; - -#define DEBUG_TYPE "globalsmodref-aa" - -STATISTIC(NumNonAddrTakenGlobalVars, - "Number of global vars without address taken"); -STATISTIC(NumNonAddrTakenFunctions,"Number of functions without address taken"); -STATISTIC(NumNoMemFunctions, "Number of functions that do not access memory"); -STATISTIC(NumReadMemFunctions, "Number of functions that only read memory"); -STATISTIC(NumIndirectGlobalVars, "Number of indirect global objects"); - -// An option to enable unsafe alias results from the GlobalsModRef analysis. -// When enabled, GlobalsModRef will provide no-alias results which in extremely -// rare cases may not be conservatively correct. In particular, in the face of -// transforms which cause assymetry between how effective GetUnderlyingObject -// is for two pointers, it may produce incorrect results. -// -// These unsafe results have been returned by GMR for many years without -// causing significant issues in the wild and so we provide a mechanism to -// re-enable them for users of LLVM that have a particular performance -// sensitivity and no known issues. The option also makes it easy to evaluate -// the performance impact of these results. -static cl::opt<bool> EnableUnsafeGlobalsModRefAliasResults( - "enable-unsafe-globalsmodref-alias-results", cl::init(false), cl::Hidden); - -/// The mod/ref information collected for a particular function. -/// -/// We collect information about mod/ref behavior of a function here, both in -/// general and as pertains to specific globals. We only have this detailed -/// information when we know *something* useful about the behavior. If we -/// saturate to fully general mod/ref, we remove the info for the function. -class GlobalsAAResult::FunctionInfo { - typedef SmallDenseMap<const GlobalValue *, ModRefInfo, 16> GlobalInfoMapType; - - /// Build a wrapper struct that has 8-byte alignment. All heap allocations - /// should provide this much alignment at least, but this makes it clear we - /// specifically rely on this amount of alignment. - struct alignas(8) AlignedMap { - AlignedMap() {} - AlignedMap(const AlignedMap &Arg) : Map(Arg.Map) {} - GlobalInfoMapType Map; - }; - - /// Pointer traits for our aligned map. - struct AlignedMapPointerTraits { - static inline void *getAsVoidPointer(AlignedMap *P) { return P; } - static inline AlignedMap *getFromVoidPointer(void *P) { - return (AlignedMap *)P; - } - enum { NumLowBitsAvailable = 3 }; - static_assert(alignof(AlignedMap) >= (1 << NumLowBitsAvailable), - "AlignedMap insufficiently aligned to have enough low bits."); - }; - - /// The bit that flags that this function may read any global. This is - /// chosen to mix together with ModRefInfo bits. - /// FIXME: This assumes ModRefInfo lattice will remain 4 bits! - /// It overlaps with ModRefInfo::Must bit! - /// FunctionInfo.getModRefInfo() masks out everything except ModRef so - /// this remains correct, but the Must info is lost. - enum { MayReadAnyGlobal = 4 }; - - /// Checks to document the invariants of the bit packing here. - static_assert((MayReadAnyGlobal & static_cast<int>(ModRefInfo::MustModRef)) == - 0, - "ModRef and the MayReadAnyGlobal flag bits overlap."); - static_assert(((MayReadAnyGlobal | - static_cast<int>(ModRefInfo::MustModRef)) >> - AlignedMapPointerTraits::NumLowBitsAvailable) == 0, - "Insufficient low bits to store our flag and ModRef info."); - -public: - FunctionInfo() : Info() {} - ~FunctionInfo() { - delete Info.getPointer(); - } - // Spell out the copy ond move constructors and assignment operators to get - // deep copy semantics and correct move semantics in the face of the - // pointer-int pair. - FunctionInfo(const FunctionInfo &Arg) - : Info(nullptr, Arg.Info.getInt()) { - if (const auto *ArgPtr = Arg.Info.getPointer()) - Info.setPointer(new AlignedMap(*ArgPtr)); - } - FunctionInfo(FunctionInfo &&Arg) - : Info(Arg.Info.getPointer(), Arg.Info.getInt()) { - Arg.Info.setPointerAndInt(nullptr, 0); - } - FunctionInfo &operator=(const FunctionInfo &RHS) { - delete Info.getPointer(); - Info.setPointerAndInt(nullptr, RHS.Info.getInt()); - if (const auto *RHSPtr = RHS.Info.getPointer()) - Info.setPointer(new AlignedMap(*RHSPtr)); - return *this; - } - FunctionInfo &operator=(FunctionInfo &&RHS) { - delete Info.getPointer(); - Info.setPointerAndInt(RHS.Info.getPointer(), RHS.Info.getInt()); - RHS.Info.setPointerAndInt(nullptr, 0); - return *this; - } - - /// This method clears MayReadAnyGlobal bit added by GlobalsAAResult to return - /// the corresponding ModRefInfo. It must align in functionality with - /// clearMust(). - ModRefInfo globalClearMayReadAnyGlobal(int I) const { - return ModRefInfo((I & static_cast<int>(ModRefInfo::ModRef)) | - static_cast<int>(ModRefInfo::NoModRef)); - } - - /// Returns the \c ModRefInfo info for this function. - ModRefInfo getModRefInfo() const { - return globalClearMayReadAnyGlobal(Info.getInt()); - } - - /// Adds new \c ModRefInfo for this function to its state. - void addModRefInfo(ModRefInfo NewMRI) { - Info.setInt(Info.getInt() | static_cast<int>(setMust(NewMRI))); - } - - /// Returns whether this function may read any global variable, and we don't - /// know which global. - bool mayReadAnyGlobal() const { return Info.getInt() & MayReadAnyGlobal; } - - /// Sets this function as potentially reading from any global. - void setMayReadAnyGlobal() { Info.setInt(Info.getInt() | MayReadAnyGlobal); } - - /// Returns the \c ModRefInfo info for this function w.r.t. a particular - /// global, which may be more precise than the general information above. - ModRefInfo getModRefInfoForGlobal(const GlobalValue &GV) const { - ModRefInfo GlobalMRI = - mayReadAnyGlobal() ? ModRefInfo::Ref : ModRefInfo::NoModRef; - if (AlignedMap *P = Info.getPointer()) { - auto I = P->Map.find(&GV); - if (I != P->Map.end()) - GlobalMRI = unionModRef(GlobalMRI, I->second); - } - return GlobalMRI; - } - - /// Add mod/ref info from another function into ours, saturating towards - /// ModRef. - void addFunctionInfo(const FunctionInfo &FI) { - addModRefInfo(FI.getModRefInfo()); - - if (FI.mayReadAnyGlobal()) - setMayReadAnyGlobal(); - - if (AlignedMap *P = FI.Info.getPointer()) - for (const auto &G : P->Map) - addModRefInfoForGlobal(*G.first, G.second); - } - - void addModRefInfoForGlobal(const GlobalValue &GV, ModRefInfo NewMRI) { - AlignedMap *P = Info.getPointer(); - if (!P) { - P = new AlignedMap(); - Info.setPointer(P); - } - auto &GlobalMRI = P->Map[&GV]; - GlobalMRI = unionModRef(GlobalMRI, NewMRI); - } - - /// Clear a global's ModRef info. Should be used when a global is being - /// deleted. - void eraseModRefInfoForGlobal(const GlobalValue &GV) { - if (AlignedMap *P = Info.getPointer()) - P->Map.erase(&GV); - } - -private: - /// All of the information is encoded into a single pointer, with a three bit - /// integer in the low three bits. The high bit provides a flag for when this - /// function may read any global. The low two bits are the ModRefInfo. And - /// the pointer, when non-null, points to a map from GlobalValue to - /// ModRefInfo specific to that GlobalValue. - PointerIntPair<AlignedMap *, 3, unsigned, AlignedMapPointerTraits> Info; -}; - -void GlobalsAAResult::DeletionCallbackHandle::deleted() { - Value *V = getValPtr(); - if (auto *F = dyn_cast<Function>(V)) - GAR->FunctionInfos.erase(F); - - if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { - if (GAR->NonAddressTakenGlobals.erase(GV)) { - // This global might be an indirect global. If so, remove it and - // remove any AllocRelatedValues for it. - if (GAR->IndirectGlobals.erase(GV)) { - // Remove any entries in AllocsForIndirectGlobals for this global. - for (auto I = GAR->AllocsForIndirectGlobals.begin(), - E = GAR->AllocsForIndirectGlobals.end(); - I != E; ++I) - if (I->second == GV) - GAR->AllocsForIndirectGlobals.erase(I); - } - - // Scan the function info we have collected and remove this global - // from all of them. - for (auto &FIPair : GAR->FunctionInfos) - FIPair.second.eraseModRefInfoForGlobal(*GV); - } - } - - // If this is an allocation related to an indirect global, remove it. - GAR->AllocsForIndirectGlobals.erase(V); - - // And clear out the handle. - setValPtr(nullptr); - GAR->Handles.erase(I); - // This object is now destroyed! -} - -FunctionModRefBehavior GlobalsAAResult::getModRefBehavior(const Function *F) { - FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; - - if (FunctionInfo *FI = getFunctionInfo(F)) { - if (!isModOrRefSet(FI->getModRefInfo())) - Min = FMRB_DoesNotAccessMemory; - else if (!isModSet(FI->getModRefInfo())) - Min = FMRB_OnlyReadsMemory; - } - - return FunctionModRefBehavior(AAResultBase::getModRefBehavior(F) & Min); -} - -FunctionModRefBehavior -GlobalsAAResult::getModRefBehavior(const CallBase *Call) { - FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; - - if (!Call->hasOperandBundles()) - if (const Function *F = Call->getCalledFunction()) - if (FunctionInfo *FI = getFunctionInfo(F)) { - if (!isModOrRefSet(FI->getModRefInfo())) - Min = FMRB_DoesNotAccessMemory; - else if (!isModSet(FI->getModRefInfo())) - Min = FMRB_OnlyReadsMemory; - } - - return FunctionModRefBehavior(AAResultBase::getModRefBehavior(Call) & Min); -} - -/// Returns the function info for the function, or null if we don't have -/// anything useful to say about it. -GlobalsAAResult::FunctionInfo * -GlobalsAAResult::getFunctionInfo(const Function *F) { - auto I = FunctionInfos.find(F); - if (I != FunctionInfos.end()) - return &I->second; - return nullptr; -} - -/// AnalyzeGlobals - Scan through the users of all of the internal -/// GlobalValue's in the program. If none of them have their "address taken" -/// (really, their address passed to something nontrivial), record this fact, -/// and record the functions that they are used directly in. -void GlobalsAAResult::AnalyzeGlobals(Module &M) { - SmallPtrSet<Function *, 32> TrackedFunctions; - for (Function &F : M) - if (F.hasLocalLinkage()) - if (!AnalyzeUsesOfPointer(&F)) { - // Remember that we are tracking this global. - NonAddressTakenGlobals.insert(&F); - TrackedFunctions.insert(&F); - Handles.emplace_front(*this, &F); - Handles.front().I = Handles.begin(); - ++NumNonAddrTakenFunctions; - } - - SmallPtrSet<Function *, 16> Readers, Writers; - for (GlobalVariable &GV : M.globals()) - if (GV.hasLocalLinkage()) { - if (!AnalyzeUsesOfPointer(&GV, &Readers, - GV.isConstant() ? nullptr : &Writers)) { - // Remember that we are tracking this global, and the mod/ref fns - NonAddressTakenGlobals.insert(&GV); - Handles.emplace_front(*this, &GV); - Handles.front().I = Handles.begin(); - - for (Function *Reader : Readers) { - if (TrackedFunctions.insert(Reader).second) { - Handles.emplace_front(*this, Reader); - Handles.front().I = Handles.begin(); - } - FunctionInfos[Reader].addModRefInfoForGlobal(GV, ModRefInfo::Ref); - } - - if (!GV.isConstant()) // No need to keep track of writers to constants - for (Function *Writer : Writers) { - if (TrackedFunctions.insert(Writer).second) { - Handles.emplace_front(*this, Writer); - Handles.front().I = Handles.begin(); - } - FunctionInfos[Writer].addModRefInfoForGlobal(GV, ModRefInfo::Mod); - } - ++NumNonAddrTakenGlobalVars; - - // If this global holds a pointer type, see if it is an indirect global. - if (GV.getValueType()->isPointerTy() && - AnalyzeIndirectGlobalMemory(&GV)) - ++NumIndirectGlobalVars; - } - Readers.clear(); - Writers.clear(); - } -} - -/// AnalyzeUsesOfPointer - Look at all of the users of the specified pointer. -/// If this is used by anything complex (i.e., the address escapes), return -/// true. Also, while we are at it, keep track of those functions that read and -/// write to the value. -/// -/// If OkayStoreDest is non-null, stores into this global are allowed. -bool GlobalsAAResult::AnalyzeUsesOfPointer(Value *V, - SmallPtrSetImpl<Function *> *Readers, - SmallPtrSetImpl<Function *> *Writers, - GlobalValue *OkayStoreDest) { - if (!V->getType()->isPointerTy()) - return true; - - for (Use &U : V->uses()) { - User *I = U.getUser(); - if (LoadInst *LI = dyn_cast<LoadInst>(I)) { - if (Readers) - Readers->insert(LI->getParent()->getParent()); - } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { - if (V == SI->getOperand(1)) { - if (Writers) - Writers->insert(SI->getParent()->getParent()); - } else if (SI->getOperand(1) != OkayStoreDest) { - return true; // Storing the pointer - } - } else if (Operator::getOpcode(I) == Instruction::GetElementPtr) { - if (AnalyzeUsesOfPointer(I, Readers, Writers)) - return true; - } else if (Operator::getOpcode(I) == Instruction::BitCast) { - if (AnalyzeUsesOfPointer(I, Readers, Writers, OkayStoreDest)) - return true; - } else if (auto *Call = dyn_cast<CallBase>(I)) { - // Make sure that this is just the function being called, not that it is - // passing into the function. - if (Call->isDataOperand(&U)) { - // Detect calls to free. - if (Call->isArgOperand(&U) && isFreeCall(I, &TLI)) { - if (Writers) - Writers->insert(Call->getParent()->getParent()); - } else { - return true; // Argument of an unknown call. - } - } - } else if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) { - if (!isa<ConstantPointerNull>(ICI->getOperand(1))) - return true; // Allow comparison against null. - } else if (Constant *C = dyn_cast<Constant>(I)) { - // Ignore constants which don't have any live uses. - if (isa<GlobalValue>(C) || C->isConstantUsed()) - return true; - } else { - return true; - } - } - - return false; -} - -/// AnalyzeIndirectGlobalMemory - We found an non-address-taken global variable -/// which holds a pointer type. See if the global always points to non-aliased -/// heap memory: that is, all initializers of the globals are allocations, and -/// those allocations have no use other than initialization of the global. -/// Further, all loads out of GV must directly use the memory, not store the -/// pointer somewhere. If this is true, we consider the memory pointed to by -/// GV to be owned by GV and can disambiguate other pointers from it. -bool GlobalsAAResult::AnalyzeIndirectGlobalMemory(GlobalVariable *GV) { - // Keep track of values related to the allocation of the memory, f.e. the - // value produced by the malloc call and any casts. - std::vector<Value *> AllocRelatedValues; - - // If the initializer is a valid pointer, bail. - if (Constant *C = GV->getInitializer()) - if (!C->isNullValue()) - return false; - - // Walk the user list of the global. If we find anything other than a direct - // load or store, bail out. - for (User *U : GV->users()) { - if (LoadInst *LI = dyn_cast<LoadInst>(U)) { - // The pointer loaded from the global can only be used in simple ways: - // we allow addressing of it and loading storing to it. We do *not* allow - // storing the loaded pointer somewhere else or passing to a function. - if (AnalyzeUsesOfPointer(LI)) - return false; // Loaded pointer escapes. - // TODO: Could try some IP mod/ref of the loaded pointer. - } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) { - // Storing the global itself. - if (SI->getOperand(0) == GV) - return false; - - // If storing the null pointer, ignore it. - if (isa<ConstantPointerNull>(SI->getOperand(0))) - continue; - - // Check the value being stored. - Value *Ptr = GetUnderlyingObject(SI->getOperand(0), - GV->getParent()->getDataLayout()); - - if (!isAllocLikeFn(Ptr, &TLI)) - return false; // Too hard to analyze. - - // Analyze all uses of the allocation. If any of them are used in a - // non-simple way (e.g. stored to another global) bail out. - if (AnalyzeUsesOfPointer(Ptr, /*Readers*/ nullptr, /*Writers*/ nullptr, - GV)) - return false; // Loaded pointer escapes. - - // Remember that this allocation is related to the indirect global. - AllocRelatedValues.push_back(Ptr); - } else { - // Something complex, bail out. - return false; - } - } - - // Okay, this is an indirect global. Remember all of the allocations for - // this global in AllocsForIndirectGlobals. - while (!AllocRelatedValues.empty()) { - AllocsForIndirectGlobals[AllocRelatedValues.back()] = GV; - Handles.emplace_front(*this, AllocRelatedValues.back()); - Handles.front().I = Handles.begin(); - AllocRelatedValues.pop_back(); - } - IndirectGlobals.insert(GV); - Handles.emplace_front(*this, GV); - Handles.front().I = Handles.begin(); - return true; -} - -void GlobalsAAResult::CollectSCCMembership(CallGraph &CG) { - // We do a bottom-up SCC traversal of the call graph. In other words, we - // visit all callees before callers (leaf-first). - unsigned SCCID = 0; - for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) { - const std::vector<CallGraphNode *> &SCC = *I; - assert(!SCC.empty() && "SCC with no functions?"); - - for (auto *CGN : SCC) - if (Function *F = CGN->getFunction()) - FunctionToSCCMap[F] = SCCID; - ++SCCID; - } -} - -/// AnalyzeCallGraph - At this point, we know the functions where globals are -/// immediately stored to and read from. Propagate this information up the call -/// graph to all callers and compute the mod/ref info for all memory for each -/// function. -void GlobalsAAResult::AnalyzeCallGraph(CallGraph &CG, Module &M) { - // We do a bottom-up SCC traversal of the call graph. In other words, we - // visit all callees before callers (leaf-first). - for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) { - const std::vector<CallGraphNode *> &SCC = *I; - assert(!SCC.empty() && "SCC with no functions?"); - - Function *F = SCC[0]->getFunction(); - - if (!F || !F->isDefinitionExact()) { - // Calls externally or not exact - can't say anything useful. Remove any - // existing function records (may have been created when scanning - // globals). - for (auto *Node : SCC) - FunctionInfos.erase(Node->getFunction()); - continue; - } - - FunctionInfo &FI = FunctionInfos[F]; - Handles.emplace_front(*this, F); - Handles.front().I = Handles.begin(); - bool KnowNothing = false; - - // Collect the mod/ref properties due to called functions. We only compute - // one mod-ref set. - for (unsigned i = 0, e = SCC.size(); i != e && !KnowNothing; ++i) { - if (!F) { - KnowNothing = true; - break; - } - - if (F->isDeclaration() || F->hasFnAttribute(Attribute::OptimizeNone)) { - // Try to get mod/ref behaviour from function attributes. - if (F->doesNotAccessMemory()) { - // Can't do better than that! - } else if (F->onlyReadsMemory()) { - FI.addModRefInfo(ModRefInfo::Ref); - if (!F->isIntrinsic() && !F->onlyAccessesArgMemory()) - // This function might call back into the module and read a global - - // consider every global as possibly being read by this function. - FI.setMayReadAnyGlobal(); - } else { - FI.addModRefInfo(ModRefInfo::ModRef); - // Can't say anything useful unless it's an intrinsic - they don't - // read or write global variables of the kind considered here. - KnowNothing = !F->isIntrinsic(); - } - continue; - } - - for (CallGraphNode::iterator CI = SCC[i]->begin(), E = SCC[i]->end(); - CI != E && !KnowNothing; ++CI) - if (Function *Callee = CI->second->getFunction()) { - if (FunctionInfo *CalleeFI = getFunctionInfo(Callee)) { - // Propagate function effect up. - FI.addFunctionInfo(*CalleeFI); - } else { - // Can't say anything about it. However, if it is inside our SCC, - // then nothing needs to be done. - CallGraphNode *CalleeNode = CG[Callee]; - if (!is_contained(SCC, CalleeNode)) - KnowNothing = true; - } - } else { - KnowNothing = true; - } - } - - // If we can't say anything useful about this SCC, remove all SCC functions - // from the FunctionInfos map. - if (KnowNothing) { - for (auto *Node : SCC) - FunctionInfos.erase(Node->getFunction()); - continue; - } - - // Scan the function bodies for explicit loads or stores. - for (auto *Node : SCC) { - if (isModAndRefSet(FI.getModRefInfo())) - break; // The mod/ref lattice saturates here. - - // Don't prove any properties based on the implementation of an optnone - // function. Function attributes were already used as a best approximation - // above. - if (Node->getFunction()->hasFnAttribute(Attribute::OptimizeNone)) - continue; - - for (Instruction &I : instructions(Node->getFunction())) { - if (isModAndRefSet(FI.getModRefInfo())) - break; // The mod/ref lattice saturates here. - - // We handle calls specially because the graph-relevant aspects are - // handled above. - if (auto *Call = dyn_cast<CallBase>(&I)) { - if (isAllocationFn(Call, &TLI) || isFreeCall(Call, &TLI)) { - // FIXME: It is completely unclear why this is necessary and not - // handled by the above graph code. - FI.addModRefInfo(ModRefInfo::ModRef); - } else if (Function *Callee = Call->getCalledFunction()) { - // The callgraph doesn't include intrinsic calls. - if (Callee->isIntrinsic()) { - if (isa<DbgInfoIntrinsic>(Call)) - // Don't let dbg intrinsics affect alias info. - continue; - - FunctionModRefBehavior Behaviour = - AAResultBase::getModRefBehavior(Callee); - FI.addModRefInfo(createModRefInfo(Behaviour)); - } - } - continue; - } - - // All non-call instructions we use the primary predicates for whether - // thay read or write memory. - if (I.mayReadFromMemory()) - FI.addModRefInfo(ModRefInfo::Ref); - if (I.mayWriteToMemory()) - FI.addModRefInfo(ModRefInfo::Mod); - } - } - - if (!isModSet(FI.getModRefInfo())) - ++NumReadMemFunctions; - if (!isModOrRefSet(FI.getModRefInfo())) - ++NumNoMemFunctions; - - // Finally, now that we know the full effect on this SCC, clone the - // information to each function in the SCC. - // FI is a reference into FunctionInfos, so copy it now so that it doesn't - // get invalidated if DenseMap decides to re-hash. - FunctionInfo CachedFI = FI; - for (unsigned i = 1, e = SCC.size(); i != e; ++i) - FunctionInfos[SCC[i]->getFunction()] = CachedFI; - } -} - -// GV is a non-escaping global. V is a pointer address that has been loaded from. -// If we can prove that V must escape, we can conclude that a load from V cannot -// alias GV. -static bool isNonEscapingGlobalNoAliasWithLoad(const GlobalValue *GV, - const Value *V, - int &Depth, - const DataLayout &DL) { - SmallPtrSet<const Value *, 8> Visited; - SmallVector<const Value *, 8> Inputs; - Visited.insert(V); - Inputs.push_back(V); - do { - const Value *Input = Inputs.pop_back_val(); - - if (isa<GlobalValue>(Input) || isa<Argument>(Input) || isa<CallInst>(Input) || - isa<InvokeInst>(Input)) - // Arguments to functions or returns from functions are inherently - // escaping, so we can immediately classify those as not aliasing any - // non-addr-taken globals. - // - // (Transitive) loads from a global are also safe - if this aliased - // another global, its address would escape, so no alias. - continue; - - // Recurse through a limited number of selects, loads and PHIs. This is an - // arbitrary depth of 4, lower numbers could be used to fix compile time - // issues if needed, but this is generally expected to be only be important - // for small depths. - if (++Depth > 4) - return false; - - if (auto *LI = dyn_cast<LoadInst>(Input)) { - Inputs.push_back(GetUnderlyingObject(LI->getPointerOperand(), DL)); - continue; - } - if (auto *SI = dyn_cast<SelectInst>(Input)) { - const Value *LHS = GetUnderlyingObject(SI->getTrueValue(), DL); - const Value *RHS = GetUnderlyingObject(SI->getFalseValue(), DL); - if (Visited.insert(LHS).second) - Inputs.push_back(LHS); - if (Visited.insert(RHS).second) - Inputs.push_back(RHS); - continue; - } - if (auto *PN = dyn_cast<PHINode>(Input)) { - for (const Value *Op : PN->incoming_values()) { - Op = GetUnderlyingObject(Op, DL); - if (Visited.insert(Op).second) - Inputs.push_back(Op); - } - continue; - } - - return false; - } while (!Inputs.empty()); - - // All inputs were known to be no-alias. - return true; -} - -// There are particular cases where we can conclude no-alias between -// a non-addr-taken global and some other underlying object. Specifically, -// a non-addr-taken global is known to not be escaped from any function. It is -// also incorrect for a transformation to introduce an escape of a global in -// a way that is observable when it was not there previously. One function -// being transformed to introduce an escape which could possibly be observed -// (via loading from a global or the return value for example) within another -// function is never safe. If the observation is made through non-atomic -// operations on different threads, it is a data-race and UB. If the -// observation is well defined, by being observed the transformation would have -// changed program behavior by introducing the observed escape, making it an -// invalid transform. -// -// This property does require that transformations which *temporarily* escape -// a global that was not previously escaped, prior to restoring it, cannot rely -// on the results of GMR::alias. This seems a reasonable restriction, although -// currently there is no way to enforce it. There is also no realistic -// optimization pass that would make this mistake. The closest example is -// a transformation pass which does reg2mem of SSA values but stores them into -// global variables temporarily before restoring the global variable's value. -// This could be useful to expose "benign" races for example. However, it seems -// reasonable to require that a pass which introduces escapes of global -// variables in this way to either not trust AA results while the escape is -// active, or to be forced to operate as a module pass that cannot co-exist -// with an alias analysis such as GMR. -bool GlobalsAAResult::isNonEscapingGlobalNoAlias(const GlobalValue *GV, - const Value *V) { - // In order to know that the underlying object cannot alias the - // non-addr-taken global, we must know that it would have to be an escape. - // Thus if the underlying object is a function argument, a load from - // a global, or the return of a function, it cannot alias. We can also - // recurse through PHI nodes and select nodes provided all of their inputs - // resolve to one of these known-escaping roots. - SmallPtrSet<const Value *, 8> Visited; - SmallVector<const Value *, 8> Inputs; - Visited.insert(V); - Inputs.push_back(V); - int Depth = 0; - do { - const Value *Input = Inputs.pop_back_val(); - - if (auto *InputGV = dyn_cast<GlobalValue>(Input)) { - // If one input is the very global we're querying against, then we can't - // conclude no-alias. - if (InputGV == GV) - return false; - - // Distinct GlobalVariables never alias, unless overriden or zero-sized. - // FIXME: The condition can be refined, but be conservative for now. - auto *GVar = dyn_cast<GlobalVariable>(GV); - auto *InputGVar = dyn_cast<GlobalVariable>(InputGV); - if (GVar && InputGVar && - !GVar->isDeclaration() && !InputGVar->isDeclaration() && - !GVar->isInterposable() && !InputGVar->isInterposable()) { - Type *GVType = GVar->getInitializer()->getType(); - Type *InputGVType = InputGVar->getInitializer()->getType(); - if (GVType->isSized() && InputGVType->isSized() && - (DL.getTypeAllocSize(GVType) > 0) && - (DL.getTypeAllocSize(InputGVType) > 0)) - continue; - } - - // Conservatively return false, even though we could be smarter - // (e.g. look through GlobalAliases). - return false; - } - - if (isa<Argument>(Input) || isa<CallInst>(Input) || - isa<InvokeInst>(Input)) { - // Arguments to functions or returns from functions are inherently - // escaping, so we can immediately classify those as not aliasing any - // non-addr-taken globals. - continue; - } - - // Recurse through a limited number of selects, loads and PHIs. This is an - // arbitrary depth of 4, lower numbers could be used to fix compile time - // issues if needed, but this is generally expected to be only be important - // for small depths. - if (++Depth > 4) - return false; - - if (auto *LI = dyn_cast<LoadInst>(Input)) { - // A pointer loaded from a global would have been captured, and we know - // that the global is non-escaping, so no alias. - const Value *Ptr = GetUnderlyingObject(LI->getPointerOperand(), DL); - if (isNonEscapingGlobalNoAliasWithLoad(GV, Ptr, Depth, DL)) - // The load does not alias with GV. - continue; - // Otherwise, a load could come from anywhere, so bail. - return false; - } - if (auto *SI = dyn_cast<SelectInst>(Input)) { - const Value *LHS = GetUnderlyingObject(SI->getTrueValue(), DL); - const Value *RHS = GetUnderlyingObject(SI->getFalseValue(), DL); - if (Visited.insert(LHS).second) - Inputs.push_back(LHS); - if (Visited.insert(RHS).second) - Inputs.push_back(RHS); - continue; - } - if (auto *PN = dyn_cast<PHINode>(Input)) { - for (const Value *Op : PN->incoming_values()) { - Op = GetUnderlyingObject(Op, DL); - if (Visited.insert(Op).second) - Inputs.push_back(Op); - } - continue; - } - - // FIXME: It would be good to handle other obvious no-alias cases here, but - // it isn't clear how to do so reasonbly without building a small version - // of BasicAA into this code. We could recurse into AAResultBase::alias - // here but that seems likely to go poorly as we're inside the - // implementation of such a query. Until then, just conservatievly retun - // false. - return false; - } while (!Inputs.empty()); - - // If all the inputs to V were definitively no-alias, then V is no-alias. - return true; -} - -/// alias - If one of the pointers is to a global that we are tracking, and the -/// other is some random pointer, we know there cannot be an alias, because the -/// address of the global isn't taken. -AliasResult GlobalsAAResult::alias(const MemoryLocation &LocA, - const MemoryLocation &LocB) { - // Get the base object these pointers point to. - const Value *UV1 = GetUnderlyingObject(LocA.Ptr, DL); - const Value *UV2 = GetUnderlyingObject(LocB.Ptr, DL); - - // If either of the underlying values is a global, they may be non-addr-taken - // globals, which we can answer queries about. - const GlobalValue *GV1 = dyn_cast<GlobalValue>(UV1); - const GlobalValue *GV2 = dyn_cast<GlobalValue>(UV2); - if (GV1 || GV2) { - // If the global's address is taken, pretend we don't know it's a pointer to - // the global. - if (GV1 && !NonAddressTakenGlobals.count(GV1)) - GV1 = nullptr; - if (GV2 && !NonAddressTakenGlobals.count(GV2)) - GV2 = nullptr; - - // If the two pointers are derived from two different non-addr-taken - // globals we know these can't alias. - if (GV1 && GV2 && GV1 != GV2) - return NoAlias; - - // If one is and the other isn't, it isn't strictly safe but we can fake - // this result if necessary for performance. This does not appear to be - // a common problem in practice. - if (EnableUnsafeGlobalsModRefAliasResults) - if ((GV1 || GV2) && GV1 != GV2) - return NoAlias; - - // Check for a special case where a non-escaping global can be used to - // conclude no-alias. - if ((GV1 || GV2) && GV1 != GV2) { - const GlobalValue *GV = GV1 ? GV1 : GV2; - const Value *UV = GV1 ? UV2 : UV1; - if (isNonEscapingGlobalNoAlias(GV, UV)) - return NoAlias; - } - - // Otherwise if they are both derived from the same addr-taken global, we - // can't know the two accesses don't overlap. - } - - // These pointers may be based on the memory owned by an indirect global. If - // so, we may be able to handle this. First check to see if the base pointer - // is a direct load from an indirect global. - GV1 = GV2 = nullptr; - if (const LoadInst *LI = dyn_cast<LoadInst>(UV1)) - if (GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0))) - if (IndirectGlobals.count(GV)) - GV1 = GV; - if (const LoadInst *LI = dyn_cast<LoadInst>(UV2)) - if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0))) - if (IndirectGlobals.count(GV)) - GV2 = GV; - - // These pointers may also be from an allocation for the indirect global. If - // so, also handle them. - if (!GV1) - GV1 = AllocsForIndirectGlobals.lookup(UV1); - if (!GV2) - GV2 = AllocsForIndirectGlobals.lookup(UV2); - - // Now that we know whether the two pointers are related to indirect globals, - // use this to disambiguate the pointers. If the pointers are based on - // different indirect globals they cannot alias. - if (GV1 && GV2 && GV1 != GV2) - return NoAlias; - - // If one is based on an indirect global and the other isn't, it isn't - // strictly safe but we can fake this result if necessary for performance. - // This does not appear to be a common problem in practice. - if (EnableUnsafeGlobalsModRefAliasResults) - if ((GV1 || GV2) && GV1 != GV2) - return NoAlias; - - return AAResultBase::alias(LocA, LocB); -} - -ModRefInfo GlobalsAAResult::getModRefInfoForArgument(const CallBase *Call, - const GlobalValue *GV) { - if (Call->doesNotAccessMemory()) - return ModRefInfo::NoModRef; - ModRefInfo ConservativeResult = - Call->onlyReadsMemory() ? ModRefInfo::Ref : ModRefInfo::ModRef; - - // Iterate through all the arguments to the called function. If any argument - // is based on GV, return the conservative result. - for (auto &A : Call->args()) { - SmallVector<Value*, 4> Objects; - GetUnderlyingObjects(A, Objects, DL); - - // All objects must be identified. - if (!all_of(Objects, isIdentifiedObject) && - // Try ::alias to see if all objects are known not to alias GV. - !all_of(Objects, [&](Value *V) { - return this->alias(MemoryLocation(V), MemoryLocation(GV)) == NoAlias; - })) - return ConservativeResult; - - if (is_contained(Objects, GV)) - return ConservativeResult; - } - - // We identified all objects in the argument list, and none of them were GV. - return ModRefInfo::NoModRef; -} - -ModRefInfo GlobalsAAResult::getModRefInfo(const CallBase *Call, - const MemoryLocation &Loc) { - ModRefInfo Known = ModRefInfo::ModRef; - - // If we are asking for mod/ref info of a direct call with a pointer to a - // global we are tracking, return information if we have it. - if (const GlobalValue *GV = - dyn_cast<GlobalValue>(GetUnderlyingObject(Loc.Ptr, DL))) - if (GV->hasLocalLinkage()) - if (const Function *F = Call->getCalledFunction()) - if (NonAddressTakenGlobals.count(GV)) - if (const FunctionInfo *FI = getFunctionInfo(F)) - Known = unionModRef(FI->getModRefInfoForGlobal(*GV), - getModRefInfoForArgument(Call, GV)); - - if (!isModOrRefSet(Known)) - return ModRefInfo::NoModRef; // No need to query other mod/ref analyses - return intersectModRef(Known, AAResultBase::getModRefInfo(Call, Loc)); -} - -GlobalsAAResult::GlobalsAAResult(const DataLayout &DL, - const TargetLibraryInfo &TLI) - : AAResultBase(), DL(DL), TLI(TLI) {} - -GlobalsAAResult::GlobalsAAResult(GlobalsAAResult &&Arg) - : AAResultBase(std::move(Arg)), DL(Arg.DL), TLI(Arg.TLI), - NonAddressTakenGlobals(std::move(Arg.NonAddressTakenGlobals)), - IndirectGlobals(std::move(Arg.IndirectGlobals)), - AllocsForIndirectGlobals(std::move(Arg.AllocsForIndirectGlobals)), - FunctionInfos(std::move(Arg.FunctionInfos)), - Handles(std::move(Arg.Handles)) { - // Update the parent for each DeletionCallbackHandle. - for (auto &H : Handles) { - assert(H.GAR == &Arg); - H.GAR = this; - } -} - -GlobalsAAResult::~GlobalsAAResult() {} - -/*static*/ GlobalsAAResult -GlobalsAAResult::analyzeModule(Module &M, const TargetLibraryInfo &TLI, - CallGraph &CG) { - GlobalsAAResult Result(M.getDataLayout(), TLI); - - // Discover which functions aren't recursive, to feed into AnalyzeGlobals. - Result.CollectSCCMembership(CG); - - // Find non-addr taken globals. - Result.AnalyzeGlobals(M); - - // Propagate on CG. - Result.AnalyzeCallGraph(CG, M); - - return Result; -} - -AnalysisKey GlobalsAA::Key; - -GlobalsAAResult GlobalsAA::run(Module &M, ModuleAnalysisManager &AM) { - return GlobalsAAResult::analyzeModule(M, - AM.getResult<TargetLibraryAnalysis>(M), - AM.getResult<CallGraphAnalysis>(M)); -} - -char GlobalsAAWrapperPass::ID = 0; -INITIALIZE_PASS_BEGIN(GlobalsAAWrapperPass, "globals-aa", - "Globals Alias Analysis", false, true) -INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) -INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) -INITIALIZE_PASS_END(GlobalsAAWrapperPass, "globals-aa", - "Globals Alias Analysis", false, true) - -ModulePass *llvm::createGlobalsAAWrapperPass() { - return new GlobalsAAWrapperPass(); -} - -GlobalsAAWrapperPass::GlobalsAAWrapperPass() : ModulePass(ID) { - initializeGlobalsAAWrapperPassPass(*PassRegistry::getPassRegistry()); -} - -bool GlobalsAAWrapperPass::runOnModule(Module &M) { - Result.reset(new GlobalsAAResult(GlobalsAAResult::analyzeModule( - M, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), - getAnalysis<CallGraphWrapperPass>().getCallGraph()))); - return false; -} - -bool GlobalsAAWrapperPass::doFinalization(Module &M) { - Result.reset(); - return false; -} - -void GlobalsAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { - AU.setPreservesAll(); - AU.addRequired<CallGraphWrapperPass>(); - AU.addRequired<TargetLibraryInfoWrapperPass>(); -} |
