diff options
| author | 2020-08-03 15:06:44 +0000 | |
|---|---|---|
| committer | 2020-08-03 15:06:44 +0000 | |
| commit | b64793999546ed8adebaeebd9d8345d18db8927d (patch) | |
| tree | 4357c27b561d73b0e089727c6ed659f2ceff5f47 /gnu/llvm/lib/Analysis/InstructionSimplify.cpp | |
| parent | Add support for UTF-8 DISPLAY-HINTs with octet length. For now only (diff) | |
| download | wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.tar.xz wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.zip | |
Remove LLVM 8.0.1 files.
Diffstat (limited to 'gnu/llvm/lib/Analysis/InstructionSimplify.cpp')
| -rw-r--r-- | gnu/llvm/lib/Analysis/InstructionSimplify.cpp | 5469 |
1 files changed, 0 insertions, 5469 deletions
diff --git a/gnu/llvm/lib/Analysis/InstructionSimplify.cpp b/gnu/llvm/lib/Analysis/InstructionSimplify.cpp deleted file mode 100644 index ccf907c144f..00000000000 --- a/gnu/llvm/lib/Analysis/InstructionSimplify.cpp +++ /dev/null @@ -1,5469 +0,0 @@ -//===- InstructionSimplify.cpp - Fold instruction operands ----------------===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file implements routines for folding instructions into simpler forms -// that do not require creating new instructions. This does constant folding -// ("add i32 1, 1" -> "2") but can also handle non-constant operands, either -// returning a constant ("and i32 %x, 0" -> "0") or an already existing value -// ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been -// simplified: This is usually true and assuming it simplifies the logic (if -// they have not been simplified then results are correct but maybe suboptimal). -// -//===----------------------------------------------------------------------===// - -#include "llvm/Analysis/InstructionSimplify.h" -#include "llvm/ADT/SetVector.h" -#include "llvm/ADT/Statistic.h" -#include "llvm/Analysis/AliasAnalysis.h" -#include "llvm/Analysis/AssumptionCache.h" -#include "llvm/Analysis/CaptureTracking.h" -#include "llvm/Analysis/CmpInstAnalysis.h" -#include "llvm/Analysis/ConstantFolding.h" -#include "llvm/Analysis/LoopAnalysisManager.h" -#include "llvm/Analysis/MemoryBuiltins.h" -#include "llvm/Analysis/ValueTracking.h" -#include "llvm/Analysis/VectorUtils.h" -#include "llvm/IR/ConstantRange.h" -#include "llvm/IR/DataLayout.h" -#include "llvm/IR/Dominators.h" -#include "llvm/IR/GetElementPtrTypeIterator.h" -#include "llvm/IR/GlobalAlias.h" -#include "llvm/IR/Operator.h" -#include "llvm/IR/PatternMatch.h" -#include "llvm/IR/ValueHandle.h" -#include "llvm/Support/KnownBits.h" -#include <algorithm> -using namespace llvm; -using namespace llvm::PatternMatch; - -#define DEBUG_TYPE "instsimplify" - -enum { RecursionLimit = 3 }; - -STATISTIC(NumExpand, "Number of expansions"); -STATISTIC(NumReassoc, "Number of reassociations"); - -static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned); -static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &, - unsigned); -static Value *SimplifyFPBinOp(unsigned, Value *, Value *, const FastMathFlags &, - const SimplifyQuery &, unsigned); -static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &, - unsigned); -static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, - const SimplifyQuery &Q, unsigned MaxRecurse); -static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned); -static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned); -static Value *SimplifyCastInst(unsigned, Value *, Type *, - const SimplifyQuery &, unsigned); -static Value *SimplifyGEPInst(Type *, ArrayRef<Value *>, const SimplifyQuery &, - unsigned); - -static Value *foldSelectWithBinaryOp(Value *Cond, Value *TrueVal, - Value *FalseVal) { - BinaryOperator::BinaryOps BinOpCode; - if (auto *BO = dyn_cast<BinaryOperator>(Cond)) - BinOpCode = BO->getOpcode(); - else - return nullptr; - - CmpInst::Predicate ExpectedPred, Pred1, Pred2; - if (BinOpCode == BinaryOperator::Or) { - ExpectedPred = ICmpInst::ICMP_NE; - } else if (BinOpCode == BinaryOperator::And) { - ExpectedPred = ICmpInst::ICMP_EQ; - } else - return nullptr; - - // %A = icmp eq %TV, %FV - // %B = icmp eq %X, %Y (and one of these is a select operand) - // %C = and %A, %B - // %D = select %C, %TV, %FV - // --> - // %FV - - // %A = icmp ne %TV, %FV - // %B = icmp ne %X, %Y (and one of these is a select operand) - // %C = or %A, %B - // %D = select %C, %TV, %FV - // --> - // %TV - Value *X, *Y; - if (!match(Cond, m_c_BinOp(m_c_ICmp(Pred1, m_Specific(TrueVal), - m_Specific(FalseVal)), - m_ICmp(Pred2, m_Value(X), m_Value(Y)))) || - Pred1 != Pred2 || Pred1 != ExpectedPred) - return nullptr; - - if (X == TrueVal || X == FalseVal || Y == TrueVal || Y == FalseVal) - return BinOpCode == BinaryOperator::Or ? TrueVal : FalseVal; - - return nullptr; -} - -/// For a boolean type or a vector of boolean type, return false or a vector -/// with every element false. -static Constant *getFalse(Type *Ty) { - return ConstantInt::getFalse(Ty); -} - -/// For a boolean type or a vector of boolean type, return true or a vector -/// with every element true. -static Constant *getTrue(Type *Ty) { - return ConstantInt::getTrue(Ty); -} - -/// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"? -static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS, - Value *RHS) { - CmpInst *Cmp = dyn_cast<CmpInst>(V); - if (!Cmp) - return false; - CmpInst::Predicate CPred = Cmp->getPredicate(); - Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1); - if (CPred == Pred && CLHS == LHS && CRHS == RHS) - return true; - return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS && - CRHS == LHS; -} - -/// Does the given value dominate the specified phi node? -static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { - Instruction *I = dyn_cast<Instruction>(V); - if (!I) - // Arguments and constants dominate all instructions. - return true; - - // If we are processing instructions (and/or basic blocks) that have not been - // fully added to a function, the parent nodes may still be null. Simply - // return the conservative answer in these cases. - if (!I->getParent() || !P->getParent() || !I->getFunction()) - return false; - - // If we have a DominatorTree then do a precise test. - if (DT) - return DT->dominates(I, P); - - // Otherwise, if the instruction is in the entry block and is not an invoke, - // then it obviously dominates all phi nodes. - if (I->getParent() == &I->getFunction()->getEntryBlock() && - !isa<InvokeInst>(I)) - return true; - - return false; -} - -/// Simplify "A op (B op' C)" by distributing op over op', turning it into -/// "(A op B) op' (A op C)". Here "op" is given by Opcode and "op'" is -/// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS. -/// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)". -/// Returns the simplified value, or null if no simplification was performed. -static Value *ExpandBinOp(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS, - Instruction::BinaryOps OpcodeToExpand, - const SimplifyQuery &Q, unsigned MaxRecurse) { - // Recursion is always used, so bail out at once if we already hit the limit. - if (!MaxRecurse--) - return nullptr; - - // Check whether the expression has the form "(A op' B) op C". - if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS)) - if (Op0->getOpcode() == OpcodeToExpand) { - // It does! Try turning it into "(A op C) op' (B op C)". - Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; - // Do "A op C" and "B op C" both simplify? - if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) - if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { - // They do! Return "L op' R" if it simplifies or is already available. - // If "L op' R" equals "A op' B" then "L op' R" is just the LHS. - if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand) - && L == B && R == A)) { - ++NumExpand; - return LHS; - } - // Otherwise return "L op' R" if it simplifies. - if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { - ++NumExpand; - return V; - } - } - } - - // Check whether the expression has the form "A op (B op' C)". - if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS)) - if (Op1->getOpcode() == OpcodeToExpand) { - // It does! Try turning it into "(A op B) op' (A op C)". - Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); - // Do "A op B" and "A op C" both simplify? - if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) - if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) { - // They do! Return "L op' R" if it simplifies or is already available. - // If "L op' R" equals "B op' C" then "L op' R" is just the RHS. - if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand) - && L == C && R == B)) { - ++NumExpand; - return RHS; - } - // Otherwise return "L op' R" if it simplifies. - if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { - ++NumExpand; - return V; - } - } - } - - return nullptr; -} - -/// Generic simplifications for associative binary operations. -/// Returns the simpler value, or null if none was found. -static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode, - Value *LHS, Value *RHS, - const SimplifyQuery &Q, - unsigned MaxRecurse) { - assert(Instruction::isAssociative(Opcode) && "Not an associative operation!"); - - // Recursion is always used, so bail out at once if we already hit the limit. - if (!MaxRecurse--) - return nullptr; - - BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); - BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); - - // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely. - if (Op0 && Op0->getOpcode() == Opcode) { - Value *A = Op0->getOperand(0); - Value *B = Op0->getOperand(1); - Value *C = RHS; - - // Does "B op C" simplify? - if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { - // It does! Return "A op V" if it simplifies or is already available. - // If V equals B then "A op V" is just the LHS. - if (V == B) return LHS; - // Otherwise return "A op V" if it simplifies. - if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) { - ++NumReassoc; - return W; - } - } - } - - // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely. - if (Op1 && Op1->getOpcode() == Opcode) { - Value *A = LHS; - Value *B = Op1->getOperand(0); - Value *C = Op1->getOperand(1); - - // Does "A op B" simplify? - if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) { - // It does! Return "V op C" if it simplifies or is already available. - // If V equals B then "V op C" is just the RHS. - if (V == B) return RHS; - // Otherwise return "V op C" if it simplifies. - if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) { - ++NumReassoc; - return W; - } - } - } - - // The remaining transforms require commutativity as well as associativity. - if (!Instruction::isCommutative(Opcode)) - return nullptr; - - // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely. - if (Op0 && Op0->getOpcode() == Opcode) { - Value *A = Op0->getOperand(0); - Value *B = Op0->getOperand(1); - Value *C = RHS; - - // Does "C op A" simplify? - if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { - // It does! Return "V op B" if it simplifies or is already available. - // If V equals A then "V op B" is just the LHS. - if (V == A) return LHS; - // Otherwise return "V op B" if it simplifies. - if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) { - ++NumReassoc; - return W; - } - } - } - - // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely. - if (Op1 && Op1->getOpcode() == Opcode) { - Value *A = LHS; - Value *B = Op1->getOperand(0); - Value *C = Op1->getOperand(1); - - // Does "C op A" simplify? - if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { - // It does! Return "B op V" if it simplifies or is already available. - // If V equals C then "B op V" is just the RHS. - if (V == C) return RHS; - // Otherwise return "B op V" if it simplifies. - if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) { - ++NumReassoc; - return W; - } - } - } - - return nullptr; -} - -/// In the case of a binary operation with a select instruction as an operand, -/// try to simplify the binop by seeing whether evaluating it on both branches -/// of the select results in the same value. Returns the common value if so, -/// otherwise returns null. -static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS, - Value *RHS, const SimplifyQuery &Q, - unsigned MaxRecurse) { - // Recursion is always used, so bail out at once if we already hit the limit. - if (!MaxRecurse--) - return nullptr; - - SelectInst *SI; - if (isa<SelectInst>(LHS)) { - SI = cast<SelectInst>(LHS); - } else { - assert(isa<SelectInst>(RHS) && "No select instruction operand!"); - SI = cast<SelectInst>(RHS); - } - - // Evaluate the BinOp on the true and false branches of the select. - Value *TV; - Value *FV; - if (SI == LHS) { - TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse); - FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse); - } else { - TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse); - FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse); - } - - // If they simplified to the same value, then return the common value. - // If they both failed to simplify then return null. - if (TV == FV) - return TV; - - // If one branch simplified to undef, return the other one. - if (TV && isa<UndefValue>(TV)) - return FV; - if (FV && isa<UndefValue>(FV)) - return TV; - - // If applying the operation did not change the true and false select values, - // then the result of the binop is the select itself. - if (TV == SI->getTrueValue() && FV == SI->getFalseValue()) - return SI; - - // If one branch simplified and the other did not, and the simplified - // value is equal to the unsimplified one, return the simplified value. - // For example, select (cond, X, X & Z) & Z -> X & Z. - if ((FV && !TV) || (TV && !FV)) { - // Check that the simplified value has the form "X op Y" where "op" is the - // same as the original operation. - Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV); - if (Simplified && Simplified->getOpcode() == unsigned(Opcode)) { - // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS". - // We already know that "op" is the same as for the simplified value. See - // if the operands match too. If so, return the simplified value. - Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue(); - Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS; - Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch; - if (Simplified->getOperand(0) == UnsimplifiedLHS && - Simplified->getOperand(1) == UnsimplifiedRHS) - return Simplified; - if (Simplified->isCommutative() && - Simplified->getOperand(1) == UnsimplifiedLHS && - Simplified->getOperand(0) == UnsimplifiedRHS) - return Simplified; - } - } - - return nullptr; -} - -/// In the case of a comparison with a select instruction, try to simplify the -/// comparison by seeing whether both branches of the select result in the same -/// value. Returns the common value if so, otherwise returns null. -static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS, - Value *RHS, const SimplifyQuery &Q, - unsigned MaxRecurse) { - // Recursion is always used, so bail out at once if we already hit the limit. - if (!MaxRecurse--) - return nullptr; - - // Make sure the select is on the LHS. - if (!isa<SelectInst>(LHS)) { - std::swap(LHS, RHS); - Pred = CmpInst::getSwappedPredicate(Pred); - } - assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!"); - SelectInst *SI = cast<SelectInst>(LHS); - Value *Cond = SI->getCondition(); - Value *TV = SI->getTrueValue(); - Value *FV = SI->getFalseValue(); - - // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it. - // Does "cmp TV, RHS" simplify? - Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse); - if (TCmp == Cond) { - // It not only simplified, it simplified to the select condition. Replace - // it with 'true'. - TCmp = getTrue(Cond->getType()); - } else if (!TCmp) { - // It didn't simplify. However if "cmp TV, RHS" is equal to the select - // condition then we can replace it with 'true'. Otherwise give up. - if (!isSameCompare(Cond, Pred, TV, RHS)) - return nullptr; - TCmp = getTrue(Cond->getType()); - } - - // Does "cmp FV, RHS" simplify? - Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse); - if (FCmp == Cond) { - // It not only simplified, it simplified to the select condition. Replace - // it with 'false'. - FCmp = getFalse(Cond->getType()); - } else if (!FCmp) { - // It didn't simplify. However if "cmp FV, RHS" is equal to the select - // condition then we can replace it with 'false'. Otherwise give up. - if (!isSameCompare(Cond, Pred, FV, RHS)) - return nullptr; - FCmp = getFalse(Cond->getType()); - } - - // If both sides simplified to the same value, then use it as the result of - // the original comparison. - if (TCmp == FCmp) - return TCmp; - - // The remaining cases only make sense if the select condition has the same - // type as the result of the comparison, so bail out if this is not so. - if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy()) - return nullptr; - // If the false value simplified to false, then the result of the compare - // is equal to "Cond && TCmp". This also catches the case when the false - // value simplified to false and the true value to true, returning "Cond". - if (match(FCmp, m_Zero())) - if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse)) - return V; - // If the true value simplified to true, then the result of the compare - // is equal to "Cond || FCmp". - if (match(TCmp, m_One())) - if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse)) - return V; - // Finally, if the false value simplified to true and the true value to - // false, then the result of the compare is equal to "!Cond". - if (match(FCmp, m_One()) && match(TCmp, m_Zero())) - if (Value *V = - SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()), - Q, MaxRecurse)) - return V; - - return nullptr; -} - -/// In the case of a binary operation with an operand that is a PHI instruction, -/// try to simplify the binop by seeing whether evaluating it on the incoming -/// phi values yields the same result for every value. If so returns the common -/// value, otherwise returns null. -static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS, - Value *RHS, const SimplifyQuery &Q, - unsigned MaxRecurse) { - // Recursion is always used, so bail out at once if we already hit the limit. - if (!MaxRecurse--) - return nullptr; - - PHINode *PI; - if (isa<PHINode>(LHS)) { - PI = cast<PHINode>(LHS); - // Bail out if RHS and the phi may be mutually interdependent due to a loop. - if (!valueDominatesPHI(RHS, PI, Q.DT)) - return nullptr; - } else { - assert(isa<PHINode>(RHS) && "No PHI instruction operand!"); - PI = cast<PHINode>(RHS); - // Bail out if LHS and the phi may be mutually interdependent due to a loop. - if (!valueDominatesPHI(LHS, PI, Q.DT)) - return nullptr; - } - - // Evaluate the BinOp on the incoming phi values. - Value *CommonValue = nullptr; - for (Value *Incoming : PI->incoming_values()) { - // If the incoming value is the phi node itself, it can safely be skipped. - if (Incoming == PI) continue; - Value *V = PI == LHS ? - SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) : - SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse); - // If the operation failed to simplify, or simplified to a different value - // to previously, then give up. - if (!V || (CommonValue && V != CommonValue)) - return nullptr; - CommonValue = V; - } - - return CommonValue; -} - -/// In the case of a comparison with a PHI instruction, try to simplify the -/// comparison by seeing whether comparing with all of the incoming phi values -/// yields the same result every time. If so returns the common result, -/// otherwise returns null. -static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS, - const SimplifyQuery &Q, unsigned MaxRecurse) { - // Recursion is always used, so bail out at once if we already hit the limit. - if (!MaxRecurse--) - return nullptr; - - // Make sure the phi is on the LHS. - if (!isa<PHINode>(LHS)) { - std::swap(LHS, RHS); - Pred = CmpInst::getSwappedPredicate(Pred); - } - assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!"); - PHINode *PI = cast<PHINode>(LHS); - - // Bail out if RHS and the phi may be mutually interdependent due to a loop. - if (!valueDominatesPHI(RHS, PI, Q.DT)) - return nullptr; - - // Evaluate the BinOp on the incoming phi values. - Value *CommonValue = nullptr; - for (Value *Incoming : PI->incoming_values()) { - // If the incoming value is the phi node itself, it can safely be skipped. - if (Incoming == PI) continue; - Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse); - // If the operation failed to simplify, or simplified to a different value - // to previously, then give up. - if (!V || (CommonValue && V != CommonValue)) - return nullptr; - CommonValue = V; - } - - return CommonValue; -} - -static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode, - Value *&Op0, Value *&Op1, - const SimplifyQuery &Q) { - if (auto *CLHS = dyn_cast<Constant>(Op0)) { - if (auto *CRHS = dyn_cast<Constant>(Op1)) - return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL); - - // Canonicalize the constant to the RHS if this is a commutative operation. - if (Instruction::isCommutative(Opcode)) - std::swap(Op0, Op1); - } - return nullptr; -} - -/// Given operands for an Add, see if we can fold the result. -/// If not, this returns null. -static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, - const SimplifyQuery &Q, unsigned MaxRecurse) { - if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q)) - return C; - - // X + undef -> undef - if (match(Op1, m_Undef())) - return Op1; - - // X + 0 -> X - if (match(Op1, m_Zero())) - return Op0; - - // If two operands are negative, return 0. - if (isKnownNegation(Op0, Op1)) - return Constant::getNullValue(Op0->getType()); - - // X + (Y - X) -> Y - // (Y - X) + X -> Y - // Eg: X + -X -> 0 - Value *Y = nullptr; - if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) || - match(Op0, m_Sub(m_Value(Y), m_Specific(Op1)))) - return Y; - - // X + ~X -> -1 since ~X = -X-1 - Type *Ty = Op0->getType(); - if (match(Op0, m_Not(m_Specific(Op1))) || - match(Op1, m_Not(m_Specific(Op0)))) - return Constant::getAllOnesValue(Ty); - - // add nsw/nuw (xor Y, signmask), signmask --> Y - // The no-wrapping add guarantees that the top bit will be set by the add. - // Therefore, the xor must be clearing the already set sign bit of Y. - if ((IsNSW || IsNUW) && match(Op1, m_SignMask()) && - match(Op0, m_Xor(m_Value(Y), m_SignMask()))) - return Y; - - // add nuw %x, -1 -> -1, because %x can only be 0. - if (IsNUW && match(Op1, m_AllOnes())) - return Op1; // Which is -1. - - /// i1 add -> xor. - if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) - if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) - return V; - - // Try some generic simplifications for associative operations. - if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q, - MaxRecurse)) - return V; - - // Threading Add over selects and phi nodes is pointless, so don't bother. - // Threading over the select in "A + select(cond, B, C)" means evaluating - // "A+B" and "A+C" and seeing if they are equal; but they are equal if and - // only if B and C are equal. If B and C are equal then (since we assume - // that operands have already been simplified) "select(cond, B, C)" should - // have been simplified to the common value of B and C already. Analysing - // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly - // for threading over phi nodes. - - return nullptr; -} - -Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, - const SimplifyQuery &Query) { - return ::SimplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query, RecursionLimit); -} - -/// Compute the base pointer and cumulative constant offsets for V. -/// -/// This strips all constant offsets off of V, leaving it the base pointer, and -/// accumulates the total constant offset applied in the returned constant. It -/// returns 0 if V is not a pointer, and returns the constant '0' if there are -/// no constant offsets applied. -/// -/// This is very similar to GetPointerBaseWithConstantOffset except it doesn't -/// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc. -/// folding. -static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V, - bool AllowNonInbounds = false) { - assert(V->getType()->isPtrOrPtrVectorTy()); - - Type *IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType(); - APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth()); - - // Even though we don't look through PHI nodes, we could be called on an - // instruction in an unreachable block, which may be on a cycle. - SmallPtrSet<Value *, 4> Visited; - Visited.insert(V); - do { - if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { - if ((!AllowNonInbounds && !GEP->isInBounds()) || - !GEP->accumulateConstantOffset(DL, Offset)) - break; - V = GEP->getPointerOperand(); - } else if (Operator::getOpcode(V) == Instruction::BitCast) { - V = cast<Operator>(V)->getOperand(0); - } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { - if (GA->isInterposable()) - break; - V = GA->getAliasee(); - } else { - if (auto CS = CallSite(V)) - if (Value *RV = CS.getReturnedArgOperand()) { - V = RV; - continue; - } - break; - } - assert(V->getType()->isPtrOrPtrVectorTy() && "Unexpected operand type!"); - } while (Visited.insert(V).second); - - Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset); - if (V->getType()->isVectorTy()) - return ConstantVector::getSplat(V->getType()->getVectorNumElements(), - OffsetIntPtr); - return OffsetIntPtr; -} - -/// Compute the constant difference between two pointer values. -/// If the difference is not a constant, returns zero. -static Constant *computePointerDifference(const DataLayout &DL, Value *LHS, - Value *RHS) { - Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); - Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); - - // If LHS and RHS are not related via constant offsets to the same base - // value, there is nothing we can do here. - if (LHS != RHS) - return nullptr; - - // Otherwise, the difference of LHS - RHS can be computed as: - // LHS - RHS - // = (LHSOffset + Base) - (RHSOffset + Base) - // = LHSOffset - RHSOffset - return ConstantExpr::getSub(LHSOffset, RHSOffset); -} - -/// Given operands for a Sub, see if we can fold the result. -/// If not, this returns null. -static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, - const SimplifyQuery &Q, unsigned MaxRecurse) { - if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q)) - return C; - - // X - undef -> undef - // undef - X -> undef - if (match(Op0, m_Undef()) || match(Op1, m_Undef())) - return UndefValue::get(Op0->getType()); - - // X - 0 -> X - if (match(Op1, m_Zero())) - return Op0; - - // X - X -> 0 - if (Op0 == Op1) - return Constant::getNullValue(Op0->getType()); - - // Is this a negation? - if (match(Op0, m_Zero())) { - // 0 - X -> 0 if the sub is NUW. - if (isNUW) - return Constant::getNullValue(Op0->getType()); - - KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); - if (Known.Zero.isMaxSignedValue()) { - // Op1 is either 0 or the minimum signed value. If the sub is NSW, then - // Op1 must be 0 because negating the minimum signed value is undefined. - if (isNSW) - return Constant::getNullValue(Op0->getType()); - - // 0 - X -> X if X is 0 or the minimum signed value. - return Op1; - } - } - - // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies. - // For example, (X + Y) - Y -> X; (Y + X) - Y -> X - Value *X = nullptr, *Y = nullptr, *Z = Op1; - if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z - // See if "V === Y - Z" simplifies. - if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1)) - // It does! Now see if "X + V" simplifies. - if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) { - // It does, we successfully reassociated! - ++NumReassoc; - return W; - } - // See if "V === X - Z" simplifies. - if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) - // It does! Now see if "Y + V" simplifies. - if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) { - // It does, we successfully reassociated! - ++NumReassoc; - return W; - } - } - - // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies. - // For example, X - (X + 1) -> -1 - X = Op0; - if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z) - // See if "V === X - Y" simplifies. - if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) - // It does! Now see if "V - Z" simplifies. - if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) { - // It does, we successfully reassociated! - ++NumReassoc; - return W; - } - // See if "V === X - Z" simplifies. - if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) - // It does! Now see if "V - Y" simplifies. - if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) { - // It does, we successfully reassociated! - ++NumReassoc; - return W; - } - } - - // Z - (X - Y) -> (Z - X) + Y if everything simplifies. - // For example, X - (X - Y) -> Y. - Z = Op0; - if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y) - // See if "V === Z - X" simplifies. - if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1)) - // It does! Now see if "V + Y" simplifies. - if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) { - // It does, we successfully reassociated! - ++NumReassoc; - return W; - } - - // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies. - if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) && - match(Op1, m_Trunc(m_Value(Y)))) - if (X->getType() == Y->getType()) - // See if "V === X - Y" simplifies. - if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) - // It does! Now see if "trunc V" simplifies. - if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(), - Q, MaxRecurse - 1)) - // It does, return the simplified "trunc V". - return W; - - // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...). - if (match(Op0, m_PtrToInt(m_Value(X))) && - match(Op1, m_PtrToInt(m_Value(Y)))) - if (Constant *Result = computePointerDifference(Q.DL, X, Y)) - return ConstantExpr::getIntegerCast(Result, Op0->getType(), true); - - // i1 sub -> xor. - if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) - if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) - return V; - - // Threading Sub over selects and phi nodes is pointless, so don't bother. - // Threading over the select in "A - select(cond, B, C)" means evaluating - // "A-B" and "A-C" and seeing if they are equal; but they are equal if and - // only if B and C are equal. If B and C are equal then (since we assume - // that operands have already been simplified) "select(cond, B, C)" should - // have been simplified to the common value of B and C already. Analysing - // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly - // for threading over phi nodes. - - return nullptr; -} - -Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, - const SimplifyQuery &Q) { - return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); -} - -/// Given operands for a Mul, see if we can fold the result. -/// If not, this returns null. -static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, - unsigned MaxRecurse) { - if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q)) - return C; - - // X * undef -> 0 - // X * 0 -> 0 - if (match(Op1, m_CombineOr(m_Undef(), m_Zero()))) - return Constant::getNullValue(Op0->getType()); - - // X * 1 -> X - if (match(Op1, m_One())) - return Op0; - - // (X / Y) * Y -> X if the division is exact. - Value *X = nullptr; - if (Q.IIQ.UseInstrInfo && - (match(Op0, - m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y - match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))) // Y * (X / Y) - return X; - - // i1 mul -> and. - if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) - if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1)) - return V; - - // Try some generic simplifications for associative operations. - if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q, - MaxRecurse)) - return V; - - // Mul distributes over Add. Try some generic simplifications based on this. - if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add, - Q, MaxRecurse)) - return V; - - // If the operation is with the result of a select instruction, check whether - // operating on either branch of the select always yields the same value. - if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) - if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q, - MaxRecurse)) - return V; - - // If the operation is with the result of a phi instruction, check whether - // operating on all incoming values of the phi always yields the same value. - if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) - if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q, - MaxRecurse)) - return V; - - return nullptr; -} - -Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { - return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit); -} - -/// Check for common or similar folds of integer division or integer remainder. -/// This applies to all 4 opcodes (sdiv/udiv/srem/urem). -static Value *simplifyDivRem(Value *Op0, Value *Op1, bool IsDiv) { - Type *Ty = Op0->getType(); - - // X / undef -> undef - // X % undef -> undef - if (match(Op1, m_Undef())) - return Op1; - - // X / 0 -> undef - // X % 0 -> undef - // We don't need to preserve faults! - if (match(Op1, m_Zero())) - return UndefValue::get(Ty); - - // If any element of a constant divisor vector is zero or undef, the whole op - // is undef. - auto *Op1C = dyn_cast<Constant>(Op1); - if (Op1C && Ty->isVectorTy()) { - unsigned NumElts = Ty->getVectorNumElements(); - for (unsigned i = 0; i != NumElts; ++i) { - Constant *Elt = Op1C->getAggregateElement(i); - if (Elt && (Elt->isNullValue() || isa<UndefValue>(Elt))) - return UndefValue::get(Ty); - } - } - - // undef / X -> 0 - // undef % X -> 0 - if (match(Op0, m_Undef())) - return Constant::getNullValue(Ty); - - // 0 / X -> 0 - // 0 % X -> 0 - if (match(Op0, m_Zero())) - return Constant::getNullValue(Op0->getType()); - - // X / X -> 1 - // X % X -> 0 - if (Op0 == Op1) - return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty); - - // X / 1 -> X - // X % 1 -> 0 - // If this is a boolean op (single-bit element type), we can't have - // division-by-zero or remainder-by-zero, so assume the divisor is 1. - // Similarly, if we're zero-extending a boolean divisor, then assume it's a 1. - Value *X; - if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1) || - (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) - return IsDiv ? Op0 : Constant::getNullValue(Ty); - - return nullptr; -} - -/// Given a predicate and two operands, return true if the comparison is true. -/// This is a helper for div/rem simplification where we return some other value -/// when we can prove a relationship between the operands. -static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS, - const SimplifyQuery &Q, unsigned MaxRecurse) { - Value *V = SimplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse); - Constant *C = dyn_cast_or_null<Constant>(V); - return (C && C->isAllOnesValue()); -} - -/// Return true if we can simplify X / Y to 0. Remainder can adapt that answer -/// to simplify X % Y to X. -static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q, - unsigned MaxRecurse, bool IsSigned) { - // Recursion is always used, so bail out at once if we already hit the limit. - if (!MaxRecurse--) - return false; - - if (IsSigned) { - // |X| / |Y| --> 0 - // - // We require that 1 operand is a simple constant. That could be extended to - // 2 variables if we computed the sign bit for each. - // - // Make sure that a constant is not the minimum signed value because taking - // the abs() of that is undefined. - Type *Ty = X->getType(); - const APInt *C; - if (match(X, m_APInt(C)) && !C->isMinSignedValue()) { - // Is the variable divisor magnitude always greater than the constant - // dividend magnitude? - // |Y| > |C| --> Y < -abs(C) or Y > abs(C) - Constant *PosDividendC = ConstantInt::get(Ty, C->abs()); - Constant *NegDividendC = ConstantInt::get(Ty, -C->abs()); - if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) || - isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse)) - return true; - } - if (match(Y, m_APInt(C))) { - // Special-case: we can't take the abs() of a minimum signed value. If - // that's the divisor, then all we have to do is prove that the dividend - // is also not the minimum signed value. - if (C->isMinSignedValue()) - return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse); - - // Is the variable dividend magnitude always less than the constant - // divisor magnitude? - // |X| < |C| --> X > -abs(C) and X < abs(C) - Constant *PosDivisorC = ConstantInt::get(Ty, C->abs()); - Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs()); - if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) && - isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse)) - return true; - } - return false; - } - - // IsSigned == false. - // Is the dividend unsigned less than the divisor? - return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse); -} - -/// These are simplifications common to SDiv and UDiv. -static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, - const SimplifyQuery &Q, unsigned MaxRecurse) { - if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) - return C; - - if (Value *V = simplifyDivRem(Op0, Op1, true)) - return V; - - bool IsSigned = Opcode == Instruction::SDiv; - - // (X * Y) / Y -> X if the multiplication does not overflow. - Value *X; - if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) { - auto *Mul = cast<OverflowingBinaryOperator>(Op0); - // If the Mul does not overflow, then we are good to go. - if ((IsSigned && Q.IIQ.hasNoSignedWrap(Mul)) || - (!IsSigned && Q.IIQ.hasNoUnsignedWrap(Mul))) - return X; - // If X has the form X = A / Y, then X * Y cannot overflow. - if ((IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) || - (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1))))) - return X; - } - - // (X rem Y) / Y -> 0 - if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || - (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1))))) - return Constant::getNullValue(Op0->getType()); - - // (X /u C1) /u C2 -> 0 if C1 * C2 overflow - ConstantInt *C1, *C2; - if (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) && - match(Op1, m_ConstantInt(C2))) { - bool Overflow; - (void)C1->getValue().umul_ov(C2->getValue(), Overflow); - if (Overflow) - return Constant::getNullValue(Op0->getType()); - } - - // If the operation is with the result of a select instruction, check whether - // operating on either branch of the select always yields the same value. - if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) - if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) - return V; - - // If the operation is with the result of a phi instruction, check whether - // operating on all incoming values of the phi always yields the same value. - if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) - if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) - return V; - - if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned)) - return Constant::getNullValue(Op0->getType()); - - return nullptr; -} - -/// These are simplifications common to SRem and URem. -static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, - const SimplifyQuery &Q, unsigned MaxRecurse) { - if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) - return C; - - if (Value *V = simplifyDivRem(Op0, Op1, false)) - return V; - - // (X % Y) % Y -> X % Y - if ((Opcode == Instruction::SRem && - match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || - (Opcode == Instruction::URem && - match(Op0, m_URem(m_Value(), m_Specific(Op1))))) - return Op0; - - // (X << Y) % X -> 0 - if (Q.IIQ.UseInstrInfo && - ((Opcode == Instruction::SRem && - match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) || - (Opcode == Instruction::URem && - match(Op0, m_NUWShl(m_Specific(Op1), m_Value()))))) - return Constant::getNullValue(Op0->getType()); - - // If the operation is with the result of a select instruction, check whether - // operating on either branch of the select always yields the same value. - if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) - if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) - return V; - - // If the operation is with the result of a phi instruction, check whether - // operating on all incoming values of the phi always yields the same value. - if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) - if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) - return V; - - // If X / Y == 0, then X % Y == X. - if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem)) - return Op0; - - return nullptr; -} - -/// Given operands for an SDiv, see if we can fold the result. -/// If not, this returns null. -static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, - unsigned MaxRecurse) { - // If two operands are negated and no signed overflow, return -1. - if (isKnownNegation(Op0, Op1, /*NeedNSW=*/true)) - return Constant::getAllOnesValue(Op0->getType()); - - return simplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse); -} - -Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { - return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit); -} - -/// Given operands for a UDiv, see if we can fold the result. -/// If not, this returns null. -static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, - unsigned MaxRecurse) { - return simplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse); -} - -Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { - return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit); -} - -/// Given operands for an SRem, see if we can fold the result. -/// If not, this returns null. -static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, - unsigned MaxRecurse) { - // If the divisor is 0, the result is undefined, so assume the divisor is -1. - // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0 - Value *X; - if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) - return ConstantInt::getNullValue(Op0->getType()); - - // If the two operands are negated, return 0. - if (isKnownNegation(Op0, Op1)) - return ConstantInt::getNullValue(Op0->getType()); - - return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse); -} - -Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { - return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit); -} - -/// Given operands for a URem, see if we can fold the result. -/// If not, this returns null. -static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, - unsigned MaxRecurse) { - return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse); -} - -Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { - return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit); -} - -/// Returns true if a shift by \c Amount always yields undef. -static bool isUndefShift(Value *Amount) { - Constant *C = dyn_cast<Constant>(Amount); - if (!C) - return false; - - // X shift by undef -> undef because it may shift by the bitwidth. - if (isa<UndefValue>(C)) - return true; - - // Shifting by the bitwidth or more is undefined. - if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) - if (CI->getValue().getLimitedValue() >= - CI->getType()->getScalarSizeInBits()) - return true; - - // If all lanes of a vector shift are undefined the whole shift is. - if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) { - for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; ++I) - if (!isUndefShift(C->getAggregateElement(I))) - return false; - return true; - } - - return false; -} - -/// Given operands for an Shl, LShr or AShr, see if we can fold the result. -/// If not, this returns null. -static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0, - Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse) { - if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) - return C; - - // 0 shift by X -> 0 - if (match(Op0, m_Zero())) - return Constant::getNullValue(Op0->getType()); - - // X shift by 0 -> X - // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones - // would be poison. - Value *X; - if (match(Op1, m_Zero()) || - (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) - return Op0; - - // Fold undefined shifts. - if (isUndefShift(Op1)) - return UndefValue::get(Op0->getType()); - - // If the operation is with the result of a select instruction, check whether - // operating on either branch of the select always yields the same value. - if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) - if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) - return V; - - // If the operation is with the result of a phi instruction, check whether - // operating on all incoming values of the phi always yields the same value. - if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) - if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) - return V; - - // If any bits in the shift amount make that value greater than or equal to - // the number of bits in the type, the shift is undefined. - KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); - if (Known.One.getLimitedValue() >= Known.getBitWidth()) - return UndefValue::get(Op0->getType()); - - // If all valid bits in the shift amount are known zero, the first operand is - // unchanged. - unsigned NumValidShiftBits = Log2_32_Ceil(Known.getBitWidth()); - if (Known.countMinTrailingZeros() >= NumValidShiftBits) - return Op0; - - return nullptr; -} - -/// Given operands for an Shl, LShr or AShr, see if we can -/// fold the result. If not, this returns null. -static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0, - Value *Op1, bool isExact, const SimplifyQuery &Q, - unsigned MaxRecurse) { - if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse)) - return V; - - // X >> X -> 0 - if (Op0 == Op1) - return Constant::getNullValue(Op0->getType()); - - // undef >> X -> 0 - // undef >> X -> undef (if it's exact) - if (match(Op0, m_Undef())) - return isExact ? Op0 : Constant::getNullValue(Op0->getType()); - - // The low bit cannot be shifted out of an exact shift if it is set. - if (isExact) { - KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT); - if (Op0Known.One[0]) - return Op0; - } - - return nullptr; -} - -/// Given operands for an Shl, see if we can fold the result. -/// If not, this returns null. -static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, - const SimplifyQuery &Q, unsigned MaxRecurse) { - if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse)) - return V; - - // undef << X -> 0 - // undef << X -> undef if (if it's NSW/NUW) - if (match(Op0, m_Undef())) - return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType()); - - // (X >> A) << A -> X - Value *X; - if (Q.IIQ.UseInstrInfo && - match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1))))) - return X; - - // shl nuw i8 C, %x -> C iff C has sign bit set. - if (isNUW && match(Op0, m_Negative())) - return Op0; - // NOTE: could use computeKnownBits() / LazyValueInfo, - // but the cost-benefit analysis suggests it isn't worth it. - - return nullptr; -} - -Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, - const SimplifyQuery &Q) { - return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); -} - -/// Given operands for an LShr, see if we can fold the result. -/// If not, this returns null. -static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, - const SimplifyQuery &Q, unsigned MaxRecurse) { - if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q, - MaxRecurse)) - return V; - - // (X << A) >> A -> X - Value *X; - if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1)))) - return X; - - // ((X << A) | Y) >> A -> X if effective width of Y is not larger than A. - // We can return X as we do in the above case since OR alters no bits in X. - // SimplifyDemandedBits in InstCombine can do more general optimization for - // bit manipulation. This pattern aims to provide opportunities for other - // optimizers by supporting a simple but common case in InstSimplify. - Value *Y; - const APInt *ShRAmt, *ShLAmt; - if (match(Op1, m_APInt(ShRAmt)) && - match(Op0, m_c_Or(m_NUWShl(m_Value(X), m_APInt(ShLAmt)), m_Value(Y))) && - *ShRAmt == *ShLAmt) { - const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); - const unsigned Width = Op0->getType()->getScalarSizeInBits(); - const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros(); - if (ShRAmt->uge(EffWidthY)) - return X; - } - - return nullptr; -} - -Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, - const SimplifyQuery &Q) { - return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit); -} - -/// Given operands for an AShr, see if we can fold the result. -/// If not, this returns null. -static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, - const SimplifyQuery &Q, unsigned MaxRecurse) { - if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q, - MaxRecurse)) - return V; - - // all ones >>a X -> -1 - // Do not return Op0 because it may contain undef elements if it's a vector. - if (match(Op0, m_AllOnes())) - return Constant::getAllOnesValue(Op0->getType()); - - // (X << A) >> A -> X - Value *X; - if (Q.IIQ.UseInstrInfo && match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1)))) - return X; - - // Arithmetic shifting an all-sign-bit value is a no-op. - unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); - if (NumSignBits == Op0->getType()->getScalarSizeInBits()) - return Op0; - - return nullptr; -} - -Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, - const SimplifyQuery &Q) { - return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit); -} - -/// Commuted variants are assumed to be handled by calling this function again -/// with the parameters swapped. -static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp, - ICmpInst *UnsignedICmp, bool IsAnd) { - Value *X, *Y; - - ICmpInst::Predicate EqPred; - if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) || - !ICmpInst::isEquality(EqPred)) - return nullptr; - - ICmpInst::Predicate UnsignedPred; - if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) && - ICmpInst::isUnsigned(UnsignedPred)) - ; - else if (match(UnsignedICmp, - m_ICmp(UnsignedPred, m_Specific(Y), m_Value(X))) && - ICmpInst::isUnsigned(UnsignedPred)) - UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred); - else - return nullptr; - - // X < Y && Y != 0 --> X < Y - // X < Y || Y != 0 --> Y != 0 - if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE) - return IsAnd ? UnsignedICmp : ZeroICmp; - - // X >= Y || Y != 0 --> true - // X >= Y || Y == 0 --> X >= Y - if (UnsignedPred == ICmpInst::ICMP_UGE && !IsAnd) { - if (EqPred == ICmpInst::ICMP_NE) - return getTrue(UnsignedICmp->getType()); - return UnsignedICmp; - } - - // X < Y && Y == 0 --> false - if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ && - IsAnd) - return getFalse(UnsignedICmp->getType()); - - return nullptr; -} - -/// Commuted variants are assumed to be handled by calling this function again -/// with the parameters swapped. -static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { - ICmpInst::Predicate Pred0, Pred1; - Value *A ,*B; - if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || - !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) - return nullptr; - - // We have (icmp Pred0, A, B) & (icmp Pred1, A, B). - // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we - // can eliminate Op1 from this 'and'. - if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) - return Op0; - - // Check for any combination of predicates that are guaranteed to be disjoint. - if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || - (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) || - (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) || - (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)) - return getFalse(Op0->getType()); - - return nullptr; -} - -/// Commuted variants are assumed to be handled by calling this function again -/// with the parameters swapped. -static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { - ICmpInst::Predicate Pred0, Pred1; - Value *A ,*B; - if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || - !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) - return nullptr; - - // We have (icmp Pred0, A, B) | (icmp Pred1, A, B). - // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we - // can eliminate Op0 from this 'or'. - if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) - return Op1; - - // Check for any combination of predicates that cover the entire range of - // possibilities. - if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || - (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) || - (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) || - (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE)) - return getTrue(Op0->getType()); - - return nullptr; -} - -/// Test if a pair of compares with a shared operand and 2 constants has an -/// empty set intersection, full set union, or if one compare is a superset of -/// the other. -static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1, - bool IsAnd) { - // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)). - if (Cmp0->getOperand(0) != Cmp1->getOperand(0)) - return nullptr; - - const APInt *C0, *C1; - if (!match(Cmp0->getOperand(1), m_APInt(C0)) || - !match(Cmp1->getOperand(1), m_APInt(C1))) - return nullptr; - - auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0); - auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1); - - // For and-of-compares, check if the intersection is empty: - // (icmp X, C0) && (icmp X, C1) --> empty set --> false - if (IsAnd && Range0.intersectWith(Range1).isEmptySet()) - return getFalse(Cmp0->getType()); - - // For or-of-compares, check if the union is full: - // (icmp X, C0) || (icmp X, C1) --> full set --> true - if (!IsAnd && Range0.unionWith(Range1).isFullSet()) - return getTrue(Cmp0->getType()); - - // Is one range a superset of the other? - // If this is and-of-compares, take the smaller set: - // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42 - // If this is or-of-compares, take the larger set: - // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4 - if (Range0.contains(Range1)) - return IsAnd ? Cmp1 : Cmp0; - if (Range1.contains(Range0)) - return IsAnd ? Cmp0 : Cmp1; - - return nullptr; -} - -static Value *simplifyAndOrOfICmpsWithZero(ICmpInst *Cmp0, ICmpInst *Cmp1, - bool IsAnd) { - ICmpInst::Predicate P0 = Cmp0->getPredicate(), P1 = Cmp1->getPredicate(); - if (!match(Cmp0->getOperand(1), m_Zero()) || - !match(Cmp1->getOperand(1), m_Zero()) || P0 != P1) - return nullptr; - - if ((IsAnd && P0 != ICmpInst::ICMP_NE) || (!IsAnd && P1 != ICmpInst::ICMP_EQ)) - return nullptr; - - // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)". - Value *X = Cmp0->getOperand(0); - Value *Y = Cmp1->getOperand(0); - - // If one of the compares is a masked version of a (not) null check, then - // that compare implies the other, so we eliminate the other. Optionally, look - // through a pointer-to-int cast to match a null check of a pointer type. - - // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0 - // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0 - // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0 - // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0 - if (match(Y, m_c_And(m_Specific(X), m_Value())) || - match(Y, m_c_And(m_PtrToInt(m_Specific(X)), m_Value()))) - return Cmp1; - - // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0 - // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0 - // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0 - // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0 - if (match(X, m_c_And(m_Specific(Y), m_Value())) || - match(X, m_c_And(m_PtrToInt(m_Specific(Y)), m_Value()))) - return Cmp0; - - return nullptr; -} - -static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, - const InstrInfoQuery &IIQ) { - // (icmp (add V, C0), C1) & (icmp V, C0) - ICmpInst::Predicate Pred0, Pred1; - const APInt *C0, *C1; - Value *V; - if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) - return nullptr; - - if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) - return nullptr; - - auto *AddInst = cast<OverflowingBinaryOperator>(Op0->getOperand(0)); - if (AddInst->getOperand(1) != Op1->getOperand(1)) - return nullptr; - - Type *ITy = Op0->getType(); - bool isNSW = IIQ.hasNoSignedWrap(AddInst); - bool isNUW = IIQ.hasNoUnsignedWrap(AddInst); - - const APInt Delta = *C1 - *C0; - if (C0->isStrictlyPositive()) { - if (Delta == 2) { - if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT) - return getFalse(ITy); - if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW) - return getFalse(ITy); - } - if (Delta == 1) { - if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT) - return getFalse(ITy); - if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW) - return getFalse(ITy); - } - } - if (C0->getBoolValue() && isNUW) { - if (Delta == 2) - if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT) - return getFalse(ITy); - if (Delta == 1) - if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT) - return getFalse(ITy); - } - - return nullptr; -} - -static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1, - const InstrInfoQuery &IIQ) { - if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true)) - return X; - if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true)) - return X; - - if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1)) - return X; - if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0)) - return X; - - if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true)) - return X; - - if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, true)) - return X; - - if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1, IIQ)) - return X; - if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0, IIQ)) - return X; - - return nullptr; -} - -static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, - const InstrInfoQuery &IIQ) { - // (icmp (add V, C0), C1) | (icmp V, C0) - ICmpInst::Predicate Pred0, Pred1; - const APInt *C0, *C1; - Value *V; - if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) - return nullptr; - - if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) - return nullptr; - - auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); - if (AddInst->getOperand(1) != Op1->getOperand(1)) - return nullptr; - - Type *ITy = Op0->getType(); - bool isNSW = IIQ.hasNoSignedWrap(AddInst); - bool isNUW = IIQ.hasNoUnsignedWrap(AddInst); - - const APInt Delta = *C1 - *C0; - if (C0->isStrictlyPositive()) { - if (Delta == 2) { - if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE) - return getTrue(ITy); - if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW) - return getTrue(ITy); - } - if (Delta == 1) { - if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE) - return getTrue(ITy); - if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW) - return getTrue(ITy); - } - } - if (C0->getBoolValue() && isNUW) { - if (Delta == 2) - if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE) - return getTrue(ITy); - if (Delta == 1) - if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE) - return getTrue(ITy); - } - - return nullptr; -} - -static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1, - const InstrInfoQuery &IIQ) { - if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false)) - return X; - if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false)) - return X; - - if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1)) - return X; - if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0)) - return X; - - if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false)) - return X; - - if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, false)) - return X; - - if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1, IIQ)) - return X; - if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0, IIQ)) - return X; - - return nullptr; -} - -static Value *simplifyAndOrOfFCmps(const TargetLibraryInfo *TLI, - FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) { - Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1); - Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1); - if (LHS0->getType() != RHS0->getType()) - return nullptr; - - FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); - if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) || - (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) { - // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y - // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X - // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y - // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X - // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y - // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X - // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y - // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X - if ((isKnownNeverNaN(LHS0, TLI) && (LHS1 == RHS0 || LHS1 == RHS1)) || - (isKnownNeverNaN(LHS1, TLI) && (LHS0 == RHS0 || LHS0 == RHS1))) - return RHS; - - // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y - // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X - // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y - // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X - // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y - // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X - // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y - // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X - if ((isKnownNeverNaN(RHS0, TLI) && (RHS1 == LHS0 || RHS1 == LHS1)) || - (isKnownNeverNaN(RHS1, TLI) && (RHS0 == LHS0 || RHS0 == LHS1))) - return LHS; - } - - return nullptr; -} - -static Value *simplifyAndOrOfCmps(const SimplifyQuery &Q, - Value *Op0, Value *Op1, bool IsAnd) { - // Look through casts of the 'and' operands to find compares. - auto *Cast0 = dyn_cast<CastInst>(Op0); - auto *Cast1 = dyn_cast<CastInst>(Op1); - if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() && - Cast0->getSrcTy() == Cast1->getSrcTy()) { - Op0 = Cast0->getOperand(0); - Op1 = Cast1->getOperand(0); - } - - Value *V = nullptr; - auto *ICmp0 = dyn_cast<ICmpInst>(Op0); - auto *ICmp1 = dyn_cast<ICmpInst>(Op1); - if (ICmp0 && ICmp1) - V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1, Q.IIQ) - : simplifyOrOfICmps(ICmp0, ICmp1, Q.IIQ); - - auto *FCmp0 = dyn_cast<FCmpInst>(Op0); - auto *FCmp1 = dyn_cast<FCmpInst>(Op1); - if (FCmp0 && FCmp1) - V = simplifyAndOrOfFCmps(Q.TLI, FCmp0, FCmp1, IsAnd); - - if (!V) - return nullptr; - if (!Cast0) - return V; - - // If we looked through casts, we can only handle a constant simplification - // because we are not allowed to create a cast instruction here. - if (auto *C = dyn_cast<Constant>(V)) - return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType()); - - return nullptr; -} - -/// Given operands for an And, see if we can fold the result. -/// If not, this returns null. -static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, - unsigned MaxRecurse) { - if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q)) - return C; - - // X & undef -> 0 - if (match(Op1, m_Undef())) - return Constant::getNullValue(Op0->getType()); - - // X & X = X - if (Op0 == Op1) - return Op0; - - // X & 0 = 0 - if (match(Op1, m_Zero())) - return Constant::getNullValue(Op0->getType()); - - // X & -1 = X - if (match(Op1, m_AllOnes())) - return Op0; - - // A & ~A = ~A & A = 0 - if (match(Op0, m_Not(m_Specific(Op1))) || - match(Op1, m_Not(m_Specific(Op0)))) - return Constant::getNullValue(Op0->getType()); - - // (A | ?) & A = A - if (match(Op0, m_c_Or(m_Specific(Op1), m_Value()))) - return Op1; - - // A & (A | ?) = A - if (match(Op1, m_c_Or(m_Specific(Op0), m_Value()))) - return Op0; - - // A mask that only clears known zeros of a shifted value is a no-op. - Value *X; - const APInt *Mask; - const APInt *ShAmt; - if (match(Op1, m_APInt(Mask))) { - // If all bits in the inverted and shifted mask are clear: - // and (shl X, ShAmt), Mask --> shl X, ShAmt - if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) && - (~(*Mask)).lshr(*ShAmt).isNullValue()) - return Op0; - - // If all bits in the inverted and shifted mask are clear: - // and (lshr X, ShAmt), Mask --> lshr X, ShAmt - if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) && - (~(*Mask)).shl(*ShAmt).isNullValue()) - return Op0; - } - - // A & (-A) = A if A is a power of two or zero. - if (match(Op0, m_Neg(m_Specific(Op1))) || - match(Op1, m_Neg(m_Specific(Op0)))) { - if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, - Q.DT)) - return Op0; - if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, - Q.DT)) - return Op1; - } - - if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, true)) - return V; - - // Try some generic simplifications for associative operations. - if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q, - MaxRecurse)) - return V; - - // And distributes over Or. Try some generic simplifications based on this. - if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or, - Q, MaxRecurse)) - return V; - - // And distributes over Xor. Try some generic simplifications based on this. - if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor, - Q, MaxRecurse)) - return V; - - // If the operation is with the result of a select instruction, check whether - // operating on either branch of the select always yields the same value. - if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) - if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q, - MaxRecurse)) - return V; - - // If the operation is with the result of a phi instruction, check whether - // operating on all incoming values of the phi always yields the same value. - if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) - if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q, - MaxRecurse)) - return V; - - // Assuming the effective width of Y is not larger than A, i.e. all bits - // from X and Y are disjoint in (X << A) | Y, - // if the mask of this AND op covers all bits of X or Y, while it covers - // no bits from the other, we can bypass this AND op. E.g., - // ((X << A) | Y) & Mask -> Y, - // if Mask = ((1 << effective_width_of(Y)) - 1) - // ((X << A) | Y) & Mask -> X << A, - // if Mask = ((1 << effective_width_of(X)) - 1) << A - // SimplifyDemandedBits in InstCombine can optimize the general case. - // This pattern aims to help other passes for a common case. - Value *Y, *XShifted; - if (match(Op1, m_APInt(Mask)) && - match(Op0, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X), m_APInt(ShAmt)), - m_Value(XShifted)), - m_Value(Y)))) { - const unsigned Width = Op0->getType()->getScalarSizeInBits(); - const unsigned ShftCnt = ShAmt->getLimitedValue(Width); - const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); - const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros(); - if (EffWidthY <= ShftCnt) { - const KnownBits XKnown = computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI, - Q.DT); - const unsigned EffWidthX = Width - XKnown.countMinLeadingZeros(); - const APInt EffBitsY = APInt::getLowBitsSet(Width, EffWidthY); - const APInt EffBitsX = APInt::getLowBitsSet(Width, EffWidthX) << ShftCnt; - // If the mask is extracting all bits from X or Y as is, we can skip - // this AND op. - if (EffBitsY.isSubsetOf(*Mask) && !EffBitsX.intersects(*Mask)) - return Y; - if (EffBitsX.isSubsetOf(*Mask) && !EffBitsY.intersects(*Mask)) - return XShifted; - } - } - - return nullptr; -} - -Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { - return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit); -} - -/// Given operands for an Or, see if we can fold the result. -/// If not, this returns null. -static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, - unsigned MaxRecurse) { - if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q)) - return C; - - // X | undef -> -1 - // X | -1 = -1 - // Do not return Op1 because it may contain undef elements if it's a vector. - if (match(Op1, m_Undef()) || match(Op1, m_AllOnes())) - return Constant::getAllOnesValue(Op0->getType()); - - // X | X = X - // X | 0 = X - if (Op0 == Op1 || match(Op1, m_Zero())) - return Op0; - - // A | ~A = ~A | A = -1 - if (match(Op0, m_Not(m_Specific(Op1))) || - match(Op1, m_Not(m_Specific(Op0)))) - return Constant::getAllOnesValue(Op0->getType()); - - // (A & ?) | A = A - if (match(Op0, m_c_And(m_Specific(Op1), m_Value()))) - return Op1; - - // A | (A & ?) = A - if (match(Op1, m_c_And(m_Specific(Op0), m_Value()))) - return Op0; - - // ~(A & ?) | A = -1 - if (match(Op0, m_Not(m_c_And(m_Specific(Op1), m_Value())))) - return Constant::getAllOnesValue(Op1->getType()); - - // A | ~(A & ?) = -1 - if (match(Op1, m_Not(m_c_And(m_Specific(Op1), m_Value())))) - return Constant::getAllOnesValue(Op0->getType()); - - Value *A, *B; - // (A & ~B) | (A ^ B) -> (A ^ B) - // (~B & A) | (A ^ B) -> (A ^ B) - // (A & ~B) | (B ^ A) -> (B ^ A) - // (~B & A) | (B ^ A) -> (B ^ A) - if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && - (match(Op0, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) || - match(Op0, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))) - return Op1; - - // Commute the 'or' operands. - // (A ^ B) | (A & ~B) -> (A ^ B) - // (A ^ B) | (~B & A) -> (A ^ B) - // (B ^ A) | (A & ~B) -> (B ^ A) - // (B ^ A) | (~B & A) -> (B ^ A) - if (match(Op0, m_Xor(m_Value(A), m_Value(B))) && - (match(Op1, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) || - match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))) - return Op0; - - // (A & B) | (~A ^ B) -> (~A ^ B) - // (B & A) | (~A ^ B) -> (~A ^ B) - // (A & B) | (B ^ ~A) -> (B ^ ~A) - // (B & A) | (B ^ ~A) -> (B ^ ~A) - if (match(Op0, m_And(m_Value(A), m_Value(B))) && - (match(Op1, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) || - match(Op1, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B))))) - return Op1; - - // (~A ^ B) | (A & B) -> (~A ^ B) - // (~A ^ B) | (B & A) -> (~A ^ B) - // (B ^ ~A) | (A & B) -> (B ^ ~A) - // (B ^ ~A) | (B & A) -> (B ^ ~A) - if (match(Op1, m_And(m_Value(A), m_Value(B))) && - (match(Op0, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) || - match(Op0, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B))))) - return Op0; - - if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, false)) - return V; - - // Try some generic simplifications for associative operations. - if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q, - MaxRecurse)) - return V; - - // Or distributes over And. Try some generic simplifications based on this. - if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q, - MaxRecurse)) - return V; - - // If the operation is with the result of a select instruction, check whether - // operating on either branch of the select always yields the same value. - if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) - if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q, - MaxRecurse)) - return V; - - // (A & C1)|(B & C2) - const APInt *C1, *C2; - if (match(Op0, m_And(m_Value(A), m_APInt(C1))) && - match(Op1, m_And(m_Value(B), m_APInt(C2)))) { - if (*C1 == ~*C2) { - // (A & C1)|(B & C2) - // If we have: ((V + N) & C1) | (V & C2) - // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0 - // replace with V+N. - Value *N; - if (C2->isMask() && // C2 == 0+1+ - match(A, m_c_Add(m_Specific(B), m_Value(N)))) { - // Add commutes, try both ways. - if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) - return A; - } - // Or commutes, try both ways. - if (C1->isMask() && - match(B, m_c_Add(m_Specific(A), m_Value(N)))) { - // Add commutes, try both ways. - if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) - return B; - } - } - } - - // If the operation is with the result of a phi instruction, check whether - // operating on all incoming values of the phi always yields the same value. - if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) - if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse)) - return V; - - return nullptr; -} - -Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { - return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit); -} - -/// Given operands for a Xor, see if we can fold the result. -/// If not, this returns null. -static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, - unsigned MaxRecurse) { - if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q)) - return C; - - // A ^ undef -> undef - if (match(Op1, m_Undef())) - return Op1; - - // A ^ 0 = A - if (match(Op1, m_Zero())) - return Op0; - - // A ^ A = 0 - if (Op0 == Op1) - return Constant::getNullValue(Op0->getType()); - - // A ^ ~A = ~A ^ A = -1 - if (match(Op0, m_Not(m_Specific(Op1))) || - match(Op1, m_Not(m_Specific(Op0)))) - return Constant::getAllOnesValue(Op0->getType()); - - // Try some generic simplifications for associative operations. - if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q, - MaxRecurse)) - return V; - - // Threading Xor over selects and phi nodes is pointless, so don't bother. - // Threading over the select in "A ^ select(cond, B, C)" means evaluating - // "A^B" and "A^C" and seeing if they are equal; but they are equal if and - // only if B and C are equal. If B and C are equal then (since we assume - // that operands have already been simplified) "select(cond, B, C)" should - // have been simplified to the common value of B and C already. Analysing - // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly - // for threading over phi nodes. - - return nullptr; -} - -Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { - return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit); -} - - -static Type *GetCompareTy(Value *Op) { - return CmpInst::makeCmpResultType(Op->getType()); -} - -/// Rummage around inside V looking for something equivalent to the comparison -/// "LHS Pred RHS". Return such a value if found, otherwise return null. -/// Helper function for analyzing max/min idioms. -static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred, - Value *LHS, Value *RHS) { - SelectInst *SI = dyn_cast<SelectInst>(V); - if (!SI) - return nullptr; - CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); - if (!Cmp) - return nullptr; - Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1); - if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS) - return Cmp; - if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) && - LHS == CmpRHS && RHS == CmpLHS) - return Cmp; - return nullptr; -} - -// A significant optimization not implemented here is assuming that alloca -// addresses are not equal to incoming argument values. They don't *alias*, -// as we say, but that doesn't mean they aren't equal, so we take a -// conservative approach. -// -// This is inspired in part by C++11 5.10p1: -// "Two pointers of the same type compare equal if and only if they are both -// null, both point to the same function, or both represent the same -// address." -// -// This is pretty permissive. -// -// It's also partly due to C11 6.5.9p6: -// "Two pointers compare equal if and only if both are null pointers, both are -// pointers to the same object (including a pointer to an object and a -// subobject at its beginning) or function, both are pointers to one past the -// last element of the same array object, or one is a pointer to one past the -// end of one array object and the other is a pointer to the start of a -// different array object that happens to immediately follow the first array -// object in the address space.) -// -// C11's version is more restrictive, however there's no reason why an argument -// couldn't be a one-past-the-end value for a stack object in the caller and be -// equal to the beginning of a stack object in the callee. -// -// If the C and C++ standards are ever made sufficiently restrictive in this -// area, it may be possible to update LLVM's semantics accordingly and reinstate -// this optimization. -static Constant * -computePointerICmp(const DataLayout &DL, const TargetLibraryInfo *TLI, - const DominatorTree *DT, CmpInst::Predicate Pred, - AssumptionCache *AC, const Instruction *CxtI, - const InstrInfoQuery &IIQ, Value *LHS, Value *RHS) { - // First, skip past any trivial no-ops. - LHS = LHS->stripPointerCasts(); - RHS = RHS->stripPointerCasts(); - - // A non-null pointer is not equal to a null pointer. - if (llvm::isKnownNonZero(LHS, DL, 0, nullptr, nullptr, nullptr, - IIQ.UseInstrInfo) && - isa<ConstantPointerNull>(RHS) && - (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE)) - return ConstantInt::get(GetCompareTy(LHS), - !CmpInst::isTrueWhenEqual(Pred)); - - // We can only fold certain predicates on pointer comparisons. - switch (Pred) { - default: - return nullptr; - - // Equality comaprisons are easy to fold. - case CmpInst::ICMP_EQ: - case CmpInst::ICMP_NE: - break; - - // We can only handle unsigned relational comparisons because 'inbounds' on - // a GEP only protects against unsigned wrapping. - case CmpInst::ICMP_UGT: - case CmpInst::ICMP_UGE: - case CmpInst::ICMP_ULT: - case CmpInst::ICMP_ULE: - // However, we have to switch them to their signed variants to handle - // negative indices from the base pointer. - Pred = ICmpInst::getSignedPredicate(Pred); - break; - } - - // Strip off any constant offsets so that we can reason about them. - // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets - // here and compare base addresses like AliasAnalysis does, however there are - // numerous hazards. AliasAnalysis and its utilities rely on special rules - // governing loads and stores which don't apply to icmps. Also, AliasAnalysis - // doesn't need to guarantee pointer inequality when it says NoAlias. - Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); - Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); - - // If LHS and RHS are related via constant offsets to the same base - // value, we can replace it with an icmp which just compares the offsets. - if (LHS == RHS) - return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset); - - // Various optimizations for (in)equality comparisons. - if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { - // Different non-empty allocations that exist at the same time have - // different addresses (if the program can tell). Global variables always - // exist, so they always exist during the lifetime of each other and all - // allocas. Two different allocas usually have different addresses... - // - // However, if there's an @llvm.stackrestore dynamically in between two - // allocas, they may have the same address. It's tempting to reduce the - // scope of the problem by only looking at *static* allocas here. That would - // cover the majority of allocas while significantly reducing the likelihood - // of having an @llvm.stackrestore pop up in the middle. However, it's not - // actually impossible for an @llvm.stackrestore to pop up in the middle of - // an entry block. Also, if we have a block that's not attached to a - // function, we can't tell if it's "static" under the current definition. - // Theoretically, this problem could be fixed by creating a new kind of - // instruction kind specifically for static allocas. Such a new instruction - // could be required to be at the top of the entry block, thus preventing it - // from being subject to a @llvm.stackrestore. Instcombine could even - // convert regular allocas into these special allocas. It'd be nifty. - // However, until then, this problem remains open. - // - // So, we'll assume that two non-empty allocas have different addresses - // for now. - // - // With all that, if the offsets are within the bounds of their allocations - // (and not one-past-the-end! so we can't use inbounds!), and their - // allocations aren't the same, the pointers are not equal. - // - // Note that it's not necessary to check for LHS being a global variable - // address, due to canonicalization and constant folding. - if (isa<AllocaInst>(LHS) && - (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) { - ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset); - ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset); - uint64_t LHSSize, RHSSize; - ObjectSizeOpts Opts; - Opts.NullIsUnknownSize = - NullPointerIsDefined(cast<AllocaInst>(LHS)->getFunction()); - if (LHSOffsetCI && RHSOffsetCI && - getObjectSize(LHS, LHSSize, DL, TLI, Opts) && - getObjectSize(RHS, RHSSize, DL, TLI, Opts)) { - const APInt &LHSOffsetValue = LHSOffsetCI->getValue(); - const APInt &RHSOffsetValue = RHSOffsetCI->getValue(); - if (!LHSOffsetValue.isNegative() && - !RHSOffsetValue.isNegative() && - LHSOffsetValue.ult(LHSSize) && - RHSOffsetValue.ult(RHSSize)) { - return ConstantInt::get(GetCompareTy(LHS), - !CmpInst::isTrueWhenEqual(Pred)); - } - } - - // Repeat the above check but this time without depending on DataLayout - // or being able to compute a precise size. - if (!cast<PointerType>(LHS->getType())->isEmptyTy() && - !cast<PointerType>(RHS->getType())->isEmptyTy() && - LHSOffset->isNullValue() && - RHSOffset->isNullValue()) - return ConstantInt::get(GetCompareTy(LHS), - !CmpInst::isTrueWhenEqual(Pred)); - } - - // Even if an non-inbounds GEP occurs along the path we can still optimize - // equality comparisons concerning the result. We avoid walking the whole - // chain again by starting where the last calls to - // stripAndComputeConstantOffsets left off and accumulate the offsets. - Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true); - Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true); - if (LHS == RHS) - return ConstantExpr::getICmp(Pred, - ConstantExpr::getAdd(LHSOffset, LHSNoBound), - ConstantExpr::getAdd(RHSOffset, RHSNoBound)); - - // If one side of the equality comparison must come from a noalias call - // (meaning a system memory allocation function), and the other side must - // come from a pointer that cannot overlap with dynamically-allocated - // memory within the lifetime of the current function (allocas, byval - // arguments, globals), then determine the comparison result here. - SmallVector<Value *, 8> LHSUObjs, RHSUObjs; - GetUnderlyingObjects(LHS, LHSUObjs, DL); - GetUnderlyingObjects(RHS, RHSUObjs, DL); - - // Is the set of underlying objects all noalias calls? - auto IsNAC = [](ArrayRef<Value *> Objects) { - return all_of(Objects, isNoAliasCall); - }; - - // Is the set of underlying objects all things which must be disjoint from - // noalias calls. For allocas, we consider only static ones (dynamic - // allocas might be transformed into calls to malloc not simultaneously - // live with the compared-to allocation). For globals, we exclude symbols - // that might be resolve lazily to symbols in another dynamically-loaded - // library (and, thus, could be malloc'ed by the implementation). - auto IsAllocDisjoint = [](ArrayRef<Value *> Objects) { - return all_of(Objects, [](Value *V) { - if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) - return AI->getParent() && AI->getFunction() && AI->isStaticAlloca(); - if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) - return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() || - GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) && - !GV->isThreadLocal(); - if (const Argument *A = dyn_cast<Argument>(V)) - return A->hasByValAttr(); - return false; - }); - }; - - if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) || - (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs))) - return ConstantInt::get(GetCompareTy(LHS), - !CmpInst::isTrueWhenEqual(Pred)); - - // Fold comparisons for non-escaping pointer even if the allocation call - // cannot be elided. We cannot fold malloc comparison to null. Also, the - // dynamic allocation call could be either of the operands. - Value *MI = nullptr; - if (isAllocLikeFn(LHS, TLI) && - llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT)) - MI = LHS; - else if (isAllocLikeFn(RHS, TLI) && - llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT)) - MI = RHS; - // FIXME: We should also fold the compare when the pointer escapes, but the - // compare dominates the pointer escape - if (MI && !PointerMayBeCaptured(MI, true, true)) - return ConstantInt::get(GetCompareTy(LHS), - CmpInst::isFalseWhenEqual(Pred)); - } - - // Otherwise, fail. - return nullptr; -} - -/// Fold an icmp when its operands have i1 scalar type. -static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS, - Value *RHS, const SimplifyQuery &Q) { - Type *ITy = GetCompareTy(LHS); // The return type. - Type *OpTy = LHS->getType(); // The operand type. - if (!OpTy->isIntOrIntVectorTy(1)) - return nullptr; - - // A boolean compared to true/false can be simplified in 14 out of the 20 - // (10 predicates * 2 constants) possible combinations. Cases not handled here - // require a 'not' of the LHS, so those must be transformed in InstCombine. - if (match(RHS, m_Zero())) { - switch (Pred) { - case CmpInst::ICMP_NE: // X != 0 -> X - case CmpInst::ICMP_UGT: // X >u 0 -> X - case CmpInst::ICMP_SLT: // X <s 0 -> X - return LHS; - - case CmpInst::ICMP_ULT: // X <u 0 -> false - case CmpInst::ICMP_SGT: // X >s 0 -> false - return getFalse(ITy); - - case CmpInst::ICMP_UGE: // X >=u 0 -> true - case CmpInst::ICMP_SLE: // X <=s 0 -> true - return getTrue(ITy); - - default: break; - } - } else if (match(RHS, m_One())) { - switch (Pred) { - case CmpInst::ICMP_EQ: // X == 1 -> X - case CmpInst::ICMP_UGE: // X >=u 1 -> X - case CmpInst::ICMP_SLE: // X <=s -1 -> X - return LHS; - - case CmpInst::ICMP_UGT: // X >u 1 -> false - case CmpInst::ICMP_SLT: // X <s -1 -> false - return getFalse(ITy); - - case CmpInst::ICMP_ULE: // X <=u 1 -> true - case CmpInst::ICMP_SGE: // X >=s -1 -> true - return getTrue(ITy); - - default: break; - } - } - - switch (Pred) { - default: - break; - case ICmpInst::ICMP_UGE: - if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false)) - return getTrue(ITy); - break; - case ICmpInst::ICMP_SGE: - /// For signed comparison, the values for an i1 are 0 and -1 - /// respectively. This maps into a truth table of: - /// LHS | RHS | LHS >=s RHS | LHS implies RHS - /// 0 | 0 | 1 (0 >= 0) | 1 - /// 0 | 1 | 1 (0 >= -1) | 1 - /// 1 | 0 | 0 (-1 >= 0) | 0 - /// 1 | 1 | 1 (-1 >= -1) | 1 - if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) - return getTrue(ITy); - break; - case ICmpInst::ICMP_ULE: - if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) - return getTrue(ITy); - break; - } - - return nullptr; -} - -/// Try hard to fold icmp with zero RHS because this is a common case. -static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS, - Value *RHS, const SimplifyQuery &Q) { - if (!match(RHS, m_Zero())) - return nullptr; - - Type *ITy = GetCompareTy(LHS); // The return type. - switch (Pred) { - default: - llvm_unreachable("Unknown ICmp predicate!"); - case ICmpInst::ICMP_ULT: - return getFalse(ITy); - case ICmpInst::ICMP_UGE: - return getTrue(ITy); - case ICmpInst::ICMP_EQ: - case ICmpInst::ICMP_ULE: - if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) - return getFalse(ITy); - break; - case ICmpInst::ICMP_NE: - case ICmpInst::ICMP_UGT: - if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) - return getTrue(ITy); - break; - case ICmpInst::ICMP_SLT: { - KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); - if (LHSKnown.isNegative()) - return getTrue(ITy); - if (LHSKnown.isNonNegative()) - return getFalse(ITy); - break; - } - case ICmpInst::ICMP_SLE: { - KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); - if (LHSKnown.isNegative()) - return getTrue(ITy); - if (LHSKnown.isNonNegative() && - isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) - return getFalse(ITy); - break; - } - case ICmpInst::ICMP_SGE: { - KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); - if (LHSKnown.isNegative()) - return getFalse(ITy); - if (LHSKnown.isNonNegative()) - return getTrue(ITy); - break; - } - case ICmpInst::ICMP_SGT: { - KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); - if (LHSKnown.isNegative()) - return getFalse(ITy); - if (LHSKnown.isNonNegative() && - isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) - return getTrue(ITy); - break; - } - } - - return nullptr; -} - -/// Many binary operators with a constant operand have an easy-to-compute -/// range of outputs. This can be used to fold a comparison to always true or -/// always false. -static void setLimitsForBinOp(BinaryOperator &BO, APInt &Lower, APInt &Upper, - const InstrInfoQuery &IIQ) { - unsigned Width = Lower.getBitWidth(); - const APInt *C; - switch (BO.getOpcode()) { - case Instruction::Add: - if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { - // FIXME: If we have both nuw and nsw, we should reduce the range further. - if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) { - // 'add nuw x, C' produces [C, UINT_MAX]. - Lower = *C; - } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) { - if (C->isNegative()) { - // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. - Lower = APInt::getSignedMinValue(Width); - Upper = APInt::getSignedMaxValue(Width) + *C + 1; - } else { - // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. - Lower = APInt::getSignedMinValue(Width) + *C; - Upper = APInt::getSignedMaxValue(Width) + 1; - } - } - } - break; - - case Instruction::And: - if (match(BO.getOperand(1), m_APInt(C))) - // 'and x, C' produces [0, C]. - Upper = *C + 1; - break; - - case Instruction::Or: - if (match(BO.getOperand(1), m_APInt(C))) - // 'or x, C' produces [C, UINT_MAX]. - Lower = *C; - break; - - case Instruction::AShr: - if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { - // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. - Lower = APInt::getSignedMinValue(Width).ashr(*C); - Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; - } else if (match(BO.getOperand(0), m_APInt(C))) { - unsigned ShiftAmount = Width - 1; - if (!C->isNullValue() && IIQ.isExact(&BO)) - ShiftAmount = C->countTrailingZeros(); - if (C->isNegative()) { - // 'ashr C, x' produces [C, C >> (Width-1)] - Lower = *C; - Upper = C->ashr(ShiftAmount) + 1; - } else { - // 'ashr C, x' produces [C >> (Width-1), C] - Lower = C->ashr(ShiftAmount); - Upper = *C + 1; - } - } - break; - - case Instruction::LShr: - if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { - // 'lshr x, C' produces [0, UINT_MAX >> C]. - Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; - } else if (match(BO.getOperand(0), m_APInt(C))) { - // 'lshr C, x' produces [C >> (Width-1), C]. - unsigned ShiftAmount = Width - 1; - if (!C->isNullValue() && IIQ.isExact(&BO)) - ShiftAmount = C->countTrailingZeros(); - Lower = C->lshr(ShiftAmount); - Upper = *C + 1; - } - break; - - case Instruction::Shl: - if (match(BO.getOperand(0), m_APInt(C))) { - if (IIQ.hasNoUnsignedWrap(&BO)) { - // 'shl nuw C, x' produces [C, C << CLZ(C)] - Lower = *C; - Upper = Lower.shl(Lower.countLeadingZeros()) + 1; - } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? - if (C->isNegative()) { - // 'shl nsw C, x' produces [C << CLO(C)-1, C] - unsigned ShiftAmount = C->countLeadingOnes() - 1; - Lower = C->shl(ShiftAmount); - Upper = *C + 1; - } else { - // 'shl nsw C, x' produces [C, C << CLZ(C)-1] - unsigned ShiftAmount = C->countLeadingZeros() - 1; - Lower = *C; - Upper = C->shl(ShiftAmount) + 1; - } - } - } - break; - - case Instruction::SDiv: - if (match(BO.getOperand(1), m_APInt(C))) { - APInt IntMin = APInt::getSignedMinValue(Width); - APInt IntMax = APInt::getSignedMaxValue(Width); - if (C->isAllOnesValue()) { - // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] - // where C != -1 and C != 0 and C != 1 - Lower = IntMin + 1; - Upper = IntMax + 1; - } else if (C->countLeadingZeros() < Width - 1) { - // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] - // where C != -1 and C != 0 and C != 1 - Lower = IntMin.sdiv(*C); - Upper = IntMax.sdiv(*C); - if (Lower.sgt(Upper)) - std::swap(Lower, Upper); - Upper = Upper + 1; - assert(Upper != Lower && "Upper part of range has wrapped!"); - } - } else if (match(BO.getOperand(0), m_APInt(C))) { - if (C->isMinSignedValue()) { - // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. - Lower = *C; - Upper = Lower.lshr(1) + 1; - } else { - // 'sdiv C, x' produces [-|C|, |C|]. - Upper = C->abs() + 1; - Lower = (-Upper) + 1; - } - } - break; - - case Instruction::UDiv: - if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { - // 'udiv x, C' produces [0, UINT_MAX / C]. - Upper = APInt::getMaxValue(Width).udiv(*C) + 1; - } else if (match(BO.getOperand(0), m_APInt(C))) { - // 'udiv C, x' produces [0, C]. - Upper = *C + 1; - } - break; - - case Instruction::SRem: - if (match(BO.getOperand(1), m_APInt(C))) { - // 'srem x, C' produces (-|C|, |C|). - Upper = C->abs(); - Lower = (-Upper) + 1; - } - break; - - case Instruction::URem: - if (match(BO.getOperand(1), m_APInt(C))) - // 'urem x, C' produces [0, C). - Upper = *C; - break; - - default: - break; - } -} - -/// Some intrinsics with a constant operand have an easy-to-compute range of -/// outputs. This can be used to fold a comparison to always true or always -/// false. -static void setLimitsForIntrinsic(IntrinsicInst &II, APInt &Lower, - APInt &Upper) { - unsigned Width = Lower.getBitWidth(); - const APInt *C; - switch (II.getIntrinsicID()) { - case Intrinsic::uadd_sat: - // uadd.sat(x, C) produces [C, UINT_MAX]. - if (match(II.getOperand(0), m_APInt(C)) || - match(II.getOperand(1), m_APInt(C))) - Lower = *C; - break; - case Intrinsic::sadd_sat: - if (match(II.getOperand(0), m_APInt(C)) || - match(II.getOperand(1), m_APInt(C))) { - if (C->isNegative()) { - // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. - Lower = APInt::getSignedMinValue(Width); - Upper = APInt::getSignedMaxValue(Width) + *C + 1; - } else { - // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. - Lower = APInt::getSignedMinValue(Width) + *C; - Upper = APInt::getSignedMaxValue(Width) + 1; - } - } - break; - case Intrinsic::usub_sat: - // usub.sat(C, x) produces [0, C]. - if (match(II.getOperand(0), m_APInt(C))) - Upper = *C + 1; - // usub.sat(x, C) produces [0, UINT_MAX - C]. - else if (match(II.getOperand(1), m_APInt(C))) - Upper = APInt::getMaxValue(Width) - *C + 1; - break; - case Intrinsic::ssub_sat: - if (match(II.getOperand(0), m_APInt(C))) { - if (C->isNegative()) { - // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. - Lower = APInt::getSignedMinValue(Width); - Upper = *C - APInt::getSignedMinValue(Width) + 1; - } else { - // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. - Lower = *C - APInt::getSignedMaxValue(Width); - Upper = APInt::getSignedMaxValue(Width) + 1; - } - } else if (match(II.getOperand(1), m_APInt(C))) { - if (C->isNegative()) { - // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: - Lower = APInt::getSignedMinValue(Width) - *C; - Upper = APInt::getSignedMaxValue(Width) + 1; - } else { - // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. - Lower = APInt::getSignedMinValue(Width); - Upper = APInt::getSignedMaxValue(Width) - *C + 1; - } - } - break; - default: - break; - } -} - -static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS, - Value *RHS, const InstrInfoQuery &IIQ) { - Type *ITy = GetCompareTy(RHS); // The return type. - - Value *X; - // Sign-bit checks can be optimized to true/false after unsigned - // floating-point casts: - // icmp slt (bitcast (uitofp X)), 0 --> false - // icmp sgt (bitcast (uitofp X)), -1 --> true - if (match(LHS, m_BitCast(m_UIToFP(m_Value(X))))) { - if (Pred == ICmpInst::ICMP_SLT && match(RHS, m_Zero())) - return ConstantInt::getFalse(ITy); - if (Pred == ICmpInst::ICMP_SGT && match(RHS, m_AllOnes())) - return ConstantInt::getTrue(ITy); - } - - const APInt *C; - if (!match(RHS, m_APInt(C))) - return nullptr; - - // Rule out tautological comparisons (eg., ult 0 or uge 0). - ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C); - if (RHS_CR.isEmptySet()) - return ConstantInt::getFalse(ITy); - if (RHS_CR.isFullSet()) - return ConstantInt::getTrue(ITy); - - // Find the range of possible values for binary operators. - unsigned Width = C->getBitWidth(); - APInt Lower = APInt(Width, 0); - APInt Upper = APInt(Width, 0); - if (auto *BO = dyn_cast<BinaryOperator>(LHS)) - setLimitsForBinOp(*BO, Lower, Upper, IIQ); - else if (auto *II = dyn_cast<IntrinsicInst>(LHS)) - setLimitsForIntrinsic(*II, Lower, Upper); - - ConstantRange LHS_CR = - Lower != Upper ? ConstantRange(Lower, Upper) : ConstantRange(Width, true); - - if (auto *I = dyn_cast<Instruction>(LHS)) - if (auto *Ranges = IIQ.getMetadata(I, LLVMContext::MD_range)) - LHS_CR = LHS_CR.intersectWith(getConstantRangeFromMetadata(*Ranges)); - - if (!LHS_CR.isFullSet()) { - if (RHS_CR.contains(LHS_CR)) - return ConstantInt::getTrue(ITy); - if (RHS_CR.inverse().contains(LHS_CR)) - return ConstantInt::getFalse(ITy); - } - - return nullptr; -} - -/// TODO: A large part of this logic is duplicated in InstCombine's -/// foldICmpBinOp(). We should be able to share that and avoid the code -/// duplication. -static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS, - Value *RHS, const SimplifyQuery &Q, - unsigned MaxRecurse) { - Type *ITy = GetCompareTy(LHS); // The return type. - - BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS); - BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS); - if (MaxRecurse && (LBO || RBO)) { - // Analyze the case when either LHS or RHS is an add instruction. - Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; - // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null). - bool NoLHSWrapProblem = false, NoRHSWrapProblem = false; - if (LBO && LBO->getOpcode() == Instruction::Add) { - A = LBO->getOperand(0); - B = LBO->getOperand(1); - NoLHSWrapProblem = - ICmpInst::isEquality(Pred) || - (CmpInst::isUnsigned(Pred) && - Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO))) || - (CmpInst::isSigned(Pred) && - Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO))); - } - if (RBO && RBO->getOpcode() == Instruction::Add) { - C = RBO->getOperand(0); - D = RBO->getOperand(1); - NoRHSWrapProblem = - ICmpInst::isEquality(Pred) || - (CmpInst::isUnsigned(Pred) && - Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(RBO))) || - (CmpInst::isSigned(Pred) && - Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RBO))); - } - - // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. - if ((A == RHS || B == RHS) && NoLHSWrapProblem) - if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A, - Constant::getNullValue(RHS->getType()), Q, - MaxRecurse - 1)) - return V; - - // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. - if ((C == LHS || D == LHS) && NoRHSWrapProblem) - if (Value *V = - SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()), - C == LHS ? D : C, Q, MaxRecurse - 1)) - return V; - - // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow. - if (A && C && (A == C || A == D || B == C || B == D) && NoLHSWrapProblem && - NoRHSWrapProblem) { - // Determine Y and Z in the form icmp (X+Y), (X+Z). - Value *Y, *Z; - if (A == C) { - // C + B == C + D -> B == D - Y = B; - Z = D; - } else if (A == D) { - // D + B == C + D -> B == C - Y = B; - Z = C; - } else if (B == C) { - // A + C == C + D -> A == D - Y = A; - Z = D; - } else { - assert(B == D); - // A + D == C + D -> A == C - Y = A; - Z = C; - } - if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1)) - return V; - } - } - - { - Value *Y = nullptr; - // icmp pred (or X, Y), X - if (LBO && match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) { - if (Pred == ICmpInst::ICMP_ULT) - return getFalse(ITy); - if (Pred == ICmpInst::ICMP_UGE) - return getTrue(ITy); - - if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) { - KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); - KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); - if (RHSKnown.isNonNegative() && YKnown.isNegative()) - return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy); - if (RHSKnown.isNegative() || YKnown.isNonNegative()) - return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy); - } - } - // icmp pred X, (or X, Y) - if (RBO && match(RBO, m_c_Or(m_Value(Y), m_Specific(LHS)))) { - if (Pred == ICmpInst::ICMP_ULE) - return getTrue(ITy); - if (Pred == ICmpInst::ICMP_UGT) - return getFalse(ITy); - - if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLE) { - KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); - KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); - if (LHSKnown.isNonNegative() && YKnown.isNegative()) - return Pred == ICmpInst::ICMP_SGT ? getTrue(ITy) : getFalse(ITy); - if (LHSKnown.isNegative() || YKnown.isNonNegative()) - return Pred == ICmpInst::ICMP_SGT ? getFalse(ITy) : getTrue(ITy); - } - } - } - - // icmp pred (and X, Y), X - if (LBO && match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) { - if (Pred == ICmpInst::ICMP_UGT) - return getFalse(ITy); - if (Pred == ICmpInst::ICMP_ULE) - return getTrue(ITy); - } - // icmp pred X, (and X, Y) - if (RBO && match(RBO, m_c_And(m_Value(), m_Specific(LHS)))) { - if (Pred == ICmpInst::ICMP_UGE) - return getTrue(ITy); - if (Pred == ICmpInst::ICMP_ULT) - return getFalse(ITy); - } - - // 0 - (zext X) pred C - if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) { - if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) { - if (RHSC->getValue().isStrictlyPositive()) { - if (Pred == ICmpInst::ICMP_SLT) - return ConstantInt::getTrue(RHSC->getContext()); - if (Pred == ICmpInst::ICMP_SGE) - return ConstantInt::getFalse(RHSC->getContext()); - if (Pred == ICmpInst::ICMP_EQ) - return ConstantInt::getFalse(RHSC->getContext()); - if (Pred == ICmpInst::ICMP_NE) - return ConstantInt::getTrue(RHSC->getContext()); - } - if (RHSC->getValue().isNonNegative()) { - if (Pred == ICmpInst::ICMP_SLE) - return ConstantInt::getTrue(RHSC->getContext()); - if (Pred == ICmpInst::ICMP_SGT) - return ConstantInt::getFalse(RHSC->getContext()); - } - } - } - - // icmp pred (urem X, Y), Y - if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) { - switch (Pred) { - default: - break; - case ICmpInst::ICMP_SGT: - case ICmpInst::ICMP_SGE: { - KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); - if (!Known.isNonNegative()) - break; - LLVM_FALLTHROUGH; - } - case ICmpInst::ICMP_EQ: - case ICmpInst::ICMP_UGT: - case ICmpInst::ICMP_UGE: - return getFalse(ITy); - case ICmpInst::ICMP_SLT: - case ICmpInst::ICMP_SLE: { - KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); - if (!Known.isNonNegative()) - break; - LLVM_FALLTHROUGH; - } - case ICmpInst::ICMP_NE: - case ICmpInst::ICMP_ULT: - case ICmpInst::ICMP_ULE: - return getTrue(ITy); - } - } - - // icmp pred X, (urem Y, X) - if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) { - switch (Pred) { - default: - break; - case ICmpInst::ICMP_SGT: - case ICmpInst::ICMP_SGE: { - KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); - if (!Known.isNonNegative()) - break; - LLVM_FALLTHROUGH; - } - case ICmpInst::ICMP_NE: - case ICmpInst::ICMP_UGT: - case ICmpInst::ICMP_UGE: - return getTrue(ITy); - case ICmpInst::ICMP_SLT: - case ICmpInst::ICMP_SLE: { - KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); - if (!Known.isNonNegative()) - break; - LLVM_FALLTHROUGH; - } - case ICmpInst::ICMP_EQ: - case ICmpInst::ICMP_ULT: - case ICmpInst::ICMP_ULE: - return getFalse(ITy); - } - } - - // x >> y <=u x - // x udiv y <=u x. - if (LBO && (match(LBO, m_LShr(m_Specific(RHS), m_Value())) || - match(LBO, m_UDiv(m_Specific(RHS), m_Value())))) { - // icmp pred (X op Y), X - if (Pred == ICmpInst::ICMP_UGT) - return getFalse(ITy); - if (Pred == ICmpInst::ICMP_ULE) - return getTrue(ITy); - } - - // x >=u x >> y - // x >=u x udiv y. - if (RBO && (match(RBO, m_LShr(m_Specific(LHS), m_Value())) || - match(RBO, m_UDiv(m_Specific(LHS), m_Value())))) { - // icmp pred X, (X op Y) - if (Pred == ICmpInst::ICMP_ULT) - return getFalse(ITy); - if (Pred == ICmpInst::ICMP_UGE) - return getTrue(ITy); - } - - // handle: - // CI2 << X == CI - // CI2 << X != CI - // - // where CI2 is a power of 2 and CI isn't - if (auto *CI = dyn_cast<ConstantInt>(RHS)) { - const APInt *CI2Val, *CIVal = &CI->getValue(); - if (LBO && match(LBO, m_Shl(m_APInt(CI2Val), m_Value())) && - CI2Val->isPowerOf2()) { - if (!CIVal->isPowerOf2()) { - // CI2 << X can equal zero in some circumstances, - // this simplification is unsafe if CI is zero. - // - // We know it is safe if: - // - The shift is nsw, we can't shift out the one bit. - // - The shift is nuw, we can't shift out the one bit. - // - CI2 is one - // - CI isn't zero - if (Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)) || - Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO)) || - CI2Val->isOneValue() || !CI->isZero()) { - if (Pred == ICmpInst::ICMP_EQ) - return ConstantInt::getFalse(RHS->getContext()); - if (Pred == ICmpInst::ICMP_NE) - return ConstantInt::getTrue(RHS->getContext()); - } - } - if (CIVal->isSignMask() && CI2Val->isOneValue()) { - if (Pred == ICmpInst::ICMP_UGT) - return ConstantInt::getFalse(RHS->getContext()); - if (Pred == ICmpInst::ICMP_ULE) - return ConstantInt::getTrue(RHS->getContext()); - } - } - } - - if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() && - LBO->getOperand(1) == RBO->getOperand(1)) { - switch (LBO->getOpcode()) { - default: - break; - case Instruction::UDiv: - case Instruction::LShr: - if (ICmpInst::isSigned(Pred) || !Q.IIQ.isExact(LBO) || - !Q.IIQ.isExact(RBO)) - break; - if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), - RBO->getOperand(0), Q, MaxRecurse - 1)) - return V; - break; - case Instruction::SDiv: - if (!ICmpInst::isEquality(Pred) || !Q.IIQ.isExact(LBO) || - !Q.IIQ.isExact(RBO)) - break; - if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), - RBO->getOperand(0), Q, MaxRecurse - 1)) - return V; - break; - case Instruction::AShr: - if (!Q.IIQ.isExact(LBO) || !Q.IIQ.isExact(RBO)) - break; - if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), - RBO->getOperand(0), Q, MaxRecurse - 1)) - return V; - break; - case Instruction::Shl: { - bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO); - bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO); - if (!NUW && !NSW) - break; - if (!NSW && ICmpInst::isSigned(Pred)) - break; - if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), - RBO->getOperand(0), Q, MaxRecurse - 1)) - return V; - break; - } - } - } - return nullptr; -} - -static Value *simplifyICmpWithAbsNabs(CmpInst::Predicate Pred, Value *Op0, - Value *Op1) { - // We need a comparison with a constant. - const APInt *C; - if (!match(Op1, m_APInt(C))) - return nullptr; - - // matchSelectPattern returns the negation part of an abs pattern in SP1. - // If the negate has an NSW flag, abs(INT_MIN) is undefined. Without that - // constraint, we can't make a contiguous range for the result of abs. - ICmpInst::Predicate AbsPred = ICmpInst::BAD_ICMP_PREDICATE; - Value *SP0, *SP1; - SelectPatternFlavor SPF = matchSelectPattern(Op0, SP0, SP1).Flavor; - if (SPF == SelectPatternFlavor::SPF_ABS && - cast<Instruction>(SP1)->hasNoSignedWrap()) - // The result of abs(X) is >= 0 (with nsw). - AbsPred = ICmpInst::ICMP_SGE; - if (SPF == SelectPatternFlavor::SPF_NABS) - // The result of -abs(X) is <= 0. - AbsPred = ICmpInst::ICMP_SLE; - - if (AbsPred == ICmpInst::BAD_ICMP_PREDICATE) - return nullptr; - - // If there is no intersection between abs/nabs and the range of this icmp, - // the icmp must be false. If the abs/nabs range is a subset of the icmp - // range, the icmp must be true. - APInt Zero = APInt::getNullValue(C->getBitWidth()); - ConstantRange AbsRange = ConstantRange::makeExactICmpRegion(AbsPred, Zero); - ConstantRange CmpRange = ConstantRange::makeExactICmpRegion(Pred, *C); - if (AbsRange.intersectWith(CmpRange).isEmptySet()) - return getFalse(GetCompareTy(Op0)); - if (CmpRange.contains(AbsRange)) - return getTrue(GetCompareTy(Op0)); - - return nullptr; -} - -/// Simplify integer comparisons where at least one operand of the compare -/// matches an integer min/max idiom. -static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS, - Value *RHS, const SimplifyQuery &Q, - unsigned MaxRecurse) { - Type *ITy = GetCompareTy(LHS); // The return type. - Value *A, *B; - CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE; - CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B". - - // Signed variants on "max(a,b)>=a -> true". - if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { - if (A != RHS) - std::swap(A, B); // smax(A, B) pred A. - EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". - // We analyze this as smax(A, B) pred A. - P = Pred; - } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) && - (A == LHS || B == LHS)) { - if (A != LHS) - std::swap(A, B); // A pred smax(A, B). - EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". - // We analyze this as smax(A, B) swapped-pred A. - P = CmpInst::getSwappedPredicate(Pred); - } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && - (A == RHS || B == RHS)) { - if (A != RHS) - std::swap(A, B); // smin(A, B) pred A. - EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". - // We analyze this as smax(-A, -B) swapped-pred -A. - // Note that we do not need to actually form -A or -B thanks to EqP. - P = CmpInst::getSwappedPredicate(Pred); - } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) && - (A == LHS || B == LHS)) { - if (A != LHS) - std::swap(A, B); // A pred smin(A, B). - EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". - // We analyze this as smax(-A, -B) pred -A. - // Note that we do not need to actually form -A or -B thanks to EqP. - P = Pred; - } - if (P != CmpInst::BAD_ICMP_PREDICATE) { - // Cases correspond to "max(A, B) p A". - switch (P) { - default: - break; - case CmpInst::ICMP_EQ: - case CmpInst::ICMP_SLE: - // Equivalent to "A EqP B". This may be the same as the condition tested - // in the max/min; if so, we can just return that. - if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) - return V; - if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) - return V; - // Otherwise, see if "A EqP B" simplifies. - if (MaxRecurse) - if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) - return V; - break; - case CmpInst::ICMP_NE: - case CmpInst::ICMP_SGT: { - CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); - // Equivalent to "A InvEqP B". This may be the same as the condition - // tested in the max/min; if so, we can just return that. - if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) - return V; - if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) - return V; - // Otherwise, see if "A InvEqP B" simplifies. - if (MaxRecurse) - if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) - return V; - break; - } - case CmpInst::ICMP_SGE: - // Always true. - return getTrue(ITy); - case CmpInst::ICMP_SLT: - // Always false. - return getFalse(ITy); - } - } - - // Unsigned variants on "max(a,b)>=a -> true". - P = CmpInst::BAD_ICMP_PREDICATE; - if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { - if (A != RHS) - std::swap(A, B); // umax(A, B) pred A. - EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". - // We analyze this as umax(A, B) pred A. - P = Pred; - } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) && - (A == LHS || B == LHS)) { - if (A != LHS) - std::swap(A, B); // A pred umax(A, B). - EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". - // We analyze this as umax(A, B) swapped-pred A. - P = CmpInst::getSwappedPredicate(Pred); - } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && - (A == RHS || B == RHS)) { - if (A != RHS) - std::swap(A, B); // umin(A, B) pred A. - EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". - // We analyze this as umax(-A, -B) swapped-pred -A. - // Note that we do not need to actually form -A or -B thanks to EqP. - P = CmpInst::getSwappedPredicate(Pred); - } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) && - (A == LHS || B == LHS)) { - if (A != LHS) - std::swap(A, B); // A pred umin(A, B). - EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". - // We analyze this as umax(-A, -B) pred -A. - // Note that we do not need to actually form -A or -B thanks to EqP. - P = Pred; - } - if (P != CmpInst::BAD_ICMP_PREDICATE) { - // Cases correspond to "max(A, B) p A". - switch (P) { - default: - break; - case CmpInst::ICMP_EQ: - case CmpInst::ICMP_ULE: - // Equivalent to "A EqP B". This may be the same as the condition tested - // in the max/min; if so, we can just return that. - if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) - return V; - if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) - return V; - // Otherwise, see if "A EqP B" simplifies. - if (MaxRecurse) - if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) - return V; - break; - case CmpInst::ICMP_NE: - case CmpInst::ICMP_UGT: { - CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); - // Equivalent to "A InvEqP B". This may be the same as the condition - // tested in the max/min; if so, we can just return that. - if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) - return V; - if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) - return V; - // Otherwise, see if "A InvEqP B" simplifies. - if (MaxRecurse) - if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) - return V; - break; - } - case CmpInst::ICMP_UGE: - // Always true. - return getTrue(ITy); - case CmpInst::ICMP_ULT: - // Always false. - return getFalse(ITy); - } - } - - // Variants on "max(x,y) >= min(x,z)". - Value *C, *D; - if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && - match(RHS, m_SMin(m_Value(C), m_Value(D))) && - (A == C || A == D || B == C || B == D)) { - // max(x, ?) pred min(x, ?). - if (Pred == CmpInst::ICMP_SGE) - // Always true. - return getTrue(ITy); - if (Pred == CmpInst::ICMP_SLT) - // Always false. - return getFalse(ITy); - } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && - match(RHS, m_SMax(m_Value(C), m_Value(D))) && - (A == C || A == D || B == C || B == D)) { - // min(x, ?) pred max(x, ?). - if (Pred == CmpInst::ICMP_SLE) - // Always true. - return getTrue(ITy); - if (Pred == CmpInst::ICMP_SGT) - // Always false. - return getFalse(ITy); - } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && - match(RHS, m_UMin(m_Value(C), m_Value(D))) && - (A == C || A == D || B == C || B == D)) { - // max(x, ?) pred min(x, ?). - if (Pred == CmpInst::ICMP_UGE) - // Always true. - return getTrue(ITy); - if (Pred == CmpInst::ICMP_ULT) - // Always false. - return getFalse(ITy); - } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && - match(RHS, m_UMax(m_Value(C), m_Value(D))) && - (A == C || A == D || B == C || B == D)) { - // min(x, ?) pred max(x, ?). - if (Pred == CmpInst::ICMP_ULE) - // Always true. - return getTrue(ITy); - if (Pred == CmpInst::ICMP_UGT) - // Always false. - return getFalse(ITy); - } - - return nullptr; -} - -/// Given operands for an ICmpInst, see if we can fold the result. -/// If not, this returns null. -static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, - const SimplifyQuery &Q, unsigned MaxRecurse) { - CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; - assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); - - if (Constant *CLHS = dyn_cast<Constant>(LHS)) { - if (Constant *CRHS = dyn_cast<Constant>(RHS)) - return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); - - // If we have a constant, make sure it is on the RHS. - std::swap(LHS, RHS); - Pred = CmpInst::getSwappedPredicate(Pred); - } - - Type *ITy = GetCompareTy(LHS); // The return type. - - // icmp X, X -> true/false - // icmp X, undef -> true/false because undef could be X. - if (LHS == RHS || isa<UndefValue>(RHS)) - return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); - - if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q)) - return V; - - if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q)) - return V; - - if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS, Q.IIQ)) - return V; - - // If both operands have range metadata, use the metadata - // to simplify the comparison. - if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) { - auto RHS_Instr = cast<Instruction>(RHS); - auto LHS_Instr = cast<Instruction>(LHS); - - if (Q.IIQ.getMetadata(RHS_Instr, LLVMContext::MD_range) && - Q.IIQ.getMetadata(LHS_Instr, LLVMContext::MD_range)) { - auto RHS_CR = getConstantRangeFromMetadata( - *RHS_Instr->getMetadata(LLVMContext::MD_range)); - auto LHS_CR = getConstantRangeFromMetadata( - *LHS_Instr->getMetadata(LLVMContext::MD_range)); - - auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR); - if (Satisfied_CR.contains(LHS_CR)) - return ConstantInt::getTrue(RHS->getContext()); - - auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion( - CmpInst::getInversePredicate(Pred), RHS_CR); - if (InversedSatisfied_CR.contains(LHS_CR)) - return ConstantInt::getFalse(RHS->getContext()); - } - } - - // Compare of cast, for example (zext X) != 0 -> X != 0 - if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) { - Instruction *LI = cast<CastInst>(LHS); - Value *SrcOp = LI->getOperand(0); - Type *SrcTy = SrcOp->getType(); - Type *DstTy = LI->getType(); - - // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input - // if the integer type is the same size as the pointer type. - if (MaxRecurse && isa<PtrToIntInst>(LI) && - Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) { - if (Constant *RHSC = dyn_cast<Constant>(RHS)) { - // Transfer the cast to the constant. - if (Value *V = SimplifyICmpInst(Pred, SrcOp, - ConstantExpr::getIntToPtr(RHSC, SrcTy), - Q, MaxRecurse-1)) - return V; - } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) { - if (RI->getOperand(0)->getType() == SrcTy) - // Compare without the cast. - if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), - Q, MaxRecurse-1)) - return V; - } - } - - if (isa<ZExtInst>(LHS)) { - // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the - // same type. - if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { - if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) - // Compare X and Y. Note that signed predicates become unsigned. - if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), - SrcOp, RI->getOperand(0), Q, - MaxRecurse-1)) - return V; - } - // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended - // too. If not, then try to deduce the result of the comparison. - else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { - // Compute the constant that would happen if we truncated to SrcTy then - // reextended to DstTy. - Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); - Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy); - - // If the re-extended constant didn't change then this is effectively - // also a case of comparing two zero-extended values. - if (RExt == CI && MaxRecurse) - if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), - SrcOp, Trunc, Q, MaxRecurse-1)) - return V; - - // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit - // there. Use this to work out the result of the comparison. - if (RExt != CI) { - switch (Pred) { - default: llvm_unreachable("Unknown ICmp predicate!"); - // LHS <u RHS. - case ICmpInst::ICMP_EQ: - case ICmpInst::ICMP_UGT: - case ICmpInst::ICMP_UGE: - return ConstantInt::getFalse(CI->getContext()); - - case ICmpInst::ICMP_NE: - case ICmpInst::ICMP_ULT: - case ICmpInst::ICMP_ULE: - return ConstantInt::getTrue(CI->getContext()); - - // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS - // is non-negative then LHS <s RHS. - case ICmpInst::ICMP_SGT: - case ICmpInst::ICMP_SGE: - return CI->getValue().isNegative() ? - ConstantInt::getTrue(CI->getContext()) : - ConstantInt::getFalse(CI->getContext()); - - case ICmpInst::ICMP_SLT: - case ICmpInst::ICMP_SLE: - return CI->getValue().isNegative() ? - ConstantInt::getFalse(CI->getContext()) : - ConstantInt::getTrue(CI->getContext()); - } - } - } - } - - if (isa<SExtInst>(LHS)) { - // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the - // same type. - if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { - if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) - // Compare X and Y. Note that the predicate does not change. - if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), - Q, MaxRecurse-1)) - return V; - } - // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended - // too. If not, then try to deduce the result of the comparison. - else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { - // Compute the constant that would happen if we truncated to SrcTy then - // reextended to DstTy. - Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); - Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy); - - // If the re-extended constant didn't change then this is effectively - // also a case of comparing two sign-extended values. - if (RExt == CI && MaxRecurse) - if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1)) - return V; - - // Otherwise the upper bits of LHS are all equal, while RHS has varying - // bits there. Use this to work out the result of the comparison. - if (RExt != CI) { - switch (Pred) { - default: llvm_unreachable("Unknown ICmp predicate!"); - case ICmpInst::ICMP_EQ: - return ConstantInt::getFalse(CI->getContext()); - case ICmpInst::ICMP_NE: - return ConstantInt::getTrue(CI->getContext()); - - // If RHS is non-negative then LHS <s RHS. If RHS is negative then - // LHS >s RHS. - case ICmpInst::ICMP_SGT: - case ICmpInst::ICMP_SGE: - return CI->getValue().isNegative() ? - ConstantInt::getTrue(CI->getContext()) : - ConstantInt::getFalse(CI->getContext()); - case ICmpInst::ICMP_SLT: - case ICmpInst::ICMP_SLE: - return CI->getValue().isNegative() ? - ConstantInt::getFalse(CI->getContext()) : - ConstantInt::getTrue(CI->getContext()); - - // If LHS is non-negative then LHS <u RHS. If LHS is negative then - // LHS >u RHS. - case ICmpInst::ICMP_UGT: - case ICmpInst::ICMP_UGE: - // Comparison is true iff the LHS <s 0. - if (MaxRecurse) - if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp, - Constant::getNullValue(SrcTy), - Q, MaxRecurse-1)) - return V; - break; - case ICmpInst::ICMP_ULT: - case ICmpInst::ICMP_ULE: - // Comparison is true iff the LHS >=s 0. - if (MaxRecurse) - if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp, - Constant::getNullValue(SrcTy), - Q, MaxRecurse-1)) - return V; - break; - } - } - } - } - } - - // icmp eq|ne X, Y -> false|true if X != Y - if (ICmpInst::isEquality(Pred) && - isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) { - return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy); - } - - if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse)) - return V; - - if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse)) - return V; - - if (Value *V = simplifyICmpWithAbsNabs(Pred, LHS, RHS)) - return V; - - // Simplify comparisons of related pointers using a powerful, recursive - // GEP-walk when we have target data available.. - if (LHS->getType()->isPointerTy()) - if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI, - Q.IIQ, LHS, RHS)) - return C; - if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS)) - if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS)) - if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) == - Q.DL.getTypeSizeInBits(CLHS->getType()) && - Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) == - Q.DL.getTypeSizeInBits(CRHS->getType())) - if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI, - Q.IIQ, CLHS->getPointerOperand(), - CRHS->getPointerOperand())) - return C; - - if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) { - if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) { - if (GLHS->getPointerOperand() == GRHS->getPointerOperand() && - GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() && - (ICmpInst::isEquality(Pred) || - (GLHS->isInBounds() && GRHS->isInBounds() && - Pred == ICmpInst::getSignedPredicate(Pred)))) { - // The bases are equal and the indices are constant. Build a constant - // expression GEP with the same indices and a null base pointer to see - // what constant folding can make out of it. - Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType()); - SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end()); - Constant *NewLHS = ConstantExpr::getGetElementPtr( - GLHS->getSourceElementType(), Null, IndicesLHS); - - SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end()); - Constant *NewRHS = ConstantExpr::getGetElementPtr( - GLHS->getSourceElementType(), Null, IndicesRHS); - return ConstantExpr::getICmp(Pred, NewLHS, NewRHS); - } - } - } - - // If the comparison is with the result of a select instruction, check whether - // comparing with either branch of the select always yields the same value. - if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) - if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) - return V; - - // If the comparison is with the result of a phi instruction, check whether - // doing the compare with each incoming phi value yields a common result. - if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) - if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) - return V; - - return nullptr; -} - -Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, - const SimplifyQuery &Q) { - return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit); -} - -/// Given operands for an FCmpInst, see if we can fold the result. -/// If not, this returns null. -static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, - FastMathFlags FMF, const SimplifyQuery &Q, - unsigned MaxRecurse) { - CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; - assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); - - if (Constant *CLHS = dyn_cast<Constant>(LHS)) { - if (Constant *CRHS = dyn_cast<Constant>(RHS)) - return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); - - // If we have a constant, make sure it is on the RHS. - std::swap(LHS, RHS); - Pred = CmpInst::getSwappedPredicate(Pred); - } - - // Fold trivial predicates. - Type *RetTy = GetCompareTy(LHS); - if (Pred == FCmpInst::FCMP_FALSE) - return getFalse(RetTy); - if (Pred == FCmpInst::FCMP_TRUE) - return getTrue(RetTy); - - // Fold (un)ordered comparison if we can determine there are no NaNs. - if (Pred == FCmpInst::FCMP_UNO || Pred == FCmpInst::FCMP_ORD) - if (FMF.noNaNs() || - (isKnownNeverNaN(LHS, Q.TLI) && isKnownNeverNaN(RHS, Q.TLI))) - return ConstantInt::get(RetTy, Pred == FCmpInst::FCMP_ORD); - - // NaN is unordered; NaN is not ordered. - assert((FCmpInst::isOrdered(Pred) || FCmpInst::isUnordered(Pred)) && - "Comparison must be either ordered or unordered"); - if (match(RHS, m_NaN())) - return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); - - // fcmp pred x, undef and fcmp pred undef, x - // fold to true if unordered, false if ordered - if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) { - // Choosing NaN for the undef will always make unordered comparison succeed - // and ordered comparison fail. - return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); - } - - // fcmp x,x -> true/false. Not all compares are foldable. - if (LHS == RHS) { - if (CmpInst::isTrueWhenEqual(Pred)) - return getTrue(RetTy); - if (CmpInst::isFalseWhenEqual(Pred)) - return getFalse(RetTy); - } - - // Handle fcmp with constant RHS. - const APFloat *C; - if (match(RHS, m_APFloat(C))) { - // Check whether the constant is an infinity. - if (C->isInfinity()) { - if (C->isNegative()) { - switch (Pred) { - case FCmpInst::FCMP_OLT: - // No value is ordered and less than negative infinity. - return getFalse(RetTy); - case FCmpInst::FCMP_UGE: - // All values are unordered with or at least negative infinity. - return getTrue(RetTy); - default: - break; - } - } else { - switch (Pred) { - case FCmpInst::FCMP_OGT: - // No value is ordered and greater than infinity. - return getFalse(RetTy); - case FCmpInst::FCMP_ULE: - // All values are unordered with and at most infinity. - return getTrue(RetTy); - default: - break; - } - } - } - if (C->isZero()) { - switch (Pred) { - case FCmpInst::FCMP_OGE: - if (FMF.noNaNs() && CannotBeOrderedLessThanZero(LHS, Q.TLI)) - return getTrue(RetTy); - break; - case FCmpInst::FCMP_UGE: - if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) - return getTrue(RetTy); - break; - case FCmpInst::FCMP_ULT: - if (FMF.noNaNs() && CannotBeOrderedLessThanZero(LHS, Q.TLI)) - return getFalse(RetTy); - break; - case FCmpInst::FCMP_OLT: - if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) - return getFalse(RetTy); - break; - default: - break; - } - } else if (C->isNegative()) { - assert(!C->isNaN() && "Unexpected NaN constant!"); - // TODO: We can catch more cases by using a range check rather than - // relying on CannotBeOrderedLessThanZero. - switch (Pred) { - case FCmpInst::FCMP_UGE: - case FCmpInst::FCMP_UGT: - case FCmpInst::FCMP_UNE: - // (X >= 0) implies (X > C) when (C < 0) - if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) - return getTrue(RetTy); - break; - case FCmpInst::FCMP_OEQ: - case FCmpInst::FCMP_OLE: - case FCmpInst::FCMP_OLT: - // (X >= 0) implies !(X < C) when (C < 0) - if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) - return getFalse(RetTy); - break; - default: - break; - } - } - } - - // If the comparison is with the result of a select instruction, check whether - // comparing with either branch of the select always yields the same value. - if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) - if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) - return V; - - // If the comparison is with the result of a phi instruction, check whether - // doing the compare with each incoming phi value yields a common result. - if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) - if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) - return V; - - return nullptr; -} - -Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, - FastMathFlags FMF, const SimplifyQuery &Q) { - return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit); -} - -/// See if V simplifies when its operand Op is replaced with RepOp. -static const Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, - const SimplifyQuery &Q, - unsigned MaxRecurse) { - // Trivial replacement. - if (V == Op) - return RepOp; - - // We cannot replace a constant, and shouldn't even try. - if (isa<Constant>(Op)) - return nullptr; - - auto *I = dyn_cast<Instruction>(V); - if (!I) - return nullptr; - - // If this is a binary operator, try to simplify it with the replaced op. - if (auto *B = dyn_cast<BinaryOperator>(I)) { - // Consider: - // %cmp = icmp eq i32 %x, 2147483647 - // %add = add nsw i32 %x, 1 - // %sel = select i1 %cmp, i32 -2147483648, i32 %add - // - // We can't replace %sel with %add unless we strip away the flags. - if (isa<OverflowingBinaryOperator>(B)) - if (Q.IIQ.hasNoSignedWrap(B) || Q.IIQ.hasNoUnsignedWrap(B)) - return nullptr; - if (isa<PossiblyExactOperator>(B) && Q.IIQ.isExact(B)) - return nullptr; - - if (MaxRecurse) { - if (B->getOperand(0) == Op) - return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), Q, - MaxRecurse - 1); - if (B->getOperand(1) == Op) - return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, Q, - MaxRecurse - 1); - } - } - - // Same for CmpInsts. - if (CmpInst *C = dyn_cast<CmpInst>(I)) { - if (MaxRecurse) { - if (C->getOperand(0) == Op) - return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), Q, - MaxRecurse - 1); - if (C->getOperand(1) == Op) - return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, Q, - MaxRecurse - 1); - } - } - - // Same for GEPs. - if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { - if (MaxRecurse) { - SmallVector<Value *, 8> NewOps(GEP->getNumOperands()); - transform(GEP->operands(), NewOps.begin(), - [&](Value *V) { return V == Op ? RepOp : V; }); - return SimplifyGEPInst(GEP->getSourceElementType(), NewOps, Q, - MaxRecurse - 1); - } - } - - // TODO: We could hand off more cases to instsimplify here. - - // If all operands are constant after substituting Op for RepOp then we can - // constant fold the instruction. - if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) { - // Build a list of all constant operands. - SmallVector<Constant *, 8> ConstOps; - for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { - if (I->getOperand(i) == Op) - ConstOps.push_back(CRepOp); - else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i))) - ConstOps.push_back(COp); - else - break; - } - - // All operands were constants, fold it. - if (ConstOps.size() == I->getNumOperands()) { - if (CmpInst *C = dyn_cast<CmpInst>(I)) - return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0], - ConstOps[1], Q.DL, Q.TLI); - - if (LoadInst *LI = dyn_cast<LoadInst>(I)) - if (!LI->isVolatile()) - return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL); - - return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI); - } - } - - return nullptr; -} - -/// Try to simplify a select instruction when its condition operand is an -/// integer comparison where one operand of the compare is a constant. -static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X, - const APInt *Y, bool TrueWhenUnset) { - const APInt *C; - - // (X & Y) == 0 ? X & ~Y : X --> X - // (X & Y) != 0 ? X & ~Y : X --> X & ~Y - if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) && - *Y == ~*C) - return TrueWhenUnset ? FalseVal : TrueVal; - - // (X & Y) == 0 ? X : X & ~Y --> X & ~Y - // (X & Y) != 0 ? X : X & ~Y --> X - if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) && - *Y == ~*C) - return TrueWhenUnset ? FalseVal : TrueVal; - - if (Y->isPowerOf2()) { - // (X & Y) == 0 ? X | Y : X --> X | Y - // (X & Y) != 0 ? X | Y : X --> X - if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) && - *Y == *C) - return TrueWhenUnset ? TrueVal : FalseVal; - - // (X & Y) == 0 ? X : X | Y --> X - // (X & Y) != 0 ? X : X | Y --> X | Y - if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) && - *Y == *C) - return TrueWhenUnset ? TrueVal : FalseVal; - } - - return nullptr; -} - -/// An alternative way to test if a bit is set or not uses sgt/slt instead of -/// eq/ne. -static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS, - ICmpInst::Predicate Pred, - Value *TrueVal, Value *FalseVal) { - Value *X; - APInt Mask; - if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask)) - return nullptr; - - return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask, - Pred == ICmpInst::ICMP_EQ); -} - -/// Try to simplify a select instruction when its condition operand is an -/// integer comparison. -static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal, - Value *FalseVal, const SimplifyQuery &Q, - unsigned MaxRecurse) { - ICmpInst::Predicate Pred; - Value *CmpLHS, *CmpRHS; - if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)))) - return nullptr; - - if (ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero())) { - Value *X; - const APInt *Y; - if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y)))) - if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y, - Pred == ICmpInst::ICMP_EQ)) - return V; - - // Test for zero-shift-guard-ops around funnel shifts. These are used to - // avoid UB from oversized shifts in raw IR rotate patterns, but the - // intrinsics do not have that problem. - Value *ShAmt; - auto isFsh = m_CombineOr(m_Intrinsic<Intrinsic::fshl>(m_Value(X), m_Value(), - m_Value(ShAmt)), - m_Intrinsic<Intrinsic::fshr>(m_Value(), m_Value(X), - m_Value(ShAmt))); - // (ShAmt != 0) ? fshl(X, *, ShAmt) : X --> fshl(X, *, ShAmt) - // (ShAmt != 0) ? fshr(*, X, ShAmt) : X --> fshr(*, X, ShAmt) - // (ShAmt == 0) ? fshl(X, *, ShAmt) : X --> X - // (ShAmt == 0) ? fshr(*, X, ShAmt) : X --> X - if (match(TrueVal, isFsh) && FalseVal == X && CmpLHS == ShAmt) - return Pred == ICmpInst::ICMP_NE ? TrueVal : X; - - // (ShAmt == 0) ? X : fshl(X, *, ShAmt) --> fshl(X, *, ShAmt) - // (ShAmt == 0) ? X : fshr(*, X, ShAmt) --> fshr(*, X, ShAmt) - // (ShAmt != 0) ? X : fshl(X, *, ShAmt) --> X - // (ShAmt != 0) ? X : fshr(*, X, ShAmt) --> X - if (match(FalseVal, isFsh) && TrueVal == X && CmpLHS == ShAmt) - return Pred == ICmpInst::ICMP_EQ ? FalseVal : X; - } - - // Check for other compares that behave like bit test. - if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred, - TrueVal, FalseVal)) - return V; - - // If we have an equality comparison, then we know the value in one of the - // arms of the select. See if substituting this value into the arm and - // simplifying the result yields the same value as the other arm. - if (Pred == ICmpInst::ICMP_EQ) { - if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == - TrueVal || - SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == - TrueVal) - return FalseVal; - if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == - FalseVal || - SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == - FalseVal) - return FalseVal; - } else if (Pred == ICmpInst::ICMP_NE) { - if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == - FalseVal || - SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == - FalseVal) - return TrueVal; - if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == - TrueVal || - SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == - TrueVal) - return TrueVal; - } - - return nullptr; -} - -/// Try to simplify a select instruction when its condition operand is a -/// floating-point comparison. -static Value *simplifySelectWithFCmp(Value *Cond, Value *T, Value *F) { - FCmpInst::Predicate Pred; - if (!match(Cond, m_FCmp(Pred, m_Specific(T), m_Specific(F))) && - !match(Cond, m_FCmp(Pred, m_Specific(F), m_Specific(T)))) - return nullptr; - - // TODO: The transform may not be valid with -0.0. An incomplete way of - // testing for that possibility is to check if at least one operand is a - // non-zero constant. - const APFloat *C; - if ((match(T, m_APFloat(C)) && C->isNonZero()) || - (match(F, m_APFloat(C)) && C->isNonZero())) { - // (T == F) ? T : F --> F - // (F == T) ? T : F --> F - if (Pred == FCmpInst::FCMP_OEQ) - return F; - - // (T != F) ? T : F --> T - // (F != T) ? T : F --> T - if (Pred == FCmpInst::FCMP_UNE) - return T; - } - - return nullptr; -} - -/// Given operands for a SelectInst, see if we can fold the result. -/// If not, this returns null. -static Value *SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, - const SimplifyQuery &Q, unsigned MaxRecurse) { - if (auto *CondC = dyn_cast<Constant>(Cond)) { - if (auto *TrueC = dyn_cast<Constant>(TrueVal)) - if (auto *FalseC = dyn_cast<Constant>(FalseVal)) - return ConstantFoldSelectInstruction(CondC, TrueC, FalseC); - - // select undef, X, Y -> X or Y - if (isa<UndefValue>(CondC)) - return isa<Constant>(FalseVal) ? FalseVal : TrueVal; - - // TODO: Vector constants with undef elements don't simplify. - - // select true, X, Y -> X - if (CondC->isAllOnesValue()) - return TrueVal; - // select false, X, Y -> Y - if (CondC->isNullValue()) - return FalseVal; - } - - // select ?, X, X -> X - if (TrueVal == FalseVal) - return TrueVal; - - if (isa<UndefValue>(TrueVal)) // select ?, undef, X -> X - return FalseVal; - if (isa<UndefValue>(FalseVal)) // select ?, X, undef -> X - return TrueVal; - - if (Value *V = - simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse)) - return V; - - if (Value *V = simplifySelectWithFCmp(Cond, TrueVal, FalseVal)) - return V; - - if (Value *V = foldSelectWithBinaryOp(Cond, TrueVal, FalseVal)) - return V; - - Optional<bool> Imp = isImpliedByDomCondition(Cond, Q.CxtI, Q.DL); - if (Imp) - return *Imp ? TrueVal : FalseVal; - - return nullptr; -} - -Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, - const SimplifyQuery &Q) { - return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit); -} - -/// Given operands for an GetElementPtrInst, see if we can fold the result. -/// If not, this returns null. -static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, - const SimplifyQuery &Q, unsigned) { - // The type of the GEP pointer operand. - unsigned AS = - cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace(); - - // getelementptr P -> P. - if (Ops.size() == 1) - return Ops[0]; - - // Compute the (pointer) type returned by the GEP instruction. - Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1)); - Type *GEPTy = PointerType::get(LastType, AS); - if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType())) - GEPTy = VectorType::get(GEPTy, VT->getNumElements()); - else if (VectorType *VT = dyn_cast<VectorType>(Ops[1]->getType())) - GEPTy = VectorType::get(GEPTy, VT->getNumElements()); - - if (isa<UndefValue>(Ops[0])) - return UndefValue::get(GEPTy); - - if (Ops.size() == 2) { - // getelementptr P, 0 -> P. - if (match(Ops[1], m_Zero()) && Ops[0]->getType() == GEPTy) - return Ops[0]; - - Type *Ty = SrcTy; - if (Ty->isSized()) { - Value *P; - uint64_t C; - uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty); - // getelementptr P, N -> P if P points to a type of zero size. - if (TyAllocSize == 0 && Ops[0]->getType() == GEPTy) - return Ops[0]; - - // The following transforms are only safe if the ptrtoint cast - // doesn't truncate the pointers. - if (Ops[1]->getType()->getScalarSizeInBits() == - Q.DL.getIndexSizeInBits(AS)) { - auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * { - if (match(P, m_Zero())) - return Constant::getNullValue(GEPTy); - Value *Temp; - if (match(P, m_PtrToInt(m_Value(Temp)))) - if (Temp->getType() == GEPTy) - return Temp; - return nullptr; - }; - - // getelementptr V, (sub P, V) -> P if P points to a type of size 1. - if (TyAllocSize == 1 && - match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))))) - if (Value *R = PtrToIntOrZero(P)) - return R; - - // getelementptr V, (ashr (sub P, V), C) -> Q - // if P points to a type of size 1 << C. - if (match(Ops[1], - m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), - m_ConstantInt(C))) && - TyAllocSize == 1ULL << C) - if (Value *R = PtrToIntOrZero(P)) - return R; - - // getelementptr V, (sdiv (sub P, V), C) -> Q - // if P points to a type of size C. - if (match(Ops[1], - m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), - m_SpecificInt(TyAllocSize)))) - if (Value *R = PtrToIntOrZero(P)) - return R; - } - } - } - - if (Q.DL.getTypeAllocSize(LastType) == 1 && - all_of(Ops.slice(1).drop_back(1), - [](Value *Idx) { return match(Idx, m_Zero()); })) { - unsigned IdxWidth = - Q.DL.getIndexSizeInBits(Ops[0]->getType()->getPointerAddressSpace()); - if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == IdxWidth) { - APInt BasePtrOffset(IdxWidth, 0); - Value *StrippedBasePtr = - Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL, - BasePtrOffset); - - // gep (gep V, C), (sub 0, V) -> C - if (match(Ops.back(), - m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr))))) { - auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset); - return ConstantExpr::getIntToPtr(CI, GEPTy); - } - // gep (gep V, C), (xor V, -1) -> C-1 - if (match(Ops.back(), - m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes()))) { - auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1); - return ConstantExpr::getIntToPtr(CI, GEPTy); - } - } - } - - // Check to see if this is constant foldable. - if (!all_of(Ops, [](Value *V) { return isa<Constant>(V); })) - return nullptr; - - auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]), - Ops.slice(1)); - if (auto *CEFolded = ConstantFoldConstant(CE, Q.DL)) - return CEFolded; - return CE; -} - -Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, - const SimplifyQuery &Q) { - return ::SimplifyGEPInst(SrcTy, Ops, Q, RecursionLimit); -} - -/// Given operands for an InsertValueInst, see if we can fold the result. -/// If not, this returns null. -static Value *SimplifyInsertValueInst(Value *Agg, Value *Val, - ArrayRef<unsigned> Idxs, const SimplifyQuery &Q, - unsigned) { - if (Constant *CAgg = dyn_cast<Constant>(Agg)) - if (Constant *CVal = dyn_cast<Constant>(Val)) - return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs); - - // insertvalue x, undef, n -> x - if (match(Val, m_Undef())) - return Agg; - - // insertvalue x, (extractvalue y, n), n - if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val)) - if (EV->getAggregateOperand()->getType() == Agg->getType() && - EV->getIndices() == Idxs) { - // insertvalue undef, (extractvalue y, n), n -> y - if (match(Agg, m_Undef())) - return EV->getAggregateOperand(); - - // insertvalue y, (extractvalue y, n), n -> y - if (Agg == EV->getAggregateOperand()) - return Agg; - } - - return nullptr; -} - -Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val, - ArrayRef<unsigned> Idxs, - const SimplifyQuery &Q) { - return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit); -} - -Value *llvm::SimplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx, - const SimplifyQuery &Q) { - // Try to constant fold. - auto *VecC = dyn_cast<Constant>(Vec); - auto *ValC = dyn_cast<Constant>(Val); - auto *IdxC = dyn_cast<Constant>(Idx); - if (VecC && ValC && IdxC) - return ConstantFoldInsertElementInstruction(VecC, ValC, IdxC); - - // Fold into undef if index is out of bounds. - if (auto *CI = dyn_cast<ConstantInt>(Idx)) { - uint64_t NumElements = cast<VectorType>(Vec->getType())->getNumElements(); - if (CI->uge(NumElements)) - return UndefValue::get(Vec->getType()); - } - - // If index is undef, it might be out of bounds (see above case) - if (isa<UndefValue>(Idx)) - return UndefValue::get(Vec->getType()); - - return nullptr; -} - -/// Given operands for an ExtractValueInst, see if we can fold the result. -/// If not, this returns null. -static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, - const SimplifyQuery &, unsigned) { - if (auto *CAgg = dyn_cast<Constant>(Agg)) - return ConstantFoldExtractValueInstruction(CAgg, Idxs); - - // extractvalue x, (insertvalue y, elt, n), n -> elt - unsigned NumIdxs = Idxs.size(); - for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr; - IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) { - ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices(); - unsigned NumInsertValueIdxs = InsertValueIdxs.size(); - unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs); - if (InsertValueIdxs.slice(0, NumCommonIdxs) == - Idxs.slice(0, NumCommonIdxs)) { - if (NumIdxs == NumInsertValueIdxs) - return IVI->getInsertedValueOperand(); - break; - } - } - - return nullptr; -} - -Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, - const SimplifyQuery &Q) { - return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit); -} - -/// Given operands for an ExtractElementInst, see if we can fold the result. -/// If not, this returns null. -static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, const SimplifyQuery &, - unsigned) { - if (auto *CVec = dyn_cast<Constant>(Vec)) { - if (auto *CIdx = dyn_cast<Constant>(Idx)) - return ConstantFoldExtractElementInstruction(CVec, CIdx); - - // The index is not relevant if our vector is a splat. - if (auto *Splat = CVec->getSplatValue()) - return Splat; - - if (isa<UndefValue>(Vec)) - return UndefValue::get(Vec->getType()->getVectorElementType()); - } - - // If extracting a specified index from the vector, see if we can recursively - // find a previously computed scalar that was inserted into the vector. - if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) { - if (IdxC->getValue().uge(Vec->getType()->getVectorNumElements())) - // definitely out of bounds, thus undefined result - return UndefValue::get(Vec->getType()->getVectorElementType()); - if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue())) - return Elt; - } - - // An undef extract index can be arbitrarily chosen to be an out-of-range - // index value, which would result in the instruction being undef. - if (isa<UndefValue>(Idx)) - return UndefValue::get(Vec->getType()->getVectorElementType()); - - return nullptr; -} - -Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx, - const SimplifyQuery &Q) { - return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit); -} - -/// See if we can fold the given phi. If not, returns null. -static Value *SimplifyPHINode(PHINode *PN, const SimplifyQuery &Q) { - // If all of the PHI's incoming values are the same then replace the PHI node - // with the common value. - Value *CommonValue = nullptr; - bool HasUndefInput = false; - for (Value *Incoming : PN->incoming_values()) { - // If the incoming value is the phi node itself, it can safely be skipped. - if (Incoming == PN) continue; - if (isa<UndefValue>(Incoming)) { - // Remember that we saw an undef value, but otherwise ignore them. - HasUndefInput = true; - continue; - } - if (CommonValue && Incoming != CommonValue) - return nullptr; // Not the same, bail out. - CommonValue = Incoming; - } - - // If CommonValue is null then all of the incoming values were either undef or - // equal to the phi node itself. - if (!CommonValue) - return UndefValue::get(PN->getType()); - - // If we have a PHI node like phi(X, undef, X), where X is defined by some - // instruction, we cannot return X as the result of the PHI node unless it - // dominates the PHI block. - if (HasUndefInput) - return valueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr; - - return CommonValue; -} - -static Value *SimplifyCastInst(unsigned CastOpc, Value *Op, - Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) { - if (auto *C = dyn_cast<Constant>(Op)) - return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL); - - if (auto *CI = dyn_cast<CastInst>(Op)) { - auto *Src = CI->getOperand(0); - Type *SrcTy = Src->getType(); - Type *MidTy = CI->getType(); - Type *DstTy = Ty; - if (Src->getType() == Ty) { - auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode()); - auto SecondOp = static_cast<Instruction::CastOps>(CastOpc); - Type *SrcIntPtrTy = - SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr; - Type *MidIntPtrTy = - MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr; - Type *DstIntPtrTy = - DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr; - if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy, - SrcIntPtrTy, MidIntPtrTy, - DstIntPtrTy) == Instruction::BitCast) - return Src; - } - } - - // bitcast x -> x - if (CastOpc == Instruction::BitCast) - if (Op->getType() == Ty) - return Op; - - return nullptr; -} - -Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, - const SimplifyQuery &Q) { - return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit); -} - -/// For the given destination element of a shuffle, peek through shuffles to -/// match a root vector source operand that contains that element in the same -/// vector lane (ie, the same mask index), so we can eliminate the shuffle(s). -static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1, - int MaskVal, Value *RootVec, - unsigned MaxRecurse) { - if (!MaxRecurse--) - return nullptr; - - // Bail out if any mask value is undefined. That kind of shuffle may be - // simplified further based on demanded bits or other folds. - if (MaskVal == -1) - return nullptr; - - // The mask value chooses which source operand we need to look at next. - int InVecNumElts = Op0->getType()->getVectorNumElements(); - int RootElt = MaskVal; - Value *SourceOp = Op0; - if (MaskVal >= InVecNumElts) { - RootElt = MaskVal - InVecNumElts; - SourceOp = Op1; - } - - // If the source operand is a shuffle itself, look through it to find the - // matching root vector. - if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) { - return foldIdentityShuffles( - DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1), - SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse); - } - - // TODO: Look through bitcasts? What if the bitcast changes the vector element - // size? - - // The source operand is not a shuffle. Initialize the root vector value for - // this shuffle if that has not been done yet. - if (!RootVec) - RootVec = SourceOp; - - // Give up as soon as a source operand does not match the existing root value. - if (RootVec != SourceOp) - return nullptr; - - // The element must be coming from the same lane in the source vector - // (although it may have crossed lanes in intermediate shuffles). - if (RootElt != DestElt) - return nullptr; - - return RootVec; -} - -static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask, - Type *RetTy, const SimplifyQuery &Q, - unsigned MaxRecurse) { - if (isa<UndefValue>(Mask)) - return UndefValue::get(RetTy); - - Type *InVecTy = Op0->getType(); - unsigned MaskNumElts = Mask->getType()->getVectorNumElements(); - unsigned InVecNumElts = InVecTy->getVectorNumElements(); - - SmallVector<int, 32> Indices; - ShuffleVectorInst::getShuffleMask(Mask, Indices); - assert(MaskNumElts == Indices.size() && - "Size of Indices not same as number of mask elements?"); - - // Canonicalization: If mask does not select elements from an input vector, - // replace that input vector with undef. - bool MaskSelects0 = false, MaskSelects1 = false; - for (unsigned i = 0; i != MaskNumElts; ++i) { - if (Indices[i] == -1) - continue; - if ((unsigned)Indices[i] < InVecNumElts) - MaskSelects0 = true; - else - MaskSelects1 = true; - } - if (!MaskSelects0) - Op0 = UndefValue::get(InVecTy); - if (!MaskSelects1) - Op1 = UndefValue::get(InVecTy); - - auto *Op0Const = dyn_cast<Constant>(Op0); - auto *Op1Const = dyn_cast<Constant>(Op1); - - // If all operands are constant, constant fold the shuffle. - if (Op0Const && Op1Const) - return ConstantFoldShuffleVectorInstruction(Op0Const, Op1Const, Mask); - - // Canonicalization: if only one input vector is constant, it shall be the - // second one. - if (Op0Const && !Op1Const) { - std::swap(Op0, Op1); - ShuffleVectorInst::commuteShuffleMask(Indices, InVecNumElts); - } - - // A shuffle of a splat is always the splat itself. Legal if the shuffle's - // value type is same as the input vectors' type. - if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0)) - if (isa<UndefValue>(Op1) && RetTy == InVecTy && - OpShuf->getMask()->getSplatValue()) - return Op0; - - // Don't fold a shuffle with undef mask elements. This may get folded in a - // better way using demanded bits or other analysis. - // TODO: Should we allow this? - if (find(Indices, -1) != Indices.end()) - return nullptr; - - // Check if every element of this shuffle can be mapped back to the - // corresponding element of a single root vector. If so, we don't need this - // shuffle. This handles simple identity shuffles as well as chains of - // shuffles that may widen/narrow and/or move elements across lanes and back. - Value *RootVec = nullptr; - for (unsigned i = 0; i != MaskNumElts; ++i) { - // Note that recursion is limited for each vector element, so if any element - // exceeds the limit, this will fail to simplify. - RootVec = - foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse); - - // We can't replace a widening/narrowing shuffle with one of its operands. - if (!RootVec || RootVec->getType() != RetTy) - return nullptr; - } - return RootVec; -} - -/// Given operands for a ShuffleVectorInst, fold the result or return null. -Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask, - Type *RetTy, const SimplifyQuery &Q) { - return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit); -} - -static Constant *propagateNaN(Constant *In) { - // If the input is a vector with undef elements, just return a default NaN. - if (!In->isNaN()) - return ConstantFP::getNaN(In->getType()); - - // Propagate the existing NaN constant when possible. - // TODO: Should we quiet a signaling NaN? - return In; -} - -static Constant *simplifyFPBinop(Value *Op0, Value *Op1) { - if (isa<UndefValue>(Op0) || isa<UndefValue>(Op1)) - return ConstantFP::getNaN(Op0->getType()); - - if (match(Op0, m_NaN())) - return propagateNaN(cast<Constant>(Op0)); - if (match(Op1, m_NaN())) - return propagateNaN(cast<Constant>(Op1)); - - return nullptr; -} - -/// Given operands for an FAdd, see if we can fold the result. If not, this -/// returns null. -static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, - const SimplifyQuery &Q, unsigned MaxRecurse) { - if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q)) - return C; - - if (Constant *C = simplifyFPBinop(Op0, Op1)) - return C; - - // fadd X, -0 ==> X - if (match(Op1, m_NegZeroFP())) - return Op0; - - // fadd X, 0 ==> X, when we know X is not -0 - if (match(Op1, m_PosZeroFP()) && - (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) - return Op0; - - // With nnan: (+/-0.0 - X) + X --> 0.0 (and commuted variant) - // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN. - // Negative zeros are allowed because we always end up with positive zero: - // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 - // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 - // X = 0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0 - // X = 0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0 - if (FMF.noNaNs() && (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) || - match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0))))) - return ConstantFP::getNullValue(Op0->getType()); - - // (X - Y) + Y --> X - // Y + (X - Y) --> X - Value *X; - if (FMF.noSignedZeros() && FMF.allowReassoc() && - (match(Op0, m_FSub(m_Value(X), m_Specific(Op1))) || - match(Op1, m_FSub(m_Value(X), m_Specific(Op0))))) - return X; - - return nullptr; -} - -/// Given operands for an FSub, see if we can fold the result. If not, this -/// returns null. -static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, - const SimplifyQuery &Q, unsigned MaxRecurse) { - if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q)) - return C; - - if (Constant *C = simplifyFPBinop(Op0, Op1)) - return C; - - // fsub X, +0 ==> X - if (match(Op1, m_PosZeroFP())) - return Op0; - - // fsub X, -0 ==> X, when we know X is not -0 - if (match(Op1, m_NegZeroFP()) && - (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) - return Op0; - - // fsub -0.0, (fsub -0.0, X) ==> X - Value *X; - if (match(Op0, m_NegZeroFP()) && - match(Op1, m_FSub(m_NegZeroFP(), m_Value(X)))) - return X; - - // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored. - if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) && - match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X)))) - return X; - - // fsub nnan x, x ==> 0.0 - if (FMF.noNaNs() && Op0 == Op1) - return Constant::getNullValue(Op0->getType()); - - // Y - (Y - X) --> X - // (X + Y) - Y --> X - if (FMF.noSignedZeros() && FMF.allowReassoc() && - (match(Op1, m_FSub(m_Specific(Op0), m_Value(X))) || - match(Op0, m_c_FAdd(m_Specific(Op1), m_Value(X))))) - return X; - - return nullptr; -} - -/// Given the operands for an FMul, see if we can fold the result -static Value *SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, - const SimplifyQuery &Q, unsigned MaxRecurse) { - if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q)) - return C; - - if (Constant *C = simplifyFPBinop(Op0, Op1)) - return C; - - // fmul X, 1.0 ==> X - if (match(Op1, m_FPOne())) - return Op0; - - // fmul nnan nsz X, 0 ==> 0 - if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZeroFP())) - return ConstantFP::getNullValue(Op0->getType()); - - // sqrt(X) * sqrt(X) --> X, if we can: - // 1. Remove the intermediate rounding (reassociate). - // 2. Ignore non-zero negative numbers because sqrt would produce NAN. - // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0. - Value *X; - if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) && - FMF.allowReassoc() && FMF.noNaNs() && FMF.noSignedZeros()) - return X; - - return nullptr; -} - -Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, - const SimplifyQuery &Q) { - return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit); -} - - -Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, - const SimplifyQuery &Q) { - return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit); -} - -Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, - const SimplifyQuery &Q) { - return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit); -} - -static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, - const SimplifyQuery &Q, unsigned) { - if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q)) - return C; - - if (Constant *C = simplifyFPBinop(Op0, Op1)) - return C; - - // X / 1.0 -> X - if (match(Op1, m_FPOne())) - return Op0; - - // 0 / X -> 0 - // Requires that NaNs are off (X could be zero) and signed zeroes are - // ignored (X could be positive or negative, so the output sign is unknown). - if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP())) - return ConstantFP::getNullValue(Op0->getType()); - - if (FMF.noNaNs()) { - // X / X -> 1.0 is legal when NaNs are ignored. - // We can ignore infinities because INF/INF is NaN. - if (Op0 == Op1) - return ConstantFP::get(Op0->getType(), 1.0); - - // (X * Y) / Y --> X if we can reassociate to the above form. - Value *X; - if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1)))) - return X; - - // -X / X -> -1.0 and - // X / -X -> -1.0 are legal when NaNs are ignored. - // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored. - if (match(Op0, m_FNegNSZ(m_Specific(Op1))) || - match(Op1, m_FNegNSZ(m_Specific(Op0)))) - return ConstantFP::get(Op0->getType(), -1.0); - } - - return nullptr; -} - -Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, - const SimplifyQuery &Q) { - return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit); -} - -static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, - const SimplifyQuery &Q, unsigned) { - if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q)) - return C; - - if (Constant *C = simplifyFPBinop(Op0, Op1)) - return C; - - // Unlike fdiv, the result of frem always matches the sign of the dividend. - // The constant match may include undef elements in a vector, so return a full - // zero constant as the result. - if (FMF.noNaNs()) { - // +0 % X -> 0 - if (match(Op0, m_PosZeroFP())) - return ConstantFP::getNullValue(Op0->getType()); - // -0 % X -> -0 - if (match(Op0, m_NegZeroFP())) - return ConstantFP::getNegativeZero(Op0->getType()); - } - - return nullptr; -} - -Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, - const SimplifyQuery &Q) { - return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit); -} - -//=== Helper functions for higher up the class hierarchy. - -/// Given operands for a BinaryOperator, see if we can fold the result. -/// If not, this returns null. -static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, - const SimplifyQuery &Q, unsigned MaxRecurse) { - switch (Opcode) { - case Instruction::Add: - return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse); - case Instruction::Sub: - return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse); - case Instruction::Mul: - return SimplifyMulInst(LHS, RHS, Q, MaxRecurse); - case Instruction::SDiv: - return SimplifySDivInst(LHS, RHS, Q, MaxRecurse); - case Instruction::UDiv: - return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse); - case Instruction::SRem: - return SimplifySRemInst(LHS, RHS, Q, MaxRecurse); - case Instruction::URem: - return SimplifyURemInst(LHS, RHS, Q, MaxRecurse); - case Instruction::Shl: - return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse); - case Instruction::LShr: - return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse); - case Instruction::AShr: - return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse); - case Instruction::And: - return SimplifyAndInst(LHS, RHS, Q, MaxRecurse); - case Instruction::Or: - return SimplifyOrInst(LHS, RHS, Q, MaxRecurse); - case Instruction::Xor: - return SimplifyXorInst(LHS, RHS, Q, MaxRecurse); - case Instruction::FAdd: - return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); - case Instruction::FSub: - return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); - case Instruction::FMul: - return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); - case Instruction::FDiv: - return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); - case Instruction::FRem: - return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); - default: - llvm_unreachable("Unexpected opcode"); - } -} - -/// Given operands for a BinaryOperator, see if we can fold the result. -/// If not, this returns null. -/// In contrast to SimplifyBinOp, try to use FastMathFlag when folding the -/// result. In case we don't need FastMathFlags, simply fall to SimplifyBinOp. -static Value *SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS, - const FastMathFlags &FMF, const SimplifyQuery &Q, - unsigned MaxRecurse) { - switch (Opcode) { - case Instruction::FAdd: - return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse); - case Instruction::FSub: - return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse); - case Instruction::FMul: - return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse); - case Instruction::FDiv: - return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse); - default: - return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse); - } -} - -Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, - const SimplifyQuery &Q) { - return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit); -} - -Value *llvm::SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS, - FastMathFlags FMF, const SimplifyQuery &Q) { - return ::SimplifyFPBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit); -} - -/// Given operands for a CmpInst, see if we can fold the result. -static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, - const SimplifyQuery &Q, unsigned MaxRecurse) { - if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) - return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse); - return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse); -} - -Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, - const SimplifyQuery &Q) { - return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit); -} - -static bool IsIdempotent(Intrinsic::ID ID) { - switch (ID) { - default: return false; - - // Unary idempotent: f(f(x)) = f(x) - case Intrinsic::fabs: - case Intrinsic::floor: - case Intrinsic::ceil: - case Intrinsic::trunc: - case Intrinsic::rint: - case Intrinsic::nearbyint: - case Intrinsic::round: - case Intrinsic::canonicalize: - return true; - } -} - -static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset, - const DataLayout &DL) { - GlobalValue *PtrSym; - APInt PtrOffset; - if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL)) - return nullptr; - - Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext()); - Type *Int32Ty = Type::getInt32Ty(Ptr->getContext()); - Type *Int32PtrTy = Int32Ty->getPointerTo(); - Type *Int64Ty = Type::getInt64Ty(Ptr->getContext()); - - auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset); - if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64) - return nullptr; - - uint64_t OffsetInt = OffsetConstInt->getSExtValue(); - if (OffsetInt % 4 != 0) - return nullptr; - - Constant *C = ConstantExpr::getGetElementPtr( - Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy), - ConstantInt::get(Int64Ty, OffsetInt / 4)); - Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL); - if (!Loaded) - return nullptr; - - auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded); - if (!LoadedCE) - return nullptr; - - if (LoadedCE->getOpcode() == Instruction::Trunc) { - LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); - if (!LoadedCE) - return nullptr; - } - - if (LoadedCE->getOpcode() != Instruction::Sub) - return nullptr; - - auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); - if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt) - return nullptr; - auto *LoadedLHSPtr = LoadedLHS->getOperand(0); - - Constant *LoadedRHS = LoadedCE->getOperand(1); - GlobalValue *LoadedRHSSym; - APInt LoadedRHSOffset; - if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset, - DL) || - PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset) - return nullptr; - - return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy); -} - -static bool maskIsAllZeroOrUndef(Value *Mask) { - auto *ConstMask = dyn_cast<Constant>(Mask); - if (!ConstMask) - return false; - if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask)) - return true; - for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E; - ++I) { - if (auto *MaskElt = ConstMask->getAggregateElement(I)) - if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt)) - continue; - return false; - } - return true; -} - -static Value *simplifyUnaryIntrinsic(Function *F, Value *Op0, - const SimplifyQuery &Q) { - // Idempotent functions return the same result when called repeatedly. - Intrinsic::ID IID = F->getIntrinsicID(); - if (IsIdempotent(IID)) - if (auto *II = dyn_cast<IntrinsicInst>(Op0)) - if (II->getIntrinsicID() == IID) - return II; - - Value *X; - switch (IID) { - case Intrinsic::fabs: - if (SignBitMustBeZero(Op0, Q.TLI)) return Op0; - break; - case Intrinsic::bswap: - // bswap(bswap(x)) -> x - if (match(Op0, m_BSwap(m_Value(X)))) return X; - break; - case Intrinsic::bitreverse: - // bitreverse(bitreverse(x)) -> x - if (match(Op0, m_BitReverse(m_Value(X)))) return X; - break; - case Intrinsic::exp: - // exp(log(x)) -> x - if (Q.CxtI->hasAllowReassoc() && - match(Op0, m_Intrinsic<Intrinsic::log>(m_Value(X)))) return X; - break; - case Intrinsic::exp2: - // exp2(log2(x)) -> x - if (Q.CxtI->hasAllowReassoc() && - match(Op0, m_Intrinsic<Intrinsic::log2>(m_Value(X)))) return X; - break; - case Intrinsic::log: - // log(exp(x)) -> x - if (Q.CxtI->hasAllowReassoc() && - match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X)))) return X; - break; - case Intrinsic::log2: - // log2(exp2(x)) -> x - if (Q.CxtI->hasAllowReassoc() && - match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X)))) return X; - break; - default: - break; - } - - return nullptr; -} - -static Value *simplifyBinaryIntrinsic(Function *F, Value *Op0, Value *Op1, - const SimplifyQuery &Q) { - Intrinsic::ID IID = F->getIntrinsicID(); - Type *ReturnType = F->getReturnType(); - switch (IID) { - case Intrinsic::usub_with_overflow: - case Intrinsic::ssub_with_overflow: - // X - X -> { 0, false } - if (Op0 == Op1) - return Constant::getNullValue(ReturnType); - // X - undef -> undef - // undef - X -> undef - if (isa<UndefValue>(Op0) || isa<UndefValue>(Op1)) - return UndefValue::get(ReturnType); - break; - case Intrinsic::uadd_with_overflow: - case Intrinsic::sadd_with_overflow: - // X + undef -> undef - if (isa<UndefValue>(Op0) || isa<UndefValue>(Op1)) - return UndefValue::get(ReturnType); - break; - case Intrinsic::umul_with_overflow: - case Intrinsic::smul_with_overflow: - // 0 * X -> { 0, false } - // X * 0 -> { 0, false } - if (match(Op0, m_Zero()) || match(Op1, m_Zero())) - return Constant::getNullValue(ReturnType); - // undef * X -> { 0, false } - // X * undef -> { 0, false } - if (match(Op0, m_Undef()) || match(Op1, m_Undef())) - return Constant::getNullValue(ReturnType); - break; - case Intrinsic::uadd_sat: - // sat(MAX + X) -> MAX - // sat(X + MAX) -> MAX - if (match(Op0, m_AllOnes()) || match(Op1, m_AllOnes())) - return Constant::getAllOnesValue(ReturnType); - LLVM_FALLTHROUGH; - case Intrinsic::sadd_sat: - // sat(X + undef) -> -1 - // sat(undef + X) -> -1 - // For unsigned: Assume undef is MAX, thus we saturate to MAX (-1). - // For signed: Assume undef is ~X, in which case X + ~X = -1. - if (match(Op0, m_Undef()) || match(Op1, m_Undef())) - return Constant::getAllOnesValue(ReturnType); - - // X + 0 -> X - if (match(Op1, m_Zero())) - return Op0; - // 0 + X -> X - if (match(Op0, m_Zero())) - return Op1; - break; - case Intrinsic::usub_sat: - // sat(0 - X) -> 0, sat(X - MAX) -> 0 - if (match(Op0, m_Zero()) || match(Op1, m_AllOnes())) - return Constant::getNullValue(ReturnType); - LLVM_FALLTHROUGH; - case Intrinsic::ssub_sat: - // X - X -> 0, X - undef -> 0, undef - X -> 0 - if (Op0 == Op1 || match(Op0, m_Undef()) || match(Op1, m_Undef())) - return Constant::getNullValue(ReturnType); - // X - 0 -> X - if (match(Op1, m_Zero())) - return Op0; - break; - case Intrinsic::load_relative: - if (auto *C0 = dyn_cast<Constant>(Op0)) - if (auto *C1 = dyn_cast<Constant>(Op1)) - return SimplifyRelativeLoad(C0, C1, Q.DL); - break; - case Intrinsic::powi: - if (auto *Power = dyn_cast<ConstantInt>(Op1)) { - // powi(x, 0) -> 1.0 - if (Power->isZero()) - return ConstantFP::get(Op0->getType(), 1.0); - // powi(x, 1) -> x - if (Power->isOne()) - return Op0; - } - break; - case Intrinsic::maxnum: - case Intrinsic::minnum: - case Intrinsic::maximum: - case Intrinsic::minimum: { - // If the arguments are the same, this is a no-op. - if (Op0 == Op1) return Op0; - - // If one argument is undef, return the other argument. - if (match(Op0, m_Undef())) - return Op1; - if (match(Op1, m_Undef())) - return Op0; - - // If one argument is NaN, return other or NaN appropriately. - bool PropagateNaN = IID == Intrinsic::minimum || IID == Intrinsic::maximum; - if (match(Op0, m_NaN())) - return PropagateNaN ? Op0 : Op1; - if (match(Op1, m_NaN())) - return PropagateNaN ? Op1 : Op0; - - // Min/max of the same operation with common operand: - // m(m(X, Y)), X --> m(X, Y) (4 commuted variants) - if (auto *M0 = dyn_cast<IntrinsicInst>(Op0)) - if (M0->getIntrinsicID() == IID && - (M0->getOperand(0) == Op1 || M0->getOperand(1) == Op1)) - return Op0; - if (auto *M1 = dyn_cast<IntrinsicInst>(Op1)) - if (M1->getIntrinsicID() == IID && - (M1->getOperand(0) == Op0 || M1->getOperand(1) == Op0)) - return Op1; - - // min(X, -Inf) --> -Inf (and commuted variant) - // max(X, +Inf) --> +Inf (and commuted variant) - bool UseNegInf = IID == Intrinsic::minnum || IID == Intrinsic::minimum; - const APFloat *C; - if ((match(Op0, m_APFloat(C)) && C->isInfinity() && - C->isNegative() == UseNegInf) || - (match(Op1, m_APFloat(C)) && C->isInfinity() && - C->isNegative() == UseNegInf)) - return ConstantFP::getInfinity(ReturnType, UseNegInf); - - // TODO: minnum(nnan x, inf) -> x - // TODO: minnum(nnan ninf x, flt_max) -> x - // TODO: maxnum(nnan x, -inf) -> x - // TODO: maxnum(nnan ninf x, -flt_max) -> x - break; - } - default: - break; - } - - return nullptr; -} - -template <typename IterTy> -static Value *simplifyIntrinsic(Function *F, IterTy ArgBegin, IterTy ArgEnd, - const SimplifyQuery &Q) { - // Intrinsics with no operands have some kind of side effect. Don't simplify. - unsigned NumOperands = std::distance(ArgBegin, ArgEnd); - if (NumOperands == 0) - return nullptr; - - Intrinsic::ID IID = F->getIntrinsicID(); - if (NumOperands == 1) - return simplifyUnaryIntrinsic(F, ArgBegin[0], Q); - - if (NumOperands == 2) - return simplifyBinaryIntrinsic(F, ArgBegin[0], ArgBegin[1], Q); - - // Handle intrinsics with 3 or more arguments. - switch (IID) { - case Intrinsic::masked_load: { - Value *MaskArg = ArgBegin[2]; - Value *PassthruArg = ArgBegin[3]; - // If the mask is all zeros or undef, the "passthru" argument is the result. - if (maskIsAllZeroOrUndef(MaskArg)) - return PassthruArg; - return nullptr; - } - case Intrinsic::fshl: - case Intrinsic::fshr: { - Value *Op0 = ArgBegin[0], *Op1 = ArgBegin[1], *ShAmtArg = ArgBegin[2]; - - // If both operands are undef, the result is undef. - if (match(Op0, m_Undef()) && match(Op1, m_Undef())) - return UndefValue::get(F->getReturnType()); - - // If shift amount is undef, assume it is zero. - if (match(ShAmtArg, m_Undef())) - return ArgBegin[IID == Intrinsic::fshl ? 0 : 1]; - - const APInt *ShAmtC; - if (match(ShAmtArg, m_APInt(ShAmtC))) { - // If there's effectively no shift, return the 1st arg or 2nd arg. - // TODO: For vectors, we could check each element of a non-splat constant. - APInt BitWidth = APInt(ShAmtC->getBitWidth(), ShAmtC->getBitWidth()); - if (ShAmtC->urem(BitWidth).isNullValue()) - return ArgBegin[IID == Intrinsic::fshl ? 0 : 1]; - } - return nullptr; - } - default: - return nullptr; - } -} - -template <typename IterTy> -static Value *SimplifyCall(ImmutableCallSite CS, Value *V, IterTy ArgBegin, - IterTy ArgEnd, const SimplifyQuery &Q, - unsigned MaxRecurse) { - Type *Ty = V->getType(); - if (PointerType *PTy = dyn_cast<PointerType>(Ty)) - Ty = PTy->getElementType(); - FunctionType *FTy = cast<FunctionType>(Ty); - - // call undef -> undef - // call null -> undef - if (isa<UndefValue>(V) || isa<ConstantPointerNull>(V)) - return UndefValue::get(FTy->getReturnType()); - - Function *F = dyn_cast<Function>(V); - if (!F) - return nullptr; - - if (F->isIntrinsic()) - if (Value *Ret = simplifyIntrinsic(F, ArgBegin, ArgEnd, Q)) - return Ret; - - if (!canConstantFoldCallTo(CS, F)) - return nullptr; - - SmallVector<Constant *, 4> ConstantArgs; - ConstantArgs.reserve(ArgEnd - ArgBegin); - for (IterTy I = ArgBegin, E = ArgEnd; I != E; ++I) { - Constant *C = dyn_cast<Constant>(*I); - if (!C) - return nullptr; - ConstantArgs.push_back(C); - } - - return ConstantFoldCall(CS, F, ConstantArgs, Q.TLI); -} - -Value *llvm::SimplifyCall(ImmutableCallSite CS, Value *V, - User::op_iterator ArgBegin, User::op_iterator ArgEnd, - const SimplifyQuery &Q) { - return ::SimplifyCall(CS, V, ArgBegin, ArgEnd, Q, RecursionLimit); -} - -Value *llvm::SimplifyCall(ImmutableCallSite CS, Value *V, - ArrayRef<Value *> Args, const SimplifyQuery &Q) { - return ::SimplifyCall(CS, V, Args.begin(), Args.end(), Q, RecursionLimit); -} - -Value *llvm::SimplifyCall(ImmutableCallSite ICS, const SimplifyQuery &Q) { - CallSite CS(const_cast<Instruction*>(ICS.getInstruction())); - return ::SimplifyCall(CS, CS.getCalledValue(), CS.arg_begin(), CS.arg_end(), - Q, RecursionLimit); -} - -/// See if we can compute a simplified version of this instruction. -/// If not, this returns null. - -Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ, - OptimizationRemarkEmitter *ORE) { - const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I); - Value *Result; - - switch (I->getOpcode()) { - default: - Result = ConstantFoldInstruction(I, Q.DL, Q.TLI); - break; - case Instruction::FAdd: - Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1), - I->getFastMathFlags(), Q); - break; - case Instruction::Add: - Result = - SimplifyAddInst(I->getOperand(0), I->getOperand(1), - Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), - Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); - break; - case Instruction::FSub: - Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1), - I->getFastMathFlags(), Q); - break; - case Instruction::Sub: - Result = - SimplifySubInst(I->getOperand(0), I->getOperand(1), - Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), - Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); - break; - case Instruction::FMul: - Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1), - I->getFastMathFlags(), Q); - break; - case Instruction::Mul: - Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), Q); - break; - case Instruction::SDiv: - Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), Q); - break; - case Instruction::UDiv: - Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), Q); - break; - case Instruction::FDiv: - Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), - I->getFastMathFlags(), Q); - break; - case Instruction::SRem: - Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), Q); - break; - case Instruction::URem: - Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), Q); - break; - case Instruction::FRem: - Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), - I->getFastMathFlags(), Q); - break; - case Instruction::Shl: - Result = - SimplifyShlInst(I->getOperand(0), I->getOperand(1), - Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), - Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); - break; - case Instruction::LShr: - Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1), - Q.IIQ.isExact(cast<BinaryOperator>(I)), Q); - break; - case Instruction::AShr: - Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1), - Q.IIQ.isExact(cast<BinaryOperator>(I)), Q); - break; - case Instruction::And: - Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), Q); - break; - case Instruction::Or: - Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), Q); - break; - case Instruction::Xor: - Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), Q); - break; - case Instruction::ICmp: - Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), - I->getOperand(0), I->getOperand(1), Q); - break; - case Instruction::FCmp: - Result = - SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), I->getOperand(0), - I->getOperand(1), I->getFastMathFlags(), Q); - break; - case Instruction::Select: - Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1), - I->getOperand(2), Q); - break; - case Instruction::GetElementPtr: { - SmallVector<Value *, 8> Ops(I->op_begin(), I->op_end()); - Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(), - Ops, Q); - break; - } - case Instruction::InsertValue: { - InsertValueInst *IV = cast<InsertValueInst>(I); - Result = SimplifyInsertValueInst(IV->getAggregateOperand(), - IV->getInsertedValueOperand(), - IV->getIndices(), Q); - break; - } - case Instruction::InsertElement: { - auto *IE = cast<InsertElementInst>(I); - Result = SimplifyInsertElementInst(IE->getOperand(0), IE->getOperand(1), - IE->getOperand(2), Q); - break; - } - case Instruction::ExtractValue: { - auto *EVI = cast<ExtractValueInst>(I); - Result = SimplifyExtractValueInst(EVI->getAggregateOperand(), - EVI->getIndices(), Q); - break; - } - case Instruction::ExtractElement: { - auto *EEI = cast<ExtractElementInst>(I); - Result = SimplifyExtractElementInst(EEI->getVectorOperand(), - EEI->getIndexOperand(), Q); - break; - } - case Instruction::ShuffleVector: { - auto *SVI = cast<ShuffleVectorInst>(I); - Result = SimplifyShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), - SVI->getMask(), SVI->getType(), Q); - break; - } - case Instruction::PHI: - Result = SimplifyPHINode(cast<PHINode>(I), Q); - break; - case Instruction::Call: { - CallSite CS(cast<CallInst>(I)); - Result = SimplifyCall(CS, Q); - break; - } -#define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc: -#include "llvm/IR/Instruction.def" -#undef HANDLE_CAST_INST - Result = - SimplifyCastInst(I->getOpcode(), I->getOperand(0), I->getType(), Q); - break; - case Instruction::Alloca: - // No simplifications for Alloca and it can't be constant folded. - Result = nullptr; - break; - } - - // In general, it is possible for computeKnownBits to determine all bits in a - // value even when the operands are not all constants. - if (!Result && I->getType()->isIntOrIntVectorTy()) { - KnownBits Known = computeKnownBits(I, Q.DL, /*Depth*/ 0, Q.AC, I, Q.DT, ORE); - if (Known.isConstant()) - Result = ConstantInt::get(I->getType(), Known.getConstant()); - } - - /// If called on unreachable code, the above logic may report that the - /// instruction simplified to itself. Make life easier for users by - /// detecting that case here, returning a safe value instead. - return Result == I ? UndefValue::get(I->getType()) : Result; -} - -/// Implementation of recursive simplification through an instruction's -/// uses. -/// -/// This is the common implementation of the recursive simplification routines. -/// If we have a pre-simplified value in 'SimpleV', that is forcibly used to -/// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of -/// instructions to process and attempt to simplify it using -/// InstructionSimplify. -/// -/// This routine returns 'true' only when *it* simplifies something. The passed -/// in simplified value does not count toward this. -static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV, - const TargetLibraryInfo *TLI, - const DominatorTree *DT, - AssumptionCache *AC) { - bool Simplified = false; - SmallSetVector<Instruction *, 8> Worklist; - const DataLayout &DL = I->getModule()->getDataLayout(); - - // If we have an explicit value to collapse to, do that round of the - // simplification loop by hand initially. - if (SimpleV) { - for (User *U : I->users()) - if (U != I) - Worklist.insert(cast<Instruction>(U)); - - // Replace the instruction with its simplified value. - I->replaceAllUsesWith(SimpleV); - - // Gracefully handle edge cases where the instruction is not wired into any - // parent block. - if (I->getParent() && !I->isEHPad() && !I->isTerminator() && - !I->mayHaveSideEffects()) - I->eraseFromParent(); - } else { - Worklist.insert(I); - } - - // Note that we must test the size on each iteration, the worklist can grow. - for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { - I = Worklist[Idx]; - - // See if this instruction simplifies. - SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC}); - if (!SimpleV) - continue; - - Simplified = true; - - // Stash away all the uses of the old instruction so we can check them for - // recursive simplifications after a RAUW. This is cheaper than checking all - // uses of To on the recursive step in most cases. - for (User *U : I->users()) - Worklist.insert(cast<Instruction>(U)); - - // Replace the instruction with its simplified value. - I->replaceAllUsesWith(SimpleV); - - // Gracefully handle edge cases where the instruction is not wired into any - // parent block. - if (I->getParent() && !I->isEHPad() && !I->isTerminator() && - !I->mayHaveSideEffects()) - I->eraseFromParent(); - } - return Simplified; -} - -bool llvm::recursivelySimplifyInstruction(Instruction *I, - const TargetLibraryInfo *TLI, - const DominatorTree *DT, - AssumptionCache *AC) { - return replaceAndRecursivelySimplifyImpl(I, nullptr, TLI, DT, AC); -} - -bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV, - const TargetLibraryInfo *TLI, - const DominatorTree *DT, - AssumptionCache *AC) { - assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!"); - assert(SimpleV && "Must provide a simplified value."); - return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC); -} - -namespace llvm { -const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) { - auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>(); - auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; - auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); - auto *TLI = TLIWP ? &TLIWP->getTLI() : nullptr; - auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>(); - auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr; - return {F.getParent()->getDataLayout(), TLI, DT, AC}; -} - -const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR, - const DataLayout &DL) { - return {DL, &AR.TLI, &AR.DT, &AR.AC}; -} - -template <class T, class... TArgs> -const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM, - Function &F) { - auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F); - auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F); - auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F); - return {F.getParent()->getDataLayout(), TLI, DT, AC}; -} -template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &, - Function &); -} |
