summaryrefslogtreecommitdiffstats
path: root/gnu/llvm/lib/Analysis/InstructionSimplify.cpp
diff options
context:
space:
mode:
authorpatrick <patrick@openbsd.org>2020-08-03 15:06:44 +0000
committerpatrick <patrick@openbsd.org>2020-08-03 15:06:44 +0000
commitb64793999546ed8adebaeebd9d8345d18db8927d (patch)
tree4357c27b561d73b0e089727c6ed659f2ceff5f47 /gnu/llvm/lib/Analysis/InstructionSimplify.cpp
parentAdd support for UTF-8 DISPLAY-HINTs with octet length. For now only (diff)
downloadwireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.tar.xz
wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.zip
Remove LLVM 8.0.1 files.
Diffstat (limited to 'gnu/llvm/lib/Analysis/InstructionSimplify.cpp')
-rw-r--r--gnu/llvm/lib/Analysis/InstructionSimplify.cpp5469
1 files changed, 0 insertions, 5469 deletions
diff --git a/gnu/llvm/lib/Analysis/InstructionSimplify.cpp b/gnu/llvm/lib/Analysis/InstructionSimplify.cpp
deleted file mode 100644
index ccf907c144f..00000000000
--- a/gnu/llvm/lib/Analysis/InstructionSimplify.cpp
+++ /dev/null
@@ -1,5469 +0,0 @@
-//===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements routines for folding instructions into simpler forms
-// that do not require creating new instructions. This does constant folding
-// ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
-// returning a constant ("and i32 %x, 0" -> "0") or an already existing value
-// ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been
-// simplified: This is usually true and assuming it simplifies the logic (if
-// they have not been simplified then results are correct but maybe suboptimal).
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Analysis/InstructionSimplify.h"
-#include "llvm/ADT/SetVector.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/Analysis/AliasAnalysis.h"
-#include "llvm/Analysis/AssumptionCache.h"
-#include "llvm/Analysis/CaptureTracking.h"
-#include "llvm/Analysis/CmpInstAnalysis.h"
-#include "llvm/Analysis/ConstantFolding.h"
-#include "llvm/Analysis/LoopAnalysisManager.h"
-#include "llvm/Analysis/MemoryBuiltins.h"
-#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/Analysis/VectorUtils.h"
-#include "llvm/IR/ConstantRange.h"
-#include "llvm/IR/DataLayout.h"
-#include "llvm/IR/Dominators.h"
-#include "llvm/IR/GetElementPtrTypeIterator.h"
-#include "llvm/IR/GlobalAlias.h"
-#include "llvm/IR/Operator.h"
-#include "llvm/IR/PatternMatch.h"
-#include "llvm/IR/ValueHandle.h"
-#include "llvm/Support/KnownBits.h"
-#include <algorithm>
-using namespace llvm;
-using namespace llvm::PatternMatch;
-
-#define DEBUG_TYPE "instsimplify"
-
-enum { RecursionLimit = 3 };
-
-STATISTIC(NumExpand, "Number of expansions");
-STATISTIC(NumReassoc, "Number of reassociations");
-
-static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned);
-static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &,
- unsigned);
-static Value *SimplifyFPBinOp(unsigned, Value *, Value *, const FastMathFlags &,
- const SimplifyQuery &, unsigned);
-static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &,
- unsigned);
-static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
- const SimplifyQuery &Q, unsigned MaxRecurse);
-static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned);
-static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned);
-static Value *SimplifyCastInst(unsigned, Value *, Type *,
- const SimplifyQuery &, unsigned);
-static Value *SimplifyGEPInst(Type *, ArrayRef<Value *>, const SimplifyQuery &,
- unsigned);
-
-static Value *foldSelectWithBinaryOp(Value *Cond, Value *TrueVal,
- Value *FalseVal) {
- BinaryOperator::BinaryOps BinOpCode;
- if (auto *BO = dyn_cast<BinaryOperator>(Cond))
- BinOpCode = BO->getOpcode();
- else
- return nullptr;
-
- CmpInst::Predicate ExpectedPred, Pred1, Pred2;
- if (BinOpCode == BinaryOperator::Or) {
- ExpectedPred = ICmpInst::ICMP_NE;
- } else if (BinOpCode == BinaryOperator::And) {
- ExpectedPred = ICmpInst::ICMP_EQ;
- } else
- return nullptr;
-
- // %A = icmp eq %TV, %FV
- // %B = icmp eq %X, %Y (and one of these is a select operand)
- // %C = and %A, %B
- // %D = select %C, %TV, %FV
- // -->
- // %FV
-
- // %A = icmp ne %TV, %FV
- // %B = icmp ne %X, %Y (and one of these is a select operand)
- // %C = or %A, %B
- // %D = select %C, %TV, %FV
- // -->
- // %TV
- Value *X, *Y;
- if (!match(Cond, m_c_BinOp(m_c_ICmp(Pred1, m_Specific(TrueVal),
- m_Specific(FalseVal)),
- m_ICmp(Pred2, m_Value(X), m_Value(Y)))) ||
- Pred1 != Pred2 || Pred1 != ExpectedPred)
- return nullptr;
-
- if (X == TrueVal || X == FalseVal || Y == TrueVal || Y == FalseVal)
- return BinOpCode == BinaryOperator::Or ? TrueVal : FalseVal;
-
- return nullptr;
-}
-
-/// For a boolean type or a vector of boolean type, return false or a vector
-/// with every element false.
-static Constant *getFalse(Type *Ty) {
- return ConstantInt::getFalse(Ty);
-}
-
-/// For a boolean type or a vector of boolean type, return true or a vector
-/// with every element true.
-static Constant *getTrue(Type *Ty) {
- return ConstantInt::getTrue(Ty);
-}
-
-/// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
-static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS,
- Value *RHS) {
- CmpInst *Cmp = dyn_cast<CmpInst>(V);
- if (!Cmp)
- return false;
- CmpInst::Predicate CPred = Cmp->getPredicate();
- Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1);
- if (CPred == Pred && CLHS == LHS && CRHS == RHS)
- return true;
- return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS &&
- CRHS == LHS;
-}
-
-/// Does the given value dominate the specified phi node?
-static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
- Instruction *I = dyn_cast<Instruction>(V);
- if (!I)
- // Arguments and constants dominate all instructions.
- return true;
-
- // If we are processing instructions (and/or basic blocks) that have not been
- // fully added to a function, the parent nodes may still be null. Simply
- // return the conservative answer in these cases.
- if (!I->getParent() || !P->getParent() || !I->getFunction())
- return false;
-
- // If we have a DominatorTree then do a precise test.
- if (DT)
- return DT->dominates(I, P);
-
- // Otherwise, if the instruction is in the entry block and is not an invoke,
- // then it obviously dominates all phi nodes.
- if (I->getParent() == &I->getFunction()->getEntryBlock() &&
- !isa<InvokeInst>(I))
- return true;
-
- return false;
-}
-
-/// Simplify "A op (B op' C)" by distributing op over op', turning it into
-/// "(A op B) op' (A op C)". Here "op" is given by Opcode and "op'" is
-/// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS.
-/// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)".
-/// Returns the simplified value, or null if no simplification was performed.
-static Value *ExpandBinOp(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS,
- Instruction::BinaryOps OpcodeToExpand,
- const SimplifyQuery &Q, unsigned MaxRecurse) {
- // Recursion is always used, so bail out at once if we already hit the limit.
- if (!MaxRecurse--)
- return nullptr;
-
- // Check whether the expression has the form "(A op' B) op C".
- if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
- if (Op0->getOpcode() == OpcodeToExpand) {
- // It does! Try turning it into "(A op C) op' (B op C)".
- Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
- // Do "A op C" and "B op C" both simplify?
- if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse))
- if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
- // They do! Return "L op' R" if it simplifies or is already available.
- // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
- if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand)
- && L == B && R == A)) {
- ++NumExpand;
- return LHS;
- }
- // Otherwise return "L op' R" if it simplifies.
- if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
- ++NumExpand;
- return V;
- }
- }
- }
-
- // Check whether the expression has the form "A op (B op' C)".
- if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
- if (Op1->getOpcode() == OpcodeToExpand) {
- // It does! Try turning it into "(A op B) op' (A op C)".
- Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
- // Do "A op B" and "A op C" both simplify?
- if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse))
- if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) {
- // They do! Return "L op' R" if it simplifies or is already available.
- // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
- if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand)
- && L == C && R == B)) {
- ++NumExpand;
- return RHS;
- }
- // Otherwise return "L op' R" if it simplifies.
- if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
- ++NumExpand;
- return V;
- }
- }
- }
-
- return nullptr;
-}
-
-/// Generic simplifications for associative binary operations.
-/// Returns the simpler value, or null if none was found.
-static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode,
- Value *LHS, Value *RHS,
- const SimplifyQuery &Q,
- unsigned MaxRecurse) {
- assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
-
- // Recursion is always used, so bail out at once if we already hit the limit.
- if (!MaxRecurse--)
- return nullptr;
-
- BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
- BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
-
- // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
- if (Op0 && Op0->getOpcode() == Opcode) {
- Value *A = Op0->getOperand(0);
- Value *B = Op0->getOperand(1);
- Value *C = RHS;
-
- // Does "B op C" simplify?
- if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
- // It does! Return "A op V" if it simplifies or is already available.
- // If V equals B then "A op V" is just the LHS.
- if (V == B) return LHS;
- // Otherwise return "A op V" if it simplifies.
- if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) {
- ++NumReassoc;
- return W;
- }
- }
- }
-
- // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
- if (Op1 && Op1->getOpcode() == Opcode) {
- Value *A = LHS;
- Value *B = Op1->getOperand(0);
- Value *C = Op1->getOperand(1);
-
- // Does "A op B" simplify?
- if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) {
- // It does! Return "V op C" if it simplifies or is already available.
- // If V equals B then "V op C" is just the RHS.
- if (V == B) return RHS;
- // Otherwise return "V op C" if it simplifies.
- if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) {
- ++NumReassoc;
- return W;
- }
- }
- }
-
- // The remaining transforms require commutativity as well as associativity.
- if (!Instruction::isCommutative(Opcode))
- return nullptr;
-
- // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
- if (Op0 && Op0->getOpcode() == Opcode) {
- Value *A = Op0->getOperand(0);
- Value *B = Op0->getOperand(1);
- Value *C = RHS;
-
- // Does "C op A" simplify?
- if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
- // It does! Return "V op B" if it simplifies or is already available.
- // If V equals A then "V op B" is just the LHS.
- if (V == A) return LHS;
- // Otherwise return "V op B" if it simplifies.
- if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) {
- ++NumReassoc;
- return W;
- }
- }
- }
-
- // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
- if (Op1 && Op1->getOpcode() == Opcode) {
- Value *A = LHS;
- Value *B = Op1->getOperand(0);
- Value *C = Op1->getOperand(1);
-
- // Does "C op A" simplify?
- if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
- // It does! Return "B op V" if it simplifies or is already available.
- // If V equals C then "B op V" is just the RHS.
- if (V == C) return RHS;
- // Otherwise return "B op V" if it simplifies.
- if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) {
- ++NumReassoc;
- return W;
- }
- }
- }
-
- return nullptr;
-}
-
-/// In the case of a binary operation with a select instruction as an operand,
-/// try to simplify the binop by seeing whether evaluating it on both branches
-/// of the select results in the same value. Returns the common value if so,
-/// otherwise returns null.
-static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS,
- Value *RHS, const SimplifyQuery &Q,
- unsigned MaxRecurse) {
- // Recursion is always used, so bail out at once if we already hit the limit.
- if (!MaxRecurse--)
- return nullptr;
-
- SelectInst *SI;
- if (isa<SelectInst>(LHS)) {
- SI = cast<SelectInst>(LHS);
- } else {
- assert(isa<SelectInst>(RHS) && "No select instruction operand!");
- SI = cast<SelectInst>(RHS);
- }
-
- // Evaluate the BinOp on the true and false branches of the select.
- Value *TV;
- Value *FV;
- if (SI == LHS) {
- TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse);
- FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse);
- } else {
- TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse);
- FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse);
- }
-
- // If they simplified to the same value, then return the common value.
- // If they both failed to simplify then return null.
- if (TV == FV)
- return TV;
-
- // If one branch simplified to undef, return the other one.
- if (TV && isa<UndefValue>(TV))
- return FV;
- if (FV && isa<UndefValue>(FV))
- return TV;
-
- // If applying the operation did not change the true and false select values,
- // then the result of the binop is the select itself.
- if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
- return SI;
-
- // If one branch simplified and the other did not, and the simplified
- // value is equal to the unsimplified one, return the simplified value.
- // For example, select (cond, X, X & Z) & Z -> X & Z.
- if ((FV && !TV) || (TV && !FV)) {
- // Check that the simplified value has the form "X op Y" where "op" is the
- // same as the original operation.
- Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
- if (Simplified && Simplified->getOpcode() == unsigned(Opcode)) {
- // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
- // We already know that "op" is the same as for the simplified value. See
- // if the operands match too. If so, return the simplified value.
- Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
- Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
- Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
- if (Simplified->getOperand(0) == UnsimplifiedLHS &&
- Simplified->getOperand(1) == UnsimplifiedRHS)
- return Simplified;
- if (Simplified->isCommutative() &&
- Simplified->getOperand(1) == UnsimplifiedLHS &&
- Simplified->getOperand(0) == UnsimplifiedRHS)
- return Simplified;
- }
- }
-
- return nullptr;
-}
-
-/// In the case of a comparison with a select instruction, try to simplify the
-/// comparison by seeing whether both branches of the select result in the same
-/// value. Returns the common value if so, otherwise returns null.
-static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
- Value *RHS, const SimplifyQuery &Q,
- unsigned MaxRecurse) {
- // Recursion is always used, so bail out at once if we already hit the limit.
- if (!MaxRecurse--)
- return nullptr;
-
- // Make sure the select is on the LHS.
- if (!isa<SelectInst>(LHS)) {
- std::swap(LHS, RHS);
- Pred = CmpInst::getSwappedPredicate(Pred);
- }
- assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
- SelectInst *SI = cast<SelectInst>(LHS);
- Value *Cond = SI->getCondition();
- Value *TV = SI->getTrueValue();
- Value *FV = SI->getFalseValue();
-
- // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
- // Does "cmp TV, RHS" simplify?
- Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse);
- if (TCmp == Cond) {
- // It not only simplified, it simplified to the select condition. Replace
- // it with 'true'.
- TCmp = getTrue(Cond->getType());
- } else if (!TCmp) {
- // It didn't simplify. However if "cmp TV, RHS" is equal to the select
- // condition then we can replace it with 'true'. Otherwise give up.
- if (!isSameCompare(Cond, Pred, TV, RHS))
- return nullptr;
- TCmp = getTrue(Cond->getType());
- }
-
- // Does "cmp FV, RHS" simplify?
- Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse);
- if (FCmp == Cond) {
- // It not only simplified, it simplified to the select condition. Replace
- // it with 'false'.
- FCmp = getFalse(Cond->getType());
- } else if (!FCmp) {
- // It didn't simplify. However if "cmp FV, RHS" is equal to the select
- // condition then we can replace it with 'false'. Otherwise give up.
- if (!isSameCompare(Cond, Pred, FV, RHS))
- return nullptr;
- FCmp = getFalse(Cond->getType());
- }
-
- // If both sides simplified to the same value, then use it as the result of
- // the original comparison.
- if (TCmp == FCmp)
- return TCmp;
-
- // The remaining cases only make sense if the select condition has the same
- // type as the result of the comparison, so bail out if this is not so.
- if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy())
- return nullptr;
- // If the false value simplified to false, then the result of the compare
- // is equal to "Cond && TCmp". This also catches the case when the false
- // value simplified to false and the true value to true, returning "Cond".
- if (match(FCmp, m_Zero()))
- if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse))
- return V;
- // If the true value simplified to true, then the result of the compare
- // is equal to "Cond || FCmp".
- if (match(TCmp, m_One()))
- if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse))
- return V;
- // Finally, if the false value simplified to true and the true value to
- // false, then the result of the compare is equal to "!Cond".
- if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
- if (Value *V =
- SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()),
- Q, MaxRecurse))
- return V;
-
- return nullptr;
-}
-
-/// In the case of a binary operation with an operand that is a PHI instruction,
-/// try to simplify the binop by seeing whether evaluating it on the incoming
-/// phi values yields the same result for every value. If so returns the common
-/// value, otherwise returns null.
-static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS,
- Value *RHS, const SimplifyQuery &Q,
- unsigned MaxRecurse) {
- // Recursion is always used, so bail out at once if we already hit the limit.
- if (!MaxRecurse--)
- return nullptr;
-
- PHINode *PI;
- if (isa<PHINode>(LHS)) {
- PI = cast<PHINode>(LHS);
- // Bail out if RHS and the phi may be mutually interdependent due to a loop.
- if (!valueDominatesPHI(RHS, PI, Q.DT))
- return nullptr;
- } else {
- assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
- PI = cast<PHINode>(RHS);
- // Bail out if LHS and the phi may be mutually interdependent due to a loop.
- if (!valueDominatesPHI(LHS, PI, Q.DT))
- return nullptr;
- }
-
- // Evaluate the BinOp on the incoming phi values.
- Value *CommonValue = nullptr;
- for (Value *Incoming : PI->incoming_values()) {
- // If the incoming value is the phi node itself, it can safely be skipped.
- if (Incoming == PI) continue;
- Value *V = PI == LHS ?
- SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) :
- SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse);
- // If the operation failed to simplify, or simplified to a different value
- // to previously, then give up.
- if (!V || (CommonValue && V != CommonValue))
- return nullptr;
- CommonValue = V;
- }
-
- return CommonValue;
-}
-
-/// In the case of a comparison with a PHI instruction, try to simplify the
-/// comparison by seeing whether comparing with all of the incoming phi values
-/// yields the same result every time. If so returns the common result,
-/// otherwise returns null.
-static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
- const SimplifyQuery &Q, unsigned MaxRecurse) {
- // Recursion is always used, so bail out at once if we already hit the limit.
- if (!MaxRecurse--)
- return nullptr;
-
- // Make sure the phi is on the LHS.
- if (!isa<PHINode>(LHS)) {
- std::swap(LHS, RHS);
- Pred = CmpInst::getSwappedPredicate(Pred);
- }
- assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
- PHINode *PI = cast<PHINode>(LHS);
-
- // Bail out if RHS and the phi may be mutually interdependent due to a loop.
- if (!valueDominatesPHI(RHS, PI, Q.DT))
- return nullptr;
-
- // Evaluate the BinOp on the incoming phi values.
- Value *CommonValue = nullptr;
- for (Value *Incoming : PI->incoming_values()) {
- // If the incoming value is the phi node itself, it can safely be skipped.
- if (Incoming == PI) continue;
- Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse);
- // If the operation failed to simplify, or simplified to a different value
- // to previously, then give up.
- if (!V || (CommonValue && V != CommonValue))
- return nullptr;
- CommonValue = V;
- }
-
- return CommonValue;
-}
-
-static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode,
- Value *&Op0, Value *&Op1,
- const SimplifyQuery &Q) {
- if (auto *CLHS = dyn_cast<Constant>(Op0)) {
- if (auto *CRHS = dyn_cast<Constant>(Op1))
- return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL);
-
- // Canonicalize the constant to the RHS if this is a commutative operation.
- if (Instruction::isCommutative(Opcode))
- std::swap(Op0, Op1);
- }
- return nullptr;
-}
-
-/// Given operands for an Add, see if we can fold the result.
-/// If not, this returns null.
-static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
- const SimplifyQuery &Q, unsigned MaxRecurse) {
- if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q))
- return C;
-
- // X + undef -> undef
- if (match(Op1, m_Undef()))
- return Op1;
-
- // X + 0 -> X
- if (match(Op1, m_Zero()))
- return Op0;
-
- // If two operands are negative, return 0.
- if (isKnownNegation(Op0, Op1))
- return Constant::getNullValue(Op0->getType());
-
- // X + (Y - X) -> Y
- // (Y - X) + X -> Y
- // Eg: X + -X -> 0
- Value *Y = nullptr;
- if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
- match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
- return Y;
-
- // X + ~X -> -1 since ~X = -X-1
- Type *Ty = Op0->getType();
- if (match(Op0, m_Not(m_Specific(Op1))) ||
- match(Op1, m_Not(m_Specific(Op0))))
- return Constant::getAllOnesValue(Ty);
-
- // add nsw/nuw (xor Y, signmask), signmask --> Y
- // The no-wrapping add guarantees that the top bit will be set by the add.
- // Therefore, the xor must be clearing the already set sign bit of Y.
- if ((IsNSW || IsNUW) && match(Op1, m_SignMask()) &&
- match(Op0, m_Xor(m_Value(Y), m_SignMask())))
- return Y;
-
- // add nuw %x, -1 -> -1, because %x can only be 0.
- if (IsNUW && match(Op1, m_AllOnes()))
- return Op1; // Which is -1.
-
- /// i1 add -> xor.
- if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
- if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
- return V;
-
- // Try some generic simplifications for associative operations.
- if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q,
- MaxRecurse))
- return V;
-
- // Threading Add over selects and phi nodes is pointless, so don't bother.
- // Threading over the select in "A + select(cond, B, C)" means evaluating
- // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
- // only if B and C are equal. If B and C are equal then (since we assume
- // that operands have already been simplified) "select(cond, B, C)" should
- // have been simplified to the common value of B and C already. Analysing
- // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly
- // for threading over phi nodes.
-
- return nullptr;
-}
-
-Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
- const SimplifyQuery &Query) {
- return ::SimplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query, RecursionLimit);
-}
-
-/// Compute the base pointer and cumulative constant offsets for V.
-///
-/// This strips all constant offsets off of V, leaving it the base pointer, and
-/// accumulates the total constant offset applied in the returned constant. It
-/// returns 0 if V is not a pointer, and returns the constant '0' if there are
-/// no constant offsets applied.
-///
-/// This is very similar to GetPointerBaseWithConstantOffset except it doesn't
-/// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc.
-/// folding.
-static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V,
- bool AllowNonInbounds = false) {
- assert(V->getType()->isPtrOrPtrVectorTy());
-
- Type *IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType();
- APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth());
-
- // Even though we don't look through PHI nodes, we could be called on an
- // instruction in an unreachable block, which may be on a cycle.
- SmallPtrSet<Value *, 4> Visited;
- Visited.insert(V);
- do {
- if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
- if ((!AllowNonInbounds && !GEP->isInBounds()) ||
- !GEP->accumulateConstantOffset(DL, Offset))
- break;
- V = GEP->getPointerOperand();
- } else if (Operator::getOpcode(V) == Instruction::BitCast) {
- V = cast<Operator>(V)->getOperand(0);
- } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
- if (GA->isInterposable())
- break;
- V = GA->getAliasee();
- } else {
- if (auto CS = CallSite(V))
- if (Value *RV = CS.getReturnedArgOperand()) {
- V = RV;
- continue;
- }
- break;
- }
- assert(V->getType()->isPtrOrPtrVectorTy() && "Unexpected operand type!");
- } while (Visited.insert(V).second);
-
- Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset);
- if (V->getType()->isVectorTy())
- return ConstantVector::getSplat(V->getType()->getVectorNumElements(),
- OffsetIntPtr);
- return OffsetIntPtr;
-}
-
-/// Compute the constant difference between two pointer values.
-/// If the difference is not a constant, returns zero.
-static Constant *computePointerDifference(const DataLayout &DL, Value *LHS,
- Value *RHS) {
- Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
- Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
-
- // If LHS and RHS are not related via constant offsets to the same base
- // value, there is nothing we can do here.
- if (LHS != RHS)
- return nullptr;
-
- // Otherwise, the difference of LHS - RHS can be computed as:
- // LHS - RHS
- // = (LHSOffset + Base) - (RHSOffset + Base)
- // = LHSOffset - RHSOffset
- return ConstantExpr::getSub(LHSOffset, RHSOffset);
-}
-
-/// Given operands for a Sub, see if we can fold the result.
-/// If not, this returns null.
-static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
- const SimplifyQuery &Q, unsigned MaxRecurse) {
- if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q))
- return C;
-
- // X - undef -> undef
- // undef - X -> undef
- if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
- return UndefValue::get(Op0->getType());
-
- // X - 0 -> X
- if (match(Op1, m_Zero()))
- return Op0;
-
- // X - X -> 0
- if (Op0 == Op1)
- return Constant::getNullValue(Op0->getType());
-
- // Is this a negation?
- if (match(Op0, m_Zero())) {
- // 0 - X -> 0 if the sub is NUW.
- if (isNUW)
- return Constant::getNullValue(Op0->getType());
-
- KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
- if (Known.Zero.isMaxSignedValue()) {
- // Op1 is either 0 or the minimum signed value. If the sub is NSW, then
- // Op1 must be 0 because negating the minimum signed value is undefined.
- if (isNSW)
- return Constant::getNullValue(Op0->getType());
-
- // 0 - X -> X if X is 0 or the minimum signed value.
- return Op1;
- }
- }
-
- // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
- // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
- Value *X = nullptr, *Y = nullptr, *Z = Op1;
- if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
- // See if "V === Y - Z" simplifies.
- if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1))
- // It does! Now see if "X + V" simplifies.
- if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) {
- // It does, we successfully reassociated!
- ++NumReassoc;
- return W;
- }
- // See if "V === X - Z" simplifies.
- if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
- // It does! Now see if "Y + V" simplifies.
- if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) {
- // It does, we successfully reassociated!
- ++NumReassoc;
- return W;
- }
- }
-
- // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
- // For example, X - (X + 1) -> -1
- X = Op0;
- if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
- // See if "V === X - Y" simplifies.
- if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
- // It does! Now see if "V - Z" simplifies.
- if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) {
- // It does, we successfully reassociated!
- ++NumReassoc;
- return W;
- }
- // See if "V === X - Z" simplifies.
- if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
- // It does! Now see if "V - Y" simplifies.
- if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) {
- // It does, we successfully reassociated!
- ++NumReassoc;
- return W;
- }
- }
-
- // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
- // For example, X - (X - Y) -> Y.
- Z = Op0;
- if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
- // See if "V === Z - X" simplifies.
- if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1))
- // It does! Now see if "V + Y" simplifies.
- if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) {
- // It does, we successfully reassociated!
- ++NumReassoc;
- return W;
- }
-
- // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies.
- if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) &&
- match(Op1, m_Trunc(m_Value(Y))))
- if (X->getType() == Y->getType())
- // See if "V === X - Y" simplifies.
- if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
- // It does! Now see if "trunc V" simplifies.
- if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(),
- Q, MaxRecurse - 1))
- // It does, return the simplified "trunc V".
- return W;
-
- // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...).
- if (match(Op0, m_PtrToInt(m_Value(X))) &&
- match(Op1, m_PtrToInt(m_Value(Y))))
- if (Constant *Result = computePointerDifference(Q.DL, X, Y))
- return ConstantExpr::getIntegerCast(Result, Op0->getType(), true);
-
- // i1 sub -> xor.
- if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
- if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
- return V;
-
- // Threading Sub over selects and phi nodes is pointless, so don't bother.
- // Threading over the select in "A - select(cond, B, C)" means evaluating
- // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
- // only if B and C are equal. If B and C are equal then (since we assume
- // that operands have already been simplified) "select(cond, B, C)" should
- // have been simplified to the common value of B and C already. Analysing
- // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly
- // for threading over phi nodes.
-
- return nullptr;
-}
-
-Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
- const SimplifyQuery &Q) {
- return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit);
-}
-
-/// Given operands for a Mul, see if we can fold the result.
-/// If not, this returns null.
-static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
- unsigned MaxRecurse) {
- if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q))
- return C;
-
- // X * undef -> 0
- // X * 0 -> 0
- if (match(Op1, m_CombineOr(m_Undef(), m_Zero())))
- return Constant::getNullValue(Op0->getType());
-
- // X * 1 -> X
- if (match(Op1, m_One()))
- return Op0;
-
- // (X / Y) * Y -> X if the division is exact.
- Value *X = nullptr;
- if (Q.IIQ.UseInstrInfo &&
- (match(Op0,
- m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y
- match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))) // Y * (X / Y)
- return X;
-
- // i1 mul -> and.
- if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
- if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1))
- return V;
-
- // Try some generic simplifications for associative operations.
- if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q,
- MaxRecurse))
- return V;
-
- // Mul distributes over Add. Try some generic simplifications based on this.
- if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add,
- Q, MaxRecurse))
- return V;
-
- // If the operation is with the result of a select instruction, check whether
- // operating on either branch of the select always yields the same value.
- if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
- if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q,
- MaxRecurse))
- return V;
-
- // If the operation is with the result of a phi instruction, check whether
- // operating on all incoming values of the phi always yields the same value.
- if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
- if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q,
- MaxRecurse))
- return V;
-
- return nullptr;
-}
-
-Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
- return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit);
-}
-
-/// Check for common or similar folds of integer division or integer remainder.
-/// This applies to all 4 opcodes (sdiv/udiv/srem/urem).
-static Value *simplifyDivRem(Value *Op0, Value *Op1, bool IsDiv) {
- Type *Ty = Op0->getType();
-
- // X / undef -> undef
- // X % undef -> undef
- if (match(Op1, m_Undef()))
- return Op1;
-
- // X / 0 -> undef
- // X % 0 -> undef
- // We don't need to preserve faults!
- if (match(Op1, m_Zero()))
- return UndefValue::get(Ty);
-
- // If any element of a constant divisor vector is zero or undef, the whole op
- // is undef.
- auto *Op1C = dyn_cast<Constant>(Op1);
- if (Op1C && Ty->isVectorTy()) {
- unsigned NumElts = Ty->getVectorNumElements();
- for (unsigned i = 0; i != NumElts; ++i) {
- Constant *Elt = Op1C->getAggregateElement(i);
- if (Elt && (Elt->isNullValue() || isa<UndefValue>(Elt)))
- return UndefValue::get(Ty);
- }
- }
-
- // undef / X -> 0
- // undef % X -> 0
- if (match(Op0, m_Undef()))
- return Constant::getNullValue(Ty);
-
- // 0 / X -> 0
- // 0 % X -> 0
- if (match(Op0, m_Zero()))
- return Constant::getNullValue(Op0->getType());
-
- // X / X -> 1
- // X % X -> 0
- if (Op0 == Op1)
- return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty);
-
- // X / 1 -> X
- // X % 1 -> 0
- // If this is a boolean op (single-bit element type), we can't have
- // division-by-zero or remainder-by-zero, so assume the divisor is 1.
- // Similarly, if we're zero-extending a boolean divisor, then assume it's a 1.
- Value *X;
- if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1) ||
- (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
- return IsDiv ? Op0 : Constant::getNullValue(Ty);
-
- return nullptr;
-}
-
-/// Given a predicate and two operands, return true if the comparison is true.
-/// This is a helper for div/rem simplification where we return some other value
-/// when we can prove a relationship between the operands.
-static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS,
- const SimplifyQuery &Q, unsigned MaxRecurse) {
- Value *V = SimplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse);
- Constant *C = dyn_cast_or_null<Constant>(V);
- return (C && C->isAllOnesValue());
-}
-
-/// Return true if we can simplify X / Y to 0. Remainder can adapt that answer
-/// to simplify X % Y to X.
-static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q,
- unsigned MaxRecurse, bool IsSigned) {
- // Recursion is always used, so bail out at once if we already hit the limit.
- if (!MaxRecurse--)
- return false;
-
- if (IsSigned) {
- // |X| / |Y| --> 0
- //
- // We require that 1 operand is a simple constant. That could be extended to
- // 2 variables if we computed the sign bit for each.
- //
- // Make sure that a constant is not the minimum signed value because taking
- // the abs() of that is undefined.
- Type *Ty = X->getType();
- const APInt *C;
- if (match(X, m_APInt(C)) && !C->isMinSignedValue()) {
- // Is the variable divisor magnitude always greater than the constant
- // dividend magnitude?
- // |Y| > |C| --> Y < -abs(C) or Y > abs(C)
- Constant *PosDividendC = ConstantInt::get(Ty, C->abs());
- Constant *NegDividendC = ConstantInt::get(Ty, -C->abs());
- if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) ||
- isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse))
- return true;
- }
- if (match(Y, m_APInt(C))) {
- // Special-case: we can't take the abs() of a minimum signed value. If
- // that's the divisor, then all we have to do is prove that the dividend
- // is also not the minimum signed value.
- if (C->isMinSignedValue())
- return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse);
-
- // Is the variable dividend magnitude always less than the constant
- // divisor magnitude?
- // |X| < |C| --> X > -abs(C) and X < abs(C)
- Constant *PosDivisorC = ConstantInt::get(Ty, C->abs());
- Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs());
- if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) &&
- isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse))
- return true;
- }
- return false;
- }
-
- // IsSigned == false.
- // Is the dividend unsigned less than the divisor?
- return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse);
-}
-
-/// These are simplifications common to SDiv and UDiv.
-static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
- const SimplifyQuery &Q, unsigned MaxRecurse) {
- if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
- return C;
-
- if (Value *V = simplifyDivRem(Op0, Op1, true))
- return V;
-
- bool IsSigned = Opcode == Instruction::SDiv;
-
- // (X * Y) / Y -> X if the multiplication does not overflow.
- Value *X;
- if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) {
- auto *Mul = cast<OverflowingBinaryOperator>(Op0);
- // If the Mul does not overflow, then we are good to go.
- if ((IsSigned && Q.IIQ.hasNoSignedWrap(Mul)) ||
- (!IsSigned && Q.IIQ.hasNoUnsignedWrap(Mul)))
- return X;
- // If X has the form X = A / Y, then X * Y cannot overflow.
- if ((IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) ||
- (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1)))))
- return X;
- }
-
- // (X rem Y) / Y -> 0
- if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
- (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
- return Constant::getNullValue(Op0->getType());
-
- // (X /u C1) /u C2 -> 0 if C1 * C2 overflow
- ConstantInt *C1, *C2;
- if (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) &&
- match(Op1, m_ConstantInt(C2))) {
- bool Overflow;
- (void)C1->getValue().umul_ov(C2->getValue(), Overflow);
- if (Overflow)
- return Constant::getNullValue(Op0->getType());
- }
-
- // If the operation is with the result of a select instruction, check whether
- // operating on either branch of the select always yields the same value.
- if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
- if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
- return V;
-
- // If the operation is with the result of a phi instruction, check whether
- // operating on all incoming values of the phi always yields the same value.
- if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
- if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
- return V;
-
- if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned))
- return Constant::getNullValue(Op0->getType());
-
- return nullptr;
-}
-
-/// These are simplifications common to SRem and URem.
-static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
- const SimplifyQuery &Q, unsigned MaxRecurse) {
- if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
- return C;
-
- if (Value *V = simplifyDivRem(Op0, Op1, false))
- return V;
-
- // (X % Y) % Y -> X % Y
- if ((Opcode == Instruction::SRem &&
- match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
- (Opcode == Instruction::URem &&
- match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
- return Op0;
-
- // (X << Y) % X -> 0
- if (Q.IIQ.UseInstrInfo &&
- ((Opcode == Instruction::SRem &&
- match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) ||
- (Opcode == Instruction::URem &&
- match(Op0, m_NUWShl(m_Specific(Op1), m_Value())))))
- return Constant::getNullValue(Op0->getType());
-
- // If the operation is with the result of a select instruction, check whether
- // operating on either branch of the select always yields the same value.
- if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
- if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
- return V;
-
- // If the operation is with the result of a phi instruction, check whether
- // operating on all incoming values of the phi always yields the same value.
- if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
- if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
- return V;
-
- // If X / Y == 0, then X % Y == X.
- if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem))
- return Op0;
-
- return nullptr;
-}
-
-/// Given operands for an SDiv, see if we can fold the result.
-/// If not, this returns null.
-static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
- unsigned MaxRecurse) {
- // If two operands are negated and no signed overflow, return -1.
- if (isKnownNegation(Op0, Op1, /*NeedNSW=*/true))
- return Constant::getAllOnesValue(Op0->getType());
-
- return simplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse);
-}
-
-Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
- return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit);
-}
-
-/// Given operands for a UDiv, see if we can fold the result.
-/// If not, this returns null.
-static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
- unsigned MaxRecurse) {
- return simplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse);
-}
-
-Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
- return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit);
-}
-
-/// Given operands for an SRem, see if we can fold the result.
-/// If not, this returns null.
-static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
- unsigned MaxRecurse) {
- // If the divisor is 0, the result is undefined, so assume the divisor is -1.
- // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0
- Value *X;
- if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
- return ConstantInt::getNullValue(Op0->getType());
-
- // If the two operands are negated, return 0.
- if (isKnownNegation(Op0, Op1))
- return ConstantInt::getNullValue(Op0->getType());
-
- return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse);
-}
-
-Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
- return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit);
-}
-
-/// Given operands for a URem, see if we can fold the result.
-/// If not, this returns null.
-static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
- unsigned MaxRecurse) {
- return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse);
-}
-
-Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
- return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit);
-}
-
-/// Returns true if a shift by \c Amount always yields undef.
-static bool isUndefShift(Value *Amount) {
- Constant *C = dyn_cast<Constant>(Amount);
- if (!C)
- return false;
-
- // X shift by undef -> undef because it may shift by the bitwidth.
- if (isa<UndefValue>(C))
- return true;
-
- // Shifting by the bitwidth or more is undefined.
- if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
- if (CI->getValue().getLimitedValue() >=
- CI->getType()->getScalarSizeInBits())
- return true;
-
- // If all lanes of a vector shift are undefined the whole shift is.
- if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) {
- for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; ++I)
- if (!isUndefShift(C->getAggregateElement(I)))
- return false;
- return true;
- }
-
- return false;
-}
-
-/// Given operands for an Shl, LShr or AShr, see if we can fold the result.
-/// If not, this returns null.
-static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0,
- Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse) {
- if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
- return C;
-
- // 0 shift by X -> 0
- if (match(Op0, m_Zero()))
- return Constant::getNullValue(Op0->getType());
-
- // X shift by 0 -> X
- // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones
- // would be poison.
- Value *X;
- if (match(Op1, m_Zero()) ||
- (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
- return Op0;
-
- // Fold undefined shifts.
- if (isUndefShift(Op1))
- return UndefValue::get(Op0->getType());
-
- // If the operation is with the result of a select instruction, check whether
- // operating on either branch of the select always yields the same value.
- if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
- if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
- return V;
-
- // If the operation is with the result of a phi instruction, check whether
- // operating on all incoming values of the phi always yields the same value.
- if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
- if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
- return V;
-
- // If any bits in the shift amount make that value greater than or equal to
- // the number of bits in the type, the shift is undefined.
- KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
- if (Known.One.getLimitedValue() >= Known.getBitWidth())
- return UndefValue::get(Op0->getType());
-
- // If all valid bits in the shift amount are known zero, the first operand is
- // unchanged.
- unsigned NumValidShiftBits = Log2_32_Ceil(Known.getBitWidth());
- if (Known.countMinTrailingZeros() >= NumValidShiftBits)
- return Op0;
-
- return nullptr;
-}
-
-/// Given operands for an Shl, LShr or AShr, see if we can
-/// fold the result. If not, this returns null.
-static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0,
- Value *Op1, bool isExact, const SimplifyQuery &Q,
- unsigned MaxRecurse) {
- if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse))
- return V;
-
- // X >> X -> 0
- if (Op0 == Op1)
- return Constant::getNullValue(Op0->getType());
-
- // undef >> X -> 0
- // undef >> X -> undef (if it's exact)
- if (match(Op0, m_Undef()))
- return isExact ? Op0 : Constant::getNullValue(Op0->getType());
-
- // The low bit cannot be shifted out of an exact shift if it is set.
- if (isExact) {
- KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT);
- if (Op0Known.One[0])
- return Op0;
- }
-
- return nullptr;
-}
-
-/// Given operands for an Shl, see if we can fold the result.
-/// If not, this returns null.
-static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
- const SimplifyQuery &Q, unsigned MaxRecurse) {
- if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse))
- return V;
-
- // undef << X -> 0
- // undef << X -> undef if (if it's NSW/NUW)
- if (match(Op0, m_Undef()))
- return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType());
-
- // (X >> A) << A -> X
- Value *X;
- if (Q.IIQ.UseInstrInfo &&
- match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1)))))
- return X;
-
- // shl nuw i8 C, %x -> C iff C has sign bit set.
- if (isNUW && match(Op0, m_Negative()))
- return Op0;
- // NOTE: could use computeKnownBits() / LazyValueInfo,
- // but the cost-benefit analysis suggests it isn't worth it.
-
- return nullptr;
-}
-
-Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
- const SimplifyQuery &Q) {
- return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit);
-}
-
-/// Given operands for an LShr, see if we can fold the result.
-/// If not, this returns null.
-static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
- const SimplifyQuery &Q, unsigned MaxRecurse) {
- if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q,
- MaxRecurse))
- return V;
-
- // (X << A) >> A -> X
- Value *X;
- if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1))))
- return X;
-
- // ((X << A) | Y) >> A -> X if effective width of Y is not larger than A.
- // We can return X as we do in the above case since OR alters no bits in X.
- // SimplifyDemandedBits in InstCombine can do more general optimization for
- // bit manipulation. This pattern aims to provide opportunities for other
- // optimizers by supporting a simple but common case in InstSimplify.
- Value *Y;
- const APInt *ShRAmt, *ShLAmt;
- if (match(Op1, m_APInt(ShRAmt)) &&
- match(Op0, m_c_Or(m_NUWShl(m_Value(X), m_APInt(ShLAmt)), m_Value(Y))) &&
- *ShRAmt == *ShLAmt) {
- const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
- const unsigned Width = Op0->getType()->getScalarSizeInBits();
- const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros();
- if (ShRAmt->uge(EffWidthY))
- return X;
- }
-
- return nullptr;
-}
-
-Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
- const SimplifyQuery &Q) {
- return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit);
-}
-
-/// Given operands for an AShr, see if we can fold the result.
-/// If not, this returns null.
-static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
- const SimplifyQuery &Q, unsigned MaxRecurse) {
- if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q,
- MaxRecurse))
- return V;
-
- // all ones >>a X -> -1
- // Do not return Op0 because it may contain undef elements if it's a vector.
- if (match(Op0, m_AllOnes()))
- return Constant::getAllOnesValue(Op0->getType());
-
- // (X << A) >> A -> X
- Value *X;
- if (Q.IIQ.UseInstrInfo && match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1))))
- return X;
-
- // Arithmetic shifting an all-sign-bit value is a no-op.
- unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
- if (NumSignBits == Op0->getType()->getScalarSizeInBits())
- return Op0;
-
- return nullptr;
-}
-
-Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
- const SimplifyQuery &Q) {
- return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit);
-}
-
-/// Commuted variants are assumed to be handled by calling this function again
-/// with the parameters swapped.
-static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp,
- ICmpInst *UnsignedICmp, bool IsAnd) {
- Value *X, *Y;
-
- ICmpInst::Predicate EqPred;
- if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) ||
- !ICmpInst::isEquality(EqPred))
- return nullptr;
-
- ICmpInst::Predicate UnsignedPred;
- if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) &&
- ICmpInst::isUnsigned(UnsignedPred))
- ;
- else if (match(UnsignedICmp,
- m_ICmp(UnsignedPred, m_Specific(Y), m_Value(X))) &&
- ICmpInst::isUnsigned(UnsignedPred))
- UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred);
- else
- return nullptr;
-
- // X < Y && Y != 0 --> X < Y
- // X < Y || Y != 0 --> Y != 0
- if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE)
- return IsAnd ? UnsignedICmp : ZeroICmp;
-
- // X >= Y || Y != 0 --> true
- // X >= Y || Y == 0 --> X >= Y
- if (UnsignedPred == ICmpInst::ICMP_UGE && !IsAnd) {
- if (EqPred == ICmpInst::ICMP_NE)
- return getTrue(UnsignedICmp->getType());
- return UnsignedICmp;
- }
-
- // X < Y && Y == 0 --> false
- if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ &&
- IsAnd)
- return getFalse(UnsignedICmp->getType());
-
- return nullptr;
-}
-
-/// Commuted variants are assumed to be handled by calling this function again
-/// with the parameters swapped.
-static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
- ICmpInst::Predicate Pred0, Pred1;
- Value *A ,*B;
- if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
- !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
- return nullptr;
-
- // We have (icmp Pred0, A, B) & (icmp Pred1, A, B).
- // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
- // can eliminate Op1 from this 'and'.
- if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
- return Op0;
-
- // Check for any combination of predicates that are guaranteed to be disjoint.
- if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
- (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) ||
- (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) ||
- (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT))
- return getFalse(Op0->getType());
-
- return nullptr;
-}
-
-/// Commuted variants are assumed to be handled by calling this function again
-/// with the parameters swapped.
-static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
- ICmpInst::Predicate Pred0, Pred1;
- Value *A ,*B;
- if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
- !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
- return nullptr;
-
- // We have (icmp Pred0, A, B) | (icmp Pred1, A, B).
- // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
- // can eliminate Op0 from this 'or'.
- if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
- return Op1;
-
- // Check for any combination of predicates that cover the entire range of
- // possibilities.
- if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
- (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) ||
- (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) ||
- (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE))
- return getTrue(Op0->getType());
-
- return nullptr;
-}
-
-/// Test if a pair of compares with a shared operand and 2 constants has an
-/// empty set intersection, full set union, or if one compare is a superset of
-/// the other.
-static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1,
- bool IsAnd) {
- // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)).
- if (Cmp0->getOperand(0) != Cmp1->getOperand(0))
- return nullptr;
-
- const APInt *C0, *C1;
- if (!match(Cmp0->getOperand(1), m_APInt(C0)) ||
- !match(Cmp1->getOperand(1), m_APInt(C1)))
- return nullptr;
-
- auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0);
- auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1);
-
- // For and-of-compares, check if the intersection is empty:
- // (icmp X, C0) && (icmp X, C1) --> empty set --> false
- if (IsAnd && Range0.intersectWith(Range1).isEmptySet())
- return getFalse(Cmp0->getType());
-
- // For or-of-compares, check if the union is full:
- // (icmp X, C0) || (icmp X, C1) --> full set --> true
- if (!IsAnd && Range0.unionWith(Range1).isFullSet())
- return getTrue(Cmp0->getType());
-
- // Is one range a superset of the other?
- // If this is and-of-compares, take the smaller set:
- // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42
- // If this is or-of-compares, take the larger set:
- // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4
- if (Range0.contains(Range1))
- return IsAnd ? Cmp1 : Cmp0;
- if (Range1.contains(Range0))
- return IsAnd ? Cmp0 : Cmp1;
-
- return nullptr;
-}
-
-static Value *simplifyAndOrOfICmpsWithZero(ICmpInst *Cmp0, ICmpInst *Cmp1,
- bool IsAnd) {
- ICmpInst::Predicate P0 = Cmp0->getPredicate(), P1 = Cmp1->getPredicate();
- if (!match(Cmp0->getOperand(1), m_Zero()) ||
- !match(Cmp1->getOperand(1), m_Zero()) || P0 != P1)
- return nullptr;
-
- if ((IsAnd && P0 != ICmpInst::ICMP_NE) || (!IsAnd && P1 != ICmpInst::ICMP_EQ))
- return nullptr;
-
- // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)".
- Value *X = Cmp0->getOperand(0);
- Value *Y = Cmp1->getOperand(0);
-
- // If one of the compares is a masked version of a (not) null check, then
- // that compare implies the other, so we eliminate the other. Optionally, look
- // through a pointer-to-int cast to match a null check of a pointer type.
-
- // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0
- // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0
- // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0
- // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0
- if (match(Y, m_c_And(m_Specific(X), m_Value())) ||
- match(Y, m_c_And(m_PtrToInt(m_Specific(X)), m_Value())))
- return Cmp1;
-
- // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0
- // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0
- // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0
- // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0
- if (match(X, m_c_And(m_Specific(Y), m_Value())) ||
- match(X, m_c_And(m_PtrToInt(m_Specific(Y)), m_Value())))
- return Cmp0;
-
- return nullptr;
-}
-
-static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1,
- const InstrInfoQuery &IIQ) {
- // (icmp (add V, C0), C1) & (icmp V, C0)
- ICmpInst::Predicate Pred0, Pred1;
- const APInt *C0, *C1;
- Value *V;
- if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
- return nullptr;
-
- if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
- return nullptr;
-
- auto *AddInst = cast<OverflowingBinaryOperator>(Op0->getOperand(0));
- if (AddInst->getOperand(1) != Op1->getOperand(1))
- return nullptr;
-
- Type *ITy = Op0->getType();
- bool isNSW = IIQ.hasNoSignedWrap(AddInst);
- bool isNUW = IIQ.hasNoUnsignedWrap(AddInst);
-
- const APInt Delta = *C1 - *C0;
- if (C0->isStrictlyPositive()) {
- if (Delta == 2) {
- if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT)
- return getFalse(ITy);
- if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW)
- return getFalse(ITy);
- }
- if (Delta == 1) {
- if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT)
- return getFalse(ITy);
- if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW)
- return getFalse(ITy);
- }
- }
- if (C0->getBoolValue() && isNUW) {
- if (Delta == 2)
- if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)
- return getFalse(ITy);
- if (Delta == 1)
- if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT)
- return getFalse(ITy);
- }
-
- return nullptr;
-}
-
-static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1,
- const InstrInfoQuery &IIQ) {
- if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true))
- return X;
- if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true))
- return X;
-
- if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1))
- return X;
- if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0))
- return X;
-
- if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true))
- return X;
-
- if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, true))
- return X;
-
- if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1, IIQ))
- return X;
- if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0, IIQ))
- return X;
-
- return nullptr;
-}
-
-static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1,
- const InstrInfoQuery &IIQ) {
- // (icmp (add V, C0), C1) | (icmp V, C0)
- ICmpInst::Predicate Pred0, Pred1;
- const APInt *C0, *C1;
- Value *V;
- if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
- return nullptr;
-
- if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
- return nullptr;
-
- auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
- if (AddInst->getOperand(1) != Op1->getOperand(1))
- return nullptr;
-
- Type *ITy = Op0->getType();
- bool isNSW = IIQ.hasNoSignedWrap(AddInst);
- bool isNUW = IIQ.hasNoUnsignedWrap(AddInst);
-
- const APInt Delta = *C1 - *C0;
- if (C0->isStrictlyPositive()) {
- if (Delta == 2) {
- if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE)
- return getTrue(ITy);
- if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW)
- return getTrue(ITy);
- }
- if (Delta == 1) {
- if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE)
- return getTrue(ITy);
- if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW)
- return getTrue(ITy);
- }
- }
- if (C0->getBoolValue() && isNUW) {
- if (Delta == 2)
- if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE)
- return getTrue(ITy);
- if (Delta == 1)
- if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE)
- return getTrue(ITy);
- }
-
- return nullptr;
-}
-
-static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1,
- const InstrInfoQuery &IIQ) {
- if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false))
- return X;
- if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false))
- return X;
-
- if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1))
- return X;
- if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0))
- return X;
-
- if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false))
- return X;
-
- if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, false))
- return X;
-
- if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1, IIQ))
- return X;
- if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0, IIQ))
- return X;
-
- return nullptr;
-}
-
-static Value *simplifyAndOrOfFCmps(const TargetLibraryInfo *TLI,
- FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) {
- Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
- Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
- if (LHS0->getType() != RHS0->getType())
- return nullptr;
-
- FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
- if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) ||
- (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) {
- // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y
- // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X
- // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y
- // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X
- // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y
- // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X
- // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y
- // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X
- if ((isKnownNeverNaN(LHS0, TLI) && (LHS1 == RHS0 || LHS1 == RHS1)) ||
- (isKnownNeverNaN(LHS1, TLI) && (LHS0 == RHS0 || LHS0 == RHS1)))
- return RHS;
-
- // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y
- // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X
- // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y
- // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X
- // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y
- // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X
- // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y
- // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X
- if ((isKnownNeverNaN(RHS0, TLI) && (RHS1 == LHS0 || RHS1 == LHS1)) ||
- (isKnownNeverNaN(RHS1, TLI) && (RHS0 == LHS0 || RHS0 == LHS1)))
- return LHS;
- }
-
- return nullptr;
-}
-
-static Value *simplifyAndOrOfCmps(const SimplifyQuery &Q,
- Value *Op0, Value *Op1, bool IsAnd) {
- // Look through casts of the 'and' operands to find compares.
- auto *Cast0 = dyn_cast<CastInst>(Op0);
- auto *Cast1 = dyn_cast<CastInst>(Op1);
- if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() &&
- Cast0->getSrcTy() == Cast1->getSrcTy()) {
- Op0 = Cast0->getOperand(0);
- Op1 = Cast1->getOperand(0);
- }
-
- Value *V = nullptr;
- auto *ICmp0 = dyn_cast<ICmpInst>(Op0);
- auto *ICmp1 = dyn_cast<ICmpInst>(Op1);
- if (ICmp0 && ICmp1)
- V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1, Q.IIQ)
- : simplifyOrOfICmps(ICmp0, ICmp1, Q.IIQ);
-
- auto *FCmp0 = dyn_cast<FCmpInst>(Op0);
- auto *FCmp1 = dyn_cast<FCmpInst>(Op1);
- if (FCmp0 && FCmp1)
- V = simplifyAndOrOfFCmps(Q.TLI, FCmp0, FCmp1, IsAnd);
-
- if (!V)
- return nullptr;
- if (!Cast0)
- return V;
-
- // If we looked through casts, we can only handle a constant simplification
- // because we are not allowed to create a cast instruction here.
- if (auto *C = dyn_cast<Constant>(V))
- return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType());
-
- return nullptr;
-}
-
-/// Given operands for an And, see if we can fold the result.
-/// If not, this returns null.
-static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
- unsigned MaxRecurse) {
- if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q))
- return C;
-
- // X & undef -> 0
- if (match(Op1, m_Undef()))
- return Constant::getNullValue(Op0->getType());
-
- // X & X = X
- if (Op0 == Op1)
- return Op0;
-
- // X & 0 = 0
- if (match(Op1, m_Zero()))
- return Constant::getNullValue(Op0->getType());
-
- // X & -1 = X
- if (match(Op1, m_AllOnes()))
- return Op0;
-
- // A & ~A = ~A & A = 0
- if (match(Op0, m_Not(m_Specific(Op1))) ||
- match(Op1, m_Not(m_Specific(Op0))))
- return Constant::getNullValue(Op0->getType());
-
- // (A | ?) & A = A
- if (match(Op0, m_c_Or(m_Specific(Op1), m_Value())))
- return Op1;
-
- // A & (A | ?) = A
- if (match(Op1, m_c_Or(m_Specific(Op0), m_Value())))
- return Op0;
-
- // A mask that only clears known zeros of a shifted value is a no-op.
- Value *X;
- const APInt *Mask;
- const APInt *ShAmt;
- if (match(Op1, m_APInt(Mask))) {
- // If all bits in the inverted and shifted mask are clear:
- // and (shl X, ShAmt), Mask --> shl X, ShAmt
- if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) &&
- (~(*Mask)).lshr(*ShAmt).isNullValue())
- return Op0;
-
- // If all bits in the inverted and shifted mask are clear:
- // and (lshr X, ShAmt), Mask --> lshr X, ShAmt
- if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) &&
- (~(*Mask)).shl(*ShAmt).isNullValue())
- return Op0;
- }
-
- // A & (-A) = A if A is a power of two or zero.
- if (match(Op0, m_Neg(m_Specific(Op1))) ||
- match(Op1, m_Neg(m_Specific(Op0)))) {
- if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
- Q.DT))
- return Op0;
- if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
- Q.DT))
- return Op1;
- }
-
- if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, true))
- return V;
-
- // Try some generic simplifications for associative operations.
- if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q,
- MaxRecurse))
- return V;
-
- // And distributes over Or. Try some generic simplifications based on this.
- if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or,
- Q, MaxRecurse))
- return V;
-
- // And distributes over Xor. Try some generic simplifications based on this.
- if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor,
- Q, MaxRecurse))
- return V;
-
- // If the operation is with the result of a select instruction, check whether
- // operating on either branch of the select always yields the same value.
- if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
- if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q,
- MaxRecurse))
- return V;
-
- // If the operation is with the result of a phi instruction, check whether
- // operating on all incoming values of the phi always yields the same value.
- if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
- if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q,
- MaxRecurse))
- return V;
-
- // Assuming the effective width of Y is not larger than A, i.e. all bits
- // from X and Y are disjoint in (X << A) | Y,
- // if the mask of this AND op covers all bits of X or Y, while it covers
- // no bits from the other, we can bypass this AND op. E.g.,
- // ((X << A) | Y) & Mask -> Y,
- // if Mask = ((1 << effective_width_of(Y)) - 1)
- // ((X << A) | Y) & Mask -> X << A,
- // if Mask = ((1 << effective_width_of(X)) - 1) << A
- // SimplifyDemandedBits in InstCombine can optimize the general case.
- // This pattern aims to help other passes for a common case.
- Value *Y, *XShifted;
- if (match(Op1, m_APInt(Mask)) &&
- match(Op0, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X), m_APInt(ShAmt)),
- m_Value(XShifted)),
- m_Value(Y)))) {
- const unsigned Width = Op0->getType()->getScalarSizeInBits();
- const unsigned ShftCnt = ShAmt->getLimitedValue(Width);
- const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
- const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros();
- if (EffWidthY <= ShftCnt) {
- const KnownBits XKnown = computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI,
- Q.DT);
- const unsigned EffWidthX = Width - XKnown.countMinLeadingZeros();
- const APInt EffBitsY = APInt::getLowBitsSet(Width, EffWidthY);
- const APInt EffBitsX = APInt::getLowBitsSet(Width, EffWidthX) << ShftCnt;
- // If the mask is extracting all bits from X or Y as is, we can skip
- // this AND op.
- if (EffBitsY.isSubsetOf(*Mask) && !EffBitsX.intersects(*Mask))
- return Y;
- if (EffBitsX.isSubsetOf(*Mask) && !EffBitsY.intersects(*Mask))
- return XShifted;
- }
- }
-
- return nullptr;
-}
-
-Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
- return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit);
-}
-
-/// Given operands for an Or, see if we can fold the result.
-/// If not, this returns null.
-static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
- unsigned MaxRecurse) {
- if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q))
- return C;
-
- // X | undef -> -1
- // X | -1 = -1
- // Do not return Op1 because it may contain undef elements if it's a vector.
- if (match(Op1, m_Undef()) || match(Op1, m_AllOnes()))
- return Constant::getAllOnesValue(Op0->getType());
-
- // X | X = X
- // X | 0 = X
- if (Op0 == Op1 || match(Op1, m_Zero()))
- return Op0;
-
- // A | ~A = ~A | A = -1
- if (match(Op0, m_Not(m_Specific(Op1))) ||
- match(Op1, m_Not(m_Specific(Op0))))
- return Constant::getAllOnesValue(Op0->getType());
-
- // (A & ?) | A = A
- if (match(Op0, m_c_And(m_Specific(Op1), m_Value())))
- return Op1;
-
- // A | (A & ?) = A
- if (match(Op1, m_c_And(m_Specific(Op0), m_Value())))
- return Op0;
-
- // ~(A & ?) | A = -1
- if (match(Op0, m_Not(m_c_And(m_Specific(Op1), m_Value()))))
- return Constant::getAllOnesValue(Op1->getType());
-
- // A | ~(A & ?) = -1
- if (match(Op1, m_Not(m_c_And(m_Specific(Op1), m_Value()))))
- return Constant::getAllOnesValue(Op0->getType());
-
- Value *A, *B;
- // (A & ~B) | (A ^ B) -> (A ^ B)
- // (~B & A) | (A ^ B) -> (A ^ B)
- // (A & ~B) | (B ^ A) -> (B ^ A)
- // (~B & A) | (B ^ A) -> (B ^ A)
- if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
- (match(Op0, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) ||
- match(Op0, m_c_And(m_Not(m_Specific(A)), m_Specific(B)))))
- return Op1;
-
- // Commute the 'or' operands.
- // (A ^ B) | (A & ~B) -> (A ^ B)
- // (A ^ B) | (~B & A) -> (A ^ B)
- // (B ^ A) | (A & ~B) -> (B ^ A)
- // (B ^ A) | (~B & A) -> (B ^ A)
- if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
- (match(Op1, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) ||
- match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B)))))
- return Op0;
-
- // (A & B) | (~A ^ B) -> (~A ^ B)
- // (B & A) | (~A ^ B) -> (~A ^ B)
- // (A & B) | (B ^ ~A) -> (B ^ ~A)
- // (B & A) | (B ^ ~A) -> (B ^ ~A)
- if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
- (match(Op1, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) ||
- match(Op1, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B)))))
- return Op1;
-
- // (~A ^ B) | (A & B) -> (~A ^ B)
- // (~A ^ B) | (B & A) -> (~A ^ B)
- // (B ^ ~A) | (A & B) -> (B ^ ~A)
- // (B ^ ~A) | (B & A) -> (B ^ ~A)
- if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
- (match(Op0, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) ||
- match(Op0, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B)))))
- return Op0;
-
- if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, false))
- return V;
-
- // Try some generic simplifications for associative operations.
- if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q,
- MaxRecurse))
- return V;
-
- // Or distributes over And. Try some generic simplifications based on this.
- if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q,
- MaxRecurse))
- return V;
-
- // If the operation is with the result of a select instruction, check whether
- // operating on either branch of the select always yields the same value.
- if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
- if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q,
- MaxRecurse))
- return V;
-
- // (A & C1)|(B & C2)
- const APInt *C1, *C2;
- if (match(Op0, m_And(m_Value(A), m_APInt(C1))) &&
- match(Op1, m_And(m_Value(B), m_APInt(C2)))) {
- if (*C1 == ~*C2) {
- // (A & C1)|(B & C2)
- // If we have: ((V + N) & C1) | (V & C2)
- // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
- // replace with V+N.
- Value *N;
- if (C2->isMask() && // C2 == 0+1+
- match(A, m_c_Add(m_Specific(B), m_Value(N)))) {
- // Add commutes, try both ways.
- if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
- return A;
- }
- // Or commutes, try both ways.
- if (C1->isMask() &&
- match(B, m_c_Add(m_Specific(A), m_Value(N)))) {
- // Add commutes, try both ways.
- if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
- return B;
- }
- }
- }
-
- // If the operation is with the result of a phi instruction, check whether
- // operating on all incoming values of the phi always yields the same value.
- if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
- if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse))
- return V;
-
- return nullptr;
-}
-
-Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
- return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit);
-}
-
-/// Given operands for a Xor, see if we can fold the result.
-/// If not, this returns null.
-static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
- unsigned MaxRecurse) {
- if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q))
- return C;
-
- // A ^ undef -> undef
- if (match(Op1, m_Undef()))
- return Op1;
-
- // A ^ 0 = A
- if (match(Op1, m_Zero()))
- return Op0;
-
- // A ^ A = 0
- if (Op0 == Op1)
- return Constant::getNullValue(Op0->getType());
-
- // A ^ ~A = ~A ^ A = -1
- if (match(Op0, m_Not(m_Specific(Op1))) ||
- match(Op1, m_Not(m_Specific(Op0))))
- return Constant::getAllOnesValue(Op0->getType());
-
- // Try some generic simplifications for associative operations.
- if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q,
- MaxRecurse))
- return V;
-
- // Threading Xor over selects and phi nodes is pointless, so don't bother.
- // Threading over the select in "A ^ select(cond, B, C)" means evaluating
- // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
- // only if B and C are equal. If B and C are equal then (since we assume
- // that operands have already been simplified) "select(cond, B, C)" should
- // have been simplified to the common value of B and C already. Analysing
- // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly
- // for threading over phi nodes.
-
- return nullptr;
-}
-
-Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
- return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit);
-}
-
-
-static Type *GetCompareTy(Value *Op) {
- return CmpInst::makeCmpResultType(Op->getType());
-}
-
-/// Rummage around inside V looking for something equivalent to the comparison
-/// "LHS Pred RHS". Return such a value if found, otherwise return null.
-/// Helper function for analyzing max/min idioms.
-static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
- Value *LHS, Value *RHS) {
- SelectInst *SI = dyn_cast<SelectInst>(V);
- if (!SI)
- return nullptr;
- CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
- if (!Cmp)
- return nullptr;
- Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
- if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
- return Cmp;
- if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
- LHS == CmpRHS && RHS == CmpLHS)
- return Cmp;
- return nullptr;
-}
-
-// A significant optimization not implemented here is assuming that alloca
-// addresses are not equal to incoming argument values. They don't *alias*,
-// as we say, but that doesn't mean they aren't equal, so we take a
-// conservative approach.
-//
-// This is inspired in part by C++11 5.10p1:
-// "Two pointers of the same type compare equal if and only if they are both
-// null, both point to the same function, or both represent the same
-// address."
-//
-// This is pretty permissive.
-//
-// It's also partly due to C11 6.5.9p6:
-// "Two pointers compare equal if and only if both are null pointers, both are
-// pointers to the same object (including a pointer to an object and a
-// subobject at its beginning) or function, both are pointers to one past the
-// last element of the same array object, or one is a pointer to one past the
-// end of one array object and the other is a pointer to the start of a
-// different array object that happens to immediately follow the first array
-// object in the address space.)
-//
-// C11's version is more restrictive, however there's no reason why an argument
-// couldn't be a one-past-the-end value for a stack object in the caller and be
-// equal to the beginning of a stack object in the callee.
-//
-// If the C and C++ standards are ever made sufficiently restrictive in this
-// area, it may be possible to update LLVM's semantics accordingly and reinstate
-// this optimization.
-static Constant *
-computePointerICmp(const DataLayout &DL, const TargetLibraryInfo *TLI,
- const DominatorTree *DT, CmpInst::Predicate Pred,
- AssumptionCache *AC, const Instruction *CxtI,
- const InstrInfoQuery &IIQ, Value *LHS, Value *RHS) {
- // First, skip past any trivial no-ops.
- LHS = LHS->stripPointerCasts();
- RHS = RHS->stripPointerCasts();
-
- // A non-null pointer is not equal to a null pointer.
- if (llvm::isKnownNonZero(LHS, DL, 0, nullptr, nullptr, nullptr,
- IIQ.UseInstrInfo) &&
- isa<ConstantPointerNull>(RHS) &&
- (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE))
- return ConstantInt::get(GetCompareTy(LHS),
- !CmpInst::isTrueWhenEqual(Pred));
-
- // We can only fold certain predicates on pointer comparisons.
- switch (Pred) {
- default:
- return nullptr;
-
- // Equality comaprisons are easy to fold.
- case CmpInst::ICMP_EQ:
- case CmpInst::ICMP_NE:
- break;
-
- // We can only handle unsigned relational comparisons because 'inbounds' on
- // a GEP only protects against unsigned wrapping.
- case CmpInst::ICMP_UGT:
- case CmpInst::ICMP_UGE:
- case CmpInst::ICMP_ULT:
- case CmpInst::ICMP_ULE:
- // However, we have to switch them to their signed variants to handle
- // negative indices from the base pointer.
- Pred = ICmpInst::getSignedPredicate(Pred);
- break;
- }
-
- // Strip off any constant offsets so that we can reason about them.
- // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets
- // here and compare base addresses like AliasAnalysis does, however there are
- // numerous hazards. AliasAnalysis and its utilities rely on special rules
- // governing loads and stores which don't apply to icmps. Also, AliasAnalysis
- // doesn't need to guarantee pointer inequality when it says NoAlias.
- Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
- Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
-
- // If LHS and RHS are related via constant offsets to the same base
- // value, we can replace it with an icmp which just compares the offsets.
- if (LHS == RHS)
- return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset);
-
- // Various optimizations for (in)equality comparisons.
- if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
- // Different non-empty allocations that exist at the same time have
- // different addresses (if the program can tell). Global variables always
- // exist, so they always exist during the lifetime of each other and all
- // allocas. Two different allocas usually have different addresses...
- //
- // However, if there's an @llvm.stackrestore dynamically in between two
- // allocas, they may have the same address. It's tempting to reduce the
- // scope of the problem by only looking at *static* allocas here. That would
- // cover the majority of allocas while significantly reducing the likelihood
- // of having an @llvm.stackrestore pop up in the middle. However, it's not
- // actually impossible for an @llvm.stackrestore to pop up in the middle of
- // an entry block. Also, if we have a block that's not attached to a
- // function, we can't tell if it's "static" under the current definition.
- // Theoretically, this problem could be fixed by creating a new kind of
- // instruction kind specifically for static allocas. Such a new instruction
- // could be required to be at the top of the entry block, thus preventing it
- // from being subject to a @llvm.stackrestore. Instcombine could even
- // convert regular allocas into these special allocas. It'd be nifty.
- // However, until then, this problem remains open.
- //
- // So, we'll assume that two non-empty allocas have different addresses
- // for now.
- //
- // With all that, if the offsets are within the bounds of their allocations
- // (and not one-past-the-end! so we can't use inbounds!), and their
- // allocations aren't the same, the pointers are not equal.
- //
- // Note that it's not necessary to check for LHS being a global variable
- // address, due to canonicalization and constant folding.
- if (isa<AllocaInst>(LHS) &&
- (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) {
- ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset);
- ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset);
- uint64_t LHSSize, RHSSize;
- ObjectSizeOpts Opts;
- Opts.NullIsUnknownSize =
- NullPointerIsDefined(cast<AllocaInst>(LHS)->getFunction());
- if (LHSOffsetCI && RHSOffsetCI &&
- getObjectSize(LHS, LHSSize, DL, TLI, Opts) &&
- getObjectSize(RHS, RHSSize, DL, TLI, Opts)) {
- const APInt &LHSOffsetValue = LHSOffsetCI->getValue();
- const APInt &RHSOffsetValue = RHSOffsetCI->getValue();
- if (!LHSOffsetValue.isNegative() &&
- !RHSOffsetValue.isNegative() &&
- LHSOffsetValue.ult(LHSSize) &&
- RHSOffsetValue.ult(RHSSize)) {
- return ConstantInt::get(GetCompareTy(LHS),
- !CmpInst::isTrueWhenEqual(Pred));
- }
- }
-
- // Repeat the above check but this time without depending on DataLayout
- // or being able to compute a precise size.
- if (!cast<PointerType>(LHS->getType())->isEmptyTy() &&
- !cast<PointerType>(RHS->getType())->isEmptyTy() &&
- LHSOffset->isNullValue() &&
- RHSOffset->isNullValue())
- return ConstantInt::get(GetCompareTy(LHS),
- !CmpInst::isTrueWhenEqual(Pred));
- }
-
- // Even if an non-inbounds GEP occurs along the path we can still optimize
- // equality comparisons concerning the result. We avoid walking the whole
- // chain again by starting where the last calls to
- // stripAndComputeConstantOffsets left off and accumulate the offsets.
- Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true);
- Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true);
- if (LHS == RHS)
- return ConstantExpr::getICmp(Pred,
- ConstantExpr::getAdd(LHSOffset, LHSNoBound),
- ConstantExpr::getAdd(RHSOffset, RHSNoBound));
-
- // If one side of the equality comparison must come from a noalias call
- // (meaning a system memory allocation function), and the other side must
- // come from a pointer that cannot overlap with dynamically-allocated
- // memory within the lifetime of the current function (allocas, byval
- // arguments, globals), then determine the comparison result here.
- SmallVector<Value *, 8> LHSUObjs, RHSUObjs;
- GetUnderlyingObjects(LHS, LHSUObjs, DL);
- GetUnderlyingObjects(RHS, RHSUObjs, DL);
-
- // Is the set of underlying objects all noalias calls?
- auto IsNAC = [](ArrayRef<Value *> Objects) {
- return all_of(Objects, isNoAliasCall);
- };
-
- // Is the set of underlying objects all things which must be disjoint from
- // noalias calls. For allocas, we consider only static ones (dynamic
- // allocas might be transformed into calls to malloc not simultaneously
- // live with the compared-to allocation). For globals, we exclude symbols
- // that might be resolve lazily to symbols in another dynamically-loaded
- // library (and, thus, could be malloc'ed by the implementation).
- auto IsAllocDisjoint = [](ArrayRef<Value *> Objects) {
- return all_of(Objects, [](Value *V) {
- if (const AllocaInst *AI = dyn_cast<AllocaInst>(V))
- return AI->getParent() && AI->getFunction() && AI->isStaticAlloca();
- if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
- return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() ||
- GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) &&
- !GV->isThreadLocal();
- if (const Argument *A = dyn_cast<Argument>(V))
- return A->hasByValAttr();
- return false;
- });
- };
-
- if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) ||
- (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs)))
- return ConstantInt::get(GetCompareTy(LHS),
- !CmpInst::isTrueWhenEqual(Pred));
-
- // Fold comparisons for non-escaping pointer even if the allocation call
- // cannot be elided. We cannot fold malloc comparison to null. Also, the
- // dynamic allocation call could be either of the operands.
- Value *MI = nullptr;
- if (isAllocLikeFn(LHS, TLI) &&
- llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT))
- MI = LHS;
- else if (isAllocLikeFn(RHS, TLI) &&
- llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT))
- MI = RHS;
- // FIXME: We should also fold the compare when the pointer escapes, but the
- // compare dominates the pointer escape
- if (MI && !PointerMayBeCaptured(MI, true, true))
- return ConstantInt::get(GetCompareTy(LHS),
- CmpInst::isFalseWhenEqual(Pred));
- }
-
- // Otherwise, fail.
- return nullptr;
-}
-
-/// Fold an icmp when its operands have i1 scalar type.
-static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS,
- Value *RHS, const SimplifyQuery &Q) {
- Type *ITy = GetCompareTy(LHS); // The return type.
- Type *OpTy = LHS->getType(); // The operand type.
- if (!OpTy->isIntOrIntVectorTy(1))
- return nullptr;
-
- // A boolean compared to true/false can be simplified in 14 out of the 20
- // (10 predicates * 2 constants) possible combinations. Cases not handled here
- // require a 'not' of the LHS, so those must be transformed in InstCombine.
- if (match(RHS, m_Zero())) {
- switch (Pred) {
- case CmpInst::ICMP_NE: // X != 0 -> X
- case CmpInst::ICMP_UGT: // X >u 0 -> X
- case CmpInst::ICMP_SLT: // X <s 0 -> X
- return LHS;
-
- case CmpInst::ICMP_ULT: // X <u 0 -> false
- case CmpInst::ICMP_SGT: // X >s 0 -> false
- return getFalse(ITy);
-
- case CmpInst::ICMP_UGE: // X >=u 0 -> true
- case CmpInst::ICMP_SLE: // X <=s 0 -> true
- return getTrue(ITy);
-
- default: break;
- }
- } else if (match(RHS, m_One())) {
- switch (Pred) {
- case CmpInst::ICMP_EQ: // X == 1 -> X
- case CmpInst::ICMP_UGE: // X >=u 1 -> X
- case CmpInst::ICMP_SLE: // X <=s -1 -> X
- return LHS;
-
- case CmpInst::ICMP_UGT: // X >u 1 -> false
- case CmpInst::ICMP_SLT: // X <s -1 -> false
- return getFalse(ITy);
-
- case CmpInst::ICMP_ULE: // X <=u 1 -> true
- case CmpInst::ICMP_SGE: // X >=s -1 -> true
- return getTrue(ITy);
-
- default: break;
- }
- }
-
- switch (Pred) {
- default:
- break;
- case ICmpInst::ICMP_UGE:
- if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false))
- return getTrue(ITy);
- break;
- case ICmpInst::ICMP_SGE:
- /// For signed comparison, the values for an i1 are 0 and -1
- /// respectively. This maps into a truth table of:
- /// LHS | RHS | LHS >=s RHS | LHS implies RHS
- /// 0 | 0 | 1 (0 >= 0) | 1
- /// 0 | 1 | 1 (0 >= -1) | 1
- /// 1 | 0 | 0 (-1 >= 0) | 0
- /// 1 | 1 | 1 (-1 >= -1) | 1
- if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
- return getTrue(ITy);
- break;
- case ICmpInst::ICMP_ULE:
- if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
- return getTrue(ITy);
- break;
- }
-
- return nullptr;
-}
-
-/// Try hard to fold icmp with zero RHS because this is a common case.
-static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS,
- Value *RHS, const SimplifyQuery &Q) {
- if (!match(RHS, m_Zero()))
- return nullptr;
-
- Type *ITy = GetCompareTy(LHS); // The return type.
- switch (Pred) {
- default:
- llvm_unreachable("Unknown ICmp predicate!");
- case ICmpInst::ICMP_ULT:
- return getFalse(ITy);
- case ICmpInst::ICMP_UGE:
- return getTrue(ITy);
- case ICmpInst::ICMP_EQ:
- case ICmpInst::ICMP_ULE:
- if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo))
- return getFalse(ITy);
- break;
- case ICmpInst::ICMP_NE:
- case ICmpInst::ICMP_UGT:
- if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo))
- return getTrue(ITy);
- break;
- case ICmpInst::ICMP_SLT: {
- KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
- if (LHSKnown.isNegative())
- return getTrue(ITy);
- if (LHSKnown.isNonNegative())
- return getFalse(ITy);
- break;
- }
- case ICmpInst::ICMP_SLE: {
- KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
- if (LHSKnown.isNegative())
- return getTrue(ITy);
- if (LHSKnown.isNonNegative() &&
- isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
- return getFalse(ITy);
- break;
- }
- case ICmpInst::ICMP_SGE: {
- KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
- if (LHSKnown.isNegative())
- return getFalse(ITy);
- if (LHSKnown.isNonNegative())
- return getTrue(ITy);
- break;
- }
- case ICmpInst::ICMP_SGT: {
- KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
- if (LHSKnown.isNegative())
- return getFalse(ITy);
- if (LHSKnown.isNonNegative() &&
- isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
- return getTrue(ITy);
- break;
- }
- }
-
- return nullptr;
-}
-
-/// Many binary operators with a constant operand have an easy-to-compute
-/// range of outputs. This can be used to fold a comparison to always true or
-/// always false.
-static void setLimitsForBinOp(BinaryOperator &BO, APInt &Lower, APInt &Upper,
- const InstrInfoQuery &IIQ) {
- unsigned Width = Lower.getBitWidth();
- const APInt *C;
- switch (BO.getOpcode()) {
- case Instruction::Add:
- if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) {
- // FIXME: If we have both nuw and nsw, we should reduce the range further.
- if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) {
- // 'add nuw x, C' produces [C, UINT_MAX].
- Lower = *C;
- } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) {
- if (C->isNegative()) {
- // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C].
- Lower = APInt::getSignedMinValue(Width);
- Upper = APInt::getSignedMaxValue(Width) + *C + 1;
- } else {
- // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX].
- Lower = APInt::getSignedMinValue(Width) + *C;
- Upper = APInt::getSignedMaxValue(Width) + 1;
- }
- }
- }
- break;
-
- case Instruction::And:
- if (match(BO.getOperand(1), m_APInt(C)))
- // 'and x, C' produces [0, C].
- Upper = *C + 1;
- break;
-
- case Instruction::Or:
- if (match(BO.getOperand(1), m_APInt(C)))
- // 'or x, C' produces [C, UINT_MAX].
- Lower = *C;
- break;
-
- case Instruction::AShr:
- if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
- // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C].
- Lower = APInt::getSignedMinValue(Width).ashr(*C);
- Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1;
- } else if (match(BO.getOperand(0), m_APInt(C))) {
- unsigned ShiftAmount = Width - 1;
- if (!C->isNullValue() && IIQ.isExact(&BO))
- ShiftAmount = C->countTrailingZeros();
- if (C->isNegative()) {
- // 'ashr C, x' produces [C, C >> (Width-1)]
- Lower = *C;
- Upper = C->ashr(ShiftAmount) + 1;
- } else {
- // 'ashr C, x' produces [C >> (Width-1), C]
- Lower = C->ashr(ShiftAmount);
- Upper = *C + 1;
- }
- }
- break;
-
- case Instruction::LShr:
- if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
- // 'lshr x, C' produces [0, UINT_MAX >> C].
- Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1;
- } else if (match(BO.getOperand(0), m_APInt(C))) {
- // 'lshr C, x' produces [C >> (Width-1), C].
- unsigned ShiftAmount = Width - 1;
- if (!C->isNullValue() && IIQ.isExact(&BO))
- ShiftAmount = C->countTrailingZeros();
- Lower = C->lshr(ShiftAmount);
- Upper = *C + 1;
- }
- break;
-
- case Instruction::Shl:
- if (match(BO.getOperand(0), m_APInt(C))) {
- if (IIQ.hasNoUnsignedWrap(&BO)) {
- // 'shl nuw C, x' produces [C, C << CLZ(C)]
- Lower = *C;
- Upper = Lower.shl(Lower.countLeadingZeros()) + 1;
- } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw?
- if (C->isNegative()) {
- // 'shl nsw C, x' produces [C << CLO(C)-1, C]
- unsigned ShiftAmount = C->countLeadingOnes() - 1;
- Lower = C->shl(ShiftAmount);
- Upper = *C + 1;
- } else {
- // 'shl nsw C, x' produces [C, C << CLZ(C)-1]
- unsigned ShiftAmount = C->countLeadingZeros() - 1;
- Lower = *C;
- Upper = C->shl(ShiftAmount) + 1;
- }
- }
- }
- break;
-
- case Instruction::SDiv:
- if (match(BO.getOperand(1), m_APInt(C))) {
- APInt IntMin = APInt::getSignedMinValue(Width);
- APInt IntMax = APInt::getSignedMaxValue(Width);
- if (C->isAllOnesValue()) {
- // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX]
- // where C != -1 and C != 0 and C != 1
- Lower = IntMin + 1;
- Upper = IntMax + 1;
- } else if (C->countLeadingZeros() < Width - 1) {
- // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C]
- // where C != -1 and C != 0 and C != 1
- Lower = IntMin.sdiv(*C);
- Upper = IntMax.sdiv(*C);
- if (Lower.sgt(Upper))
- std::swap(Lower, Upper);
- Upper = Upper + 1;
- assert(Upper != Lower && "Upper part of range has wrapped!");
- }
- } else if (match(BO.getOperand(0), m_APInt(C))) {
- if (C->isMinSignedValue()) {
- // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2].
- Lower = *C;
- Upper = Lower.lshr(1) + 1;
- } else {
- // 'sdiv C, x' produces [-|C|, |C|].
- Upper = C->abs() + 1;
- Lower = (-Upper) + 1;
- }
- }
- break;
-
- case Instruction::UDiv:
- if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) {
- // 'udiv x, C' produces [0, UINT_MAX / C].
- Upper = APInt::getMaxValue(Width).udiv(*C) + 1;
- } else if (match(BO.getOperand(0), m_APInt(C))) {
- // 'udiv C, x' produces [0, C].
- Upper = *C + 1;
- }
- break;
-
- case Instruction::SRem:
- if (match(BO.getOperand(1), m_APInt(C))) {
- // 'srem x, C' produces (-|C|, |C|).
- Upper = C->abs();
- Lower = (-Upper) + 1;
- }
- break;
-
- case Instruction::URem:
- if (match(BO.getOperand(1), m_APInt(C)))
- // 'urem x, C' produces [0, C).
- Upper = *C;
- break;
-
- default:
- break;
- }
-}
-
-/// Some intrinsics with a constant operand have an easy-to-compute range of
-/// outputs. This can be used to fold a comparison to always true or always
-/// false.
-static void setLimitsForIntrinsic(IntrinsicInst &II, APInt &Lower,
- APInt &Upper) {
- unsigned Width = Lower.getBitWidth();
- const APInt *C;
- switch (II.getIntrinsicID()) {
- case Intrinsic::uadd_sat:
- // uadd.sat(x, C) produces [C, UINT_MAX].
- if (match(II.getOperand(0), m_APInt(C)) ||
- match(II.getOperand(1), m_APInt(C)))
- Lower = *C;
- break;
- case Intrinsic::sadd_sat:
- if (match(II.getOperand(0), m_APInt(C)) ||
- match(II.getOperand(1), m_APInt(C))) {
- if (C->isNegative()) {
- // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)].
- Lower = APInt::getSignedMinValue(Width);
- Upper = APInt::getSignedMaxValue(Width) + *C + 1;
- } else {
- // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX].
- Lower = APInt::getSignedMinValue(Width) + *C;
- Upper = APInt::getSignedMaxValue(Width) + 1;
- }
- }
- break;
- case Intrinsic::usub_sat:
- // usub.sat(C, x) produces [0, C].
- if (match(II.getOperand(0), m_APInt(C)))
- Upper = *C + 1;
- // usub.sat(x, C) produces [0, UINT_MAX - C].
- else if (match(II.getOperand(1), m_APInt(C)))
- Upper = APInt::getMaxValue(Width) - *C + 1;
- break;
- case Intrinsic::ssub_sat:
- if (match(II.getOperand(0), m_APInt(C))) {
- if (C->isNegative()) {
- // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)].
- Lower = APInt::getSignedMinValue(Width);
- Upper = *C - APInt::getSignedMinValue(Width) + 1;
- } else {
- // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX].
- Lower = *C - APInt::getSignedMaxValue(Width);
- Upper = APInt::getSignedMaxValue(Width) + 1;
- }
- } else if (match(II.getOperand(1), m_APInt(C))) {
- if (C->isNegative()) {
- // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]:
- Lower = APInt::getSignedMinValue(Width) - *C;
- Upper = APInt::getSignedMaxValue(Width) + 1;
- } else {
- // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C].
- Lower = APInt::getSignedMinValue(Width);
- Upper = APInt::getSignedMaxValue(Width) - *C + 1;
- }
- }
- break;
- default:
- break;
- }
-}
-
-static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS,
- Value *RHS, const InstrInfoQuery &IIQ) {
- Type *ITy = GetCompareTy(RHS); // The return type.
-
- Value *X;
- // Sign-bit checks can be optimized to true/false after unsigned
- // floating-point casts:
- // icmp slt (bitcast (uitofp X)), 0 --> false
- // icmp sgt (bitcast (uitofp X)), -1 --> true
- if (match(LHS, m_BitCast(m_UIToFP(m_Value(X))))) {
- if (Pred == ICmpInst::ICMP_SLT && match(RHS, m_Zero()))
- return ConstantInt::getFalse(ITy);
- if (Pred == ICmpInst::ICMP_SGT && match(RHS, m_AllOnes()))
- return ConstantInt::getTrue(ITy);
- }
-
- const APInt *C;
- if (!match(RHS, m_APInt(C)))
- return nullptr;
-
- // Rule out tautological comparisons (eg., ult 0 or uge 0).
- ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C);
- if (RHS_CR.isEmptySet())
- return ConstantInt::getFalse(ITy);
- if (RHS_CR.isFullSet())
- return ConstantInt::getTrue(ITy);
-
- // Find the range of possible values for binary operators.
- unsigned Width = C->getBitWidth();
- APInt Lower = APInt(Width, 0);
- APInt Upper = APInt(Width, 0);
- if (auto *BO = dyn_cast<BinaryOperator>(LHS))
- setLimitsForBinOp(*BO, Lower, Upper, IIQ);
- else if (auto *II = dyn_cast<IntrinsicInst>(LHS))
- setLimitsForIntrinsic(*II, Lower, Upper);
-
- ConstantRange LHS_CR =
- Lower != Upper ? ConstantRange(Lower, Upper) : ConstantRange(Width, true);
-
- if (auto *I = dyn_cast<Instruction>(LHS))
- if (auto *Ranges = IIQ.getMetadata(I, LLVMContext::MD_range))
- LHS_CR = LHS_CR.intersectWith(getConstantRangeFromMetadata(*Ranges));
-
- if (!LHS_CR.isFullSet()) {
- if (RHS_CR.contains(LHS_CR))
- return ConstantInt::getTrue(ITy);
- if (RHS_CR.inverse().contains(LHS_CR))
- return ConstantInt::getFalse(ITy);
- }
-
- return nullptr;
-}
-
-/// TODO: A large part of this logic is duplicated in InstCombine's
-/// foldICmpBinOp(). We should be able to share that and avoid the code
-/// duplication.
-static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS,
- Value *RHS, const SimplifyQuery &Q,
- unsigned MaxRecurse) {
- Type *ITy = GetCompareTy(LHS); // The return type.
-
- BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
- BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
- if (MaxRecurse && (LBO || RBO)) {
- // Analyze the case when either LHS or RHS is an add instruction.
- Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
- // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
- bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
- if (LBO && LBO->getOpcode() == Instruction::Add) {
- A = LBO->getOperand(0);
- B = LBO->getOperand(1);
- NoLHSWrapProblem =
- ICmpInst::isEquality(Pred) ||
- (CmpInst::isUnsigned(Pred) &&
- Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO))) ||
- (CmpInst::isSigned(Pred) &&
- Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)));
- }
- if (RBO && RBO->getOpcode() == Instruction::Add) {
- C = RBO->getOperand(0);
- D = RBO->getOperand(1);
- NoRHSWrapProblem =
- ICmpInst::isEquality(Pred) ||
- (CmpInst::isUnsigned(Pred) &&
- Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(RBO))) ||
- (CmpInst::isSigned(Pred) &&
- Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RBO)));
- }
-
- // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
- if ((A == RHS || B == RHS) && NoLHSWrapProblem)
- if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A,
- Constant::getNullValue(RHS->getType()), Q,
- MaxRecurse - 1))
- return V;
-
- // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
- if ((C == LHS || D == LHS) && NoRHSWrapProblem)
- if (Value *V =
- SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()),
- C == LHS ? D : C, Q, MaxRecurse - 1))
- return V;
-
- // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
- if (A && C && (A == C || A == D || B == C || B == D) && NoLHSWrapProblem &&
- NoRHSWrapProblem) {
- // Determine Y and Z in the form icmp (X+Y), (X+Z).
- Value *Y, *Z;
- if (A == C) {
- // C + B == C + D -> B == D
- Y = B;
- Z = D;
- } else if (A == D) {
- // D + B == C + D -> B == C
- Y = B;
- Z = C;
- } else if (B == C) {
- // A + C == C + D -> A == D
- Y = A;
- Z = D;
- } else {
- assert(B == D);
- // A + D == C + D -> A == C
- Y = A;
- Z = C;
- }
- if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1))
- return V;
- }
- }
-
- {
- Value *Y = nullptr;
- // icmp pred (or X, Y), X
- if (LBO && match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) {
- if (Pred == ICmpInst::ICMP_ULT)
- return getFalse(ITy);
- if (Pred == ICmpInst::ICMP_UGE)
- return getTrue(ITy);
-
- if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) {
- KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
- KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
- if (RHSKnown.isNonNegative() && YKnown.isNegative())
- return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy);
- if (RHSKnown.isNegative() || YKnown.isNonNegative())
- return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy);
- }
- }
- // icmp pred X, (or X, Y)
- if (RBO && match(RBO, m_c_Or(m_Value(Y), m_Specific(LHS)))) {
- if (Pred == ICmpInst::ICMP_ULE)
- return getTrue(ITy);
- if (Pred == ICmpInst::ICMP_UGT)
- return getFalse(ITy);
-
- if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLE) {
- KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
- KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
- if (LHSKnown.isNonNegative() && YKnown.isNegative())
- return Pred == ICmpInst::ICMP_SGT ? getTrue(ITy) : getFalse(ITy);
- if (LHSKnown.isNegative() || YKnown.isNonNegative())
- return Pred == ICmpInst::ICMP_SGT ? getFalse(ITy) : getTrue(ITy);
- }
- }
- }
-
- // icmp pred (and X, Y), X
- if (LBO && match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) {
- if (Pred == ICmpInst::ICMP_UGT)
- return getFalse(ITy);
- if (Pred == ICmpInst::ICMP_ULE)
- return getTrue(ITy);
- }
- // icmp pred X, (and X, Y)
- if (RBO && match(RBO, m_c_And(m_Value(), m_Specific(LHS)))) {
- if (Pred == ICmpInst::ICMP_UGE)
- return getTrue(ITy);
- if (Pred == ICmpInst::ICMP_ULT)
- return getFalse(ITy);
- }
-
- // 0 - (zext X) pred C
- if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) {
- if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
- if (RHSC->getValue().isStrictlyPositive()) {
- if (Pred == ICmpInst::ICMP_SLT)
- return ConstantInt::getTrue(RHSC->getContext());
- if (Pred == ICmpInst::ICMP_SGE)
- return ConstantInt::getFalse(RHSC->getContext());
- if (Pred == ICmpInst::ICMP_EQ)
- return ConstantInt::getFalse(RHSC->getContext());
- if (Pred == ICmpInst::ICMP_NE)
- return ConstantInt::getTrue(RHSC->getContext());
- }
- if (RHSC->getValue().isNonNegative()) {
- if (Pred == ICmpInst::ICMP_SLE)
- return ConstantInt::getTrue(RHSC->getContext());
- if (Pred == ICmpInst::ICMP_SGT)
- return ConstantInt::getFalse(RHSC->getContext());
- }
- }
- }
-
- // icmp pred (urem X, Y), Y
- if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
- switch (Pred) {
- default:
- break;
- case ICmpInst::ICMP_SGT:
- case ICmpInst::ICMP_SGE: {
- KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
- if (!Known.isNonNegative())
- break;
- LLVM_FALLTHROUGH;
- }
- case ICmpInst::ICMP_EQ:
- case ICmpInst::ICMP_UGT:
- case ICmpInst::ICMP_UGE:
- return getFalse(ITy);
- case ICmpInst::ICMP_SLT:
- case ICmpInst::ICMP_SLE: {
- KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
- if (!Known.isNonNegative())
- break;
- LLVM_FALLTHROUGH;
- }
- case ICmpInst::ICMP_NE:
- case ICmpInst::ICMP_ULT:
- case ICmpInst::ICMP_ULE:
- return getTrue(ITy);
- }
- }
-
- // icmp pred X, (urem Y, X)
- if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) {
- switch (Pred) {
- default:
- break;
- case ICmpInst::ICMP_SGT:
- case ICmpInst::ICMP_SGE: {
- KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
- if (!Known.isNonNegative())
- break;
- LLVM_FALLTHROUGH;
- }
- case ICmpInst::ICMP_NE:
- case ICmpInst::ICMP_UGT:
- case ICmpInst::ICMP_UGE:
- return getTrue(ITy);
- case ICmpInst::ICMP_SLT:
- case ICmpInst::ICMP_SLE: {
- KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
- if (!Known.isNonNegative())
- break;
- LLVM_FALLTHROUGH;
- }
- case ICmpInst::ICMP_EQ:
- case ICmpInst::ICMP_ULT:
- case ICmpInst::ICMP_ULE:
- return getFalse(ITy);
- }
- }
-
- // x >> y <=u x
- // x udiv y <=u x.
- if (LBO && (match(LBO, m_LShr(m_Specific(RHS), m_Value())) ||
- match(LBO, m_UDiv(m_Specific(RHS), m_Value())))) {
- // icmp pred (X op Y), X
- if (Pred == ICmpInst::ICMP_UGT)
- return getFalse(ITy);
- if (Pred == ICmpInst::ICMP_ULE)
- return getTrue(ITy);
- }
-
- // x >=u x >> y
- // x >=u x udiv y.
- if (RBO && (match(RBO, m_LShr(m_Specific(LHS), m_Value())) ||
- match(RBO, m_UDiv(m_Specific(LHS), m_Value())))) {
- // icmp pred X, (X op Y)
- if (Pred == ICmpInst::ICMP_ULT)
- return getFalse(ITy);
- if (Pred == ICmpInst::ICMP_UGE)
- return getTrue(ITy);
- }
-
- // handle:
- // CI2 << X == CI
- // CI2 << X != CI
- //
- // where CI2 is a power of 2 and CI isn't
- if (auto *CI = dyn_cast<ConstantInt>(RHS)) {
- const APInt *CI2Val, *CIVal = &CI->getValue();
- if (LBO && match(LBO, m_Shl(m_APInt(CI2Val), m_Value())) &&
- CI2Val->isPowerOf2()) {
- if (!CIVal->isPowerOf2()) {
- // CI2 << X can equal zero in some circumstances,
- // this simplification is unsafe if CI is zero.
- //
- // We know it is safe if:
- // - The shift is nsw, we can't shift out the one bit.
- // - The shift is nuw, we can't shift out the one bit.
- // - CI2 is one
- // - CI isn't zero
- if (Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)) ||
- Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO)) ||
- CI2Val->isOneValue() || !CI->isZero()) {
- if (Pred == ICmpInst::ICMP_EQ)
- return ConstantInt::getFalse(RHS->getContext());
- if (Pred == ICmpInst::ICMP_NE)
- return ConstantInt::getTrue(RHS->getContext());
- }
- }
- if (CIVal->isSignMask() && CI2Val->isOneValue()) {
- if (Pred == ICmpInst::ICMP_UGT)
- return ConstantInt::getFalse(RHS->getContext());
- if (Pred == ICmpInst::ICMP_ULE)
- return ConstantInt::getTrue(RHS->getContext());
- }
- }
- }
-
- if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
- LBO->getOperand(1) == RBO->getOperand(1)) {
- switch (LBO->getOpcode()) {
- default:
- break;
- case Instruction::UDiv:
- case Instruction::LShr:
- if (ICmpInst::isSigned(Pred) || !Q.IIQ.isExact(LBO) ||
- !Q.IIQ.isExact(RBO))
- break;
- if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
- RBO->getOperand(0), Q, MaxRecurse - 1))
- return V;
- break;
- case Instruction::SDiv:
- if (!ICmpInst::isEquality(Pred) || !Q.IIQ.isExact(LBO) ||
- !Q.IIQ.isExact(RBO))
- break;
- if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
- RBO->getOperand(0), Q, MaxRecurse - 1))
- return V;
- break;
- case Instruction::AShr:
- if (!Q.IIQ.isExact(LBO) || !Q.IIQ.isExact(RBO))
- break;
- if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
- RBO->getOperand(0), Q, MaxRecurse - 1))
- return V;
- break;
- case Instruction::Shl: {
- bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO);
- bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO);
- if (!NUW && !NSW)
- break;
- if (!NSW && ICmpInst::isSigned(Pred))
- break;
- if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
- RBO->getOperand(0), Q, MaxRecurse - 1))
- return V;
- break;
- }
- }
- }
- return nullptr;
-}
-
-static Value *simplifyICmpWithAbsNabs(CmpInst::Predicate Pred, Value *Op0,
- Value *Op1) {
- // We need a comparison with a constant.
- const APInt *C;
- if (!match(Op1, m_APInt(C)))
- return nullptr;
-
- // matchSelectPattern returns the negation part of an abs pattern in SP1.
- // If the negate has an NSW flag, abs(INT_MIN) is undefined. Without that
- // constraint, we can't make a contiguous range for the result of abs.
- ICmpInst::Predicate AbsPred = ICmpInst::BAD_ICMP_PREDICATE;
- Value *SP0, *SP1;
- SelectPatternFlavor SPF = matchSelectPattern(Op0, SP0, SP1).Flavor;
- if (SPF == SelectPatternFlavor::SPF_ABS &&
- cast<Instruction>(SP1)->hasNoSignedWrap())
- // The result of abs(X) is >= 0 (with nsw).
- AbsPred = ICmpInst::ICMP_SGE;
- if (SPF == SelectPatternFlavor::SPF_NABS)
- // The result of -abs(X) is <= 0.
- AbsPred = ICmpInst::ICMP_SLE;
-
- if (AbsPred == ICmpInst::BAD_ICMP_PREDICATE)
- return nullptr;
-
- // If there is no intersection between abs/nabs and the range of this icmp,
- // the icmp must be false. If the abs/nabs range is a subset of the icmp
- // range, the icmp must be true.
- APInt Zero = APInt::getNullValue(C->getBitWidth());
- ConstantRange AbsRange = ConstantRange::makeExactICmpRegion(AbsPred, Zero);
- ConstantRange CmpRange = ConstantRange::makeExactICmpRegion(Pred, *C);
- if (AbsRange.intersectWith(CmpRange).isEmptySet())
- return getFalse(GetCompareTy(Op0));
- if (CmpRange.contains(AbsRange))
- return getTrue(GetCompareTy(Op0));
-
- return nullptr;
-}
-
-/// Simplify integer comparisons where at least one operand of the compare
-/// matches an integer min/max idiom.
-static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS,
- Value *RHS, const SimplifyQuery &Q,
- unsigned MaxRecurse) {
- Type *ITy = GetCompareTy(LHS); // The return type.
- Value *A, *B;
- CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
- CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
-
- // Signed variants on "max(a,b)>=a -> true".
- if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
- if (A != RHS)
- std::swap(A, B); // smax(A, B) pred A.
- EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
- // We analyze this as smax(A, B) pred A.
- P = Pred;
- } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
- (A == LHS || B == LHS)) {
- if (A != LHS)
- std::swap(A, B); // A pred smax(A, B).
- EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
- // We analyze this as smax(A, B) swapped-pred A.
- P = CmpInst::getSwappedPredicate(Pred);
- } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
- (A == RHS || B == RHS)) {
- if (A != RHS)
- std::swap(A, B); // smin(A, B) pred A.
- EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
- // We analyze this as smax(-A, -B) swapped-pred -A.
- // Note that we do not need to actually form -A or -B thanks to EqP.
- P = CmpInst::getSwappedPredicate(Pred);
- } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
- (A == LHS || B == LHS)) {
- if (A != LHS)
- std::swap(A, B); // A pred smin(A, B).
- EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
- // We analyze this as smax(-A, -B) pred -A.
- // Note that we do not need to actually form -A or -B thanks to EqP.
- P = Pred;
- }
- if (P != CmpInst::BAD_ICMP_PREDICATE) {
- // Cases correspond to "max(A, B) p A".
- switch (P) {
- default:
- break;
- case CmpInst::ICMP_EQ:
- case CmpInst::ICMP_SLE:
- // Equivalent to "A EqP B". This may be the same as the condition tested
- // in the max/min; if so, we can just return that.
- if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
- return V;
- if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
- return V;
- // Otherwise, see if "A EqP B" simplifies.
- if (MaxRecurse)
- if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
- return V;
- break;
- case CmpInst::ICMP_NE:
- case CmpInst::ICMP_SGT: {
- CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
- // Equivalent to "A InvEqP B". This may be the same as the condition
- // tested in the max/min; if so, we can just return that.
- if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
- return V;
- if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
- return V;
- // Otherwise, see if "A InvEqP B" simplifies.
- if (MaxRecurse)
- if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
- return V;
- break;
- }
- case CmpInst::ICMP_SGE:
- // Always true.
- return getTrue(ITy);
- case CmpInst::ICMP_SLT:
- // Always false.
- return getFalse(ITy);
- }
- }
-
- // Unsigned variants on "max(a,b)>=a -> true".
- P = CmpInst::BAD_ICMP_PREDICATE;
- if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
- if (A != RHS)
- std::swap(A, B); // umax(A, B) pred A.
- EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
- // We analyze this as umax(A, B) pred A.
- P = Pred;
- } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
- (A == LHS || B == LHS)) {
- if (A != LHS)
- std::swap(A, B); // A pred umax(A, B).
- EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
- // We analyze this as umax(A, B) swapped-pred A.
- P = CmpInst::getSwappedPredicate(Pred);
- } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
- (A == RHS || B == RHS)) {
- if (A != RHS)
- std::swap(A, B); // umin(A, B) pred A.
- EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
- // We analyze this as umax(-A, -B) swapped-pred -A.
- // Note that we do not need to actually form -A or -B thanks to EqP.
- P = CmpInst::getSwappedPredicate(Pred);
- } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
- (A == LHS || B == LHS)) {
- if (A != LHS)
- std::swap(A, B); // A pred umin(A, B).
- EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
- // We analyze this as umax(-A, -B) pred -A.
- // Note that we do not need to actually form -A or -B thanks to EqP.
- P = Pred;
- }
- if (P != CmpInst::BAD_ICMP_PREDICATE) {
- // Cases correspond to "max(A, B) p A".
- switch (P) {
- default:
- break;
- case CmpInst::ICMP_EQ:
- case CmpInst::ICMP_ULE:
- // Equivalent to "A EqP B". This may be the same as the condition tested
- // in the max/min; if so, we can just return that.
- if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
- return V;
- if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
- return V;
- // Otherwise, see if "A EqP B" simplifies.
- if (MaxRecurse)
- if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
- return V;
- break;
- case CmpInst::ICMP_NE:
- case CmpInst::ICMP_UGT: {
- CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
- // Equivalent to "A InvEqP B". This may be the same as the condition
- // tested in the max/min; if so, we can just return that.
- if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
- return V;
- if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
- return V;
- // Otherwise, see if "A InvEqP B" simplifies.
- if (MaxRecurse)
- if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
- return V;
- break;
- }
- case CmpInst::ICMP_UGE:
- // Always true.
- return getTrue(ITy);
- case CmpInst::ICMP_ULT:
- // Always false.
- return getFalse(ITy);
- }
- }
-
- // Variants on "max(x,y) >= min(x,z)".
- Value *C, *D;
- if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
- match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
- (A == C || A == D || B == C || B == D)) {
- // max(x, ?) pred min(x, ?).
- if (Pred == CmpInst::ICMP_SGE)
- // Always true.
- return getTrue(ITy);
- if (Pred == CmpInst::ICMP_SLT)
- // Always false.
- return getFalse(ITy);
- } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
- match(RHS, m_SMax(m_Value(C), m_Value(D))) &&
- (A == C || A == D || B == C || B == D)) {
- // min(x, ?) pred max(x, ?).
- if (Pred == CmpInst::ICMP_SLE)
- // Always true.
- return getTrue(ITy);
- if (Pred == CmpInst::ICMP_SGT)
- // Always false.
- return getFalse(ITy);
- } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
- match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
- (A == C || A == D || B == C || B == D)) {
- // max(x, ?) pred min(x, ?).
- if (Pred == CmpInst::ICMP_UGE)
- // Always true.
- return getTrue(ITy);
- if (Pred == CmpInst::ICMP_ULT)
- // Always false.
- return getFalse(ITy);
- } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
- match(RHS, m_UMax(m_Value(C), m_Value(D))) &&
- (A == C || A == D || B == C || B == D)) {
- // min(x, ?) pred max(x, ?).
- if (Pred == CmpInst::ICMP_ULE)
- // Always true.
- return getTrue(ITy);
- if (Pred == CmpInst::ICMP_UGT)
- // Always false.
- return getFalse(ITy);
- }
-
- return nullptr;
-}
-
-/// Given operands for an ICmpInst, see if we can fold the result.
-/// If not, this returns null.
-static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
- const SimplifyQuery &Q, unsigned MaxRecurse) {
- CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
- assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
-
- if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
- if (Constant *CRHS = dyn_cast<Constant>(RHS))
- return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
-
- // If we have a constant, make sure it is on the RHS.
- std::swap(LHS, RHS);
- Pred = CmpInst::getSwappedPredicate(Pred);
- }
-
- Type *ITy = GetCompareTy(LHS); // The return type.
-
- // icmp X, X -> true/false
- // icmp X, undef -> true/false because undef could be X.
- if (LHS == RHS || isa<UndefValue>(RHS))
- return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
-
- if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q))
- return V;
-
- if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q))
- return V;
-
- if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS, Q.IIQ))
- return V;
-
- // If both operands have range metadata, use the metadata
- // to simplify the comparison.
- if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) {
- auto RHS_Instr = cast<Instruction>(RHS);
- auto LHS_Instr = cast<Instruction>(LHS);
-
- if (Q.IIQ.getMetadata(RHS_Instr, LLVMContext::MD_range) &&
- Q.IIQ.getMetadata(LHS_Instr, LLVMContext::MD_range)) {
- auto RHS_CR = getConstantRangeFromMetadata(
- *RHS_Instr->getMetadata(LLVMContext::MD_range));
- auto LHS_CR = getConstantRangeFromMetadata(
- *LHS_Instr->getMetadata(LLVMContext::MD_range));
-
- auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR);
- if (Satisfied_CR.contains(LHS_CR))
- return ConstantInt::getTrue(RHS->getContext());
-
- auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion(
- CmpInst::getInversePredicate(Pred), RHS_CR);
- if (InversedSatisfied_CR.contains(LHS_CR))
- return ConstantInt::getFalse(RHS->getContext());
- }
- }
-
- // Compare of cast, for example (zext X) != 0 -> X != 0
- if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
- Instruction *LI = cast<CastInst>(LHS);
- Value *SrcOp = LI->getOperand(0);
- Type *SrcTy = SrcOp->getType();
- Type *DstTy = LI->getType();
-
- // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
- // if the integer type is the same size as the pointer type.
- if (MaxRecurse && isa<PtrToIntInst>(LI) &&
- Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) {
- if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
- // Transfer the cast to the constant.
- if (Value *V = SimplifyICmpInst(Pred, SrcOp,
- ConstantExpr::getIntToPtr(RHSC, SrcTy),
- Q, MaxRecurse-1))
- return V;
- } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
- if (RI->getOperand(0)->getType() == SrcTy)
- // Compare without the cast.
- if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
- Q, MaxRecurse-1))
- return V;
- }
- }
-
- if (isa<ZExtInst>(LHS)) {
- // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
- // same type.
- if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
- if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
- // Compare X and Y. Note that signed predicates become unsigned.
- if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
- SrcOp, RI->getOperand(0), Q,
- MaxRecurse-1))
- return V;
- }
- // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
- // too. If not, then try to deduce the result of the comparison.
- else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
- // Compute the constant that would happen if we truncated to SrcTy then
- // reextended to DstTy.
- Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
- Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
-
- // If the re-extended constant didn't change then this is effectively
- // also a case of comparing two zero-extended values.
- if (RExt == CI && MaxRecurse)
- if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
- SrcOp, Trunc, Q, MaxRecurse-1))
- return V;
-
- // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
- // there. Use this to work out the result of the comparison.
- if (RExt != CI) {
- switch (Pred) {
- default: llvm_unreachable("Unknown ICmp predicate!");
- // LHS <u RHS.
- case ICmpInst::ICMP_EQ:
- case ICmpInst::ICMP_UGT:
- case ICmpInst::ICMP_UGE:
- return ConstantInt::getFalse(CI->getContext());
-
- case ICmpInst::ICMP_NE:
- case ICmpInst::ICMP_ULT:
- case ICmpInst::ICMP_ULE:
- return ConstantInt::getTrue(CI->getContext());
-
- // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS
- // is non-negative then LHS <s RHS.
- case ICmpInst::ICMP_SGT:
- case ICmpInst::ICMP_SGE:
- return CI->getValue().isNegative() ?
- ConstantInt::getTrue(CI->getContext()) :
- ConstantInt::getFalse(CI->getContext());
-
- case ICmpInst::ICMP_SLT:
- case ICmpInst::ICMP_SLE:
- return CI->getValue().isNegative() ?
- ConstantInt::getFalse(CI->getContext()) :
- ConstantInt::getTrue(CI->getContext());
- }
- }
- }
- }
-
- if (isa<SExtInst>(LHS)) {
- // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
- // same type.
- if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
- if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
- // Compare X and Y. Note that the predicate does not change.
- if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
- Q, MaxRecurse-1))
- return V;
- }
- // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
- // too. If not, then try to deduce the result of the comparison.
- else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
- // Compute the constant that would happen if we truncated to SrcTy then
- // reextended to DstTy.
- Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
- Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
-
- // If the re-extended constant didn't change then this is effectively
- // also a case of comparing two sign-extended values.
- if (RExt == CI && MaxRecurse)
- if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1))
- return V;
-
- // Otherwise the upper bits of LHS are all equal, while RHS has varying
- // bits there. Use this to work out the result of the comparison.
- if (RExt != CI) {
- switch (Pred) {
- default: llvm_unreachable("Unknown ICmp predicate!");
- case ICmpInst::ICMP_EQ:
- return ConstantInt::getFalse(CI->getContext());
- case ICmpInst::ICMP_NE:
- return ConstantInt::getTrue(CI->getContext());
-
- // If RHS is non-negative then LHS <s RHS. If RHS is negative then
- // LHS >s RHS.
- case ICmpInst::ICMP_SGT:
- case ICmpInst::ICMP_SGE:
- return CI->getValue().isNegative() ?
- ConstantInt::getTrue(CI->getContext()) :
- ConstantInt::getFalse(CI->getContext());
- case ICmpInst::ICMP_SLT:
- case ICmpInst::ICMP_SLE:
- return CI->getValue().isNegative() ?
- ConstantInt::getFalse(CI->getContext()) :
- ConstantInt::getTrue(CI->getContext());
-
- // If LHS is non-negative then LHS <u RHS. If LHS is negative then
- // LHS >u RHS.
- case ICmpInst::ICMP_UGT:
- case ICmpInst::ICMP_UGE:
- // Comparison is true iff the LHS <s 0.
- if (MaxRecurse)
- if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
- Constant::getNullValue(SrcTy),
- Q, MaxRecurse-1))
- return V;
- break;
- case ICmpInst::ICMP_ULT:
- case ICmpInst::ICMP_ULE:
- // Comparison is true iff the LHS >=s 0.
- if (MaxRecurse)
- if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
- Constant::getNullValue(SrcTy),
- Q, MaxRecurse-1))
- return V;
- break;
- }
- }
- }
- }
- }
-
- // icmp eq|ne X, Y -> false|true if X != Y
- if (ICmpInst::isEquality(Pred) &&
- isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) {
- return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy);
- }
-
- if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse))
- return V;
-
- if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse))
- return V;
-
- if (Value *V = simplifyICmpWithAbsNabs(Pred, LHS, RHS))
- return V;
-
- // Simplify comparisons of related pointers using a powerful, recursive
- // GEP-walk when we have target data available..
- if (LHS->getType()->isPointerTy())
- if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI,
- Q.IIQ, LHS, RHS))
- return C;
- if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS))
- if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS))
- if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) ==
- Q.DL.getTypeSizeInBits(CLHS->getType()) &&
- Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) ==
- Q.DL.getTypeSizeInBits(CRHS->getType()))
- if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI,
- Q.IIQ, CLHS->getPointerOperand(),
- CRHS->getPointerOperand()))
- return C;
-
- if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) {
- if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) {
- if (GLHS->getPointerOperand() == GRHS->getPointerOperand() &&
- GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() &&
- (ICmpInst::isEquality(Pred) ||
- (GLHS->isInBounds() && GRHS->isInBounds() &&
- Pred == ICmpInst::getSignedPredicate(Pred)))) {
- // The bases are equal and the indices are constant. Build a constant
- // expression GEP with the same indices and a null base pointer to see
- // what constant folding can make out of it.
- Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType());
- SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end());
- Constant *NewLHS = ConstantExpr::getGetElementPtr(
- GLHS->getSourceElementType(), Null, IndicesLHS);
-
- SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end());
- Constant *NewRHS = ConstantExpr::getGetElementPtr(
- GLHS->getSourceElementType(), Null, IndicesRHS);
- return ConstantExpr::getICmp(Pred, NewLHS, NewRHS);
- }
- }
- }
-
- // If the comparison is with the result of a select instruction, check whether
- // comparing with either branch of the select always yields the same value.
- if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
- if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
- return V;
-
- // If the comparison is with the result of a phi instruction, check whether
- // doing the compare with each incoming phi value yields a common result.
- if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
- if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
- return V;
-
- return nullptr;
-}
-
-Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
- const SimplifyQuery &Q) {
- return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
-}
-
-/// Given operands for an FCmpInst, see if we can fold the result.
-/// If not, this returns null.
-static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
- FastMathFlags FMF, const SimplifyQuery &Q,
- unsigned MaxRecurse) {
- CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
- assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
-
- if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
- if (Constant *CRHS = dyn_cast<Constant>(RHS))
- return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
-
- // If we have a constant, make sure it is on the RHS.
- std::swap(LHS, RHS);
- Pred = CmpInst::getSwappedPredicate(Pred);
- }
-
- // Fold trivial predicates.
- Type *RetTy = GetCompareTy(LHS);
- if (Pred == FCmpInst::FCMP_FALSE)
- return getFalse(RetTy);
- if (Pred == FCmpInst::FCMP_TRUE)
- return getTrue(RetTy);
-
- // Fold (un)ordered comparison if we can determine there are no NaNs.
- if (Pred == FCmpInst::FCMP_UNO || Pred == FCmpInst::FCMP_ORD)
- if (FMF.noNaNs() ||
- (isKnownNeverNaN(LHS, Q.TLI) && isKnownNeverNaN(RHS, Q.TLI)))
- return ConstantInt::get(RetTy, Pred == FCmpInst::FCMP_ORD);
-
- // NaN is unordered; NaN is not ordered.
- assert((FCmpInst::isOrdered(Pred) || FCmpInst::isUnordered(Pred)) &&
- "Comparison must be either ordered or unordered");
- if (match(RHS, m_NaN()))
- return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
-
- // fcmp pred x, undef and fcmp pred undef, x
- // fold to true if unordered, false if ordered
- if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) {
- // Choosing NaN for the undef will always make unordered comparison succeed
- // and ordered comparison fail.
- return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
- }
-
- // fcmp x,x -> true/false. Not all compares are foldable.
- if (LHS == RHS) {
- if (CmpInst::isTrueWhenEqual(Pred))
- return getTrue(RetTy);
- if (CmpInst::isFalseWhenEqual(Pred))
- return getFalse(RetTy);
- }
-
- // Handle fcmp with constant RHS.
- const APFloat *C;
- if (match(RHS, m_APFloat(C))) {
- // Check whether the constant is an infinity.
- if (C->isInfinity()) {
- if (C->isNegative()) {
- switch (Pred) {
- case FCmpInst::FCMP_OLT:
- // No value is ordered and less than negative infinity.
- return getFalse(RetTy);
- case FCmpInst::FCMP_UGE:
- // All values are unordered with or at least negative infinity.
- return getTrue(RetTy);
- default:
- break;
- }
- } else {
- switch (Pred) {
- case FCmpInst::FCMP_OGT:
- // No value is ordered and greater than infinity.
- return getFalse(RetTy);
- case FCmpInst::FCMP_ULE:
- // All values are unordered with and at most infinity.
- return getTrue(RetTy);
- default:
- break;
- }
- }
- }
- if (C->isZero()) {
- switch (Pred) {
- case FCmpInst::FCMP_OGE:
- if (FMF.noNaNs() && CannotBeOrderedLessThanZero(LHS, Q.TLI))
- return getTrue(RetTy);
- break;
- case FCmpInst::FCMP_UGE:
- if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
- return getTrue(RetTy);
- break;
- case FCmpInst::FCMP_ULT:
- if (FMF.noNaNs() && CannotBeOrderedLessThanZero(LHS, Q.TLI))
- return getFalse(RetTy);
- break;
- case FCmpInst::FCMP_OLT:
- if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
- return getFalse(RetTy);
- break;
- default:
- break;
- }
- } else if (C->isNegative()) {
- assert(!C->isNaN() && "Unexpected NaN constant!");
- // TODO: We can catch more cases by using a range check rather than
- // relying on CannotBeOrderedLessThanZero.
- switch (Pred) {
- case FCmpInst::FCMP_UGE:
- case FCmpInst::FCMP_UGT:
- case FCmpInst::FCMP_UNE:
- // (X >= 0) implies (X > C) when (C < 0)
- if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
- return getTrue(RetTy);
- break;
- case FCmpInst::FCMP_OEQ:
- case FCmpInst::FCMP_OLE:
- case FCmpInst::FCMP_OLT:
- // (X >= 0) implies !(X < C) when (C < 0)
- if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
- return getFalse(RetTy);
- break;
- default:
- break;
- }
- }
- }
-
- // If the comparison is with the result of a select instruction, check whether
- // comparing with either branch of the select always yields the same value.
- if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
- if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
- return V;
-
- // If the comparison is with the result of a phi instruction, check whether
- // doing the compare with each incoming phi value yields a common result.
- if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
- if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
- return V;
-
- return nullptr;
-}
-
-Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
- FastMathFlags FMF, const SimplifyQuery &Q) {
- return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit);
-}
-
-/// See if V simplifies when its operand Op is replaced with RepOp.
-static const Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
- const SimplifyQuery &Q,
- unsigned MaxRecurse) {
- // Trivial replacement.
- if (V == Op)
- return RepOp;
-
- // We cannot replace a constant, and shouldn't even try.
- if (isa<Constant>(Op))
- return nullptr;
-
- auto *I = dyn_cast<Instruction>(V);
- if (!I)
- return nullptr;
-
- // If this is a binary operator, try to simplify it with the replaced op.
- if (auto *B = dyn_cast<BinaryOperator>(I)) {
- // Consider:
- // %cmp = icmp eq i32 %x, 2147483647
- // %add = add nsw i32 %x, 1
- // %sel = select i1 %cmp, i32 -2147483648, i32 %add
- //
- // We can't replace %sel with %add unless we strip away the flags.
- if (isa<OverflowingBinaryOperator>(B))
- if (Q.IIQ.hasNoSignedWrap(B) || Q.IIQ.hasNoUnsignedWrap(B))
- return nullptr;
- if (isa<PossiblyExactOperator>(B) && Q.IIQ.isExact(B))
- return nullptr;
-
- if (MaxRecurse) {
- if (B->getOperand(0) == Op)
- return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), Q,
- MaxRecurse - 1);
- if (B->getOperand(1) == Op)
- return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, Q,
- MaxRecurse - 1);
- }
- }
-
- // Same for CmpInsts.
- if (CmpInst *C = dyn_cast<CmpInst>(I)) {
- if (MaxRecurse) {
- if (C->getOperand(0) == Op)
- return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), Q,
- MaxRecurse - 1);
- if (C->getOperand(1) == Op)
- return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, Q,
- MaxRecurse - 1);
- }
- }
-
- // Same for GEPs.
- if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
- if (MaxRecurse) {
- SmallVector<Value *, 8> NewOps(GEP->getNumOperands());
- transform(GEP->operands(), NewOps.begin(),
- [&](Value *V) { return V == Op ? RepOp : V; });
- return SimplifyGEPInst(GEP->getSourceElementType(), NewOps, Q,
- MaxRecurse - 1);
- }
- }
-
- // TODO: We could hand off more cases to instsimplify here.
-
- // If all operands are constant after substituting Op for RepOp then we can
- // constant fold the instruction.
- if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) {
- // Build a list of all constant operands.
- SmallVector<Constant *, 8> ConstOps;
- for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
- if (I->getOperand(i) == Op)
- ConstOps.push_back(CRepOp);
- else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i)))
- ConstOps.push_back(COp);
- else
- break;
- }
-
- // All operands were constants, fold it.
- if (ConstOps.size() == I->getNumOperands()) {
- if (CmpInst *C = dyn_cast<CmpInst>(I))
- return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0],
- ConstOps[1], Q.DL, Q.TLI);
-
- if (LoadInst *LI = dyn_cast<LoadInst>(I))
- if (!LI->isVolatile())
- return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL);
-
- return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI);
- }
- }
-
- return nullptr;
-}
-
-/// Try to simplify a select instruction when its condition operand is an
-/// integer comparison where one operand of the compare is a constant.
-static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X,
- const APInt *Y, bool TrueWhenUnset) {
- const APInt *C;
-
- // (X & Y) == 0 ? X & ~Y : X --> X
- // (X & Y) != 0 ? X & ~Y : X --> X & ~Y
- if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) &&
- *Y == ~*C)
- return TrueWhenUnset ? FalseVal : TrueVal;
-
- // (X & Y) == 0 ? X : X & ~Y --> X & ~Y
- // (X & Y) != 0 ? X : X & ~Y --> X
- if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) &&
- *Y == ~*C)
- return TrueWhenUnset ? FalseVal : TrueVal;
-
- if (Y->isPowerOf2()) {
- // (X & Y) == 0 ? X | Y : X --> X | Y
- // (X & Y) != 0 ? X | Y : X --> X
- if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) &&
- *Y == *C)
- return TrueWhenUnset ? TrueVal : FalseVal;
-
- // (X & Y) == 0 ? X : X | Y --> X
- // (X & Y) != 0 ? X : X | Y --> X | Y
- if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) &&
- *Y == *C)
- return TrueWhenUnset ? TrueVal : FalseVal;
- }
-
- return nullptr;
-}
-
-/// An alternative way to test if a bit is set or not uses sgt/slt instead of
-/// eq/ne.
-static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS,
- ICmpInst::Predicate Pred,
- Value *TrueVal, Value *FalseVal) {
- Value *X;
- APInt Mask;
- if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask))
- return nullptr;
-
- return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask,
- Pred == ICmpInst::ICMP_EQ);
-}
-
-/// Try to simplify a select instruction when its condition operand is an
-/// integer comparison.
-static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal,
- Value *FalseVal, const SimplifyQuery &Q,
- unsigned MaxRecurse) {
- ICmpInst::Predicate Pred;
- Value *CmpLHS, *CmpRHS;
- if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS))))
- return nullptr;
-
- if (ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero())) {
- Value *X;
- const APInt *Y;
- if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y))))
- if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y,
- Pred == ICmpInst::ICMP_EQ))
- return V;
-
- // Test for zero-shift-guard-ops around funnel shifts. These are used to
- // avoid UB from oversized shifts in raw IR rotate patterns, but the
- // intrinsics do not have that problem.
- Value *ShAmt;
- auto isFsh = m_CombineOr(m_Intrinsic<Intrinsic::fshl>(m_Value(X), m_Value(),
- m_Value(ShAmt)),
- m_Intrinsic<Intrinsic::fshr>(m_Value(), m_Value(X),
- m_Value(ShAmt)));
- // (ShAmt != 0) ? fshl(X, *, ShAmt) : X --> fshl(X, *, ShAmt)
- // (ShAmt != 0) ? fshr(*, X, ShAmt) : X --> fshr(*, X, ShAmt)
- // (ShAmt == 0) ? fshl(X, *, ShAmt) : X --> X
- // (ShAmt == 0) ? fshr(*, X, ShAmt) : X --> X
- if (match(TrueVal, isFsh) && FalseVal == X && CmpLHS == ShAmt)
- return Pred == ICmpInst::ICMP_NE ? TrueVal : X;
-
- // (ShAmt == 0) ? X : fshl(X, *, ShAmt) --> fshl(X, *, ShAmt)
- // (ShAmt == 0) ? X : fshr(*, X, ShAmt) --> fshr(*, X, ShAmt)
- // (ShAmt != 0) ? X : fshl(X, *, ShAmt) --> X
- // (ShAmt != 0) ? X : fshr(*, X, ShAmt) --> X
- if (match(FalseVal, isFsh) && TrueVal == X && CmpLHS == ShAmt)
- return Pred == ICmpInst::ICMP_EQ ? FalseVal : X;
- }
-
- // Check for other compares that behave like bit test.
- if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred,
- TrueVal, FalseVal))
- return V;
-
- // If we have an equality comparison, then we know the value in one of the
- // arms of the select. See if substituting this value into the arm and
- // simplifying the result yields the same value as the other arm.
- if (Pred == ICmpInst::ICMP_EQ) {
- if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
- TrueVal ||
- SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
- TrueVal)
- return FalseVal;
- if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
- FalseVal ||
- SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
- FalseVal)
- return FalseVal;
- } else if (Pred == ICmpInst::ICMP_NE) {
- if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
- FalseVal ||
- SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
- FalseVal)
- return TrueVal;
- if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
- TrueVal ||
- SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
- TrueVal)
- return TrueVal;
- }
-
- return nullptr;
-}
-
-/// Try to simplify a select instruction when its condition operand is a
-/// floating-point comparison.
-static Value *simplifySelectWithFCmp(Value *Cond, Value *T, Value *F) {
- FCmpInst::Predicate Pred;
- if (!match(Cond, m_FCmp(Pred, m_Specific(T), m_Specific(F))) &&
- !match(Cond, m_FCmp(Pred, m_Specific(F), m_Specific(T))))
- return nullptr;
-
- // TODO: The transform may not be valid with -0.0. An incomplete way of
- // testing for that possibility is to check if at least one operand is a
- // non-zero constant.
- const APFloat *C;
- if ((match(T, m_APFloat(C)) && C->isNonZero()) ||
- (match(F, m_APFloat(C)) && C->isNonZero())) {
- // (T == F) ? T : F --> F
- // (F == T) ? T : F --> F
- if (Pred == FCmpInst::FCMP_OEQ)
- return F;
-
- // (T != F) ? T : F --> T
- // (F != T) ? T : F --> T
- if (Pred == FCmpInst::FCMP_UNE)
- return T;
- }
-
- return nullptr;
-}
-
-/// Given operands for a SelectInst, see if we can fold the result.
-/// If not, this returns null.
-static Value *SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
- const SimplifyQuery &Q, unsigned MaxRecurse) {
- if (auto *CondC = dyn_cast<Constant>(Cond)) {
- if (auto *TrueC = dyn_cast<Constant>(TrueVal))
- if (auto *FalseC = dyn_cast<Constant>(FalseVal))
- return ConstantFoldSelectInstruction(CondC, TrueC, FalseC);
-
- // select undef, X, Y -> X or Y
- if (isa<UndefValue>(CondC))
- return isa<Constant>(FalseVal) ? FalseVal : TrueVal;
-
- // TODO: Vector constants with undef elements don't simplify.
-
- // select true, X, Y -> X
- if (CondC->isAllOnesValue())
- return TrueVal;
- // select false, X, Y -> Y
- if (CondC->isNullValue())
- return FalseVal;
- }
-
- // select ?, X, X -> X
- if (TrueVal == FalseVal)
- return TrueVal;
-
- if (isa<UndefValue>(TrueVal)) // select ?, undef, X -> X
- return FalseVal;
- if (isa<UndefValue>(FalseVal)) // select ?, X, undef -> X
- return TrueVal;
-
- if (Value *V =
- simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse))
- return V;
-
- if (Value *V = simplifySelectWithFCmp(Cond, TrueVal, FalseVal))
- return V;
-
- if (Value *V = foldSelectWithBinaryOp(Cond, TrueVal, FalseVal))
- return V;
-
- Optional<bool> Imp = isImpliedByDomCondition(Cond, Q.CxtI, Q.DL);
- if (Imp)
- return *Imp ? TrueVal : FalseVal;
-
- return nullptr;
-}
-
-Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
- const SimplifyQuery &Q) {
- return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit);
-}
-
-/// Given operands for an GetElementPtrInst, see if we can fold the result.
-/// If not, this returns null.
-static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops,
- const SimplifyQuery &Q, unsigned) {
- // The type of the GEP pointer operand.
- unsigned AS =
- cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace();
-
- // getelementptr P -> P.
- if (Ops.size() == 1)
- return Ops[0];
-
- // Compute the (pointer) type returned by the GEP instruction.
- Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1));
- Type *GEPTy = PointerType::get(LastType, AS);
- if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType()))
- GEPTy = VectorType::get(GEPTy, VT->getNumElements());
- else if (VectorType *VT = dyn_cast<VectorType>(Ops[1]->getType()))
- GEPTy = VectorType::get(GEPTy, VT->getNumElements());
-
- if (isa<UndefValue>(Ops[0]))
- return UndefValue::get(GEPTy);
-
- if (Ops.size() == 2) {
- // getelementptr P, 0 -> P.
- if (match(Ops[1], m_Zero()) && Ops[0]->getType() == GEPTy)
- return Ops[0];
-
- Type *Ty = SrcTy;
- if (Ty->isSized()) {
- Value *P;
- uint64_t C;
- uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty);
- // getelementptr P, N -> P if P points to a type of zero size.
- if (TyAllocSize == 0 && Ops[0]->getType() == GEPTy)
- return Ops[0];
-
- // The following transforms are only safe if the ptrtoint cast
- // doesn't truncate the pointers.
- if (Ops[1]->getType()->getScalarSizeInBits() ==
- Q.DL.getIndexSizeInBits(AS)) {
- auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * {
- if (match(P, m_Zero()))
- return Constant::getNullValue(GEPTy);
- Value *Temp;
- if (match(P, m_PtrToInt(m_Value(Temp))))
- if (Temp->getType() == GEPTy)
- return Temp;
- return nullptr;
- };
-
- // getelementptr V, (sub P, V) -> P if P points to a type of size 1.
- if (TyAllocSize == 1 &&
- match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0])))))
- if (Value *R = PtrToIntOrZero(P))
- return R;
-
- // getelementptr V, (ashr (sub P, V), C) -> Q
- // if P points to a type of size 1 << C.
- if (match(Ops[1],
- m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
- m_ConstantInt(C))) &&
- TyAllocSize == 1ULL << C)
- if (Value *R = PtrToIntOrZero(P))
- return R;
-
- // getelementptr V, (sdiv (sub P, V), C) -> Q
- // if P points to a type of size C.
- if (match(Ops[1],
- m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
- m_SpecificInt(TyAllocSize))))
- if (Value *R = PtrToIntOrZero(P))
- return R;
- }
- }
- }
-
- if (Q.DL.getTypeAllocSize(LastType) == 1 &&
- all_of(Ops.slice(1).drop_back(1),
- [](Value *Idx) { return match(Idx, m_Zero()); })) {
- unsigned IdxWidth =
- Q.DL.getIndexSizeInBits(Ops[0]->getType()->getPointerAddressSpace());
- if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == IdxWidth) {
- APInt BasePtrOffset(IdxWidth, 0);
- Value *StrippedBasePtr =
- Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL,
- BasePtrOffset);
-
- // gep (gep V, C), (sub 0, V) -> C
- if (match(Ops.back(),
- m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr))))) {
- auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset);
- return ConstantExpr::getIntToPtr(CI, GEPTy);
- }
- // gep (gep V, C), (xor V, -1) -> C-1
- if (match(Ops.back(),
- m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes()))) {
- auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1);
- return ConstantExpr::getIntToPtr(CI, GEPTy);
- }
- }
- }
-
- // Check to see if this is constant foldable.
- if (!all_of(Ops, [](Value *V) { return isa<Constant>(V); }))
- return nullptr;
-
- auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]),
- Ops.slice(1));
- if (auto *CEFolded = ConstantFoldConstant(CE, Q.DL))
- return CEFolded;
- return CE;
-}
-
-Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops,
- const SimplifyQuery &Q) {
- return ::SimplifyGEPInst(SrcTy, Ops, Q, RecursionLimit);
-}
-
-/// Given operands for an InsertValueInst, see if we can fold the result.
-/// If not, this returns null.
-static Value *SimplifyInsertValueInst(Value *Agg, Value *Val,
- ArrayRef<unsigned> Idxs, const SimplifyQuery &Q,
- unsigned) {
- if (Constant *CAgg = dyn_cast<Constant>(Agg))
- if (Constant *CVal = dyn_cast<Constant>(Val))
- return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs);
-
- // insertvalue x, undef, n -> x
- if (match(Val, m_Undef()))
- return Agg;
-
- // insertvalue x, (extractvalue y, n), n
- if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val))
- if (EV->getAggregateOperand()->getType() == Agg->getType() &&
- EV->getIndices() == Idxs) {
- // insertvalue undef, (extractvalue y, n), n -> y
- if (match(Agg, m_Undef()))
- return EV->getAggregateOperand();
-
- // insertvalue y, (extractvalue y, n), n -> y
- if (Agg == EV->getAggregateOperand())
- return Agg;
- }
-
- return nullptr;
-}
-
-Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val,
- ArrayRef<unsigned> Idxs,
- const SimplifyQuery &Q) {
- return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit);
-}
-
-Value *llvm::SimplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx,
- const SimplifyQuery &Q) {
- // Try to constant fold.
- auto *VecC = dyn_cast<Constant>(Vec);
- auto *ValC = dyn_cast<Constant>(Val);
- auto *IdxC = dyn_cast<Constant>(Idx);
- if (VecC && ValC && IdxC)
- return ConstantFoldInsertElementInstruction(VecC, ValC, IdxC);
-
- // Fold into undef if index is out of bounds.
- if (auto *CI = dyn_cast<ConstantInt>(Idx)) {
- uint64_t NumElements = cast<VectorType>(Vec->getType())->getNumElements();
- if (CI->uge(NumElements))
- return UndefValue::get(Vec->getType());
- }
-
- // If index is undef, it might be out of bounds (see above case)
- if (isa<UndefValue>(Idx))
- return UndefValue::get(Vec->getType());
-
- return nullptr;
-}
-
-/// Given operands for an ExtractValueInst, see if we can fold the result.
-/// If not, this returns null.
-static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
- const SimplifyQuery &, unsigned) {
- if (auto *CAgg = dyn_cast<Constant>(Agg))
- return ConstantFoldExtractValueInstruction(CAgg, Idxs);
-
- // extractvalue x, (insertvalue y, elt, n), n -> elt
- unsigned NumIdxs = Idxs.size();
- for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr;
- IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) {
- ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices();
- unsigned NumInsertValueIdxs = InsertValueIdxs.size();
- unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs);
- if (InsertValueIdxs.slice(0, NumCommonIdxs) ==
- Idxs.slice(0, NumCommonIdxs)) {
- if (NumIdxs == NumInsertValueIdxs)
- return IVI->getInsertedValueOperand();
- break;
- }
- }
-
- return nullptr;
-}
-
-Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
- const SimplifyQuery &Q) {
- return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit);
-}
-
-/// Given operands for an ExtractElementInst, see if we can fold the result.
-/// If not, this returns null.
-static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, const SimplifyQuery &,
- unsigned) {
- if (auto *CVec = dyn_cast<Constant>(Vec)) {
- if (auto *CIdx = dyn_cast<Constant>(Idx))
- return ConstantFoldExtractElementInstruction(CVec, CIdx);
-
- // The index is not relevant if our vector is a splat.
- if (auto *Splat = CVec->getSplatValue())
- return Splat;
-
- if (isa<UndefValue>(Vec))
- return UndefValue::get(Vec->getType()->getVectorElementType());
- }
-
- // If extracting a specified index from the vector, see if we can recursively
- // find a previously computed scalar that was inserted into the vector.
- if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) {
- if (IdxC->getValue().uge(Vec->getType()->getVectorNumElements()))
- // definitely out of bounds, thus undefined result
- return UndefValue::get(Vec->getType()->getVectorElementType());
- if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue()))
- return Elt;
- }
-
- // An undef extract index can be arbitrarily chosen to be an out-of-range
- // index value, which would result in the instruction being undef.
- if (isa<UndefValue>(Idx))
- return UndefValue::get(Vec->getType()->getVectorElementType());
-
- return nullptr;
-}
-
-Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx,
- const SimplifyQuery &Q) {
- return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit);
-}
-
-/// See if we can fold the given phi. If not, returns null.
-static Value *SimplifyPHINode(PHINode *PN, const SimplifyQuery &Q) {
- // If all of the PHI's incoming values are the same then replace the PHI node
- // with the common value.
- Value *CommonValue = nullptr;
- bool HasUndefInput = false;
- for (Value *Incoming : PN->incoming_values()) {
- // If the incoming value is the phi node itself, it can safely be skipped.
- if (Incoming == PN) continue;
- if (isa<UndefValue>(Incoming)) {
- // Remember that we saw an undef value, but otherwise ignore them.
- HasUndefInput = true;
- continue;
- }
- if (CommonValue && Incoming != CommonValue)
- return nullptr; // Not the same, bail out.
- CommonValue = Incoming;
- }
-
- // If CommonValue is null then all of the incoming values were either undef or
- // equal to the phi node itself.
- if (!CommonValue)
- return UndefValue::get(PN->getType());
-
- // If we have a PHI node like phi(X, undef, X), where X is defined by some
- // instruction, we cannot return X as the result of the PHI node unless it
- // dominates the PHI block.
- if (HasUndefInput)
- return valueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr;
-
- return CommonValue;
-}
-
-static Value *SimplifyCastInst(unsigned CastOpc, Value *Op,
- Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) {
- if (auto *C = dyn_cast<Constant>(Op))
- return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL);
-
- if (auto *CI = dyn_cast<CastInst>(Op)) {
- auto *Src = CI->getOperand(0);
- Type *SrcTy = Src->getType();
- Type *MidTy = CI->getType();
- Type *DstTy = Ty;
- if (Src->getType() == Ty) {
- auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode());
- auto SecondOp = static_cast<Instruction::CastOps>(CastOpc);
- Type *SrcIntPtrTy =
- SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr;
- Type *MidIntPtrTy =
- MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr;
- Type *DstIntPtrTy =
- DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr;
- if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy,
- SrcIntPtrTy, MidIntPtrTy,
- DstIntPtrTy) == Instruction::BitCast)
- return Src;
- }
- }
-
- // bitcast x -> x
- if (CastOpc == Instruction::BitCast)
- if (Op->getType() == Ty)
- return Op;
-
- return nullptr;
-}
-
-Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty,
- const SimplifyQuery &Q) {
- return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit);
-}
-
-/// For the given destination element of a shuffle, peek through shuffles to
-/// match a root vector source operand that contains that element in the same
-/// vector lane (ie, the same mask index), so we can eliminate the shuffle(s).
-static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1,
- int MaskVal, Value *RootVec,
- unsigned MaxRecurse) {
- if (!MaxRecurse--)
- return nullptr;
-
- // Bail out if any mask value is undefined. That kind of shuffle may be
- // simplified further based on demanded bits or other folds.
- if (MaskVal == -1)
- return nullptr;
-
- // The mask value chooses which source operand we need to look at next.
- int InVecNumElts = Op0->getType()->getVectorNumElements();
- int RootElt = MaskVal;
- Value *SourceOp = Op0;
- if (MaskVal >= InVecNumElts) {
- RootElt = MaskVal - InVecNumElts;
- SourceOp = Op1;
- }
-
- // If the source operand is a shuffle itself, look through it to find the
- // matching root vector.
- if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) {
- return foldIdentityShuffles(
- DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1),
- SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse);
- }
-
- // TODO: Look through bitcasts? What if the bitcast changes the vector element
- // size?
-
- // The source operand is not a shuffle. Initialize the root vector value for
- // this shuffle if that has not been done yet.
- if (!RootVec)
- RootVec = SourceOp;
-
- // Give up as soon as a source operand does not match the existing root value.
- if (RootVec != SourceOp)
- return nullptr;
-
- // The element must be coming from the same lane in the source vector
- // (although it may have crossed lanes in intermediate shuffles).
- if (RootElt != DestElt)
- return nullptr;
-
- return RootVec;
-}
-
-static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask,
- Type *RetTy, const SimplifyQuery &Q,
- unsigned MaxRecurse) {
- if (isa<UndefValue>(Mask))
- return UndefValue::get(RetTy);
-
- Type *InVecTy = Op0->getType();
- unsigned MaskNumElts = Mask->getType()->getVectorNumElements();
- unsigned InVecNumElts = InVecTy->getVectorNumElements();
-
- SmallVector<int, 32> Indices;
- ShuffleVectorInst::getShuffleMask(Mask, Indices);
- assert(MaskNumElts == Indices.size() &&
- "Size of Indices not same as number of mask elements?");
-
- // Canonicalization: If mask does not select elements from an input vector,
- // replace that input vector with undef.
- bool MaskSelects0 = false, MaskSelects1 = false;
- for (unsigned i = 0; i != MaskNumElts; ++i) {
- if (Indices[i] == -1)
- continue;
- if ((unsigned)Indices[i] < InVecNumElts)
- MaskSelects0 = true;
- else
- MaskSelects1 = true;
- }
- if (!MaskSelects0)
- Op0 = UndefValue::get(InVecTy);
- if (!MaskSelects1)
- Op1 = UndefValue::get(InVecTy);
-
- auto *Op0Const = dyn_cast<Constant>(Op0);
- auto *Op1Const = dyn_cast<Constant>(Op1);
-
- // If all operands are constant, constant fold the shuffle.
- if (Op0Const && Op1Const)
- return ConstantFoldShuffleVectorInstruction(Op0Const, Op1Const, Mask);
-
- // Canonicalization: if only one input vector is constant, it shall be the
- // second one.
- if (Op0Const && !Op1Const) {
- std::swap(Op0, Op1);
- ShuffleVectorInst::commuteShuffleMask(Indices, InVecNumElts);
- }
-
- // A shuffle of a splat is always the splat itself. Legal if the shuffle's
- // value type is same as the input vectors' type.
- if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0))
- if (isa<UndefValue>(Op1) && RetTy == InVecTy &&
- OpShuf->getMask()->getSplatValue())
- return Op0;
-
- // Don't fold a shuffle with undef mask elements. This may get folded in a
- // better way using demanded bits or other analysis.
- // TODO: Should we allow this?
- if (find(Indices, -1) != Indices.end())
- return nullptr;
-
- // Check if every element of this shuffle can be mapped back to the
- // corresponding element of a single root vector. If so, we don't need this
- // shuffle. This handles simple identity shuffles as well as chains of
- // shuffles that may widen/narrow and/or move elements across lanes and back.
- Value *RootVec = nullptr;
- for (unsigned i = 0; i != MaskNumElts; ++i) {
- // Note that recursion is limited for each vector element, so if any element
- // exceeds the limit, this will fail to simplify.
- RootVec =
- foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse);
-
- // We can't replace a widening/narrowing shuffle with one of its operands.
- if (!RootVec || RootVec->getType() != RetTy)
- return nullptr;
- }
- return RootVec;
-}
-
-/// Given operands for a ShuffleVectorInst, fold the result or return null.
-Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask,
- Type *RetTy, const SimplifyQuery &Q) {
- return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit);
-}
-
-static Constant *propagateNaN(Constant *In) {
- // If the input is a vector with undef elements, just return a default NaN.
- if (!In->isNaN())
- return ConstantFP::getNaN(In->getType());
-
- // Propagate the existing NaN constant when possible.
- // TODO: Should we quiet a signaling NaN?
- return In;
-}
-
-static Constant *simplifyFPBinop(Value *Op0, Value *Op1) {
- if (isa<UndefValue>(Op0) || isa<UndefValue>(Op1))
- return ConstantFP::getNaN(Op0->getType());
-
- if (match(Op0, m_NaN()))
- return propagateNaN(cast<Constant>(Op0));
- if (match(Op1, m_NaN()))
- return propagateNaN(cast<Constant>(Op1));
-
- return nullptr;
-}
-
-/// Given operands for an FAdd, see if we can fold the result. If not, this
-/// returns null.
-static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
- const SimplifyQuery &Q, unsigned MaxRecurse) {
- if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q))
- return C;
-
- if (Constant *C = simplifyFPBinop(Op0, Op1))
- return C;
-
- // fadd X, -0 ==> X
- if (match(Op1, m_NegZeroFP()))
- return Op0;
-
- // fadd X, 0 ==> X, when we know X is not -0
- if (match(Op1, m_PosZeroFP()) &&
- (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
- return Op0;
-
- // With nnan: (+/-0.0 - X) + X --> 0.0 (and commuted variant)
- // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN.
- // Negative zeros are allowed because we always end up with positive zero:
- // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0
- // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0
- // X = 0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0
- // X = 0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0
- if (FMF.noNaNs() && (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) ||
- match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0)))))
- return ConstantFP::getNullValue(Op0->getType());
-
- // (X - Y) + Y --> X
- // Y + (X - Y) --> X
- Value *X;
- if (FMF.noSignedZeros() && FMF.allowReassoc() &&
- (match(Op0, m_FSub(m_Value(X), m_Specific(Op1))) ||
- match(Op1, m_FSub(m_Value(X), m_Specific(Op0)))))
- return X;
-
- return nullptr;
-}
-
-/// Given operands for an FSub, see if we can fold the result. If not, this
-/// returns null.
-static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
- const SimplifyQuery &Q, unsigned MaxRecurse) {
- if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q))
- return C;
-
- if (Constant *C = simplifyFPBinop(Op0, Op1))
- return C;
-
- // fsub X, +0 ==> X
- if (match(Op1, m_PosZeroFP()))
- return Op0;
-
- // fsub X, -0 ==> X, when we know X is not -0
- if (match(Op1, m_NegZeroFP()) &&
- (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
- return Op0;
-
- // fsub -0.0, (fsub -0.0, X) ==> X
- Value *X;
- if (match(Op0, m_NegZeroFP()) &&
- match(Op1, m_FSub(m_NegZeroFP(), m_Value(X))))
- return X;
-
- // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored.
- if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) &&
- match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X))))
- return X;
-
- // fsub nnan x, x ==> 0.0
- if (FMF.noNaNs() && Op0 == Op1)
- return Constant::getNullValue(Op0->getType());
-
- // Y - (Y - X) --> X
- // (X + Y) - Y --> X
- if (FMF.noSignedZeros() && FMF.allowReassoc() &&
- (match(Op1, m_FSub(m_Specific(Op0), m_Value(X))) ||
- match(Op0, m_c_FAdd(m_Specific(Op1), m_Value(X)))))
- return X;
-
- return nullptr;
-}
-
-/// Given the operands for an FMul, see if we can fold the result
-static Value *SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
- const SimplifyQuery &Q, unsigned MaxRecurse) {
- if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q))
- return C;
-
- if (Constant *C = simplifyFPBinop(Op0, Op1))
- return C;
-
- // fmul X, 1.0 ==> X
- if (match(Op1, m_FPOne()))
- return Op0;
-
- // fmul nnan nsz X, 0 ==> 0
- if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZeroFP()))
- return ConstantFP::getNullValue(Op0->getType());
-
- // sqrt(X) * sqrt(X) --> X, if we can:
- // 1. Remove the intermediate rounding (reassociate).
- // 2. Ignore non-zero negative numbers because sqrt would produce NAN.
- // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0.
- Value *X;
- if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) &&
- FMF.allowReassoc() && FMF.noNaNs() && FMF.noSignedZeros())
- return X;
-
- return nullptr;
-}
-
-Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
- const SimplifyQuery &Q) {
- return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit);
-}
-
-
-Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
- const SimplifyQuery &Q) {
- return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit);
-}
-
-Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
- const SimplifyQuery &Q) {
- return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit);
-}
-
-static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
- const SimplifyQuery &Q, unsigned) {
- if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q))
- return C;
-
- if (Constant *C = simplifyFPBinop(Op0, Op1))
- return C;
-
- // X / 1.0 -> X
- if (match(Op1, m_FPOne()))
- return Op0;
-
- // 0 / X -> 0
- // Requires that NaNs are off (X could be zero) and signed zeroes are
- // ignored (X could be positive or negative, so the output sign is unknown).
- if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()))
- return ConstantFP::getNullValue(Op0->getType());
-
- if (FMF.noNaNs()) {
- // X / X -> 1.0 is legal when NaNs are ignored.
- // We can ignore infinities because INF/INF is NaN.
- if (Op0 == Op1)
- return ConstantFP::get(Op0->getType(), 1.0);
-
- // (X * Y) / Y --> X if we can reassociate to the above form.
- Value *X;
- if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1))))
- return X;
-
- // -X / X -> -1.0 and
- // X / -X -> -1.0 are legal when NaNs are ignored.
- // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored.
- if (match(Op0, m_FNegNSZ(m_Specific(Op1))) ||
- match(Op1, m_FNegNSZ(m_Specific(Op0))))
- return ConstantFP::get(Op0->getType(), -1.0);
- }
-
- return nullptr;
-}
-
-Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
- const SimplifyQuery &Q) {
- return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit);
-}
-
-static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
- const SimplifyQuery &Q, unsigned) {
- if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q))
- return C;
-
- if (Constant *C = simplifyFPBinop(Op0, Op1))
- return C;
-
- // Unlike fdiv, the result of frem always matches the sign of the dividend.
- // The constant match may include undef elements in a vector, so return a full
- // zero constant as the result.
- if (FMF.noNaNs()) {
- // +0 % X -> 0
- if (match(Op0, m_PosZeroFP()))
- return ConstantFP::getNullValue(Op0->getType());
- // -0 % X -> -0
- if (match(Op0, m_NegZeroFP()))
- return ConstantFP::getNegativeZero(Op0->getType());
- }
-
- return nullptr;
-}
-
-Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
- const SimplifyQuery &Q) {
- return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit);
-}
-
-//=== Helper functions for higher up the class hierarchy.
-
-/// Given operands for a BinaryOperator, see if we can fold the result.
-/// If not, this returns null.
-static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
- const SimplifyQuery &Q, unsigned MaxRecurse) {
- switch (Opcode) {
- case Instruction::Add:
- return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse);
- case Instruction::Sub:
- return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse);
- case Instruction::Mul:
- return SimplifyMulInst(LHS, RHS, Q, MaxRecurse);
- case Instruction::SDiv:
- return SimplifySDivInst(LHS, RHS, Q, MaxRecurse);
- case Instruction::UDiv:
- return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse);
- case Instruction::SRem:
- return SimplifySRemInst(LHS, RHS, Q, MaxRecurse);
- case Instruction::URem:
- return SimplifyURemInst(LHS, RHS, Q, MaxRecurse);
- case Instruction::Shl:
- return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse);
- case Instruction::LShr:
- return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse);
- case Instruction::AShr:
- return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse);
- case Instruction::And:
- return SimplifyAndInst(LHS, RHS, Q, MaxRecurse);
- case Instruction::Or:
- return SimplifyOrInst(LHS, RHS, Q, MaxRecurse);
- case Instruction::Xor:
- return SimplifyXorInst(LHS, RHS, Q, MaxRecurse);
- case Instruction::FAdd:
- return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
- case Instruction::FSub:
- return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
- case Instruction::FMul:
- return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
- case Instruction::FDiv:
- return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
- case Instruction::FRem:
- return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
- default:
- llvm_unreachable("Unexpected opcode");
- }
-}
-
-/// Given operands for a BinaryOperator, see if we can fold the result.
-/// If not, this returns null.
-/// In contrast to SimplifyBinOp, try to use FastMathFlag when folding the
-/// result. In case we don't need FastMathFlags, simply fall to SimplifyBinOp.
-static Value *SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS,
- const FastMathFlags &FMF, const SimplifyQuery &Q,
- unsigned MaxRecurse) {
- switch (Opcode) {
- case Instruction::FAdd:
- return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse);
- case Instruction::FSub:
- return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse);
- case Instruction::FMul:
- return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse);
- case Instruction::FDiv:
- return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse);
- default:
- return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse);
- }
-}
-
-Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
- const SimplifyQuery &Q) {
- return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit);
-}
-
-Value *llvm::SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS,
- FastMathFlags FMF, const SimplifyQuery &Q) {
- return ::SimplifyFPBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit);
-}
-
-/// Given operands for a CmpInst, see if we can fold the result.
-static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
- const SimplifyQuery &Q, unsigned MaxRecurse) {
- if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
- return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
- return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse);
-}
-
-Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
- const SimplifyQuery &Q) {
- return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
-}
-
-static bool IsIdempotent(Intrinsic::ID ID) {
- switch (ID) {
- default: return false;
-
- // Unary idempotent: f(f(x)) = f(x)
- case Intrinsic::fabs:
- case Intrinsic::floor:
- case Intrinsic::ceil:
- case Intrinsic::trunc:
- case Intrinsic::rint:
- case Intrinsic::nearbyint:
- case Intrinsic::round:
- case Intrinsic::canonicalize:
- return true;
- }
-}
-
-static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset,
- const DataLayout &DL) {
- GlobalValue *PtrSym;
- APInt PtrOffset;
- if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL))
- return nullptr;
-
- Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext());
- Type *Int32Ty = Type::getInt32Ty(Ptr->getContext());
- Type *Int32PtrTy = Int32Ty->getPointerTo();
- Type *Int64Ty = Type::getInt64Ty(Ptr->getContext());
-
- auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset);
- if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64)
- return nullptr;
-
- uint64_t OffsetInt = OffsetConstInt->getSExtValue();
- if (OffsetInt % 4 != 0)
- return nullptr;
-
- Constant *C = ConstantExpr::getGetElementPtr(
- Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy),
- ConstantInt::get(Int64Ty, OffsetInt / 4));
- Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL);
- if (!Loaded)
- return nullptr;
-
- auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded);
- if (!LoadedCE)
- return nullptr;
-
- if (LoadedCE->getOpcode() == Instruction::Trunc) {
- LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
- if (!LoadedCE)
- return nullptr;
- }
-
- if (LoadedCE->getOpcode() != Instruction::Sub)
- return nullptr;
-
- auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
- if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt)
- return nullptr;
- auto *LoadedLHSPtr = LoadedLHS->getOperand(0);
-
- Constant *LoadedRHS = LoadedCE->getOperand(1);
- GlobalValue *LoadedRHSSym;
- APInt LoadedRHSOffset;
- if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset,
- DL) ||
- PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset)
- return nullptr;
-
- return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy);
-}
-
-static bool maskIsAllZeroOrUndef(Value *Mask) {
- auto *ConstMask = dyn_cast<Constant>(Mask);
- if (!ConstMask)
- return false;
- if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask))
- return true;
- for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E;
- ++I) {
- if (auto *MaskElt = ConstMask->getAggregateElement(I))
- if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt))
- continue;
- return false;
- }
- return true;
-}
-
-static Value *simplifyUnaryIntrinsic(Function *F, Value *Op0,
- const SimplifyQuery &Q) {
- // Idempotent functions return the same result when called repeatedly.
- Intrinsic::ID IID = F->getIntrinsicID();
- if (IsIdempotent(IID))
- if (auto *II = dyn_cast<IntrinsicInst>(Op0))
- if (II->getIntrinsicID() == IID)
- return II;
-
- Value *X;
- switch (IID) {
- case Intrinsic::fabs:
- if (SignBitMustBeZero(Op0, Q.TLI)) return Op0;
- break;
- case Intrinsic::bswap:
- // bswap(bswap(x)) -> x
- if (match(Op0, m_BSwap(m_Value(X)))) return X;
- break;
- case Intrinsic::bitreverse:
- // bitreverse(bitreverse(x)) -> x
- if (match(Op0, m_BitReverse(m_Value(X)))) return X;
- break;
- case Intrinsic::exp:
- // exp(log(x)) -> x
- if (Q.CxtI->hasAllowReassoc() &&
- match(Op0, m_Intrinsic<Intrinsic::log>(m_Value(X)))) return X;
- break;
- case Intrinsic::exp2:
- // exp2(log2(x)) -> x
- if (Q.CxtI->hasAllowReassoc() &&
- match(Op0, m_Intrinsic<Intrinsic::log2>(m_Value(X)))) return X;
- break;
- case Intrinsic::log:
- // log(exp(x)) -> x
- if (Q.CxtI->hasAllowReassoc() &&
- match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X)))) return X;
- break;
- case Intrinsic::log2:
- // log2(exp2(x)) -> x
- if (Q.CxtI->hasAllowReassoc() &&
- match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X)))) return X;
- break;
- default:
- break;
- }
-
- return nullptr;
-}
-
-static Value *simplifyBinaryIntrinsic(Function *F, Value *Op0, Value *Op1,
- const SimplifyQuery &Q) {
- Intrinsic::ID IID = F->getIntrinsicID();
- Type *ReturnType = F->getReturnType();
- switch (IID) {
- case Intrinsic::usub_with_overflow:
- case Intrinsic::ssub_with_overflow:
- // X - X -> { 0, false }
- if (Op0 == Op1)
- return Constant::getNullValue(ReturnType);
- // X - undef -> undef
- // undef - X -> undef
- if (isa<UndefValue>(Op0) || isa<UndefValue>(Op1))
- return UndefValue::get(ReturnType);
- break;
- case Intrinsic::uadd_with_overflow:
- case Intrinsic::sadd_with_overflow:
- // X + undef -> undef
- if (isa<UndefValue>(Op0) || isa<UndefValue>(Op1))
- return UndefValue::get(ReturnType);
- break;
- case Intrinsic::umul_with_overflow:
- case Intrinsic::smul_with_overflow:
- // 0 * X -> { 0, false }
- // X * 0 -> { 0, false }
- if (match(Op0, m_Zero()) || match(Op1, m_Zero()))
- return Constant::getNullValue(ReturnType);
- // undef * X -> { 0, false }
- // X * undef -> { 0, false }
- if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
- return Constant::getNullValue(ReturnType);
- break;
- case Intrinsic::uadd_sat:
- // sat(MAX + X) -> MAX
- // sat(X + MAX) -> MAX
- if (match(Op0, m_AllOnes()) || match(Op1, m_AllOnes()))
- return Constant::getAllOnesValue(ReturnType);
- LLVM_FALLTHROUGH;
- case Intrinsic::sadd_sat:
- // sat(X + undef) -> -1
- // sat(undef + X) -> -1
- // For unsigned: Assume undef is MAX, thus we saturate to MAX (-1).
- // For signed: Assume undef is ~X, in which case X + ~X = -1.
- if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
- return Constant::getAllOnesValue(ReturnType);
-
- // X + 0 -> X
- if (match(Op1, m_Zero()))
- return Op0;
- // 0 + X -> X
- if (match(Op0, m_Zero()))
- return Op1;
- break;
- case Intrinsic::usub_sat:
- // sat(0 - X) -> 0, sat(X - MAX) -> 0
- if (match(Op0, m_Zero()) || match(Op1, m_AllOnes()))
- return Constant::getNullValue(ReturnType);
- LLVM_FALLTHROUGH;
- case Intrinsic::ssub_sat:
- // X - X -> 0, X - undef -> 0, undef - X -> 0
- if (Op0 == Op1 || match(Op0, m_Undef()) || match(Op1, m_Undef()))
- return Constant::getNullValue(ReturnType);
- // X - 0 -> X
- if (match(Op1, m_Zero()))
- return Op0;
- break;
- case Intrinsic::load_relative:
- if (auto *C0 = dyn_cast<Constant>(Op0))
- if (auto *C1 = dyn_cast<Constant>(Op1))
- return SimplifyRelativeLoad(C0, C1, Q.DL);
- break;
- case Intrinsic::powi:
- if (auto *Power = dyn_cast<ConstantInt>(Op1)) {
- // powi(x, 0) -> 1.0
- if (Power->isZero())
- return ConstantFP::get(Op0->getType(), 1.0);
- // powi(x, 1) -> x
- if (Power->isOne())
- return Op0;
- }
- break;
- case Intrinsic::maxnum:
- case Intrinsic::minnum:
- case Intrinsic::maximum:
- case Intrinsic::minimum: {
- // If the arguments are the same, this is a no-op.
- if (Op0 == Op1) return Op0;
-
- // If one argument is undef, return the other argument.
- if (match(Op0, m_Undef()))
- return Op1;
- if (match(Op1, m_Undef()))
- return Op0;
-
- // If one argument is NaN, return other or NaN appropriately.
- bool PropagateNaN = IID == Intrinsic::minimum || IID == Intrinsic::maximum;
- if (match(Op0, m_NaN()))
- return PropagateNaN ? Op0 : Op1;
- if (match(Op1, m_NaN()))
- return PropagateNaN ? Op1 : Op0;
-
- // Min/max of the same operation with common operand:
- // m(m(X, Y)), X --> m(X, Y) (4 commuted variants)
- if (auto *M0 = dyn_cast<IntrinsicInst>(Op0))
- if (M0->getIntrinsicID() == IID &&
- (M0->getOperand(0) == Op1 || M0->getOperand(1) == Op1))
- return Op0;
- if (auto *M1 = dyn_cast<IntrinsicInst>(Op1))
- if (M1->getIntrinsicID() == IID &&
- (M1->getOperand(0) == Op0 || M1->getOperand(1) == Op0))
- return Op1;
-
- // min(X, -Inf) --> -Inf (and commuted variant)
- // max(X, +Inf) --> +Inf (and commuted variant)
- bool UseNegInf = IID == Intrinsic::minnum || IID == Intrinsic::minimum;
- const APFloat *C;
- if ((match(Op0, m_APFloat(C)) && C->isInfinity() &&
- C->isNegative() == UseNegInf) ||
- (match(Op1, m_APFloat(C)) && C->isInfinity() &&
- C->isNegative() == UseNegInf))
- return ConstantFP::getInfinity(ReturnType, UseNegInf);
-
- // TODO: minnum(nnan x, inf) -> x
- // TODO: minnum(nnan ninf x, flt_max) -> x
- // TODO: maxnum(nnan x, -inf) -> x
- // TODO: maxnum(nnan ninf x, -flt_max) -> x
- break;
- }
- default:
- break;
- }
-
- return nullptr;
-}
-
-template <typename IterTy>
-static Value *simplifyIntrinsic(Function *F, IterTy ArgBegin, IterTy ArgEnd,
- const SimplifyQuery &Q) {
- // Intrinsics with no operands have some kind of side effect. Don't simplify.
- unsigned NumOperands = std::distance(ArgBegin, ArgEnd);
- if (NumOperands == 0)
- return nullptr;
-
- Intrinsic::ID IID = F->getIntrinsicID();
- if (NumOperands == 1)
- return simplifyUnaryIntrinsic(F, ArgBegin[0], Q);
-
- if (NumOperands == 2)
- return simplifyBinaryIntrinsic(F, ArgBegin[0], ArgBegin[1], Q);
-
- // Handle intrinsics with 3 or more arguments.
- switch (IID) {
- case Intrinsic::masked_load: {
- Value *MaskArg = ArgBegin[2];
- Value *PassthruArg = ArgBegin[3];
- // If the mask is all zeros or undef, the "passthru" argument is the result.
- if (maskIsAllZeroOrUndef(MaskArg))
- return PassthruArg;
- return nullptr;
- }
- case Intrinsic::fshl:
- case Intrinsic::fshr: {
- Value *Op0 = ArgBegin[0], *Op1 = ArgBegin[1], *ShAmtArg = ArgBegin[2];
-
- // If both operands are undef, the result is undef.
- if (match(Op0, m_Undef()) && match(Op1, m_Undef()))
- return UndefValue::get(F->getReturnType());
-
- // If shift amount is undef, assume it is zero.
- if (match(ShAmtArg, m_Undef()))
- return ArgBegin[IID == Intrinsic::fshl ? 0 : 1];
-
- const APInt *ShAmtC;
- if (match(ShAmtArg, m_APInt(ShAmtC))) {
- // If there's effectively no shift, return the 1st arg or 2nd arg.
- // TODO: For vectors, we could check each element of a non-splat constant.
- APInt BitWidth = APInt(ShAmtC->getBitWidth(), ShAmtC->getBitWidth());
- if (ShAmtC->urem(BitWidth).isNullValue())
- return ArgBegin[IID == Intrinsic::fshl ? 0 : 1];
- }
- return nullptr;
- }
- default:
- return nullptr;
- }
-}
-
-template <typename IterTy>
-static Value *SimplifyCall(ImmutableCallSite CS, Value *V, IterTy ArgBegin,
- IterTy ArgEnd, const SimplifyQuery &Q,
- unsigned MaxRecurse) {
- Type *Ty = V->getType();
- if (PointerType *PTy = dyn_cast<PointerType>(Ty))
- Ty = PTy->getElementType();
- FunctionType *FTy = cast<FunctionType>(Ty);
-
- // call undef -> undef
- // call null -> undef
- if (isa<UndefValue>(V) || isa<ConstantPointerNull>(V))
- return UndefValue::get(FTy->getReturnType());
-
- Function *F = dyn_cast<Function>(V);
- if (!F)
- return nullptr;
-
- if (F->isIntrinsic())
- if (Value *Ret = simplifyIntrinsic(F, ArgBegin, ArgEnd, Q))
- return Ret;
-
- if (!canConstantFoldCallTo(CS, F))
- return nullptr;
-
- SmallVector<Constant *, 4> ConstantArgs;
- ConstantArgs.reserve(ArgEnd - ArgBegin);
- for (IterTy I = ArgBegin, E = ArgEnd; I != E; ++I) {
- Constant *C = dyn_cast<Constant>(*I);
- if (!C)
- return nullptr;
- ConstantArgs.push_back(C);
- }
-
- return ConstantFoldCall(CS, F, ConstantArgs, Q.TLI);
-}
-
-Value *llvm::SimplifyCall(ImmutableCallSite CS, Value *V,
- User::op_iterator ArgBegin, User::op_iterator ArgEnd,
- const SimplifyQuery &Q) {
- return ::SimplifyCall(CS, V, ArgBegin, ArgEnd, Q, RecursionLimit);
-}
-
-Value *llvm::SimplifyCall(ImmutableCallSite CS, Value *V,
- ArrayRef<Value *> Args, const SimplifyQuery &Q) {
- return ::SimplifyCall(CS, V, Args.begin(), Args.end(), Q, RecursionLimit);
-}
-
-Value *llvm::SimplifyCall(ImmutableCallSite ICS, const SimplifyQuery &Q) {
- CallSite CS(const_cast<Instruction*>(ICS.getInstruction()));
- return ::SimplifyCall(CS, CS.getCalledValue(), CS.arg_begin(), CS.arg_end(),
- Q, RecursionLimit);
-}
-
-/// See if we can compute a simplified version of this instruction.
-/// If not, this returns null.
-
-Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ,
- OptimizationRemarkEmitter *ORE) {
- const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I);
- Value *Result;
-
- switch (I->getOpcode()) {
- default:
- Result = ConstantFoldInstruction(I, Q.DL, Q.TLI);
- break;
- case Instruction::FAdd:
- Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1),
- I->getFastMathFlags(), Q);
- break;
- case Instruction::Add:
- Result =
- SimplifyAddInst(I->getOperand(0), I->getOperand(1),
- Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
- Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
- break;
- case Instruction::FSub:
- Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1),
- I->getFastMathFlags(), Q);
- break;
- case Instruction::Sub:
- Result =
- SimplifySubInst(I->getOperand(0), I->getOperand(1),
- Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
- Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
- break;
- case Instruction::FMul:
- Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1),
- I->getFastMathFlags(), Q);
- break;
- case Instruction::Mul:
- Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), Q);
- break;
- case Instruction::SDiv:
- Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), Q);
- break;
- case Instruction::UDiv:
- Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), Q);
- break;
- case Instruction::FDiv:
- Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1),
- I->getFastMathFlags(), Q);
- break;
- case Instruction::SRem:
- Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), Q);
- break;
- case Instruction::URem:
- Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), Q);
- break;
- case Instruction::FRem:
- Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1),
- I->getFastMathFlags(), Q);
- break;
- case Instruction::Shl:
- Result =
- SimplifyShlInst(I->getOperand(0), I->getOperand(1),
- Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
- Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
- break;
- case Instruction::LShr:
- Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1),
- Q.IIQ.isExact(cast<BinaryOperator>(I)), Q);
- break;
- case Instruction::AShr:
- Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1),
- Q.IIQ.isExact(cast<BinaryOperator>(I)), Q);
- break;
- case Instruction::And:
- Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), Q);
- break;
- case Instruction::Or:
- Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), Q);
- break;
- case Instruction::Xor:
- Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), Q);
- break;
- case Instruction::ICmp:
- Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(),
- I->getOperand(0), I->getOperand(1), Q);
- break;
- case Instruction::FCmp:
- Result =
- SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), I->getOperand(0),
- I->getOperand(1), I->getFastMathFlags(), Q);
- break;
- case Instruction::Select:
- Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
- I->getOperand(2), Q);
- break;
- case Instruction::GetElementPtr: {
- SmallVector<Value *, 8> Ops(I->op_begin(), I->op_end());
- Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(),
- Ops, Q);
- break;
- }
- case Instruction::InsertValue: {
- InsertValueInst *IV = cast<InsertValueInst>(I);
- Result = SimplifyInsertValueInst(IV->getAggregateOperand(),
- IV->getInsertedValueOperand(),
- IV->getIndices(), Q);
- break;
- }
- case Instruction::InsertElement: {
- auto *IE = cast<InsertElementInst>(I);
- Result = SimplifyInsertElementInst(IE->getOperand(0), IE->getOperand(1),
- IE->getOperand(2), Q);
- break;
- }
- case Instruction::ExtractValue: {
- auto *EVI = cast<ExtractValueInst>(I);
- Result = SimplifyExtractValueInst(EVI->getAggregateOperand(),
- EVI->getIndices(), Q);
- break;
- }
- case Instruction::ExtractElement: {
- auto *EEI = cast<ExtractElementInst>(I);
- Result = SimplifyExtractElementInst(EEI->getVectorOperand(),
- EEI->getIndexOperand(), Q);
- break;
- }
- case Instruction::ShuffleVector: {
- auto *SVI = cast<ShuffleVectorInst>(I);
- Result = SimplifyShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1),
- SVI->getMask(), SVI->getType(), Q);
- break;
- }
- case Instruction::PHI:
- Result = SimplifyPHINode(cast<PHINode>(I), Q);
- break;
- case Instruction::Call: {
- CallSite CS(cast<CallInst>(I));
- Result = SimplifyCall(CS, Q);
- break;
- }
-#define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc:
-#include "llvm/IR/Instruction.def"
-#undef HANDLE_CAST_INST
- Result =
- SimplifyCastInst(I->getOpcode(), I->getOperand(0), I->getType(), Q);
- break;
- case Instruction::Alloca:
- // No simplifications for Alloca and it can't be constant folded.
- Result = nullptr;
- break;
- }
-
- // In general, it is possible for computeKnownBits to determine all bits in a
- // value even when the operands are not all constants.
- if (!Result && I->getType()->isIntOrIntVectorTy()) {
- KnownBits Known = computeKnownBits(I, Q.DL, /*Depth*/ 0, Q.AC, I, Q.DT, ORE);
- if (Known.isConstant())
- Result = ConstantInt::get(I->getType(), Known.getConstant());
- }
-
- /// If called on unreachable code, the above logic may report that the
- /// instruction simplified to itself. Make life easier for users by
- /// detecting that case here, returning a safe value instead.
- return Result == I ? UndefValue::get(I->getType()) : Result;
-}
-
-/// Implementation of recursive simplification through an instruction's
-/// uses.
-///
-/// This is the common implementation of the recursive simplification routines.
-/// If we have a pre-simplified value in 'SimpleV', that is forcibly used to
-/// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of
-/// instructions to process and attempt to simplify it using
-/// InstructionSimplify.
-///
-/// This routine returns 'true' only when *it* simplifies something. The passed
-/// in simplified value does not count toward this.
-static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV,
- const TargetLibraryInfo *TLI,
- const DominatorTree *DT,
- AssumptionCache *AC) {
- bool Simplified = false;
- SmallSetVector<Instruction *, 8> Worklist;
- const DataLayout &DL = I->getModule()->getDataLayout();
-
- // If we have an explicit value to collapse to, do that round of the
- // simplification loop by hand initially.
- if (SimpleV) {
- for (User *U : I->users())
- if (U != I)
- Worklist.insert(cast<Instruction>(U));
-
- // Replace the instruction with its simplified value.
- I->replaceAllUsesWith(SimpleV);
-
- // Gracefully handle edge cases where the instruction is not wired into any
- // parent block.
- if (I->getParent() && !I->isEHPad() && !I->isTerminator() &&
- !I->mayHaveSideEffects())
- I->eraseFromParent();
- } else {
- Worklist.insert(I);
- }
-
- // Note that we must test the size on each iteration, the worklist can grow.
- for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
- I = Worklist[Idx];
-
- // See if this instruction simplifies.
- SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC});
- if (!SimpleV)
- continue;
-
- Simplified = true;
-
- // Stash away all the uses of the old instruction so we can check them for
- // recursive simplifications after a RAUW. This is cheaper than checking all
- // uses of To on the recursive step in most cases.
- for (User *U : I->users())
- Worklist.insert(cast<Instruction>(U));
-
- // Replace the instruction with its simplified value.
- I->replaceAllUsesWith(SimpleV);
-
- // Gracefully handle edge cases where the instruction is not wired into any
- // parent block.
- if (I->getParent() && !I->isEHPad() && !I->isTerminator() &&
- !I->mayHaveSideEffects())
- I->eraseFromParent();
- }
- return Simplified;
-}
-
-bool llvm::recursivelySimplifyInstruction(Instruction *I,
- const TargetLibraryInfo *TLI,
- const DominatorTree *DT,
- AssumptionCache *AC) {
- return replaceAndRecursivelySimplifyImpl(I, nullptr, TLI, DT, AC);
-}
-
-bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV,
- const TargetLibraryInfo *TLI,
- const DominatorTree *DT,
- AssumptionCache *AC) {
- assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!");
- assert(SimpleV && "Must provide a simplified value.");
- return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC);
-}
-
-namespace llvm {
-const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) {
- auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>();
- auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
- auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
- auto *TLI = TLIWP ? &TLIWP->getTLI() : nullptr;
- auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>();
- auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr;
- return {F.getParent()->getDataLayout(), TLI, DT, AC};
-}
-
-const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR,
- const DataLayout &DL) {
- return {DL, &AR.TLI, &AR.DT, &AR.AC};
-}
-
-template <class T, class... TArgs>
-const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM,
- Function &F) {
- auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F);
- auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F);
- auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F);
- return {F.getParent()->getDataLayout(), TLI, DT, AC};
-}
-template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &,
- Function &);
-}