diff options
| author | 2020-08-03 15:06:44 +0000 | |
|---|---|---|
| committer | 2020-08-03 15:06:44 +0000 | |
| commit | b64793999546ed8adebaeebd9d8345d18db8927d (patch) | |
| tree | 4357c27b561d73b0e089727c6ed659f2ceff5f47 /gnu/llvm/lib/Analysis/LazyValueInfo.cpp | |
| parent | Add support for UTF-8 DISPLAY-HINTs with octet length. For now only (diff) | |
| download | wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.tar.xz wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.zip | |
Remove LLVM 8.0.1 files.
Diffstat (limited to 'gnu/llvm/lib/Analysis/LazyValueInfo.cpp')
| -rw-r--r-- | gnu/llvm/lib/Analysis/LazyValueInfo.cpp | 1923 |
1 files changed, 0 insertions, 1923 deletions
diff --git a/gnu/llvm/lib/Analysis/LazyValueInfo.cpp b/gnu/llvm/lib/Analysis/LazyValueInfo.cpp deleted file mode 100644 index 110c085d3f3..00000000000 --- a/gnu/llvm/lib/Analysis/LazyValueInfo.cpp +++ /dev/null @@ -1,1923 +0,0 @@ -//===- LazyValueInfo.cpp - Value constraint analysis ------------*- C++ -*-===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file defines the interface for lazy computation of value constraint -// information. -// -//===----------------------------------------------------------------------===// - -#include "llvm/Analysis/LazyValueInfo.h" -#include "llvm/ADT/DenseSet.h" -#include "llvm/ADT/Optional.h" -#include "llvm/ADT/STLExtras.h" -#include "llvm/Analysis/AssumptionCache.h" -#include "llvm/Analysis/ConstantFolding.h" -#include "llvm/Analysis/InstructionSimplify.h" -#include "llvm/Analysis/TargetLibraryInfo.h" -#include "llvm/Analysis/ValueTracking.h" -#include "llvm/Analysis/ValueLattice.h" -#include "llvm/IR/AssemblyAnnotationWriter.h" -#include "llvm/IR/CFG.h" -#include "llvm/IR/ConstantRange.h" -#include "llvm/IR/Constants.h" -#include "llvm/IR/DataLayout.h" -#include "llvm/IR/Dominators.h" -#include "llvm/IR/Instructions.h" -#include "llvm/IR/IntrinsicInst.h" -#include "llvm/IR/Intrinsics.h" -#include "llvm/IR/LLVMContext.h" -#include "llvm/IR/PatternMatch.h" -#include "llvm/IR/ValueHandle.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/FormattedStream.h" -#include "llvm/Support/raw_ostream.h" -#include <map> -using namespace llvm; -using namespace PatternMatch; - -#define DEBUG_TYPE "lazy-value-info" - -// This is the number of worklist items we will process to try to discover an -// answer for a given value. -static const unsigned MaxProcessedPerValue = 500; - -char LazyValueInfoWrapperPass::ID = 0; -INITIALIZE_PASS_BEGIN(LazyValueInfoWrapperPass, "lazy-value-info", - "Lazy Value Information Analysis", false, true) -INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) -INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) -INITIALIZE_PASS_END(LazyValueInfoWrapperPass, "lazy-value-info", - "Lazy Value Information Analysis", false, true) - -namespace llvm { - FunctionPass *createLazyValueInfoPass() { return new LazyValueInfoWrapperPass(); } -} - -AnalysisKey LazyValueAnalysis::Key; - -/// Returns true if this lattice value represents at most one possible value. -/// This is as precise as any lattice value can get while still representing -/// reachable code. -static bool hasSingleValue(const ValueLatticeElement &Val) { - if (Val.isConstantRange() && - Val.getConstantRange().isSingleElement()) - // Integer constants are single element ranges - return true; - if (Val.isConstant()) - // Non integer constants - return true; - return false; -} - -/// Combine two sets of facts about the same value into a single set of -/// facts. Note that this method is not suitable for merging facts along -/// different paths in a CFG; that's what the mergeIn function is for. This -/// is for merging facts gathered about the same value at the same location -/// through two independent means. -/// Notes: -/// * This method does not promise to return the most precise possible lattice -/// value implied by A and B. It is allowed to return any lattice element -/// which is at least as strong as *either* A or B (unless our facts -/// conflict, see below). -/// * Due to unreachable code, the intersection of two lattice values could be -/// contradictory. If this happens, we return some valid lattice value so as -/// not confuse the rest of LVI. Ideally, we'd always return Undefined, but -/// we do not make this guarantee. TODO: This would be a useful enhancement. -static ValueLatticeElement intersect(const ValueLatticeElement &A, - const ValueLatticeElement &B) { - // Undefined is the strongest state. It means the value is known to be along - // an unreachable path. - if (A.isUndefined()) - return A; - if (B.isUndefined()) - return B; - - // If we gave up for one, but got a useable fact from the other, use it. - if (A.isOverdefined()) - return B; - if (B.isOverdefined()) - return A; - - // Can't get any more precise than constants. - if (hasSingleValue(A)) - return A; - if (hasSingleValue(B)) - return B; - - // Could be either constant range or not constant here. - if (!A.isConstantRange() || !B.isConstantRange()) { - // TODO: Arbitrary choice, could be improved - return A; - } - - // Intersect two constant ranges - ConstantRange Range = - A.getConstantRange().intersectWith(B.getConstantRange()); - // Note: An empty range is implicitly converted to overdefined internally. - // TODO: We could instead use Undefined here since we've proven a conflict - // and thus know this path must be unreachable. - return ValueLatticeElement::getRange(std::move(Range)); -} - -//===----------------------------------------------------------------------===// -// LazyValueInfoCache Decl -//===----------------------------------------------------------------------===// - -namespace { - /// A callback value handle updates the cache when values are erased. - class LazyValueInfoCache; - struct LVIValueHandle final : public CallbackVH { - // Needs to access getValPtr(), which is protected. - friend struct DenseMapInfo<LVIValueHandle>; - - LazyValueInfoCache *Parent; - - LVIValueHandle(Value *V, LazyValueInfoCache *P) - : CallbackVH(V), Parent(P) { } - - void deleted() override; - void allUsesReplacedWith(Value *V) override { - deleted(); - } - }; -} // end anonymous namespace - -namespace { - /// This is the cache kept by LazyValueInfo which - /// maintains information about queries across the clients' queries. - class LazyValueInfoCache { - /// This is all of the cached block information for exactly one Value*. - /// The entries are sorted by the BasicBlock* of the - /// entries, allowing us to do a lookup with a binary search. - /// Over-defined lattice values are recorded in OverDefinedCache to reduce - /// memory overhead. - struct ValueCacheEntryTy { - ValueCacheEntryTy(Value *V, LazyValueInfoCache *P) : Handle(V, P) {} - LVIValueHandle Handle; - SmallDenseMap<PoisoningVH<BasicBlock>, ValueLatticeElement, 4> BlockVals; - }; - - /// This tracks, on a per-block basis, the set of values that are - /// over-defined at the end of that block. - typedef DenseMap<PoisoningVH<BasicBlock>, SmallPtrSet<Value *, 4>> - OverDefinedCacheTy; - /// Keep track of all blocks that we have ever seen, so we - /// don't spend time removing unused blocks from our caches. - DenseSet<PoisoningVH<BasicBlock> > SeenBlocks; - - /// This is all of the cached information for all values, - /// mapped from Value* to key information. - DenseMap<Value *, std::unique_ptr<ValueCacheEntryTy>> ValueCache; - OverDefinedCacheTy OverDefinedCache; - - - public: - void insertResult(Value *Val, BasicBlock *BB, - const ValueLatticeElement &Result) { - SeenBlocks.insert(BB); - - // Insert over-defined values into their own cache to reduce memory - // overhead. - if (Result.isOverdefined()) - OverDefinedCache[BB].insert(Val); - else { - auto It = ValueCache.find_as(Val); - if (It == ValueCache.end()) { - ValueCache[Val] = make_unique<ValueCacheEntryTy>(Val, this); - It = ValueCache.find_as(Val); - assert(It != ValueCache.end() && "Val was just added to the map!"); - } - It->second->BlockVals[BB] = Result; - } - } - - bool isOverdefined(Value *V, BasicBlock *BB) const { - auto ODI = OverDefinedCache.find(BB); - - if (ODI == OverDefinedCache.end()) - return false; - - return ODI->second.count(V); - } - - bool hasCachedValueInfo(Value *V, BasicBlock *BB) const { - if (isOverdefined(V, BB)) - return true; - - auto I = ValueCache.find_as(V); - if (I == ValueCache.end()) - return false; - - return I->second->BlockVals.count(BB); - } - - ValueLatticeElement getCachedValueInfo(Value *V, BasicBlock *BB) const { - if (isOverdefined(V, BB)) - return ValueLatticeElement::getOverdefined(); - - auto I = ValueCache.find_as(V); - if (I == ValueCache.end()) - return ValueLatticeElement(); - auto BBI = I->second->BlockVals.find(BB); - if (BBI == I->second->BlockVals.end()) - return ValueLatticeElement(); - return BBI->second; - } - - /// clear - Empty the cache. - void clear() { - SeenBlocks.clear(); - ValueCache.clear(); - OverDefinedCache.clear(); - } - - /// Inform the cache that a given value has been deleted. - void eraseValue(Value *V); - - /// This is part of the update interface to inform the cache - /// that a block has been deleted. - void eraseBlock(BasicBlock *BB); - - /// Updates the cache to remove any influence an overdefined value in - /// OldSucc might have (unless also overdefined in NewSucc). This just - /// flushes elements from the cache and does not add any. - void threadEdgeImpl(BasicBlock *OldSucc,BasicBlock *NewSucc); - - friend struct LVIValueHandle; - }; -} - -void LazyValueInfoCache::eraseValue(Value *V) { - for (auto I = OverDefinedCache.begin(), E = OverDefinedCache.end(); I != E;) { - // Copy and increment the iterator immediately so we can erase behind - // ourselves. - auto Iter = I++; - SmallPtrSetImpl<Value *> &ValueSet = Iter->second; - ValueSet.erase(V); - if (ValueSet.empty()) - OverDefinedCache.erase(Iter); - } - - ValueCache.erase(V); -} - -void LVIValueHandle::deleted() { - // This erasure deallocates *this, so it MUST happen after we're done - // using any and all members of *this. - Parent->eraseValue(*this); -} - -void LazyValueInfoCache::eraseBlock(BasicBlock *BB) { - // Shortcut if we have never seen this block. - DenseSet<PoisoningVH<BasicBlock> >::iterator I = SeenBlocks.find(BB); - if (I == SeenBlocks.end()) - return; - SeenBlocks.erase(I); - - auto ODI = OverDefinedCache.find(BB); - if (ODI != OverDefinedCache.end()) - OverDefinedCache.erase(ODI); - - for (auto &I : ValueCache) - I.second->BlockVals.erase(BB); -} - -void LazyValueInfoCache::threadEdgeImpl(BasicBlock *OldSucc, - BasicBlock *NewSucc) { - // When an edge in the graph has been threaded, values that we could not - // determine a value for before (i.e. were marked overdefined) may be - // possible to solve now. We do NOT try to proactively update these values. - // Instead, we clear their entries from the cache, and allow lazy updating to - // recompute them when needed. - - // The updating process is fairly simple: we need to drop cached info - // for all values that were marked overdefined in OldSucc, and for those same - // values in any successor of OldSucc (except NewSucc) in which they were - // also marked overdefined. - std::vector<BasicBlock*> worklist; - worklist.push_back(OldSucc); - - auto I = OverDefinedCache.find(OldSucc); - if (I == OverDefinedCache.end()) - return; // Nothing to process here. - SmallVector<Value *, 4> ValsToClear(I->second.begin(), I->second.end()); - - // Use a worklist to perform a depth-first search of OldSucc's successors. - // NOTE: We do not need a visited list since any blocks we have already - // visited will have had their overdefined markers cleared already, and we - // thus won't loop to their successors. - while (!worklist.empty()) { - BasicBlock *ToUpdate = worklist.back(); - worklist.pop_back(); - - // Skip blocks only accessible through NewSucc. - if (ToUpdate == NewSucc) continue; - - // If a value was marked overdefined in OldSucc, and is here too... - auto OI = OverDefinedCache.find(ToUpdate); - if (OI == OverDefinedCache.end()) - continue; - SmallPtrSetImpl<Value *> &ValueSet = OI->second; - - bool changed = false; - for (Value *V : ValsToClear) { - if (!ValueSet.erase(V)) - continue; - - // If we removed anything, then we potentially need to update - // blocks successors too. - changed = true; - - if (ValueSet.empty()) { - OverDefinedCache.erase(OI); - break; - } - } - - if (!changed) continue; - - worklist.insert(worklist.end(), succ_begin(ToUpdate), succ_end(ToUpdate)); - } -} - - -namespace { -/// An assembly annotator class to print LazyValueCache information in -/// comments. -class LazyValueInfoImpl; -class LazyValueInfoAnnotatedWriter : public AssemblyAnnotationWriter { - LazyValueInfoImpl *LVIImpl; - // While analyzing which blocks we can solve values for, we need the dominator - // information. Since this is an optional parameter in LVI, we require this - // DomTreeAnalysis pass in the printer pass, and pass the dominator - // tree to the LazyValueInfoAnnotatedWriter. - DominatorTree &DT; - -public: - LazyValueInfoAnnotatedWriter(LazyValueInfoImpl *L, DominatorTree &DTree) - : LVIImpl(L), DT(DTree) {} - - virtual void emitBasicBlockStartAnnot(const BasicBlock *BB, - formatted_raw_ostream &OS); - - virtual void emitInstructionAnnot(const Instruction *I, - formatted_raw_ostream &OS); -}; -} -namespace { - // The actual implementation of the lazy analysis and update. Note that the - // inheritance from LazyValueInfoCache is intended to be temporary while - // splitting the code and then transitioning to a has-a relationship. - class LazyValueInfoImpl { - - /// Cached results from previous queries - LazyValueInfoCache TheCache; - - /// This stack holds the state of the value solver during a query. - /// It basically emulates the callstack of the naive - /// recursive value lookup process. - SmallVector<std::pair<BasicBlock*, Value*>, 8> BlockValueStack; - - /// Keeps track of which block-value pairs are in BlockValueStack. - DenseSet<std::pair<BasicBlock*, Value*> > BlockValueSet; - - /// Push BV onto BlockValueStack unless it's already in there. - /// Returns true on success. - bool pushBlockValue(const std::pair<BasicBlock *, Value *> &BV) { - if (!BlockValueSet.insert(BV).second) - return false; // It's already in the stack. - - LLVM_DEBUG(dbgs() << "PUSH: " << *BV.second << " in " - << BV.first->getName() << "\n"); - BlockValueStack.push_back(BV); - return true; - } - - AssumptionCache *AC; ///< A pointer to the cache of @llvm.assume calls. - const DataLayout &DL; ///< A mandatory DataLayout - DominatorTree *DT; ///< An optional DT pointer. - DominatorTree *DisabledDT; ///< Stores DT if it's disabled. - - ValueLatticeElement getBlockValue(Value *Val, BasicBlock *BB); - bool getEdgeValue(Value *V, BasicBlock *F, BasicBlock *T, - ValueLatticeElement &Result, Instruction *CxtI = nullptr); - bool hasBlockValue(Value *Val, BasicBlock *BB); - - // These methods process one work item and may add more. A false value - // returned means that the work item was not completely processed and must - // be revisited after going through the new items. - bool solveBlockValue(Value *Val, BasicBlock *BB); - bool solveBlockValueImpl(ValueLatticeElement &Res, Value *Val, - BasicBlock *BB); - bool solveBlockValueNonLocal(ValueLatticeElement &BBLV, Value *Val, - BasicBlock *BB); - bool solveBlockValuePHINode(ValueLatticeElement &BBLV, PHINode *PN, - BasicBlock *BB); - bool solveBlockValueSelect(ValueLatticeElement &BBLV, SelectInst *S, - BasicBlock *BB); - Optional<ConstantRange> getRangeForOperand(unsigned Op, Instruction *I, - BasicBlock *BB); - bool solveBlockValueBinaryOp(ValueLatticeElement &BBLV, BinaryOperator *BBI, - BasicBlock *BB); - bool solveBlockValueCast(ValueLatticeElement &BBLV, CastInst *CI, - BasicBlock *BB); - void intersectAssumeOrGuardBlockValueConstantRange(Value *Val, - ValueLatticeElement &BBLV, - Instruction *BBI); - - void solve(); - - public: - /// This is the query interface to determine the lattice - /// value for the specified Value* at the end of the specified block. - ValueLatticeElement getValueInBlock(Value *V, BasicBlock *BB, - Instruction *CxtI = nullptr); - - /// This is the query interface to determine the lattice - /// value for the specified Value* at the specified instruction (generally - /// from an assume intrinsic). - ValueLatticeElement getValueAt(Value *V, Instruction *CxtI); - - /// This is the query interface to determine the lattice - /// value for the specified Value* that is true on the specified edge. - ValueLatticeElement getValueOnEdge(Value *V, BasicBlock *FromBB, - BasicBlock *ToBB, - Instruction *CxtI = nullptr); - - /// Complete flush all previously computed values - void clear() { - TheCache.clear(); - } - - /// Printing the LazyValueInfo Analysis. - void printLVI(Function &F, DominatorTree &DTree, raw_ostream &OS) { - LazyValueInfoAnnotatedWriter Writer(this, DTree); - F.print(OS, &Writer); - } - - /// This is part of the update interface to inform the cache - /// that a block has been deleted. - void eraseBlock(BasicBlock *BB) { - TheCache.eraseBlock(BB); - } - - /// Disables use of the DominatorTree within LVI. - void disableDT() { - if (DT) { - assert(!DisabledDT && "Both DT and DisabledDT are not nullptr!"); - std::swap(DT, DisabledDT); - } - } - - /// Enables use of the DominatorTree within LVI. Does nothing if the class - /// instance was initialized without a DT pointer. - void enableDT() { - if (DisabledDT) { - assert(!DT && "Both DT and DisabledDT are not nullptr!"); - std::swap(DT, DisabledDT); - } - } - - /// This is the update interface to inform the cache that an edge from - /// PredBB to OldSucc has been threaded to be from PredBB to NewSucc. - void threadEdge(BasicBlock *PredBB,BasicBlock *OldSucc,BasicBlock *NewSucc); - - LazyValueInfoImpl(AssumptionCache *AC, const DataLayout &DL, - DominatorTree *DT = nullptr) - : AC(AC), DL(DL), DT(DT), DisabledDT(nullptr) {} - }; -} // end anonymous namespace - - -void LazyValueInfoImpl::solve() { - SmallVector<std::pair<BasicBlock *, Value *>, 8> StartingStack( - BlockValueStack.begin(), BlockValueStack.end()); - - unsigned processedCount = 0; - while (!BlockValueStack.empty()) { - processedCount++; - // Abort if we have to process too many values to get a result for this one. - // Because of the design of the overdefined cache currently being per-block - // to avoid naming-related issues (IE it wants to try to give different - // results for the same name in different blocks), overdefined results don't - // get cached globally, which in turn means we will often try to rediscover - // the same overdefined result again and again. Once something like - // PredicateInfo is used in LVI or CVP, we should be able to make the - // overdefined cache global, and remove this throttle. - if (processedCount > MaxProcessedPerValue) { - LLVM_DEBUG( - dbgs() << "Giving up on stack because we are getting too deep\n"); - // Fill in the original values - while (!StartingStack.empty()) { - std::pair<BasicBlock *, Value *> &e = StartingStack.back(); - TheCache.insertResult(e.second, e.first, - ValueLatticeElement::getOverdefined()); - StartingStack.pop_back(); - } - BlockValueSet.clear(); - BlockValueStack.clear(); - return; - } - std::pair<BasicBlock *, Value *> e = BlockValueStack.back(); - assert(BlockValueSet.count(e) && "Stack value should be in BlockValueSet!"); - - if (solveBlockValue(e.second, e.first)) { - // The work item was completely processed. - assert(BlockValueStack.back() == e && "Nothing should have been pushed!"); - assert(TheCache.hasCachedValueInfo(e.second, e.first) && - "Result should be in cache!"); - - LLVM_DEBUG( - dbgs() << "POP " << *e.second << " in " << e.first->getName() << " = " - << TheCache.getCachedValueInfo(e.second, e.first) << "\n"); - - BlockValueStack.pop_back(); - BlockValueSet.erase(e); - } else { - // More work needs to be done before revisiting. - assert(BlockValueStack.back() != e && "Stack should have been pushed!"); - } - } -} - -bool LazyValueInfoImpl::hasBlockValue(Value *Val, BasicBlock *BB) { - // If already a constant, there is nothing to compute. - if (isa<Constant>(Val)) - return true; - - return TheCache.hasCachedValueInfo(Val, BB); -} - -ValueLatticeElement LazyValueInfoImpl::getBlockValue(Value *Val, - BasicBlock *BB) { - // If already a constant, there is nothing to compute. - if (Constant *VC = dyn_cast<Constant>(Val)) - return ValueLatticeElement::get(VC); - - return TheCache.getCachedValueInfo(Val, BB); -} - -static ValueLatticeElement getFromRangeMetadata(Instruction *BBI) { - switch (BBI->getOpcode()) { - default: break; - case Instruction::Load: - case Instruction::Call: - case Instruction::Invoke: - if (MDNode *Ranges = BBI->getMetadata(LLVMContext::MD_range)) - if (isa<IntegerType>(BBI->getType())) { - return ValueLatticeElement::getRange( - getConstantRangeFromMetadata(*Ranges)); - } - break; - }; - // Nothing known - will be intersected with other facts - return ValueLatticeElement::getOverdefined(); -} - -bool LazyValueInfoImpl::solveBlockValue(Value *Val, BasicBlock *BB) { - if (isa<Constant>(Val)) - return true; - - if (TheCache.hasCachedValueInfo(Val, BB)) { - // If we have a cached value, use that. - LLVM_DEBUG(dbgs() << " reuse BB '" << BB->getName() << "' val=" - << TheCache.getCachedValueInfo(Val, BB) << '\n'); - - // Since we're reusing a cached value, we don't need to update the - // OverDefinedCache. The cache will have been properly updated whenever the - // cached value was inserted. - return true; - } - - // Hold off inserting this value into the Cache in case we have to return - // false and come back later. - ValueLatticeElement Res; - if (!solveBlockValueImpl(Res, Val, BB)) - // Work pushed, will revisit - return false; - - TheCache.insertResult(Val, BB, Res); - return true; -} - -bool LazyValueInfoImpl::solveBlockValueImpl(ValueLatticeElement &Res, - Value *Val, BasicBlock *BB) { - - Instruction *BBI = dyn_cast<Instruction>(Val); - if (!BBI || BBI->getParent() != BB) - return solveBlockValueNonLocal(Res, Val, BB); - - if (PHINode *PN = dyn_cast<PHINode>(BBI)) - return solveBlockValuePHINode(Res, PN, BB); - - if (auto *SI = dyn_cast<SelectInst>(BBI)) - return solveBlockValueSelect(Res, SI, BB); - - // If this value is a nonnull pointer, record it's range and bailout. Note - // that for all other pointer typed values, we terminate the search at the - // definition. We could easily extend this to look through geps, bitcasts, - // and the like to prove non-nullness, but it's not clear that's worth it - // compile time wise. The context-insensitive value walk done inside - // isKnownNonZero gets most of the profitable cases at much less expense. - // This does mean that we have a sensativity to where the defining - // instruction is placed, even if it could legally be hoisted much higher. - // That is unfortunate. - PointerType *PT = dyn_cast<PointerType>(BBI->getType()); - if (PT && isKnownNonZero(BBI, DL)) { - Res = ValueLatticeElement::getNot(ConstantPointerNull::get(PT)); - return true; - } - if (BBI->getType()->isIntegerTy()) { - if (auto *CI = dyn_cast<CastInst>(BBI)) - return solveBlockValueCast(Res, CI, BB); - - if (BinaryOperator *BO = dyn_cast<BinaryOperator>(BBI)) - return solveBlockValueBinaryOp(Res, BO, BB); - } - - LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() - << "' - unknown inst def found.\n"); - Res = getFromRangeMetadata(BBI); - return true; -} - -static bool InstructionDereferencesPointer(Instruction *I, Value *Ptr) { - if (LoadInst *L = dyn_cast<LoadInst>(I)) { - return L->getPointerAddressSpace() == 0 && - GetUnderlyingObject(L->getPointerOperand(), - L->getModule()->getDataLayout()) == Ptr; - } - if (StoreInst *S = dyn_cast<StoreInst>(I)) { - return S->getPointerAddressSpace() == 0 && - GetUnderlyingObject(S->getPointerOperand(), - S->getModule()->getDataLayout()) == Ptr; - } - if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) { - if (MI->isVolatile()) return false; - - // FIXME: check whether it has a valuerange that excludes zero? - ConstantInt *Len = dyn_cast<ConstantInt>(MI->getLength()); - if (!Len || Len->isZero()) return false; - - if (MI->getDestAddressSpace() == 0) - if (GetUnderlyingObject(MI->getRawDest(), - MI->getModule()->getDataLayout()) == Ptr) - return true; - if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) - if (MTI->getSourceAddressSpace() == 0) - if (GetUnderlyingObject(MTI->getRawSource(), - MTI->getModule()->getDataLayout()) == Ptr) - return true; - } - return false; -} - -/// Return true if the allocation associated with Val is ever dereferenced -/// within the given basic block. This establishes the fact Val is not null, -/// but does not imply that the memory at Val is dereferenceable. (Val may -/// point off the end of the dereferenceable part of the object.) -static bool isObjectDereferencedInBlock(Value *Val, BasicBlock *BB) { - assert(Val->getType()->isPointerTy()); - - const DataLayout &DL = BB->getModule()->getDataLayout(); - Value *UnderlyingVal = GetUnderlyingObject(Val, DL); - // If 'GetUnderlyingObject' didn't converge, skip it. It won't converge - // inside InstructionDereferencesPointer either. - if (UnderlyingVal == GetUnderlyingObject(UnderlyingVal, DL, 1)) - for (Instruction &I : *BB) - if (InstructionDereferencesPointer(&I, UnderlyingVal)) - return true; - return false; -} - -bool LazyValueInfoImpl::solveBlockValueNonLocal(ValueLatticeElement &BBLV, - Value *Val, BasicBlock *BB) { - ValueLatticeElement Result; // Start Undefined. - - // If this is the entry block, we must be asking about an argument. The - // value is overdefined. - if (BB == &BB->getParent()->getEntryBlock()) { - assert(isa<Argument>(Val) && "Unknown live-in to the entry block"); - // Before giving up, see if we can prove the pointer non-null local to - // this particular block. - PointerType *PTy = dyn_cast<PointerType>(Val->getType()); - if (PTy && - (isKnownNonZero(Val, DL) || - (isObjectDereferencedInBlock(Val, BB) && - !NullPointerIsDefined(BB->getParent(), PTy->getAddressSpace())))) { - Result = ValueLatticeElement::getNot(ConstantPointerNull::get(PTy)); - } else { - Result = ValueLatticeElement::getOverdefined(); - } - BBLV = Result; - return true; - } - - // Loop over all of our predecessors, merging what we know from them into - // result. If we encounter an unexplored predecessor, we eagerly explore it - // in a depth first manner. In practice, this has the effect of discovering - // paths we can't analyze eagerly without spending compile times analyzing - // other paths. This heuristic benefits from the fact that predecessors are - // frequently arranged such that dominating ones come first and we quickly - // find a path to function entry. TODO: We should consider explicitly - // canonicalizing to make this true rather than relying on this happy - // accident. - for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { - ValueLatticeElement EdgeResult; - if (!getEdgeValue(Val, *PI, BB, EdgeResult)) - // Explore that input, then return here - return false; - - Result.mergeIn(EdgeResult, DL); - - // If we hit overdefined, exit early. The BlockVals entry is already set - // to overdefined. - if (Result.isOverdefined()) { - LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() - << "' - overdefined because of pred (non local).\n"); - // Before giving up, see if we can prove the pointer non-null local to - // this particular block. - PointerType *PTy = dyn_cast<PointerType>(Val->getType()); - if (PTy && isObjectDereferencedInBlock(Val, BB) && - !NullPointerIsDefined(BB->getParent(), PTy->getAddressSpace())) { - Result = ValueLatticeElement::getNot(ConstantPointerNull::get(PTy)); - } - - BBLV = Result; - return true; - } - } - - // Return the merged value, which is more precise than 'overdefined'. - assert(!Result.isOverdefined()); - BBLV = Result; - return true; -} - -bool LazyValueInfoImpl::solveBlockValuePHINode(ValueLatticeElement &BBLV, - PHINode *PN, BasicBlock *BB) { - ValueLatticeElement Result; // Start Undefined. - - // Loop over all of our predecessors, merging what we know from them into - // result. See the comment about the chosen traversal order in - // solveBlockValueNonLocal; the same reasoning applies here. - for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { - BasicBlock *PhiBB = PN->getIncomingBlock(i); - Value *PhiVal = PN->getIncomingValue(i); - ValueLatticeElement EdgeResult; - // Note that we can provide PN as the context value to getEdgeValue, even - // though the results will be cached, because PN is the value being used as - // the cache key in the caller. - if (!getEdgeValue(PhiVal, PhiBB, BB, EdgeResult, PN)) - // Explore that input, then return here - return false; - - Result.mergeIn(EdgeResult, DL); - - // If we hit overdefined, exit early. The BlockVals entry is already set - // to overdefined. - if (Result.isOverdefined()) { - LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() - << "' - overdefined because of pred (local).\n"); - - BBLV = Result; - return true; - } - } - - // Return the merged value, which is more precise than 'overdefined'. - assert(!Result.isOverdefined() && "Possible PHI in entry block?"); - BBLV = Result; - return true; -} - -static ValueLatticeElement getValueFromCondition(Value *Val, Value *Cond, - bool isTrueDest = true); - -// If we can determine a constraint on the value given conditions assumed by -// the program, intersect those constraints with BBLV -void LazyValueInfoImpl::intersectAssumeOrGuardBlockValueConstantRange( - Value *Val, ValueLatticeElement &BBLV, Instruction *BBI) { - BBI = BBI ? BBI : dyn_cast<Instruction>(Val); - if (!BBI) - return; - - for (auto &AssumeVH : AC->assumptionsFor(Val)) { - if (!AssumeVH) - continue; - auto *I = cast<CallInst>(AssumeVH); - if (!isValidAssumeForContext(I, BBI, DT)) - continue; - - BBLV = intersect(BBLV, getValueFromCondition(Val, I->getArgOperand(0))); - } - - // If guards are not used in the module, don't spend time looking for them - auto *GuardDecl = BBI->getModule()->getFunction( - Intrinsic::getName(Intrinsic::experimental_guard)); - if (!GuardDecl || GuardDecl->use_empty()) - return; - - for (Instruction &I : make_range(BBI->getIterator().getReverse(), - BBI->getParent()->rend())) { - Value *Cond = nullptr; - if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(Cond)))) - BBLV = intersect(BBLV, getValueFromCondition(Val, Cond)); - } -} - -bool LazyValueInfoImpl::solveBlockValueSelect(ValueLatticeElement &BBLV, - SelectInst *SI, BasicBlock *BB) { - - // Recurse on our inputs if needed - if (!hasBlockValue(SI->getTrueValue(), BB)) { - if (pushBlockValue(std::make_pair(BB, SI->getTrueValue()))) - return false; - BBLV = ValueLatticeElement::getOverdefined(); - return true; - } - ValueLatticeElement TrueVal = getBlockValue(SI->getTrueValue(), BB); - // If we hit overdefined, don't ask more queries. We want to avoid poisoning - // extra slots in the table if we can. - if (TrueVal.isOverdefined()) { - BBLV = ValueLatticeElement::getOverdefined(); - return true; - } - - if (!hasBlockValue(SI->getFalseValue(), BB)) { - if (pushBlockValue(std::make_pair(BB, SI->getFalseValue()))) - return false; - BBLV = ValueLatticeElement::getOverdefined(); - return true; - } - ValueLatticeElement FalseVal = getBlockValue(SI->getFalseValue(), BB); - // If we hit overdefined, don't ask more queries. We want to avoid poisoning - // extra slots in the table if we can. - if (FalseVal.isOverdefined()) { - BBLV = ValueLatticeElement::getOverdefined(); - return true; - } - - if (TrueVal.isConstantRange() && FalseVal.isConstantRange()) { - const ConstantRange &TrueCR = TrueVal.getConstantRange(); - const ConstantRange &FalseCR = FalseVal.getConstantRange(); - Value *LHS = nullptr; - Value *RHS = nullptr; - SelectPatternResult SPR = matchSelectPattern(SI, LHS, RHS); - // Is this a min specifically of our two inputs? (Avoid the risk of - // ValueTracking getting smarter looking back past our immediate inputs.) - if (SelectPatternResult::isMinOrMax(SPR.Flavor) && - LHS == SI->getTrueValue() && RHS == SI->getFalseValue()) { - ConstantRange ResultCR = [&]() { - switch (SPR.Flavor) { - default: - llvm_unreachable("unexpected minmax type!"); - case SPF_SMIN: /// Signed minimum - return TrueCR.smin(FalseCR); - case SPF_UMIN: /// Unsigned minimum - return TrueCR.umin(FalseCR); - case SPF_SMAX: /// Signed maximum - return TrueCR.smax(FalseCR); - case SPF_UMAX: /// Unsigned maximum - return TrueCR.umax(FalseCR); - }; - }(); - BBLV = ValueLatticeElement::getRange(ResultCR); - return true; - } - - // TODO: ABS, NABS from the SelectPatternResult - } - - // Can we constrain the facts about the true and false values by using the - // condition itself? This shows up with idioms like e.g. select(a > 5, a, 5). - // TODO: We could potentially refine an overdefined true value above. - Value *Cond = SI->getCondition(); - TrueVal = intersect(TrueVal, - getValueFromCondition(SI->getTrueValue(), Cond, true)); - FalseVal = intersect(FalseVal, - getValueFromCondition(SI->getFalseValue(), Cond, false)); - - // Handle clamp idioms such as: - // %24 = constantrange<0, 17> - // %39 = icmp eq i32 %24, 0 - // %40 = add i32 %24, -1 - // %siv.next = select i1 %39, i32 16, i32 %40 - // %siv.next = constantrange<0, 17> not <-1, 17> - // In general, this can handle any clamp idiom which tests the edge - // condition via an equality or inequality. - if (auto *ICI = dyn_cast<ICmpInst>(Cond)) { - ICmpInst::Predicate Pred = ICI->getPredicate(); - Value *A = ICI->getOperand(0); - if (ConstantInt *CIBase = dyn_cast<ConstantInt>(ICI->getOperand(1))) { - auto addConstants = [](ConstantInt *A, ConstantInt *B) { - assert(A->getType() == B->getType()); - return ConstantInt::get(A->getType(), A->getValue() + B->getValue()); - }; - // See if either input is A + C2, subject to the constraint from the - // condition that A != C when that input is used. We can assume that - // that input doesn't include C + C2. - ConstantInt *CIAdded; - switch (Pred) { - default: break; - case ICmpInst::ICMP_EQ: - if (match(SI->getFalseValue(), m_Add(m_Specific(A), - m_ConstantInt(CIAdded)))) { - auto ResNot = addConstants(CIBase, CIAdded); - FalseVal = intersect(FalseVal, - ValueLatticeElement::getNot(ResNot)); - } - break; - case ICmpInst::ICMP_NE: - if (match(SI->getTrueValue(), m_Add(m_Specific(A), - m_ConstantInt(CIAdded)))) { - auto ResNot = addConstants(CIBase, CIAdded); - TrueVal = intersect(TrueVal, - ValueLatticeElement::getNot(ResNot)); - } - break; - }; - } - } - - ValueLatticeElement Result; // Start Undefined. - Result.mergeIn(TrueVal, DL); - Result.mergeIn(FalseVal, DL); - BBLV = Result; - return true; -} - -Optional<ConstantRange> LazyValueInfoImpl::getRangeForOperand(unsigned Op, - Instruction *I, - BasicBlock *BB) { - if (!hasBlockValue(I->getOperand(Op), BB)) - if (pushBlockValue(std::make_pair(BB, I->getOperand(Op)))) - return None; - - const unsigned OperandBitWidth = - DL.getTypeSizeInBits(I->getOperand(Op)->getType()); - ConstantRange Range = ConstantRange(OperandBitWidth); - if (hasBlockValue(I->getOperand(Op), BB)) { - ValueLatticeElement Val = getBlockValue(I->getOperand(Op), BB); - intersectAssumeOrGuardBlockValueConstantRange(I->getOperand(Op), Val, I); - if (Val.isConstantRange()) - Range = Val.getConstantRange(); - } - return Range; -} - -bool LazyValueInfoImpl::solveBlockValueCast(ValueLatticeElement &BBLV, - CastInst *CI, - BasicBlock *BB) { - if (!CI->getOperand(0)->getType()->isSized()) { - // Without knowing how wide the input is, we can't analyze it in any useful - // way. - BBLV = ValueLatticeElement::getOverdefined(); - return true; - } - - // Filter out casts we don't know how to reason about before attempting to - // recurse on our operand. This can cut a long search short if we know we're - // not going to be able to get any useful information anways. - switch (CI->getOpcode()) { - case Instruction::Trunc: - case Instruction::SExt: - case Instruction::ZExt: - case Instruction::BitCast: - break; - default: - // Unhandled instructions are overdefined. - LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() - << "' - overdefined (unknown cast).\n"); - BBLV = ValueLatticeElement::getOverdefined(); - return true; - } - - // Figure out the range of the LHS. If that fails, we still apply the - // transfer rule on the full set since we may be able to locally infer - // interesting facts. - Optional<ConstantRange> LHSRes = getRangeForOperand(0, CI, BB); - if (!LHSRes.hasValue()) - // More work to do before applying this transfer rule. - return false; - ConstantRange LHSRange = LHSRes.getValue(); - - const unsigned ResultBitWidth = CI->getType()->getIntegerBitWidth(); - - // NOTE: We're currently limited by the set of operations that ConstantRange - // can evaluate symbolically. Enhancing that set will allows us to analyze - // more definitions. - BBLV = ValueLatticeElement::getRange(LHSRange.castOp(CI->getOpcode(), - ResultBitWidth)); - return true; -} - -bool LazyValueInfoImpl::solveBlockValueBinaryOp(ValueLatticeElement &BBLV, - BinaryOperator *BO, - BasicBlock *BB) { - - assert(BO->getOperand(0)->getType()->isSized() && - "all operands to binary operators are sized"); - - // Filter out operators we don't know how to reason about before attempting to - // recurse on our operand(s). This can cut a long search short if we know - // we're not going to be able to get any useful information anyways. - switch (BO->getOpcode()) { - case Instruction::Add: - case Instruction::Sub: - case Instruction::Mul: - case Instruction::UDiv: - case Instruction::Shl: - case Instruction::LShr: - case Instruction::AShr: - case Instruction::And: - case Instruction::Or: - // continue into the code below - break; - default: - // Unhandled instructions are overdefined. - LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() - << "' - overdefined (unknown binary operator).\n"); - BBLV = ValueLatticeElement::getOverdefined(); - return true; - }; - - // Figure out the ranges of the operands. If that fails, use a - // conservative range, but apply the transfer rule anyways. This - // lets us pick up facts from expressions like "and i32 (call i32 - // @foo()), 32" - Optional<ConstantRange> LHSRes = getRangeForOperand(0, BO, BB); - Optional<ConstantRange> RHSRes = getRangeForOperand(1, BO, BB); - - if (!LHSRes.hasValue() || !RHSRes.hasValue()) - // More work to do before applying this transfer rule. - return false; - - ConstantRange LHSRange = LHSRes.getValue(); - ConstantRange RHSRange = RHSRes.getValue(); - - // NOTE: We're currently limited by the set of operations that ConstantRange - // can evaluate symbolically. Enhancing that set will allows us to analyze - // more definitions. - Instruction::BinaryOps BinOp = BO->getOpcode(); - BBLV = ValueLatticeElement::getRange(LHSRange.binaryOp(BinOp, RHSRange)); - return true; -} - -static ValueLatticeElement getValueFromICmpCondition(Value *Val, ICmpInst *ICI, - bool isTrueDest) { - Value *LHS = ICI->getOperand(0); - Value *RHS = ICI->getOperand(1); - CmpInst::Predicate Predicate = ICI->getPredicate(); - - if (isa<Constant>(RHS)) { - if (ICI->isEquality() && LHS == Val) { - // We know that V has the RHS constant if this is a true SETEQ or - // false SETNE. - if (isTrueDest == (Predicate == ICmpInst::ICMP_EQ)) - return ValueLatticeElement::get(cast<Constant>(RHS)); - else - return ValueLatticeElement::getNot(cast<Constant>(RHS)); - } - } - - if (!Val->getType()->isIntegerTy()) - return ValueLatticeElement::getOverdefined(); - - // Use ConstantRange::makeAllowedICmpRegion in order to determine the possible - // range of Val guaranteed by the condition. Recognize comparisons in the from - // of: - // icmp <pred> Val, ... - // icmp <pred> (add Val, Offset), ... - // The latter is the range checking idiom that InstCombine produces. Subtract - // the offset from the allowed range for RHS in this case. - - // Val or (add Val, Offset) can be on either hand of the comparison - if (LHS != Val && !match(LHS, m_Add(m_Specific(Val), m_ConstantInt()))) { - std::swap(LHS, RHS); - Predicate = CmpInst::getSwappedPredicate(Predicate); - } - - ConstantInt *Offset = nullptr; - if (LHS != Val) - match(LHS, m_Add(m_Specific(Val), m_ConstantInt(Offset))); - - if (LHS == Val || Offset) { - // Calculate the range of values that are allowed by the comparison - ConstantRange RHSRange(RHS->getType()->getIntegerBitWidth(), - /*isFullSet=*/true); - if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) - RHSRange = ConstantRange(CI->getValue()); - else if (Instruction *I = dyn_cast<Instruction>(RHS)) - if (auto *Ranges = I->getMetadata(LLVMContext::MD_range)) - RHSRange = getConstantRangeFromMetadata(*Ranges); - - // If we're interested in the false dest, invert the condition - CmpInst::Predicate Pred = - isTrueDest ? Predicate : CmpInst::getInversePredicate(Predicate); - ConstantRange TrueValues = - ConstantRange::makeAllowedICmpRegion(Pred, RHSRange); - - if (Offset) // Apply the offset from above. - TrueValues = TrueValues.subtract(Offset->getValue()); - - return ValueLatticeElement::getRange(std::move(TrueValues)); - } - - return ValueLatticeElement::getOverdefined(); -} - -static ValueLatticeElement -getValueFromCondition(Value *Val, Value *Cond, bool isTrueDest, - DenseMap<Value*, ValueLatticeElement> &Visited); - -static ValueLatticeElement -getValueFromConditionImpl(Value *Val, Value *Cond, bool isTrueDest, - DenseMap<Value*, ValueLatticeElement> &Visited) { - if (ICmpInst *ICI = dyn_cast<ICmpInst>(Cond)) - return getValueFromICmpCondition(Val, ICI, isTrueDest); - - // Handle conditions in the form of (cond1 && cond2), we know that on the - // true dest path both of the conditions hold. Similarly for conditions of - // the form (cond1 || cond2), we know that on the false dest path neither - // condition holds. - BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond); - if (!BO || (isTrueDest && BO->getOpcode() != BinaryOperator::And) || - (!isTrueDest && BO->getOpcode() != BinaryOperator::Or)) - return ValueLatticeElement::getOverdefined(); - - // Prevent infinite recursion if Cond references itself as in this example: - // Cond: "%tmp4 = and i1 %tmp4, undef" - // BL: "%tmp4 = and i1 %tmp4, undef" - // BR: "i1 undef" - Value *BL = BO->getOperand(0); - Value *BR = BO->getOperand(1); - if (BL == Cond || BR == Cond) - return ValueLatticeElement::getOverdefined(); - - return intersect(getValueFromCondition(Val, BL, isTrueDest, Visited), - getValueFromCondition(Val, BR, isTrueDest, Visited)); -} - -static ValueLatticeElement -getValueFromCondition(Value *Val, Value *Cond, bool isTrueDest, - DenseMap<Value*, ValueLatticeElement> &Visited) { - auto I = Visited.find(Cond); - if (I != Visited.end()) - return I->second; - - auto Result = getValueFromConditionImpl(Val, Cond, isTrueDest, Visited); - Visited[Cond] = Result; - return Result; -} - -ValueLatticeElement getValueFromCondition(Value *Val, Value *Cond, - bool isTrueDest) { - assert(Cond && "precondition"); - DenseMap<Value*, ValueLatticeElement> Visited; - return getValueFromCondition(Val, Cond, isTrueDest, Visited); -} - -// Return true if Usr has Op as an operand, otherwise false. -static bool usesOperand(User *Usr, Value *Op) { - return find(Usr->operands(), Op) != Usr->op_end(); -} - -// Return true if the instruction type of Val is supported by -// constantFoldUser(). Currently CastInst and BinaryOperator only. Call this -// before calling constantFoldUser() to find out if it's even worth attempting -// to call it. -static bool isOperationFoldable(User *Usr) { - return isa<CastInst>(Usr) || isa<BinaryOperator>(Usr); -} - -// Check if Usr can be simplified to an integer constant when the value of one -// of its operands Op is an integer constant OpConstVal. If so, return it as an -// lattice value range with a single element or otherwise return an overdefined -// lattice value. -static ValueLatticeElement constantFoldUser(User *Usr, Value *Op, - const APInt &OpConstVal, - const DataLayout &DL) { - assert(isOperationFoldable(Usr) && "Precondition"); - Constant* OpConst = Constant::getIntegerValue(Op->getType(), OpConstVal); - // Check if Usr can be simplified to a constant. - if (auto *CI = dyn_cast<CastInst>(Usr)) { - assert(CI->getOperand(0) == Op && "Operand 0 isn't Op"); - if (auto *C = dyn_cast_or_null<ConstantInt>( - SimplifyCastInst(CI->getOpcode(), OpConst, - CI->getDestTy(), DL))) { - return ValueLatticeElement::getRange(ConstantRange(C->getValue())); - } - } else if (auto *BO = dyn_cast<BinaryOperator>(Usr)) { - bool Op0Match = BO->getOperand(0) == Op; - bool Op1Match = BO->getOperand(1) == Op; - assert((Op0Match || Op1Match) && - "Operand 0 nor Operand 1 isn't a match"); - Value *LHS = Op0Match ? OpConst : BO->getOperand(0); - Value *RHS = Op1Match ? OpConst : BO->getOperand(1); - if (auto *C = dyn_cast_or_null<ConstantInt>( - SimplifyBinOp(BO->getOpcode(), LHS, RHS, DL))) { - return ValueLatticeElement::getRange(ConstantRange(C->getValue())); - } - } - return ValueLatticeElement::getOverdefined(); -} - -/// Compute the value of Val on the edge BBFrom -> BBTo. Returns false if -/// Val is not constrained on the edge. Result is unspecified if return value -/// is false. -static bool getEdgeValueLocal(Value *Val, BasicBlock *BBFrom, - BasicBlock *BBTo, ValueLatticeElement &Result) { - // TODO: Handle more complex conditionals. If (v == 0 || v2 < 1) is false, we - // know that v != 0. - if (BranchInst *BI = dyn_cast<BranchInst>(BBFrom->getTerminator())) { - // If this is a conditional branch and only one successor goes to BBTo, then - // we may be able to infer something from the condition. - if (BI->isConditional() && - BI->getSuccessor(0) != BI->getSuccessor(1)) { - bool isTrueDest = BI->getSuccessor(0) == BBTo; - assert(BI->getSuccessor(!isTrueDest) == BBTo && - "BBTo isn't a successor of BBFrom"); - Value *Condition = BI->getCondition(); - - // If V is the condition of the branch itself, then we know exactly what - // it is. - if (Condition == Val) { - Result = ValueLatticeElement::get(ConstantInt::get( - Type::getInt1Ty(Val->getContext()), isTrueDest)); - return true; - } - - // If the condition of the branch is an equality comparison, we may be - // able to infer the value. - Result = getValueFromCondition(Val, Condition, isTrueDest); - if (!Result.isOverdefined()) - return true; - - if (User *Usr = dyn_cast<User>(Val)) { - assert(Result.isOverdefined() && "Result isn't overdefined"); - // Check with isOperationFoldable() first to avoid linearly iterating - // over the operands unnecessarily which can be expensive for - // instructions with many operands. - if (isa<IntegerType>(Usr->getType()) && isOperationFoldable(Usr)) { - const DataLayout &DL = BBTo->getModule()->getDataLayout(); - if (usesOperand(Usr, Condition)) { - // If Val has Condition as an operand and Val can be folded into a - // constant with either Condition == true or Condition == false, - // propagate the constant. - // eg. - // ; %Val is true on the edge to %then. - // %Val = and i1 %Condition, true. - // br %Condition, label %then, label %else - APInt ConditionVal(1, isTrueDest ? 1 : 0); - Result = constantFoldUser(Usr, Condition, ConditionVal, DL); - } else { - // If one of Val's operand has an inferred value, we may be able to - // infer the value of Val. - // eg. - // ; %Val is 94 on the edge to %then. - // %Val = add i8 %Op, 1 - // %Condition = icmp eq i8 %Op, 93 - // br i1 %Condition, label %then, label %else - for (unsigned i = 0; i < Usr->getNumOperands(); ++i) { - Value *Op = Usr->getOperand(i); - ValueLatticeElement OpLatticeVal = - getValueFromCondition(Op, Condition, isTrueDest); - if (Optional<APInt> OpConst = OpLatticeVal.asConstantInteger()) { - Result = constantFoldUser(Usr, Op, OpConst.getValue(), DL); - break; - } - } - } - } - } - if (!Result.isOverdefined()) - return true; - } - } - - // If the edge was formed by a switch on the value, then we may know exactly - // what it is. - if (SwitchInst *SI = dyn_cast<SwitchInst>(BBFrom->getTerminator())) { - Value *Condition = SI->getCondition(); - if (!isa<IntegerType>(Val->getType())) - return false; - bool ValUsesConditionAndMayBeFoldable = false; - if (Condition != Val) { - // Check if Val has Condition as an operand. - if (User *Usr = dyn_cast<User>(Val)) - ValUsesConditionAndMayBeFoldable = isOperationFoldable(Usr) && - usesOperand(Usr, Condition); - if (!ValUsesConditionAndMayBeFoldable) - return false; - } - assert((Condition == Val || ValUsesConditionAndMayBeFoldable) && - "Condition != Val nor Val doesn't use Condition"); - - bool DefaultCase = SI->getDefaultDest() == BBTo; - unsigned BitWidth = Val->getType()->getIntegerBitWidth(); - ConstantRange EdgesVals(BitWidth, DefaultCase/*isFullSet*/); - - for (auto Case : SI->cases()) { - APInt CaseValue = Case.getCaseValue()->getValue(); - ConstantRange EdgeVal(CaseValue); - if (ValUsesConditionAndMayBeFoldable) { - User *Usr = cast<User>(Val); - const DataLayout &DL = BBTo->getModule()->getDataLayout(); - ValueLatticeElement EdgeLatticeVal = - constantFoldUser(Usr, Condition, CaseValue, DL); - if (EdgeLatticeVal.isOverdefined()) - return false; - EdgeVal = EdgeLatticeVal.getConstantRange(); - } - if (DefaultCase) { - // It is possible that the default destination is the destination of - // some cases. We cannot perform difference for those cases. - // We know Condition != CaseValue in BBTo. In some cases we can use - // this to infer Val == f(Condition) is != f(CaseValue). For now, we - // only do this when f is identity (i.e. Val == Condition), but we - // should be able to do this for any injective f. - if (Case.getCaseSuccessor() != BBTo && Condition == Val) - EdgesVals = EdgesVals.difference(EdgeVal); - } else if (Case.getCaseSuccessor() == BBTo) - EdgesVals = EdgesVals.unionWith(EdgeVal); - } - Result = ValueLatticeElement::getRange(std::move(EdgesVals)); - return true; - } - return false; -} - -/// Compute the value of Val on the edge BBFrom -> BBTo or the value at -/// the basic block if the edge does not constrain Val. -bool LazyValueInfoImpl::getEdgeValue(Value *Val, BasicBlock *BBFrom, - BasicBlock *BBTo, - ValueLatticeElement &Result, - Instruction *CxtI) { - // If already a constant, there is nothing to compute. - if (Constant *VC = dyn_cast<Constant>(Val)) { - Result = ValueLatticeElement::get(VC); - return true; - } - - ValueLatticeElement LocalResult; - if (!getEdgeValueLocal(Val, BBFrom, BBTo, LocalResult)) - // If we couldn't constrain the value on the edge, LocalResult doesn't - // provide any information. - LocalResult = ValueLatticeElement::getOverdefined(); - - if (hasSingleValue(LocalResult)) { - // Can't get any more precise here - Result = LocalResult; - return true; - } - - if (!hasBlockValue(Val, BBFrom)) { - if (pushBlockValue(std::make_pair(BBFrom, Val))) - return false; - // No new information. - Result = LocalResult; - return true; - } - - // Try to intersect ranges of the BB and the constraint on the edge. - ValueLatticeElement InBlock = getBlockValue(Val, BBFrom); - intersectAssumeOrGuardBlockValueConstantRange(Val, InBlock, - BBFrom->getTerminator()); - // We can use the context instruction (generically the ultimate instruction - // the calling pass is trying to simplify) here, even though the result of - // this function is generally cached when called from the solve* functions - // (and that cached result might be used with queries using a different - // context instruction), because when this function is called from the solve* - // functions, the context instruction is not provided. When called from - // LazyValueInfoImpl::getValueOnEdge, the context instruction is provided, - // but then the result is not cached. - intersectAssumeOrGuardBlockValueConstantRange(Val, InBlock, CxtI); - - Result = intersect(LocalResult, InBlock); - return true; -} - -ValueLatticeElement LazyValueInfoImpl::getValueInBlock(Value *V, BasicBlock *BB, - Instruction *CxtI) { - LLVM_DEBUG(dbgs() << "LVI Getting block end value " << *V << " at '" - << BB->getName() << "'\n"); - - assert(BlockValueStack.empty() && BlockValueSet.empty()); - if (!hasBlockValue(V, BB)) { - pushBlockValue(std::make_pair(BB, V)); - solve(); - } - ValueLatticeElement Result = getBlockValue(V, BB); - intersectAssumeOrGuardBlockValueConstantRange(V, Result, CxtI); - - LLVM_DEBUG(dbgs() << " Result = " << Result << "\n"); - return Result; -} - -ValueLatticeElement LazyValueInfoImpl::getValueAt(Value *V, Instruction *CxtI) { - LLVM_DEBUG(dbgs() << "LVI Getting value " << *V << " at '" << CxtI->getName() - << "'\n"); - - if (auto *C = dyn_cast<Constant>(V)) - return ValueLatticeElement::get(C); - - ValueLatticeElement Result = ValueLatticeElement::getOverdefined(); - if (auto *I = dyn_cast<Instruction>(V)) - Result = getFromRangeMetadata(I); - intersectAssumeOrGuardBlockValueConstantRange(V, Result, CxtI); - - LLVM_DEBUG(dbgs() << " Result = " << Result << "\n"); - return Result; -} - -ValueLatticeElement LazyValueInfoImpl:: -getValueOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB, - Instruction *CxtI) { - LLVM_DEBUG(dbgs() << "LVI Getting edge value " << *V << " from '" - << FromBB->getName() << "' to '" << ToBB->getName() - << "'\n"); - - ValueLatticeElement Result; - if (!getEdgeValue(V, FromBB, ToBB, Result, CxtI)) { - solve(); - bool WasFastQuery = getEdgeValue(V, FromBB, ToBB, Result, CxtI); - (void)WasFastQuery; - assert(WasFastQuery && "More work to do after problem solved?"); - } - - LLVM_DEBUG(dbgs() << " Result = " << Result << "\n"); - return Result; -} - -void LazyValueInfoImpl::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc, - BasicBlock *NewSucc) { - TheCache.threadEdgeImpl(OldSucc, NewSucc); -} - -//===----------------------------------------------------------------------===// -// LazyValueInfo Impl -//===----------------------------------------------------------------------===// - -/// This lazily constructs the LazyValueInfoImpl. -static LazyValueInfoImpl &getImpl(void *&PImpl, AssumptionCache *AC, - const DataLayout *DL, - DominatorTree *DT = nullptr) { - if (!PImpl) { - assert(DL && "getCache() called with a null DataLayout"); - PImpl = new LazyValueInfoImpl(AC, *DL, DT); - } - return *static_cast<LazyValueInfoImpl*>(PImpl); -} - -bool LazyValueInfoWrapperPass::runOnFunction(Function &F) { - Info.AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); - const DataLayout &DL = F.getParent()->getDataLayout(); - - DominatorTreeWrapperPass *DTWP = - getAnalysisIfAvailable<DominatorTreeWrapperPass>(); - Info.DT = DTWP ? &DTWP->getDomTree() : nullptr; - Info.TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); - - if (Info.PImpl) - getImpl(Info.PImpl, Info.AC, &DL, Info.DT).clear(); - - // Fully lazy. - return false; -} - -void LazyValueInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { - AU.setPreservesAll(); - AU.addRequired<AssumptionCacheTracker>(); - AU.addRequired<TargetLibraryInfoWrapperPass>(); -} - -LazyValueInfo &LazyValueInfoWrapperPass::getLVI() { return Info; } - -LazyValueInfo::~LazyValueInfo() { releaseMemory(); } - -void LazyValueInfo::releaseMemory() { - // If the cache was allocated, free it. - if (PImpl) { - delete &getImpl(PImpl, AC, nullptr); - PImpl = nullptr; - } -} - -bool LazyValueInfo::invalidate(Function &F, const PreservedAnalyses &PA, - FunctionAnalysisManager::Invalidator &Inv) { - // We need to invalidate if we have either failed to preserve this analyses - // result directly or if any of its dependencies have been invalidated. - auto PAC = PA.getChecker<LazyValueAnalysis>(); - if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || - (DT && Inv.invalidate<DominatorTreeAnalysis>(F, PA))) - return true; - - return false; -} - -void LazyValueInfoWrapperPass::releaseMemory() { Info.releaseMemory(); } - -LazyValueInfo LazyValueAnalysis::run(Function &F, - FunctionAnalysisManager &FAM) { - auto &AC = FAM.getResult<AssumptionAnalysis>(F); - auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F); - auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(F); - - return LazyValueInfo(&AC, &F.getParent()->getDataLayout(), &TLI, DT); -} - -/// Returns true if we can statically tell that this value will never be a -/// "useful" constant. In practice, this means we've got something like an -/// alloca or a malloc call for which a comparison against a constant can -/// only be guarding dead code. Note that we are potentially giving up some -/// precision in dead code (a constant result) in favour of avoiding a -/// expensive search for a easily answered common query. -static bool isKnownNonConstant(Value *V) { - V = V->stripPointerCasts(); - // The return val of alloc cannot be a Constant. - if (isa<AllocaInst>(V)) - return true; - return false; -} - -Constant *LazyValueInfo::getConstant(Value *V, BasicBlock *BB, - Instruction *CxtI) { - // Bail out early if V is known not to be a Constant. - if (isKnownNonConstant(V)) - return nullptr; - - const DataLayout &DL = BB->getModule()->getDataLayout(); - ValueLatticeElement Result = - getImpl(PImpl, AC, &DL, DT).getValueInBlock(V, BB, CxtI); - - if (Result.isConstant()) - return Result.getConstant(); - if (Result.isConstantRange()) { - const ConstantRange &CR = Result.getConstantRange(); - if (const APInt *SingleVal = CR.getSingleElement()) - return ConstantInt::get(V->getContext(), *SingleVal); - } - return nullptr; -} - -ConstantRange LazyValueInfo::getConstantRange(Value *V, BasicBlock *BB, - Instruction *CxtI) { - assert(V->getType()->isIntegerTy()); - unsigned Width = V->getType()->getIntegerBitWidth(); - const DataLayout &DL = BB->getModule()->getDataLayout(); - ValueLatticeElement Result = - getImpl(PImpl, AC, &DL, DT).getValueInBlock(V, BB, CxtI); - if (Result.isUndefined()) - return ConstantRange(Width, /*isFullSet=*/false); - if (Result.isConstantRange()) - return Result.getConstantRange(); - // We represent ConstantInt constants as constant ranges but other kinds - // of integer constants, i.e. ConstantExpr will be tagged as constants - assert(!(Result.isConstant() && isa<ConstantInt>(Result.getConstant())) && - "ConstantInt value must be represented as constantrange"); - return ConstantRange(Width, /*isFullSet=*/true); -} - -/// Determine whether the specified value is known to be a -/// constant on the specified edge. Return null if not. -Constant *LazyValueInfo::getConstantOnEdge(Value *V, BasicBlock *FromBB, - BasicBlock *ToBB, - Instruction *CxtI) { - const DataLayout &DL = FromBB->getModule()->getDataLayout(); - ValueLatticeElement Result = - getImpl(PImpl, AC, &DL, DT).getValueOnEdge(V, FromBB, ToBB, CxtI); - - if (Result.isConstant()) - return Result.getConstant(); - if (Result.isConstantRange()) { - const ConstantRange &CR = Result.getConstantRange(); - if (const APInt *SingleVal = CR.getSingleElement()) - return ConstantInt::get(V->getContext(), *SingleVal); - } - return nullptr; -} - -ConstantRange LazyValueInfo::getConstantRangeOnEdge(Value *V, - BasicBlock *FromBB, - BasicBlock *ToBB, - Instruction *CxtI) { - unsigned Width = V->getType()->getIntegerBitWidth(); - const DataLayout &DL = FromBB->getModule()->getDataLayout(); - ValueLatticeElement Result = - getImpl(PImpl, AC, &DL, DT).getValueOnEdge(V, FromBB, ToBB, CxtI); - - if (Result.isUndefined()) - return ConstantRange(Width, /*isFullSet=*/false); - if (Result.isConstantRange()) - return Result.getConstantRange(); - // We represent ConstantInt constants as constant ranges but other kinds - // of integer constants, i.e. ConstantExpr will be tagged as constants - assert(!(Result.isConstant() && isa<ConstantInt>(Result.getConstant())) && - "ConstantInt value must be represented as constantrange"); - return ConstantRange(Width, /*isFullSet=*/true); -} - -static LazyValueInfo::Tristate -getPredicateResult(unsigned Pred, Constant *C, const ValueLatticeElement &Val, - const DataLayout &DL, TargetLibraryInfo *TLI) { - // If we know the value is a constant, evaluate the conditional. - Constant *Res = nullptr; - if (Val.isConstant()) { - Res = ConstantFoldCompareInstOperands(Pred, Val.getConstant(), C, DL, TLI); - if (ConstantInt *ResCI = dyn_cast<ConstantInt>(Res)) - return ResCI->isZero() ? LazyValueInfo::False : LazyValueInfo::True; - return LazyValueInfo::Unknown; - } - - if (Val.isConstantRange()) { - ConstantInt *CI = dyn_cast<ConstantInt>(C); - if (!CI) return LazyValueInfo::Unknown; - - const ConstantRange &CR = Val.getConstantRange(); - if (Pred == ICmpInst::ICMP_EQ) { - if (!CR.contains(CI->getValue())) - return LazyValueInfo::False; - - if (CR.isSingleElement()) - return LazyValueInfo::True; - } else if (Pred == ICmpInst::ICMP_NE) { - if (!CR.contains(CI->getValue())) - return LazyValueInfo::True; - - if (CR.isSingleElement()) - return LazyValueInfo::False; - } else { - // Handle more complex predicates. - ConstantRange TrueValues = ConstantRange::makeExactICmpRegion( - (ICmpInst::Predicate)Pred, CI->getValue()); - if (TrueValues.contains(CR)) - return LazyValueInfo::True; - if (TrueValues.inverse().contains(CR)) - return LazyValueInfo::False; - } - return LazyValueInfo::Unknown; - } - - if (Val.isNotConstant()) { - // If this is an equality comparison, we can try to fold it knowing that - // "V != C1". - if (Pred == ICmpInst::ICMP_EQ) { - // !C1 == C -> false iff C1 == C. - Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE, - Val.getNotConstant(), C, DL, - TLI); - if (Res->isNullValue()) - return LazyValueInfo::False; - } else if (Pred == ICmpInst::ICMP_NE) { - // !C1 != C -> true iff C1 == C. - Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE, - Val.getNotConstant(), C, DL, - TLI); - if (Res->isNullValue()) - return LazyValueInfo::True; - } - return LazyValueInfo::Unknown; - } - - return LazyValueInfo::Unknown; -} - -/// Determine whether the specified value comparison with a constant is known to -/// be true or false on the specified CFG edge. Pred is a CmpInst predicate. -LazyValueInfo::Tristate -LazyValueInfo::getPredicateOnEdge(unsigned Pred, Value *V, Constant *C, - BasicBlock *FromBB, BasicBlock *ToBB, - Instruction *CxtI) { - const DataLayout &DL = FromBB->getModule()->getDataLayout(); - ValueLatticeElement Result = - getImpl(PImpl, AC, &DL, DT).getValueOnEdge(V, FromBB, ToBB, CxtI); - - return getPredicateResult(Pred, C, Result, DL, TLI); -} - -LazyValueInfo::Tristate -LazyValueInfo::getPredicateAt(unsigned Pred, Value *V, Constant *C, - Instruction *CxtI) { - // Is or is not NonNull are common predicates being queried. If - // isKnownNonZero can tell us the result of the predicate, we can - // return it quickly. But this is only a fastpath, and falling - // through would still be correct. - const DataLayout &DL = CxtI->getModule()->getDataLayout(); - if (V->getType()->isPointerTy() && C->isNullValue() && - isKnownNonZero(V->stripPointerCasts(), DL)) { - if (Pred == ICmpInst::ICMP_EQ) - return LazyValueInfo::False; - else if (Pred == ICmpInst::ICMP_NE) - return LazyValueInfo::True; - } - ValueLatticeElement Result = getImpl(PImpl, AC, &DL, DT).getValueAt(V, CxtI); - Tristate Ret = getPredicateResult(Pred, C, Result, DL, TLI); - if (Ret != Unknown) - return Ret; - - // Note: The following bit of code is somewhat distinct from the rest of LVI; - // LVI as a whole tries to compute a lattice value which is conservatively - // correct at a given location. In this case, we have a predicate which we - // weren't able to prove about the merged result, and we're pushing that - // predicate back along each incoming edge to see if we can prove it - // separately for each input. As a motivating example, consider: - // bb1: - // %v1 = ... ; constantrange<1, 5> - // br label %merge - // bb2: - // %v2 = ... ; constantrange<10, 20> - // br label %merge - // merge: - // %phi = phi [%v1, %v2] ; constantrange<1,20> - // %pred = icmp eq i32 %phi, 8 - // We can't tell from the lattice value for '%phi' that '%pred' is false - // along each path, but by checking the predicate over each input separately, - // we can. - // We limit the search to one step backwards from the current BB and value. - // We could consider extending this to search further backwards through the - // CFG and/or value graph, but there are non-obvious compile time vs quality - // tradeoffs. - if (CxtI) { - BasicBlock *BB = CxtI->getParent(); - - // Function entry or an unreachable block. Bail to avoid confusing - // analysis below. - pred_iterator PI = pred_begin(BB), PE = pred_end(BB); - if (PI == PE) - return Unknown; - - // If V is a PHI node in the same block as the context, we need to ask - // questions about the predicate as applied to the incoming value along - // each edge. This is useful for eliminating cases where the predicate is - // known along all incoming edges. - if (auto *PHI = dyn_cast<PHINode>(V)) - if (PHI->getParent() == BB) { - Tristate Baseline = Unknown; - for (unsigned i = 0, e = PHI->getNumIncomingValues(); i < e; i++) { - Value *Incoming = PHI->getIncomingValue(i); - BasicBlock *PredBB = PHI->getIncomingBlock(i); - // Note that PredBB may be BB itself. - Tristate Result = getPredicateOnEdge(Pred, Incoming, C, PredBB, BB, - CxtI); - - // Keep going as long as we've seen a consistent known result for - // all inputs. - Baseline = (i == 0) ? Result /* First iteration */ - : (Baseline == Result ? Baseline : Unknown); /* All others */ - if (Baseline == Unknown) - break; - } - if (Baseline != Unknown) - return Baseline; - } - - // For a comparison where the V is outside this block, it's possible - // that we've branched on it before. Look to see if the value is known - // on all incoming edges. - if (!isa<Instruction>(V) || - cast<Instruction>(V)->getParent() != BB) { - // For predecessor edge, determine if the comparison is true or false - // on that edge. If they're all true or all false, we can conclude - // the value of the comparison in this block. - Tristate Baseline = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI); - if (Baseline != Unknown) { - // Check that all remaining incoming values match the first one. - while (++PI != PE) { - Tristate Ret = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI); - if (Ret != Baseline) break; - } - // If we terminated early, then one of the values didn't match. - if (PI == PE) { - return Baseline; - } - } - } - } - return Unknown; -} - -void LazyValueInfo::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc, - BasicBlock *NewSucc) { - if (PImpl) { - const DataLayout &DL = PredBB->getModule()->getDataLayout(); - getImpl(PImpl, AC, &DL, DT).threadEdge(PredBB, OldSucc, NewSucc); - } -} - -void LazyValueInfo::eraseBlock(BasicBlock *BB) { - if (PImpl) { - const DataLayout &DL = BB->getModule()->getDataLayout(); - getImpl(PImpl, AC, &DL, DT).eraseBlock(BB); - } -} - - -void LazyValueInfo::printLVI(Function &F, DominatorTree &DTree, raw_ostream &OS) { - if (PImpl) { - getImpl(PImpl, AC, DL, DT).printLVI(F, DTree, OS); - } -} - -void LazyValueInfo::disableDT() { - if (PImpl) - getImpl(PImpl, AC, DL, DT).disableDT(); -} - -void LazyValueInfo::enableDT() { - if (PImpl) - getImpl(PImpl, AC, DL, DT).enableDT(); -} - -// Print the LVI for the function arguments at the start of each basic block. -void LazyValueInfoAnnotatedWriter::emitBasicBlockStartAnnot( - const BasicBlock *BB, formatted_raw_ostream &OS) { - // Find if there are latticevalues defined for arguments of the function. - auto *F = BB->getParent(); - for (auto &Arg : F->args()) { - ValueLatticeElement Result = LVIImpl->getValueInBlock( - const_cast<Argument *>(&Arg), const_cast<BasicBlock *>(BB)); - if (Result.isUndefined()) - continue; - OS << "; LatticeVal for: '" << Arg << "' is: " << Result << "\n"; - } -} - -// This function prints the LVI analysis for the instruction I at the beginning -// of various basic blocks. It relies on calculated values that are stored in -// the LazyValueInfoCache, and in the absence of cached values, recalculate the -// LazyValueInfo for `I`, and print that info. -void LazyValueInfoAnnotatedWriter::emitInstructionAnnot( - const Instruction *I, formatted_raw_ostream &OS) { - - auto *ParentBB = I->getParent(); - SmallPtrSet<const BasicBlock*, 16> BlocksContainingLVI; - // We can generate (solve) LVI values only for blocks that are dominated by - // the I's parent. However, to avoid generating LVI for all dominating blocks, - // that contain redundant/uninteresting information, we print LVI for - // blocks that may use this LVI information (such as immediate successor - // blocks, and blocks that contain uses of `I`). - auto printResult = [&](const BasicBlock *BB) { - if (!BlocksContainingLVI.insert(BB).second) - return; - ValueLatticeElement Result = LVIImpl->getValueInBlock( - const_cast<Instruction *>(I), const_cast<BasicBlock *>(BB)); - OS << "; LatticeVal for: '" << *I << "' in BB: '"; - BB->printAsOperand(OS, false); - OS << "' is: " << Result << "\n"; - }; - - printResult(ParentBB); - // Print the LVI analysis results for the immediate successor blocks, that - // are dominated by `ParentBB`. - for (auto *BBSucc : successors(ParentBB)) - if (DT.dominates(ParentBB, BBSucc)) - printResult(BBSucc); - - // Print LVI in blocks where `I` is used. - for (auto *U : I->users()) - if (auto *UseI = dyn_cast<Instruction>(U)) - if (!isa<PHINode>(UseI) || DT.dominates(ParentBB, UseI->getParent())) - printResult(UseI->getParent()); - -} - -namespace { -// Printer class for LazyValueInfo results. -class LazyValueInfoPrinter : public FunctionPass { -public: - static char ID; // Pass identification, replacement for typeid - LazyValueInfoPrinter() : FunctionPass(ID) { - initializeLazyValueInfoPrinterPass(*PassRegistry::getPassRegistry()); - } - - void getAnalysisUsage(AnalysisUsage &AU) const override { - AU.setPreservesAll(); - AU.addRequired<LazyValueInfoWrapperPass>(); - AU.addRequired<DominatorTreeWrapperPass>(); - } - - // Get the mandatory dominator tree analysis and pass this in to the - // LVIPrinter. We cannot rely on the LVI's DT, since it's optional. - bool runOnFunction(Function &F) override { - dbgs() << "LVI for function '" << F.getName() << "':\n"; - auto &LVI = getAnalysis<LazyValueInfoWrapperPass>().getLVI(); - auto &DTree = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); - LVI.printLVI(F, DTree, dbgs()); - return false; - } -}; -} - -char LazyValueInfoPrinter::ID = 0; -INITIALIZE_PASS_BEGIN(LazyValueInfoPrinter, "print-lazy-value-info", - "Lazy Value Info Printer Pass", false, false) -INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) -INITIALIZE_PASS_END(LazyValueInfoPrinter, "print-lazy-value-info", - "Lazy Value Info Printer Pass", false, false) |
