summaryrefslogtreecommitdiffstats
path: root/gnu/llvm/lib/Analysis/Loads.cpp
diff options
context:
space:
mode:
authorpatrick <patrick@openbsd.org>2020-08-03 15:06:44 +0000
committerpatrick <patrick@openbsd.org>2020-08-03 15:06:44 +0000
commitb64793999546ed8adebaeebd9d8345d18db8927d (patch)
tree4357c27b561d73b0e089727c6ed659f2ceff5f47 /gnu/llvm/lib/Analysis/Loads.cpp
parentAdd support for UTF-8 DISPLAY-HINTs with octet length. For now only (diff)
downloadwireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.tar.xz
wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.zip
Remove LLVM 8.0.1 files.
Diffstat (limited to 'gnu/llvm/lib/Analysis/Loads.cpp')
-rw-r--r--gnu/llvm/lib/Analysis/Loads.cpp441
1 files changed, 0 insertions, 441 deletions
diff --git a/gnu/llvm/lib/Analysis/Loads.cpp b/gnu/llvm/lib/Analysis/Loads.cpp
deleted file mode 100644
index 8129795bc0c..00000000000
--- a/gnu/llvm/lib/Analysis/Loads.cpp
+++ /dev/null
@@ -1,441 +0,0 @@
-//===- Loads.cpp - Local load analysis ------------------------------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file defines simple local analyses for load instructions.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Analysis/Loads.h"
-#include "llvm/Analysis/AliasAnalysis.h"
-#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/IR/DataLayout.h"
-#include "llvm/IR/GlobalAlias.h"
-#include "llvm/IR/GlobalVariable.h"
-#include "llvm/IR/IntrinsicInst.h"
-#include "llvm/IR/LLVMContext.h"
-#include "llvm/IR/Module.h"
-#include "llvm/IR/Operator.h"
-#include "llvm/IR/Statepoint.h"
-
-using namespace llvm;
-
-static bool isAligned(const Value *Base, const APInt &Offset, unsigned Align,
- const DataLayout &DL) {
- APInt BaseAlign(Offset.getBitWidth(), Base->getPointerAlignment(DL));
-
- if (!BaseAlign) {
- Type *Ty = Base->getType()->getPointerElementType();
- if (!Ty->isSized())
- return false;
- BaseAlign = DL.getABITypeAlignment(Ty);
- }
-
- APInt Alignment(Offset.getBitWidth(), Align);
-
- assert(Alignment.isPowerOf2() && "must be a power of 2!");
- return BaseAlign.uge(Alignment) && !(Offset & (Alignment-1));
-}
-
-static bool isAligned(const Value *Base, unsigned Align, const DataLayout &DL) {
- Type *Ty = Base->getType();
- assert(Ty->isSized() && "must be sized");
- APInt Offset(DL.getTypeStoreSizeInBits(Ty), 0);
- return isAligned(Base, Offset, Align, DL);
-}
-
-/// Test if V is always a pointer to allocated and suitably aligned memory for
-/// a simple load or store.
-static bool isDereferenceableAndAlignedPointer(
- const Value *V, unsigned Align, const APInt &Size, const DataLayout &DL,
- const Instruction *CtxI, const DominatorTree *DT,
- SmallPtrSetImpl<const Value *> &Visited) {
- // Already visited? Bail out, we've likely hit unreachable code.
- if (!Visited.insert(V).second)
- return false;
-
- // Note that it is not safe to speculate into a malloc'd region because
- // malloc may return null.
-
- // bitcast instructions are no-ops as far as dereferenceability is concerned.
- if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V))
- return isDereferenceableAndAlignedPointer(BC->getOperand(0), Align, Size,
- DL, CtxI, DT, Visited);
-
- bool CheckForNonNull = false;
- APInt KnownDerefBytes(Size.getBitWidth(),
- V->getPointerDereferenceableBytes(DL, CheckForNonNull));
- if (KnownDerefBytes.getBoolValue()) {
- if (KnownDerefBytes.uge(Size))
- if (!CheckForNonNull || isKnownNonZero(V, DL, 0, nullptr, CtxI, DT))
- return isAligned(V, Align, DL);
- }
-
- // For GEPs, determine if the indexing lands within the allocated object.
- if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
- const Value *Base = GEP->getPointerOperand();
-
- APInt Offset(DL.getIndexTypeSizeInBits(GEP->getType()), 0);
- if (!GEP->accumulateConstantOffset(DL, Offset) || Offset.isNegative() ||
- !Offset.urem(APInt(Offset.getBitWidth(), Align)).isMinValue())
- return false;
-
- // If the base pointer is dereferenceable for Offset+Size bytes, then the
- // GEP (== Base + Offset) is dereferenceable for Size bytes. If the base
- // pointer is aligned to Align bytes, and the Offset is divisible by Align
- // then the GEP (== Base + Offset == k_0 * Align + k_1 * Align) is also
- // aligned to Align bytes.
-
- // Offset and Size may have different bit widths if we have visited an
- // addrspacecast, so we can't do arithmetic directly on the APInt values.
- return isDereferenceableAndAlignedPointer(
- Base, Align, Offset + Size.sextOrTrunc(Offset.getBitWidth()),
- DL, CtxI, DT, Visited);
- }
-
- // For gc.relocate, look through relocations
- if (const GCRelocateInst *RelocateInst = dyn_cast<GCRelocateInst>(V))
- return isDereferenceableAndAlignedPointer(
- RelocateInst->getDerivedPtr(), Align, Size, DL, CtxI, DT, Visited);
-
- if (const AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(V))
- return isDereferenceableAndAlignedPointer(ASC->getOperand(0), Align, Size,
- DL, CtxI, DT, Visited);
-
- if (const auto *Call = dyn_cast<CallBase>(V))
- if (auto *RP = getArgumentAliasingToReturnedPointer(Call))
- return isDereferenceableAndAlignedPointer(RP, Align, Size, DL, CtxI, DT,
- Visited);
-
- // If we don't know, assume the worst.
- return false;
-}
-
-bool llvm::isDereferenceableAndAlignedPointer(const Value *V, unsigned Align,
- const APInt &Size,
- const DataLayout &DL,
- const Instruction *CtxI,
- const DominatorTree *DT) {
- SmallPtrSet<const Value *, 32> Visited;
- return ::isDereferenceableAndAlignedPointer(V, Align, Size, DL, CtxI, DT,
- Visited);
-}
-
-bool llvm::isDereferenceableAndAlignedPointer(const Value *V, unsigned Align,
- const DataLayout &DL,
- const Instruction *CtxI,
- const DominatorTree *DT) {
- // When dereferenceability information is provided by a dereferenceable
- // attribute, we know exactly how many bytes are dereferenceable. If we can
- // determine the exact offset to the attributed variable, we can use that
- // information here.
- Type *VTy = V->getType();
- Type *Ty = VTy->getPointerElementType();
-
- // Require ABI alignment for loads without alignment specification
- if (Align == 0)
- Align = DL.getABITypeAlignment(Ty);
-
- if (!Ty->isSized())
- return false;
-
- SmallPtrSet<const Value *, 32> Visited;
- return ::isDereferenceableAndAlignedPointer(
- V, Align, APInt(DL.getIndexTypeSizeInBits(VTy), DL.getTypeStoreSize(Ty)), DL,
- CtxI, DT, Visited);
-}
-
-bool llvm::isDereferenceablePointer(const Value *V, const DataLayout &DL,
- const Instruction *CtxI,
- const DominatorTree *DT) {
- return isDereferenceableAndAlignedPointer(V, 1, DL, CtxI, DT);
-}
-
-/// Test if A and B will obviously have the same value.
-///
-/// This includes recognizing that %t0 and %t1 will have the same
-/// value in code like this:
-/// \code
-/// %t0 = getelementptr \@a, 0, 3
-/// store i32 0, i32* %t0
-/// %t1 = getelementptr \@a, 0, 3
-/// %t2 = load i32* %t1
-/// \endcode
-///
-static bool AreEquivalentAddressValues(const Value *A, const Value *B) {
- // Test if the values are trivially equivalent.
- if (A == B)
- return true;
-
- // Test if the values come from identical arithmetic instructions.
- // Use isIdenticalToWhenDefined instead of isIdenticalTo because
- // this function is only used when one address use dominates the
- // other, which means that they'll always either have the same
- // value or one of them will have an undefined value.
- if (isa<BinaryOperator>(A) || isa<CastInst>(A) || isa<PHINode>(A) ||
- isa<GetElementPtrInst>(A))
- if (const Instruction *BI = dyn_cast<Instruction>(B))
- if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
- return true;
-
- // Otherwise they may not be equivalent.
- return false;
-}
-
-/// Check if executing a load of this pointer value cannot trap.
-///
-/// If DT and ScanFrom are specified this method performs context-sensitive
-/// analysis and returns true if it is safe to load immediately before ScanFrom.
-///
-/// If it is not obviously safe to load from the specified pointer, we do
-/// a quick local scan of the basic block containing \c ScanFrom, to determine
-/// if the address is already accessed.
-///
-/// This uses the pointee type to determine how many bytes need to be safe to
-/// load from the pointer.
-bool llvm::isSafeToLoadUnconditionally(Value *V, unsigned Align,
- const DataLayout &DL,
- Instruction *ScanFrom,
- const DominatorTree *DT) {
- // Zero alignment means that the load has the ABI alignment for the target
- if (Align == 0)
- Align = DL.getABITypeAlignment(V->getType()->getPointerElementType());
- assert(isPowerOf2_32(Align));
-
- // If DT is not specified we can't make context-sensitive query
- const Instruction* CtxI = DT ? ScanFrom : nullptr;
- if (isDereferenceableAndAlignedPointer(V, Align, DL, CtxI, DT))
- return true;
-
- int64_t ByteOffset = 0;
- Value *Base = V;
- Base = GetPointerBaseWithConstantOffset(V, ByteOffset, DL);
-
- if (ByteOffset < 0) // out of bounds
- return false;
-
- Type *BaseType = nullptr;
- unsigned BaseAlign = 0;
- if (const AllocaInst *AI = dyn_cast<AllocaInst>(Base)) {
- // An alloca is safe to load from as load as it is suitably aligned.
- BaseType = AI->getAllocatedType();
- BaseAlign = AI->getAlignment();
- } else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Base)) {
- // Global variables are not necessarily safe to load from if they are
- // interposed arbitrarily. Their size may change or they may be weak and
- // require a test to determine if they were in fact provided.
- if (!GV->isInterposable()) {
- BaseType = GV->getType()->getElementType();
- BaseAlign = GV->getAlignment();
- }
- }
-
- PointerType *AddrTy = cast<PointerType>(V->getType());
- uint64_t LoadSize = DL.getTypeStoreSize(AddrTy->getElementType());
-
- // If we found a base allocated type from either an alloca or global variable,
- // try to see if we are definitively within the allocated region. We need to
- // know the size of the base type and the loaded type to do anything in this
- // case.
- if (BaseType && BaseType->isSized()) {
- if (BaseAlign == 0)
- BaseAlign = DL.getPrefTypeAlignment(BaseType);
-
- if (Align <= BaseAlign) {
- // Check if the load is within the bounds of the underlying object.
- if (ByteOffset + LoadSize <= DL.getTypeAllocSize(BaseType) &&
- ((ByteOffset % Align) == 0))
- return true;
- }
- }
-
- if (!ScanFrom)
- return false;
-
- // Otherwise, be a little bit aggressive by scanning the local block where we
- // want to check to see if the pointer is already being loaded or stored
- // from/to. If so, the previous load or store would have already trapped,
- // so there is no harm doing an extra load (also, CSE will later eliminate
- // the load entirely).
- BasicBlock::iterator BBI = ScanFrom->getIterator(),
- E = ScanFrom->getParent()->begin();
-
- // We can at least always strip pointer casts even though we can't use the
- // base here.
- V = V->stripPointerCasts();
-
- while (BBI != E) {
- --BBI;
-
- // If we see a free or a call which may write to memory (i.e. which might do
- // a free) the pointer could be marked invalid.
- if (isa<CallInst>(BBI) && BBI->mayWriteToMemory() &&
- !isa<DbgInfoIntrinsic>(BBI))
- return false;
-
- Value *AccessedPtr;
- unsigned AccessedAlign;
- if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
- AccessedPtr = LI->getPointerOperand();
- AccessedAlign = LI->getAlignment();
- } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
- AccessedPtr = SI->getPointerOperand();
- AccessedAlign = SI->getAlignment();
- } else
- continue;
-
- Type *AccessedTy = AccessedPtr->getType()->getPointerElementType();
- if (AccessedAlign == 0)
- AccessedAlign = DL.getABITypeAlignment(AccessedTy);
- if (AccessedAlign < Align)
- continue;
-
- // Handle trivial cases.
- if (AccessedPtr == V)
- return true;
-
- if (AreEquivalentAddressValues(AccessedPtr->stripPointerCasts(), V) &&
- LoadSize <= DL.getTypeStoreSize(AccessedTy))
- return true;
- }
- return false;
-}
-
-/// DefMaxInstsToScan - the default number of maximum instructions
-/// to scan in the block, used by FindAvailableLoadedValue().
-/// FindAvailableLoadedValue() was introduced in r60148, to improve jump
-/// threading in part by eliminating partially redundant loads.
-/// At that point, the value of MaxInstsToScan was already set to '6'
-/// without documented explanation.
-cl::opt<unsigned>
-llvm::DefMaxInstsToScan("available-load-scan-limit", cl::init(6), cl::Hidden,
- cl::desc("Use this to specify the default maximum number of instructions "
- "to scan backward from a given instruction, when searching for "
- "available loaded value"));
-
-Value *llvm::FindAvailableLoadedValue(LoadInst *Load,
- BasicBlock *ScanBB,
- BasicBlock::iterator &ScanFrom,
- unsigned MaxInstsToScan,
- AliasAnalysis *AA, bool *IsLoad,
- unsigned *NumScanedInst) {
- // Don't CSE load that is volatile or anything stronger than unordered.
- if (!Load->isUnordered())
- return nullptr;
-
- return FindAvailablePtrLoadStore(
- Load->getPointerOperand(), Load->getType(), Load->isAtomic(), ScanBB,
- ScanFrom, MaxInstsToScan, AA, IsLoad, NumScanedInst);
-}
-
-Value *llvm::FindAvailablePtrLoadStore(Value *Ptr, Type *AccessTy,
- bool AtLeastAtomic, BasicBlock *ScanBB,
- BasicBlock::iterator &ScanFrom,
- unsigned MaxInstsToScan,
- AliasAnalysis *AA, bool *IsLoadCSE,
- unsigned *NumScanedInst) {
- if (MaxInstsToScan == 0)
- MaxInstsToScan = ~0U;
-
- const DataLayout &DL = ScanBB->getModule()->getDataLayout();
-
- // Try to get the store size for the type.
- auto AccessSize = LocationSize::precise(DL.getTypeStoreSize(AccessTy));
-
- Value *StrippedPtr = Ptr->stripPointerCasts();
-
- while (ScanFrom != ScanBB->begin()) {
- // We must ignore debug info directives when counting (otherwise they
- // would affect codegen).
- Instruction *Inst = &*--ScanFrom;
- if (isa<DbgInfoIntrinsic>(Inst))
- continue;
-
- // Restore ScanFrom to expected value in case next test succeeds
- ScanFrom++;
-
- if (NumScanedInst)
- ++(*NumScanedInst);
-
- // Don't scan huge blocks.
- if (MaxInstsToScan-- == 0)
- return nullptr;
-
- --ScanFrom;
- // If this is a load of Ptr, the loaded value is available.
- // (This is true even if the load is volatile or atomic, although
- // those cases are unlikely.)
- if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
- if (AreEquivalentAddressValues(
- LI->getPointerOperand()->stripPointerCasts(), StrippedPtr) &&
- CastInst::isBitOrNoopPointerCastable(LI->getType(), AccessTy, DL)) {
-
- // We can value forward from an atomic to a non-atomic, but not the
- // other way around.
- if (LI->isAtomic() < AtLeastAtomic)
- return nullptr;
-
- if (IsLoadCSE)
- *IsLoadCSE = true;
- return LI;
- }
-
- if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
- Value *StorePtr = SI->getPointerOperand()->stripPointerCasts();
- // If this is a store through Ptr, the value is available!
- // (This is true even if the store is volatile or atomic, although
- // those cases are unlikely.)
- if (AreEquivalentAddressValues(StorePtr, StrippedPtr) &&
- CastInst::isBitOrNoopPointerCastable(SI->getValueOperand()->getType(),
- AccessTy, DL)) {
-
- // We can value forward from an atomic to a non-atomic, but not the
- // other way around.
- if (SI->isAtomic() < AtLeastAtomic)
- return nullptr;
-
- if (IsLoadCSE)
- *IsLoadCSE = false;
- return SI->getOperand(0);
- }
-
- // If both StrippedPtr and StorePtr reach all the way to an alloca or
- // global and they are different, ignore the store. This is a trivial form
- // of alias analysis that is important for reg2mem'd code.
- if ((isa<AllocaInst>(StrippedPtr) || isa<GlobalVariable>(StrippedPtr)) &&
- (isa<AllocaInst>(StorePtr) || isa<GlobalVariable>(StorePtr)) &&
- StrippedPtr != StorePtr)
- continue;
-
- // If we have alias analysis and it says the store won't modify the loaded
- // value, ignore the store.
- if (AA && !isModSet(AA->getModRefInfo(SI, StrippedPtr, AccessSize)))
- continue;
-
- // Otherwise the store that may or may not alias the pointer, bail out.
- ++ScanFrom;
- return nullptr;
- }
-
- // If this is some other instruction that may clobber Ptr, bail out.
- if (Inst->mayWriteToMemory()) {
- // If alias analysis claims that it really won't modify the load,
- // ignore it.
- if (AA && !isModSet(AA->getModRefInfo(Inst, StrippedPtr, AccessSize)))
- continue;
-
- // May modify the pointer, bail out.
- ++ScanFrom;
- return nullptr;
- }
- }
-
- // Got to the start of the block, we didn't find it, but are done for this
- // block.
- return nullptr;
-}