diff options
| author | 2020-08-03 15:06:44 +0000 | |
|---|---|---|
| committer | 2020-08-03 15:06:44 +0000 | |
| commit | b64793999546ed8adebaeebd9d8345d18db8927d (patch) | |
| tree | 4357c27b561d73b0e089727c6ed659f2ceff5f47 /gnu/llvm/lib/Analysis/LoopInfo.cpp | |
| parent | Add support for UTF-8 DISPLAY-HINTs with octet length. For now only (diff) | |
| download | wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.tar.xz wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.zip | |
Remove LLVM 8.0.1 files.
Diffstat (limited to 'gnu/llvm/lib/Analysis/LoopInfo.cpp')
| -rw-r--r-- | gnu/llvm/lib/Analysis/LoopInfo.cpp | 823 |
1 files changed, 0 insertions, 823 deletions
diff --git a/gnu/llvm/lib/Analysis/LoopInfo.cpp b/gnu/llvm/lib/Analysis/LoopInfo.cpp deleted file mode 100644 index ef2b1257015..00000000000 --- a/gnu/llvm/lib/Analysis/LoopInfo.cpp +++ /dev/null @@ -1,823 +0,0 @@ -//===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file defines the LoopInfo class that is used to identify natural loops -// and determine the loop depth of various nodes of the CFG. Note that the -// loops identified may actually be several natural loops that share the same -// header node... not just a single natural loop. -// -//===----------------------------------------------------------------------===// - -#include "llvm/Analysis/LoopInfo.h" -#include "llvm/ADT/DepthFirstIterator.h" -#include "llvm/ADT/ScopeExit.h" -#include "llvm/ADT/SmallPtrSet.h" -#include "llvm/Analysis/LoopInfoImpl.h" -#include "llvm/Analysis/LoopIterator.h" -#include "llvm/Analysis/ValueTracking.h" -#include "llvm/Config/llvm-config.h" -#include "llvm/IR/CFG.h" -#include "llvm/IR/Constants.h" -#include "llvm/IR/DebugLoc.h" -#include "llvm/IR/Dominators.h" -#include "llvm/IR/IRPrintingPasses.h" -#include "llvm/IR/Instructions.h" -#include "llvm/IR/LLVMContext.h" -#include "llvm/IR/Metadata.h" -#include "llvm/IR/PassManager.h" -#include "llvm/Support/CommandLine.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/raw_ostream.h" -#include <algorithm> -using namespace llvm; - -// Explicitly instantiate methods in LoopInfoImpl.h for IR-level Loops. -template class llvm::LoopBase<BasicBlock, Loop>; -template class llvm::LoopInfoBase<BasicBlock, Loop>; - -// Always verify loopinfo if expensive checking is enabled. -#ifdef EXPENSIVE_CHECKS -bool llvm::VerifyLoopInfo = true; -#else -bool llvm::VerifyLoopInfo = false; -#endif -static cl::opt<bool, true> - VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo), - cl::Hidden, cl::desc("Verify loop info (time consuming)")); - -//===----------------------------------------------------------------------===// -// Loop implementation -// - -bool Loop::isLoopInvariant(const Value *V) const { - if (const Instruction *I = dyn_cast<Instruction>(V)) - return !contains(I); - return true; // All non-instructions are loop invariant -} - -bool Loop::hasLoopInvariantOperands(const Instruction *I) const { - return all_of(I->operands(), [this](Value *V) { return isLoopInvariant(V); }); -} - -bool Loop::makeLoopInvariant(Value *V, bool &Changed, - Instruction *InsertPt) const { - if (Instruction *I = dyn_cast<Instruction>(V)) - return makeLoopInvariant(I, Changed, InsertPt); - return true; // All non-instructions are loop-invariant. -} - -bool Loop::makeLoopInvariant(Instruction *I, bool &Changed, - Instruction *InsertPt) const { - // Test if the value is already loop-invariant. - if (isLoopInvariant(I)) - return true; - if (!isSafeToSpeculativelyExecute(I)) - return false; - if (I->mayReadFromMemory()) - return false; - // EH block instructions are immobile. - if (I->isEHPad()) - return false; - // Determine the insertion point, unless one was given. - if (!InsertPt) { - BasicBlock *Preheader = getLoopPreheader(); - // Without a preheader, hoisting is not feasible. - if (!Preheader) - return false; - InsertPt = Preheader->getTerminator(); - } - // Don't hoist instructions with loop-variant operands. - for (Value *Operand : I->operands()) - if (!makeLoopInvariant(Operand, Changed, InsertPt)) - return false; - - // Hoist. - I->moveBefore(InsertPt); - - // There is possibility of hoisting this instruction above some arbitrary - // condition. Any metadata defined on it can be control dependent on this - // condition. Conservatively strip it here so that we don't give any wrong - // information to the optimizer. - I->dropUnknownNonDebugMetadata(); - - Changed = true; - return true; -} - -PHINode *Loop::getCanonicalInductionVariable() const { - BasicBlock *H = getHeader(); - - BasicBlock *Incoming = nullptr, *Backedge = nullptr; - pred_iterator PI = pred_begin(H); - assert(PI != pred_end(H) && "Loop must have at least one backedge!"); - Backedge = *PI++; - if (PI == pred_end(H)) - return nullptr; // dead loop - Incoming = *PI++; - if (PI != pred_end(H)) - return nullptr; // multiple backedges? - - if (contains(Incoming)) { - if (contains(Backedge)) - return nullptr; - std::swap(Incoming, Backedge); - } else if (!contains(Backedge)) - return nullptr; - - // Loop over all of the PHI nodes, looking for a canonical indvar. - for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) { - PHINode *PN = cast<PHINode>(I); - if (ConstantInt *CI = - dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming))) - if (CI->isZero()) - if (Instruction *Inc = - dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge))) - if (Inc->getOpcode() == Instruction::Add && Inc->getOperand(0) == PN) - if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1))) - if (CI->isOne()) - return PN; - } - return nullptr; -} - -// Check that 'BB' doesn't have any uses outside of the 'L' -static bool isBlockInLCSSAForm(const Loop &L, const BasicBlock &BB, - DominatorTree &DT) { - for (const Instruction &I : BB) { - // Tokens can't be used in PHI nodes and live-out tokens prevent loop - // optimizations, so for the purposes of considered LCSSA form, we - // can ignore them. - if (I.getType()->isTokenTy()) - continue; - - for (const Use &U : I.uses()) { - const Instruction *UI = cast<Instruction>(U.getUser()); - const BasicBlock *UserBB = UI->getParent(); - if (const PHINode *P = dyn_cast<PHINode>(UI)) - UserBB = P->getIncomingBlock(U); - - // Check the current block, as a fast-path, before checking whether - // the use is anywhere in the loop. Most values are used in the same - // block they are defined in. Also, blocks not reachable from the - // entry are special; uses in them don't need to go through PHIs. - if (UserBB != &BB && !L.contains(UserBB) && - DT.isReachableFromEntry(UserBB)) - return false; - } - } - return true; -} - -bool Loop::isLCSSAForm(DominatorTree &DT) const { - // For each block we check that it doesn't have any uses outside of this loop. - return all_of(this->blocks(), [&](const BasicBlock *BB) { - return isBlockInLCSSAForm(*this, *BB, DT); - }); -} - -bool Loop::isRecursivelyLCSSAForm(DominatorTree &DT, const LoopInfo &LI) const { - // For each block we check that it doesn't have any uses outside of its - // innermost loop. This process will transitively guarantee that the current - // loop and all of the nested loops are in LCSSA form. - return all_of(this->blocks(), [&](const BasicBlock *BB) { - return isBlockInLCSSAForm(*LI.getLoopFor(BB), *BB, DT); - }); -} - -bool Loop::isLoopSimplifyForm() const { - // Normal-form loops have a preheader, a single backedge, and all of their - // exits have all their predecessors inside the loop. - return getLoopPreheader() && getLoopLatch() && hasDedicatedExits(); -} - -// Routines that reform the loop CFG and split edges often fail on indirectbr. -bool Loop::isSafeToClone() const { - // Return false if any loop blocks contain indirectbrs, or there are any calls - // to noduplicate functions. - for (BasicBlock *BB : this->blocks()) { - if (isa<IndirectBrInst>(BB->getTerminator())) - return false; - - for (Instruction &I : *BB) - if (auto CS = CallSite(&I)) - if (CS.cannotDuplicate()) - return false; - } - return true; -} - -MDNode *Loop::getLoopID() const { - MDNode *LoopID = nullptr; - - // Go through the latch blocks and check the terminator for the metadata. - SmallVector<BasicBlock *, 4> LatchesBlocks; - getLoopLatches(LatchesBlocks); - for (BasicBlock *BB : LatchesBlocks) { - Instruction *TI = BB->getTerminator(); - MDNode *MD = TI->getMetadata(LLVMContext::MD_loop); - - if (!MD) - return nullptr; - - if (!LoopID) - LoopID = MD; - else if (MD != LoopID) - return nullptr; - } - if (!LoopID || LoopID->getNumOperands() == 0 || - LoopID->getOperand(0) != LoopID) - return nullptr; - return LoopID; -} - -void Loop::setLoopID(MDNode *LoopID) const { - assert((!LoopID || LoopID->getNumOperands() > 0) && - "Loop ID needs at least one operand"); - assert((!LoopID || LoopID->getOperand(0) == LoopID) && - "Loop ID should refer to itself"); - - BasicBlock *H = getHeader(); - for (BasicBlock *BB : this->blocks()) { - Instruction *TI = BB->getTerminator(); - for (BasicBlock *Successor : successors(TI)) { - if (Successor == H) { - TI->setMetadata(LLVMContext::MD_loop, LoopID); - break; - } - } - } -} - -void Loop::setLoopAlreadyUnrolled() { - MDNode *LoopID = getLoopID(); - // First remove any existing loop unrolling metadata. - SmallVector<Metadata *, 4> MDs; - // Reserve first location for self reference to the LoopID metadata node. - MDs.push_back(nullptr); - - if (LoopID) { - for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { - bool IsUnrollMetadata = false; - MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); - if (MD) { - const MDString *S = dyn_cast<MDString>(MD->getOperand(0)); - IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll."); - } - if (!IsUnrollMetadata) - MDs.push_back(LoopID->getOperand(i)); - } - } - - // Add unroll(disable) metadata to disable future unrolling. - LLVMContext &Context = getHeader()->getContext(); - SmallVector<Metadata *, 1> DisableOperands; - DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable")); - MDNode *DisableNode = MDNode::get(Context, DisableOperands); - MDs.push_back(DisableNode); - - MDNode *NewLoopID = MDNode::get(Context, MDs); - // Set operand 0 to refer to the loop id itself. - NewLoopID->replaceOperandWith(0, NewLoopID); - setLoopID(NewLoopID); -} - -bool Loop::isAnnotatedParallel() const { - MDNode *DesiredLoopIdMetadata = getLoopID(); - - if (!DesiredLoopIdMetadata) - return false; - - MDNode *ParallelAccesses = - findOptionMDForLoop(this, "llvm.loop.parallel_accesses"); - SmallPtrSet<MDNode *, 4> - ParallelAccessGroups; // For scalable 'contains' check. - if (ParallelAccesses) { - for (const MDOperand &MD : drop_begin(ParallelAccesses->operands(), 1)) { - MDNode *AccGroup = cast<MDNode>(MD.get()); - assert(isValidAsAccessGroup(AccGroup) && - "List item must be an access group"); - ParallelAccessGroups.insert(AccGroup); - } - } - - // The loop branch contains the parallel loop metadata. In order to ensure - // that any parallel-loop-unaware optimization pass hasn't added loop-carried - // dependencies (thus converted the loop back to a sequential loop), check - // that all the memory instructions in the loop belong to an access group that - // is parallel to this loop. - for (BasicBlock *BB : this->blocks()) { - for (Instruction &I : *BB) { - if (!I.mayReadOrWriteMemory()) - continue; - - if (MDNode *AccessGroup = I.getMetadata(LLVMContext::MD_access_group)) { - auto ContainsAccessGroup = [&ParallelAccessGroups](MDNode *AG) -> bool { - if (AG->getNumOperands() == 0) { - assert(isValidAsAccessGroup(AG) && "Item must be an access group"); - return ParallelAccessGroups.count(AG); - } - - for (const MDOperand &AccessListItem : AG->operands()) { - MDNode *AccGroup = cast<MDNode>(AccessListItem.get()); - assert(isValidAsAccessGroup(AccGroup) && - "List item must be an access group"); - if (ParallelAccessGroups.count(AccGroup)) - return true; - } - return false; - }; - - if (ContainsAccessGroup(AccessGroup)) - continue; - } - - // The memory instruction can refer to the loop identifier metadata - // directly or indirectly through another list metadata (in case of - // nested parallel loops). The loop identifier metadata refers to - // itself so we can check both cases with the same routine. - MDNode *LoopIdMD = - I.getMetadata(LLVMContext::MD_mem_parallel_loop_access); - - if (!LoopIdMD) - return false; - - bool LoopIdMDFound = false; - for (const MDOperand &MDOp : LoopIdMD->operands()) { - if (MDOp == DesiredLoopIdMetadata) { - LoopIdMDFound = true; - break; - } - } - - if (!LoopIdMDFound) - return false; - } - } - return true; -} - -DebugLoc Loop::getStartLoc() const { return getLocRange().getStart(); } - -Loop::LocRange Loop::getLocRange() const { - // If we have a debug location in the loop ID, then use it. - if (MDNode *LoopID = getLoopID()) { - DebugLoc Start; - // We use the first DebugLoc in the header as the start location of the loop - // and if there is a second DebugLoc in the header we use it as end location - // of the loop. - for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { - if (DILocation *L = dyn_cast<DILocation>(LoopID->getOperand(i))) { - if (!Start) - Start = DebugLoc(L); - else - return LocRange(Start, DebugLoc(L)); - } - } - - if (Start) - return LocRange(Start); - } - - // Try the pre-header first. - if (BasicBlock *PHeadBB = getLoopPreheader()) - if (DebugLoc DL = PHeadBB->getTerminator()->getDebugLoc()) - return LocRange(DL); - - // If we have no pre-header or there are no instructions with debug - // info in it, try the header. - if (BasicBlock *HeadBB = getHeader()) - return LocRange(HeadBB->getTerminator()->getDebugLoc()); - - return LocRange(); -} - -#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) -LLVM_DUMP_METHOD void Loop::dump() const { print(dbgs()); } - -LLVM_DUMP_METHOD void Loop::dumpVerbose() const { - print(dbgs(), /*Depth=*/0, /*Verbose=*/true); -} -#endif - -//===----------------------------------------------------------------------===// -// UnloopUpdater implementation -// - -namespace { -/// Find the new parent loop for all blocks within the "unloop" whose last -/// backedges has just been removed. -class UnloopUpdater { - Loop &Unloop; - LoopInfo *LI; - - LoopBlocksDFS DFS; - - // Map unloop's immediate subloops to their nearest reachable parents. Nested - // loops within these subloops will not change parents. However, an immediate - // subloop's new parent will be the nearest loop reachable from either its own - // exits *or* any of its nested loop's exits. - DenseMap<Loop *, Loop *> SubloopParents; - - // Flag the presence of an irreducible backedge whose destination is a block - // directly contained by the original unloop. - bool FoundIB; - -public: - UnloopUpdater(Loop *UL, LoopInfo *LInfo) - : Unloop(*UL), LI(LInfo), DFS(UL), FoundIB(false) {} - - void updateBlockParents(); - - void removeBlocksFromAncestors(); - - void updateSubloopParents(); - -protected: - Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop); -}; -} // end anonymous namespace - -/// Update the parent loop for all blocks that are directly contained within the -/// original "unloop". -void UnloopUpdater::updateBlockParents() { - if (Unloop.getNumBlocks()) { - // Perform a post order CFG traversal of all blocks within this loop, - // propagating the nearest loop from successors to predecessors. - LoopBlocksTraversal Traversal(DFS, LI); - for (BasicBlock *POI : Traversal) { - - Loop *L = LI->getLoopFor(POI); - Loop *NL = getNearestLoop(POI, L); - - if (NL != L) { - // For reducible loops, NL is now an ancestor of Unloop. - assert((NL != &Unloop && (!NL || NL->contains(&Unloop))) && - "uninitialized successor"); - LI->changeLoopFor(POI, NL); - } else { - // Or the current block is part of a subloop, in which case its parent - // is unchanged. - assert((FoundIB || Unloop.contains(L)) && "uninitialized successor"); - } - } - } - // Each irreducible loop within the unloop induces a round of iteration using - // the DFS result cached by Traversal. - bool Changed = FoundIB; - for (unsigned NIters = 0; Changed; ++NIters) { - assert(NIters < Unloop.getNumBlocks() && "runaway iterative algorithm"); - - // Iterate over the postorder list of blocks, propagating the nearest loop - // from successors to predecessors as before. - Changed = false; - for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(), - POE = DFS.endPostorder(); - POI != POE; ++POI) { - - Loop *L = LI->getLoopFor(*POI); - Loop *NL = getNearestLoop(*POI, L); - if (NL != L) { - assert(NL != &Unloop && (!NL || NL->contains(&Unloop)) && - "uninitialized successor"); - LI->changeLoopFor(*POI, NL); - Changed = true; - } - } - } -} - -/// Remove unloop's blocks from all ancestors below their new parents. -void UnloopUpdater::removeBlocksFromAncestors() { - // Remove all unloop's blocks (including those in nested subloops) from - // ancestors below the new parent loop. - for (Loop::block_iterator BI = Unloop.block_begin(), BE = Unloop.block_end(); - BI != BE; ++BI) { - Loop *OuterParent = LI->getLoopFor(*BI); - if (Unloop.contains(OuterParent)) { - while (OuterParent->getParentLoop() != &Unloop) - OuterParent = OuterParent->getParentLoop(); - OuterParent = SubloopParents[OuterParent]; - } - // Remove blocks from former Ancestors except Unloop itself which will be - // deleted. - for (Loop *OldParent = Unloop.getParentLoop(); OldParent != OuterParent; - OldParent = OldParent->getParentLoop()) { - assert(OldParent && "new loop is not an ancestor of the original"); - OldParent->removeBlockFromLoop(*BI); - } - } -} - -/// Update the parent loop for all subloops directly nested within unloop. -void UnloopUpdater::updateSubloopParents() { - while (!Unloop.empty()) { - Loop *Subloop = *std::prev(Unloop.end()); - Unloop.removeChildLoop(std::prev(Unloop.end())); - - assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop"); - if (Loop *Parent = SubloopParents[Subloop]) - Parent->addChildLoop(Subloop); - else - LI->addTopLevelLoop(Subloop); - } -} - -/// Return the nearest parent loop among this block's successors. If a successor -/// is a subloop header, consider its parent to be the nearest parent of the -/// subloop's exits. -/// -/// For subloop blocks, simply update SubloopParents and return NULL. -Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) { - - // Initially for blocks directly contained by Unloop, NearLoop == Unloop and - // is considered uninitialized. - Loop *NearLoop = BBLoop; - - Loop *Subloop = nullptr; - if (NearLoop != &Unloop && Unloop.contains(NearLoop)) { - Subloop = NearLoop; - // Find the subloop ancestor that is directly contained within Unloop. - while (Subloop->getParentLoop() != &Unloop) { - Subloop = Subloop->getParentLoop(); - assert(Subloop && "subloop is not an ancestor of the original loop"); - } - // Get the current nearest parent of the Subloop exits, initially Unloop. - NearLoop = SubloopParents.insert({Subloop, &Unloop}).first->second; - } - - succ_iterator I = succ_begin(BB), E = succ_end(BB); - if (I == E) { - assert(!Subloop && "subloop blocks must have a successor"); - NearLoop = nullptr; // unloop blocks may now exit the function. - } - for (; I != E; ++I) { - if (*I == BB) - continue; // self loops are uninteresting - - Loop *L = LI->getLoopFor(*I); - if (L == &Unloop) { - // This successor has not been processed. This path must lead to an - // irreducible backedge. - assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB"); - FoundIB = true; - } - if (L != &Unloop && Unloop.contains(L)) { - // Successor is in a subloop. - if (Subloop) - continue; // Branching within subloops. Ignore it. - - // BB branches from the original into a subloop header. - assert(L->getParentLoop() == &Unloop && "cannot skip into nested loops"); - - // Get the current nearest parent of the Subloop's exits. - L = SubloopParents[L]; - // L could be Unloop if the only exit was an irreducible backedge. - } - if (L == &Unloop) { - continue; - } - // Handle critical edges from Unloop into a sibling loop. - if (L && !L->contains(&Unloop)) { - L = L->getParentLoop(); - } - // Remember the nearest parent loop among successors or subloop exits. - if (NearLoop == &Unloop || !NearLoop || NearLoop->contains(L)) - NearLoop = L; - } - if (Subloop) { - SubloopParents[Subloop] = NearLoop; - return BBLoop; - } - return NearLoop; -} - -LoopInfo::LoopInfo(const DomTreeBase<BasicBlock> &DomTree) { analyze(DomTree); } - -bool LoopInfo::invalidate(Function &F, const PreservedAnalyses &PA, - FunctionAnalysisManager::Invalidator &) { - // Check whether the analysis, all analyses on functions, or the function's - // CFG have been preserved. - auto PAC = PA.getChecker<LoopAnalysis>(); - return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() || - PAC.preservedSet<CFGAnalyses>()); -} - -void LoopInfo::erase(Loop *Unloop) { - assert(!Unloop->isInvalid() && "Loop has already been erased!"); - - auto InvalidateOnExit = make_scope_exit([&]() { destroy(Unloop); }); - - // First handle the special case of no parent loop to simplify the algorithm. - if (!Unloop->getParentLoop()) { - // Since BBLoop had no parent, Unloop blocks are no longer in a loop. - for (Loop::block_iterator I = Unloop->block_begin(), - E = Unloop->block_end(); - I != E; ++I) { - - // Don't reparent blocks in subloops. - if (getLoopFor(*I) != Unloop) - continue; - - // Blocks no longer have a parent but are still referenced by Unloop until - // the Unloop object is deleted. - changeLoopFor(*I, nullptr); - } - - // Remove the loop from the top-level LoopInfo object. - for (iterator I = begin();; ++I) { - assert(I != end() && "Couldn't find loop"); - if (*I == Unloop) { - removeLoop(I); - break; - } - } - - // Move all of the subloops to the top-level. - while (!Unloop->empty()) - addTopLevelLoop(Unloop->removeChildLoop(std::prev(Unloop->end()))); - - return; - } - - // Update the parent loop for all blocks within the loop. Blocks within - // subloops will not change parents. - UnloopUpdater Updater(Unloop, this); - Updater.updateBlockParents(); - - // Remove blocks from former ancestor loops. - Updater.removeBlocksFromAncestors(); - - // Add direct subloops as children in their new parent loop. - Updater.updateSubloopParents(); - - // Remove unloop from its parent loop. - Loop *ParentLoop = Unloop->getParentLoop(); - for (Loop::iterator I = ParentLoop->begin();; ++I) { - assert(I != ParentLoop->end() && "Couldn't find loop"); - if (*I == Unloop) { - ParentLoop->removeChildLoop(I); - break; - } - } -} - -AnalysisKey LoopAnalysis::Key; - -LoopInfo LoopAnalysis::run(Function &F, FunctionAnalysisManager &AM) { - // FIXME: Currently we create a LoopInfo from scratch for every function. - // This may prove to be too wasteful due to deallocating and re-allocating - // memory each time for the underlying map and vector datastructures. At some - // point it may prove worthwhile to use a freelist and recycle LoopInfo - // objects. I don't want to add that kind of complexity until the scope of - // the problem is better understood. - LoopInfo LI; - LI.analyze(AM.getResult<DominatorTreeAnalysis>(F)); - return LI; -} - -PreservedAnalyses LoopPrinterPass::run(Function &F, - FunctionAnalysisManager &AM) { - AM.getResult<LoopAnalysis>(F).print(OS); - return PreservedAnalyses::all(); -} - -void llvm::printLoop(Loop &L, raw_ostream &OS, const std::string &Banner) { - - if (forcePrintModuleIR()) { - // handling -print-module-scope - OS << Banner << " (loop: "; - L.getHeader()->printAsOperand(OS, false); - OS << ")\n"; - - // printing whole module - OS << *L.getHeader()->getModule(); - return; - } - - OS << Banner; - - auto *PreHeader = L.getLoopPreheader(); - if (PreHeader) { - OS << "\n; Preheader:"; - PreHeader->print(OS); - OS << "\n; Loop:"; - } - - for (auto *Block : L.blocks()) - if (Block) - Block->print(OS); - else - OS << "Printing <null> block"; - - SmallVector<BasicBlock *, 8> ExitBlocks; - L.getExitBlocks(ExitBlocks); - if (!ExitBlocks.empty()) { - OS << "\n; Exit blocks"; - for (auto *Block : ExitBlocks) - if (Block) - Block->print(OS); - else - OS << "Printing <null> block"; - } -} - -MDNode *llvm::findOptionMDForLoopID(MDNode *LoopID, StringRef Name) { - // No loop metadata node, no loop properties. - if (!LoopID) - return nullptr; - - // First operand should refer to the metadata node itself, for legacy reasons. - assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); - assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); - - // Iterate over the metdata node operands and look for MDString metadata. - for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { - MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); - if (!MD || MD->getNumOperands() < 1) - continue; - MDString *S = dyn_cast<MDString>(MD->getOperand(0)); - if (!S) - continue; - // Return the operand node if MDString holds expected metadata. - if (Name.equals(S->getString())) - return MD; - } - - // Loop property not found. - return nullptr; -} - -MDNode *llvm::findOptionMDForLoop(const Loop *TheLoop, StringRef Name) { - return findOptionMDForLoopID(TheLoop->getLoopID(), Name); -} - -bool llvm::isValidAsAccessGroup(MDNode *Node) { - return Node->getNumOperands() == 0 && Node->isDistinct(); -} - -//===----------------------------------------------------------------------===// -// LoopInfo implementation -// - -char LoopInfoWrapperPass::ID = 0; -INITIALIZE_PASS_BEGIN(LoopInfoWrapperPass, "loops", "Natural Loop Information", - true, true) -INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) -INITIALIZE_PASS_END(LoopInfoWrapperPass, "loops", "Natural Loop Information", - true, true) - -bool LoopInfoWrapperPass::runOnFunction(Function &) { - releaseMemory(); - LI.analyze(getAnalysis<DominatorTreeWrapperPass>().getDomTree()); - return false; -} - -void LoopInfoWrapperPass::verifyAnalysis() const { - // LoopInfoWrapperPass is a FunctionPass, but verifying every loop in the - // function each time verifyAnalysis is called is very expensive. The - // -verify-loop-info option can enable this. In order to perform some - // checking by default, LoopPass has been taught to call verifyLoop manually - // during loop pass sequences. - if (VerifyLoopInfo) { - auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); - LI.verify(DT); - } -} - -void LoopInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { - AU.setPreservesAll(); - AU.addRequired<DominatorTreeWrapperPass>(); -} - -void LoopInfoWrapperPass::print(raw_ostream &OS, const Module *) const { - LI.print(OS); -} - -PreservedAnalyses LoopVerifierPass::run(Function &F, - FunctionAnalysisManager &AM) { - LoopInfo &LI = AM.getResult<LoopAnalysis>(F); - auto &DT = AM.getResult<DominatorTreeAnalysis>(F); - LI.verify(DT); - return PreservedAnalyses::all(); -} - -//===----------------------------------------------------------------------===// -// LoopBlocksDFS implementation -// - -/// Traverse the loop blocks and store the DFS result. -/// Useful for clients that just want the final DFS result and don't need to -/// visit blocks during the initial traversal. -void LoopBlocksDFS::perform(LoopInfo *LI) { - LoopBlocksTraversal Traversal(*this, LI); - for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(), - POE = Traversal.end(); - POI != POE; ++POI) - ; -} |
