diff options
| author | 2020-08-03 15:06:44 +0000 | |
|---|---|---|
| committer | 2020-08-03 15:06:44 +0000 | |
| commit | b64793999546ed8adebaeebd9d8345d18db8927d (patch) | |
| tree | 4357c27b561d73b0e089727c6ed659f2ceff5f47 /gnu/llvm/lib/Analysis/MemorySSA.cpp | |
| parent | Add support for UTF-8 DISPLAY-HINTs with octet length. For now only (diff) | |
| download | wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.tar.xz wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.zip | |
Remove LLVM 8.0.1 files.
Diffstat (limited to 'gnu/llvm/lib/Analysis/MemorySSA.cpp')
| -rw-r--r-- | gnu/llvm/lib/Analysis/MemorySSA.cpp | 2373 |
1 files changed, 0 insertions, 2373 deletions
diff --git a/gnu/llvm/lib/Analysis/MemorySSA.cpp b/gnu/llvm/lib/Analysis/MemorySSA.cpp deleted file mode 100644 index 6a5567ed765..00000000000 --- a/gnu/llvm/lib/Analysis/MemorySSA.cpp +++ /dev/null @@ -1,2373 +0,0 @@ -//===- MemorySSA.cpp - Memory SSA Builder ---------------------------------===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file implements the MemorySSA class. -// -//===----------------------------------------------------------------------===// - -#include "llvm/Analysis/MemorySSA.h" -#include "llvm/ADT/DenseMap.h" -#include "llvm/ADT/DenseMapInfo.h" -#include "llvm/ADT/DenseSet.h" -#include "llvm/ADT/DepthFirstIterator.h" -#include "llvm/ADT/Hashing.h" -#include "llvm/ADT/None.h" -#include "llvm/ADT/Optional.h" -#include "llvm/ADT/STLExtras.h" -#include "llvm/ADT/SmallPtrSet.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/ADT/iterator.h" -#include "llvm/ADT/iterator_range.h" -#include "llvm/Analysis/AliasAnalysis.h" -#include "llvm/Analysis/IteratedDominanceFrontier.h" -#include "llvm/Analysis/MemoryLocation.h" -#include "llvm/Config/llvm-config.h" -#include "llvm/IR/AssemblyAnnotationWriter.h" -#include "llvm/IR/BasicBlock.h" -#include "llvm/IR/Dominators.h" -#include "llvm/IR/Function.h" -#include "llvm/IR/Instruction.h" -#include "llvm/IR/Instructions.h" -#include "llvm/IR/IntrinsicInst.h" -#include "llvm/IR/Intrinsics.h" -#include "llvm/IR/LLVMContext.h" -#include "llvm/IR/PassManager.h" -#include "llvm/IR/Use.h" -#include "llvm/Pass.h" -#include "llvm/Support/AtomicOrdering.h" -#include "llvm/Support/Casting.h" -#include "llvm/Support/CommandLine.h" -#include "llvm/Support/Compiler.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/ErrorHandling.h" -#include "llvm/Support/FormattedStream.h" -#include "llvm/Support/raw_ostream.h" -#include <algorithm> -#include <cassert> -#include <iterator> -#include <memory> -#include <utility> - -using namespace llvm; - -#define DEBUG_TYPE "memoryssa" - -INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false, - true) -INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) -INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) -INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false, - true) - -INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass, "print-memoryssa", - "Memory SSA Printer", false, false) -INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) -INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa", - "Memory SSA Printer", false, false) - -static cl::opt<unsigned> MaxCheckLimit( - "memssa-check-limit", cl::Hidden, cl::init(100), - cl::desc("The maximum number of stores/phis MemorySSA" - "will consider trying to walk past (default = 100)")); - -// Always verify MemorySSA if expensive checking is enabled. -#ifdef EXPENSIVE_CHECKS -bool llvm::VerifyMemorySSA = true; -#else -bool llvm::VerifyMemorySSA = false; -#endif -static cl::opt<bool, true> - VerifyMemorySSAX("verify-memoryssa", cl::location(VerifyMemorySSA), - cl::Hidden, cl::desc("Enable verification of MemorySSA.")); - -namespace llvm { - -/// An assembly annotator class to print Memory SSA information in -/// comments. -class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter { - friend class MemorySSA; - - const MemorySSA *MSSA; - -public: - MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {} - - void emitBasicBlockStartAnnot(const BasicBlock *BB, - formatted_raw_ostream &OS) override { - if (MemoryAccess *MA = MSSA->getMemoryAccess(BB)) - OS << "; " << *MA << "\n"; - } - - void emitInstructionAnnot(const Instruction *I, - formatted_raw_ostream &OS) override { - if (MemoryAccess *MA = MSSA->getMemoryAccess(I)) - OS << "; " << *MA << "\n"; - } -}; - -} // end namespace llvm - -namespace { - -/// Our current alias analysis API differentiates heavily between calls and -/// non-calls, and functions called on one usually assert on the other. -/// This class encapsulates the distinction to simplify other code that wants -/// "Memory affecting instructions and related data" to use as a key. -/// For example, this class is used as a densemap key in the use optimizer. -class MemoryLocOrCall { -public: - bool IsCall = false; - - MemoryLocOrCall(MemoryUseOrDef *MUD) - : MemoryLocOrCall(MUD->getMemoryInst()) {} - MemoryLocOrCall(const MemoryUseOrDef *MUD) - : MemoryLocOrCall(MUD->getMemoryInst()) {} - - MemoryLocOrCall(Instruction *Inst) { - if (auto *C = dyn_cast<CallBase>(Inst)) { - IsCall = true; - Call = C; - } else { - IsCall = false; - // There is no such thing as a memorylocation for a fence inst, and it is - // unique in that regard. - if (!isa<FenceInst>(Inst)) - Loc = MemoryLocation::get(Inst); - } - } - - explicit MemoryLocOrCall(const MemoryLocation &Loc) : Loc(Loc) {} - - const CallBase *getCall() const { - assert(IsCall); - return Call; - } - - MemoryLocation getLoc() const { - assert(!IsCall); - return Loc; - } - - bool operator==(const MemoryLocOrCall &Other) const { - if (IsCall != Other.IsCall) - return false; - - if (!IsCall) - return Loc == Other.Loc; - - if (Call->getCalledValue() != Other.Call->getCalledValue()) - return false; - - return Call->arg_size() == Other.Call->arg_size() && - std::equal(Call->arg_begin(), Call->arg_end(), - Other.Call->arg_begin()); - } - -private: - union { - const CallBase *Call; - MemoryLocation Loc; - }; -}; - -} // end anonymous namespace - -namespace llvm { - -template <> struct DenseMapInfo<MemoryLocOrCall> { - static inline MemoryLocOrCall getEmptyKey() { - return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getEmptyKey()); - } - - static inline MemoryLocOrCall getTombstoneKey() { - return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getTombstoneKey()); - } - - static unsigned getHashValue(const MemoryLocOrCall &MLOC) { - if (!MLOC.IsCall) - return hash_combine( - MLOC.IsCall, - DenseMapInfo<MemoryLocation>::getHashValue(MLOC.getLoc())); - - hash_code hash = - hash_combine(MLOC.IsCall, DenseMapInfo<const Value *>::getHashValue( - MLOC.getCall()->getCalledValue())); - - for (const Value *Arg : MLOC.getCall()->args()) - hash = hash_combine(hash, DenseMapInfo<const Value *>::getHashValue(Arg)); - return hash; - } - - static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) { - return LHS == RHS; - } -}; - -} // end namespace llvm - -/// This does one-way checks to see if Use could theoretically be hoisted above -/// MayClobber. This will not check the other way around. -/// -/// This assumes that, for the purposes of MemorySSA, Use comes directly after -/// MayClobber, with no potentially clobbering operations in between them. -/// (Where potentially clobbering ops are memory barriers, aliased stores, etc.) -static bool areLoadsReorderable(const LoadInst *Use, - const LoadInst *MayClobber) { - bool VolatileUse = Use->isVolatile(); - bool VolatileClobber = MayClobber->isVolatile(); - // Volatile operations may never be reordered with other volatile operations. - if (VolatileUse && VolatileClobber) - return false; - // Otherwise, volatile doesn't matter here. From the language reference: - // 'optimizers may change the order of volatile operations relative to - // non-volatile operations.'" - - // If a load is seq_cst, it cannot be moved above other loads. If its ordering - // is weaker, it can be moved above other loads. We just need to be sure that - // MayClobber isn't an acquire load, because loads can't be moved above - // acquire loads. - // - // Note that this explicitly *does* allow the free reordering of monotonic (or - // weaker) loads of the same address. - bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent; - bool MayClobberIsAcquire = isAtLeastOrStrongerThan(MayClobber->getOrdering(), - AtomicOrdering::Acquire); - return !(SeqCstUse || MayClobberIsAcquire); -} - -namespace { - -struct ClobberAlias { - bool IsClobber; - Optional<AliasResult> AR; -}; - -} // end anonymous namespace - -// Return a pair of {IsClobber (bool), AR (AliasResult)}. It relies on AR being -// ignored if IsClobber = false. -static ClobberAlias instructionClobbersQuery(const MemoryDef *MD, - const MemoryLocation &UseLoc, - const Instruction *UseInst, - AliasAnalysis &AA) { - Instruction *DefInst = MD->getMemoryInst(); - assert(DefInst && "Defining instruction not actually an instruction"); - const auto *UseCall = dyn_cast<CallBase>(UseInst); - Optional<AliasResult> AR; - - if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) { - // These intrinsics will show up as affecting memory, but they are just - // markers, mostly. - // - // FIXME: We probably don't actually want MemorySSA to model these at all - // (including creating MemoryAccesses for them): we just end up inventing - // clobbers where they don't really exist at all. Please see D43269 for - // context. - switch (II->getIntrinsicID()) { - case Intrinsic::lifetime_start: - if (UseCall) - return {false, NoAlias}; - AR = AA.alias(MemoryLocation(II->getArgOperand(1)), UseLoc); - return {AR != NoAlias, AR}; - case Intrinsic::lifetime_end: - case Intrinsic::invariant_start: - case Intrinsic::invariant_end: - case Intrinsic::assume: - return {false, NoAlias}; - default: - break; - } - } - - if (UseCall) { - ModRefInfo I = AA.getModRefInfo(DefInst, UseCall); - AR = isMustSet(I) ? MustAlias : MayAlias; - return {isModOrRefSet(I), AR}; - } - - if (auto *DefLoad = dyn_cast<LoadInst>(DefInst)) - if (auto *UseLoad = dyn_cast<LoadInst>(UseInst)) - return {!areLoadsReorderable(UseLoad, DefLoad), MayAlias}; - - ModRefInfo I = AA.getModRefInfo(DefInst, UseLoc); - AR = isMustSet(I) ? MustAlias : MayAlias; - return {isModSet(I), AR}; -} - -static ClobberAlias instructionClobbersQuery(MemoryDef *MD, - const MemoryUseOrDef *MU, - const MemoryLocOrCall &UseMLOC, - AliasAnalysis &AA) { - // FIXME: This is a temporary hack to allow a single instructionClobbersQuery - // to exist while MemoryLocOrCall is pushed through places. - if (UseMLOC.IsCall) - return instructionClobbersQuery(MD, MemoryLocation(), MU->getMemoryInst(), - AA); - return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(), - AA); -} - -// Return true when MD may alias MU, return false otherwise. -bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU, - AliasAnalysis &AA) { - return instructionClobbersQuery(MD, MU, MemoryLocOrCall(MU), AA).IsClobber; -} - -namespace { - -struct UpwardsMemoryQuery { - // True if our original query started off as a call - bool IsCall = false; - // The pointer location we started the query with. This will be empty if - // IsCall is true. - MemoryLocation StartingLoc; - // This is the instruction we were querying about. - const Instruction *Inst = nullptr; - // The MemoryAccess we actually got called with, used to test local domination - const MemoryAccess *OriginalAccess = nullptr; - Optional<AliasResult> AR = MayAlias; - bool SkipSelfAccess = false; - - UpwardsMemoryQuery() = default; - - UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access) - : IsCall(isa<CallBase>(Inst)), Inst(Inst), OriginalAccess(Access) { - if (!IsCall) - StartingLoc = MemoryLocation::get(Inst); - } -}; - -} // end anonymous namespace - -static bool lifetimeEndsAt(MemoryDef *MD, const MemoryLocation &Loc, - AliasAnalysis &AA) { - Instruction *Inst = MD->getMemoryInst(); - if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { - switch (II->getIntrinsicID()) { - case Intrinsic::lifetime_end: - return AA.isMustAlias(MemoryLocation(II->getArgOperand(1)), Loc); - default: - return false; - } - } - return false; -} - -static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysis &AA, - const Instruction *I) { - // If the memory can't be changed, then loads of the memory can't be - // clobbered. - return isa<LoadInst>(I) && (I->getMetadata(LLVMContext::MD_invariant_load) || - AA.pointsToConstantMemory(cast<LoadInst>(I)-> - getPointerOperand())); -} - -/// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing -/// inbetween `Start` and `ClobberAt` can clobbers `Start`. -/// -/// This is meant to be as simple and self-contained as possible. Because it -/// uses no cache, etc., it can be relatively expensive. -/// -/// \param Start The MemoryAccess that we want to walk from. -/// \param ClobberAt A clobber for Start. -/// \param StartLoc The MemoryLocation for Start. -/// \param MSSA The MemorySSA instance that Start and ClobberAt belong to. -/// \param Query The UpwardsMemoryQuery we used for our search. -/// \param AA The AliasAnalysis we used for our search. -/// \param AllowImpreciseClobber Always false, unless we do relaxed verify. -static void -checkClobberSanity(const MemoryAccess *Start, MemoryAccess *ClobberAt, - const MemoryLocation &StartLoc, const MemorySSA &MSSA, - const UpwardsMemoryQuery &Query, AliasAnalysis &AA, - bool AllowImpreciseClobber = false) { - assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?"); - - if (MSSA.isLiveOnEntryDef(Start)) { - assert(MSSA.isLiveOnEntryDef(ClobberAt) && - "liveOnEntry must clobber itself"); - return; - } - - bool FoundClobber = false; - DenseSet<ConstMemoryAccessPair> VisitedPhis; - SmallVector<ConstMemoryAccessPair, 8> Worklist; - Worklist.emplace_back(Start, StartLoc); - // Walk all paths from Start to ClobberAt, while looking for clobbers. If one - // is found, complain. - while (!Worklist.empty()) { - auto MAP = Worklist.pop_back_val(); - // All we care about is that nothing from Start to ClobberAt clobbers Start. - // We learn nothing from revisiting nodes. - if (!VisitedPhis.insert(MAP).second) - continue; - - for (const auto *MA : def_chain(MAP.first)) { - if (MA == ClobberAt) { - if (const auto *MD = dyn_cast<MemoryDef>(MA)) { - // instructionClobbersQuery isn't essentially free, so don't use `|=`, - // since it won't let us short-circuit. - // - // Also, note that this can't be hoisted out of the `Worklist` loop, - // since MD may only act as a clobber for 1 of N MemoryLocations. - FoundClobber = FoundClobber || MSSA.isLiveOnEntryDef(MD); - if (!FoundClobber) { - ClobberAlias CA = - instructionClobbersQuery(MD, MAP.second, Query.Inst, AA); - if (CA.IsClobber) { - FoundClobber = true; - // Not used: CA.AR; - } - } - } - break; - } - - // We should never hit liveOnEntry, unless it's the clobber. - assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?"); - - if (const auto *MD = dyn_cast<MemoryDef>(MA)) { - // If Start is a Def, skip self. - if (MD == Start) - continue; - - assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA) - .IsClobber && - "Found clobber before reaching ClobberAt!"); - continue; - } - - if (const auto *MU = dyn_cast<MemoryUse>(MA)) { - (void)MU; - assert (MU == Start && - "Can only find use in def chain if Start is a use"); - continue; - } - - assert(isa<MemoryPhi>(MA)); - Worklist.append( - upward_defs_begin({const_cast<MemoryAccess *>(MA), MAP.second}), - upward_defs_end()); - } - } - - // If the verify is done following an optimization, it's possible that - // ClobberAt was a conservative clobbering, that we can now infer is not a - // true clobbering access. Don't fail the verify if that's the case. - // We do have accesses that claim they're optimized, but could be optimized - // further. Updating all these can be expensive, so allow it for now (FIXME). - if (AllowImpreciseClobber) - return; - - // If ClobberAt is a MemoryPhi, we can assume something above it acted as a - // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point. - assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) && - "ClobberAt never acted as a clobber"); -} - -namespace { - -/// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up -/// in one class. -class ClobberWalker { - /// Save a few bytes by using unsigned instead of size_t. - using ListIndex = unsigned; - - /// Represents a span of contiguous MemoryDefs, potentially ending in a - /// MemoryPhi. - struct DefPath { - MemoryLocation Loc; - // Note that, because we always walk in reverse, Last will always dominate - // First. Also note that First and Last are inclusive. - MemoryAccess *First; - MemoryAccess *Last; - Optional<ListIndex> Previous; - - DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last, - Optional<ListIndex> Previous) - : Loc(Loc), First(First), Last(Last), Previous(Previous) {} - - DefPath(const MemoryLocation &Loc, MemoryAccess *Init, - Optional<ListIndex> Previous) - : DefPath(Loc, Init, Init, Previous) {} - }; - - const MemorySSA &MSSA; - AliasAnalysis &AA; - DominatorTree &DT; - UpwardsMemoryQuery *Query; - - // Phi optimization bookkeeping - SmallVector<DefPath, 32> Paths; - DenseSet<ConstMemoryAccessPair> VisitedPhis; - - /// Find the nearest def or phi that `From` can legally be optimized to. - const MemoryAccess *getWalkTarget(const MemoryPhi *From) const { - assert(From->getNumOperands() && "Phi with no operands?"); - - BasicBlock *BB = From->getBlock(); - MemoryAccess *Result = MSSA.getLiveOnEntryDef(); - DomTreeNode *Node = DT.getNode(BB); - while ((Node = Node->getIDom())) { - auto *Defs = MSSA.getBlockDefs(Node->getBlock()); - if (Defs) - return &*Defs->rbegin(); - } - return Result; - } - - /// Result of calling walkToPhiOrClobber. - struct UpwardsWalkResult { - /// The "Result" of the walk. Either a clobber, the last thing we walked, or - /// both. Include alias info when clobber found. - MemoryAccess *Result; - bool IsKnownClobber; - Optional<AliasResult> AR; - }; - - /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last. - /// This will update Desc.Last as it walks. It will (optionally) also stop at - /// StopAt. - /// - /// This does not test for whether StopAt is a clobber - UpwardsWalkResult - walkToPhiOrClobber(DefPath &Desc, const MemoryAccess *StopAt = nullptr, - const MemoryAccess *SkipStopAt = nullptr) const { - assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world"); - - for (MemoryAccess *Current : def_chain(Desc.Last)) { - Desc.Last = Current; - if (Current == StopAt || Current == SkipStopAt) - return {Current, false, MayAlias}; - - if (auto *MD = dyn_cast<MemoryDef>(Current)) { - if (MSSA.isLiveOnEntryDef(MD)) - return {MD, true, MustAlias}; - ClobberAlias CA = - instructionClobbersQuery(MD, Desc.Loc, Query->Inst, AA); - if (CA.IsClobber) - return {MD, true, CA.AR}; - } - } - - assert(isa<MemoryPhi>(Desc.Last) && - "Ended at a non-clobber that's not a phi?"); - return {Desc.Last, false, MayAlias}; - } - - void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches, - ListIndex PriorNode) { - auto UpwardDefs = make_range(upward_defs_begin({Phi, Paths[PriorNode].Loc}), - upward_defs_end()); - for (const MemoryAccessPair &P : UpwardDefs) { - PausedSearches.push_back(Paths.size()); - Paths.emplace_back(P.second, P.first, PriorNode); - } - } - - /// Represents a search that terminated after finding a clobber. This clobber - /// may or may not be present in the path of defs from LastNode..SearchStart, - /// since it may have been retrieved from cache. - struct TerminatedPath { - MemoryAccess *Clobber; - ListIndex LastNode; - }; - - /// Get an access that keeps us from optimizing to the given phi. - /// - /// PausedSearches is an array of indices into the Paths array. Its incoming - /// value is the indices of searches that stopped at the last phi optimization - /// target. It's left in an unspecified state. - /// - /// If this returns None, NewPaused is a vector of searches that terminated - /// at StopWhere. Otherwise, NewPaused is left in an unspecified state. - Optional<TerminatedPath> - getBlockingAccess(const MemoryAccess *StopWhere, - SmallVectorImpl<ListIndex> &PausedSearches, - SmallVectorImpl<ListIndex> &NewPaused, - SmallVectorImpl<TerminatedPath> &Terminated) { - assert(!PausedSearches.empty() && "No searches to continue?"); - - // BFS vs DFS really doesn't make a difference here, so just do a DFS with - // PausedSearches as our stack. - while (!PausedSearches.empty()) { - ListIndex PathIndex = PausedSearches.pop_back_val(); - DefPath &Node = Paths[PathIndex]; - - // If we've already visited this path with this MemoryLocation, we don't - // need to do so again. - // - // NOTE: That we just drop these paths on the ground makes caching - // behavior sporadic. e.g. given a diamond: - // A - // B C - // D - // - // ...If we walk D, B, A, C, we'll only cache the result of phi - // optimization for A, B, and D; C will be skipped because it dies here. - // This arguably isn't the worst thing ever, since: - // - We generally query things in a top-down order, so if we got below D - // without needing cache entries for {C, MemLoc}, then chances are - // that those cache entries would end up ultimately unused. - // - We still cache things for A, so C only needs to walk up a bit. - // If this behavior becomes problematic, we can fix without a ton of extra - // work. - if (!VisitedPhis.insert({Node.Last, Node.Loc}).second) - continue; - - const MemoryAccess *SkipStopWhere = nullptr; - if (Query->SkipSelfAccess && Node.Loc == Query->StartingLoc) { - assert(isa<MemoryDef>(Query->OriginalAccess)); - SkipStopWhere = Query->OriginalAccess; - } - - UpwardsWalkResult Res = walkToPhiOrClobber(Node, /*StopAt=*/StopWhere, - /*SkipStopAt=*/SkipStopWhere); - if (Res.IsKnownClobber) { - assert(Res.Result != StopWhere && Res.Result != SkipStopWhere); - // If this wasn't a cache hit, we hit a clobber when walking. That's a - // failure. - TerminatedPath Term{Res.Result, PathIndex}; - if (!MSSA.dominates(Res.Result, StopWhere)) - return Term; - - // Otherwise, it's a valid thing to potentially optimize to. - Terminated.push_back(Term); - continue; - } - - if (Res.Result == StopWhere || Res.Result == SkipStopWhere) { - // We've hit our target. Save this path off for if we want to continue - // walking. If we are in the mode of skipping the OriginalAccess, and - // we've reached back to the OriginalAccess, do not save path, we've - // just looped back to self. - if (Res.Result != SkipStopWhere) - NewPaused.push_back(PathIndex); - continue; - } - - assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber"); - addSearches(cast<MemoryPhi>(Res.Result), PausedSearches, PathIndex); - } - - return None; - } - - template <typename T, typename Walker> - struct generic_def_path_iterator - : public iterator_facade_base<generic_def_path_iterator<T, Walker>, - std::forward_iterator_tag, T *> { - generic_def_path_iterator() = default; - generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {} - - T &operator*() const { return curNode(); } - - generic_def_path_iterator &operator++() { - N = curNode().Previous; - return *this; - } - - bool operator==(const generic_def_path_iterator &O) const { - if (N.hasValue() != O.N.hasValue()) - return false; - return !N.hasValue() || *N == *O.N; - } - - private: - T &curNode() const { return W->Paths[*N]; } - - Walker *W = nullptr; - Optional<ListIndex> N = None; - }; - - using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>; - using const_def_path_iterator = - generic_def_path_iterator<const DefPath, const ClobberWalker>; - - iterator_range<def_path_iterator> def_path(ListIndex From) { - return make_range(def_path_iterator(this, From), def_path_iterator()); - } - - iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const { - return make_range(const_def_path_iterator(this, From), - const_def_path_iterator()); - } - - struct OptznResult { - /// The path that contains our result. - TerminatedPath PrimaryClobber; - /// The paths that we can legally cache back from, but that aren't - /// necessarily the result of the Phi optimization. - SmallVector<TerminatedPath, 4> OtherClobbers; - }; - - ListIndex defPathIndex(const DefPath &N) const { - // The assert looks nicer if we don't need to do &N - const DefPath *NP = &N; - assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() && - "Out of bounds DefPath!"); - return NP - &Paths.front(); - } - - /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths - /// that act as legal clobbers. Note that this won't return *all* clobbers. - /// - /// Phi optimization algorithm tl;dr: - /// - Find the earliest def/phi, A, we can optimize to - /// - Find if all paths from the starting memory access ultimately reach A - /// - If not, optimization isn't possible. - /// - Otherwise, walk from A to another clobber or phi, A'. - /// - If A' is a def, we're done. - /// - If A' is a phi, try to optimize it. - /// - /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path - /// terminates when a MemoryAccess that clobbers said MemoryLocation is found. - OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start, - const MemoryLocation &Loc) { - assert(Paths.empty() && VisitedPhis.empty() && - "Reset the optimization state."); - - Paths.emplace_back(Loc, Start, Phi, None); - // Stores how many "valid" optimization nodes we had prior to calling - // addSearches/getBlockingAccess. Necessary for caching if we had a blocker. - auto PriorPathsSize = Paths.size(); - - SmallVector<ListIndex, 16> PausedSearches; - SmallVector<ListIndex, 8> NewPaused; - SmallVector<TerminatedPath, 4> TerminatedPaths; - - addSearches(Phi, PausedSearches, 0); - - // Moves the TerminatedPath with the "most dominated" Clobber to the end of - // Paths. - auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) { - assert(!Paths.empty() && "Need a path to move"); - auto Dom = Paths.begin(); - for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I) - if (!MSSA.dominates(I->Clobber, Dom->Clobber)) - Dom = I; - auto Last = Paths.end() - 1; - if (Last != Dom) - std::iter_swap(Last, Dom); - }; - - MemoryPhi *Current = Phi; - while (true) { - assert(!MSSA.isLiveOnEntryDef(Current) && - "liveOnEntry wasn't treated as a clobber?"); - - const auto *Target = getWalkTarget(Current); - // If a TerminatedPath doesn't dominate Target, then it wasn't a legal - // optimization for the prior phi. - assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) { - return MSSA.dominates(P.Clobber, Target); - })); - - // FIXME: This is broken, because the Blocker may be reported to be - // liveOnEntry, and we'll happily wait for that to disappear (read: never) - // For the moment, this is fine, since we do nothing with blocker info. - if (Optional<TerminatedPath> Blocker = getBlockingAccess( - Target, PausedSearches, NewPaused, TerminatedPaths)) { - - // Find the node we started at. We can't search based on N->Last, since - // we may have gone around a loop with a different MemoryLocation. - auto Iter = find_if(def_path(Blocker->LastNode), [&](const DefPath &N) { - return defPathIndex(N) < PriorPathsSize; - }); - assert(Iter != def_path_iterator()); - - DefPath &CurNode = *Iter; - assert(CurNode.Last == Current); - - // Two things: - // A. We can't reliably cache all of NewPaused back. Consider a case - // where we have two paths in NewPaused; one of which can't optimize - // above this phi, whereas the other can. If we cache the second path - // back, we'll end up with suboptimal cache entries. We can handle - // cases like this a bit better when we either try to find all - // clobbers that block phi optimization, or when our cache starts - // supporting unfinished searches. - // B. We can't reliably cache TerminatedPaths back here without doing - // extra checks; consider a case like: - // T - // / \ - // D C - // \ / - // S - // Where T is our target, C is a node with a clobber on it, D is a - // diamond (with a clobber *only* on the left or right node, N), and - // S is our start. Say we walk to D, through the node opposite N - // (read: ignoring the clobber), and see a cache entry in the top - // node of D. That cache entry gets put into TerminatedPaths. We then - // walk up to C (N is later in our worklist), find the clobber, and - // quit. If we append TerminatedPaths to OtherClobbers, we'll cache - // the bottom part of D to the cached clobber, ignoring the clobber - // in N. Again, this problem goes away if we start tracking all - // blockers for a given phi optimization. - TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)}; - return {Result, {}}; - } - - // If there's nothing left to search, then all paths led to valid clobbers - // that we got from our cache; pick the nearest to the start, and allow - // the rest to be cached back. - if (NewPaused.empty()) { - MoveDominatedPathToEnd(TerminatedPaths); - TerminatedPath Result = TerminatedPaths.pop_back_val(); - return {Result, std::move(TerminatedPaths)}; - } - - MemoryAccess *DefChainEnd = nullptr; - SmallVector<TerminatedPath, 4> Clobbers; - for (ListIndex Paused : NewPaused) { - UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]); - if (WR.IsKnownClobber) - Clobbers.push_back({WR.Result, Paused}); - else - // Micro-opt: If we hit the end of the chain, save it. - DefChainEnd = WR.Result; - } - - if (!TerminatedPaths.empty()) { - // If we couldn't find the dominating phi/liveOnEntry in the above loop, - // do it now. - if (!DefChainEnd) - for (auto *MA : def_chain(const_cast<MemoryAccess *>(Target))) - DefChainEnd = MA; - - // If any of the terminated paths don't dominate the phi we'll try to - // optimize, we need to figure out what they are and quit. - const BasicBlock *ChainBB = DefChainEnd->getBlock(); - for (const TerminatedPath &TP : TerminatedPaths) { - // Because we know that DefChainEnd is as "high" as we can go, we - // don't need local dominance checks; BB dominance is sufficient. - if (DT.dominates(ChainBB, TP.Clobber->getBlock())) - Clobbers.push_back(TP); - } - } - - // If we have clobbers in the def chain, find the one closest to Current - // and quit. - if (!Clobbers.empty()) { - MoveDominatedPathToEnd(Clobbers); - TerminatedPath Result = Clobbers.pop_back_val(); - return {Result, std::move(Clobbers)}; - } - - assert(all_of(NewPaused, - [&](ListIndex I) { return Paths[I].Last == DefChainEnd; })); - - // Because liveOnEntry is a clobber, this must be a phi. - auto *DefChainPhi = cast<MemoryPhi>(DefChainEnd); - - PriorPathsSize = Paths.size(); - PausedSearches.clear(); - for (ListIndex I : NewPaused) - addSearches(DefChainPhi, PausedSearches, I); - NewPaused.clear(); - - Current = DefChainPhi; - } - } - - void verifyOptResult(const OptznResult &R) const { - assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) { - return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber); - })); - } - - void resetPhiOptznState() { - Paths.clear(); - VisitedPhis.clear(); - } - -public: - ClobberWalker(const MemorySSA &MSSA, AliasAnalysis &AA, DominatorTree &DT) - : MSSA(MSSA), AA(AA), DT(DT) {} - - /// Finds the nearest clobber for the given query, optimizing phis if - /// possible. - MemoryAccess *findClobber(MemoryAccess *Start, UpwardsMemoryQuery &Q) { - Query = &Q; - - MemoryAccess *Current = Start; - // This walker pretends uses don't exist. If we're handed one, silently grab - // its def. (This has the nice side-effect of ensuring we never cache uses) - if (auto *MU = dyn_cast<MemoryUse>(Start)) - Current = MU->getDefiningAccess(); - - DefPath FirstDesc(Q.StartingLoc, Current, Current, None); - // Fast path for the overly-common case (no crazy phi optimization - // necessary) - UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc); - MemoryAccess *Result; - if (WalkResult.IsKnownClobber) { - Result = WalkResult.Result; - Q.AR = WalkResult.AR; - } else { - OptznResult OptRes = tryOptimizePhi(cast<MemoryPhi>(FirstDesc.Last), - Current, Q.StartingLoc); - verifyOptResult(OptRes); - resetPhiOptznState(); - Result = OptRes.PrimaryClobber.Clobber; - } - -#ifdef EXPENSIVE_CHECKS - if (!Q.SkipSelfAccess) - checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, AA); -#endif - return Result; - } - - void verify(const MemorySSA *MSSA) { assert(MSSA == &this->MSSA); } -}; - -struct RenamePassData { - DomTreeNode *DTN; - DomTreeNode::const_iterator ChildIt; - MemoryAccess *IncomingVal; - - RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It, - MemoryAccess *M) - : DTN(D), ChildIt(It), IncomingVal(M) {} - - void swap(RenamePassData &RHS) { - std::swap(DTN, RHS.DTN); - std::swap(ChildIt, RHS.ChildIt); - std::swap(IncomingVal, RHS.IncomingVal); - } -}; - -} // end anonymous namespace - -namespace llvm { - -class MemorySSA::ClobberWalkerBase { - ClobberWalker Walker; - MemorySSA *MSSA; - -public: - ClobberWalkerBase(MemorySSA *M, AliasAnalysis *A, DominatorTree *D) - : Walker(*M, *A, *D), MSSA(M) {} - - MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *, - const MemoryLocation &); - // Second argument (bool), defines whether the clobber search should skip the - // original queried access. If true, there will be a follow-up query searching - // for a clobber access past "self". Note that the Optimized access is not - // updated if a new clobber is found by this SkipSelf search. If this - // additional query becomes heavily used we may decide to cache the result. - // Walker instantiations will decide how to set the SkipSelf bool. - MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *, bool); - void verify(const MemorySSA *MSSA) { Walker.verify(MSSA); } -}; - -/// A MemorySSAWalker that does AA walks to disambiguate accesses. It no -/// longer does caching on its own, but the name has been retained for the -/// moment. -class MemorySSA::CachingWalker final : public MemorySSAWalker { - ClobberWalkerBase *Walker; - -public: - CachingWalker(MemorySSA *M, ClobberWalkerBase *W) - : MemorySSAWalker(M), Walker(W) {} - ~CachingWalker() override = default; - - using MemorySSAWalker::getClobberingMemoryAccess; - - MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override; - MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, - const MemoryLocation &Loc) override; - - void invalidateInfo(MemoryAccess *MA) override { - if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) - MUD->resetOptimized(); - } - - void verify(const MemorySSA *MSSA) override { - MemorySSAWalker::verify(MSSA); - Walker->verify(MSSA); - } -}; - -class MemorySSA::SkipSelfWalker final : public MemorySSAWalker { - ClobberWalkerBase *Walker; - -public: - SkipSelfWalker(MemorySSA *M, ClobberWalkerBase *W) - : MemorySSAWalker(M), Walker(W) {} - ~SkipSelfWalker() override = default; - - using MemorySSAWalker::getClobberingMemoryAccess; - - MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override; - MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, - const MemoryLocation &Loc) override; - - void invalidateInfo(MemoryAccess *MA) override { - if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) - MUD->resetOptimized(); - } - - void verify(const MemorySSA *MSSA) override { - MemorySSAWalker::verify(MSSA); - Walker->verify(MSSA); - } -}; - -} // end namespace llvm - -void MemorySSA::renameSuccessorPhis(BasicBlock *BB, MemoryAccess *IncomingVal, - bool RenameAllUses) { - // Pass through values to our successors - for (const BasicBlock *S : successors(BB)) { - auto It = PerBlockAccesses.find(S); - // Rename the phi nodes in our successor block - if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front())) - continue; - AccessList *Accesses = It->second.get(); - auto *Phi = cast<MemoryPhi>(&Accesses->front()); - if (RenameAllUses) { - int PhiIndex = Phi->getBasicBlockIndex(BB); - assert(PhiIndex != -1 && "Incomplete phi during partial rename"); - Phi->setIncomingValue(PhiIndex, IncomingVal); - } else - Phi->addIncoming(IncomingVal, BB); - } -} - -/// Rename a single basic block into MemorySSA form. -/// Uses the standard SSA renaming algorithm. -/// \returns The new incoming value. -MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal, - bool RenameAllUses) { - auto It = PerBlockAccesses.find(BB); - // Skip most processing if the list is empty. - if (It != PerBlockAccesses.end()) { - AccessList *Accesses = It->second.get(); - for (MemoryAccess &L : *Accesses) { - if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&L)) { - if (MUD->getDefiningAccess() == nullptr || RenameAllUses) - MUD->setDefiningAccess(IncomingVal); - if (isa<MemoryDef>(&L)) - IncomingVal = &L; - } else { - IncomingVal = &L; - } - } - } - return IncomingVal; -} - -/// This is the standard SSA renaming algorithm. -/// -/// We walk the dominator tree in preorder, renaming accesses, and then filling -/// in phi nodes in our successors. -void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal, - SmallPtrSetImpl<BasicBlock *> &Visited, - bool SkipVisited, bool RenameAllUses) { - SmallVector<RenamePassData, 32> WorkStack; - // Skip everything if we already renamed this block and we are skipping. - // Note: You can't sink this into the if, because we need it to occur - // regardless of whether we skip blocks or not. - bool AlreadyVisited = !Visited.insert(Root->getBlock()).second; - if (SkipVisited && AlreadyVisited) - return; - - IncomingVal = renameBlock(Root->getBlock(), IncomingVal, RenameAllUses); - renameSuccessorPhis(Root->getBlock(), IncomingVal, RenameAllUses); - WorkStack.push_back({Root, Root->begin(), IncomingVal}); - - while (!WorkStack.empty()) { - DomTreeNode *Node = WorkStack.back().DTN; - DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt; - IncomingVal = WorkStack.back().IncomingVal; - - if (ChildIt == Node->end()) { - WorkStack.pop_back(); - } else { - DomTreeNode *Child = *ChildIt; - ++WorkStack.back().ChildIt; - BasicBlock *BB = Child->getBlock(); - // Note: You can't sink this into the if, because we need it to occur - // regardless of whether we skip blocks or not. - AlreadyVisited = !Visited.insert(BB).second; - if (SkipVisited && AlreadyVisited) { - // We already visited this during our renaming, which can happen when - // being asked to rename multiple blocks. Figure out the incoming val, - // which is the last def. - // Incoming value can only change if there is a block def, and in that - // case, it's the last block def in the list. - if (auto *BlockDefs = getWritableBlockDefs(BB)) - IncomingVal = &*BlockDefs->rbegin(); - } else - IncomingVal = renameBlock(BB, IncomingVal, RenameAllUses); - renameSuccessorPhis(BB, IncomingVal, RenameAllUses); - WorkStack.push_back({Child, Child->begin(), IncomingVal}); - } - } -} - -/// This handles unreachable block accesses by deleting phi nodes in -/// unreachable blocks, and marking all other unreachable MemoryAccess's as -/// being uses of the live on entry definition. -void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) { - assert(!DT->isReachableFromEntry(BB) && - "Reachable block found while handling unreachable blocks"); - - // Make sure phi nodes in our reachable successors end up with a - // LiveOnEntryDef for our incoming edge, even though our block is forward - // unreachable. We could just disconnect these blocks from the CFG fully, - // but we do not right now. - for (const BasicBlock *S : successors(BB)) { - if (!DT->isReachableFromEntry(S)) - continue; - auto It = PerBlockAccesses.find(S); - // Rename the phi nodes in our successor block - if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front())) - continue; - AccessList *Accesses = It->second.get(); - auto *Phi = cast<MemoryPhi>(&Accesses->front()); - Phi->addIncoming(LiveOnEntryDef.get(), BB); - } - - auto It = PerBlockAccesses.find(BB); - if (It == PerBlockAccesses.end()) - return; - - auto &Accesses = It->second; - for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) { - auto Next = std::next(AI); - // If we have a phi, just remove it. We are going to replace all - // users with live on entry. - if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI)) - UseOrDef->setDefiningAccess(LiveOnEntryDef.get()); - else - Accesses->erase(AI); - AI = Next; - } -} - -MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT) - : AA(AA), DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr), - SkipWalker(nullptr), NextID(0) { - buildMemorySSA(); -} - -MemorySSA::~MemorySSA() { - // Drop all our references - for (const auto &Pair : PerBlockAccesses) - for (MemoryAccess &MA : *Pair.second) - MA.dropAllReferences(); -} - -MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) { - auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr)); - - if (Res.second) - Res.first->second = llvm::make_unique<AccessList>(); - return Res.first->second.get(); -} - -MemorySSA::DefsList *MemorySSA::getOrCreateDefsList(const BasicBlock *BB) { - auto Res = PerBlockDefs.insert(std::make_pair(BB, nullptr)); - - if (Res.second) - Res.first->second = llvm::make_unique<DefsList>(); - return Res.first->second.get(); -} - -namespace llvm { - -/// This class is a batch walker of all MemoryUse's in the program, and points -/// their defining access at the thing that actually clobbers them. Because it -/// is a batch walker that touches everything, it does not operate like the -/// other walkers. This walker is basically performing a top-down SSA renaming -/// pass, where the version stack is used as the cache. This enables it to be -/// significantly more time and memory efficient than using the regular walker, -/// which is walking bottom-up. -class MemorySSA::OptimizeUses { -public: - OptimizeUses(MemorySSA *MSSA, MemorySSAWalker *Walker, AliasAnalysis *AA, - DominatorTree *DT) - : MSSA(MSSA), Walker(Walker), AA(AA), DT(DT) { - Walker = MSSA->getWalker(); - } - - void optimizeUses(); - -private: - /// This represents where a given memorylocation is in the stack. - struct MemlocStackInfo { - // This essentially is keeping track of versions of the stack. Whenever - // the stack changes due to pushes or pops, these versions increase. - unsigned long StackEpoch; - unsigned long PopEpoch; - // This is the lower bound of places on the stack to check. It is equal to - // the place the last stack walk ended. - // Note: Correctness depends on this being initialized to 0, which densemap - // does - unsigned long LowerBound; - const BasicBlock *LowerBoundBlock; - // This is where the last walk for this memory location ended. - unsigned long LastKill; - bool LastKillValid; - Optional<AliasResult> AR; - }; - - void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &, - SmallVectorImpl<MemoryAccess *> &, - DenseMap<MemoryLocOrCall, MemlocStackInfo> &); - - MemorySSA *MSSA; - MemorySSAWalker *Walker; - AliasAnalysis *AA; - DominatorTree *DT; -}; - -} // end namespace llvm - -/// Optimize the uses in a given block This is basically the SSA renaming -/// algorithm, with one caveat: We are able to use a single stack for all -/// MemoryUses. This is because the set of *possible* reaching MemoryDefs is -/// the same for every MemoryUse. The *actual* clobbering MemoryDef is just -/// going to be some position in that stack of possible ones. -/// -/// We track the stack positions that each MemoryLocation needs -/// to check, and last ended at. This is because we only want to check the -/// things that changed since last time. The same MemoryLocation should -/// get clobbered by the same store (getModRefInfo does not use invariantness or -/// things like this, and if they start, we can modify MemoryLocOrCall to -/// include relevant data) -void MemorySSA::OptimizeUses::optimizeUsesInBlock( - const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch, - SmallVectorImpl<MemoryAccess *> &VersionStack, - DenseMap<MemoryLocOrCall, MemlocStackInfo> &LocStackInfo) { - - /// If no accesses, nothing to do. - MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB); - if (Accesses == nullptr) - return; - - // Pop everything that doesn't dominate the current block off the stack, - // increment the PopEpoch to account for this. - while (true) { - assert( - !VersionStack.empty() && - "Version stack should have liveOnEntry sentinel dominating everything"); - BasicBlock *BackBlock = VersionStack.back()->getBlock(); - if (DT->dominates(BackBlock, BB)) - break; - while (VersionStack.back()->getBlock() == BackBlock) - VersionStack.pop_back(); - ++PopEpoch; - } - - for (MemoryAccess &MA : *Accesses) { - auto *MU = dyn_cast<MemoryUse>(&MA); - if (!MU) { - VersionStack.push_back(&MA); - ++StackEpoch; - continue; - } - - if (isUseTriviallyOptimizableToLiveOnEntry(*AA, MU->getMemoryInst())) { - MU->setDefiningAccess(MSSA->getLiveOnEntryDef(), true, None); - continue; - } - - MemoryLocOrCall UseMLOC(MU); - auto &LocInfo = LocStackInfo[UseMLOC]; - // If the pop epoch changed, it means we've removed stuff from top of - // stack due to changing blocks. We may have to reset the lower bound or - // last kill info. - if (LocInfo.PopEpoch != PopEpoch) { - LocInfo.PopEpoch = PopEpoch; - LocInfo.StackEpoch = StackEpoch; - // If the lower bound was in something that no longer dominates us, we - // have to reset it. - // We can't simply track stack size, because the stack may have had - // pushes/pops in the meantime. - // XXX: This is non-optimal, but only is slower cases with heavily - // branching dominator trees. To get the optimal number of queries would - // be to make lowerbound and lastkill a per-loc stack, and pop it until - // the top of that stack dominates us. This does not seem worth it ATM. - // A much cheaper optimization would be to always explore the deepest - // branch of the dominator tree first. This will guarantee this resets on - // the smallest set of blocks. - if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB && - !DT->dominates(LocInfo.LowerBoundBlock, BB)) { - // Reset the lower bound of things to check. - // TODO: Some day we should be able to reset to last kill, rather than - // 0. - LocInfo.LowerBound = 0; - LocInfo.LowerBoundBlock = VersionStack[0]->getBlock(); - LocInfo.LastKillValid = false; - } - } else if (LocInfo.StackEpoch != StackEpoch) { - // If all that has changed is the StackEpoch, we only have to check the - // new things on the stack, because we've checked everything before. In - // this case, the lower bound of things to check remains the same. - LocInfo.PopEpoch = PopEpoch; - LocInfo.StackEpoch = StackEpoch; - } - if (!LocInfo.LastKillValid) { - LocInfo.LastKill = VersionStack.size() - 1; - LocInfo.LastKillValid = true; - LocInfo.AR = MayAlias; - } - - // At this point, we should have corrected last kill and LowerBound to be - // in bounds. - assert(LocInfo.LowerBound < VersionStack.size() && - "Lower bound out of range"); - assert(LocInfo.LastKill < VersionStack.size() && - "Last kill info out of range"); - // In any case, the new upper bound is the top of the stack. - unsigned long UpperBound = VersionStack.size() - 1; - - if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) { - LLVM_DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " (" - << *(MU->getMemoryInst()) << ")" - << " because there are " - << UpperBound - LocInfo.LowerBound - << " stores to disambiguate\n"); - // Because we did not walk, LastKill is no longer valid, as this may - // have been a kill. - LocInfo.LastKillValid = false; - continue; - } - bool FoundClobberResult = false; - while (UpperBound > LocInfo.LowerBound) { - if (isa<MemoryPhi>(VersionStack[UpperBound])) { - // For phis, use the walker, see where we ended up, go there - Instruction *UseInst = MU->getMemoryInst(); - MemoryAccess *Result = Walker->getClobberingMemoryAccess(UseInst); - // We are guaranteed to find it or something is wrong - while (VersionStack[UpperBound] != Result) { - assert(UpperBound != 0); - --UpperBound; - } - FoundClobberResult = true; - break; - } - - MemoryDef *MD = cast<MemoryDef>(VersionStack[UpperBound]); - // If the lifetime of the pointer ends at this instruction, it's live on - // entry. - if (!UseMLOC.IsCall && lifetimeEndsAt(MD, UseMLOC.getLoc(), *AA)) { - // Reset UpperBound to liveOnEntryDef's place in the stack - UpperBound = 0; - FoundClobberResult = true; - LocInfo.AR = MustAlias; - break; - } - ClobberAlias CA = instructionClobbersQuery(MD, MU, UseMLOC, *AA); - if (CA.IsClobber) { - FoundClobberResult = true; - LocInfo.AR = CA.AR; - break; - } - --UpperBound; - } - - // Note: Phis always have AliasResult AR set to MayAlias ATM. - - // At the end of this loop, UpperBound is either a clobber, or lower bound - // PHI walking may cause it to be < LowerBound, and in fact, < LastKill. - if (FoundClobberResult || UpperBound < LocInfo.LastKill) { - // We were last killed now by where we got to - if (MSSA->isLiveOnEntryDef(VersionStack[UpperBound])) - LocInfo.AR = None; - MU->setDefiningAccess(VersionStack[UpperBound], true, LocInfo.AR); - LocInfo.LastKill = UpperBound; - } else { - // Otherwise, we checked all the new ones, and now we know we can get to - // LastKill. - MU->setDefiningAccess(VersionStack[LocInfo.LastKill], true, LocInfo.AR); - } - LocInfo.LowerBound = VersionStack.size() - 1; - LocInfo.LowerBoundBlock = BB; - } -} - -/// Optimize uses to point to their actual clobbering definitions. -void MemorySSA::OptimizeUses::optimizeUses() { - SmallVector<MemoryAccess *, 16> VersionStack; - DenseMap<MemoryLocOrCall, MemlocStackInfo> LocStackInfo; - VersionStack.push_back(MSSA->getLiveOnEntryDef()); - - unsigned long StackEpoch = 1; - unsigned long PopEpoch = 1; - // We perform a non-recursive top-down dominator tree walk. - for (const auto *DomNode : depth_first(DT->getRootNode())) - optimizeUsesInBlock(DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack, - LocStackInfo); -} - -void MemorySSA::placePHINodes( - const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks) { - // Determine where our MemoryPhi's should go - ForwardIDFCalculator IDFs(*DT); - IDFs.setDefiningBlocks(DefiningBlocks); - SmallVector<BasicBlock *, 32> IDFBlocks; - IDFs.calculate(IDFBlocks); - - // Now place MemoryPhi nodes. - for (auto &BB : IDFBlocks) - createMemoryPhi(BB); -} - -void MemorySSA::buildMemorySSA() { - // We create an access to represent "live on entry", for things like - // arguments or users of globals, where the memory they use is defined before - // the beginning of the function. We do not actually insert it into the IR. - // We do not define a live on exit for the immediate uses, and thus our - // semantics do *not* imply that something with no immediate uses can simply - // be removed. - BasicBlock &StartingPoint = F.getEntryBlock(); - LiveOnEntryDef.reset(new MemoryDef(F.getContext(), nullptr, nullptr, - &StartingPoint, NextID++)); - - // We maintain lists of memory accesses per-block, trading memory for time. We - // could just look up the memory access for every possible instruction in the - // stream. - SmallPtrSet<BasicBlock *, 32> DefiningBlocks; - // Go through each block, figure out where defs occur, and chain together all - // the accesses. - for (BasicBlock &B : F) { - bool InsertIntoDef = false; - AccessList *Accesses = nullptr; - DefsList *Defs = nullptr; - for (Instruction &I : B) { - MemoryUseOrDef *MUD = createNewAccess(&I); - if (!MUD) - continue; - - if (!Accesses) - Accesses = getOrCreateAccessList(&B); - Accesses->push_back(MUD); - if (isa<MemoryDef>(MUD)) { - InsertIntoDef = true; - if (!Defs) - Defs = getOrCreateDefsList(&B); - Defs->push_back(*MUD); - } - } - if (InsertIntoDef) - DefiningBlocks.insert(&B); - } - placePHINodes(DefiningBlocks); - - // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get - // filled in with all blocks. - SmallPtrSet<BasicBlock *, 16> Visited; - renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited); - - CachingWalker *Walker = getWalkerImpl(); - - OptimizeUses(this, Walker, AA, DT).optimizeUses(); - - // Mark the uses in unreachable blocks as live on entry, so that they go - // somewhere. - for (auto &BB : F) - if (!Visited.count(&BB)) - markUnreachableAsLiveOnEntry(&BB); -} - -MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); } - -MemorySSA::CachingWalker *MemorySSA::getWalkerImpl() { - if (Walker) - return Walker.get(); - - if (!WalkerBase) - WalkerBase = llvm::make_unique<ClobberWalkerBase>(this, AA, DT); - - Walker = llvm::make_unique<CachingWalker>(this, WalkerBase.get()); - return Walker.get(); -} - -MemorySSAWalker *MemorySSA::getSkipSelfWalker() { - if (SkipWalker) - return SkipWalker.get(); - - if (!WalkerBase) - WalkerBase = llvm::make_unique<ClobberWalkerBase>(this, AA, DT); - - SkipWalker = llvm::make_unique<SkipSelfWalker>(this, WalkerBase.get()); - return SkipWalker.get(); - } - - -// This is a helper function used by the creation routines. It places NewAccess -// into the access and defs lists for a given basic block, at the given -// insertion point. -void MemorySSA::insertIntoListsForBlock(MemoryAccess *NewAccess, - const BasicBlock *BB, - InsertionPlace Point) { - auto *Accesses = getOrCreateAccessList(BB); - if (Point == Beginning) { - // If it's a phi node, it goes first, otherwise, it goes after any phi - // nodes. - if (isa<MemoryPhi>(NewAccess)) { - Accesses->push_front(NewAccess); - auto *Defs = getOrCreateDefsList(BB); - Defs->push_front(*NewAccess); - } else { - auto AI = find_if_not( - *Accesses, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); }); - Accesses->insert(AI, NewAccess); - if (!isa<MemoryUse>(NewAccess)) { - auto *Defs = getOrCreateDefsList(BB); - auto DI = find_if_not( - *Defs, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); }); - Defs->insert(DI, *NewAccess); - } - } - } else { - Accesses->push_back(NewAccess); - if (!isa<MemoryUse>(NewAccess)) { - auto *Defs = getOrCreateDefsList(BB); - Defs->push_back(*NewAccess); - } - } - BlockNumberingValid.erase(BB); -} - -void MemorySSA::insertIntoListsBefore(MemoryAccess *What, const BasicBlock *BB, - AccessList::iterator InsertPt) { - auto *Accesses = getWritableBlockAccesses(BB); - bool WasEnd = InsertPt == Accesses->end(); - Accesses->insert(AccessList::iterator(InsertPt), What); - if (!isa<MemoryUse>(What)) { - auto *Defs = getOrCreateDefsList(BB); - // If we got asked to insert at the end, we have an easy job, just shove it - // at the end. If we got asked to insert before an existing def, we also get - // an iterator. If we got asked to insert before a use, we have to hunt for - // the next def. - if (WasEnd) { - Defs->push_back(*What); - } else if (isa<MemoryDef>(InsertPt)) { - Defs->insert(InsertPt->getDefsIterator(), *What); - } else { - while (InsertPt != Accesses->end() && !isa<MemoryDef>(InsertPt)) - ++InsertPt; - // Either we found a def, or we are inserting at the end - if (InsertPt == Accesses->end()) - Defs->push_back(*What); - else - Defs->insert(InsertPt->getDefsIterator(), *What); - } - } - BlockNumberingValid.erase(BB); -} - -void MemorySSA::prepareForMoveTo(MemoryAccess *What, BasicBlock *BB) { - // Keep it in the lookup tables, remove from the lists - removeFromLists(What, false); - - // Note that moving should implicitly invalidate the optimized state of a - // MemoryUse (and Phis can't be optimized). However, it doesn't do so for a - // MemoryDef. - if (auto *MD = dyn_cast<MemoryDef>(What)) - MD->resetOptimized(); - What->setBlock(BB); -} - -// Move What before Where in the IR. The end result is that What will belong to -// the right lists and have the right Block set, but will not otherwise be -// correct. It will not have the right defining access, and if it is a def, -// things below it will not properly be updated. -void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB, - AccessList::iterator Where) { - prepareForMoveTo(What, BB); - insertIntoListsBefore(What, BB, Where); -} - -void MemorySSA::moveTo(MemoryAccess *What, BasicBlock *BB, - InsertionPlace Point) { - if (isa<MemoryPhi>(What)) { - assert(Point == Beginning && - "Can only move a Phi at the beginning of the block"); - // Update lookup table entry - ValueToMemoryAccess.erase(What->getBlock()); - bool Inserted = ValueToMemoryAccess.insert({BB, What}).second; - (void)Inserted; - assert(Inserted && "Cannot move a Phi to a block that already has one"); - } - - prepareForMoveTo(What, BB); - insertIntoListsForBlock(What, BB, Point); -} - -MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) { - assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB"); - MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++); - // Phi's always are placed at the front of the block. - insertIntoListsForBlock(Phi, BB, Beginning); - ValueToMemoryAccess[BB] = Phi; - return Phi; -} - -MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I, - MemoryAccess *Definition, - const MemoryUseOrDef *Template) { - assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI"); - MemoryUseOrDef *NewAccess = createNewAccess(I, Template); - assert( - NewAccess != nullptr && - "Tried to create a memory access for a non-memory touching instruction"); - NewAccess->setDefiningAccess(Definition); - return NewAccess; -} - -// Return true if the instruction has ordering constraints. -// Note specifically that this only considers stores and loads -// because others are still considered ModRef by getModRefInfo. -static inline bool isOrdered(const Instruction *I) { - if (auto *SI = dyn_cast<StoreInst>(I)) { - if (!SI->isUnordered()) - return true; - } else if (auto *LI = dyn_cast<LoadInst>(I)) { - if (!LI->isUnordered()) - return true; - } - return false; -} - -/// Helper function to create new memory accesses -MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I, - const MemoryUseOrDef *Template) { - // The assume intrinsic has a control dependency which we model by claiming - // that it writes arbitrarily. Ignore that fake memory dependency here. - // FIXME: Replace this special casing with a more accurate modelling of - // assume's control dependency. - if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) - if (II->getIntrinsicID() == Intrinsic::assume) - return nullptr; - - bool Def, Use; - if (Template) { - Def = dyn_cast_or_null<MemoryDef>(Template) != nullptr; - Use = dyn_cast_or_null<MemoryUse>(Template) != nullptr; -#if !defined(NDEBUG) - ModRefInfo ModRef = AA->getModRefInfo(I, None); - bool DefCheck, UseCheck; - DefCheck = isModSet(ModRef) || isOrdered(I); - UseCheck = isRefSet(ModRef); - assert(Def == DefCheck && (Def || Use == UseCheck) && "Invalid template"); -#endif - } else { - // Find out what affect this instruction has on memory. - ModRefInfo ModRef = AA->getModRefInfo(I, None); - // The isOrdered check is used to ensure that volatiles end up as defs - // (atomics end up as ModRef right now anyway). Until we separate the - // ordering chain from the memory chain, this enables people to see at least - // some relative ordering to volatiles. Note that getClobberingMemoryAccess - // will still give an answer that bypasses other volatile loads. TODO: - // Separate memory aliasing and ordering into two different chains so that - // we can precisely represent both "what memory will this read/write/is - // clobbered by" and "what instructions can I move this past". - Def = isModSet(ModRef) || isOrdered(I); - Use = isRefSet(ModRef); - } - - // It's possible for an instruction to not modify memory at all. During - // construction, we ignore them. - if (!Def && !Use) - return nullptr; - - MemoryUseOrDef *MUD; - if (Def) - MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++); - else - MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent()); - ValueToMemoryAccess[I] = MUD; - return MUD; -} - -/// Returns true if \p Replacer dominates \p Replacee . -bool MemorySSA::dominatesUse(const MemoryAccess *Replacer, - const MemoryAccess *Replacee) const { - if (isa<MemoryUseOrDef>(Replacee)) - return DT->dominates(Replacer->getBlock(), Replacee->getBlock()); - const auto *MP = cast<MemoryPhi>(Replacee); - // For a phi node, the use occurs in the predecessor block of the phi node. - // Since we may occur multiple times in the phi node, we have to check each - // operand to ensure Replacer dominates each operand where Replacee occurs. - for (const Use &Arg : MP->operands()) { - if (Arg.get() != Replacee && - !DT->dominates(Replacer->getBlock(), MP->getIncomingBlock(Arg))) - return false; - } - return true; -} - -/// Properly remove \p MA from all of MemorySSA's lookup tables. -void MemorySSA::removeFromLookups(MemoryAccess *MA) { - assert(MA->use_empty() && - "Trying to remove memory access that still has uses"); - BlockNumbering.erase(MA); - if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) - MUD->setDefiningAccess(nullptr); - // Invalidate our walker's cache if necessary - if (!isa<MemoryUse>(MA)) - Walker->invalidateInfo(MA); - - Value *MemoryInst; - if (const auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) - MemoryInst = MUD->getMemoryInst(); - else - MemoryInst = MA->getBlock(); - - auto VMA = ValueToMemoryAccess.find(MemoryInst); - if (VMA->second == MA) - ValueToMemoryAccess.erase(VMA); -} - -/// Properly remove \p MA from all of MemorySSA's lists. -/// -/// Because of the way the intrusive list and use lists work, it is important to -/// do removal in the right order. -/// ShouldDelete defaults to true, and will cause the memory access to also be -/// deleted, not just removed. -void MemorySSA::removeFromLists(MemoryAccess *MA, bool ShouldDelete) { - BasicBlock *BB = MA->getBlock(); - // The access list owns the reference, so we erase it from the non-owning list - // first. - if (!isa<MemoryUse>(MA)) { - auto DefsIt = PerBlockDefs.find(BB); - std::unique_ptr<DefsList> &Defs = DefsIt->second; - Defs->remove(*MA); - if (Defs->empty()) - PerBlockDefs.erase(DefsIt); - } - - // The erase call here will delete it. If we don't want it deleted, we call - // remove instead. - auto AccessIt = PerBlockAccesses.find(BB); - std::unique_ptr<AccessList> &Accesses = AccessIt->second; - if (ShouldDelete) - Accesses->erase(MA); - else - Accesses->remove(MA); - - if (Accesses->empty()) { - PerBlockAccesses.erase(AccessIt); - BlockNumberingValid.erase(BB); - } -} - -void MemorySSA::print(raw_ostream &OS) const { - MemorySSAAnnotatedWriter Writer(this); - F.print(OS, &Writer); -} - -#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) -LLVM_DUMP_METHOD void MemorySSA::dump() const { print(dbgs()); } -#endif - -void MemorySSA::verifyMemorySSA() const { - verifyDefUses(F); - verifyDomination(F); - verifyOrdering(F); - verifyDominationNumbers(F); - Walker->verify(this); - verifyClobberSanity(F); -} - -/// Check sanity of the clobbering instruction for access MA. -void MemorySSA::checkClobberSanityAccess(const MemoryAccess *MA) const { - if (const auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) { - if (!MUD->isOptimized()) - return; - auto *I = MUD->getMemoryInst(); - auto Loc = MemoryLocation::getOrNone(I); - if (Loc == None) - return; - auto *Clobber = MUD->getOptimized(); - UpwardsMemoryQuery Q(I, MUD); - checkClobberSanity(MUD, Clobber, *Loc, *this, Q, *AA, true); - } -} - -void MemorySSA::verifyClobberSanity(const Function &F) const { -#if !defined(NDEBUG) && defined(EXPENSIVE_CHECKS) - for (const BasicBlock &BB : F) { - const AccessList *Accesses = getBlockAccesses(&BB); - if (!Accesses) - continue; - for (const MemoryAccess &MA : *Accesses) - checkClobberSanityAccess(&MA); - } -#endif -} - -/// Verify that all of the blocks we believe to have valid domination numbers -/// actually have valid domination numbers. -void MemorySSA::verifyDominationNumbers(const Function &F) const { -#ifndef NDEBUG - if (BlockNumberingValid.empty()) - return; - - SmallPtrSet<const BasicBlock *, 16> ValidBlocks = BlockNumberingValid; - for (const BasicBlock &BB : F) { - if (!ValidBlocks.count(&BB)) - continue; - - ValidBlocks.erase(&BB); - - const AccessList *Accesses = getBlockAccesses(&BB); - // It's correct to say an empty block has valid numbering. - if (!Accesses) - continue; - - // Block numbering starts at 1. - unsigned long LastNumber = 0; - for (const MemoryAccess &MA : *Accesses) { - auto ThisNumberIter = BlockNumbering.find(&MA); - assert(ThisNumberIter != BlockNumbering.end() && - "MemoryAccess has no domination number in a valid block!"); - - unsigned long ThisNumber = ThisNumberIter->second; - assert(ThisNumber > LastNumber && - "Domination numbers should be strictly increasing!"); - LastNumber = ThisNumber; - } - } - - assert(ValidBlocks.empty() && - "All valid BasicBlocks should exist in F -- dangling pointers?"); -#endif -} - -/// Verify that the order and existence of MemoryAccesses matches the -/// order and existence of memory affecting instructions. -void MemorySSA::verifyOrdering(Function &F) const { -#ifndef NDEBUG - // Walk all the blocks, comparing what the lookups think and what the access - // lists think, as well as the order in the blocks vs the order in the access - // lists. - SmallVector<MemoryAccess *, 32> ActualAccesses; - SmallVector<MemoryAccess *, 32> ActualDefs; - for (BasicBlock &B : F) { - const AccessList *AL = getBlockAccesses(&B); - const auto *DL = getBlockDefs(&B); - MemoryAccess *Phi = getMemoryAccess(&B); - if (Phi) { - ActualAccesses.push_back(Phi); - ActualDefs.push_back(Phi); - } - - for (Instruction &I : B) { - MemoryAccess *MA = getMemoryAccess(&I); - assert((!MA || (AL && (isa<MemoryUse>(MA) || DL))) && - "We have memory affecting instructions " - "in this block but they are not in the " - "access list or defs list"); - if (MA) { - ActualAccesses.push_back(MA); - if (isa<MemoryDef>(MA)) - ActualDefs.push_back(MA); - } - } - // Either we hit the assert, really have no accesses, or we have both - // accesses and an access list. - // Same with defs. - if (!AL && !DL) - continue; - assert(AL->size() == ActualAccesses.size() && - "We don't have the same number of accesses in the block as on the " - "access list"); - assert((DL || ActualDefs.size() == 0) && - "Either we should have a defs list, or we should have no defs"); - assert((!DL || DL->size() == ActualDefs.size()) && - "We don't have the same number of defs in the block as on the " - "def list"); - auto ALI = AL->begin(); - auto AAI = ActualAccesses.begin(); - while (ALI != AL->end() && AAI != ActualAccesses.end()) { - assert(&*ALI == *AAI && "Not the same accesses in the same order"); - ++ALI; - ++AAI; - } - ActualAccesses.clear(); - if (DL) { - auto DLI = DL->begin(); - auto ADI = ActualDefs.begin(); - while (DLI != DL->end() && ADI != ActualDefs.end()) { - assert(&*DLI == *ADI && "Not the same defs in the same order"); - ++DLI; - ++ADI; - } - } - ActualDefs.clear(); - } -#endif -} - -/// Verify the domination properties of MemorySSA by checking that each -/// definition dominates all of its uses. -void MemorySSA::verifyDomination(Function &F) const { -#ifndef NDEBUG - for (BasicBlock &B : F) { - // Phi nodes are attached to basic blocks - if (MemoryPhi *MP = getMemoryAccess(&B)) - for (const Use &U : MP->uses()) - assert(dominates(MP, U) && "Memory PHI does not dominate it's uses"); - - for (Instruction &I : B) { - MemoryAccess *MD = dyn_cast_or_null<MemoryDef>(getMemoryAccess(&I)); - if (!MD) - continue; - - for (const Use &U : MD->uses()) - assert(dominates(MD, U) && "Memory Def does not dominate it's uses"); - } - } -#endif -} - -/// Verify the def-use lists in MemorySSA, by verifying that \p Use -/// appears in the use list of \p Def. -void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const { -#ifndef NDEBUG - // The live on entry use may cause us to get a NULL def here - if (!Def) - assert(isLiveOnEntryDef(Use) && - "Null def but use not point to live on entry def"); - else - assert(is_contained(Def->users(), Use) && - "Did not find use in def's use list"); -#endif -} - -/// Verify the immediate use information, by walking all the memory -/// accesses and verifying that, for each use, it appears in the -/// appropriate def's use list -void MemorySSA::verifyDefUses(Function &F) const { -#ifndef NDEBUG - for (BasicBlock &B : F) { - // Phi nodes are attached to basic blocks - if (MemoryPhi *Phi = getMemoryAccess(&B)) { - assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance( - pred_begin(&B), pred_end(&B))) && - "Incomplete MemoryPhi Node"); - for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { - verifyUseInDefs(Phi->getIncomingValue(I), Phi); - assert(find(predecessors(&B), Phi->getIncomingBlock(I)) != - pred_end(&B) && - "Incoming phi block not a block predecessor"); - } - } - - for (Instruction &I : B) { - if (MemoryUseOrDef *MA = getMemoryAccess(&I)) { - verifyUseInDefs(MA->getDefiningAccess(), MA); - } - } - } -#endif -} - -/// Perform a local numbering on blocks so that instruction ordering can be -/// determined in constant time. -/// TODO: We currently just number in order. If we numbered by N, we could -/// allow at least N-1 sequences of insertBefore or insertAfter (and at least -/// log2(N) sequences of mixed before and after) without needing to invalidate -/// the numbering. -void MemorySSA::renumberBlock(const BasicBlock *B) const { - // The pre-increment ensures the numbers really start at 1. - unsigned long CurrentNumber = 0; - const AccessList *AL = getBlockAccesses(B); - assert(AL != nullptr && "Asking to renumber an empty block"); - for (const auto &I : *AL) - BlockNumbering[&I] = ++CurrentNumber; - BlockNumberingValid.insert(B); -} - -/// Determine, for two memory accesses in the same block, -/// whether \p Dominator dominates \p Dominatee. -/// \returns True if \p Dominator dominates \p Dominatee. -bool MemorySSA::locallyDominates(const MemoryAccess *Dominator, - const MemoryAccess *Dominatee) const { - const BasicBlock *DominatorBlock = Dominator->getBlock(); - - assert((DominatorBlock == Dominatee->getBlock()) && - "Asking for local domination when accesses are in different blocks!"); - // A node dominates itself. - if (Dominatee == Dominator) - return true; - - // When Dominatee is defined on function entry, it is not dominated by another - // memory access. - if (isLiveOnEntryDef(Dominatee)) - return false; - - // When Dominator is defined on function entry, it dominates the other memory - // access. - if (isLiveOnEntryDef(Dominator)) - return true; - - if (!BlockNumberingValid.count(DominatorBlock)) - renumberBlock(DominatorBlock); - - unsigned long DominatorNum = BlockNumbering.lookup(Dominator); - // All numbers start with 1 - assert(DominatorNum != 0 && "Block was not numbered properly"); - unsigned long DominateeNum = BlockNumbering.lookup(Dominatee); - assert(DominateeNum != 0 && "Block was not numbered properly"); - return DominatorNum < DominateeNum; -} - -bool MemorySSA::dominates(const MemoryAccess *Dominator, - const MemoryAccess *Dominatee) const { - if (Dominator == Dominatee) - return true; - - if (isLiveOnEntryDef(Dominatee)) - return false; - - if (Dominator->getBlock() != Dominatee->getBlock()) - return DT->dominates(Dominator->getBlock(), Dominatee->getBlock()); - return locallyDominates(Dominator, Dominatee); -} - -bool MemorySSA::dominates(const MemoryAccess *Dominator, - const Use &Dominatee) const { - if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Dominatee.getUser())) { - BasicBlock *UseBB = MP->getIncomingBlock(Dominatee); - // The def must dominate the incoming block of the phi. - if (UseBB != Dominator->getBlock()) - return DT->dominates(Dominator->getBlock(), UseBB); - // If the UseBB and the DefBB are the same, compare locally. - return locallyDominates(Dominator, cast<MemoryAccess>(Dominatee)); - } - // If it's not a PHI node use, the normal dominates can already handle it. - return dominates(Dominator, cast<MemoryAccess>(Dominatee.getUser())); -} - -const static char LiveOnEntryStr[] = "liveOnEntry"; - -void MemoryAccess::print(raw_ostream &OS) const { - switch (getValueID()) { - case MemoryPhiVal: return static_cast<const MemoryPhi *>(this)->print(OS); - case MemoryDefVal: return static_cast<const MemoryDef *>(this)->print(OS); - case MemoryUseVal: return static_cast<const MemoryUse *>(this)->print(OS); - } - llvm_unreachable("invalid value id"); -} - -void MemoryDef::print(raw_ostream &OS) const { - MemoryAccess *UO = getDefiningAccess(); - - auto printID = [&OS](MemoryAccess *A) { - if (A && A->getID()) - OS << A->getID(); - else - OS << LiveOnEntryStr; - }; - - OS << getID() << " = MemoryDef("; - printID(UO); - OS << ")"; - - if (isOptimized()) { - OS << "->"; - printID(getOptimized()); - - if (Optional<AliasResult> AR = getOptimizedAccessType()) - OS << " " << *AR; - } -} - -void MemoryPhi::print(raw_ostream &OS) const { - bool First = true; - OS << getID() << " = MemoryPhi("; - for (const auto &Op : operands()) { - BasicBlock *BB = getIncomingBlock(Op); - MemoryAccess *MA = cast<MemoryAccess>(Op); - if (!First) - OS << ','; - else - First = false; - - OS << '{'; - if (BB->hasName()) - OS << BB->getName(); - else - BB->printAsOperand(OS, false); - OS << ','; - if (unsigned ID = MA->getID()) - OS << ID; - else - OS << LiveOnEntryStr; - OS << '}'; - } - OS << ')'; -} - -void MemoryUse::print(raw_ostream &OS) const { - MemoryAccess *UO = getDefiningAccess(); - OS << "MemoryUse("; - if (UO && UO->getID()) - OS << UO->getID(); - else - OS << LiveOnEntryStr; - OS << ')'; - - if (Optional<AliasResult> AR = getOptimizedAccessType()) - OS << " " << *AR; -} - -void MemoryAccess::dump() const { -// Cannot completely remove virtual function even in release mode. -#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) - print(dbgs()); - dbgs() << "\n"; -#endif -} - -char MemorySSAPrinterLegacyPass::ID = 0; - -MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID) { - initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry()); -} - -void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const { - AU.setPreservesAll(); - AU.addRequired<MemorySSAWrapperPass>(); -} - -bool MemorySSAPrinterLegacyPass::runOnFunction(Function &F) { - auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA(); - MSSA.print(dbgs()); - if (VerifyMemorySSA) - MSSA.verifyMemorySSA(); - return false; -} - -AnalysisKey MemorySSAAnalysis::Key; - -MemorySSAAnalysis::Result MemorySSAAnalysis::run(Function &F, - FunctionAnalysisManager &AM) { - auto &DT = AM.getResult<DominatorTreeAnalysis>(F); - auto &AA = AM.getResult<AAManager>(F); - return MemorySSAAnalysis::Result(llvm::make_unique<MemorySSA>(F, &AA, &DT)); -} - -PreservedAnalyses MemorySSAPrinterPass::run(Function &F, - FunctionAnalysisManager &AM) { - OS << "MemorySSA for function: " << F.getName() << "\n"; - AM.getResult<MemorySSAAnalysis>(F).getMSSA().print(OS); - - return PreservedAnalyses::all(); -} - -PreservedAnalyses MemorySSAVerifierPass::run(Function &F, - FunctionAnalysisManager &AM) { - AM.getResult<MemorySSAAnalysis>(F).getMSSA().verifyMemorySSA(); - - return PreservedAnalyses::all(); -} - -char MemorySSAWrapperPass::ID = 0; - -MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) { - initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry()); -} - -void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); } - -void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { - AU.setPreservesAll(); - AU.addRequiredTransitive<DominatorTreeWrapperPass>(); - AU.addRequiredTransitive<AAResultsWrapperPass>(); -} - -bool MemorySSAWrapperPass::runOnFunction(Function &F) { - auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); - auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); - MSSA.reset(new MemorySSA(F, &AA, &DT)); - return false; -} - -void MemorySSAWrapperPass::verifyAnalysis() const { MSSA->verifyMemorySSA(); } - -void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const { - MSSA->print(OS); -} - -MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {} - -/// Walk the use-def chains starting at \p StartingAccess and find -/// the MemoryAccess that actually clobbers Loc. -/// -/// \returns our clobbering memory access -MemoryAccess *MemorySSA::ClobberWalkerBase::getClobberingMemoryAccessBase( - MemoryAccess *StartingAccess, const MemoryLocation &Loc) { - if (isa<MemoryPhi>(StartingAccess)) - return StartingAccess; - - auto *StartingUseOrDef = cast<MemoryUseOrDef>(StartingAccess); - if (MSSA->isLiveOnEntryDef(StartingUseOrDef)) - return StartingUseOrDef; - - Instruction *I = StartingUseOrDef->getMemoryInst(); - - // Conservatively, fences are always clobbers, so don't perform the walk if we - // hit a fence. - if (!isa<CallBase>(I) && I->isFenceLike()) - return StartingUseOrDef; - - UpwardsMemoryQuery Q; - Q.OriginalAccess = StartingUseOrDef; - Q.StartingLoc = Loc; - Q.Inst = I; - Q.IsCall = false; - - // Unlike the other function, do not walk to the def of a def, because we are - // handed something we already believe is the clobbering access. - // We never set SkipSelf to true in Q in this method. - MemoryAccess *DefiningAccess = isa<MemoryUse>(StartingUseOrDef) - ? StartingUseOrDef->getDefiningAccess() - : StartingUseOrDef; - - MemoryAccess *Clobber = Walker.findClobber(DefiningAccess, Q); - LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is "); - LLVM_DEBUG(dbgs() << *StartingUseOrDef << "\n"); - LLVM_DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is "); - LLVM_DEBUG(dbgs() << *Clobber << "\n"); - return Clobber; -} - -MemoryAccess * -MemorySSA::ClobberWalkerBase::getClobberingMemoryAccessBase(MemoryAccess *MA, - bool SkipSelf) { - auto *StartingAccess = dyn_cast<MemoryUseOrDef>(MA); - // If this is a MemoryPhi, we can't do anything. - if (!StartingAccess) - return MA; - - bool IsOptimized = false; - - // If this is an already optimized use or def, return the optimized result. - // Note: Currently, we store the optimized def result in a separate field, - // since we can't use the defining access. - if (StartingAccess->isOptimized()) { - if (!SkipSelf || !isa<MemoryDef>(StartingAccess)) - return StartingAccess->getOptimized(); - IsOptimized = true; - } - - const Instruction *I = StartingAccess->getMemoryInst(); - // We can't sanely do anything with a fence, since they conservatively clobber - // all memory, and have no locations to get pointers from to try to - // disambiguate. - if (!isa<CallBase>(I) && I->isFenceLike()) - return StartingAccess; - - UpwardsMemoryQuery Q(I, StartingAccess); - - if (isUseTriviallyOptimizableToLiveOnEntry(*MSSA->AA, I)) { - MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef(); - StartingAccess->setOptimized(LiveOnEntry); - StartingAccess->setOptimizedAccessType(None); - return LiveOnEntry; - } - - MemoryAccess *OptimizedAccess; - if (!IsOptimized) { - // Start with the thing we already think clobbers this location - MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess(); - - // At this point, DefiningAccess may be the live on entry def. - // If it is, we will not get a better result. - if (MSSA->isLiveOnEntryDef(DefiningAccess)) { - StartingAccess->setOptimized(DefiningAccess); - StartingAccess->setOptimizedAccessType(None); - return DefiningAccess; - } - - OptimizedAccess = Walker.findClobber(DefiningAccess, Q); - StartingAccess->setOptimized(OptimizedAccess); - if (MSSA->isLiveOnEntryDef(OptimizedAccess)) - StartingAccess->setOptimizedAccessType(None); - else if (Q.AR == MustAlias) - StartingAccess->setOptimizedAccessType(MustAlias); - } else - OptimizedAccess = StartingAccess->getOptimized(); - - LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is "); - LLVM_DEBUG(dbgs() << *StartingAccess << "\n"); - LLVM_DEBUG(dbgs() << "Optimized Memory SSA clobber for " << *I << " is "); - LLVM_DEBUG(dbgs() << *OptimizedAccess << "\n"); - - MemoryAccess *Result; - if (SkipSelf && isa<MemoryPhi>(OptimizedAccess) && - isa<MemoryDef>(StartingAccess)) { - assert(isa<MemoryDef>(Q.OriginalAccess)); - Q.SkipSelfAccess = true; - Result = Walker.findClobber(OptimizedAccess, Q); - } else - Result = OptimizedAccess; - - LLVM_DEBUG(dbgs() << "Result Memory SSA clobber [SkipSelf = " << SkipSelf); - LLVM_DEBUG(dbgs() << "] for " << *I << " is " << *Result << "\n"); - - return Result; -} - -MemoryAccess * -MemorySSA::CachingWalker::getClobberingMemoryAccess(MemoryAccess *MA) { - return Walker->getClobberingMemoryAccessBase(MA, false); -} - -MemoryAccess * -MemorySSA::CachingWalker::getClobberingMemoryAccess(MemoryAccess *MA, - const MemoryLocation &Loc) { - return Walker->getClobberingMemoryAccessBase(MA, Loc); -} - -MemoryAccess * -MemorySSA::SkipSelfWalker::getClobberingMemoryAccess(MemoryAccess *MA) { - return Walker->getClobberingMemoryAccessBase(MA, true); -} - -MemoryAccess * -MemorySSA::SkipSelfWalker::getClobberingMemoryAccess(MemoryAccess *MA, - const MemoryLocation &Loc) { - return Walker->getClobberingMemoryAccessBase(MA, Loc); -} - -MemoryAccess * -DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA) { - if (auto *Use = dyn_cast<MemoryUseOrDef>(MA)) - return Use->getDefiningAccess(); - return MA; -} - -MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess( - MemoryAccess *StartingAccess, const MemoryLocation &) { - if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess)) - return Use->getDefiningAccess(); - return StartingAccess; -} - -void MemoryPhi::deleteMe(DerivedUser *Self) { - delete static_cast<MemoryPhi *>(Self); -} - -void MemoryDef::deleteMe(DerivedUser *Self) { - delete static_cast<MemoryDef *>(Self); -} - -void MemoryUse::deleteMe(DerivedUser *Self) { - delete static_cast<MemoryUse *>(Self); -} |
