summaryrefslogtreecommitdiffstats
path: root/gnu/llvm/lib/Analysis/ScalarEvolution.cpp
diff options
context:
space:
mode:
authorpatrick <patrick@openbsd.org>2020-08-03 15:06:44 +0000
committerpatrick <patrick@openbsd.org>2020-08-03 15:06:44 +0000
commitb64793999546ed8adebaeebd9d8345d18db8927d (patch)
tree4357c27b561d73b0e089727c6ed659f2ceff5f47 /gnu/llvm/lib/Analysis/ScalarEvolution.cpp
parentAdd support for UTF-8 DISPLAY-HINTs with octet length. For now only (diff)
downloadwireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.tar.xz
wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.zip
Remove LLVM 8.0.1 files.
Diffstat (limited to 'gnu/llvm/lib/Analysis/ScalarEvolution.cpp')
-rw-r--r--gnu/llvm/lib/Analysis/ScalarEvolution.cpp12453
1 files changed, 0 insertions, 12453 deletions
diff --git a/gnu/llvm/lib/Analysis/ScalarEvolution.cpp b/gnu/llvm/lib/Analysis/ScalarEvolution.cpp
deleted file mode 100644
index e5134f2eeda..00000000000
--- a/gnu/llvm/lib/Analysis/ScalarEvolution.cpp
+++ /dev/null
@@ -1,12453 +0,0 @@
-//===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file contains the implementation of the scalar evolution analysis
-// engine, which is used primarily to analyze expressions involving induction
-// variables in loops.
-//
-// There are several aspects to this library. First is the representation of
-// scalar expressions, which are represented as subclasses of the SCEV class.
-// These classes are used to represent certain types of subexpressions that we
-// can handle. We only create one SCEV of a particular shape, so
-// pointer-comparisons for equality are legal.
-//
-// One important aspect of the SCEV objects is that they are never cyclic, even
-// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
-// the PHI node is one of the idioms that we can represent (e.g., a polynomial
-// recurrence) then we represent it directly as a recurrence node, otherwise we
-// represent it as a SCEVUnknown node.
-//
-// In addition to being able to represent expressions of various types, we also
-// have folders that are used to build the *canonical* representation for a
-// particular expression. These folders are capable of using a variety of
-// rewrite rules to simplify the expressions.
-//
-// Once the folders are defined, we can implement the more interesting
-// higher-level code, such as the code that recognizes PHI nodes of various
-// types, computes the execution count of a loop, etc.
-//
-// TODO: We should use these routines and value representations to implement
-// dependence analysis!
-//
-//===----------------------------------------------------------------------===//
-//
-// There are several good references for the techniques used in this analysis.
-//
-// Chains of recurrences -- a method to expedite the evaluation
-// of closed-form functions
-// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
-//
-// On computational properties of chains of recurrences
-// Eugene V. Zima
-//
-// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
-// Robert A. van Engelen
-//
-// Efficient Symbolic Analysis for Optimizing Compilers
-// Robert A. van Engelen
-//
-// Using the chains of recurrences algebra for data dependence testing and
-// induction variable substitution
-// MS Thesis, Johnie Birch
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Analysis/ScalarEvolution.h"
-#include "llvm/ADT/APInt.h"
-#include "llvm/ADT/ArrayRef.h"
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/DepthFirstIterator.h"
-#include "llvm/ADT/EquivalenceClasses.h"
-#include "llvm/ADT/FoldingSet.h"
-#include "llvm/ADT/None.h"
-#include "llvm/ADT/Optional.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/ADT/ScopeExit.h"
-#include "llvm/ADT/Sequence.h"
-#include "llvm/ADT/SetVector.h"
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/ADT/SmallSet.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/ADT/StringRef.h"
-#include "llvm/Analysis/AssumptionCache.h"
-#include "llvm/Analysis/ConstantFolding.h"
-#include "llvm/Analysis/InstructionSimplify.h"
-#include "llvm/Analysis/LoopInfo.h"
-#include "llvm/Analysis/ScalarEvolutionExpressions.h"
-#include "llvm/Analysis/TargetLibraryInfo.h"
-#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/Config/llvm-config.h"
-#include "llvm/IR/Argument.h"
-#include "llvm/IR/BasicBlock.h"
-#include "llvm/IR/CFG.h"
-#include "llvm/IR/CallSite.h"
-#include "llvm/IR/Constant.h"
-#include "llvm/IR/ConstantRange.h"
-#include "llvm/IR/Constants.h"
-#include "llvm/IR/DataLayout.h"
-#include "llvm/IR/DerivedTypes.h"
-#include "llvm/IR/Dominators.h"
-#include "llvm/IR/Function.h"
-#include "llvm/IR/GlobalAlias.h"
-#include "llvm/IR/GlobalValue.h"
-#include "llvm/IR/GlobalVariable.h"
-#include "llvm/IR/InstIterator.h"
-#include "llvm/IR/InstrTypes.h"
-#include "llvm/IR/Instruction.h"
-#include "llvm/IR/Instructions.h"
-#include "llvm/IR/IntrinsicInst.h"
-#include "llvm/IR/Intrinsics.h"
-#include "llvm/IR/LLVMContext.h"
-#include "llvm/IR/Metadata.h"
-#include "llvm/IR/Operator.h"
-#include "llvm/IR/PatternMatch.h"
-#include "llvm/IR/Type.h"
-#include "llvm/IR/Use.h"
-#include "llvm/IR/User.h"
-#include "llvm/IR/Value.h"
-#include "llvm/IR/Verifier.h"
-#include "llvm/Pass.h"
-#include "llvm/Support/Casting.h"
-#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/Compiler.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/KnownBits.h"
-#include "llvm/Support/SaveAndRestore.h"
-#include "llvm/Support/raw_ostream.h"
-#include <algorithm>
-#include <cassert>
-#include <climits>
-#include <cstddef>
-#include <cstdint>
-#include <cstdlib>
-#include <map>
-#include <memory>
-#include <tuple>
-#include <utility>
-#include <vector>
-
-using namespace llvm;
-
-#define DEBUG_TYPE "scalar-evolution"
-
-STATISTIC(NumArrayLenItCounts,
- "Number of trip counts computed with array length");
-STATISTIC(NumTripCountsComputed,
- "Number of loops with predictable loop counts");
-STATISTIC(NumTripCountsNotComputed,
- "Number of loops without predictable loop counts");
-STATISTIC(NumBruteForceTripCountsComputed,
- "Number of loops with trip counts computed by force");
-
-static cl::opt<unsigned>
-MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
- cl::desc("Maximum number of iterations SCEV will "
- "symbolically execute a constant "
- "derived loop"),
- cl::init(100));
-
-// FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean.
-static cl::opt<bool> VerifySCEV(
- "verify-scev", cl::Hidden,
- cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
-static cl::opt<bool>
- VerifySCEVMap("verify-scev-maps", cl::Hidden,
- cl::desc("Verify no dangling value in ScalarEvolution's "
- "ExprValueMap (slow)"));
-
-static cl::opt<bool> VerifyIR(
- "scev-verify-ir", cl::Hidden,
- cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"),
- cl::init(false));
-
-static cl::opt<unsigned> MulOpsInlineThreshold(
- "scev-mulops-inline-threshold", cl::Hidden,
- cl::desc("Threshold for inlining multiplication operands into a SCEV"),
- cl::init(32));
-
-static cl::opt<unsigned> AddOpsInlineThreshold(
- "scev-addops-inline-threshold", cl::Hidden,
- cl::desc("Threshold for inlining addition operands into a SCEV"),
- cl::init(500));
-
-static cl::opt<unsigned> MaxSCEVCompareDepth(
- "scalar-evolution-max-scev-compare-depth", cl::Hidden,
- cl::desc("Maximum depth of recursive SCEV complexity comparisons"),
- cl::init(32));
-
-static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth(
- "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden,
- cl::desc("Maximum depth of recursive SCEV operations implication analysis"),
- cl::init(2));
-
-static cl::opt<unsigned> MaxValueCompareDepth(
- "scalar-evolution-max-value-compare-depth", cl::Hidden,
- cl::desc("Maximum depth of recursive value complexity comparisons"),
- cl::init(2));
-
-static cl::opt<unsigned>
- MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden,
- cl::desc("Maximum depth of recursive arithmetics"),
- cl::init(32));
-
-static cl::opt<unsigned> MaxConstantEvolvingDepth(
- "scalar-evolution-max-constant-evolving-depth", cl::Hidden,
- cl::desc("Maximum depth of recursive constant evolving"), cl::init(32));
-
-static cl::opt<unsigned>
- MaxExtDepth("scalar-evolution-max-ext-depth", cl::Hidden,
- cl::desc("Maximum depth of recursive SExt/ZExt"),
- cl::init(8));
-
-static cl::opt<unsigned>
- MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden,
- cl::desc("Max coefficients in AddRec during evolving"),
- cl::init(8));
-
-//===----------------------------------------------------------------------===//
-// SCEV class definitions
-//===----------------------------------------------------------------------===//
-
-//===----------------------------------------------------------------------===//
-// Implementation of the SCEV class.
-//
-
-#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
-LLVM_DUMP_METHOD void SCEV::dump() const {
- print(dbgs());
- dbgs() << '\n';
-}
-#endif
-
-void SCEV::print(raw_ostream &OS) const {
- switch (static_cast<SCEVTypes>(getSCEVType())) {
- case scConstant:
- cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
- return;
- case scTruncate: {
- const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
- const SCEV *Op = Trunc->getOperand();
- OS << "(trunc " << *Op->getType() << " " << *Op << " to "
- << *Trunc->getType() << ")";
- return;
- }
- case scZeroExtend: {
- const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
- const SCEV *Op = ZExt->getOperand();
- OS << "(zext " << *Op->getType() << " " << *Op << " to "
- << *ZExt->getType() << ")";
- return;
- }
- case scSignExtend: {
- const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
- const SCEV *Op = SExt->getOperand();
- OS << "(sext " << *Op->getType() << " " << *Op << " to "
- << *SExt->getType() << ")";
- return;
- }
- case scAddRecExpr: {
- const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
- OS << "{" << *AR->getOperand(0);
- for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
- OS << ",+," << *AR->getOperand(i);
- OS << "}<";
- if (AR->hasNoUnsignedWrap())
- OS << "nuw><";
- if (AR->hasNoSignedWrap())
- OS << "nsw><";
- if (AR->hasNoSelfWrap() &&
- !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
- OS << "nw><";
- AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
- OS << ">";
- return;
- }
- case scAddExpr:
- case scMulExpr:
- case scUMaxExpr:
- case scSMaxExpr: {
- const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
- const char *OpStr = nullptr;
- switch (NAry->getSCEVType()) {
- case scAddExpr: OpStr = " + "; break;
- case scMulExpr: OpStr = " * "; break;
- case scUMaxExpr: OpStr = " umax "; break;
- case scSMaxExpr: OpStr = " smax "; break;
- }
- OS << "(";
- for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
- I != E; ++I) {
- OS << **I;
- if (std::next(I) != E)
- OS << OpStr;
- }
- OS << ")";
- switch (NAry->getSCEVType()) {
- case scAddExpr:
- case scMulExpr:
- if (NAry->hasNoUnsignedWrap())
- OS << "<nuw>";
- if (NAry->hasNoSignedWrap())
- OS << "<nsw>";
- }
- return;
- }
- case scUDivExpr: {
- const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
- OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
- return;
- }
- case scUnknown: {
- const SCEVUnknown *U = cast<SCEVUnknown>(this);
- Type *AllocTy;
- if (U->isSizeOf(AllocTy)) {
- OS << "sizeof(" << *AllocTy << ")";
- return;
- }
- if (U->isAlignOf(AllocTy)) {
- OS << "alignof(" << *AllocTy << ")";
- return;
- }
-
- Type *CTy;
- Constant *FieldNo;
- if (U->isOffsetOf(CTy, FieldNo)) {
- OS << "offsetof(" << *CTy << ", ";
- FieldNo->printAsOperand(OS, false);
- OS << ")";
- return;
- }
-
- // Otherwise just print it normally.
- U->getValue()->printAsOperand(OS, false);
- return;
- }
- case scCouldNotCompute:
- OS << "***COULDNOTCOMPUTE***";
- return;
- }
- llvm_unreachable("Unknown SCEV kind!");
-}
-
-Type *SCEV::getType() const {
- switch (static_cast<SCEVTypes>(getSCEVType())) {
- case scConstant:
- return cast<SCEVConstant>(this)->getType();
- case scTruncate:
- case scZeroExtend:
- case scSignExtend:
- return cast<SCEVCastExpr>(this)->getType();
- case scAddRecExpr:
- case scMulExpr:
- case scUMaxExpr:
- case scSMaxExpr:
- return cast<SCEVNAryExpr>(this)->getType();
- case scAddExpr:
- return cast<SCEVAddExpr>(this)->getType();
- case scUDivExpr:
- return cast<SCEVUDivExpr>(this)->getType();
- case scUnknown:
- return cast<SCEVUnknown>(this)->getType();
- case scCouldNotCompute:
- llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
- }
- llvm_unreachable("Unknown SCEV kind!");
-}
-
-bool SCEV::isZero() const {
- if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
- return SC->getValue()->isZero();
- return false;
-}
-
-bool SCEV::isOne() const {
- if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
- return SC->getValue()->isOne();
- return false;
-}
-
-bool SCEV::isAllOnesValue() const {
- if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
- return SC->getValue()->isMinusOne();
- return false;
-}
-
-bool SCEV::isNonConstantNegative() const {
- const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
- if (!Mul) return false;
-
- // If there is a constant factor, it will be first.
- const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
- if (!SC) return false;
-
- // Return true if the value is negative, this matches things like (-42 * V).
- return SC->getAPInt().isNegative();
-}
-
-SCEVCouldNotCompute::SCEVCouldNotCompute() :
- SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
-
-bool SCEVCouldNotCompute::classof(const SCEV *S) {
- return S->getSCEVType() == scCouldNotCompute;
-}
-
-const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
- FoldingSetNodeID ID;
- ID.AddInteger(scConstant);
- ID.AddPointer(V);
- void *IP = nullptr;
- if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
- SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
- UniqueSCEVs.InsertNode(S, IP);
- return S;
-}
-
-const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
- return getConstant(ConstantInt::get(getContext(), Val));
-}
-
-const SCEV *
-ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
- IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
- return getConstant(ConstantInt::get(ITy, V, isSigned));
-}
-
-SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
- unsigned SCEVTy, const SCEV *op, Type *ty)
- : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
-
-SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
- const SCEV *op, Type *ty)
- : SCEVCastExpr(ID, scTruncate, op, ty) {
- assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
- "Cannot truncate non-integer value!");
-}
-
-SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
- const SCEV *op, Type *ty)
- : SCEVCastExpr(ID, scZeroExtend, op, ty) {
- assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
- "Cannot zero extend non-integer value!");
-}
-
-SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
- const SCEV *op, Type *ty)
- : SCEVCastExpr(ID, scSignExtend, op, ty) {
- assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
- "Cannot sign extend non-integer value!");
-}
-
-void SCEVUnknown::deleted() {
- // Clear this SCEVUnknown from various maps.
- SE->forgetMemoizedResults(this);
-
- // Remove this SCEVUnknown from the uniquing map.
- SE->UniqueSCEVs.RemoveNode(this);
-
- // Release the value.
- setValPtr(nullptr);
-}
-
-void SCEVUnknown::allUsesReplacedWith(Value *New) {
- // Remove this SCEVUnknown from the uniquing map.
- SE->UniqueSCEVs.RemoveNode(this);
-
- // Update this SCEVUnknown to point to the new value. This is needed
- // because there may still be outstanding SCEVs which still point to
- // this SCEVUnknown.
- setValPtr(New);
-}
-
-bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
- if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
- if (VCE->getOpcode() == Instruction::PtrToInt)
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
- if (CE->getOpcode() == Instruction::GetElementPtr &&
- CE->getOperand(0)->isNullValue() &&
- CE->getNumOperands() == 2)
- if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
- if (CI->isOne()) {
- AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
- ->getElementType();
- return true;
- }
-
- return false;
-}
-
-bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
- if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
- if (VCE->getOpcode() == Instruction::PtrToInt)
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
- if (CE->getOpcode() == Instruction::GetElementPtr &&
- CE->getOperand(0)->isNullValue()) {
- Type *Ty =
- cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
- if (StructType *STy = dyn_cast<StructType>(Ty))
- if (!STy->isPacked() &&
- CE->getNumOperands() == 3 &&
- CE->getOperand(1)->isNullValue()) {
- if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
- if (CI->isOne() &&
- STy->getNumElements() == 2 &&
- STy->getElementType(0)->isIntegerTy(1)) {
- AllocTy = STy->getElementType(1);
- return true;
- }
- }
- }
-
- return false;
-}
-
-bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
- if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
- if (VCE->getOpcode() == Instruction::PtrToInt)
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
- if (CE->getOpcode() == Instruction::GetElementPtr &&
- CE->getNumOperands() == 3 &&
- CE->getOperand(0)->isNullValue() &&
- CE->getOperand(1)->isNullValue()) {
- Type *Ty =
- cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
- // Ignore vector types here so that ScalarEvolutionExpander doesn't
- // emit getelementptrs that index into vectors.
- if (Ty->isStructTy() || Ty->isArrayTy()) {
- CTy = Ty;
- FieldNo = CE->getOperand(2);
- return true;
- }
- }
-
- return false;
-}
-
-//===----------------------------------------------------------------------===//
-// SCEV Utilities
-//===----------------------------------------------------------------------===//
-
-/// Compare the two values \p LV and \p RV in terms of their "complexity" where
-/// "complexity" is a partial (and somewhat ad-hoc) relation used to order
-/// operands in SCEV expressions. \p EqCache is a set of pairs of values that
-/// have been previously deemed to be "equally complex" by this routine. It is
-/// intended to avoid exponential time complexity in cases like:
-///
-/// %a = f(%x, %y)
-/// %b = f(%a, %a)
-/// %c = f(%b, %b)
-///
-/// %d = f(%x, %y)
-/// %e = f(%d, %d)
-/// %f = f(%e, %e)
-///
-/// CompareValueComplexity(%f, %c)
-///
-/// Since we do not continue running this routine on expression trees once we
-/// have seen unequal values, there is no need to track them in the cache.
-static int
-CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue,
- const LoopInfo *const LI, Value *LV, Value *RV,
- unsigned Depth) {
- if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV))
- return 0;
-
- // Order pointer values after integer values. This helps SCEVExpander form
- // GEPs.
- bool LIsPointer = LV->getType()->isPointerTy(),
- RIsPointer = RV->getType()->isPointerTy();
- if (LIsPointer != RIsPointer)
- return (int)LIsPointer - (int)RIsPointer;
-
- // Compare getValueID values.
- unsigned LID = LV->getValueID(), RID = RV->getValueID();
- if (LID != RID)
- return (int)LID - (int)RID;
-
- // Sort arguments by their position.
- if (const auto *LA = dyn_cast<Argument>(LV)) {
- const auto *RA = cast<Argument>(RV);
- unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
- return (int)LArgNo - (int)RArgNo;
- }
-
- if (const auto *LGV = dyn_cast<GlobalValue>(LV)) {
- const auto *RGV = cast<GlobalValue>(RV);
-
- const auto IsGVNameSemantic = [&](const GlobalValue *GV) {
- auto LT = GV->getLinkage();
- return !(GlobalValue::isPrivateLinkage(LT) ||
- GlobalValue::isInternalLinkage(LT));
- };
-
- // Use the names to distinguish the two values, but only if the
- // names are semantically important.
- if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV))
- return LGV->getName().compare(RGV->getName());
- }
-
- // For instructions, compare their loop depth, and their operand count. This
- // is pretty loose.
- if (const auto *LInst = dyn_cast<Instruction>(LV)) {
- const auto *RInst = cast<Instruction>(RV);
-
- // Compare loop depths.
- const BasicBlock *LParent = LInst->getParent(),
- *RParent = RInst->getParent();
- if (LParent != RParent) {
- unsigned LDepth = LI->getLoopDepth(LParent),
- RDepth = LI->getLoopDepth(RParent);
- if (LDepth != RDepth)
- return (int)LDepth - (int)RDepth;
- }
-
- // Compare the number of operands.
- unsigned LNumOps = LInst->getNumOperands(),
- RNumOps = RInst->getNumOperands();
- if (LNumOps != RNumOps)
- return (int)LNumOps - (int)RNumOps;
-
- for (unsigned Idx : seq(0u, LNumOps)) {
- int Result =
- CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx),
- RInst->getOperand(Idx), Depth + 1);
- if (Result != 0)
- return Result;
- }
- }
-
- EqCacheValue.unionSets(LV, RV);
- return 0;
-}
-
-// Return negative, zero, or positive, if LHS is less than, equal to, or greater
-// than RHS, respectively. A three-way result allows recursive comparisons to be
-// more efficient.
-static int CompareSCEVComplexity(
- EquivalenceClasses<const SCEV *> &EqCacheSCEV,
- EquivalenceClasses<const Value *> &EqCacheValue,
- const LoopInfo *const LI, const SCEV *LHS, const SCEV *RHS,
- DominatorTree &DT, unsigned Depth = 0) {
- // Fast-path: SCEVs are uniqued so we can do a quick equality check.
- if (LHS == RHS)
- return 0;
-
- // Primarily, sort the SCEVs by their getSCEVType().
- unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
- if (LType != RType)
- return (int)LType - (int)RType;
-
- if (Depth > MaxSCEVCompareDepth || EqCacheSCEV.isEquivalent(LHS, RHS))
- return 0;
- // Aside from the getSCEVType() ordering, the particular ordering
- // isn't very important except that it's beneficial to be consistent,
- // so that (a + b) and (b + a) don't end up as different expressions.
- switch (static_cast<SCEVTypes>(LType)) {
- case scUnknown: {
- const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
- const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
-
- int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(),
- RU->getValue(), Depth + 1);
- if (X == 0)
- EqCacheSCEV.unionSets(LHS, RHS);
- return X;
- }
-
- case scConstant: {
- const SCEVConstant *LC = cast<SCEVConstant>(LHS);
- const SCEVConstant *RC = cast<SCEVConstant>(RHS);
-
- // Compare constant values.
- const APInt &LA = LC->getAPInt();
- const APInt &RA = RC->getAPInt();
- unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
- if (LBitWidth != RBitWidth)
- return (int)LBitWidth - (int)RBitWidth;
- return LA.ult(RA) ? -1 : 1;
- }
-
- case scAddRecExpr: {
- const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
- const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
-
- // There is always a dominance between two recs that are used by one SCEV,
- // so we can safely sort recs by loop header dominance. We require such
- // order in getAddExpr.
- const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
- if (LLoop != RLoop) {
- const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader();
- assert(LHead != RHead && "Two loops share the same header?");
- if (DT.dominates(LHead, RHead))
- return 1;
- else
- assert(DT.dominates(RHead, LHead) &&
- "No dominance between recurrences used by one SCEV?");
- return -1;
- }
-
- // Addrec complexity grows with operand count.
- unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
- if (LNumOps != RNumOps)
- return (int)LNumOps - (int)RNumOps;
-
- // Lexicographically compare.
- for (unsigned i = 0; i != LNumOps; ++i) {
- int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
- LA->getOperand(i), RA->getOperand(i), DT,
- Depth + 1);
- if (X != 0)
- return X;
- }
- EqCacheSCEV.unionSets(LHS, RHS);
- return 0;
- }
-
- case scAddExpr:
- case scMulExpr:
- case scSMaxExpr:
- case scUMaxExpr: {
- const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
- const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
-
- // Lexicographically compare n-ary expressions.
- unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
- if (LNumOps != RNumOps)
- return (int)LNumOps - (int)RNumOps;
-
- for (unsigned i = 0; i != LNumOps; ++i) {
- int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
- LC->getOperand(i), RC->getOperand(i), DT,
- Depth + 1);
- if (X != 0)
- return X;
- }
- EqCacheSCEV.unionSets(LHS, RHS);
- return 0;
- }
-
- case scUDivExpr: {
- const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
- const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
-
- // Lexicographically compare udiv expressions.
- int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(),
- RC->getLHS(), DT, Depth + 1);
- if (X != 0)
- return X;
- X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(),
- RC->getRHS(), DT, Depth + 1);
- if (X == 0)
- EqCacheSCEV.unionSets(LHS, RHS);
- return X;
- }
-
- case scTruncate:
- case scZeroExtend:
- case scSignExtend: {
- const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
- const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
-
- // Compare cast expressions by operand.
- int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
- LC->getOperand(), RC->getOperand(), DT,
- Depth + 1);
- if (X == 0)
- EqCacheSCEV.unionSets(LHS, RHS);
- return X;
- }
-
- case scCouldNotCompute:
- llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
- }
- llvm_unreachable("Unknown SCEV kind!");
-}
-
-/// Given a list of SCEV objects, order them by their complexity, and group
-/// objects of the same complexity together by value. When this routine is
-/// finished, we know that any duplicates in the vector are consecutive and that
-/// complexity is monotonically increasing.
-///
-/// Note that we go take special precautions to ensure that we get deterministic
-/// results from this routine. In other words, we don't want the results of
-/// this to depend on where the addresses of various SCEV objects happened to
-/// land in memory.
-static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
- LoopInfo *LI, DominatorTree &DT) {
- if (Ops.size() < 2) return; // Noop
-
- EquivalenceClasses<const SCEV *> EqCacheSCEV;
- EquivalenceClasses<const Value *> EqCacheValue;
- if (Ops.size() == 2) {
- // This is the common case, which also happens to be trivially simple.
- // Special case it.
- const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
- if (CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, RHS, LHS, DT) < 0)
- std::swap(LHS, RHS);
- return;
- }
-
- // Do the rough sort by complexity.
- std::stable_sort(Ops.begin(), Ops.end(),
- [&](const SCEV *LHS, const SCEV *RHS) {
- return CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
- LHS, RHS, DT) < 0;
- });
-
- // Now that we are sorted by complexity, group elements of the same
- // complexity. Note that this is, at worst, N^2, but the vector is likely to
- // be extremely short in practice. Note that we take this approach because we
- // do not want to depend on the addresses of the objects we are grouping.
- for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
- const SCEV *S = Ops[i];
- unsigned Complexity = S->getSCEVType();
-
- // If there are any objects of the same complexity and same value as this
- // one, group them.
- for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
- if (Ops[j] == S) { // Found a duplicate.
- // Move it to immediately after i'th element.
- std::swap(Ops[i+1], Ops[j]);
- ++i; // no need to rescan it.
- if (i == e-2) return; // Done!
- }
- }
- }
-}
-
-// Returns the size of the SCEV S.
-static inline int sizeOfSCEV(const SCEV *S) {
- struct FindSCEVSize {
- int Size = 0;
-
- FindSCEVSize() = default;
-
- bool follow(const SCEV *S) {
- ++Size;
- // Keep looking at all operands of S.
- return true;
- }
-
- bool isDone() const {
- return false;
- }
- };
-
- FindSCEVSize F;
- SCEVTraversal<FindSCEVSize> ST(F);
- ST.visitAll(S);
- return F.Size;
-}
-
-namespace {
-
-struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
-public:
- // Computes the Quotient and Remainder of the division of Numerator by
- // Denominator.
- static void divide(ScalarEvolution &SE, const SCEV *Numerator,
- const SCEV *Denominator, const SCEV **Quotient,
- const SCEV **Remainder) {
- assert(Numerator && Denominator && "Uninitialized SCEV");
-
- SCEVDivision D(SE, Numerator, Denominator);
-
- // Check for the trivial case here to avoid having to check for it in the
- // rest of the code.
- if (Numerator == Denominator) {
- *Quotient = D.One;
- *Remainder = D.Zero;
- return;
- }
-
- if (Numerator->isZero()) {
- *Quotient = D.Zero;
- *Remainder = D.Zero;
- return;
- }
-
- // A simple case when N/1. The quotient is N.
- if (Denominator->isOne()) {
- *Quotient = Numerator;
- *Remainder = D.Zero;
- return;
- }
-
- // Split the Denominator when it is a product.
- if (const SCEVMulExpr *T = dyn_cast<SCEVMulExpr>(Denominator)) {
- const SCEV *Q, *R;
- *Quotient = Numerator;
- for (const SCEV *Op : T->operands()) {
- divide(SE, *Quotient, Op, &Q, &R);
- *Quotient = Q;
-
- // Bail out when the Numerator is not divisible by one of the terms of
- // the Denominator.
- if (!R->isZero()) {
- *Quotient = D.Zero;
- *Remainder = Numerator;
- return;
- }
- }
- *Remainder = D.Zero;
- return;
- }
-
- D.visit(Numerator);
- *Quotient = D.Quotient;
- *Remainder = D.Remainder;
- }
-
- // Except in the trivial case described above, we do not know how to divide
- // Expr by Denominator for the following functions with empty implementation.
- void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
- void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
- void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
- void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
- void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
- void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
- void visitUnknown(const SCEVUnknown *Numerator) {}
- void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
-
- void visitConstant(const SCEVConstant *Numerator) {
- if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
- APInt NumeratorVal = Numerator->getAPInt();
- APInt DenominatorVal = D->getAPInt();
- uint32_t NumeratorBW = NumeratorVal.getBitWidth();
- uint32_t DenominatorBW = DenominatorVal.getBitWidth();
-
- if (NumeratorBW > DenominatorBW)
- DenominatorVal = DenominatorVal.sext(NumeratorBW);
- else if (NumeratorBW < DenominatorBW)
- NumeratorVal = NumeratorVal.sext(DenominatorBW);
-
- APInt QuotientVal(NumeratorVal.getBitWidth(), 0);
- APInt RemainderVal(NumeratorVal.getBitWidth(), 0);
- APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal);
- Quotient = SE.getConstant(QuotientVal);
- Remainder = SE.getConstant(RemainderVal);
- return;
- }
- }
-
- void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
- const SCEV *StartQ, *StartR, *StepQ, *StepR;
- if (!Numerator->isAffine())
- return cannotDivide(Numerator);
- divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
- divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
- // Bail out if the types do not match.
- Type *Ty = Denominator->getType();
- if (Ty != StartQ->getType() || Ty != StartR->getType() ||
- Ty != StepQ->getType() || Ty != StepR->getType())
- return cannotDivide(Numerator);
- Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
- Numerator->getNoWrapFlags());
- Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
- Numerator->getNoWrapFlags());
- }
-
- void visitAddExpr(const SCEVAddExpr *Numerator) {
- SmallVector<const SCEV *, 2> Qs, Rs;
- Type *Ty = Denominator->getType();
-
- for (const SCEV *Op : Numerator->operands()) {
- const SCEV *Q, *R;
- divide(SE, Op, Denominator, &Q, &R);
-
- // Bail out if types do not match.
- if (Ty != Q->getType() || Ty != R->getType())
- return cannotDivide(Numerator);
-
- Qs.push_back(Q);
- Rs.push_back(R);
- }
-
- if (Qs.size() == 1) {
- Quotient = Qs[0];
- Remainder = Rs[0];
- return;
- }
-
- Quotient = SE.getAddExpr(Qs);
- Remainder = SE.getAddExpr(Rs);
- }
-
- void visitMulExpr(const SCEVMulExpr *Numerator) {
- SmallVector<const SCEV *, 2> Qs;
- Type *Ty = Denominator->getType();
-
- bool FoundDenominatorTerm = false;
- for (const SCEV *Op : Numerator->operands()) {
- // Bail out if types do not match.
- if (Ty != Op->getType())
- return cannotDivide(Numerator);
-
- if (FoundDenominatorTerm) {
- Qs.push_back(Op);
- continue;
- }
-
- // Check whether Denominator divides one of the product operands.
- const SCEV *Q, *R;
- divide(SE, Op, Denominator, &Q, &R);
- if (!R->isZero()) {
- Qs.push_back(Op);
- continue;
- }
-
- // Bail out if types do not match.
- if (Ty != Q->getType())
- return cannotDivide(Numerator);
-
- FoundDenominatorTerm = true;
- Qs.push_back(Q);
- }
-
- if (FoundDenominatorTerm) {
- Remainder = Zero;
- if (Qs.size() == 1)
- Quotient = Qs[0];
- else
- Quotient = SE.getMulExpr(Qs);
- return;
- }
-
- if (!isa<SCEVUnknown>(Denominator))
- return cannotDivide(Numerator);
-
- // The Remainder is obtained by replacing Denominator by 0 in Numerator.
- ValueToValueMap RewriteMap;
- RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
- cast<SCEVConstant>(Zero)->getValue();
- Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
-
- if (Remainder->isZero()) {
- // The Quotient is obtained by replacing Denominator by 1 in Numerator.
- RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
- cast<SCEVConstant>(One)->getValue();
- Quotient =
- SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
- return;
- }
-
- // Quotient is (Numerator - Remainder) divided by Denominator.
- const SCEV *Q, *R;
- const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
- // This SCEV does not seem to simplify: fail the division here.
- if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator))
- return cannotDivide(Numerator);
- divide(SE, Diff, Denominator, &Q, &R);
- if (R != Zero)
- return cannotDivide(Numerator);
- Quotient = Q;
- }
-
-private:
- SCEVDivision(ScalarEvolution &S, const SCEV *Numerator,
- const SCEV *Denominator)
- : SE(S), Denominator(Denominator) {
- Zero = SE.getZero(Denominator->getType());
- One = SE.getOne(Denominator->getType());
-
- // We generally do not know how to divide Expr by Denominator. We
- // initialize the division to a "cannot divide" state to simplify the rest
- // of the code.
- cannotDivide(Numerator);
- }
-
- // Convenience function for giving up on the division. We set the quotient to
- // be equal to zero and the remainder to be equal to the numerator.
- void cannotDivide(const SCEV *Numerator) {
- Quotient = Zero;
- Remainder = Numerator;
- }
-
- ScalarEvolution &SE;
- const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
-};
-
-} // end anonymous namespace
-
-//===----------------------------------------------------------------------===//
-// Simple SCEV method implementations
-//===----------------------------------------------------------------------===//
-
-/// Compute BC(It, K). The result has width W. Assume, K > 0.
-static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
- ScalarEvolution &SE,
- Type *ResultTy) {
- // Handle the simplest case efficiently.
- if (K == 1)
- return SE.getTruncateOrZeroExtend(It, ResultTy);
-
- // We are using the following formula for BC(It, K):
- //
- // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
- //
- // Suppose, W is the bitwidth of the return value. We must be prepared for
- // overflow. Hence, we must assure that the result of our computation is
- // equal to the accurate one modulo 2^W. Unfortunately, division isn't
- // safe in modular arithmetic.
- //
- // However, this code doesn't use exactly that formula; the formula it uses
- // is something like the following, where T is the number of factors of 2 in
- // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
- // exponentiation:
- //
- // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
- //
- // This formula is trivially equivalent to the previous formula. However,
- // this formula can be implemented much more efficiently. The trick is that
- // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
- // arithmetic. To do exact division in modular arithmetic, all we have
- // to do is multiply by the inverse. Therefore, this step can be done at
- // width W.
- //
- // The next issue is how to safely do the division by 2^T. The way this
- // is done is by doing the multiplication step at a width of at least W + T
- // bits. This way, the bottom W+T bits of the product are accurate. Then,
- // when we perform the division by 2^T (which is equivalent to a right shift
- // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
- // truncated out after the division by 2^T.
- //
- // In comparison to just directly using the first formula, this technique
- // is much more efficient; using the first formula requires W * K bits,
- // but this formula less than W + K bits. Also, the first formula requires
- // a division step, whereas this formula only requires multiplies and shifts.
- //
- // It doesn't matter whether the subtraction step is done in the calculation
- // width or the input iteration count's width; if the subtraction overflows,
- // the result must be zero anyway. We prefer here to do it in the width of
- // the induction variable because it helps a lot for certain cases; CodeGen
- // isn't smart enough to ignore the overflow, which leads to much less
- // efficient code if the width of the subtraction is wider than the native
- // register width.
- //
- // (It's possible to not widen at all by pulling out factors of 2 before
- // the multiplication; for example, K=2 can be calculated as
- // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
- // extra arithmetic, so it's not an obvious win, and it gets
- // much more complicated for K > 3.)
-
- // Protection from insane SCEVs; this bound is conservative,
- // but it probably doesn't matter.
- if (K > 1000)
- return SE.getCouldNotCompute();
-
- unsigned W = SE.getTypeSizeInBits(ResultTy);
-
- // Calculate K! / 2^T and T; we divide out the factors of two before
- // multiplying for calculating K! / 2^T to avoid overflow.
- // Other overflow doesn't matter because we only care about the bottom
- // W bits of the result.
- APInt OddFactorial(W, 1);
- unsigned T = 1;
- for (unsigned i = 3; i <= K; ++i) {
- APInt Mult(W, i);
- unsigned TwoFactors = Mult.countTrailingZeros();
- T += TwoFactors;
- Mult.lshrInPlace(TwoFactors);
- OddFactorial *= Mult;
- }
-
- // We need at least W + T bits for the multiplication step
- unsigned CalculationBits = W + T;
-
- // Calculate 2^T, at width T+W.
- APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
-
- // Calculate the multiplicative inverse of K! / 2^T;
- // this multiplication factor will perform the exact division by
- // K! / 2^T.
- APInt Mod = APInt::getSignedMinValue(W+1);
- APInt MultiplyFactor = OddFactorial.zext(W+1);
- MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
- MultiplyFactor = MultiplyFactor.trunc(W);
-
- // Calculate the product, at width T+W
- IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
- CalculationBits);
- const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
- for (unsigned i = 1; i != K; ++i) {
- const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
- Dividend = SE.getMulExpr(Dividend,
- SE.getTruncateOrZeroExtend(S, CalculationTy));
- }
-
- // Divide by 2^T
- const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
-
- // Truncate the result, and divide by K! / 2^T.
-
- return SE.getMulExpr(SE.getConstant(MultiplyFactor),
- SE.getTruncateOrZeroExtend(DivResult, ResultTy));
-}
-
-/// Return the value of this chain of recurrences at the specified iteration
-/// number. We can evaluate this recurrence by multiplying each element in the
-/// chain by the binomial coefficient corresponding to it. In other words, we
-/// can evaluate {A,+,B,+,C,+,D} as:
-///
-/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
-///
-/// where BC(It, k) stands for binomial coefficient.
-const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
- ScalarEvolution &SE) const {
- const SCEV *Result = getStart();
- for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
- // The computation is correct in the face of overflow provided that the
- // multiplication is performed _after_ the evaluation of the binomial
- // coefficient.
- const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
- if (isa<SCEVCouldNotCompute>(Coeff))
- return Coeff;
-
- Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
- }
- return Result;
-}
-
-//===----------------------------------------------------------------------===//
-// SCEV Expression folder implementations
-//===----------------------------------------------------------------------===//
-
-const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
- Type *Ty) {
- assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
- "This is not a truncating conversion!");
- assert(isSCEVable(Ty) &&
- "This is not a conversion to a SCEVable type!");
- Ty = getEffectiveSCEVType(Ty);
-
- FoldingSetNodeID ID;
- ID.AddInteger(scTruncate);
- ID.AddPointer(Op);
- ID.AddPointer(Ty);
- void *IP = nullptr;
- if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
-
- // Fold if the operand is constant.
- if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
- return getConstant(
- cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
-
- // trunc(trunc(x)) --> trunc(x)
- if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
- return getTruncateExpr(ST->getOperand(), Ty);
-
- // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
- if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
- return getTruncateOrSignExtend(SS->getOperand(), Ty);
-
- // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
- if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
- return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
-
- // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and
- // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN),
- // if after transforming we have at most one truncate, not counting truncates
- // that replace other casts.
- if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) {
- auto *CommOp = cast<SCEVCommutativeExpr>(Op);
- SmallVector<const SCEV *, 4> Operands;
- unsigned numTruncs = 0;
- for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2;
- ++i) {
- const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty);
- if (!isa<SCEVCastExpr>(CommOp->getOperand(i)) && isa<SCEVTruncateExpr>(S))
- numTruncs++;
- Operands.push_back(S);
- }
- if (numTruncs < 2) {
- if (isa<SCEVAddExpr>(Op))
- return getAddExpr(Operands);
- else if (isa<SCEVMulExpr>(Op))
- return getMulExpr(Operands);
- else
- llvm_unreachable("Unexpected SCEV type for Op.");
- }
- // Although we checked in the beginning that ID is not in the cache, it is
- // possible that during recursion and different modification ID was inserted
- // into the cache. So if we find it, just return it.
- if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
- return S;
- }
-
- // If the input value is a chrec scev, truncate the chrec's operands.
- if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
- SmallVector<const SCEV *, 4> Operands;
- for (const SCEV *Op : AddRec->operands())
- Operands.push_back(getTruncateExpr(Op, Ty));
- return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
- }
-
- // The cast wasn't folded; create an explicit cast node. We can reuse
- // the existing insert position since if we get here, we won't have
- // made any changes which would invalidate it.
- SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
- Op, Ty);
- UniqueSCEVs.InsertNode(S, IP);
- addToLoopUseLists(S);
- return S;
-}
-
-// Get the limit of a recurrence such that incrementing by Step cannot cause
-// signed overflow as long as the value of the recurrence within the
-// loop does not exceed this limit before incrementing.
-static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
- ICmpInst::Predicate *Pred,
- ScalarEvolution *SE) {
- unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
- if (SE->isKnownPositive(Step)) {
- *Pred = ICmpInst::ICMP_SLT;
- return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
- SE->getSignedRangeMax(Step));
- }
- if (SE->isKnownNegative(Step)) {
- *Pred = ICmpInst::ICMP_SGT;
- return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
- SE->getSignedRangeMin(Step));
- }
- return nullptr;
-}
-
-// Get the limit of a recurrence such that incrementing by Step cannot cause
-// unsigned overflow as long as the value of the recurrence within the loop does
-// not exceed this limit before incrementing.
-static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
- ICmpInst::Predicate *Pred,
- ScalarEvolution *SE) {
- unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
- *Pred = ICmpInst::ICMP_ULT;
-
- return SE->getConstant(APInt::getMinValue(BitWidth) -
- SE->getUnsignedRangeMax(Step));
-}
-
-namespace {
-
-struct ExtendOpTraitsBase {
- typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *,
- unsigned);
-};
-
-// Used to make code generic over signed and unsigned overflow.
-template <typename ExtendOp> struct ExtendOpTraits {
- // Members present:
- //
- // static const SCEV::NoWrapFlags WrapType;
- //
- // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
- //
- // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
- // ICmpInst::Predicate *Pred,
- // ScalarEvolution *SE);
-};
-
-template <>
-struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
- static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
-
- static const GetExtendExprTy GetExtendExpr;
-
- static const SCEV *getOverflowLimitForStep(const SCEV *Step,
- ICmpInst::Predicate *Pred,
- ScalarEvolution *SE) {
- return getSignedOverflowLimitForStep(Step, Pred, SE);
- }
-};
-
-const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
- SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
-
-template <>
-struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
- static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
-
- static const GetExtendExprTy GetExtendExpr;
-
- static const SCEV *getOverflowLimitForStep(const SCEV *Step,
- ICmpInst::Predicate *Pred,
- ScalarEvolution *SE) {
- return getUnsignedOverflowLimitForStep(Step, Pred, SE);
- }
-};
-
-const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
- SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
-
-} // end anonymous namespace
-
-// The recurrence AR has been shown to have no signed/unsigned wrap or something
-// close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
-// easily prove NSW/NUW for its preincrement or postincrement sibling. This
-// allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
-// Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
-// expression "Step + sext/zext(PreIncAR)" is congruent with
-// "sext/zext(PostIncAR)"
-template <typename ExtendOpTy>
-static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
- ScalarEvolution *SE, unsigned Depth) {
- auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
- auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
-
- const Loop *L = AR->getLoop();
- const SCEV *Start = AR->getStart();
- const SCEV *Step = AR->getStepRecurrence(*SE);
-
- // Check for a simple looking step prior to loop entry.
- const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
- if (!SA)
- return nullptr;
-
- // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
- // subtraction is expensive. For this purpose, perform a quick and dirty
- // difference, by checking for Step in the operand list.
- SmallVector<const SCEV *, 4> DiffOps;
- for (const SCEV *Op : SA->operands())
- if (Op != Step)
- DiffOps.push_back(Op);
-
- if (DiffOps.size() == SA->getNumOperands())
- return nullptr;
-
- // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
- // `Step`:
-
- // 1. NSW/NUW flags on the step increment.
- auto PreStartFlags =
- ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
- const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
- const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
- SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
-
- // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
- // "S+X does not sign/unsign-overflow".
- //
-
- const SCEV *BECount = SE->getBackedgeTakenCount(L);
- if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
- !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
- return PreStart;
-
- // 2. Direct overflow check on the step operation's expression.
- unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
- Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
- const SCEV *OperandExtendedStart =
- SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth),
- (SE->*GetExtendExpr)(Step, WideTy, Depth));
- if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) {
- if (PreAR && AR->getNoWrapFlags(WrapType)) {
- // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
- // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
- // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact.
- const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType);
- }
- return PreStart;
- }
-
- // 3. Loop precondition.
- ICmpInst::Predicate Pred;
- const SCEV *OverflowLimit =
- ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
-
- if (OverflowLimit &&
- SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
- return PreStart;
-
- return nullptr;
-}
-
-// Get the normalized zero or sign extended expression for this AddRec's Start.
-template <typename ExtendOpTy>
-static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
- ScalarEvolution *SE,
- unsigned Depth) {
- auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
-
- const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth);
- if (!PreStart)
- return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth);
-
- return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty,
- Depth),
- (SE->*GetExtendExpr)(PreStart, Ty, Depth));
-}
-
-// Try to prove away overflow by looking at "nearby" add recurrences. A
-// motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
-// does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
-//
-// Formally:
-//
-// {S,+,X} == {S-T,+,X} + T
-// => Ext({S,+,X}) == Ext({S-T,+,X} + T)
-//
-// If ({S-T,+,X} + T) does not overflow ... (1)
-//
-// RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
-//
-// If {S-T,+,X} does not overflow ... (2)
-//
-// RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
-// == {Ext(S-T)+Ext(T),+,Ext(X)}
-//
-// If (S-T)+T does not overflow ... (3)
-//
-// RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
-// == {Ext(S),+,Ext(X)} == LHS
-//
-// Thus, if (1), (2) and (3) are true for some T, then
-// Ext({S,+,X}) == {Ext(S),+,Ext(X)}
-//
-// (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
-// does not overflow" restricted to the 0th iteration. Therefore we only need
-// to check for (1) and (2).
-//
-// In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
-// is `Delta` (defined below).
-template <typename ExtendOpTy>
-bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
- const SCEV *Step,
- const Loop *L) {
- auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
-
- // We restrict `Start` to a constant to prevent SCEV from spending too much
- // time here. It is correct (but more expensive) to continue with a
- // non-constant `Start` and do a general SCEV subtraction to compute
- // `PreStart` below.
- const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
- if (!StartC)
- return false;
-
- APInt StartAI = StartC->getAPInt();
-
- for (unsigned Delta : {-2, -1, 1, 2}) {
- const SCEV *PreStart = getConstant(StartAI - Delta);
-
- FoldingSetNodeID ID;
- ID.AddInteger(scAddRecExpr);
- ID.AddPointer(PreStart);
- ID.AddPointer(Step);
- ID.AddPointer(L);
- void *IP = nullptr;
- const auto *PreAR =
- static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
-
- // Give up if we don't already have the add recurrence we need because
- // actually constructing an add recurrence is relatively expensive.
- if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2)
- const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
- ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
- const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
- DeltaS, &Pred, this);
- if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1)
- return true;
- }
- }
-
- return false;
-}
-
-// Finds an integer D for an expression (C + x + y + ...) such that the top
-// level addition in (D + (C - D + x + y + ...)) would not wrap (signed or
-// unsigned) and the number of trailing zeros of (C - D + x + y + ...) is
-// maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and
-// the (C + x + y + ...) expression is \p WholeAddExpr.
-static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
- const SCEVConstant *ConstantTerm,
- const SCEVAddExpr *WholeAddExpr) {
- const APInt C = ConstantTerm->getAPInt();
- const unsigned BitWidth = C.getBitWidth();
- // Find number of trailing zeros of (x + y + ...) w/o the C first:
- uint32_t TZ = BitWidth;
- for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I)
- TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I)));
- if (TZ) {
- // Set D to be as many least significant bits of C as possible while still
- // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap:
- return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C;
- }
- return APInt(BitWidth, 0);
-}
-
-// Finds an integer D for an affine AddRec expression {C,+,x} such that the top
-// level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the
-// number of trailing zeros of (C - D + x * n) is maximized, where C is the \p
-// ConstantStart, x is an arbitrary \p Step, and n is the loop trip count.
-static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
- const APInt &ConstantStart,
- const SCEV *Step) {
- const unsigned BitWidth = ConstantStart.getBitWidth();
- const uint32_t TZ = SE.GetMinTrailingZeros(Step);
- if (TZ)
- return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth)
- : ConstantStart;
- return APInt(BitWidth, 0);
-}
-
-const SCEV *
-ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
- assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
- "This is not an extending conversion!");
- assert(isSCEVable(Ty) &&
- "This is not a conversion to a SCEVable type!");
- Ty = getEffectiveSCEVType(Ty);
-
- // Fold if the operand is constant.
- if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
- return getConstant(
- cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
-
- // zext(zext(x)) --> zext(x)
- if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
- return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
-
- // Before doing any expensive analysis, check to see if we've already
- // computed a SCEV for this Op and Ty.
- FoldingSetNodeID ID;
- ID.AddInteger(scZeroExtend);
- ID.AddPointer(Op);
- ID.AddPointer(Ty);
- void *IP = nullptr;
- if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
- if (Depth > MaxExtDepth) {
- SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
- Op, Ty);
- UniqueSCEVs.InsertNode(S, IP);
- addToLoopUseLists(S);
- return S;
- }
-
- // zext(trunc(x)) --> zext(x) or x or trunc(x)
- if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
- // It's possible the bits taken off by the truncate were all zero bits. If
- // so, we should be able to simplify this further.
- const SCEV *X = ST->getOperand();
- ConstantRange CR = getUnsignedRange(X);
- unsigned TruncBits = getTypeSizeInBits(ST->getType());
- unsigned NewBits = getTypeSizeInBits(Ty);
- if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
- CR.zextOrTrunc(NewBits)))
- return getTruncateOrZeroExtend(X, Ty);
- }
-
- // If the input value is a chrec scev, and we can prove that the value
- // did not overflow the old, smaller, value, we can zero extend all of the
- // operands (often constants). This allows analysis of something like
- // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
- if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
- if (AR->isAffine()) {
- const SCEV *Start = AR->getStart();
- const SCEV *Step = AR->getStepRecurrence(*this);
- unsigned BitWidth = getTypeSizeInBits(AR->getType());
- const Loop *L = AR->getLoop();
-
- if (!AR->hasNoUnsignedWrap()) {
- auto NewFlags = proveNoWrapViaConstantRanges(AR);
- const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
- }
-
- // If we have special knowledge that this addrec won't overflow,
- // we don't need to do any further analysis.
- if (AR->hasNoUnsignedWrap())
- return getAddRecExpr(
- getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
- getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
-
- // Check whether the backedge-taken count is SCEVCouldNotCompute.
- // Note that this serves two purposes: It filters out loops that are
- // simply not analyzable, and it covers the case where this code is
- // being called from within backedge-taken count analysis, such that
- // attempting to ask for the backedge-taken count would likely result
- // in infinite recursion. In the later case, the analysis code will
- // cope with a conservative value, and it will take care to purge
- // that value once it has finished.
- const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
- if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
- // Manually compute the final value for AR, checking for
- // overflow.
-
- // Check whether the backedge-taken count can be losslessly casted to
- // the addrec's type. The count is always unsigned.
- const SCEV *CastedMaxBECount =
- getTruncateOrZeroExtend(MaxBECount, Start->getType());
- const SCEV *RecastedMaxBECount =
- getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
- if (MaxBECount == RecastedMaxBECount) {
- Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
- // Check whether Start+Step*MaxBECount has no unsigned overflow.
- const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step,
- SCEV::FlagAnyWrap, Depth + 1);
- const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul,
- SCEV::FlagAnyWrap,
- Depth + 1),
- WideTy, Depth + 1);
- const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1);
- const SCEV *WideMaxBECount =
- getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
- const SCEV *OperandExtendedAdd =
- getAddExpr(WideStart,
- getMulExpr(WideMaxBECount,
- getZeroExtendExpr(Step, WideTy, Depth + 1),
- SCEV::FlagAnyWrap, Depth + 1),
- SCEV::FlagAnyWrap, Depth + 1);
- if (ZAdd == OperandExtendedAdd) {
- // Cache knowledge of AR NUW, which is propagated to this AddRec.
- const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
- // Return the expression with the addrec on the outside.
- return getAddRecExpr(
- getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
- Depth + 1),
- getZeroExtendExpr(Step, Ty, Depth + 1), L,
- AR->getNoWrapFlags());
- }
- // Similar to above, only this time treat the step value as signed.
- // This covers loops that count down.
- OperandExtendedAdd =
- getAddExpr(WideStart,
- getMulExpr(WideMaxBECount,
- getSignExtendExpr(Step, WideTy, Depth + 1),
- SCEV::FlagAnyWrap, Depth + 1),
- SCEV::FlagAnyWrap, Depth + 1);
- if (ZAdd == OperandExtendedAdd) {
- // Cache knowledge of AR NW, which is propagated to this AddRec.
- // Negative step causes unsigned wrap, but it still can't self-wrap.
- const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
- // Return the expression with the addrec on the outside.
- return getAddRecExpr(
- getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
- Depth + 1),
- getSignExtendExpr(Step, Ty, Depth + 1), L,
- AR->getNoWrapFlags());
- }
- }
- }
-
- // Normally, in the cases we can prove no-overflow via a
- // backedge guarding condition, we can also compute a backedge
- // taken count for the loop. The exceptions are assumptions and
- // guards present in the loop -- SCEV is not great at exploiting
- // these to compute max backedge taken counts, but can still use
- // these to prove lack of overflow. Use this fact to avoid
- // doing extra work that may not pay off.
- if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
- !AC.assumptions().empty()) {
- // If the backedge is guarded by a comparison with the pre-inc
- // value the addrec is safe. Also, if the entry is guarded by
- // a comparison with the start value and the backedge is
- // guarded by a comparison with the post-inc value, the addrec
- // is safe.
- if (isKnownPositive(Step)) {
- const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
- getUnsignedRangeMax(Step));
- if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
- isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) {
- // Cache knowledge of AR NUW, which is propagated to this
- // AddRec.
- const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
- // Return the expression with the addrec on the outside.
- return getAddRecExpr(
- getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
- Depth + 1),
- getZeroExtendExpr(Step, Ty, Depth + 1), L,
- AR->getNoWrapFlags());
- }
- } else if (isKnownNegative(Step)) {
- const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
- getSignedRangeMin(Step));
- if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
- isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) {
- // Cache knowledge of AR NW, which is propagated to this
- // AddRec. Negative step causes unsigned wrap, but it
- // still can't self-wrap.
- const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
- // Return the expression with the addrec on the outside.
- return getAddRecExpr(
- getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
- Depth + 1),
- getSignExtendExpr(Step, Ty, Depth + 1), L,
- AR->getNoWrapFlags());
- }
- }
- }
-
- // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw>
- // if D + (C - D + Step * n) could be proven to not unsigned wrap
- // where D maximizes the number of trailing zeros of (C - D + Step * n)
- if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
- const APInt &C = SC->getAPInt();
- const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
- if (D != 0) {
- const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
- const SCEV *SResidual =
- getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
- const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
- return getAddExpr(SZExtD, SZExtR,
- (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
- Depth + 1);
- }
- }
-
- if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
- const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
- return getAddRecExpr(
- getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
- getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
- }
- }
-
- // zext(A % B) --> zext(A) % zext(B)
- {
- const SCEV *LHS;
- const SCEV *RHS;
- if (matchURem(Op, LHS, RHS))
- return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1),
- getZeroExtendExpr(RHS, Ty, Depth + 1));
- }
-
- // zext(A / B) --> zext(A) / zext(B).
- if (auto *Div = dyn_cast<SCEVUDivExpr>(Op))
- return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1),
- getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1));
-
- if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
- // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
- if (SA->hasNoUnsignedWrap()) {
- // If the addition does not unsign overflow then we can, by definition,
- // commute the zero extension with the addition operation.
- SmallVector<const SCEV *, 4> Ops;
- for (const auto *Op : SA->operands())
- Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
- return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1);
- }
-
- // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...))
- // if D + (C - D + x + y + ...) could be proven to not unsigned wrap
- // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
- //
- // Often address arithmetics contain expressions like
- // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))).
- // This transformation is useful while proving that such expressions are
- // equal or differ by a small constant amount, see LoadStoreVectorizer pass.
- if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
- const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
- if (D != 0) {
- const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
- const SCEV *SResidual =
- getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
- const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
- return getAddExpr(SZExtD, SZExtR,
- (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
- Depth + 1);
- }
- }
- }
-
- if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) {
- // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw>
- if (SM->hasNoUnsignedWrap()) {
- // If the multiply does not unsign overflow then we can, by definition,
- // commute the zero extension with the multiply operation.
- SmallVector<const SCEV *, 4> Ops;
- for (const auto *Op : SM->operands())
- Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
- return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1);
- }
-
- // zext(2^K * (trunc X to iN)) to iM ->
- // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw>
- //
- // Proof:
- //
- // zext(2^K * (trunc X to iN)) to iM
- // = zext((trunc X to iN) << K) to iM
- // = zext((trunc X to i{N-K}) << K)<nuw> to iM
- // (because shl removes the top K bits)
- // = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM
- // = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>.
- //
- if (SM->getNumOperands() == 2)
- if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0)))
- if (MulLHS->getAPInt().isPowerOf2())
- if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) {
- int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) -
- MulLHS->getAPInt().logBase2();
- Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits);
- return getMulExpr(
- getZeroExtendExpr(MulLHS, Ty),
- getZeroExtendExpr(
- getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty),
- SCEV::FlagNUW, Depth + 1);
- }
- }
-
- // The cast wasn't folded; create an explicit cast node.
- // Recompute the insert position, as it may have been invalidated.
- if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
- SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
- Op, Ty);
- UniqueSCEVs.InsertNode(S, IP);
- addToLoopUseLists(S);
- return S;
-}
-
-const SCEV *
-ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
- assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
- "This is not an extending conversion!");
- assert(isSCEVable(Ty) &&
- "This is not a conversion to a SCEVable type!");
- Ty = getEffectiveSCEVType(Ty);
-
- // Fold if the operand is constant.
- if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
- return getConstant(
- cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
-
- // sext(sext(x)) --> sext(x)
- if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
- return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1);
-
- // sext(zext(x)) --> zext(x)
- if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
- return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
-
- // Before doing any expensive analysis, check to see if we've already
- // computed a SCEV for this Op and Ty.
- FoldingSetNodeID ID;
- ID.AddInteger(scSignExtend);
- ID.AddPointer(Op);
- ID.AddPointer(Ty);
- void *IP = nullptr;
- if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
- // Limit recursion depth.
- if (Depth > MaxExtDepth) {
- SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
- Op, Ty);
- UniqueSCEVs.InsertNode(S, IP);
- addToLoopUseLists(S);
- return S;
- }
-
- // sext(trunc(x)) --> sext(x) or x or trunc(x)
- if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
- // It's possible the bits taken off by the truncate were all sign bits. If
- // so, we should be able to simplify this further.
- const SCEV *X = ST->getOperand();
- ConstantRange CR = getSignedRange(X);
- unsigned TruncBits = getTypeSizeInBits(ST->getType());
- unsigned NewBits = getTypeSizeInBits(Ty);
- if (CR.truncate(TruncBits).signExtend(NewBits).contains(
- CR.sextOrTrunc(NewBits)))
- return getTruncateOrSignExtend(X, Ty);
- }
-
- if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
- // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
- if (SA->hasNoSignedWrap()) {
- // If the addition does not sign overflow then we can, by definition,
- // commute the sign extension with the addition operation.
- SmallVector<const SCEV *, 4> Ops;
- for (const auto *Op : SA->operands())
- Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1));
- return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1);
- }
-
- // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...))
- // if D + (C - D + x + y + ...) could be proven to not signed wrap
- // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
- //
- // For instance, this will bring two seemingly different expressions:
- // 1 + sext(5 + 20 * %x + 24 * %y) and
- // sext(6 + 20 * %x + 24 * %y)
- // to the same form:
- // 2 + sext(4 + 20 * %x + 24 * %y)
- if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
- const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
- if (D != 0) {
- const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
- const SCEV *SResidual =
- getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
- const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
- return getAddExpr(SSExtD, SSExtR,
- (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
- Depth + 1);
- }
- }
- }
- // If the input value is a chrec scev, and we can prove that the value
- // did not overflow the old, smaller, value, we can sign extend all of the
- // operands (often constants). This allows analysis of something like
- // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
- if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
- if (AR->isAffine()) {
- const SCEV *Start = AR->getStart();
- const SCEV *Step = AR->getStepRecurrence(*this);
- unsigned BitWidth = getTypeSizeInBits(AR->getType());
- const Loop *L = AR->getLoop();
-
- if (!AR->hasNoSignedWrap()) {
- auto NewFlags = proveNoWrapViaConstantRanges(AR);
- const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
- }
-
- // If we have special knowledge that this addrec won't overflow,
- // we don't need to do any further analysis.
- if (AR->hasNoSignedWrap())
- return getAddRecExpr(
- getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
- getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW);
-
- // Check whether the backedge-taken count is SCEVCouldNotCompute.
- // Note that this serves two purposes: It filters out loops that are
- // simply not analyzable, and it covers the case where this code is
- // being called from within backedge-taken count analysis, such that
- // attempting to ask for the backedge-taken count would likely result
- // in infinite recursion. In the later case, the analysis code will
- // cope with a conservative value, and it will take care to purge
- // that value once it has finished.
- const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
- if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
- // Manually compute the final value for AR, checking for
- // overflow.
-
- // Check whether the backedge-taken count can be losslessly casted to
- // the addrec's type. The count is always unsigned.
- const SCEV *CastedMaxBECount =
- getTruncateOrZeroExtend(MaxBECount, Start->getType());
- const SCEV *RecastedMaxBECount =
- getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
- if (MaxBECount == RecastedMaxBECount) {
- Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
- // Check whether Start+Step*MaxBECount has no signed overflow.
- const SCEV *SMul = getMulExpr(CastedMaxBECount, Step,
- SCEV::FlagAnyWrap, Depth + 1);
- const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul,
- SCEV::FlagAnyWrap,
- Depth + 1),
- WideTy, Depth + 1);
- const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1);
- const SCEV *WideMaxBECount =
- getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
- const SCEV *OperandExtendedAdd =
- getAddExpr(WideStart,
- getMulExpr(WideMaxBECount,
- getSignExtendExpr(Step, WideTy, Depth + 1),
- SCEV::FlagAnyWrap, Depth + 1),
- SCEV::FlagAnyWrap, Depth + 1);
- if (SAdd == OperandExtendedAdd) {
- // Cache knowledge of AR NSW, which is propagated to this AddRec.
- const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
- // Return the expression with the addrec on the outside.
- return getAddRecExpr(
- getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
- Depth + 1),
- getSignExtendExpr(Step, Ty, Depth + 1), L,
- AR->getNoWrapFlags());
- }
- // Similar to above, only this time treat the step value as unsigned.
- // This covers loops that count up with an unsigned step.
- OperandExtendedAdd =
- getAddExpr(WideStart,
- getMulExpr(WideMaxBECount,
- getZeroExtendExpr(Step, WideTy, Depth + 1),
- SCEV::FlagAnyWrap, Depth + 1),
- SCEV::FlagAnyWrap, Depth + 1);
- if (SAdd == OperandExtendedAdd) {
- // If AR wraps around then
- //
- // abs(Step) * MaxBECount > unsigned-max(AR->getType())
- // => SAdd != OperandExtendedAdd
- //
- // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
- // (SAdd == OperandExtendedAdd => AR is NW)
-
- const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
-
- // Return the expression with the addrec on the outside.
- return getAddRecExpr(
- getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
- Depth + 1),
- getZeroExtendExpr(Step, Ty, Depth + 1), L,
- AR->getNoWrapFlags());
- }
- }
- }
-
- // Normally, in the cases we can prove no-overflow via a
- // backedge guarding condition, we can also compute a backedge
- // taken count for the loop. The exceptions are assumptions and
- // guards present in the loop -- SCEV is not great at exploiting
- // these to compute max backedge taken counts, but can still use
- // these to prove lack of overflow. Use this fact to avoid
- // doing extra work that may not pay off.
-
- if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
- !AC.assumptions().empty()) {
- // If the backedge is guarded by a comparison with the pre-inc
- // value the addrec is safe. Also, if the entry is guarded by
- // a comparison with the start value and the backedge is
- // guarded by a comparison with the post-inc value, the addrec
- // is safe.
- ICmpInst::Predicate Pred;
- const SCEV *OverflowLimit =
- getSignedOverflowLimitForStep(Step, &Pred, this);
- if (OverflowLimit &&
- (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
- isKnownOnEveryIteration(Pred, AR, OverflowLimit))) {
- // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
- const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
- return getAddRecExpr(
- getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
- getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
- }
- }
-
- // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw>
- // if D + (C - D + Step * n) could be proven to not signed wrap
- // where D maximizes the number of trailing zeros of (C - D + Step * n)
- if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
- const APInt &C = SC->getAPInt();
- const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
- if (D != 0) {
- const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
- const SCEV *SResidual =
- getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
- const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
- return getAddExpr(SSExtD, SSExtR,
- (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
- Depth + 1);
- }
- }
-
- if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
- const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
- return getAddRecExpr(
- getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
- getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
- }
- }
-
- // If the input value is provably positive and we could not simplify
- // away the sext build a zext instead.
- if (isKnownNonNegative(Op))
- return getZeroExtendExpr(Op, Ty, Depth + 1);
-
- // The cast wasn't folded; create an explicit cast node.
- // Recompute the insert position, as it may have been invalidated.
- if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
- SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
- Op, Ty);
- UniqueSCEVs.InsertNode(S, IP);
- addToLoopUseLists(S);
- return S;
-}
-
-/// getAnyExtendExpr - Return a SCEV for the given operand extended with
-/// unspecified bits out to the given type.
-const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
- Type *Ty) {
- assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
- "This is not an extending conversion!");
- assert(isSCEVable(Ty) &&
- "This is not a conversion to a SCEVable type!");
- Ty = getEffectiveSCEVType(Ty);
-
- // Sign-extend negative constants.
- if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
- if (SC->getAPInt().isNegative())
- return getSignExtendExpr(Op, Ty);
-
- // Peel off a truncate cast.
- if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
- const SCEV *NewOp = T->getOperand();
- if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
- return getAnyExtendExpr(NewOp, Ty);
- return getTruncateOrNoop(NewOp, Ty);
- }
-
- // Next try a zext cast. If the cast is folded, use it.
- const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
- if (!isa<SCEVZeroExtendExpr>(ZExt))
- return ZExt;
-
- // Next try a sext cast. If the cast is folded, use it.
- const SCEV *SExt = getSignExtendExpr(Op, Ty);
- if (!isa<SCEVSignExtendExpr>(SExt))
- return SExt;
-
- // Force the cast to be folded into the operands of an addrec.
- if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
- SmallVector<const SCEV *, 4> Ops;
- for (const SCEV *Op : AR->operands())
- Ops.push_back(getAnyExtendExpr(Op, Ty));
- return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
- }
-
- // If the expression is obviously signed, use the sext cast value.
- if (isa<SCEVSMaxExpr>(Op))
- return SExt;
-
- // Absent any other information, use the zext cast value.
- return ZExt;
-}
-
-/// Process the given Ops list, which is a list of operands to be added under
-/// the given scale, update the given map. This is a helper function for
-/// getAddRecExpr. As an example of what it does, given a sequence of operands
-/// that would form an add expression like this:
-///
-/// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
-///
-/// where A and B are constants, update the map with these values:
-///
-/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
-///
-/// and add 13 + A*B*29 to AccumulatedConstant.
-/// This will allow getAddRecExpr to produce this:
-///
-/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
-///
-/// This form often exposes folding opportunities that are hidden in
-/// the original operand list.
-///
-/// Return true iff it appears that any interesting folding opportunities
-/// may be exposed. This helps getAddRecExpr short-circuit extra work in
-/// the common case where no interesting opportunities are present, and
-/// is also used as a check to avoid infinite recursion.
-static bool
-CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
- SmallVectorImpl<const SCEV *> &NewOps,
- APInt &AccumulatedConstant,
- const SCEV *const *Ops, size_t NumOperands,
- const APInt &Scale,
- ScalarEvolution &SE) {
- bool Interesting = false;
-
- // Iterate over the add operands. They are sorted, with constants first.
- unsigned i = 0;
- while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
- ++i;
- // Pull a buried constant out to the outside.
- if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
- Interesting = true;
- AccumulatedConstant += Scale * C->getAPInt();
- }
-
- // Next comes everything else. We're especially interested in multiplies
- // here, but they're in the middle, so just visit the rest with one loop.
- for (; i != NumOperands; ++i) {
- const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
- if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
- APInt NewScale =
- Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
- if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
- // A multiplication of a constant with another add; recurse.
- const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
- Interesting |=
- CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
- Add->op_begin(), Add->getNumOperands(),
- NewScale, SE);
- } else {
- // A multiplication of a constant with some other value. Update
- // the map.
- SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
- const SCEV *Key = SE.getMulExpr(MulOps);
- auto Pair = M.insert({Key, NewScale});
- if (Pair.second) {
- NewOps.push_back(Pair.first->first);
- } else {
- Pair.first->second += NewScale;
- // The map already had an entry for this value, which may indicate
- // a folding opportunity.
- Interesting = true;
- }
- }
- } else {
- // An ordinary operand. Update the map.
- std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
- M.insert({Ops[i], Scale});
- if (Pair.second) {
- NewOps.push_back(Pair.first->first);
- } else {
- Pair.first->second += Scale;
- // The map already had an entry for this value, which may indicate
- // a folding opportunity.
- Interesting = true;
- }
- }
- }
-
- return Interesting;
-}
-
-// We're trying to construct a SCEV of type `Type' with `Ops' as operands and
-// `OldFlags' as can't-wrap behavior. Infer a more aggressive set of
-// can't-overflow flags for the operation if possible.
-static SCEV::NoWrapFlags
-StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
- const SmallVectorImpl<const SCEV *> &Ops,
- SCEV::NoWrapFlags Flags) {
- using namespace std::placeholders;
-
- using OBO = OverflowingBinaryOperator;
-
- bool CanAnalyze =
- Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
- (void)CanAnalyze;
- assert(CanAnalyze && "don't call from other places!");
-
- int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
- SCEV::NoWrapFlags SignOrUnsignWrap =
- ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
-
- // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
- auto IsKnownNonNegative = [&](const SCEV *S) {
- return SE->isKnownNonNegative(S);
- };
-
- if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
- Flags =
- ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
-
- SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
-
- if (SignOrUnsignWrap != SignOrUnsignMask &&
- (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 &&
- isa<SCEVConstant>(Ops[0])) {
-
- auto Opcode = [&] {
- switch (Type) {
- case scAddExpr:
- return Instruction::Add;
- case scMulExpr:
- return Instruction::Mul;
- default:
- llvm_unreachable("Unexpected SCEV op.");
- }
- }();
-
- const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
-
- // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow.
- if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
- auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
- Opcode, C, OBO::NoSignedWrap);
- if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
- Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
- }
-
- // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow.
- if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
- auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
- Opcode, C, OBO::NoUnsignedWrap);
- if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
- Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
- }
- }
-
- return Flags;
-}
-
-bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) {
- return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader());
-}
-
-/// Get a canonical add expression, or something simpler if possible.
-const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
- SCEV::NoWrapFlags Flags,
- unsigned Depth) {
- assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
- "only nuw or nsw allowed");
- assert(!Ops.empty() && "Cannot get empty add!");
- if (Ops.size() == 1) return Ops[0];
-#ifndef NDEBUG
- Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
- for (unsigned i = 1, e = Ops.size(); i != e; ++i)
- assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
- "SCEVAddExpr operand types don't match!");
-#endif
-
- // Sort by complexity, this groups all similar expression types together.
- GroupByComplexity(Ops, &LI, DT);
-
- Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags);
-
- // If there are any constants, fold them together.
- unsigned Idx = 0;
- if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
- ++Idx;
- assert(Idx < Ops.size());
- while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
- // We found two constants, fold them together!
- Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
- if (Ops.size() == 2) return Ops[0];
- Ops.erase(Ops.begin()+1); // Erase the folded element
- LHSC = cast<SCEVConstant>(Ops[0]);
- }
-
- // If we are left with a constant zero being added, strip it off.
- if (LHSC->getValue()->isZero()) {
- Ops.erase(Ops.begin());
- --Idx;
- }
-
- if (Ops.size() == 1) return Ops[0];
- }
-
- // Limit recursion calls depth.
- if (Depth > MaxArithDepth)
- return getOrCreateAddExpr(Ops, Flags);
-
- // Okay, check to see if the same value occurs in the operand list more than
- // once. If so, merge them together into an multiply expression. Since we
- // sorted the list, these values are required to be adjacent.
- Type *Ty = Ops[0]->getType();
- bool FoundMatch = false;
- for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
- if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
- // Scan ahead to count how many equal operands there are.
- unsigned Count = 2;
- while (i+Count != e && Ops[i+Count] == Ops[i])
- ++Count;
- // Merge the values into a multiply.
- const SCEV *Scale = getConstant(Ty, Count);
- const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1);
- if (Ops.size() == Count)
- return Mul;
- Ops[i] = Mul;
- Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
- --i; e -= Count - 1;
- FoundMatch = true;
- }
- if (FoundMatch)
- return getAddExpr(Ops, Flags, Depth + 1);
-
- // Check for truncates. If all the operands are truncated from the same
- // type, see if factoring out the truncate would permit the result to be
- // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y)
- // if the contents of the resulting outer trunc fold to something simple.
- auto FindTruncSrcType = [&]() -> Type * {
- // We're ultimately looking to fold an addrec of truncs and muls of only
- // constants and truncs, so if we find any other types of SCEV
- // as operands of the addrec then we bail and return nullptr here.
- // Otherwise, we return the type of the operand of a trunc that we find.
- if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx]))
- return T->getOperand()->getType();
- if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
- const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1);
- if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp))
- return T->getOperand()->getType();
- }
- return nullptr;
- };
- if (auto *SrcType = FindTruncSrcType()) {
- SmallVector<const SCEV *, 8> LargeOps;
- bool Ok = true;
- // Check all the operands to see if they can be represented in the
- // source type of the truncate.
- for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
- if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
- if (T->getOperand()->getType() != SrcType) {
- Ok = false;
- break;
- }
- LargeOps.push_back(T->getOperand());
- } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
- LargeOps.push_back(getAnyExtendExpr(C, SrcType));
- } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
- SmallVector<const SCEV *, 8> LargeMulOps;
- for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
- if (const SCEVTruncateExpr *T =
- dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
- if (T->getOperand()->getType() != SrcType) {
- Ok = false;
- break;
- }
- LargeMulOps.push_back(T->getOperand());
- } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
- LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
- } else {
- Ok = false;
- break;
- }
- }
- if (Ok)
- LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1));
- } else {
- Ok = false;
- break;
- }
- }
- if (Ok) {
- // Evaluate the expression in the larger type.
- const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1);
- // If it folds to something simple, use it. Otherwise, don't.
- if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
- return getTruncateExpr(Fold, Ty);
- }
- }
-
- // Skip past any other cast SCEVs.
- while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
- ++Idx;
-
- // If there are add operands they would be next.
- if (Idx < Ops.size()) {
- bool DeletedAdd = false;
- while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
- if (Ops.size() > AddOpsInlineThreshold ||
- Add->getNumOperands() > AddOpsInlineThreshold)
- break;
- // If we have an add, expand the add operands onto the end of the operands
- // list.
- Ops.erase(Ops.begin()+Idx);
- Ops.append(Add->op_begin(), Add->op_end());
- DeletedAdd = true;
- }
-
- // If we deleted at least one add, we added operands to the end of the list,
- // and they are not necessarily sorted. Recurse to resort and resimplify
- // any operands we just acquired.
- if (DeletedAdd)
- return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
- }
-
- // Skip over the add expression until we get to a multiply.
- while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
- ++Idx;
-
- // Check to see if there are any folding opportunities present with
- // operands multiplied by constant values.
- if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
- uint64_t BitWidth = getTypeSizeInBits(Ty);
- DenseMap<const SCEV *, APInt> M;
- SmallVector<const SCEV *, 8> NewOps;
- APInt AccumulatedConstant(BitWidth, 0);
- if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
- Ops.data(), Ops.size(),
- APInt(BitWidth, 1), *this)) {
- struct APIntCompare {
- bool operator()(const APInt &LHS, const APInt &RHS) const {
- return LHS.ult(RHS);
- }
- };
-
- // Some interesting folding opportunity is present, so its worthwhile to
- // re-generate the operands list. Group the operands by constant scale,
- // to avoid multiplying by the same constant scale multiple times.
- std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
- for (const SCEV *NewOp : NewOps)
- MulOpLists[M.find(NewOp)->second].push_back(NewOp);
- // Re-generate the operands list.
- Ops.clear();
- if (AccumulatedConstant != 0)
- Ops.push_back(getConstant(AccumulatedConstant));
- for (auto &MulOp : MulOpLists)
- if (MulOp.first != 0)
- Ops.push_back(getMulExpr(
- getConstant(MulOp.first),
- getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1),
- SCEV::FlagAnyWrap, Depth + 1));
- if (Ops.empty())
- return getZero(Ty);
- if (Ops.size() == 1)
- return Ops[0];
- return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
- }
- }
-
- // If we are adding something to a multiply expression, make sure the
- // something is not already an operand of the multiply. If so, merge it into
- // the multiply.
- for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
- const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
- for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
- const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
- if (isa<SCEVConstant>(MulOpSCEV))
- continue;
- for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
- if (MulOpSCEV == Ops[AddOp]) {
- // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
- const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
- if (Mul->getNumOperands() != 2) {
- // If the multiply has more than two operands, we must get the
- // Y*Z term.
- SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
- Mul->op_begin()+MulOp);
- MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
- InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
- }
- SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul};
- const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
- const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV,
- SCEV::FlagAnyWrap, Depth + 1);
- if (Ops.size() == 2) return OuterMul;
- if (AddOp < Idx) {
- Ops.erase(Ops.begin()+AddOp);
- Ops.erase(Ops.begin()+Idx-1);
- } else {
- Ops.erase(Ops.begin()+Idx);
- Ops.erase(Ops.begin()+AddOp-1);
- }
- Ops.push_back(OuterMul);
- return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
- }
-
- // Check this multiply against other multiplies being added together.
- for (unsigned OtherMulIdx = Idx+1;
- OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
- ++OtherMulIdx) {
- const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
- // If MulOp occurs in OtherMul, we can fold the two multiplies
- // together.
- for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
- OMulOp != e; ++OMulOp)
- if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
- // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
- const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
- if (Mul->getNumOperands() != 2) {
- SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
- Mul->op_begin()+MulOp);
- MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
- InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
- }
- const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
- if (OtherMul->getNumOperands() != 2) {
- SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
- OtherMul->op_begin()+OMulOp);
- MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
- InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
- }
- SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2};
- const SCEV *InnerMulSum =
- getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
- const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum,
- SCEV::FlagAnyWrap, Depth + 1);
- if (Ops.size() == 2) return OuterMul;
- Ops.erase(Ops.begin()+Idx);
- Ops.erase(Ops.begin()+OtherMulIdx-1);
- Ops.push_back(OuterMul);
- return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
- }
- }
- }
- }
-
- // If there are any add recurrences in the operands list, see if any other
- // added values are loop invariant. If so, we can fold them into the
- // recurrence.
- while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
- ++Idx;
-
- // Scan over all recurrences, trying to fold loop invariants into them.
- for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
- // Scan all of the other operands to this add and add them to the vector if
- // they are loop invariant w.r.t. the recurrence.
- SmallVector<const SCEV *, 8> LIOps;
- const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
- const Loop *AddRecLoop = AddRec->getLoop();
- for (unsigned i = 0, e = Ops.size(); i != e; ++i)
- if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
- LIOps.push_back(Ops[i]);
- Ops.erase(Ops.begin()+i);
- --i; --e;
- }
-
- // If we found some loop invariants, fold them into the recurrence.
- if (!LIOps.empty()) {
- // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
- LIOps.push_back(AddRec->getStart());
-
- SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
- AddRec->op_end());
- // This follows from the fact that the no-wrap flags on the outer add
- // expression are applicable on the 0th iteration, when the add recurrence
- // will be equal to its start value.
- AddRecOps[0] = getAddExpr(LIOps, Flags, Depth + 1);
-
- // Build the new addrec. Propagate the NUW and NSW flags if both the
- // outer add and the inner addrec are guaranteed to have no overflow.
- // Always propagate NW.
- Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
- const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
-
- // If all of the other operands were loop invariant, we are done.
- if (Ops.size() == 1) return NewRec;
-
- // Otherwise, add the folded AddRec by the non-invariant parts.
- for (unsigned i = 0;; ++i)
- if (Ops[i] == AddRec) {
- Ops[i] = NewRec;
- break;
- }
- return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
- }
-
- // Okay, if there weren't any loop invariants to be folded, check to see if
- // there are multiple AddRec's with the same loop induction variable being
- // added together. If so, we can fold them.
- for (unsigned OtherIdx = Idx+1;
- OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
- ++OtherIdx) {
- // We expect the AddRecExpr's to be sorted in reverse dominance order,
- // so that the 1st found AddRecExpr is dominated by all others.
- assert(DT.dominates(
- cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(),
- AddRec->getLoop()->getHeader()) &&
- "AddRecExprs are not sorted in reverse dominance order?");
- if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
- // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
- SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
- AddRec->op_end());
- for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
- ++OtherIdx) {
- const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
- if (OtherAddRec->getLoop() == AddRecLoop) {
- for (unsigned i = 0, e = OtherAddRec->getNumOperands();
- i != e; ++i) {
- if (i >= AddRecOps.size()) {
- AddRecOps.append(OtherAddRec->op_begin()+i,
- OtherAddRec->op_end());
- break;
- }
- SmallVector<const SCEV *, 2> TwoOps = {
- AddRecOps[i], OtherAddRec->getOperand(i)};
- AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
- }
- Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
- }
- }
- // Step size has changed, so we cannot guarantee no self-wraparound.
- Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
- return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
- }
- }
-
- // Otherwise couldn't fold anything into this recurrence. Move onto the
- // next one.
- }
-
- // Okay, it looks like we really DO need an add expr. Check to see if we
- // already have one, otherwise create a new one.
- return getOrCreateAddExpr(Ops, Flags);
-}
-
-const SCEV *
-ScalarEvolution::getOrCreateAddExpr(SmallVectorImpl<const SCEV *> &Ops,
- SCEV::NoWrapFlags Flags) {
- FoldingSetNodeID ID;
- ID.AddInteger(scAddExpr);
- for (const SCEV *Op : Ops)
- ID.AddPointer(Op);
- void *IP = nullptr;
- SCEVAddExpr *S =
- static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
- if (!S) {
- const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
- std::uninitialized_copy(Ops.begin(), Ops.end(), O);
- S = new (SCEVAllocator)
- SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size());
- UniqueSCEVs.InsertNode(S, IP);
- addToLoopUseLists(S);
- }
- S->setNoWrapFlags(Flags);
- return S;
-}
-
-const SCEV *
-ScalarEvolution::getOrCreateAddRecExpr(SmallVectorImpl<const SCEV *> &Ops,
- const Loop *L, SCEV::NoWrapFlags Flags) {
- FoldingSetNodeID ID;
- ID.AddInteger(scAddRecExpr);
- for (unsigned i = 0, e = Ops.size(); i != e; ++i)
- ID.AddPointer(Ops[i]);
- ID.AddPointer(L);
- void *IP = nullptr;
- SCEVAddRecExpr *S =
- static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
- if (!S) {
- const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
- std::uninitialized_copy(Ops.begin(), Ops.end(), O);
- S = new (SCEVAllocator)
- SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L);
- UniqueSCEVs.InsertNode(S, IP);
- addToLoopUseLists(S);
- }
- S->setNoWrapFlags(Flags);
- return S;
-}
-
-const SCEV *
-ScalarEvolution::getOrCreateMulExpr(SmallVectorImpl<const SCEV *> &Ops,
- SCEV::NoWrapFlags Flags) {
- FoldingSetNodeID ID;
- ID.AddInteger(scMulExpr);
- for (unsigned i = 0, e = Ops.size(); i != e; ++i)
- ID.AddPointer(Ops[i]);
- void *IP = nullptr;
- SCEVMulExpr *S =
- static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
- if (!S) {
- const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
- std::uninitialized_copy(Ops.begin(), Ops.end(), O);
- S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
- O, Ops.size());
- UniqueSCEVs.InsertNode(S, IP);
- addToLoopUseLists(S);
- }
- S->setNoWrapFlags(Flags);
- return S;
-}
-
-static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
- uint64_t k = i*j;
- if (j > 1 && k / j != i) Overflow = true;
- return k;
-}
-
-/// Compute the result of "n choose k", the binomial coefficient. If an
-/// intermediate computation overflows, Overflow will be set and the return will
-/// be garbage. Overflow is not cleared on absence of overflow.
-static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
- // We use the multiplicative formula:
- // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
- // At each iteration, we take the n-th term of the numeral and divide by the
- // (k-n)th term of the denominator. This division will always produce an
- // integral result, and helps reduce the chance of overflow in the
- // intermediate computations. However, we can still overflow even when the
- // final result would fit.
-
- if (n == 0 || n == k) return 1;
- if (k > n) return 0;
-
- if (k > n/2)
- k = n-k;
-
- uint64_t r = 1;
- for (uint64_t i = 1; i <= k; ++i) {
- r = umul_ov(r, n-(i-1), Overflow);
- r /= i;
- }
- return r;
-}
-
-/// Determine if any of the operands in this SCEV are a constant or if
-/// any of the add or multiply expressions in this SCEV contain a constant.
-static bool containsConstantInAddMulChain(const SCEV *StartExpr) {
- struct FindConstantInAddMulChain {
- bool FoundConstant = false;
-
- bool follow(const SCEV *S) {
- FoundConstant |= isa<SCEVConstant>(S);
- return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S);
- }
-
- bool isDone() const {
- return FoundConstant;
- }
- };
-
- FindConstantInAddMulChain F;
- SCEVTraversal<FindConstantInAddMulChain> ST(F);
- ST.visitAll(StartExpr);
- return F.FoundConstant;
-}
-
-/// Get a canonical multiply expression, or something simpler if possible.
-const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
- SCEV::NoWrapFlags Flags,
- unsigned Depth) {
- assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
- "only nuw or nsw allowed");
- assert(!Ops.empty() && "Cannot get empty mul!");
- if (Ops.size() == 1) return Ops[0];
-#ifndef NDEBUG
- Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
- for (unsigned i = 1, e = Ops.size(); i != e; ++i)
- assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
- "SCEVMulExpr operand types don't match!");
-#endif
-
- // Sort by complexity, this groups all similar expression types together.
- GroupByComplexity(Ops, &LI, DT);
-
- Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags);
-
- // Limit recursion calls depth.
- if (Depth > MaxArithDepth)
- return getOrCreateMulExpr(Ops, Flags);
-
- // If there are any constants, fold them together.
- unsigned Idx = 0;
- if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
-
- if (Ops.size() == 2)
- // C1*(C2+V) -> C1*C2 + C1*V
- if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
- // If any of Add's ops are Adds or Muls with a constant, apply this
- // transformation as well.
- //
- // TODO: There are some cases where this transformation is not
- // profitable; for example, Add = (C0 + X) * Y + Z. Maybe the scope of
- // this transformation should be narrowed down.
- if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add))
- return getAddExpr(getMulExpr(LHSC, Add->getOperand(0),
- SCEV::FlagAnyWrap, Depth + 1),
- getMulExpr(LHSC, Add->getOperand(1),
- SCEV::FlagAnyWrap, Depth + 1),
- SCEV::FlagAnyWrap, Depth + 1);
-
- ++Idx;
- while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
- // We found two constants, fold them together!
- ConstantInt *Fold =
- ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt());
- Ops[0] = getConstant(Fold);
- Ops.erase(Ops.begin()+1); // Erase the folded element
- if (Ops.size() == 1) return Ops[0];
- LHSC = cast<SCEVConstant>(Ops[0]);
- }
-
- // If we are left with a constant one being multiplied, strip it off.
- if (cast<SCEVConstant>(Ops[0])->getValue()->isOne()) {
- Ops.erase(Ops.begin());
- --Idx;
- } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
- // If we have a multiply of zero, it will always be zero.
- return Ops[0];
- } else if (Ops[0]->isAllOnesValue()) {
- // If we have a mul by -1 of an add, try distributing the -1 among the
- // add operands.
- if (Ops.size() == 2) {
- if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
- SmallVector<const SCEV *, 4> NewOps;
- bool AnyFolded = false;
- for (const SCEV *AddOp : Add->operands()) {
- const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap,
- Depth + 1);
- if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
- NewOps.push_back(Mul);
- }
- if (AnyFolded)
- return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1);
- } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
- // Negation preserves a recurrence's no self-wrap property.
- SmallVector<const SCEV *, 4> Operands;
- for (const SCEV *AddRecOp : AddRec->operands())
- Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap,
- Depth + 1));
-
- return getAddRecExpr(Operands, AddRec->getLoop(),
- AddRec->getNoWrapFlags(SCEV::FlagNW));
- }
- }
- }
-
- if (Ops.size() == 1)
- return Ops[0];
- }
-
- // Skip over the add expression until we get to a multiply.
- while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
- ++Idx;
-
- // If there are mul operands inline them all into this expression.
- if (Idx < Ops.size()) {
- bool DeletedMul = false;
- while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
- if (Ops.size() > MulOpsInlineThreshold)
- break;
- // If we have an mul, expand the mul operands onto the end of the
- // operands list.
- Ops.erase(Ops.begin()+Idx);
- Ops.append(Mul->op_begin(), Mul->op_end());
- DeletedMul = true;
- }
-
- // If we deleted at least one mul, we added operands to the end of the
- // list, and they are not necessarily sorted. Recurse to resort and
- // resimplify any operands we just acquired.
- if (DeletedMul)
- return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
- }
-
- // If there are any add recurrences in the operands list, see if any other
- // added values are loop invariant. If so, we can fold them into the
- // recurrence.
- while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
- ++Idx;
-
- // Scan over all recurrences, trying to fold loop invariants into them.
- for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
- // Scan all of the other operands to this mul and add them to the vector
- // if they are loop invariant w.r.t. the recurrence.
- SmallVector<const SCEV *, 8> LIOps;
- const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
- const Loop *AddRecLoop = AddRec->getLoop();
- for (unsigned i = 0, e = Ops.size(); i != e; ++i)
- if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
- LIOps.push_back(Ops[i]);
- Ops.erase(Ops.begin()+i);
- --i; --e;
- }
-
- // If we found some loop invariants, fold them into the recurrence.
- if (!LIOps.empty()) {
- // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
- SmallVector<const SCEV *, 4> NewOps;
- NewOps.reserve(AddRec->getNumOperands());
- const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1);
- for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
- NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i),
- SCEV::FlagAnyWrap, Depth + 1));
-
- // Build the new addrec. Propagate the NUW and NSW flags if both the
- // outer mul and the inner addrec are guaranteed to have no overflow.
- //
- // No self-wrap cannot be guaranteed after changing the step size, but
- // will be inferred if either NUW or NSW is true.
- Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
- const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
-
- // If all of the other operands were loop invariant, we are done.
- if (Ops.size() == 1) return NewRec;
-
- // Otherwise, multiply the folded AddRec by the non-invariant parts.
- for (unsigned i = 0;; ++i)
- if (Ops[i] == AddRec) {
- Ops[i] = NewRec;
- break;
- }
- return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
- }
-
- // Okay, if there weren't any loop invariants to be folded, check to see
- // if there are multiple AddRec's with the same loop induction variable
- // being multiplied together. If so, we can fold them.
-
- // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
- // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
- // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
- // ]]],+,...up to x=2n}.
- // Note that the arguments to choose() are always integers with values
- // known at compile time, never SCEV objects.
- //
- // The implementation avoids pointless extra computations when the two
- // addrec's are of different length (mathematically, it's equivalent to
- // an infinite stream of zeros on the right).
- bool OpsModified = false;
- for (unsigned OtherIdx = Idx+1;
- OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
- ++OtherIdx) {
- const SCEVAddRecExpr *OtherAddRec =
- dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
- if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
- continue;
-
- // Limit max number of arguments to avoid creation of unreasonably big
- // SCEVAddRecs with very complex operands.
- if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 >
- MaxAddRecSize)
- continue;
-
- bool Overflow = false;
- Type *Ty = AddRec->getType();
- bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
- SmallVector<const SCEV*, 7> AddRecOps;
- for (int x = 0, xe = AddRec->getNumOperands() +
- OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
- SmallVector <const SCEV *, 7> SumOps;
- for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
- uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
- for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
- ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
- z < ze && !Overflow; ++z) {
- uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
- uint64_t Coeff;
- if (LargerThan64Bits)
- Coeff = umul_ov(Coeff1, Coeff2, Overflow);
- else
- Coeff = Coeff1*Coeff2;
- const SCEV *CoeffTerm = getConstant(Ty, Coeff);
- const SCEV *Term1 = AddRec->getOperand(y-z);
- const SCEV *Term2 = OtherAddRec->getOperand(z);
- SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2,
- SCEV::FlagAnyWrap, Depth + 1));
- }
- }
- if (SumOps.empty())
- SumOps.push_back(getZero(Ty));
- AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1));
- }
- if (!Overflow) {
- const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
- SCEV::FlagAnyWrap);
- if (Ops.size() == 2) return NewAddRec;
- Ops[Idx] = NewAddRec;
- Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
- OpsModified = true;
- AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
- if (!AddRec)
- break;
- }
- }
- if (OpsModified)
- return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
-
- // Otherwise couldn't fold anything into this recurrence. Move onto the
- // next one.
- }
-
- // Okay, it looks like we really DO need an mul expr. Check to see if we
- // already have one, otherwise create a new one.
- return getOrCreateMulExpr(Ops, Flags);
-}
-
-/// Represents an unsigned remainder expression based on unsigned division.
-const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS,
- const SCEV *RHS) {
- assert(getEffectiveSCEVType(LHS->getType()) ==
- getEffectiveSCEVType(RHS->getType()) &&
- "SCEVURemExpr operand types don't match!");
-
- // Short-circuit easy cases
- if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
- // If constant is one, the result is trivial
- if (RHSC->getValue()->isOne())
- return getZero(LHS->getType()); // X urem 1 --> 0
-
- // If constant is a power of two, fold into a zext(trunc(LHS)).
- if (RHSC->getAPInt().isPowerOf2()) {
- Type *FullTy = LHS->getType();
- Type *TruncTy =
- IntegerType::get(getContext(), RHSC->getAPInt().logBase2());
- return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy);
- }
- }
-
- // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y)
- const SCEV *UDiv = getUDivExpr(LHS, RHS);
- const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW);
- return getMinusSCEV(LHS, Mult, SCEV::FlagNUW);
-}
-
-/// Get a canonical unsigned division expression, or something simpler if
-/// possible.
-const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
- const SCEV *RHS) {
- assert(getEffectiveSCEVType(LHS->getType()) ==
- getEffectiveSCEVType(RHS->getType()) &&
- "SCEVUDivExpr operand types don't match!");
-
- if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
- if (RHSC->getValue()->isOne())
- return LHS; // X udiv 1 --> x
- // If the denominator is zero, the result of the udiv is undefined. Don't
- // try to analyze it, because the resolution chosen here may differ from
- // the resolution chosen in other parts of the compiler.
- if (!RHSC->getValue()->isZero()) {
- // Determine if the division can be folded into the operands of
- // its operands.
- // TODO: Generalize this to non-constants by using known-bits information.
- Type *Ty = LHS->getType();
- unsigned LZ = RHSC->getAPInt().countLeadingZeros();
- unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
- // For non-power-of-two values, effectively round the value up to the
- // nearest power of two.
- if (!RHSC->getAPInt().isPowerOf2())
- ++MaxShiftAmt;
- IntegerType *ExtTy =
- IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
- if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
- if (const SCEVConstant *Step =
- dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
- // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
- const APInt &StepInt = Step->getAPInt();
- const APInt &DivInt = RHSC->getAPInt();
- if (!StepInt.urem(DivInt) &&
- getZeroExtendExpr(AR, ExtTy) ==
- getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
- getZeroExtendExpr(Step, ExtTy),
- AR->getLoop(), SCEV::FlagAnyWrap)) {
- SmallVector<const SCEV *, 4> Operands;
- for (const SCEV *Op : AR->operands())
- Operands.push_back(getUDivExpr(Op, RHS));
- return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
- }
- /// Get a canonical UDivExpr for a recurrence.
- /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
- // We can currently only fold X%N if X is constant.
- const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
- if (StartC && !DivInt.urem(StepInt) &&
- getZeroExtendExpr(AR, ExtTy) ==
- getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
- getZeroExtendExpr(Step, ExtTy),
- AR->getLoop(), SCEV::FlagAnyWrap)) {
- const APInt &StartInt = StartC->getAPInt();
- const APInt &StartRem = StartInt.urem(StepInt);
- if (StartRem != 0)
- LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
- AR->getLoop(), SCEV::FlagNW);
- }
- }
- // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
- if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
- SmallVector<const SCEV *, 4> Operands;
- for (const SCEV *Op : M->operands())
- Operands.push_back(getZeroExtendExpr(Op, ExtTy));
- if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
- // Find an operand that's safely divisible.
- for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
- const SCEV *Op = M->getOperand(i);
- const SCEV *Div = getUDivExpr(Op, RHSC);
- if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
- Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
- M->op_end());
- Operands[i] = Div;
- return getMulExpr(Operands);
- }
- }
- }
-
- // (A/B)/C --> A/(B*C) if safe and B*C can be folded.
- if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) {
- if (auto *DivisorConstant =
- dyn_cast<SCEVConstant>(OtherDiv->getRHS())) {
- bool Overflow = false;
- APInt NewRHS =
- DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow);
- if (Overflow) {
- return getConstant(RHSC->getType(), 0, false);
- }
- return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS));
- }
- }
-
- // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
- if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
- SmallVector<const SCEV *, 4> Operands;
- for (const SCEV *Op : A->operands())
- Operands.push_back(getZeroExtendExpr(Op, ExtTy));
- if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
- Operands.clear();
- for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
- const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
- if (isa<SCEVUDivExpr>(Op) ||
- getMulExpr(Op, RHS) != A->getOperand(i))
- break;
- Operands.push_back(Op);
- }
- if (Operands.size() == A->getNumOperands())
- return getAddExpr(Operands);
- }
- }
-
- // Fold if both operands are constant.
- if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
- Constant *LHSCV = LHSC->getValue();
- Constant *RHSCV = RHSC->getValue();
- return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
- RHSCV)));
- }
- }
- }
-
- FoldingSetNodeID ID;
- ID.AddInteger(scUDivExpr);
- ID.AddPointer(LHS);
- ID.AddPointer(RHS);
- void *IP = nullptr;
- if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
- SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
- LHS, RHS);
- UniqueSCEVs.InsertNode(S, IP);
- addToLoopUseLists(S);
- return S;
-}
-
-static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
- APInt A = C1->getAPInt().abs();
- APInt B = C2->getAPInt().abs();
- uint32_t ABW = A.getBitWidth();
- uint32_t BBW = B.getBitWidth();
-
- if (ABW > BBW)
- B = B.zext(ABW);
- else if (ABW < BBW)
- A = A.zext(BBW);
-
- return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B));
-}
-
-/// Get a canonical unsigned division expression, or something simpler if
-/// possible. There is no representation for an exact udiv in SCEV IR, but we
-/// can attempt to remove factors from the LHS and RHS. We can't do this when
-/// it's not exact because the udiv may be clearing bits.
-const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
- const SCEV *RHS) {
- // TODO: we could try to find factors in all sorts of things, but for now we
- // just deal with u/exact (multiply, constant). See SCEVDivision towards the
- // end of this file for inspiration.
-
- const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
- if (!Mul || !Mul->hasNoUnsignedWrap())
- return getUDivExpr(LHS, RHS);
-
- if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
- // If the mulexpr multiplies by a constant, then that constant must be the
- // first element of the mulexpr.
- if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
- if (LHSCst == RHSCst) {
- SmallVector<const SCEV *, 2> Operands;
- Operands.append(Mul->op_begin() + 1, Mul->op_end());
- return getMulExpr(Operands);
- }
-
- // We can't just assume that LHSCst divides RHSCst cleanly, it could be
- // that there's a factor provided by one of the other terms. We need to
- // check.
- APInt Factor = gcd(LHSCst, RHSCst);
- if (!Factor.isIntN(1)) {
- LHSCst =
- cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
- RHSCst =
- cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
- SmallVector<const SCEV *, 2> Operands;
- Operands.push_back(LHSCst);
- Operands.append(Mul->op_begin() + 1, Mul->op_end());
- LHS = getMulExpr(Operands);
- RHS = RHSCst;
- Mul = dyn_cast<SCEVMulExpr>(LHS);
- if (!Mul)
- return getUDivExactExpr(LHS, RHS);
- }
- }
- }
-
- for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
- if (Mul->getOperand(i) == RHS) {
- SmallVector<const SCEV *, 2> Operands;
- Operands.append(Mul->op_begin(), Mul->op_begin() + i);
- Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
- return getMulExpr(Operands);
- }
- }
-
- return getUDivExpr(LHS, RHS);
-}
-
-/// Get an add recurrence expression for the specified loop. Simplify the
-/// expression as much as possible.
-const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
- const Loop *L,
- SCEV::NoWrapFlags Flags) {
- SmallVector<const SCEV *, 4> Operands;
- Operands.push_back(Start);
- if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
- if (StepChrec->getLoop() == L) {
- Operands.append(StepChrec->op_begin(), StepChrec->op_end());
- return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
- }
-
- Operands.push_back(Step);
- return getAddRecExpr(Operands, L, Flags);
-}
-
-/// Get an add recurrence expression for the specified loop. Simplify the
-/// expression as much as possible.
-const SCEV *
-ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
- const Loop *L, SCEV::NoWrapFlags Flags) {
- if (Operands.size() == 1) return Operands[0];
-#ifndef NDEBUG
- Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
- for (unsigned i = 1, e = Operands.size(); i != e; ++i)
- assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
- "SCEVAddRecExpr operand types don't match!");
- for (unsigned i = 0, e = Operands.size(); i != e; ++i)
- assert(isLoopInvariant(Operands[i], L) &&
- "SCEVAddRecExpr operand is not loop-invariant!");
-#endif
-
- if (Operands.back()->isZero()) {
- Operands.pop_back();
- return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X
- }
-
- // It's tempting to want to call getMaxBackedgeTakenCount count here and
- // use that information to infer NUW and NSW flags. However, computing a
- // BE count requires calling getAddRecExpr, so we may not yet have a
- // meaningful BE count at this point (and if we don't, we'd be stuck
- // with a SCEVCouldNotCompute as the cached BE count).
-
- Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
-
- // Canonicalize nested AddRecs in by nesting them in order of loop depth.
- if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
- const Loop *NestedLoop = NestedAR->getLoop();
- if (L->contains(NestedLoop)
- ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
- : (!NestedLoop->contains(L) &&
- DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
- SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
- NestedAR->op_end());
- Operands[0] = NestedAR->getStart();
- // AddRecs require their operands be loop-invariant with respect to their
- // loops. Don't perform this transformation if it would break this
- // requirement.
- bool AllInvariant = all_of(
- Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
-
- if (AllInvariant) {
- // Create a recurrence for the outer loop with the same step size.
- //
- // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
- // inner recurrence has the same property.
- SCEV::NoWrapFlags OuterFlags =
- maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
-
- NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
- AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
- return isLoopInvariant(Op, NestedLoop);
- });
-
- if (AllInvariant) {
- // Ok, both add recurrences are valid after the transformation.
- //
- // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
- // the outer recurrence has the same property.
- SCEV::NoWrapFlags InnerFlags =
- maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
- return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
- }
- }
- // Reset Operands to its original state.
- Operands[0] = NestedAR;
- }
- }
-
- // Okay, it looks like we really DO need an addrec expr. Check to see if we
- // already have one, otherwise create a new one.
- return getOrCreateAddRecExpr(Operands, L, Flags);
-}
-
-const SCEV *
-ScalarEvolution::getGEPExpr(GEPOperator *GEP,
- const SmallVectorImpl<const SCEV *> &IndexExprs) {
- const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand());
- // getSCEV(Base)->getType() has the same address space as Base->getType()
- // because SCEV::getType() preserves the address space.
- Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType());
- // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
- // instruction to its SCEV, because the Instruction may be guarded by control
- // flow and the no-overflow bits may not be valid for the expression in any
- // context. This can be fixed similarly to how these flags are handled for
- // adds.
- SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW
- : SCEV::FlagAnyWrap;
-
- const SCEV *TotalOffset = getZero(IntPtrTy);
- // The array size is unimportant. The first thing we do on CurTy is getting
- // its element type.
- Type *CurTy = ArrayType::get(GEP->getSourceElementType(), 0);
- for (const SCEV *IndexExpr : IndexExprs) {
- // Compute the (potentially symbolic) offset in bytes for this index.
- if (StructType *STy = dyn_cast<StructType>(CurTy)) {
- // For a struct, add the member offset.
- ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
- unsigned FieldNo = Index->getZExtValue();
- const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
-
- // Add the field offset to the running total offset.
- TotalOffset = getAddExpr(TotalOffset, FieldOffset);
-
- // Update CurTy to the type of the field at Index.
- CurTy = STy->getTypeAtIndex(Index);
- } else {
- // Update CurTy to its element type.
- CurTy = cast<SequentialType>(CurTy)->getElementType();
- // For an array, add the element offset, explicitly scaled.
- const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy);
- // Getelementptr indices are signed.
- IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy);
-
- // Multiply the index by the element size to compute the element offset.
- const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap);
-
- // Add the element offset to the running total offset.
- TotalOffset = getAddExpr(TotalOffset, LocalOffset);
- }
- }
-
- // Add the total offset from all the GEP indices to the base.
- return getAddExpr(BaseExpr, TotalOffset, Wrap);
-}
-
-const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
- const SCEV *RHS) {
- SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
- return getSMaxExpr(Ops);
-}
-
-const SCEV *
-ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
- assert(!Ops.empty() && "Cannot get empty smax!");
- if (Ops.size() == 1) return Ops[0];
-#ifndef NDEBUG
- Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
- for (unsigned i = 1, e = Ops.size(); i != e; ++i)
- assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
- "SCEVSMaxExpr operand types don't match!");
-#endif
-
- // Sort by complexity, this groups all similar expression types together.
- GroupByComplexity(Ops, &LI, DT);
-
- // If there are any constants, fold them together.
- unsigned Idx = 0;
- if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
- ++Idx;
- assert(Idx < Ops.size());
- while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
- // We found two constants, fold them together!
- ConstantInt *Fold = ConstantInt::get(
- getContext(), APIntOps::smax(LHSC->getAPInt(), RHSC->getAPInt()));
- Ops[0] = getConstant(Fold);
- Ops.erase(Ops.begin()+1); // Erase the folded element
- if (Ops.size() == 1) return Ops[0];
- LHSC = cast<SCEVConstant>(Ops[0]);
- }
-
- // If we are left with a constant minimum-int, strip it off.
- if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
- Ops.erase(Ops.begin());
- --Idx;
- } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
- // If we have an smax with a constant maximum-int, it will always be
- // maximum-int.
- return Ops[0];
- }
-
- if (Ops.size() == 1) return Ops[0];
- }
-
- // Find the first SMax
- while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
- ++Idx;
-
- // Check to see if one of the operands is an SMax. If so, expand its operands
- // onto our operand list, and recurse to simplify.
- if (Idx < Ops.size()) {
- bool DeletedSMax = false;
- while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
- Ops.erase(Ops.begin()+Idx);
- Ops.append(SMax->op_begin(), SMax->op_end());
- DeletedSMax = true;
- }
-
- if (DeletedSMax)
- return getSMaxExpr(Ops);
- }
-
- // Okay, check to see if the same value occurs in the operand list twice. If
- // so, delete one. Since we sorted the list, these values are required to
- // be adjacent.
- for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
- // X smax Y smax Y --> X smax Y
- // X smax Y --> X, if X is always greater than Y
- if (Ops[i] == Ops[i+1] ||
- isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
- Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
- --i; --e;
- } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
- Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
- --i; --e;
- }
-
- if (Ops.size() == 1) return Ops[0];
-
- assert(!Ops.empty() && "Reduced smax down to nothing!");
-
- // Okay, it looks like we really DO need an smax expr. Check to see if we
- // already have one, otherwise create a new one.
- FoldingSetNodeID ID;
- ID.AddInteger(scSMaxExpr);
- for (unsigned i = 0, e = Ops.size(); i != e; ++i)
- ID.AddPointer(Ops[i]);
- void *IP = nullptr;
- if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
- const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
- std::uninitialized_copy(Ops.begin(), Ops.end(), O);
- SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
- O, Ops.size());
- UniqueSCEVs.InsertNode(S, IP);
- addToLoopUseLists(S);
- return S;
-}
-
-const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
- const SCEV *RHS) {
- SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
- return getUMaxExpr(Ops);
-}
-
-const SCEV *
-ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
- assert(!Ops.empty() && "Cannot get empty umax!");
- if (Ops.size() == 1) return Ops[0];
-#ifndef NDEBUG
- Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
- for (unsigned i = 1, e = Ops.size(); i != e; ++i)
- assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
- "SCEVUMaxExpr operand types don't match!");
-#endif
-
- // Sort by complexity, this groups all similar expression types together.
- GroupByComplexity(Ops, &LI, DT);
-
- // If there are any constants, fold them together.
- unsigned Idx = 0;
- if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
- ++Idx;
- assert(Idx < Ops.size());
- while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
- // We found two constants, fold them together!
- ConstantInt *Fold = ConstantInt::get(
- getContext(), APIntOps::umax(LHSC->getAPInt(), RHSC->getAPInt()));
- Ops[0] = getConstant(Fold);
- Ops.erase(Ops.begin()+1); // Erase the folded element
- if (Ops.size() == 1) return Ops[0];
- LHSC = cast<SCEVConstant>(Ops[0]);
- }
-
- // If we are left with a constant minimum-int, strip it off.
- if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
- Ops.erase(Ops.begin());
- --Idx;
- } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
- // If we have an umax with a constant maximum-int, it will always be
- // maximum-int.
- return Ops[0];
- }
-
- if (Ops.size() == 1) return Ops[0];
- }
-
- // Find the first UMax
- while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
- ++Idx;
-
- // Check to see if one of the operands is a UMax. If so, expand its operands
- // onto our operand list, and recurse to simplify.
- if (Idx < Ops.size()) {
- bool DeletedUMax = false;
- while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
- Ops.erase(Ops.begin()+Idx);
- Ops.append(UMax->op_begin(), UMax->op_end());
- DeletedUMax = true;
- }
-
- if (DeletedUMax)
- return getUMaxExpr(Ops);
- }
-
- // Okay, check to see if the same value occurs in the operand list twice. If
- // so, delete one. Since we sorted the list, these values are required to
- // be adjacent.
- for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
- // X umax Y umax Y --> X umax Y
- // X umax Y --> X, if X is always greater than Y
- if (Ops[i] == Ops[i + 1] || isKnownViaNonRecursiveReasoning(
- ICmpInst::ICMP_UGE, Ops[i], Ops[i + 1])) {
- Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2);
- --i; --e;
- } else if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, Ops[i],
- Ops[i + 1])) {
- Ops.erase(Ops.begin() + i, Ops.begin() + i + 1);
- --i; --e;
- }
-
- if (Ops.size() == 1) return Ops[0];
-
- assert(!Ops.empty() && "Reduced umax down to nothing!");
-
- // Okay, it looks like we really DO need a umax expr. Check to see if we
- // already have one, otherwise create a new one.
- FoldingSetNodeID ID;
- ID.AddInteger(scUMaxExpr);
- for (unsigned i = 0, e = Ops.size(); i != e; ++i)
- ID.AddPointer(Ops[i]);
- void *IP = nullptr;
- if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
- const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
- std::uninitialized_copy(Ops.begin(), Ops.end(), O);
- SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
- O, Ops.size());
- UniqueSCEVs.InsertNode(S, IP);
- addToLoopUseLists(S);
- return S;
-}
-
-const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
- const SCEV *RHS) {
- SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
- return getSMinExpr(Ops);
-}
-
-const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
- // ~smax(~x, ~y, ~z) == smin(x, y, z).
- SmallVector<const SCEV *, 2> NotOps;
- for (auto *S : Ops)
- NotOps.push_back(getNotSCEV(S));
- return getNotSCEV(getSMaxExpr(NotOps));
-}
-
-const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
- const SCEV *RHS) {
- SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
- return getUMinExpr(Ops);
-}
-
-const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
- assert(!Ops.empty() && "At least one operand must be!");
- // Trivial case.
- if (Ops.size() == 1)
- return Ops[0];
-
- // ~umax(~x, ~y, ~z) == umin(x, y, z).
- SmallVector<const SCEV *, 2> NotOps;
- for (auto *S : Ops)
- NotOps.push_back(getNotSCEV(S));
- return getNotSCEV(getUMaxExpr(NotOps));
-}
-
-const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
- // We can bypass creating a target-independent
- // constant expression and then folding it back into a ConstantInt.
- // This is just a compile-time optimization.
- return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
-}
-
-const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
- StructType *STy,
- unsigned FieldNo) {
- // We can bypass creating a target-independent
- // constant expression and then folding it back into a ConstantInt.
- // This is just a compile-time optimization.
- return getConstant(
- IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
-}
-
-const SCEV *ScalarEvolution::getUnknown(Value *V) {
- // Don't attempt to do anything other than create a SCEVUnknown object
- // here. createSCEV only calls getUnknown after checking for all other
- // interesting possibilities, and any other code that calls getUnknown
- // is doing so in order to hide a value from SCEV canonicalization.
-
- FoldingSetNodeID ID;
- ID.AddInteger(scUnknown);
- ID.AddPointer(V);
- void *IP = nullptr;
- if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
- assert(cast<SCEVUnknown>(S)->getValue() == V &&
- "Stale SCEVUnknown in uniquing map!");
- return S;
- }
- SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
- FirstUnknown);
- FirstUnknown = cast<SCEVUnknown>(S);
- UniqueSCEVs.InsertNode(S, IP);
- return S;
-}
-
-//===----------------------------------------------------------------------===//
-// Basic SCEV Analysis and PHI Idiom Recognition Code
-//
-
-/// Test if values of the given type are analyzable within the SCEV
-/// framework. This primarily includes integer types, and it can optionally
-/// include pointer types if the ScalarEvolution class has access to
-/// target-specific information.
-bool ScalarEvolution::isSCEVable(Type *Ty) const {
- // Integers and pointers are always SCEVable.
- return Ty->isIntOrPtrTy();
-}
-
-/// Return the size in bits of the specified type, for which isSCEVable must
-/// return true.
-uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
- assert(isSCEVable(Ty) && "Type is not SCEVable!");
- if (Ty->isPointerTy())
- return getDataLayout().getIndexTypeSizeInBits(Ty);
- return getDataLayout().getTypeSizeInBits(Ty);
-}
-
-/// Return a type with the same bitwidth as the given type and which represents
-/// how SCEV will treat the given type, for which isSCEVable must return
-/// true. For pointer types, this is the pointer-sized integer type.
-Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
- assert(isSCEVable(Ty) && "Type is not SCEVable!");
-
- if (Ty->isIntegerTy())
- return Ty;
-
- // The only other support type is pointer.
- assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
- return getDataLayout().getIntPtrType(Ty);
-}
-
-Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const {
- return getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2;
-}
-
-const SCEV *ScalarEvolution::getCouldNotCompute() {
- return CouldNotCompute.get();
-}
-
-bool ScalarEvolution::checkValidity(const SCEV *S) const {
- bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) {
- auto *SU = dyn_cast<SCEVUnknown>(S);
- return SU && SU->getValue() == nullptr;
- });
-
- return !ContainsNulls;
-}
-
-bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
- HasRecMapType::iterator I = HasRecMap.find(S);
- if (I != HasRecMap.end())
- return I->second;
-
- bool FoundAddRec = SCEVExprContains(S, isa<SCEVAddRecExpr, const SCEV *>);
- HasRecMap.insert({S, FoundAddRec});
- return FoundAddRec;
-}
-
-/// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}.
-/// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an
-/// offset I, then return {S', I}, else return {\p S, nullptr}.
-static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) {
- const auto *Add = dyn_cast<SCEVAddExpr>(S);
- if (!Add)
- return {S, nullptr};
-
- if (Add->getNumOperands() != 2)
- return {S, nullptr};
-
- auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0));
- if (!ConstOp)
- return {S, nullptr};
-
- return {Add->getOperand(1), ConstOp->getValue()};
-}
-
-/// Return the ValueOffsetPair set for \p S. \p S can be represented
-/// by the value and offset from any ValueOffsetPair in the set.
-SetVector<ScalarEvolution::ValueOffsetPair> *
-ScalarEvolution::getSCEVValues(const SCEV *S) {
- ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
- if (SI == ExprValueMap.end())
- return nullptr;
-#ifndef NDEBUG
- if (VerifySCEVMap) {
- // Check there is no dangling Value in the set returned.
- for (const auto &VE : SI->second)
- assert(ValueExprMap.count(VE.first));
- }
-#endif
- return &SI->second;
-}
-
-/// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V)
-/// cannot be used separately. eraseValueFromMap should be used to remove
-/// V from ValueExprMap and ExprValueMap at the same time.
-void ScalarEvolution::eraseValueFromMap(Value *V) {
- ValueExprMapType::iterator I = ValueExprMap.find_as(V);
- if (I != ValueExprMap.end()) {
- const SCEV *S = I->second;
- // Remove {V, 0} from the set of ExprValueMap[S]
- if (SetVector<ValueOffsetPair> *SV = getSCEVValues(S))
- SV->remove({V, nullptr});
-
- // Remove {V, Offset} from the set of ExprValueMap[Stripped]
- const SCEV *Stripped;
- ConstantInt *Offset;
- std::tie(Stripped, Offset) = splitAddExpr(S);
- if (Offset != nullptr) {
- if (SetVector<ValueOffsetPair> *SV = getSCEVValues(Stripped))
- SV->remove({V, Offset});
- }
- ValueExprMap.erase(V);
- }
-}
-
-/// Check whether value has nuw/nsw/exact set but SCEV does not.
-/// TODO: In reality it is better to check the poison recursevely
-/// but this is better than nothing.
-static bool SCEVLostPoisonFlags(const SCEV *S, const Value *V) {
- if (auto *I = dyn_cast<Instruction>(V)) {
- if (isa<OverflowingBinaryOperator>(I)) {
- if (auto *NS = dyn_cast<SCEVNAryExpr>(S)) {
- if (I->hasNoSignedWrap() && !NS->hasNoSignedWrap())
- return true;
- if (I->hasNoUnsignedWrap() && !NS->hasNoUnsignedWrap())
- return true;
- }
- } else if (isa<PossiblyExactOperator>(I) && I->isExact())
- return true;
- }
- return false;
-}
-
-/// Return an existing SCEV if it exists, otherwise analyze the expression and
-/// create a new one.
-const SCEV *ScalarEvolution::getSCEV(Value *V) {
- assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
-
- const SCEV *S = getExistingSCEV(V);
- if (S == nullptr) {
- S = createSCEV(V);
- // During PHI resolution, it is possible to create two SCEVs for the same
- // V, so it is needed to double check whether V->S is inserted into
- // ValueExprMap before insert S->{V, 0} into ExprValueMap.
- std::pair<ValueExprMapType::iterator, bool> Pair =
- ValueExprMap.insert({SCEVCallbackVH(V, this), S});
- if (Pair.second && !SCEVLostPoisonFlags(S, V)) {
- ExprValueMap[S].insert({V, nullptr});
-
- // If S == Stripped + Offset, add Stripped -> {V, Offset} into
- // ExprValueMap.
- const SCEV *Stripped = S;
- ConstantInt *Offset = nullptr;
- std::tie(Stripped, Offset) = splitAddExpr(S);
- // If stripped is SCEVUnknown, don't bother to save
- // Stripped -> {V, offset}. It doesn't simplify and sometimes even
- // increase the complexity of the expansion code.
- // If V is GetElementPtrInst, don't save Stripped -> {V, offset}
- // because it may generate add/sub instead of GEP in SCEV expansion.
- if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) &&
- !isa<GetElementPtrInst>(V))
- ExprValueMap[Stripped].insert({V, Offset});
- }
- }
- return S;
-}
-
-const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
- assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
-
- ValueExprMapType::iterator I = ValueExprMap.find_as(V);
- if (I != ValueExprMap.end()) {
- const SCEV *S = I->second;
- if (checkValidity(S))
- return S;
- eraseValueFromMap(V);
- forgetMemoizedResults(S);
- }
- return nullptr;
-}
-
-/// Return a SCEV corresponding to -V = -1*V
-const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
- SCEV::NoWrapFlags Flags) {
- if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
- return getConstant(
- cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
-
- Type *Ty = V->getType();
- Ty = getEffectiveSCEVType(Ty);
- return getMulExpr(
- V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags);
-}
-
-/// Return a SCEV corresponding to ~V = -1-V
-const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
- if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
- return getConstant(
- cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
-
- Type *Ty = V->getType();
- Ty = getEffectiveSCEVType(Ty);
- const SCEV *AllOnes =
- getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
- return getMinusSCEV(AllOnes, V);
-}
-
-const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
- SCEV::NoWrapFlags Flags,
- unsigned Depth) {
- // Fast path: X - X --> 0.
- if (LHS == RHS)
- return getZero(LHS->getType());
-
- // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
- // makes it so that we cannot make much use of NUW.
- auto AddFlags = SCEV::FlagAnyWrap;
- const bool RHSIsNotMinSigned =
- !getSignedRangeMin(RHS).isMinSignedValue();
- if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) {
- // Let M be the minimum representable signed value. Then (-1)*RHS
- // signed-wraps if and only if RHS is M. That can happen even for
- // a NSW subtraction because e.g. (-1)*M signed-wraps even though
- // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
- // (-1)*RHS, we need to prove that RHS != M.
- //
- // If LHS is non-negative and we know that LHS - RHS does not
- // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
- // either by proving that RHS > M or that LHS >= 0.
- if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
- AddFlags = SCEV::FlagNSW;
- }
- }
-
- // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
- // RHS is NSW and LHS >= 0.
- //
- // The difficulty here is that the NSW flag may have been proven
- // relative to a loop that is to be found in a recurrence in LHS and
- // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
- // larger scope than intended.
- auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
-
- return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth);
-}
-
-const SCEV *
-ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
- Type *SrcTy = V->getType();
- assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
- "Cannot truncate or zero extend with non-integer arguments!");
- if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
- return V; // No conversion
- if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
- return getTruncateExpr(V, Ty);
- return getZeroExtendExpr(V, Ty);
-}
-
-const SCEV *
-ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
- Type *Ty) {
- Type *SrcTy = V->getType();
- assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
- "Cannot truncate or zero extend with non-integer arguments!");
- if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
- return V; // No conversion
- if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
- return getTruncateExpr(V, Ty);
- return getSignExtendExpr(V, Ty);
-}
-
-const SCEV *
-ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
- Type *SrcTy = V->getType();
- assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
- "Cannot noop or zero extend with non-integer arguments!");
- assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
- "getNoopOrZeroExtend cannot truncate!");
- if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
- return V; // No conversion
- return getZeroExtendExpr(V, Ty);
-}
-
-const SCEV *
-ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
- Type *SrcTy = V->getType();
- assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
- "Cannot noop or sign extend with non-integer arguments!");
- assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
- "getNoopOrSignExtend cannot truncate!");
- if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
- return V; // No conversion
- return getSignExtendExpr(V, Ty);
-}
-
-const SCEV *
-ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
- Type *SrcTy = V->getType();
- assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
- "Cannot noop or any extend with non-integer arguments!");
- assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
- "getNoopOrAnyExtend cannot truncate!");
- if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
- return V; // No conversion
- return getAnyExtendExpr(V, Ty);
-}
-
-const SCEV *
-ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
- Type *SrcTy = V->getType();
- assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
- "Cannot truncate or noop with non-integer arguments!");
- assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
- "getTruncateOrNoop cannot extend!");
- if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
- return V; // No conversion
- return getTruncateExpr(V, Ty);
-}
-
-const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
- const SCEV *RHS) {
- const SCEV *PromotedLHS = LHS;
- const SCEV *PromotedRHS = RHS;
-
- if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
- PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
- else
- PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
-
- return getUMaxExpr(PromotedLHS, PromotedRHS);
-}
-
-const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
- const SCEV *RHS) {
- SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
- return getUMinFromMismatchedTypes(Ops);
-}
-
-const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(
- SmallVectorImpl<const SCEV *> &Ops) {
- assert(!Ops.empty() && "At least one operand must be!");
- // Trivial case.
- if (Ops.size() == 1)
- return Ops[0];
-
- // Find the max type first.
- Type *MaxType = nullptr;
- for (auto *S : Ops)
- if (MaxType)
- MaxType = getWiderType(MaxType, S->getType());
- else
- MaxType = S->getType();
-
- // Extend all ops to max type.
- SmallVector<const SCEV *, 2> PromotedOps;
- for (auto *S : Ops)
- PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType));
-
- // Generate umin.
- return getUMinExpr(PromotedOps);
-}
-
-const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
- // A pointer operand may evaluate to a nonpointer expression, such as null.
- if (!V->getType()->isPointerTy())
- return V;
-
- if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
- return getPointerBase(Cast->getOperand());
- } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
- const SCEV *PtrOp = nullptr;
- for (const SCEV *NAryOp : NAry->operands()) {
- if (NAryOp->getType()->isPointerTy()) {
- // Cannot find the base of an expression with multiple pointer operands.
- if (PtrOp)
- return V;
- PtrOp = NAryOp;
- }
- }
- if (!PtrOp)
- return V;
- return getPointerBase(PtrOp);
- }
- return V;
-}
-
-/// Push users of the given Instruction onto the given Worklist.
-static void
-PushDefUseChildren(Instruction *I,
- SmallVectorImpl<Instruction *> &Worklist) {
- // Push the def-use children onto the Worklist stack.
- for (User *U : I->users())
- Worklist.push_back(cast<Instruction>(U));
-}
-
-void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) {
- SmallVector<Instruction *, 16> Worklist;
- PushDefUseChildren(PN, Worklist);
-
- SmallPtrSet<Instruction *, 8> Visited;
- Visited.insert(PN);
- while (!Worklist.empty()) {
- Instruction *I = Worklist.pop_back_val();
- if (!Visited.insert(I).second)
- continue;
-
- auto It = ValueExprMap.find_as(static_cast<Value *>(I));
- if (It != ValueExprMap.end()) {
- const SCEV *Old = It->second;
-
- // Short-circuit the def-use traversal if the symbolic name
- // ceases to appear in expressions.
- if (Old != SymName && !hasOperand(Old, SymName))
- continue;
-
- // SCEVUnknown for a PHI either means that it has an unrecognized
- // structure, it's a PHI that's in the progress of being computed
- // by createNodeForPHI, or it's a single-value PHI. In the first case,
- // additional loop trip count information isn't going to change anything.
- // In the second case, createNodeForPHI will perform the necessary
- // updates on its own when it gets to that point. In the third, we do
- // want to forget the SCEVUnknown.
- if (!isa<PHINode>(I) ||
- !isa<SCEVUnknown>(Old) ||
- (I != PN && Old == SymName)) {
- eraseValueFromMap(It->first);
- forgetMemoizedResults(Old);
- }
- }
-
- PushDefUseChildren(I, Worklist);
- }
-}
-
-namespace {
-
-/// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start
-/// expression in case its Loop is L. If it is not L then
-/// if IgnoreOtherLoops is true then use AddRec itself
-/// otherwise rewrite cannot be done.
-/// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
-class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
-public:
- static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
- bool IgnoreOtherLoops = true) {
- SCEVInitRewriter Rewriter(L, SE);
- const SCEV *Result = Rewriter.visit(S);
- if (Rewriter.hasSeenLoopVariantSCEVUnknown())
- return SE.getCouldNotCompute();
- return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops
- ? SE.getCouldNotCompute()
- : Result;
- }
-
- const SCEV *visitUnknown(const SCEVUnknown *Expr) {
- if (!SE.isLoopInvariant(Expr, L))
- SeenLoopVariantSCEVUnknown = true;
- return Expr;
- }
-
- const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
- // Only re-write AddRecExprs for this loop.
- if (Expr->getLoop() == L)
- return Expr->getStart();
- SeenOtherLoops = true;
- return Expr;
- }
-
- bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
-
- bool hasSeenOtherLoops() { return SeenOtherLoops; }
-
-private:
- explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
- : SCEVRewriteVisitor(SE), L(L) {}
-
- const Loop *L;
- bool SeenLoopVariantSCEVUnknown = false;
- bool SeenOtherLoops = false;
-};
-
-/// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post
-/// increment expression in case its Loop is L. If it is not L then
-/// use AddRec itself.
-/// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
-class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> {
-public:
- static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) {
- SCEVPostIncRewriter Rewriter(L, SE);
- const SCEV *Result = Rewriter.visit(S);
- return Rewriter.hasSeenLoopVariantSCEVUnknown()
- ? SE.getCouldNotCompute()
- : Result;
- }
-
- const SCEV *visitUnknown(const SCEVUnknown *Expr) {
- if (!SE.isLoopInvariant(Expr, L))
- SeenLoopVariantSCEVUnknown = true;
- return Expr;
- }
-
- const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
- // Only re-write AddRecExprs for this loop.
- if (Expr->getLoop() == L)
- return Expr->getPostIncExpr(SE);
- SeenOtherLoops = true;
- return Expr;
- }
-
- bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
-
- bool hasSeenOtherLoops() { return SeenOtherLoops; }
-
-private:
- explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE)
- : SCEVRewriteVisitor(SE), L(L) {}
-
- const Loop *L;
- bool SeenLoopVariantSCEVUnknown = false;
- bool SeenOtherLoops = false;
-};
-
-/// This class evaluates the compare condition by matching it against the
-/// condition of loop latch. If there is a match we assume a true value
-/// for the condition while building SCEV nodes.
-class SCEVBackedgeConditionFolder
- : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> {
-public:
- static const SCEV *rewrite(const SCEV *S, const Loop *L,
- ScalarEvolution &SE) {
- bool IsPosBECond = false;
- Value *BECond = nullptr;
- if (BasicBlock *Latch = L->getLoopLatch()) {
- BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator());
- if (BI && BI->isConditional()) {
- assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
- "Both outgoing branches should not target same header!");
- BECond = BI->getCondition();
- IsPosBECond = BI->getSuccessor(0) == L->getHeader();
- } else {
- return S;
- }
- }
- SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE);
- return Rewriter.visit(S);
- }
-
- const SCEV *visitUnknown(const SCEVUnknown *Expr) {
- const SCEV *Result = Expr;
- bool InvariantF = SE.isLoopInvariant(Expr, L);
-
- if (!InvariantF) {
- Instruction *I = cast<Instruction>(Expr->getValue());
- switch (I->getOpcode()) {
- case Instruction::Select: {
- SelectInst *SI = cast<SelectInst>(I);
- Optional<const SCEV *> Res =
- compareWithBackedgeCondition(SI->getCondition());
- if (Res.hasValue()) {
- bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne();
- Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue());
- }
- break;
- }
- default: {
- Optional<const SCEV *> Res = compareWithBackedgeCondition(I);
- if (Res.hasValue())
- Result = Res.getValue();
- break;
- }
- }
- }
- return Result;
- }
-
-private:
- explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond,
- bool IsPosBECond, ScalarEvolution &SE)
- : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond),
- IsPositiveBECond(IsPosBECond) {}
-
- Optional<const SCEV *> compareWithBackedgeCondition(Value *IC);
-
- const Loop *L;
- /// Loop back condition.
- Value *BackedgeCond = nullptr;
- /// Set to true if loop back is on positive branch condition.
- bool IsPositiveBECond;
-};
-
-Optional<const SCEV *>
-SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) {
-
- // If value matches the backedge condition for loop latch,
- // then return a constant evolution node based on loopback
- // branch taken.
- if (BackedgeCond == IC)
- return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext()))
- : SE.getZero(Type::getInt1Ty(SE.getContext()));
- return None;
-}
-
-class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
-public:
- static const SCEV *rewrite(const SCEV *S, const Loop *L,
- ScalarEvolution &SE) {
- SCEVShiftRewriter Rewriter(L, SE);
- const SCEV *Result = Rewriter.visit(S);
- return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
- }
-
- const SCEV *visitUnknown(const SCEVUnknown *Expr) {
- // Only allow AddRecExprs for this loop.
- if (!SE.isLoopInvariant(Expr, L))
- Valid = false;
- return Expr;
- }
-
- const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
- if (Expr->getLoop() == L && Expr->isAffine())
- return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
- Valid = false;
- return Expr;
- }
-
- bool isValid() { return Valid; }
-
-private:
- explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
- : SCEVRewriteVisitor(SE), L(L) {}
-
- const Loop *L;
- bool Valid = true;
-};
-
-} // end anonymous namespace
-
-SCEV::NoWrapFlags
-ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) {
- if (!AR->isAffine())
- return SCEV::FlagAnyWrap;
-
- using OBO = OverflowingBinaryOperator;
-
- SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap;
-
- if (!AR->hasNoSignedWrap()) {
- ConstantRange AddRecRange = getSignedRange(AR);
- ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this));
-
- auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
- Instruction::Add, IncRange, OBO::NoSignedWrap);
- if (NSWRegion.contains(AddRecRange))
- Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW);
- }
-
- if (!AR->hasNoUnsignedWrap()) {
- ConstantRange AddRecRange = getUnsignedRange(AR);
- ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this));
-
- auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
- Instruction::Add, IncRange, OBO::NoUnsignedWrap);
- if (NUWRegion.contains(AddRecRange))
- Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW);
- }
-
- return Result;
-}
-
-namespace {
-
-/// Represents an abstract binary operation. This may exist as a
-/// normal instruction or constant expression, or may have been
-/// derived from an expression tree.
-struct BinaryOp {
- unsigned Opcode;
- Value *LHS;
- Value *RHS;
- bool IsNSW = false;
- bool IsNUW = false;
-
- /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
- /// constant expression.
- Operator *Op = nullptr;
-
- explicit BinaryOp(Operator *Op)
- : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)),
- Op(Op) {
- if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) {
- IsNSW = OBO->hasNoSignedWrap();
- IsNUW = OBO->hasNoUnsignedWrap();
- }
- }
-
- explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false,
- bool IsNUW = false)
- : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {}
-};
-
-} // end anonymous namespace
-
-/// Try to map \p V into a BinaryOp, and return \c None on failure.
-static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) {
- auto *Op = dyn_cast<Operator>(V);
- if (!Op)
- return None;
-
- // Implementation detail: all the cleverness here should happen without
- // creating new SCEV expressions -- our caller knowns tricks to avoid creating
- // SCEV expressions when possible, and we should not break that.
-
- switch (Op->getOpcode()) {
- case Instruction::Add:
- case Instruction::Sub:
- case Instruction::Mul:
- case Instruction::UDiv:
- case Instruction::URem:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::AShr:
- case Instruction::Shl:
- return BinaryOp(Op);
-
- case Instruction::Xor:
- if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1)))
- // If the RHS of the xor is a signmask, then this is just an add.
- // Instcombine turns add of signmask into xor as a strength reduction step.
- if (RHSC->getValue().isSignMask())
- return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
- return BinaryOp(Op);
-
- case Instruction::LShr:
- // Turn logical shift right of a constant into a unsigned divide.
- if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) {
- uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth();
-
- // If the shift count is not less than the bitwidth, the result of
- // the shift is undefined. Don't try to analyze it, because the
- // resolution chosen here may differ from the resolution chosen in
- // other parts of the compiler.
- if (SA->getValue().ult(BitWidth)) {
- Constant *X =
- ConstantInt::get(SA->getContext(),
- APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
- return BinaryOp(Instruction::UDiv, Op->getOperand(0), X);
- }
- }
- return BinaryOp(Op);
-
- case Instruction::ExtractValue: {
- auto *EVI = cast<ExtractValueInst>(Op);
- if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0)
- break;
-
- auto *CI = dyn_cast<CallInst>(EVI->getAggregateOperand());
- if (!CI)
- break;
-
- if (auto *F = CI->getCalledFunction())
- switch (F->getIntrinsicID()) {
- case Intrinsic::sadd_with_overflow:
- case Intrinsic::uadd_with_overflow:
- if (!isOverflowIntrinsicNoWrap(cast<IntrinsicInst>(CI), DT))
- return BinaryOp(Instruction::Add, CI->getArgOperand(0),
- CI->getArgOperand(1));
-
- // Now that we know that all uses of the arithmetic-result component of
- // CI are guarded by the overflow check, we can go ahead and pretend
- // that the arithmetic is non-overflowing.
- if (F->getIntrinsicID() == Intrinsic::sadd_with_overflow)
- return BinaryOp(Instruction::Add, CI->getArgOperand(0),
- CI->getArgOperand(1), /* IsNSW = */ true,
- /* IsNUW = */ false);
- else
- return BinaryOp(Instruction::Add, CI->getArgOperand(0),
- CI->getArgOperand(1), /* IsNSW = */ false,
- /* IsNUW*/ true);
- case Intrinsic::ssub_with_overflow:
- case Intrinsic::usub_with_overflow:
- if (!isOverflowIntrinsicNoWrap(cast<IntrinsicInst>(CI), DT))
- return BinaryOp(Instruction::Sub, CI->getArgOperand(0),
- CI->getArgOperand(1));
-
- // The same reasoning as sadd/uadd above.
- if (F->getIntrinsicID() == Intrinsic::ssub_with_overflow)
- return BinaryOp(Instruction::Sub, CI->getArgOperand(0),
- CI->getArgOperand(1), /* IsNSW = */ true,
- /* IsNUW = */ false);
- else
- return BinaryOp(Instruction::Sub, CI->getArgOperand(0),
- CI->getArgOperand(1), /* IsNSW = */ false,
- /* IsNUW = */ true);
- case Intrinsic::smul_with_overflow:
- case Intrinsic::umul_with_overflow:
- return BinaryOp(Instruction::Mul, CI->getArgOperand(0),
- CI->getArgOperand(1));
- default:
- break;
- }
- break;
- }
-
- default:
- break;
- }
-
- return None;
-}
-
-/// Helper function to createAddRecFromPHIWithCasts. We have a phi
-/// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via
-/// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the
-/// way. This function checks if \p Op, an operand of this SCEVAddExpr,
-/// follows one of the following patterns:
-/// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
-/// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
-/// If the SCEV expression of \p Op conforms with one of the expected patterns
-/// we return the type of the truncation operation, and indicate whether the
-/// truncated type should be treated as signed/unsigned by setting
-/// \p Signed to true/false, respectively.
-static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI,
- bool &Signed, ScalarEvolution &SE) {
- // The case where Op == SymbolicPHI (that is, with no type conversions on
- // the way) is handled by the regular add recurrence creating logic and
- // would have already been triggered in createAddRecForPHI. Reaching it here
- // means that createAddRecFromPHI had failed for this PHI before (e.g.,
- // because one of the other operands of the SCEVAddExpr updating this PHI is
- // not invariant).
- //
- // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in
- // this case predicates that allow us to prove that Op == SymbolicPHI will
- // be added.
- if (Op == SymbolicPHI)
- return nullptr;
-
- unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType());
- unsigned NewBits = SE.getTypeSizeInBits(Op->getType());
- if (SourceBits != NewBits)
- return nullptr;
-
- const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op);
- const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op);
- if (!SExt && !ZExt)
- return nullptr;
- const SCEVTruncateExpr *Trunc =
- SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand())
- : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand());
- if (!Trunc)
- return nullptr;
- const SCEV *X = Trunc->getOperand();
- if (X != SymbolicPHI)
- return nullptr;
- Signed = SExt != nullptr;
- return Trunc->getType();
-}
-
-static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) {
- if (!PN->getType()->isIntegerTy())
- return nullptr;
- const Loop *L = LI.getLoopFor(PN->getParent());
- if (!L || L->getHeader() != PN->getParent())
- return nullptr;
- return L;
-}
-
-// Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the
-// computation that updates the phi follows the following pattern:
-// (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum
-// which correspond to a phi->trunc->sext/zext->add->phi update chain.
-// If so, try to see if it can be rewritten as an AddRecExpr under some
-// Predicates. If successful, return them as a pair. Also cache the results
-// of the analysis.
-//
-// Example usage scenario:
-// Say the Rewriter is called for the following SCEV:
-// 8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
-// where:
-// %X = phi i64 (%Start, %BEValue)
-// It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X),
-// and call this function with %SymbolicPHI = %X.
-//
-// The analysis will find that the value coming around the backedge has
-// the following SCEV:
-// BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
-// Upon concluding that this matches the desired pattern, the function
-// will return the pair {NewAddRec, SmallPredsVec} where:
-// NewAddRec = {%Start,+,%Step}
-// SmallPredsVec = {P1, P2, P3} as follows:
-// P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw>
-// P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64)
-// P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64)
-// The returned pair means that SymbolicPHI can be rewritten into NewAddRec
-// under the predicates {P1,P2,P3}.
-// This predicated rewrite will be cached in PredicatedSCEVRewrites:
-// PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)}
-//
-// TODO's:
-//
-// 1) Extend the Induction descriptor to also support inductions that involve
-// casts: When needed (namely, when we are called in the context of the
-// vectorizer induction analysis), a Set of cast instructions will be
-// populated by this method, and provided back to isInductionPHI. This is
-// needed to allow the vectorizer to properly record them to be ignored by
-// the cost model and to avoid vectorizing them (otherwise these casts,
-// which are redundant under the runtime overflow checks, will be
-// vectorized, which can be costly).
-//
-// 2) Support additional induction/PHISCEV patterns: We also want to support
-// inductions where the sext-trunc / zext-trunc operations (partly) occur
-// after the induction update operation (the induction increment):
-//
-// (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix)
-// which correspond to a phi->add->trunc->sext/zext->phi update chain.
-//
-// (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix)
-// which correspond to a phi->trunc->add->sext/zext->phi update chain.
-//
-// 3) Outline common code with createAddRecFromPHI to avoid duplication.
-Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
-ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) {
- SmallVector<const SCEVPredicate *, 3> Predicates;
-
- // *** Part1: Analyze if we have a phi-with-cast pattern for which we can
- // return an AddRec expression under some predicate.
-
- auto *PN = cast<PHINode>(SymbolicPHI->getValue());
- const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
- assert(L && "Expecting an integer loop header phi");
-
- // The loop may have multiple entrances or multiple exits; we can analyze
- // this phi as an addrec if it has a unique entry value and a unique
- // backedge value.
- Value *BEValueV = nullptr, *StartValueV = nullptr;
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
- Value *V = PN->getIncomingValue(i);
- if (L->contains(PN->getIncomingBlock(i))) {
- if (!BEValueV) {
- BEValueV = V;
- } else if (BEValueV != V) {
- BEValueV = nullptr;
- break;
- }
- } else if (!StartValueV) {
- StartValueV = V;
- } else if (StartValueV != V) {
- StartValueV = nullptr;
- break;
- }
- }
- if (!BEValueV || !StartValueV)
- return None;
-
- const SCEV *BEValue = getSCEV(BEValueV);
-
- // If the value coming around the backedge is an add with the symbolic
- // value we just inserted, possibly with casts that we can ignore under
- // an appropriate runtime guard, then we found a simple induction variable!
- const auto *Add = dyn_cast<SCEVAddExpr>(BEValue);
- if (!Add)
- return None;
-
- // If there is a single occurrence of the symbolic value, possibly
- // casted, replace it with a recurrence.
- unsigned FoundIndex = Add->getNumOperands();
- Type *TruncTy = nullptr;
- bool Signed;
- for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
- if ((TruncTy =
- isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this)))
- if (FoundIndex == e) {
- FoundIndex = i;
- break;
- }
-
- if (FoundIndex == Add->getNumOperands())
- return None;
-
- // Create an add with everything but the specified operand.
- SmallVector<const SCEV *, 8> Ops;
- for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
- if (i != FoundIndex)
- Ops.push_back(Add->getOperand(i));
- const SCEV *Accum = getAddExpr(Ops);
-
- // The runtime checks will not be valid if the step amount is
- // varying inside the loop.
- if (!isLoopInvariant(Accum, L))
- return None;
-
- // *** Part2: Create the predicates
-
- // Analysis was successful: we have a phi-with-cast pattern for which we
- // can return an AddRec expression under the following predicates:
- //
- // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum)
- // fits within the truncated type (does not overflow) for i = 0 to n-1.
- // P2: An Equal predicate that guarantees that
- // Start = (Ext ix (Trunc iy (Start) to ix) to iy)
- // P3: An Equal predicate that guarantees that
- // Accum = (Ext ix (Trunc iy (Accum) to ix) to iy)
- //
- // As we next prove, the above predicates guarantee that:
- // Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy)
- //
- //
- // More formally, we want to prove that:
- // Expr(i+1) = Start + (i+1) * Accum
- // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
- //
- // Given that:
- // 1) Expr(0) = Start
- // 2) Expr(1) = Start + Accum
- // = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2
- // 3) Induction hypothesis (step i):
- // Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum
- //
- // Proof:
- // Expr(i+1) =
- // = Start + (i+1)*Accum
- // = (Start + i*Accum) + Accum
- // = Expr(i) + Accum
- // = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum
- // :: from step i
- //
- // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum
- //
- // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy)
- // + (Ext ix (Trunc iy (Accum) to ix) to iy)
- // + Accum :: from P3
- //
- // = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy)
- // + Accum :: from P1: Ext(x)+Ext(y)=>Ext(x+y)
- //
- // = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum
- // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
- //
- // By induction, the same applies to all iterations 1<=i<n:
- //
-
- // Create a truncated addrec for which we will add a no overflow check (P1).
- const SCEV *StartVal = getSCEV(StartValueV);
- const SCEV *PHISCEV =
- getAddRecExpr(getTruncateExpr(StartVal, TruncTy),
- getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap);
-
- // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr.
- // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV
- // will be constant.
- //
- // If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't
- // add P1.
- if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) {
- SCEVWrapPredicate::IncrementWrapFlags AddedFlags =
- Signed ? SCEVWrapPredicate::IncrementNSSW
- : SCEVWrapPredicate::IncrementNUSW;
- const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags);
- Predicates.push_back(AddRecPred);
- }
-
- // Create the Equal Predicates P2,P3:
-
- // It is possible that the predicates P2 and/or P3 are computable at
- // compile time due to StartVal and/or Accum being constants.
- // If either one is, then we can check that now and escape if either P2
- // or P3 is false.
-
- // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy)
- // for each of StartVal and Accum
- auto getExtendedExpr = [&](const SCEV *Expr,
- bool CreateSignExtend) -> const SCEV * {
- assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant");
- const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy);
- const SCEV *ExtendedExpr =
- CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType())
- : getZeroExtendExpr(TruncatedExpr, Expr->getType());
- return ExtendedExpr;
- };
-
- // Given:
- // ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy
- // = getExtendedExpr(Expr)
- // Determine whether the predicate P: Expr == ExtendedExpr
- // is known to be false at compile time
- auto PredIsKnownFalse = [&](const SCEV *Expr,
- const SCEV *ExtendedExpr) -> bool {
- return Expr != ExtendedExpr &&
- isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr);
- };
-
- const SCEV *StartExtended = getExtendedExpr(StartVal, Signed);
- if (PredIsKnownFalse(StartVal, StartExtended)) {
- LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";);
- return None;
- }
-
- // The Step is always Signed (because the overflow checks are either
- // NSSW or NUSW)
- const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true);
- if (PredIsKnownFalse(Accum, AccumExtended)) {
- LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";);
- return None;
- }
-
- auto AppendPredicate = [&](const SCEV *Expr,
- const SCEV *ExtendedExpr) -> void {
- if (Expr != ExtendedExpr &&
- !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) {
- const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr);
- LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred);
- Predicates.push_back(Pred);
- }
- };
-
- AppendPredicate(StartVal, StartExtended);
- AppendPredicate(Accum, AccumExtended);
-
- // *** Part3: Predicates are ready. Now go ahead and create the new addrec in
- // which the casts had been folded away. The caller can rewrite SymbolicPHI
- // into NewAR if it will also add the runtime overflow checks specified in
- // Predicates.
- auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap);
-
- std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite =
- std::make_pair(NewAR, Predicates);
- // Remember the result of the analysis for this SCEV at this locayyytion.
- PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite;
- return PredRewrite;
-}
-
-Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
-ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) {
- auto *PN = cast<PHINode>(SymbolicPHI->getValue());
- const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
- if (!L)
- return None;
-
- // Check to see if we already analyzed this PHI.
- auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L});
- if (I != PredicatedSCEVRewrites.end()) {
- std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite =
- I->second;
- // Analysis was done before and failed to create an AddRec:
- if (Rewrite.first == SymbolicPHI)
- return None;
- // Analysis was done before and succeeded to create an AddRec under
- // a predicate:
- assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec");
- assert(!(Rewrite.second).empty() && "Expected to find Predicates");
- return Rewrite;
- }
-
- Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
- Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI);
-
- // Record in the cache that the analysis failed
- if (!Rewrite) {
- SmallVector<const SCEVPredicate *, 3> Predicates;
- PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates};
- return None;
- }
-
- return Rewrite;
-}
-
-// FIXME: This utility is currently required because the Rewriter currently
-// does not rewrite this expression:
-// {0, +, (sext ix (trunc iy to ix) to iy)}
-// into {0, +, %step},
-// even when the following Equal predicate exists:
-// "%step == (sext ix (trunc iy to ix) to iy)".
-bool PredicatedScalarEvolution::areAddRecsEqualWithPreds(
- const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const {
- if (AR1 == AR2)
- return true;
-
- auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool {
- if (Expr1 != Expr2 && !Preds.implies(SE.getEqualPredicate(Expr1, Expr2)) &&
- !Preds.implies(SE.getEqualPredicate(Expr2, Expr1)))
- return false;
- return true;
- };
-
- if (!areExprsEqual(AR1->getStart(), AR2->getStart()) ||
- !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE)))
- return false;
- return true;
-}
-
-/// A helper function for createAddRecFromPHI to handle simple cases.
-///
-/// This function tries to find an AddRec expression for the simplest (yet most
-/// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)).
-/// If it fails, createAddRecFromPHI will use a more general, but slow,
-/// technique for finding the AddRec expression.
-const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN,
- Value *BEValueV,
- Value *StartValueV) {
- const Loop *L = LI.getLoopFor(PN->getParent());
- assert(L && L->getHeader() == PN->getParent());
- assert(BEValueV && StartValueV);
-
- auto BO = MatchBinaryOp(BEValueV, DT);
- if (!BO)
- return nullptr;
-
- if (BO->Opcode != Instruction::Add)
- return nullptr;
-
- const SCEV *Accum = nullptr;
- if (BO->LHS == PN && L->isLoopInvariant(BO->RHS))
- Accum = getSCEV(BO->RHS);
- else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS))
- Accum = getSCEV(BO->LHS);
-
- if (!Accum)
- return nullptr;
-
- SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
- if (BO->IsNUW)
- Flags = setFlags(Flags, SCEV::FlagNUW);
- if (BO->IsNSW)
- Flags = setFlags(Flags, SCEV::FlagNSW);
-
- const SCEV *StartVal = getSCEV(StartValueV);
- const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
-
- ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
-
- // We can add Flags to the post-inc expression only if we
- // know that it is *undefined behavior* for BEValueV to
- // overflow.
- if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
- if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
- (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
-
- return PHISCEV;
-}
-
-const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
- const Loop *L = LI.getLoopFor(PN->getParent());
- if (!L || L->getHeader() != PN->getParent())
- return nullptr;
-
- // The loop may have multiple entrances or multiple exits; we can analyze
- // this phi as an addrec if it has a unique entry value and a unique
- // backedge value.
- Value *BEValueV = nullptr, *StartValueV = nullptr;
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
- Value *V = PN->getIncomingValue(i);
- if (L->contains(PN->getIncomingBlock(i))) {
- if (!BEValueV) {
- BEValueV = V;
- } else if (BEValueV != V) {
- BEValueV = nullptr;
- break;
- }
- } else if (!StartValueV) {
- StartValueV = V;
- } else if (StartValueV != V) {
- StartValueV = nullptr;
- break;
- }
- }
- if (!BEValueV || !StartValueV)
- return nullptr;
-
- assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
- "PHI node already processed?");
-
- // First, try to find AddRec expression without creating a fictituos symbolic
- // value for PN.
- if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV))
- return S;
-
- // Handle PHI node value symbolically.
- const SCEV *SymbolicName = getUnknown(PN);
- ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName});
-
- // Using this symbolic name for the PHI, analyze the value coming around
- // the back-edge.
- const SCEV *BEValue = getSCEV(BEValueV);
-
- // NOTE: If BEValue is loop invariant, we know that the PHI node just
- // has a special value for the first iteration of the loop.
-
- // If the value coming around the backedge is an add with the symbolic
- // value we just inserted, then we found a simple induction variable!
- if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
- // If there is a single occurrence of the symbolic value, replace it
- // with a recurrence.
- unsigned FoundIndex = Add->getNumOperands();
- for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
- if (Add->getOperand(i) == SymbolicName)
- if (FoundIndex == e) {
- FoundIndex = i;
- break;
- }
-
- if (FoundIndex != Add->getNumOperands()) {
- // Create an add with everything but the specified operand.
- SmallVector<const SCEV *, 8> Ops;
- for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
- if (i != FoundIndex)
- Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i),
- L, *this));
- const SCEV *Accum = getAddExpr(Ops);
-
- // This is not a valid addrec if the step amount is varying each
- // loop iteration, but is not itself an addrec in this loop.
- if (isLoopInvariant(Accum, L) ||
- (isa<SCEVAddRecExpr>(Accum) &&
- cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
- SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
-
- if (auto BO = MatchBinaryOp(BEValueV, DT)) {
- if (BO->Opcode == Instruction::Add && BO->LHS == PN) {
- if (BO->IsNUW)
- Flags = setFlags(Flags, SCEV::FlagNUW);
- if (BO->IsNSW)
- Flags = setFlags(Flags, SCEV::FlagNSW);
- }
- } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
- // If the increment is an inbounds GEP, then we know the address
- // space cannot be wrapped around. We cannot make any guarantee
- // about signed or unsigned overflow because pointers are
- // unsigned but we may have a negative index from the base
- // pointer. We can guarantee that no unsigned wrap occurs if the
- // indices form a positive value.
- if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
- Flags = setFlags(Flags, SCEV::FlagNW);
-
- const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
- if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
- Flags = setFlags(Flags, SCEV::FlagNUW);
- }
-
- // We cannot transfer nuw and nsw flags from subtraction
- // operations -- sub nuw X, Y is not the same as add nuw X, -Y
- // for instance.
- }
-
- const SCEV *StartVal = getSCEV(StartValueV);
- const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
-
- // Okay, for the entire analysis of this edge we assumed the PHI
- // to be symbolic. We now need to go back and purge all of the
- // entries for the scalars that use the symbolic expression.
- forgetSymbolicName(PN, SymbolicName);
- ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
-
- // We can add Flags to the post-inc expression only if we
- // know that it is *undefined behavior* for BEValueV to
- // overflow.
- if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
- if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
- (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
-
- return PHISCEV;
- }
- }
- } else {
- // Otherwise, this could be a loop like this:
- // i = 0; for (j = 1; ..; ++j) { .... i = j; }
- // In this case, j = {1,+,1} and BEValue is j.
- // Because the other in-value of i (0) fits the evolution of BEValue
- // i really is an addrec evolution.
- //
- // We can generalize this saying that i is the shifted value of BEValue
- // by one iteration:
- // PHI(f(0), f({1,+,1})) --> f({0,+,1})
- const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
- const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false);
- if (Shifted != getCouldNotCompute() &&
- Start != getCouldNotCompute()) {
- const SCEV *StartVal = getSCEV(StartValueV);
- if (Start == StartVal) {
- // Okay, for the entire analysis of this edge we assumed the PHI
- // to be symbolic. We now need to go back and purge all of the
- // entries for the scalars that use the symbolic expression.
- forgetSymbolicName(PN, SymbolicName);
- ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted;
- return Shifted;
- }
- }
- }
-
- // Remove the temporary PHI node SCEV that has been inserted while intending
- // to create an AddRecExpr for this PHI node. We can not keep this temporary
- // as it will prevent later (possibly simpler) SCEV expressions to be added
- // to the ValueExprMap.
- eraseValueFromMap(PN);
-
- return nullptr;
-}
-
-// Checks if the SCEV S is available at BB. S is considered available at BB
-// if S can be materialized at BB without introducing a fault.
-static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
- BasicBlock *BB) {
- struct CheckAvailable {
- bool TraversalDone = false;
- bool Available = true;
-
- const Loop *L = nullptr; // The loop BB is in (can be nullptr)
- BasicBlock *BB = nullptr;
- DominatorTree &DT;
-
- CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
- : L(L), BB(BB), DT(DT) {}
-
- bool setUnavailable() {
- TraversalDone = true;
- Available = false;
- return false;
- }
-
- bool follow(const SCEV *S) {
- switch (S->getSCEVType()) {
- case scConstant: case scTruncate: case scZeroExtend: case scSignExtend:
- case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr:
- // These expressions are available if their operand(s) is/are.
- return true;
-
- case scAddRecExpr: {
- // We allow add recurrences that are on the loop BB is in, or some
- // outer loop. This guarantees availability because the value of the
- // add recurrence at BB is simply the "current" value of the induction
- // variable. We can relax this in the future; for instance an add
- // recurrence on a sibling dominating loop is also available at BB.
- const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
- if (L && (ARLoop == L || ARLoop->contains(L)))
- return true;
-
- return setUnavailable();
- }
-
- case scUnknown: {
- // For SCEVUnknown, we check for simple dominance.
- const auto *SU = cast<SCEVUnknown>(S);
- Value *V = SU->getValue();
-
- if (isa<Argument>(V))
- return false;
-
- if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
- return false;
-
- return setUnavailable();
- }
-
- case scUDivExpr:
- case scCouldNotCompute:
- // We do not try to smart about these at all.
- return setUnavailable();
- }
- llvm_unreachable("switch should be fully covered!");
- }
-
- bool isDone() { return TraversalDone; }
- };
-
- CheckAvailable CA(L, BB, DT);
- SCEVTraversal<CheckAvailable> ST(CA);
-
- ST.visitAll(S);
- return CA.Available;
-}
-
-// Try to match a control flow sequence that branches out at BI and merges back
-// at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful
-// match.
-static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
- Value *&C, Value *&LHS, Value *&RHS) {
- C = BI->getCondition();
-
- BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
- BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
-
- if (!LeftEdge.isSingleEdge())
- return false;
-
- assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
-
- Use &LeftUse = Merge->getOperandUse(0);
- Use &RightUse = Merge->getOperandUse(1);
-
- if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
- LHS = LeftUse;
- RHS = RightUse;
- return true;
- }
-
- if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
- LHS = RightUse;
- RHS = LeftUse;
- return true;
- }
-
- return false;
-}
-
-const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
- auto IsReachable =
- [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); };
- if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) {
- const Loop *L = LI.getLoopFor(PN->getParent());
-
- // We don't want to break LCSSA, even in a SCEV expression tree.
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
- if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
- return nullptr;
-
- // Try to match
- //
- // br %cond, label %left, label %right
- // left:
- // br label %merge
- // right:
- // br label %merge
- // merge:
- // V = phi [ %x, %left ], [ %y, %right ]
- //
- // as "select %cond, %x, %y"
-
- BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
- assert(IDom && "At least the entry block should dominate PN");
-
- auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
- Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
-
- if (BI && BI->isConditional() &&
- BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
- IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
- IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
- return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
- }
-
- return nullptr;
-}
-
-const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
- if (const SCEV *S = createAddRecFromPHI(PN))
- return S;
-
- if (const SCEV *S = createNodeFromSelectLikePHI(PN))
- return S;
-
- // If the PHI has a single incoming value, follow that value, unless the
- // PHI's incoming blocks are in a different loop, in which case doing so
- // risks breaking LCSSA form. Instcombine would normally zap these, but
- // it doesn't have DominatorTree information, so it may miss cases.
- if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC}))
- if (LI.replacementPreservesLCSSAForm(PN, V))
- return getSCEV(V);
-
- // If it's not a loop phi, we can't handle it yet.
- return getUnknown(PN);
-}
-
-const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I,
- Value *Cond,
- Value *TrueVal,
- Value *FalseVal) {
- // Handle "constant" branch or select. This can occur for instance when a
- // loop pass transforms an inner loop and moves on to process the outer loop.
- if (auto *CI = dyn_cast<ConstantInt>(Cond))
- return getSCEV(CI->isOne() ? TrueVal : FalseVal);
-
- // Try to match some simple smax or umax patterns.
- auto *ICI = dyn_cast<ICmpInst>(Cond);
- if (!ICI)
- return getUnknown(I);
-
- Value *LHS = ICI->getOperand(0);
- Value *RHS = ICI->getOperand(1);
-
- switch (ICI->getPredicate()) {
- case ICmpInst::ICMP_SLT:
- case ICmpInst::ICMP_SLE:
- std::swap(LHS, RHS);
- LLVM_FALLTHROUGH;
- case ICmpInst::ICMP_SGT:
- case ICmpInst::ICMP_SGE:
- // a >s b ? a+x : b+x -> smax(a, b)+x
- // a >s b ? b+x : a+x -> smin(a, b)+x
- if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
- const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType());
- const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType());
- const SCEV *LA = getSCEV(TrueVal);
- const SCEV *RA = getSCEV(FalseVal);
- const SCEV *LDiff = getMinusSCEV(LA, LS);
- const SCEV *RDiff = getMinusSCEV(RA, RS);
- if (LDiff == RDiff)
- return getAddExpr(getSMaxExpr(LS, RS), LDiff);
- LDiff = getMinusSCEV(LA, RS);
- RDiff = getMinusSCEV(RA, LS);
- if (LDiff == RDiff)
- return getAddExpr(getSMinExpr(LS, RS), LDiff);
- }
- break;
- case ICmpInst::ICMP_ULT:
- case ICmpInst::ICMP_ULE:
- std::swap(LHS, RHS);
- LLVM_FALLTHROUGH;
- case ICmpInst::ICMP_UGT:
- case ICmpInst::ICMP_UGE:
- // a >u b ? a+x : b+x -> umax(a, b)+x
- // a >u b ? b+x : a+x -> umin(a, b)+x
- if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
- const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
- const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType());
- const SCEV *LA = getSCEV(TrueVal);
- const SCEV *RA = getSCEV(FalseVal);
- const SCEV *LDiff = getMinusSCEV(LA, LS);
- const SCEV *RDiff = getMinusSCEV(RA, RS);
- if (LDiff == RDiff)
- return getAddExpr(getUMaxExpr(LS, RS), LDiff);
- LDiff = getMinusSCEV(LA, RS);
- RDiff = getMinusSCEV(RA, LS);
- if (LDiff == RDiff)
- return getAddExpr(getUMinExpr(LS, RS), LDiff);
- }
- break;
- case ICmpInst::ICMP_NE:
- // n != 0 ? n+x : 1+x -> umax(n, 1)+x
- if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
- isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
- const SCEV *One = getOne(I->getType());
- const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
- const SCEV *LA = getSCEV(TrueVal);
- const SCEV *RA = getSCEV(FalseVal);
- const SCEV *LDiff = getMinusSCEV(LA, LS);
- const SCEV *RDiff = getMinusSCEV(RA, One);
- if (LDiff == RDiff)
- return getAddExpr(getUMaxExpr(One, LS), LDiff);
- }
- break;
- case ICmpInst::ICMP_EQ:
- // n == 0 ? 1+x : n+x -> umax(n, 1)+x
- if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
- isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
- const SCEV *One = getOne(I->getType());
- const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
- const SCEV *LA = getSCEV(TrueVal);
- const SCEV *RA = getSCEV(FalseVal);
- const SCEV *LDiff = getMinusSCEV(LA, One);
- const SCEV *RDiff = getMinusSCEV(RA, LS);
- if (LDiff == RDiff)
- return getAddExpr(getUMaxExpr(One, LS), LDiff);
- }
- break;
- default:
- break;
- }
-
- return getUnknown(I);
-}
-
-/// Expand GEP instructions into add and multiply operations. This allows them
-/// to be analyzed by regular SCEV code.
-const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
- // Don't attempt to analyze GEPs over unsized objects.
- if (!GEP->getSourceElementType()->isSized())
- return getUnknown(GEP);
-
- SmallVector<const SCEV *, 4> IndexExprs;
- for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
- IndexExprs.push_back(getSCEV(*Index));
- return getGEPExpr(GEP, IndexExprs);
-}
-
-uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) {
- if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
- return C->getAPInt().countTrailingZeros();
-
- if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
- return std::min(GetMinTrailingZeros(T->getOperand()),
- (uint32_t)getTypeSizeInBits(T->getType()));
-
- if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
- uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
- return OpRes == getTypeSizeInBits(E->getOperand()->getType())
- ? getTypeSizeInBits(E->getType())
- : OpRes;
- }
-
- if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
- uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
- return OpRes == getTypeSizeInBits(E->getOperand()->getType())
- ? getTypeSizeInBits(E->getType())
- : OpRes;
- }
-
- if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
- // The result is the min of all operands results.
- uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
- for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
- MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
- return MinOpRes;
- }
-
- if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
- // The result is the sum of all operands results.
- uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
- uint32_t BitWidth = getTypeSizeInBits(M->getType());
- for (unsigned i = 1, e = M->getNumOperands();
- SumOpRes != BitWidth && i != e; ++i)
- SumOpRes =
- std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth);
- return SumOpRes;
- }
-
- if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
- // The result is the min of all operands results.
- uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
- for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
- MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
- return MinOpRes;
- }
-
- if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
- // The result is the min of all operands results.
- uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
- for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
- MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
- return MinOpRes;
- }
-
- if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
- // The result is the min of all operands results.
- uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
- for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
- MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
- return MinOpRes;
- }
-
- if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
- // For a SCEVUnknown, ask ValueTracking.
- KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT);
- return Known.countMinTrailingZeros();
- }
-
- // SCEVUDivExpr
- return 0;
-}
-
-uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
- auto I = MinTrailingZerosCache.find(S);
- if (I != MinTrailingZerosCache.end())
- return I->second;
-
- uint32_t Result = GetMinTrailingZerosImpl(S);
- auto InsertPair = MinTrailingZerosCache.insert({S, Result});
- assert(InsertPair.second && "Should insert a new key");
- return InsertPair.first->second;
-}
-
-/// Helper method to assign a range to V from metadata present in the IR.
-static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
- if (Instruction *I = dyn_cast<Instruction>(V))
- if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
- return getConstantRangeFromMetadata(*MD);
-
- return None;
-}
-
-/// Determine the range for a particular SCEV. If SignHint is
-/// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
-/// with a "cleaner" unsigned (resp. signed) representation.
-const ConstantRange &
-ScalarEvolution::getRangeRef(const SCEV *S,
- ScalarEvolution::RangeSignHint SignHint) {
- DenseMap<const SCEV *, ConstantRange> &Cache =
- SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
- : SignedRanges;
-
- // See if we've computed this range already.
- DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
- if (I != Cache.end())
- return I->second;
-
- if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
- return setRange(C, SignHint, ConstantRange(C->getAPInt()));
-
- unsigned BitWidth = getTypeSizeInBits(S->getType());
- ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
-
- // If the value has known zeros, the maximum value will have those known zeros
- // as well.
- uint32_t TZ = GetMinTrailingZeros(S);
- if (TZ != 0) {
- if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
- ConservativeResult =
- ConstantRange(APInt::getMinValue(BitWidth),
- APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
- else
- ConservativeResult = ConstantRange(
- APInt::getSignedMinValue(BitWidth),
- APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
- }
-
- if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
- ConstantRange X = getRangeRef(Add->getOperand(0), SignHint);
- for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
- X = X.add(getRangeRef(Add->getOperand(i), SignHint));
- return setRange(Add, SignHint, ConservativeResult.intersectWith(X));
- }
-
- if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
- ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint);
- for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
- X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint));
- return setRange(Mul, SignHint, ConservativeResult.intersectWith(X));
- }
-
- if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
- ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint);
- for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
- X = X.smax(getRangeRef(SMax->getOperand(i), SignHint));
- return setRange(SMax, SignHint, ConservativeResult.intersectWith(X));
- }
-
- if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
- ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint);
- for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
- X = X.umax(getRangeRef(UMax->getOperand(i), SignHint));
- return setRange(UMax, SignHint, ConservativeResult.intersectWith(X));
- }
-
- if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
- ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint);
- ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint);
- return setRange(UDiv, SignHint,
- ConservativeResult.intersectWith(X.udiv(Y)));
- }
-
- if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
- ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint);
- return setRange(ZExt, SignHint,
- ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
- }
-
- if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
- ConstantRange X = getRangeRef(SExt->getOperand(), SignHint);
- return setRange(SExt, SignHint,
- ConservativeResult.intersectWith(X.signExtend(BitWidth)));
- }
-
- if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
- ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint);
- return setRange(Trunc, SignHint,
- ConservativeResult.intersectWith(X.truncate(BitWidth)));
- }
-
- if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
- // If there's no unsigned wrap, the value will never be less than its
- // initial value.
- if (AddRec->hasNoUnsignedWrap())
- if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
- if (!C->getValue()->isZero())
- ConservativeResult = ConservativeResult.intersectWith(
- ConstantRange(C->getAPInt(), APInt(BitWidth, 0)));
-
- // If there's no signed wrap, and all the operands have the same sign or
- // zero, the value won't ever change sign.
- if (AddRec->hasNoSignedWrap()) {
- bool AllNonNeg = true;
- bool AllNonPos = true;
- for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
- if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
- if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
- }
- if (AllNonNeg)
- ConservativeResult = ConservativeResult.intersectWith(
- ConstantRange(APInt(BitWidth, 0),
- APInt::getSignedMinValue(BitWidth)));
- else if (AllNonPos)
- ConservativeResult = ConservativeResult.intersectWith(
- ConstantRange(APInt::getSignedMinValue(BitWidth),
- APInt(BitWidth, 1)));
- }
-
- // TODO: non-affine addrec
- if (AddRec->isAffine()) {
- const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
- if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
- getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
- auto RangeFromAffine = getRangeForAffineAR(
- AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
- BitWidth);
- if (!RangeFromAffine.isFullSet())
- ConservativeResult =
- ConservativeResult.intersectWith(RangeFromAffine);
-
- auto RangeFromFactoring = getRangeViaFactoring(
- AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
- BitWidth);
- if (!RangeFromFactoring.isFullSet())
- ConservativeResult =
- ConservativeResult.intersectWith(RangeFromFactoring);
- }
- }
-
- return setRange(AddRec, SignHint, std::move(ConservativeResult));
- }
-
- if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
- // Check if the IR explicitly contains !range metadata.
- Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
- if (MDRange.hasValue())
- ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue());
-
- // Split here to avoid paying the compile-time cost of calling both
- // computeKnownBits and ComputeNumSignBits. This restriction can be lifted
- // if needed.
- const DataLayout &DL = getDataLayout();
- if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
- // For a SCEVUnknown, ask ValueTracking.
- KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
- if (Known.One != ~Known.Zero + 1)
- ConservativeResult =
- ConservativeResult.intersectWith(ConstantRange(Known.One,
- ~Known.Zero + 1));
- } else {
- assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED &&
- "generalize as needed!");
- unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
- if (NS > 1)
- ConservativeResult = ConservativeResult.intersectWith(
- ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
- APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1));
- }
-
- // A range of Phi is a subset of union of all ranges of its input.
- if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) {
- // Make sure that we do not run over cycled Phis.
- if (PendingPhiRanges.insert(Phi).second) {
- ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false);
- for (auto &Op : Phi->operands()) {
- auto OpRange = getRangeRef(getSCEV(Op), SignHint);
- RangeFromOps = RangeFromOps.unionWith(OpRange);
- // No point to continue if we already have a full set.
- if (RangeFromOps.isFullSet())
- break;
- }
- ConservativeResult = ConservativeResult.intersectWith(RangeFromOps);
- bool Erased = PendingPhiRanges.erase(Phi);
- assert(Erased && "Failed to erase Phi properly?");
- (void) Erased;
- }
- }
-
- return setRange(U, SignHint, std::move(ConservativeResult));
- }
-
- return setRange(S, SignHint, std::move(ConservativeResult));
-}
-
-// Given a StartRange, Step and MaxBECount for an expression compute a range of
-// values that the expression can take. Initially, the expression has a value
-// from StartRange and then is changed by Step up to MaxBECount times. Signed
-// argument defines if we treat Step as signed or unsigned.
-static ConstantRange getRangeForAffineARHelper(APInt Step,
- const ConstantRange &StartRange,
- const APInt &MaxBECount,
- unsigned BitWidth, bool Signed) {
- // If either Step or MaxBECount is 0, then the expression won't change, and we
- // just need to return the initial range.
- if (Step == 0 || MaxBECount == 0)
- return StartRange;
-
- // If we don't know anything about the initial value (i.e. StartRange is
- // FullRange), then we don't know anything about the final range either.
- // Return FullRange.
- if (StartRange.isFullSet())
- return ConstantRange(BitWidth, /* isFullSet = */ true);
-
- // If Step is signed and negative, then we use its absolute value, but we also
- // note that we're moving in the opposite direction.
- bool Descending = Signed && Step.isNegative();
-
- if (Signed)
- // This is correct even for INT_SMIN. Let's look at i8 to illustrate this:
- // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128.
- // This equations hold true due to the well-defined wrap-around behavior of
- // APInt.
- Step = Step.abs();
-
- // Check if Offset is more than full span of BitWidth. If it is, the
- // expression is guaranteed to overflow.
- if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount))
- return ConstantRange(BitWidth, /* isFullSet = */ true);
-
- // Offset is by how much the expression can change. Checks above guarantee no
- // overflow here.
- APInt Offset = Step * MaxBECount;
-
- // Minimum value of the final range will match the minimal value of StartRange
- // if the expression is increasing and will be decreased by Offset otherwise.
- // Maximum value of the final range will match the maximal value of StartRange
- // if the expression is decreasing and will be increased by Offset otherwise.
- APInt StartLower = StartRange.getLower();
- APInt StartUpper = StartRange.getUpper() - 1;
- APInt MovedBoundary = Descending ? (StartLower - std::move(Offset))
- : (StartUpper + std::move(Offset));
-
- // It's possible that the new minimum/maximum value will fall into the initial
- // range (due to wrap around). This means that the expression can take any
- // value in this bitwidth, and we have to return full range.
- if (StartRange.contains(MovedBoundary))
- return ConstantRange(BitWidth, /* isFullSet = */ true);
-
- APInt NewLower =
- Descending ? std::move(MovedBoundary) : std::move(StartLower);
- APInt NewUpper =
- Descending ? std::move(StartUpper) : std::move(MovedBoundary);
- NewUpper += 1;
-
- // If we end up with full range, return a proper full range.
- if (NewLower == NewUpper)
- return ConstantRange(BitWidth, /* isFullSet = */ true);
-
- // No overflow detected, return [StartLower, StartUpper + Offset + 1) range.
- return ConstantRange(std::move(NewLower), std::move(NewUpper));
-}
-
-ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start,
- const SCEV *Step,
- const SCEV *MaxBECount,
- unsigned BitWidth) {
- assert(!isa<SCEVCouldNotCompute>(MaxBECount) &&
- getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
- "Precondition!");
-
- MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType());
- APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount);
-
- // First, consider step signed.
- ConstantRange StartSRange = getSignedRange(Start);
- ConstantRange StepSRange = getSignedRange(Step);
-
- // If Step can be both positive and negative, we need to find ranges for the
- // maximum absolute step values in both directions and union them.
- ConstantRange SR =
- getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange,
- MaxBECountValue, BitWidth, /* Signed = */ true);
- SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(),
- StartSRange, MaxBECountValue,
- BitWidth, /* Signed = */ true));
-
- // Next, consider step unsigned.
- ConstantRange UR = getRangeForAffineARHelper(
- getUnsignedRangeMax(Step), getUnsignedRange(Start),
- MaxBECountValue, BitWidth, /* Signed = */ false);
-
- // Finally, intersect signed and unsigned ranges.
- return SR.intersectWith(UR);
-}
-
-ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start,
- const SCEV *Step,
- const SCEV *MaxBECount,
- unsigned BitWidth) {
- // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
- // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
-
- struct SelectPattern {
- Value *Condition = nullptr;
- APInt TrueValue;
- APInt FalseValue;
-
- explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth,
- const SCEV *S) {
- Optional<unsigned> CastOp;
- APInt Offset(BitWidth, 0);
-
- assert(SE.getTypeSizeInBits(S->getType()) == BitWidth &&
- "Should be!");
-
- // Peel off a constant offset:
- if (auto *SA = dyn_cast<SCEVAddExpr>(S)) {
- // In the future we could consider being smarter here and handle
- // {Start+Step,+,Step} too.
- if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0)))
- return;
-
- Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt();
- S = SA->getOperand(1);
- }
-
- // Peel off a cast operation
- if (auto *SCast = dyn_cast<SCEVCastExpr>(S)) {
- CastOp = SCast->getSCEVType();
- S = SCast->getOperand();
- }
-
- using namespace llvm::PatternMatch;
-
- auto *SU = dyn_cast<SCEVUnknown>(S);
- const APInt *TrueVal, *FalseVal;
- if (!SU ||
- !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal),
- m_APInt(FalseVal)))) {
- Condition = nullptr;
- return;
- }
-
- TrueValue = *TrueVal;
- FalseValue = *FalseVal;
-
- // Re-apply the cast we peeled off earlier
- if (CastOp.hasValue())
- switch (*CastOp) {
- default:
- llvm_unreachable("Unknown SCEV cast type!");
-
- case scTruncate:
- TrueValue = TrueValue.trunc(BitWidth);
- FalseValue = FalseValue.trunc(BitWidth);
- break;
- case scZeroExtend:
- TrueValue = TrueValue.zext(BitWidth);
- FalseValue = FalseValue.zext(BitWidth);
- break;
- case scSignExtend:
- TrueValue = TrueValue.sext(BitWidth);
- FalseValue = FalseValue.sext(BitWidth);
- break;
- }
-
- // Re-apply the constant offset we peeled off earlier
- TrueValue += Offset;
- FalseValue += Offset;
- }
-
- bool isRecognized() { return Condition != nullptr; }
- };
-
- SelectPattern StartPattern(*this, BitWidth, Start);
- if (!StartPattern.isRecognized())
- return ConstantRange(BitWidth, /* isFullSet = */ true);
-
- SelectPattern StepPattern(*this, BitWidth, Step);
- if (!StepPattern.isRecognized())
- return ConstantRange(BitWidth, /* isFullSet = */ true);
-
- if (StartPattern.Condition != StepPattern.Condition) {
- // We don't handle this case today; but we could, by considering four
- // possibilities below instead of two. I'm not sure if there are cases where
- // that will help over what getRange already does, though.
- return ConstantRange(BitWidth, /* isFullSet = */ true);
- }
-
- // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
- // construct arbitrary general SCEV expressions here. This function is called
- // from deep in the call stack, and calling getSCEV (on a sext instruction,
- // say) can end up caching a suboptimal value.
-
- // FIXME: without the explicit `this` receiver below, MSVC errors out with
- // C2352 and C2512 (otherwise it isn't needed).
-
- const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue);
- const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue);
- const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue);
- const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue);
-
- ConstantRange TrueRange =
- this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth);
- ConstantRange FalseRange =
- this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth);
-
- return TrueRange.unionWith(FalseRange);
-}
-
-SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
- if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
- const BinaryOperator *BinOp = cast<BinaryOperator>(V);
-
- // Return early if there are no flags to propagate to the SCEV.
- SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
- if (BinOp->hasNoUnsignedWrap())
- Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
- if (BinOp->hasNoSignedWrap())
- Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
- if (Flags == SCEV::FlagAnyWrap)
- return SCEV::FlagAnyWrap;
-
- return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap;
-}
-
-bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) {
- // Here we check that I is in the header of the innermost loop containing I,
- // since we only deal with instructions in the loop header. The actual loop we
- // need to check later will come from an add recurrence, but getting that
- // requires computing the SCEV of the operands, which can be expensive. This
- // check we can do cheaply to rule out some cases early.
- Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent());
- if (InnermostContainingLoop == nullptr ||
- InnermostContainingLoop->getHeader() != I->getParent())
- return false;
-
- // Only proceed if we can prove that I does not yield poison.
- if (!programUndefinedIfFullPoison(I))
- return false;
-
- // At this point we know that if I is executed, then it does not wrap
- // according to at least one of NSW or NUW. If I is not executed, then we do
- // not know if the calculation that I represents would wrap. Multiple
- // instructions can map to the same SCEV. If we apply NSW or NUW from I to
- // the SCEV, we must guarantee no wrapping for that SCEV also when it is
- // derived from other instructions that map to the same SCEV. We cannot make
- // that guarantee for cases where I is not executed. So we need to find the
- // loop that I is considered in relation to and prove that I is executed for
- // every iteration of that loop. That implies that the value that I
- // calculates does not wrap anywhere in the loop, so then we can apply the
- // flags to the SCEV.
- //
- // We check isLoopInvariant to disambiguate in case we are adding recurrences
- // from different loops, so that we know which loop to prove that I is
- // executed in.
- for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) {
- // I could be an extractvalue from a call to an overflow intrinsic.
- // TODO: We can do better here in some cases.
- if (!isSCEVable(I->getOperand(OpIndex)->getType()))
- return false;
- const SCEV *Op = getSCEV(I->getOperand(OpIndex));
- if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
- bool AllOtherOpsLoopInvariant = true;
- for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands();
- ++OtherOpIndex) {
- if (OtherOpIndex != OpIndex) {
- const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex));
- if (!isLoopInvariant(OtherOp, AddRec->getLoop())) {
- AllOtherOpsLoopInvariant = false;
- break;
- }
- }
- }
- if (AllOtherOpsLoopInvariant &&
- isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop()))
- return true;
- }
- }
- return false;
-}
-
-bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) {
- // If we know that \c I can never be poison period, then that's enough.
- if (isSCEVExprNeverPoison(I))
- return true;
-
- // For an add recurrence specifically, we assume that infinite loops without
- // side effects are undefined behavior, and then reason as follows:
- //
- // If the add recurrence is poison in any iteration, it is poison on all
- // future iterations (since incrementing poison yields poison). If the result
- // of the add recurrence is fed into the loop latch condition and the loop
- // does not contain any throws or exiting blocks other than the latch, we now
- // have the ability to "choose" whether the backedge is taken or not (by
- // choosing a sufficiently evil value for the poison feeding into the branch)
- // for every iteration including and after the one in which \p I first became
- // poison. There are two possibilities (let's call the iteration in which \p
- // I first became poison as K):
- //
- // 1. In the set of iterations including and after K, the loop body executes
- // no side effects. In this case executing the backege an infinte number
- // of times will yield undefined behavior.
- //
- // 2. In the set of iterations including and after K, the loop body executes
- // at least one side effect. In this case, that specific instance of side
- // effect is control dependent on poison, which also yields undefined
- // behavior.
-
- auto *ExitingBB = L->getExitingBlock();
- auto *LatchBB = L->getLoopLatch();
- if (!ExitingBB || !LatchBB || ExitingBB != LatchBB)
- return false;
-
- SmallPtrSet<const Instruction *, 16> Pushed;
- SmallVector<const Instruction *, 8> PoisonStack;
-
- // We start by assuming \c I, the post-inc add recurrence, is poison. Only
- // things that are known to be fully poison under that assumption go on the
- // PoisonStack.
- Pushed.insert(I);
- PoisonStack.push_back(I);
-
- bool LatchControlDependentOnPoison = false;
- while (!PoisonStack.empty() && !LatchControlDependentOnPoison) {
- const Instruction *Poison = PoisonStack.pop_back_val();
-
- for (auto *PoisonUser : Poison->users()) {
- if (propagatesFullPoison(cast<Instruction>(PoisonUser))) {
- if (Pushed.insert(cast<Instruction>(PoisonUser)).second)
- PoisonStack.push_back(cast<Instruction>(PoisonUser));
- } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) {
- assert(BI->isConditional() && "Only possibility!");
- if (BI->getParent() == LatchBB) {
- LatchControlDependentOnPoison = true;
- break;
- }
- }
- }
- }
-
- return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L);
-}
-
-ScalarEvolution::LoopProperties
-ScalarEvolution::getLoopProperties(const Loop *L) {
- using LoopProperties = ScalarEvolution::LoopProperties;
-
- auto Itr = LoopPropertiesCache.find(L);
- if (Itr == LoopPropertiesCache.end()) {
- auto HasSideEffects = [](Instruction *I) {
- if (auto *SI = dyn_cast<StoreInst>(I))
- return !SI->isSimple();
-
- return I->mayHaveSideEffects();
- };
-
- LoopProperties LP = {/* HasNoAbnormalExits */ true,
- /*HasNoSideEffects*/ true};
-
- for (auto *BB : L->getBlocks())
- for (auto &I : *BB) {
- if (!isGuaranteedToTransferExecutionToSuccessor(&I))
- LP.HasNoAbnormalExits = false;
- if (HasSideEffects(&I))
- LP.HasNoSideEffects = false;
- if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects)
- break; // We're already as pessimistic as we can get.
- }
-
- auto InsertPair = LoopPropertiesCache.insert({L, LP});
- assert(InsertPair.second && "We just checked!");
- Itr = InsertPair.first;
- }
-
- return Itr->second;
-}
-
-const SCEV *ScalarEvolution::createSCEV(Value *V) {
- if (!isSCEVable(V->getType()))
- return getUnknown(V);
-
- if (Instruction *I = dyn_cast<Instruction>(V)) {
- // Don't attempt to analyze instructions in blocks that aren't
- // reachable. Such instructions don't matter, and they aren't required
- // to obey basic rules for definitions dominating uses which this
- // analysis depends on.
- if (!DT.isReachableFromEntry(I->getParent()))
- return getUnknown(V);
- } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
- return getConstant(CI);
- else if (isa<ConstantPointerNull>(V))
- return getZero(V->getType());
- else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
- return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee());
- else if (!isa<ConstantExpr>(V))
- return getUnknown(V);
-
- Operator *U = cast<Operator>(V);
- if (auto BO = MatchBinaryOp(U, DT)) {
- switch (BO->Opcode) {
- case Instruction::Add: {
- // The simple thing to do would be to just call getSCEV on both operands
- // and call getAddExpr with the result. However if we're looking at a
- // bunch of things all added together, this can be quite inefficient,
- // because it leads to N-1 getAddExpr calls for N ultimate operands.
- // Instead, gather up all the operands and make a single getAddExpr call.
- // LLVM IR canonical form means we need only traverse the left operands.
- SmallVector<const SCEV *, 4> AddOps;
- do {
- if (BO->Op) {
- if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
- AddOps.push_back(OpSCEV);
- break;
- }
-
- // If a NUW or NSW flag can be applied to the SCEV for this
- // addition, then compute the SCEV for this addition by itself
- // with a separate call to getAddExpr. We need to do that
- // instead of pushing the operands of the addition onto AddOps,
- // since the flags are only known to apply to this particular
- // addition - they may not apply to other additions that can be
- // formed with operands from AddOps.
- const SCEV *RHS = getSCEV(BO->RHS);
- SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
- if (Flags != SCEV::FlagAnyWrap) {
- const SCEV *LHS = getSCEV(BO->LHS);
- if (BO->Opcode == Instruction::Sub)
- AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
- else
- AddOps.push_back(getAddExpr(LHS, RHS, Flags));
- break;
- }
- }
-
- if (BO->Opcode == Instruction::Sub)
- AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS)));
- else
- AddOps.push_back(getSCEV(BO->RHS));
-
- auto NewBO = MatchBinaryOp(BO->LHS, DT);
- if (!NewBO || (NewBO->Opcode != Instruction::Add &&
- NewBO->Opcode != Instruction::Sub)) {
- AddOps.push_back(getSCEV(BO->LHS));
- break;
- }
- BO = NewBO;
- } while (true);
-
- return getAddExpr(AddOps);
- }
-
- case Instruction::Mul: {
- SmallVector<const SCEV *, 4> MulOps;
- do {
- if (BO->Op) {
- if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
- MulOps.push_back(OpSCEV);
- break;
- }
-
- SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
- if (Flags != SCEV::FlagAnyWrap) {
- MulOps.push_back(
- getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags));
- break;
- }
- }
-
- MulOps.push_back(getSCEV(BO->RHS));
- auto NewBO = MatchBinaryOp(BO->LHS, DT);
- if (!NewBO || NewBO->Opcode != Instruction::Mul) {
- MulOps.push_back(getSCEV(BO->LHS));
- break;
- }
- BO = NewBO;
- } while (true);
-
- return getMulExpr(MulOps);
- }
- case Instruction::UDiv:
- return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
- case Instruction::URem:
- return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
- case Instruction::Sub: {
- SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
- if (BO->Op)
- Flags = getNoWrapFlagsFromUB(BO->Op);
- return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags);
- }
- case Instruction::And:
- // For an expression like x&255 that merely masks off the high bits,
- // use zext(trunc(x)) as the SCEV expression.
- if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
- if (CI->isZero())
- return getSCEV(BO->RHS);
- if (CI->isMinusOne())
- return getSCEV(BO->LHS);
- const APInt &A = CI->getValue();
-
- // Instcombine's ShrinkDemandedConstant may strip bits out of
- // constants, obscuring what would otherwise be a low-bits mask.
- // Use computeKnownBits to compute what ShrinkDemandedConstant
- // knew about to reconstruct a low-bits mask value.
- unsigned LZ = A.countLeadingZeros();
- unsigned TZ = A.countTrailingZeros();
- unsigned BitWidth = A.getBitWidth();
- KnownBits Known(BitWidth);
- computeKnownBits(BO->LHS, Known, getDataLayout(),
- 0, &AC, nullptr, &DT);
-
- APInt EffectiveMask =
- APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
- if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) {
- const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ));
- const SCEV *LHS = getSCEV(BO->LHS);
- const SCEV *ShiftedLHS = nullptr;
- if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) {
- if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) {
- // For an expression like (x * 8) & 8, simplify the multiply.
- unsigned MulZeros = OpC->getAPInt().countTrailingZeros();
- unsigned GCD = std::min(MulZeros, TZ);
- APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD);
- SmallVector<const SCEV*, 4> MulOps;
- MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD)));
- MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end());
- auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags());
- ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt));
- }
- }
- if (!ShiftedLHS)
- ShiftedLHS = getUDivExpr(LHS, MulCount);
- return getMulExpr(
- getZeroExtendExpr(
- getTruncateExpr(ShiftedLHS,
- IntegerType::get(getContext(), BitWidth - LZ - TZ)),
- BO->LHS->getType()),
- MulCount);
- }
- }
- break;
-
- case Instruction::Or:
- // If the RHS of the Or is a constant, we may have something like:
- // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
- // optimizations will transparently handle this case.
- //
- // In order for this transformation to be safe, the LHS must be of the
- // form X*(2^n) and the Or constant must be less than 2^n.
- if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
- const SCEV *LHS = getSCEV(BO->LHS);
- const APInt &CIVal = CI->getValue();
- if (GetMinTrailingZeros(LHS) >=
- (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
- // Build a plain add SCEV.
- const SCEV *S = getAddExpr(LHS, getSCEV(CI));
- // If the LHS of the add was an addrec and it has no-wrap flags,
- // transfer the no-wrap flags, since an or won't introduce a wrap.
- if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
- const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
- const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
- OldAR->getNoWrapFlags());
- }
- return S;
- }
- }
- break;
-
- case Instruction::Xor:
- if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
- // If the RHS of xor is -1, then this is a not operation.
- if (CI->isMinusOne())
- return getNotSCEV(getSCEV(BO->LHS));
-
- // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
- // This is a variant of the check for xor with -1, and it handles
- // the case where instcombine has trimmed non-demanded bits out
- // of an xor with -1.
- if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS))
- if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1)))
- if (LBO->getOpcode() == Instruction::And &&
- LCI->getValue() == CI->getValue())
- if (const SCEVZeroExtendExpr *Z =
- dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) {
- Type *UTy = BO->LHS->getType();
- const SCEV *Z0 = Z->getOperand();
- Type *Z0Ty = Z0->getType();
- unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
-
- // If C is a low-bits mask, the zero extend is serving to
- // mask off the high bits. Complement the operand and
- // re-apply the zext.
- if (CI->getValue().isMask(Z0TySize))
- return getZeroExtendExpr(getNotSCEV(Z0), UTy);
-
- // If C is a single bit, it may be in the sign-bit position
- // before the zero-extend. In this case, represent the xor
- // using an add, which is equivalent, and re-apply the zext.
- APInt Trunc = CI->getValue().trunc(Z0TySize);
- if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
- Trunc.isSignMask())
- return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
- UTy);
- }
- }
- break;
-
- case Instruction::Shl:
- // Turn shift left of a constant amount into a multiply.
- if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) {
- uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth();
-
- // If the shift count is not less than the bitwidth, the result of
- // the shift is undefined. Don't try to analyze it, because the
- // resolution chosen here may differ from the resolution chosen in
- // other parts of the compiler.
- if (SA->getValue().uge(BitWidth))
- break;
-
- // It is currently not resolved how to interpret NSW for left
- // shift by BitWidth - 1, so we avoid applying flags in that
- // case. Remove this check (or this comment) once the situation
- // is resolved. See
- // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html
- // and http://reviews.llvm.org/D8890 .
- auto Flags = SCEV::FlagAnyWrap;
- if (BO->Op && SA->getValue().ult(BitWidth - 1))
- Flags = getNoWrapFlagsFromUB(BO->Op);
-
- Constant *X = ConstantInt::get(
- getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
- return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags);
- }
- break;
-
- case Instruction::AShr: {
- // AShr X, C, where C is a constant.
- ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS);
- if (!CI)
- break;
-
- Type *OuterTy = BO->LHS->getType();
- uint64_t BitWidth = getTypeSizeInBits(OuterTy);
- // If the shift count is not less than the bitwidth, the result of
- // the shift is undefined. Don't try to analyze it, because the
- // resolution chosen here may differ from the resolution chosen in
- // other parts of the compiler.
- if (CI->getValue().uge(BitWidth))
- break;
-
- if (CI->isZero())
- return getSCEV(BO->LHS); // shift by zero --> noop
-
- uint64_t AShrAmt = CI->getZExtValue();
- Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt);
-
- Operator *L = dyn_cast<Operator>(BO->LHS);
- if (L && L->getOpcode() == Instruction::Shl) {
- // X = Shl A, n
- // Y = AShr X, m
- // Both n and m are constant.
-
- const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0));
- if (L->getOperand(1) == BO->RHS)
- // For a two-shift sext-inreg, i.e. n = m,
- // use sext(trunc(x)) as the SCEV expression.
- return getSignExtendExpr(
- getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy);
-
- ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1));
- if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) {
- uint64_t ShlAmt = ShlAmtCI->getZExtValue();
- if (ShlAmt > AShrAmt) {
- // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV
- // expression. We already checked that ShlAmt < BitWidth, so
- // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as
- // ShlAmt - AShrAmt < Amt.
- APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt,
- ShlAmt - AShrAmt);
- return getSignExtendExpr(
- getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy),
- getConstant(Mul)), OuterTy);
- }
- }
- }
- break;
- }
- }
- }
-
- switch (U->getOpcode()) {
- case Instruction::Trunc:
- return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
-
- case Instruction::ZExt:
- return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
-
- case Instruction::SExt:
- if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) {
- // The NSW flag of a subtract does not always survive the conversion to
- // A + (-1)*B. By pushing sign extension onto its operands we are much
- // more likely to preserve NSW and allow later AddRec optimisations.
- //
- // NOTE: This is effectively duplicating this logic from getSignExtend:
- // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
- // but by that point the NSW information has potentially been lost.
- if (BO->Opcode == Instruction::Sub && BO->IsNSW) {
- Type *Ty = U->getType();
- auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty);
- auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty);
- return getMinusSCEV(V1, V2, SCEV::FlagNSW);
- }
- }
- return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
-
- case Instruction::BitCast:
- // BitCasts are no-op casts so we just eliminate the cast.
- if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
- return getSCEV(U->getOperand(0));
- break;
-
- // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
- // lead to pointer expressions which cannot safely be expanded to GEPs,
- // because ScalarEvolution doesn't respect the GEP aliasing rules when
- // simplifying integer expressions.
-
- case Instruction::GetElementPtr:
- return createNodeForGEP(cast<GEPOperator>(U));
-
- case Instruction::PHI:
- return createNodeForPHI(cast<PHINode>(U));
-
- case Instruction::Select:
- // U can also be a select constant expr, which let fall through. Since
- // createNodeForSelect only works for a condition that is an `ICmpInst`, and
- // constant expressions cannot have instructions as operands, we'd have
- // returned getUnknown for a select constant expressions anyway.
- if (isa<Instruction>(U))
- return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0),
- U->getOperand(1), U->getOperand(2));
- break;
-
- case Instruction::Call:
- case Instruction::Invoke:
- if (Value *RV = CallSite(U).getReturnedArgOperand())
- return getSCEV(RV);
- break;
- }
-
- return getUnknown(V);
-}
-
-//===----------------------------------------------------------------------===//
-// Iteration Count Computation Code
-//
-
-static unsigned getConstantTripCount(const SCEVConstant *ExitCount) {
- if (!ExitCount)
- return 0;
-
- ConstantInt *ExitConst = ExitCount->getValue();
-
- // Guard against huge trip counts.
- if (ExitConst->getValue().getActiveBits() > 32)
- return 0;
-
- // In case of integer overflow, this returns 0, which is correct.
- return ((unsigned)ExitConst->getZExtValue()) + 1;
-}
-
-unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) {
- if (BasicBlock *ExitingBB = L->getExitingBlock())
- return getSmallConstantTripCount(L, ExitingBB);
-
- // No trip count information for multiple exits.
- return 0;
-}
-
-unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L,
- BasicBlock *ExitingBlock) {
- assert(ExitingBlock && "Must pass a non-null exiting block!");
- assert(L->isLoopExiting(ExitingBlock) &&
- "Exiting block must actually branch out of the loop!");
- const SCEVConstant *ExitCount =
- dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
- return getConstantTripCount(ExitCount);
-}
-
-unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) {
- const auto *MaxExitCount =
- dyn_cast<SCEVConstant>(getMaxBackedgeTakenCount(L));
- return getConstantTripCount(MaxExitCount);
-}
-
-unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) {
- if (BasicBlock *ExitingBB = L->getExitingBlock())
- return getSmallConstantTripMultiple(L, ExitingBB);
-
- // No trip multiple information for multiple exits.
- return 0;
-}
-
-/// Returns the largest constant divisor of the trip count of this loop as a
-/// normal unsigned value, if possible. This means that the actual trip count is
-/// always a multiple of the returned value (don't forget the trip count could
-/// very well be zero as well!).
-///
-/// Returns 1 if the trip count is unknown or not guaranteed to be the
-/// multiple of a constant (which is also the case if the trip count is simply
-/// constant, use getSmallConstantTripCount for that case), Will also return 1
-/// if the trip count is very large (>= 2^32).
-///
-/// As explained in the comments for getSmallConstantTripCount, this assumes
-/// that control exits the loop via ExitingBlock.
-unsigned
-ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
- BasicBlock *ExitingBlock) {
- assert(ExitingBlock && "Must pass a non-null exiting block!");
- assert(L->isLoopExiting(ExitingBlock) &&
- "Exiting block must actually branch out of the loop!");
- const SCEV *ExitCount = getExitCount(L, ExitingBlock);
- if (ExitCount == getCouldNotCompute())
- return 1;
-
- // Get the trip count from the BE count by adding 1.
- const SCEV *TCExpr = getAddExpr(ExitCount, getOne(ExitCount->getType()));
-
- const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr);
- if (!TC)
- // Attempt to factor more general cases. Returns the greatest power of
- // two divisor. If overflow happens, the trip count expression is still
- // divisible by the greatest power of 2 divisor returned.
- return 1U << std::min((uint32_t)31, GetMinTrailingZeros(TCExpr));
-
- ConstantInt *Result = TC->getValue();
-
- // Guard against huge trip counts (this requires checking
- // for zero to handle the case where the trip count == -1 and the
- // addition wraps).
- if (!Result || Result->getValue().getActiveBits() > 32 ||
- Result->getValue().getActiveBits() == 0)
- return 1;
-
- return (unsigned)Result->getZExtValue();
-}
-
-/// Get the expression for the number of loop iterations for which this loop is
-/// guaranteed not to exit via ExitingBlock. Otherwise return
-/// SCEVCouldNotCompute.
-const SCEV *ScalarEvolution::getExitCount(const Loop *L,
- BasicBlock *ExitingBlock) {
- return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
-}
-
-const SCEV *
-ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L,
- SCEVUnionPredicate &Preds) {
- return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds);
-}
-
-const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
- return getBackedgeTakenInfo(L).getExact(L, this);
-}
-
-/// Similar to getBackedgeTakenCount, except return the least SCEV value that is
-/// known never to be less than the actual backedge taken count.
-const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
- return getBackedgeTakenInfo(L).getMax(this);
-}
-
-bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) {
- return getBackedgeTakenInfo(L).isMaxOrZero(this);
-}
-
-/// Push PHI nodes in the header of the given loop onto the given Worklist.
-static void
-PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
- BasicBlock *Header = L->getHeader();
-
- // Push all Loop-header PHIs onto the Worklist stack.
- for (PHINode &PN : Header->phis())
- Worklist.push_back(&PN);
-}
-
-const ScalarEvolution::BackedgeTakenInfo &
-ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) {
- auto &BTI = getBackedgeTakenInfo(L);
- if (BTI.hasFullInfo())
- return BTI;
-
- auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
-
- if (!Pair.second)
- return Pair.first->second;
-
- BackedgeTakenInfo Result =
- computeBackedgeTakenCount(L, /*AllowPredicates=*/true);
-
- return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result);
-}
-
-const ScalarEvolution::BackedgeTakenInfo &
-ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
- // Initially insert an invalid entry for this loop. If the insertion
- // succeeds, proceed to actually compute a backedge-taken count and
- // update the value. The temporary CouldNotCompute value tells SCEV
- // code elsewhere that it shouldn't attempt to request a new
- // backedge-taken count, which could result in infinite recursion.
- std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
- BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
- if (!Pair.second)
- return Pair.first->second;
-
- // computeBackedgeTakenCount may allocate memory for its result. Inserting it
- // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
- // must be cleared in this scope.
- BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
-
- // In product build, there are no usage of statistic.
- (void)NumTripCountsComputed;
- (void)NumTripCountsNotComputed;
-#if LLVM_ENABLE_STATS || !defined(NDEBUG)
- const SCEV *BEExact = Result.getExact(L, this);
- if (BEExact != getCouldNotCompute()) {
- assert(isLoopInvariant(BEExact, L) &&
- isLoopInvariant(Result.getMax(this), L) &&
- "Computed backedge-taken count isn't loop invariant for loop!");
- ++NumTripCountsComputed;
- }
- else if (Result.getMax(this) == getCouldNotCompute() &&
- isa<PHINode>(L->getHeader()->begin())) {
- // Only count loops that have phi nodes as not being computable.
- ++NumTripCountsNotComputed;
- }
-#endif // LLVM_ENABLE_STATS || !defined(NDEBUG)
-
- // Now that we know more about the trip count for this loop, forget any
- // existing SCEV values for PHI nodes in this loop since they are only
- // conservative estimates made without the benefit of trip count
- // information. This is similar to the code in forgetLoop, except that
- // it handles SCEVUnknown PHI nodes specially.
- if (Result.hasAnyInfo()) {
- SmallVector<Instruction *, 16> Worklist;
- PushLoopPHIs(L, Worklist);
-
- SmallPtrSet<Instruction *, 8> Discovered;
- while (!Worklist.empty()) {
- Instruction *I = Worklist.pop_back_val();
-
- ValueExprMapType::iterator It =
- ValueExprMap.find_as(static_cast<Value *>(I));
- if (It != ValueExprMap.end()) {
- const SCEV *Old = It->second;
-
- // SCEVUnknown for a PHI either means that it has an unrecognized
- // structure, or it's a PHI that's in the progress of being computed
- // by createNodeForPHI. In the former case, additional loop trip
- // count information isn't going to change anything. In the later
- // case, createNodeForPHI will perform the necessary updates on its
- // own when it gets to that point.
- if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
- eraseValueFromMap(It->first);
- forgetMemoizedResults(Old);
- }
- if (PHINode *PN = dyn_cast<PHINode>(I))
- ConstantEvolutionLoopExitValue.erase(PN);
- }
-
- // Since we don't need to invalidate anything for correctness and we're
- // only invalidating to make SCEV's results more precise, we get to stop
- // early to avoid invalidating too much. This is especially important in
- // cases like:
- //
- // %v = f(pn0, pn1) // pn0 and pn1 used through some other phi node
- // loop0:
- // %pn0 = phi
- // ...
- // loop1:
- // %pn1 = phi
- // ...
- //
- // where both loop0 and loop1's backedge taken count uses the SCEV
- // expression for %v. If we don't have the early stop below then in cases
- // like the above, getBackedgeTakenInfo(loop1) will clear out the trip
- // count for loop0 and getBackedgeTakenInfo(loop0) will clear out the trip
- // count for loop1, effectively nullifying SCEV's trip count cache.
- for (auto *U : I->users())
- if (auto *I = dyn_cast<Instruction>(U)) {
- auto *LoopForUser = LI.getLoopFor(I->getParent());
- if (LoopForUser && L->contains(LoopForUser) &&
- Discovered.insert(I).second)
- Worklist.push_back(I);
- }
- }
- }
-
- // Re-lookup the insert position, since the call to
- // computeBackedgeTakenCount above could result in a
- // recusive call to getBackedgeTakenInfo (on a different
- // loop), which would invalidate the iterator computed
- // earlier.
- return BackedgeTakenCounts.find(L)->second = std::move(Result);
-}
-
-void ScalarEvolution::forgetLoop(const Loop *L) {
- // Drop any stored trip count value.
- auto RemoveLoopFromBackedgeMap =
- [](DenseMap<const Loop *, BackedgeTakenInfo> &Map, const Loop *L) {
- auto BTCPos = Map.find(L);
- if (BTCPos != Map.end()) {
- BTCPos->second.clear();
- Map.erase(BTCPos);
- }
- };
-
- SmallVector<const Loop *, 16> LoopWorklist(1, L);
- SmallVector<Instruction *, 32> Worklist;
- SmallPtrSet<Instruction *, 16> Visited;
-
- // Iterate over all the loops and sub-loops to drop SCEV information.
- while (!LoopWorklist.empty()) {
- auto *CurrL = LoopWorklist.pop_back_val();
-
- RemoveLoopFromBackedgeMap(BackedgeTakenCounts, CurrL);
- RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts, CurrL);
-
- // Drop information about predicated SCEV rewrites for this loop.
- for (auto I = PredicatedSCEVRewrites.begin();
- I != PredicatedSCEVRewrites.end();) {
- std::pair<const SCEV *, const Loop *> Entry = I->first;
- if (Entry.second == CurrL)
- PredicatedSCEVRewrites.erase(I++);
- else
- ++I;
- }
-
- auto LoopUsersItr = LoopUsers.find(CurrL);
- if (LoopUsersItr != LoopUsers.end()) {
- for (auto *S : LoopUsersItr->second)
- forgetMemoizedResults(S);
- LoopUsers.erase(LoopUsersItr);
- }
-
- // Drop information about expressions based on loop-header PHIs.
- PushLoopPHIs(CurrL, Worklist);
-
- while (!Worklist.empty()) {
- Instruction *I = Worklist.pop_back_val();
- if (!Visited.insert(I).second)
- continue;
-
- ValueExprMapType::iterator It =
- ValueExprMap.find_as(static_cast<Value *>(I));
- if (It != ValueExprMap.end()) {
- eraseValueFromMap(It->first);
- forgetMemoizedResults(It->second);
- if (PHINode *PN = dyn_cast<PHINode>(I))
- ConstantEvolutionLoopExitValue.erase(PN);
- }
-
- PushDefUseChildren(I, Worklist);
- }
-
- LoopPropertiesCache.erase(CurrL);
- // Forget all contained loops too, to avoid dangling entries in the
- // ValuesAtScopes map.
- LoopWorklist.append(CurrL->begin(), CurrL->end());
- }
-}
-
-void ScalarEvolution::forgetTopmostLoop(const Loop *L) {
- while (Loop *Parent = L->getParentLoop())
- L = Parent;
- forgetLoop(L);
-}
-
-void ScalarEvolution::forgetValue(Value *V) {
- Instruction *I = dyn_cast<Instruction>(V);
- if (!I) return;
-
- // Drop information about expressions based on loop-header PHIs.
- SmallVector<Instruction *, 16> Worklist;
- Worklist.push_back(I);
-
- SmallPtrSet<Instruction *, 8> Visited;
- while (!Worklist.empty()) {
- I = Worklist.pop_back_val();
- if (!Visited.insert(I).second)
- continue;
-
- ValueExprMapType::iterator It =
- ValueExprMap.find_as(static_cast<Value *>(I));
- if (It != ValueExprMap.end()) {
- eraseValueFromMap(It->first);
- forgetMemoizedResults(It->second);
- if (PHINode *PN = dyn_cast<PHINode>(I))
- ConstantEvolutionLoopExitValue.erase(PN);
- }
-
- PushDefUseChildren(I, Worklist);
- }
-}
-
-/// Get the exact loop backedge taken count considering all loop exits. A
-/// computable result can only be returned for loops with all exiting blocks
-/// dominating the latch. howFarToZero assumes that the limit of each loop test
-/// is never skipped. This is a valid assumption as long as the loop exits via
-/// that test. For precise results, it is the caller's responsibility to specify
-/// the relevant loop exiting block using getExact(ExitingBlock, SE).
-const SCEV *
-ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE,
- SCEVUnionPredicate *Preds) const {
- // If any exits were not computable, the loop is not computable.
- if (!isComplete() || ExitNotTaken.empty())
- return SE->getCouldNotCompute();
-
- const BasicBlock *Latch = L->getLoopLatch();
- // All exiting blocks we have collected must dominate the only backedge.
- if (!Latch)
- return SE->getCouldNotCompute();
-
- // All exiting blocks we have gathered dominate loop's latch, so exact trip
- // count is simply a minimum out of all these calculated exit counts.
- SmallVector<const SCEV *, 2> Ops;
- for (auto &ENT : ExitNotTaken) {
- const SCEV *BECount = ENT.ExactNotTaken;
- assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!");
- assert(SE->DT.dominates(ENT.ExitingBlock, Latch) &&
- "We should only have known counts for exiting blocks that dominate "
- "latch!");
-
- Ops.push_back(BECount);
-
- if (Preds && !ENT.hasAlwaysTruePredicate())
- Preds->add(ENT.Predicate.get());
-
- assert((Preds || ENT.hasAlwaysTruePredicate()) &&
- "Predicate should be always true!");
- }
-
- return SE->getUMinFromMismatchedTypes(Ops);
-}
-
-/// Get the exact not taken count for this loop exit.
-const SCEV *
-ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
- ScalarEvolution *SE) const {
- for (auto &ENT : ExitNotTaken)
- if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
- return ENT.ExactNotTaken;
-
- return SE->getCouldNotCompute();
-}
-
-/// getMax - Get the max backedge taken count for the loop.
-const SCEV *
-ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
- auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
- return !ENT.hasAlwaysTruePredicate();
- };
-
- if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getMax())
- return SE->getCouldNotCompute();
-
- assert((isa<SCEVCouldNotCompute>(getMax()) || isa<SCEVConstant>(getMax())) &&
- "No point in having a non-constant max backedge taken count!");
- return getMax();
-}
-
-bool ScalarEvolution::BackedgeTakenInfo::isMaxOrZero(ScalarEvolution *SE) const {
- auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
- return !ENT.hasAlwaysTruePredicate();
- };
- return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue);
-}
-
-bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
- ScalarEvolution *SE) const {
- if (getMax() && getMax() != SE->getCouldNotCompute() &&
- SE->hasOperand(getMax(), S))
- return true;
-
- for (auto &ENT : ExitNotTaken)
- if (ENT.ExactNotTaken != SE->getCouldNotCompute() &&
- SE->hasOperand(ENT.ExactNotTaken, S))
- return true;
-
- return false;
-}
-
-ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E)
- : ExactNotTaken(E), MaxNotTaken(E) {
- assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
- isa<SCEVConstant>(MaxNotTaken)) &&
- "No point in having a non-constant max backedge taken count!");
-}
-
-ScalarEvolution::ExitLimit::ExitLimit(
- const SCEV *E, const SCEV *M, bool MaxOrZero,
- ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList)
- : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) {
- assert((isa<SCEVCouldNotCompute>(ExactNotTaken) ||
- !isa<SCEVCouldNotCompute>(MaxNotTaken)) &&
- "Exact is not allowed to be less precise than Max");
- assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
- isa<SCEVConstant>(MaxNotTaken)) &&
- "No point in having a non-constant max backedge taken count!");
- for (auto *PredSet : PredSetList)
- for (auto *P : *PredSet)
- addPredicate(P);
-}
-
-ScalarEvolution::ExitLimit::ExitLimit(
- const SCEV *E, const SCEV *M, bool MaxOrZero,
- const SmallPtrSetImpl<const SCEVPredicate *> &PredSet)
- : ExitLimit(E, M, MaxOrZero, {&PredSet}) {
- assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
- isa<SCEVConstant>(MaxNotTaken)) &&
- "No point in having a non-constant max backedge taken count!");
-}
-
-ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M,
- bool MaxOrZero)
- : ExitLimit(E, M, MaxOrZero, None) {
- assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
- isa<SCEVConstant>(MaxNotTaken)) &&
- "No point in having a non-constant max backedge taken count!");
-}
-
-/// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
-/// computable exit into a persistent ExitNotTakenInfo array.
-ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
- SmallVectorImpl<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo>
- &&ExitCounts,
- bool Complete, const SCEV *MaxCount, bool MaxOrZero)
- : MaxAndComplete(MaxCount, Complete), MaxOrZero(MaxOrZero) {
- using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
-
- ExitNotTaken.reserve(ExitCounts.size());
- std::transform(
- ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken),
- [&](const EdgeExitInfo &EEI) {
- BasicBlock *ExitBB = EEI.first;
- const ExitLimit &EL = EEI.second;
- if (EL.Predicates.empty())
- return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, nullptr);
-
- std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate);
- for (auto *Pred : EL.Predicates)
- Predicate->add(Pred);
-
- return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, std::move(Predicate));
- });
- assert((isa<SCEVCouldNotCompute>(MaxCount) || isa<SCEVConstant>(MaxCount)) &&
- "No point in having a non-constant max backedge taken count!");
-}
-
-/// Invalidate this result and free the ExitNotTakenInfo array.
-void ScalarEvolution::BackedgeTakenInfo::clear() {
- ExitNotTaken.clear();
-}
-
-/// Compute the number of times the backedge of the specified loop will execute.
-ScalarEvolution::BackedgeTakenInfo
-ScalarEvolution::computeBackedgeTakenCount(const Loop *L,
- bool AllowPredicates) {
- SmallVector<BasicBlock *, 8> ExitingBlocks;
- L->getExitingBlocks(ExitingBlocks);
-
- using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
-
- SmallVector<EdgeExitInfo, 4> ExitCounts;
- bool CouldComputeBECount = true;
- BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
- const SCEV *MustExitMaxBECount = nullptr;
- const SCEV *MayExitMaxBECount = nullptr;
- bool MustExitMaxOrZero = false;
-
- // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
- // and compute maxBECount.
- // Do a union of all the predicates here.
- for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
- BasicBlock *ExitBB = ExitingBlocks[i];
- ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates);
-
- assert((AllowPredicates || EL.Predicates.empty()) &&
- "Predicated exit limit when predicates are not allowed!");
-
- // 1. For each exit that can be computed, add an entry to ExitCounts.
- // CouldComputeBECount is true only if all exits can be computed.
- if (EL.ExactNotTaken == getCouldNotCompute())
- // We couldn't compute an exact value for this exit, so
- // we won't be able to compute an exact value for the loop.
- CouldComputeBECount = false;
- else
- ExitCounts.emplace_back(ExitBB, EL);
-
- // 2. Derive the loop's MaxBECount from each exit's max number of
- // non-exiting iterations. Partition the loop exits into two kinds:
- // LoopMustExits and LoopMayExits.
- //
- // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
- // is a LoopMayExit. If any computable LoopMustExit is found, then
- // MaxBECount is the minimum EL.MaxNotTaken of computable
- // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum
- // EL.MaxNotTaken, where CouldNotCompute is considered greater than any
- // computable EL.MaxNotTaken.
- if (EL.MaxNotTaken != getCouldNotCompute() && Latch &&
- DT.dominates(ExitBB, Latch)) {
- if (!MustExitMaxBECount) {
- MustExitMaxBECount = EL.MaxNotTaken;
- MustExitMaxOrZero = EL.MaxOrZero;
- } else {
- MustExitMaxBECount =
- getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken);
- }
- } else if (MayExitMaxBECount != getCouldNotCompute()) {
- if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute())
- MayExitMaxBECount = EL.MaxNotTaken;
- else {
- MayExitMaxBECount =
- getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken);
- }
- }
- }
- const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
- (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
- // The loop backedge will be taken the maximum or zero times if there's
- // a single exit that must be taken the maximum or zero times.
- bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1);
- return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount,
- MaxBECount, MaxOrZero);
-}
-
-ScalarEvolution::ExitLimit
-ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
- bool AllowPredicates) {
- assert(L->contains(ExitingBlock) && "Exit count for non-loop block?");
- // If our exiting block does not dominate the latch, then its connection with
- // loop's exit limit may be far from trivial.
- const BasicBlock *Latch = L->getLoopLatch();
- if (!Latch || !DT.dominates(ExitingBlock, Latch))
- return getCouldNotCompute();
-
- bool IsOnlyExit = (L->getExitingBlock() != nullptr);
- Instruction *Term = ExitingBlock->getTerminator();
- if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
- assert(BI->isConditional() && "If unconditional, it can't be in loop!");
- bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
- assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) &&
- "It should have one successor in loop and one exit block!");
- // Proceed to the next level to examine the exit condition expression.
- return computeExitLimitFromCond(
- L, BI->getCondition(), ExitIfTrue,
- /*ControlsExit=*/IsOnlyExit, AllowPredicates);
- }
-
- if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) {
- // For switch, make sure that there is a single exit from the loop.
- BasicBlock *Exit = nullptr;
- for (auto *SBB : successors(ExitingBlock))
- if (!L->contains(SBB)) {
- if (Exit) // Multiple exit successors.
- return getCouldNotCompute();
- Exit = SBB;
- }
- assert(Exit && "Exiting block must have at least one exit");
- return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
- /*ControlsExit=*/IsOnlyExit);
- }
-
- return getCouldNotCompute();
-}
-
-ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond(
- const Loop *L, Value *ExitCond, bool ExitIfTrue,
- bool ControlsExit, bool AllowPredicates) {
- ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates);
- return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue,
- ControlsExit, AllowPredicates);
-}
-
-Optional<ScalarEvolution::ExitLimit>
-ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond,
- bool ExitIfTrue, bool ControlsExit,
- bool AllowPredicates) {
- (void)this->L;
- (void)this->ExitIfTrue;
- (void)this->AllowPredicates;
-
- assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
- this->AllowPredicates == AllowPredicates &&
- "Variance in assumed invariant key components!");
- auto Itr = TripCountMap.find({ExitCond, ControlsExit});
- if (Itr == TripCountMap.end())
- return None;
- return Itr->second;
-}
-
-void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond,
- bool ExitIfTrue,
- bool ControlsExit,
- bool AllowPredicates,
- const ExitLimit &EL) {
- assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
- this->AllowPredicates == AllowPredicates &&
- "Variance in assumed invariant key components!");
-
- auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL});
- assert(InsertResult.second && "Expected successful insertion!");
- (void)InsertResult;
- (void)ExitIfTrue;
-}
-
-ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached(
- ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
- bool ControlsExit, bool AllowPredicates) {
-
- if (auto MaybeEL =
- Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates))
- return *MaybeEL;
-
- ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue,
- ControlsExit, AllowPredicates);
- Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL);
- return EL;
-}
-
-ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl(
- ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
- bool ControlsExit, bool AllowPredicates) {
- // Check if the controlling expression for this loop is an And or Or.
- if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
- if (BO->getOpcode() == Instruction::And) {
- // Recurse on the operands of the and.
- bool EitherMayExit = !ExitIfTrue;
- ExitLimit EL0 = computeExitLimitFromCondCached(
- Cache, L, BO->getOperand(0), ExitIfTrue,
- ControlsExit && !EitherMayExit, AllowPredicates);
- ExitLimit EL1 = computeExitLimitFromCondCached(
- Cache, L, BO->getOperand(1), ExitIfTrue,
- ControlsExit && !EitherMayExit, AllowPredicates);
- const SCEV *BECount = getCouldNotCompute();
- const SCEV *MaxBECount = getCouldNotCompute();
- if (EitherMayExit) {
- // Both conditions must be true for the loop to continue executing.
- // Choose the less conservative count.
- if (EL0.ExactNotTaken == getCouldNotCompute() ||
- EL1.ExactNotTaken == getCouldNotCompute())
- BECount = getCouldNotCompute();
- else
- BECount =
- getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
- if (EL0.MaxNotTaken == getCouldNotCompute())
- MaxBECount = EL1.MaxNotTaken;
- else if (EL1.MaxNotTaken == getCouldNotCompute())
- MaxBECount = EL0.MaxNotTaken;
- else
- MaxBECount =
- getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
- } else {
- // Both conditions must be true at the same time for the loop to exit.
- // For now, be conservative.
- if (EL0.MaxNotTaken == EL1.MaxNotTaken)
- MaxBECount = EL0.MaxNotTaken;
- if (EL0.ExactNotTaken == EL1.ExactNotTaken)
- BECount = EL0.ExactNotTaken;
- }
-
- // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
- // to be more aggressive when computing BECount than when computing
- // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and
- // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken
- // to not.
- if (isa<SCEVCouldNotCompute>(MaxBECount) &&
- !isa<SCEVCouldNotCompute>(BECount))
- MaxBECount = getConstant(getUnsignedRangeMax(BECount));
-
- return ExitLimit(BECount, MaxBECount, false,
- {&EL0.Predicates, &EL1.Predicates});
- }
- if (BO->getOpcode() == Instruction::Or) {
- // Recurse on the operands of the or.
- bool EitherMayExit = ExitIfTrue;
- ExitLimit EL0 = computeExitLimitFromCondCached(
- Cache, L, BO->getOperand(0), ExitIfTrue,
- ControlsExit && !EitherMayExit, AllowPredicates);
- ExitLimit EL1 = computeExitLimitFromCondCached(
- Cache, L, BO->getOperand(1), ExitIfTrue,
- ControlsExit && !EitherMayExit, AllowPredicates);
- const SCEV *BECount = getCouldNotCompute();
- const SCEV *MaxBECount = getCouldNotCompute();
- if (EitherMayExit) {
- // Both conditions must be false for the loop to continue executing.
- // Choose the less conservative count.
- if (EL0.ExactNotTaken == getCouldNotCompute() ||
- EL1.ExactNotTaken == getCouldNotCompute())
- BECount = getCouldNotCompute();
- else
- BECount =
- getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
- if (EL0.MaxNotTaken == getCouldNotCompute())
- MaxBECount = EL1.MaxNotTaken;
- else if (EL1.MaxNotTaken == getCouldNotCompute())
- MaxBECount = EL0.MaxNotTaken;
- else
- MaxBECount =
- getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
- } else {
- // Both conditions must be false at the same time for the loop to exit.
- // For now, be conservative.
- if (EL0.MaxNotTaken == EL1.MaxNotTaken)
- MaxBECount = EL0.MaxNotTaken;
- if (EL0.ExactNotTaken == EL1.ExactNotTaken)
- BECount = EL0.ExactNotTaken;
- }
-
- return ExitLimit(BECount, MaxBECount, false,
- {&EL0.Predicates, &EL1.Predicates});
- }
- }
-
- // With an icmp, it may be feasible to compute an exact backedge-taken count.
- // Proceed to the next level to examine the icmp.
- if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) {
- ExitLimit EL =
- computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit);
- if (EL.hasFullInfo() || !AllowPredicates)
- return EL;
-
- // Try again, but use SCEV predicates this time.
- return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit,
- /*AllowPredicates=*/true);
- }
-
- // Check for a constant condition. These are normally stripped out by
- // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
- // preserve the CFG and is temporarily leaving constant conditions
- // in place.
- if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
- if (ExitIfTrue == !CI->getZExtValue())
- // The backedge is always taken.
- return getCouldNotCompute();
- else
- // The backedge is never taken.
- return getZero(CI->getType());
- }
-
- // If it's not an integer or pointer comparison then compute it the hard way.
- return computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
-}
-
-ScalarEvolution::ExitLimit
-ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
- ICmpInst *ExitCond,
- bool ExitIfTrue,
- bool ControlsExit,
- bool AllowPredicates) {
- // If the condition was exit on true, convert the condition to exit on false
- ICmpInst::Predicate Pred;
- if (!ExitIfTrue)
- Pred = ExitCond->getPredicate();
- else
- Pred = ExitCond->getInversePredicate();
- const ICmpInst::Predicate OriginalPred = Pred;
-
- // Handle common loops like: for (X = "string"; *X; ++X)
- if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
- if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
- ExitLimit ItCnt =
- computeLoadConstantCompareExitLimit(LI, RHS, L, Pred);
- if (ItCnt.hasAnyInfo())
- return ItCnt;
- }
-
- const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
- const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
-
- // Try to evaluate any dependencies out of the loop.
- LHS = getSCEVAtScope(LHS, L);
- RHS = getSCEVAtScope(RHS, L);
-
- // At this point, we would like to compute how many iterations of the
- // loop the predicate will return true for these inputs.
- if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
- // If there is a loop-invariant, force it into the RHS.
- std::swap(LHS, RHS);
- Pred = ICmpInst::getSwappedPredicate(Pred);
- }
-
- // Simplify the operands before analyzing them.
- (void)SimplifyICmpOperands(Pred, LHS, RHS);
-
- // If we have a comparison of a chrec against a constant, try to use value
- // ranges to answer this query.
- if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
- if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
- if (AddRec->getLoop() == L) {
- // Form the constant range.
- ConstantRange CompRange =
- ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt());
-
- const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
- if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
- }
-
- switch (Pred) {
- case ICmpInst::ICMP_NE: { // while (X != Y)
- // Convert to: while (X-Y != 0)
- ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit,
- AllowPredicates);
- if (EL.hasAnyInfo()) return EL;
- break;
- }
- case ICmpInst::ICMP_EQ: { // while (X == Y)
- // Convert to: while (X-Y == 0)
- ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L);
- if (EL.hasAnyInfo()) return EL;
- break;
- }
- case ICmpInst::ICMP_SLT:
- case ICmpInst::ICMP_ULT: { // while (X < Y)
- bool IsSigned = Pred == ICmpInst::ICMP_SLT;
- ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit,
- AllowPredicates);
- if (EL.hasAnyInfo()) return EL;
- break;
- }
- case ICmpInst::ICMP_SGT:
- case ICmpInst::ICMP_UGT: { // while (X > Y)
- bool IsSigned = Pred == ICmpInst::ICMP_SGT;
- ExitLimit EL =
- howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit,
- AllowPredicates);
- if (EL.hasAnyInfo()) return EL;
- break;
- }
- default:
- break;
- }
-
- auto *ExhaustiveCount =
- computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
-
- if (!isa<SCEVCouldNotCompute>(ExhaustiveCount))
- return ExhaustiveCount;
-
- return computeShiftCompareExitLimit(ExitCond->getOperand(0),
- ExitCond->getOperand(1), L, OriginalPred);
-}
-
-ScalarEvolution::ExitLimit
-ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
- SwitchInst *Switch,
- BasicBlock *ExitingBlock,
- bool ControlsExit) {
- assert(!L->contains(ExitingBlock) && "Not an exiting block!");
-
- // Give up if the exit is the default dest of a switch.
- if (Switch->getDefaultDest() == ExitingBlock)
- return getCouldNotCompute();
-
- assert(L->contains(Switch->getDefaultDest()) &&
- "Default case must not exit the loop!");
- const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
- const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
-
- // while (X != Y) --> while (X-Y != 0)
- ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
- if (EL.hasAnyInfo())
- return EL;
-
- return getCouldNotCompute();
-}
-
-static ConstantInt *
-EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
- ScalarEvolution &SE) {
- const SCEV *InVal = SE.getConstant(C);
- const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
- assert(isa<SCEVConstant>(Val) &&
- "Evaluation of SCEV at constant didn't fold correctly?");
- return cast<SCEVConstant>(Val)->getValue();
-}
-
-/// Given an exit condition of 'icmp op load X, cst', try to see if we can
-/// compute the backedge execution count.
-ScalarEvolution::ExitLimit
-ScalarEvolution::computeLoadConstantCompareExitLimit(
- LoadInst *LI,
- Constant *RHS,
- const Loop *L,
- ICmpInst::Predicate predicate) {
- if (LI->isVolatile()) return getCouldNotCompute();
-
- // Check to see if the loaded pointer is a getelementptr of a global.
- // TODO: Use SCEV instead of manually grubbing with GEPs.
- GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
- if (!GEP) return getCouldNotCompute();
-
- // Make sure that it is really a constant global we are gepping, with an
- // initializer, and make sure the first IDX is really 0.
- GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
- if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
- GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
- !cast<Constant>(GEP->getOperand(1))->isNullValue())
- return getCouldNotCompute();
-
- // Okay, we allow one non-constant index into the GEP instruction.
- Value *VarIdx = nullptr;
- std::vector<Constant*> Indexes;
- unsigned VarIdxNum = 0;
- for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
- if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
- Indexes.push_back(CI);
- } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
- if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
- VarIdx = GEP->getOperand(i);
- VarIdxNum = i-2;
- Indexes.push_back(nullptr);
- }
-
- // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
- if (!VarIdx)
- return getCouldNotCompute();
-
- // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
- // Check to see if X is a loop variant variable value now.
- const SCEV *Idx = getSCEV(VarIdx);
- Idx = getSCEVAtScope(Idx, L);
-
- // We can only recognize very limited forms of loop index expressions, in
- // particular, only affine AddRec's like {C1,+,C2}.
- const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
- if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
- !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
- !isa<SCEVConstant>(IdxExpr->getOperand(1)))
- return getCouldNotCompute();
-
- unsigned MaxSteps = MaxBruteForceIterations;
- for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
- ConstantInt *ItCst = ConstantInt::get(
- cast<IntegerType>(IdxExpr->getType()), IterationNum);
- ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
-
- // Form the GEP offset.
- Indexes[VarIdxNum] = Val;
-
- Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
- Indexes);
- if (!Result) break; // Cannot compute!
-
- // Evaluate the condition for this iteration.
- Result = ConstantExpr::getICmp(predicate, Result, RHS);
- if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
- if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
- ++NumArrayLenItCounts;
- return getConstant(ItCst); // Found terminating iteration!
- }
- }
- return getCouldNotCompute();
-}
-
-ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
- Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
- ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
- if (!RHS)
- return getCouldNotCompute();
-
- const BasicBlock *Latch = L->getLoopLatch();
- if (!Latch)
- return getCouldNotCompute();
-
- const BasicBlock *Predecessor = L->getLoopPredecessor();
- if (!Predecessor)
- return getCouldNotCompute();
-
- // Return true if V is of the form "LHS `shift_op` <positive constant>".
- // Return LHS in OutLHS and shift_opt in OutOpCode.
- auto MatchPositiveShift =
- [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
-
- using namespace PatternMatch;
-
- ConstantInt *ShiftAmt;
- if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
- OutOpCode = Instruction::LShr;
- else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
- OutOpCode = Instruction::AShr;
- else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
- OutOpCode = Instruction::Shl;
- else
- return false;
-
- return ShiftAmt->getValue().isStrictlyPositive();
- };
-
- // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
- //
- // loop:
- // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
- // %iv.shifted = lshr i32 %iv, <positive constant>
- //
- // Return true on a successful match. Return the corresponding PHI node (%iv
- // above) in PNOut and the opcode of the shift operation in OpCodeOut.
- auto MatchShiftRecurrence =
- [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
- Optional<Instruction::BinaryOps> PostShiftOpCode;
-
- {
- Instruction::BinaryOps OpC;
- Value *V;
-
- // If we encounter a shift instruction, "peel off" the shift operation,
- // and remember that we did so. Later when we inspect %iv's backedge
- // value, we will make sure that the backedge value uses the same
- // operation.
- //
- // Note: the peeled shift operation does not have to be the same
- // instruction as the one feeding into the PHI's backedge value. We only
- // really care about it being the same *kind* of shift instruction --
- // that's all that is required for our later inferences to hold.
- if (MatchPositiveShift(LHS, V, OpC)) {
- PostShiftOpCode = OpC;
- LHS = V;
- }
- }
-
- PNOut = dyn_cast<PHINode>(LHS);
- if (!PNOut || PNOut->getParent() != L->getHeader())
- return false;
-
- Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
- Value *OpLHS;
-
- return
- // The backedge value for the PHI node must be a shift by a positive
- // amount
- MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
-
- // of the PHI node itself
- OpLHS == PNOut &&
-
- // and the kind of shift should be match the kind of shift we peeled
- // off, if any.
- (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut);
- };
-
- PHINode *PN;
- Instruction::BinaryOps OpCode;
- if (!MatchShiftRecurrence(LHS, PN, OpCode))
- return getCouldNotCompute();
-
- const DataLayout &DL = getDataLayout();
-
- // The key rationale for this optimization is that for some kinds of shift
- // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
- // within a finite number of iterations. If the condition guarding the
- // backedge (in the sense that the backedge is taken if the condition is true)
- // is false for the value the shift recurrence stabilizes to, then we know
- // that the backedge is taken only a finite number of times.
-
- ConstantInt *StableValue = nullptr;
- switch (OpCode) {
- default:
- llvm_unreachable("Impossible case!");
-
- case Instruction::AShr: {
- // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
- // bitwidth(K) iterations.
- Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
- KnownBits Known = computeKnownBits(FirstValue, DL, 0, nullptr,
- Predecessor->getTerminator(), &DT);
- auto *Ty = cast<IntegerType>(RHS->getType());
- if (Known.isNonNegative())
- StableValue = ConstantInt::get(Ty, 0);
- else if (Known.isNegative())
- StableValue = ConstantInt::get(Ty, -1, true);
- else
- return getCouldNotCompute();
-
- break;
- }
- case Instruction::LShr:
- case Instruction::Shl:
- // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
- // stabilize to 0 in at most bitwidth(K) iterations.
- StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
- break;
- }
-
- auto *Result =
- ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
- assert(Result->getType()->isIntegerTy(1) &&
- "Otherwise cannot be an operand to a branch instruction");
-
- if (Result->isZeroValue()) {
- unsigned BitWidth = getTypeSizeInBits(RHS->getType());
- const SCEV *UpperBound =
- getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
- return ExitLimit(getCouldNotCompute(), UpperBound, false);
- }
-
- return getCouldNotCompute();
-}
-
-/// Return true if we can constant fold an instruction of the specified type,
-/// assuming that all operands were constants.
-static bool CanConstantFold(const Instruction *I) {
- if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
- isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
- isa<LoadInst>(I))
- return true;
-
- if (const CallInst *CI = dyn_cast<CallInst>(I))
- if (const Function *F = CI->getCalledFunction())
- return canConstantFoldCallTo(CI, F);
- return false;
-}
-
-/// Determine whether this instruction can constant evolve within this loop
-/// assuming its operands can all constant evolve.
-static bool canConstantEvolve(Instruction *I, const Loop *L) {
- // An instruction outside of the loop can't be derived from a loop PHI.
- if (!L->contains(I)) return false;
-
- if (isa<PHINode>(I)) {
- // We don't currently keep track of the control flow needed to evaluate
- // PHIs, so we cannot handle PHIs inside of loops.
- return L->getHeader() == I->getParent();
- }
-
- // If we won't be able to constant fold this expression even if the operands
- // are constants, bail early.
- return CanConstantFold(I);
-}
-
-/// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
-/// recursing through each instruction operand until reaching a loop header phi.
-static PHINode *
-getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
- DenseMap<Instruction *, PHINode *> &PHIMap,
- unsigned Depth) {
- if (Depth > MaxConstantEvolvingDepth)
- return nullptr;
-
- // Otherwise, we can evaluate this instruction if all of its operands are
- // constant or derived from a PHI node themselves.
- PHINode *PHI = nullptr;
- for (Value *Op : UseInst->operands()) {
- if (isa<Constant>(Op)) continue;
-
- Instruction *OpInst = dyn_cast<Instruction>(Op);
- if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
-
- PHINode *P = dyn_cast<PHINode>(OpInst);
- if (!P)
- // If this operand is already visited, reuse the prior result.
- // We may have P != PHI if this is the deepest point at which the
- // inconsistent paths meet.
- P = PHIMap.lookup(OpInst);
- if (!P) {
- // Recurse and memoize the results, whether a phi is found or not.
- // This recursive call invalidates pointers into PHIMap.
- P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1);
- PHIMap[OpInst] = P;
- }
- if (!P)
- return nullptr; // Not evolving from PHI
- if (PHI && PHI != P)
- return nullptr; // Evolving from multiple different PHIs.
- PHI = P;
- }
- // This is a expression evolving from a constant PHI!
- return PHI;
-}
-
-/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
-/// in the loop that V is derived from. We allow arbitrary operations along the
-/// way, but the operands of an operation must either be constants or a value
-/// derived from a constant PHI. If this expression does not fit with these
-/// constraints, return null.
-static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
- Instruction *I = dyn_cast<Instruction>(V);
- if (!I || !canConstantEvolve(I, L)) return nullptr;
-
- if (PHINode *PN = dyn_cast<PHINode>(I))
- return PN;
-
- // Record non-constant instructions contained by the loop.
- DenseMap<Instruction *, PHINode *> PHIMap;
- return getConstantEvolvingPHIOperands(I, L, PHIMap, 0);
-}
-
-/// EvaluateExpression - Given an expression that passes the
-/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
-/// in the loop has the value PHIVal. If we can't fold this expression for some
-/// reason, return null.
-static Constant *EvaluateExpression(Value *V, const Loop *L,
- DenseMap<Instruction *, Constant *> &Vals,
- const DataLayout &DL,
- const TargetLibraryInfo *TLI) {
- // Convenient constant check, but redundant for recursive calls.
- if (Constant *C = dyn_cast<Constant>(V)) return C;
- Instruction *I = dyn_cast<Instruction>(V);
- if (!I) return nullptr;
-
- if (Constant *C = Vals.lookup(I)) return C;
-
- // An instruction inside the loop depends on a value outside the loop that we
- // weren't given a mapping for, or a value such as a call inside the loop.
- if (!canConstantEvolve(I, L)) return nullptr;
-
- // An unmapped PHI can be due to a branch or another loop inside this loop,
- // or due to this not being the initial iteration through a loop where we
- // couldn't compute the evolution of this particular PHI last time.
- if (isa<PHINode>(I)) return nullptr;
-
- std::vector<Constant*> Operands(I->getNumOperands());
-
- for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
- Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
- if (!Operand) {
- Operands[i] = dyn_cast<Constant>(I->getOperand(i));
- if (!Operands[i]) return nullptr;
- continue;
- }
- Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
- Vals[Operand] = C;
- if (!C) return nullptr;
- Operands[i] = C;
- }
-
- if (CmpInst *CI = dyn_cast<CmpInst>(I))
- return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
- Operands[1], DL, TLI);
- if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
- if (!LI->isVolatile())
- return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
- }
- return ConstantFoldInstOperands(I, Operands, DL, TLI);
-}
-
-
-// If every incoming value to PN except the one for BB is a specific Constant,
-// return that, else return nullptr.
-static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
- Constant *IncomingVal = nullptr;
-
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
- if (PN->getIncomingBlock(i) == BB)
- continue;
-
- auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
- if (!CurrentVal)
- return nullptr;
-
- if (IncomingVal != CurrentVal) {
- if (IncomingVal)
- return nullptr;
- IncomingVal = CurrentVal;
- }
- }
-
- return IncomingVal;
-}
-
-/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
-/// in the header of its containing loop, we know the loop executes a
-/// constant number of times, and the PHI node is just a recurrence
-/// involving constants, fold it.
-Constant *
-ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
- const APInt &BEs,
- const Loop *L) {
- auto I = ConstantEvolutionLoopExitValue.find(PN);
- if (I != ConstantEvolutionLoopExitValue.end())
- return I->second;
-
- if (BEs.ugt(MaxBruteForceIterations))
- return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it.
-
- Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
-
- DenseMap<Instruction *, Constant *> CurrentIterVals;
- BasicBlock *Header = L->getHeader();
- assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
-
- BasicBlock *Latch = L->getLoopLatch();
- if (!Latch)
- return nullptr;
-
- for (PHINode &PHI : Header->phis()) {
- if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
- CurrentIterVals[&PHI] = StartCST;
- }
- if (!CurrentIterVals.count(PN))
- return RetVal = nullptr;
-
- Value *BEValue = PN->getIncomingValueForBlock(Latch);
-
- // Execute the loop symbolically to determine the exit value.
- assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) &&
- "BEs is <= MaxBruteForceIterations which is an 'unsigned'!");
-
- unsigned NumIterations = BEs.getZExtValue(); // must be in range
- unsigned IterationNum = 0;
- const DataLayout &DL = getDataLayout();
- for (; ; ++IterationNum) {
- if (IterationNum == NumIterations)
- return RetVal = CurrentIterVals[PN]; // Got exit value!
-
- // Compute the value of the PHIs for the next iteration.
- // EvaluateExpression adds non-phi values to the CurrentIterVals map.
- DenseMap<Instruction *, Constant *> NextIterVals;
- Constant *NextPHI =
- EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
- if (!NextPHI)
- return nullptr; // Couldn't evaluate!
- NextIterVals[PN] = NextPHI;
-
- bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
-
- // Also evaluate the other PHI nodes. However, we don't get to stop if we
- // cease to be able to evaluate one of them or if they stop evolving,
- // because that doesn't necessarily prevent us from computing PN.
- SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
- for (const auto &I : CurrentIterVals) {
- PHINode *PHI = dyn_cast<PHINode>(I.first);
- if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
- PHIsToCompute.emplace_back(PHI, I.second);
- }
- // We use two distinct loops because EvaluateExpression may invalidate any
- // iterators into CurrentIterVals.
- for (const auto &I : PHIsToCompute) {
- PHINode *PHI = I.first;
- Constant *&NextPHI = NextIterVals[PHI];
- if (!NextPHI) { // Not already computed.
- Value *BEValue = PHI->getIncomingValueForBlock(Latch);
- NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
- }
- if (NextPHI != I.second)
- StoppedEvolving = false;
- }
-
- // If all entries in CurrentIterVals == NextIterVals then we can stop
- // iterating, the loop can't continue to change.
- if (StoppedEvolving)
- return RetVal = CurrentIterVals[PN];
-
- CurrentIterVals.swap(NextIterVals);
- }
-}
-
-const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
- Value *Cond,
- bool ExitWhen) {
- PHINode *PN = getConstantEvolvingPHI(Cond, L);
- if (!PN) return getCouldNotCompute();
-
- // If the loop is canonicalized, the PHI will have exactly two entries.
- // That's the only form we support here.
- if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
-
- DenseMap<Instruction *, Constant *> CurrentIterVals;
- BasicBlock *Header = L->getHeader();
- assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
-
- BasicBlock *Latch = L->getLoopLatch();
- assert(Latch && "Should follow from NumIncomingValues == 2!");
-
- for (PHINode &PHI : Header->phis()) {
- if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
- CurrentIterVals[&PHI] = StartCST;
- }
- if (!CurrentIterVals.count(PN))
- return getCouldNotCompute();
-
- // Okay, we find a PHI node that defines the trip count of this loop. Execute
- // the loop symbolically to determine when the condition gets a value of
- // "ExitWhen".
- unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
- const DataLayout &DL = getDataLayout();
- for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
- auto *CondVal = dyn_cast_or_null<ConstantInt>(
- EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
-
- // Couldn't symbolically evaluate.
- if (!CondVal) return getCouldNotCompute();
-
- if (CondVal->getValue() == uint64_t(ExitWhen)) {
- ++NumBruteForceTripCountsComputed;
- return getConstant(Type::getInt32Ty(getContext()), IterationNum);
- }
-
- // Update all the PHI nodes for the next iteration.
- DenseMap<Instruction *, Constant *> NextIterVals;
-
- // Create a list of which PHIs we need to compute. We want to do this before
- // calling EvaluateExpression on them because that may invalidate iterators
- // into CurrentIterVals.
- SmallVector<PHINode *, 8> PHIsToCompute;
- for (const auto &I : CurrentIterVals) {
- PHINode *PHI = dyn_cast<PHINode>(I.first);
- if (!PHI || PHI->getParent() != Header) continue;
- PHIsToCompute.push_back(PHI);
- }
- for (PHINode *PHI : PHIsToCompute) {
- Constant *&NextPHI = NextIterVals[PHI];
- if (NextPHI) continue; // Already computed!
-
- Value *BEValue = PHI->getIncomingValueForBlock(Latch);
- NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
- }
- CurrentIterVals.swap(NextIterVals);
- }
-
- // Too many iterations were needed to evaluate.
- return getCouldNotCompute();
-}
-
-const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
- SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
- ValuesAtScopes[V];
- // Check to see if we've folded this expression at this loop before.
- for (auto &LS : Values)
- if (LS.first == L)
- return LS.second ? LS.second : V;
-
- Values.emplace_back(L, nullptr);
-
- // Otherwise compute it.
- const SCEV *C = computeSCEVAtScope(V, L);
- for (auto &LS : reverse(ValuesAtScopes[V]))
- if (LS.first == L) {
- LS.second = C;
- break;
- }
- return C;
-}
-
-/// This builds up a Constant using the ConstantExpr interface. That way, we
-/// will return Constants for objects which aren't represented by a
-/// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
-/// Returns NULL if the SCEV isn't representable as a Constant.
-static Constant *BuildConstantFromSCEV(const SCEV *V) {
- switch (static_cast<SCEVTypes>(V->getSCEVType())) {
- case scCouldNotCompute:
- case scAddRecExpr:
- break;
- case scConstant:
- return cast<SCEVConstant>(V)->getValue();
- case scUnknown:
- return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
- case scSignExtend: {
- const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
- if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
- return ConstantExpr::getSExt(CastOp, SS->getType());
- break;
- }
- case scZeroExtend: {
- const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
- if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
- return ConstantExpr::getZExt(CastOp, SZ->getType());
- break;
- }
- case scTruncate: {
- const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
- if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
- return ConstantExpr::getTrunc(CastOp, ST->getType());
- break;
- }
- case scAddExpr: {
- const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
- if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
- if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
- unsigned AS = PTy->getAddressSpace();
- Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
- C = ConstantExpr::getBitCast(C, DestPtrTy);
- }
- for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
- Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
- if (!C2) return nullptr;
-
- // First pointer!
- if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
- unsigned AS = C2->getType()->getPointerAddressSpace();
- std::swap(C, C2);
- Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
- // The offsets have been converted to bytes. We can add bytes to an
- // i8* by GEP with the byte count in the first index.
- C = ConstantExpr::getBitCast(C, DestPtrTy);
- }
-
- // Don't bother trying to sum two pointers. We probably can't
- // statically compute a load that results from it anyway.
- if (C2->getType()->isPointerTy())
- return nullptr;
-
- if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
- if (PTy->getElementType()->isStructTy())
- C2 = ConstantExpr::getIntegerCast(
- C2, Type::getInt32Ty(C->getContext()), true);
- C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2);
- } else
- C = ConstantExpr::getAdd(C, C2);
- }
- return C;
- }
- break;
- }
- case scMulExpr: {
- const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
- if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
- // Don't bother with pointers at all.
- if (C->getType()->isPointerTy()) return nullptr;
- for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
- Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
- if (!C2 || C2->getType()->isPointerTy()) return nullptr;
- C = ConstantExpr::getMul(C, C2);
- }
- return C;
- }
- break;
- }
- case scUDivExpr: {
- const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
- if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
- if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
- if (LHS->getType() == RHS->getType())
- return ConstantExpr::getUDiv(LHS, RHS);
- break;
- }
- case scSMaxExpr:
- case scUMaxExpr:
- break; // TODO: smax, umax.
- }
- return nullptr;
-}
-
-const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
- if (isa<SCEVConstant>(V)) return V;
-
- // If this instruction is evolved from a constant-evolving PHI, compute the
- // exit value from the loop without using SCEVs.
- if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
- if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
- const Loop *LI = this->LI[I->getParent()];
- if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
- if (PHINode *PN = dyn_cast<PHINode>(I))
- if (PN->getParent() == LI->getHeader()) {
- // Okay, there is no closed form solution for the PHI node. Check
- // to see if the loop that contains it has a known backedge-taken
- // count. If so, we may be able to force computation of the exit
- // value.
- const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
- if (const SCEVConstant *BTCC =
- dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
-
- // This trivial case can show up in some degenerate cases where
- // the incoming IR has not yet been fully simplified.
- if (BTCC->getValue()->isZero()) {
- Value *InitValue = nullptr;
- bool MultipleInitValues = false;
- for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
- if (!LI->contains(PN->getIncomingBlock(i))) {
- if (!InitValue)
- InitValue = PN->getIncomingValue(i);
- else if (InitValue != PN->getIncomingValue(i)) {
- MultipleInitValues = true;
- break;
- }
- }
- if (!MultipleInitValues && InitValue)
- return getSCEV(InitValue);
- }
- }
- // Okay, we know how many times the containing loop executes. If
- // this is a constant evolving PHI node, get the final value at
- // the specified iteration number.
- Constant *RV =
- getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), LI);
- if (RV) return getSCEV(RV);
- }
- }
-
- // Okay, this is an expression that we cannot symbolically evaluate
- // into a SCEV. Check to see if it's possible to symbolically evaluate
- // the arguments into constants, and if so, try to constant propagate the
- // result. This is particularly useful for computing loop exit values.
- if (CanConstantFold(I)) {
- SmallVector<Constant *, 4> Operands;
- bool MadeImprovement = false;
- for (Value *Op : I->operands()) {
- if (Constant *C = dyn_cast<Constant>(Op)) {
- Operands.push_back(C);
- continue;
- }
-
- // If any of the operands is non-constant and if they are
- // non-integer and non-pointer, don't even try to analyze them
- // with scev techniques.
- if (!isSCEVable(Op->getType()))
- return V;
-
- const SCEV *OrigV = getSCEV(Op);
- const SCEV *OpV = getSCEVAtScope(OrigV, L);
- MadeImprovement |= OrigV != OpV;
-
- Constant *C = BuildConstantFromSCEV(OpV);
- if (!C) return V;
- if (C->getType() != Op->getType())
- C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
- Op->getType(),
- false),
- C, Op->getType());
- Operands.push_back(C);
- }
-
- // Check to see if getSCEVAtScope actually made an improvement.
- if (MadeImprovement) {
- Constant *C = nullptr;
- const DataLayout &DL = getDataLayout();
- if (const CmpInst *CI = dyn_cast<CmpInst>(I))
- C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
- Operands[1], DL, &TLI);
- else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
- if (!LI->isVolatile())
- C = ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
- } else
- C = ConstantFoldInstOperands(I, Operands, DL, &TLI);
- if (!C) return V;
- return getSCEV(C);
- }
- }
- }
-
- // This is some other type of SCEVUnknown, just return it.
- return V;
- }
-
- if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
- // Avoid performing the look-up in the common case where the specified
- // expression has no loop-variant portions.
- for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
- const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
- if (OpAtScope != Comm->getOperand(i)) {
- // Okay, at least one of these operands is loop variant but might be
- // foldable. Build a new instance of the folded commutative expression.
- SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
- Comm->op_begin()+i);
- NewOps.push_back(OpAtScope);
-
- for (++i; i != e; ++i) {
- OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
- NewOps.push_back(OpAtScope);
- }
- if (isa<SCEVAddExpr>(Comm))
- return getAddExpr(NewOps);
- if (isa<SCEVMulExpr>(Comm))
- return getMulExpr(NewOps);
- if (isa<SCEVSMaxExpr>(Comm))
- return getSMaxExpr(NewOps);
- if (isa<SCEVUMaxExpr>(Comm))
- return getUMaxExpr(NewOps);
- llvm_unreachable("Unknown commutative SCEV type!");
- }
- }
- // If we got here, all operands are loop invariant.
- return Comm;
- }
-
- if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
- const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
- const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
- if (LHS == Div->getLHS() && RHS == Div->getRHS())
- return Div; // must be loop invariant
- return getUDivExpr(LHS, RHS);
- }
-
- // If this is a loop recurrence for a loop that does not contain L, then we
- // are dealing with the final value computed by the loop.
- if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
- // First, attempt to evaluate each operand.
- // Avoid performing the look-up in the common case where the specified
- // expression has no loop-variant portions.
- for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
- const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
- if (OpAtScope == AddRec->getOperand(i))
- continue;
-
- // Okay, at least one of these operands is loop variant but might be
- // foldable. Build a new instance of the folded commutative expression.
- SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
- AddRec->op_begin()+i);
- NewOps.push_back(OpAtScope);
- for (++i; i != e; ++i)
- NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
-
- const SCEV *FoldedRec =
- getAddRecExpr(NewOps, AddRec->getLoop(),
- AddRec->getNoWrapFlags(SCEV::FlagNW));
- AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
- // The addrec may be folded to a nonrecurrence, for example, if the
- // induction variable is multiplied by zero after constant folding. Go
- // ahead and return the folded value.
- if (!AddRec)
- return FoldedRec;
- break;
- }
-
- // If the scope is outside the addrec's loop, evaluate it by using the
- // loop exit value of the addrec.
- if (!AddRec->getLoop()->contains(L)) {
- // To evaluate this recurrence, we need to know how many times the AddRec
- // loop iterates. Compute this now.
- const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
- if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
-
- // Then, evaluate the AddRec.
- return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
- }
-
- return AddRec;
- }
-
- if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
- const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
- if (Op == Cast->getOperand())
- return Cast; // must be loop invariant
- return getZeroExtendExpr(Op, Cast->getType());
- }
-
- if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
- const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
- if (Op == Cast->getOperand())
- return Cast; // must be loop invariant
- return getSignExtendExpr(Op, Cast->getType());
- }
-
- if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
- const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
- if (Op == Cast->getOperand())
- return Cast; // must be loop invariant
- return getTruncateExpr(Op, Cast->getType());
- }
-
- llvm_unreachable("Unknown SCEV type!");
-}
-
-const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
- return getSCEVAtScope(getSCEV(V), L);
-}
-
-const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const {
- if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S))
- return stripInjectiveFunctions(ZExt->getOperand());
- if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S))
- return stripInjectiveFunctions(SExt->getOperand());
- return S;
-}
-
-/// Finds the minimum unsigned root of the following equation:
-///
-/// A * X = B (mod N)
-///
-/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
-/// A and B isn't important.
-///
-/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
-static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B,
- ScalarEvolution &SE) {
- uint32_t BW = A.getBitWidth();
- assert(BW == SE.getTypeSizeInBits(B->getType()));
- assert(A != 0 && "A must be non-zero.");
-
- // 1. D = gcd(A, N)
- //
- // The gcd of A and N may have only one prime factor: 2. The number of
- // trailing zeros in A is its multiplicity
- uint32_t Mult2 = A.countTrailingZeros();
- // D = 2^Mult2
-
- // 2. Check if B is divisible by D.
- //
- // B is divisible by D if and only if the multiplicity of prime factor 2 for B
- // is not less than multiplicity of this prime factor for D.
- if (SE.GetMinTrailingZeros(B) < Mult2)
- return SE.getCouldNotCompute();
-
- // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
- // modulo (N / D).
- //
- // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent
- // (N / D) in general. The inverse itself always fits into BW bits, though,
- // so we immediately truncate it.
- APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
- APInt Mod(BW + 1, 0);
- Mod.setBit(BW - Mult2); // Mod = N / D
- APInt I = AD.multiplicativeInverse(Mod).trunc(BW);
-
- // 4. Compute the minimum unsigned root of the equation:
- // I * (B / D) mod (N / D)
- // To simplify the computation, we factor out the divide by D:
- // (I * B mod N) / D
- const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2));
- return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D);
-}
-
-/// For a given quadratic addrec, generate coefficients of the corresponding
-/// quadratic equation, multiplied by a common value to ensure that they are
-/// integers.
-/// The returned value is a tuple { A, B, C, M, BitWidth }, where
-/// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C
-/// were multiplied by, and BitWidth is the bit width of the original addrec
-/// coefficients.
-/// This function returns None if the addrec coefficients are not compile-
-/// time constants.
-static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>>
-GetQuadraticEquation(const SCEVAddRecExpr *AddRec) {
- assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
- const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
- const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
- const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
- LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: "
- << *AddRec << '\n');
-
- // We currently can only solve this if the coefficients are constants.
- if (!LC || !MC || !NC) {
- LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n");
- return None;
- }
-
- APInt L = LC->getAPInt();
- APInt M = MC->getAPInt();
- APInt N = NC->getAPInt();
- assert(!N.isNullValue() && "This is not a quadratic addrec");
-
- unsigned BitWidth = LC->getAPInt().getBitWidth();
- unsigned NewWidth = BitWidth + 1;
- LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: "
- << BitWidth << '\n');
- // The sign-extension (as opposed to a zero-extension) here matches the
- // extension used in SolveQuadraticEquationWrap (with the same motivation).
- N = N.sext(NewWidth);
- M = M.sext(NewWidth);
- L = L.sext(NewWidth);
-
- // The increments are M, M+N, M+2N, ..., so the accumulated values are
- // L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is,
- // L+M, L+2M+N, L+3M+3N, ...
- // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N.
- //
- // The equation Acc = 0 is then
- // L + nM + n(n-1)/2 N = 0, or 2L + 2M n + n(n-1) N = 0.
- // In a quadratic form it becomes:
- // N n^2 + (2M-N) n + 2L = 0.
-
- APInt A = N;
- APInt B = 2 * M - A;
- APInt C = 2 * L;
- APInt T = APInt(NewWidth, 2);
- LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B
- << "x + " << C << ", coeff bw: " << NewWidth
- << ", multiplied by " << T << '\n');
- return std::make_tuple(A, B, C, T, BitWidth);
-}
-
-/// Helper function to compare optional APInts:
-/// (a) if X and Y both exist, return min(X, Y),
-/// (b) if neither X nor Y exist, return None,
-/// (c) if exactly one of X and Y exists, return that value.
-static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) {
- if (X.hasValue() && Y.hasValue()) {
- unsigned W = std::max(X->getBitWidth(), Y->getBitWidth());
- APInt XW = X->sextOrSelf(W);
- APInt YW = Y->sextOrSelf(W);
- return XW.slt(YW) ? *X : *Y;
- }
- if (!X.hasValue() && !Y.hasValue())
- return None;
- return X.hasValue() ? *X : *Y;
-}
-
-/// Helper function to truncate an optional APInt to a given BitWidth.
-/// When solving addrec-related equations, it is preferable to return a value
-/// that has the same bit width as the original addrec's coefficients. If the
-/// solution fits in the original bit width, truncate it (except for i1).
-/// Returning a value of a different bit width may inhibit some optimizations.
-///
-/// In general, a solution to a quadratic equation generated from an addrec
-/// may require BW+1 bits, where BW is the bit width of the addrec's
-/// coefficients. The reason is that the coefficients of the quadratic
-/// equation are BW+1 bits wide (to avoid truncation when converting from
-/// the addrec to the equation).
-static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) {
- if (!X.hasValue())
- return None;
- unsigned W = X->getBitWidth();
- if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth))
- return X->trunc(BitWidth);
- return X;
-}
-
-/// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n
-/// iterations. The values L, M, N are assumed to be signed, and they
-/// should all have the same bit widths.
-/// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW,
-/// where BW is the bit width of the addrec's coefficients.
-/// If the calculated value is a BW-bit integer (for BW > 1), it will be
-/// returned as such, otherwise the bit width of the returned value may
-/// be greater than BW.
-///
-/// This function returns None if
-/// (a) the addrec coefficients are not constant, or
-/// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases
-/// like x^2 = 5, no integer solutions exist, in other cases an integer
-/// solution may exist, but SolveQuadraticEquationWrap may fail to find it.
-static Optional<APInt>
-SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
- APInt A, B, C, M;
- unsigned BitWidth;
- auto T = GetQuadraticEquation(AddRec);
- if (!T.hasValue())
- return None;
-
- std::tie(A, B, C, M, BitWidth) = *T;
- LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n");
- Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1);
- if (!X.hasValue())
- return None;
-
- ConstantInt *CX = ConstantInt::get(SE.getContext(), *X);
- ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE);
- if (!V->isZero())
- return None;
-
- return TruncIfPossible(X, BitWidth);
-}
-
-/// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n
-/// iterations. The values M, N are assumed to be signed, and they
-/// should all have the same bit widths.
-/// Find the least n such that c(n) does not belong to the given range,
-/// while c(n-1) does.
-///
-/// This function returns None if
-/// (a) the addrec coefficients are not constant, or
-/// (b) SolveQuadraticEquationWrap was unable to find a solution for the
-/// bounds of the range.
-static Optional<APInt>
-SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec,
- const ConstantRange &Range, ScalarEvolution &SE) {
- assert(AddRec->getOperand(0)->isZero() &&
- "Starting value of addrec should be 0");
- LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range "
- << Range << ", addrec " << *AddRec << '\n');
- // This case is handled in getNumIterationsInRange. Here we can assume that
- // we start in the range.
- assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) &&
- "Addrec's initial value should be in range");
-
- APInt A, B, C, M;
- unsigned BitWidth;
- auto T = GetQuadraticEquation(AddRec);
- if (!T.hasValue())
- return None;
-
- // Be careful about the return value: there can be two reasons for not
- // returning an actual number. First, if no solutions to the equations
- // were found, and second, if the solutions don't leave the given range.
- // The first case means that the actual solution is "unknown", the second
- // means that it's known, but not valid. If the solution is unknown, we
- // cannot make any conclusions.
- // Return a pair: the optional solution and a flag indicating if the
- // solution was found.
- auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> {
- // Solve for signed overflow and unsigned overflow, pick the lower
- // solution.
- LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary "
- << Bound << " (before multiplying by " << M << ")\n");
- Bound *= M; // The quadratic equation multiplier.
-
- Optional<APInt> SO = None;
- if (BitWidth > 1) {
- LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
- "signed overflow\n");
- SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth);
- }
- LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
- "unsigned overflow\n");
- Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound,
- BitWidth+1);
-
- auto LeavesRange = [&] (const APInt &X) {
- ConstantInt *C0 = ConstantInt::get(SE.getContext(), X);
- ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE);
- if (Range.contains(V0->getValue()))
- return false;
- // X should be at least 1, so X-1 is non-negative.
- ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1);
- ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE);
- if (Range.contains(V1->getValue()))
- return true;
- return false;
- };
-
- // If SolveQuadraticEquationWrap returns None, it means that there can
- // be a solution, but the function failed to find it. We cannot treat it
- // as "no solution".
- if (!SO.hasValue() || !UO.hasValue())
- return { None, false };
-
- // Check the smaller value first to see if it leaves the range.
- // At this point, both SO and UO must have values.
- Optional<APInt> Min = MinOptional(SO, UO);
- if (LeavesRange(*Min))
- return { Min, true };
- Optional<APInt> Max = Min == SO ? UO : SO;
- if (LeavesRange(*Max))
- return { Max, true };
-
- // Solutions were found, but were eliminated, hence the "true".
- return { None, true };
- };
-
- std::tie(A, B, C, M, BitWidth) = *T;
- // Lower bound is inclusive, subtract 1 to represent the exiting value.
- APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1;
- APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth());
- auto SL = SolveForBoundary(Lower);
- auto SU = SolveForBoundary(Upper);
- // If any of the solutions was unknown, no meaninigful conclusions can
- // be made.
- if (!SL.second || !SU.second)
- return None;
-
- // Claim: The correct solution is not some value between Min and Max.
- //
- // Justification: Assuming that Min and Max are different values, one of
- // them is when the first signed overflow happens, the other is when the
- // first unsigned overflow happens. Crossing the range boundary is only
- // possible via an overflow (treating 0 as a special case of it, modeling
- // an overflow as crossing k*2^W for some k).
- //
- // The interesting case here is when Min was eliminated as an invalid
- // solution, but Max was not. The argument is that if there was another
- // overflow between Min and Max, it would also have been eliminated if
- // it was considered.
- //
- // For a given boundary, it is possible to have two overflows of the same
- // type (signed/unsigned) without having the other type in between: this
- // can happen when the vertex of the parabola is between the iterations
- // corresponding to the overflows. This is only possible when the two
- // overflows cross k*2^W for the same k. In such case, if the second one
- // left the range (and was the first one to do so), the first overflow
- // would have to enter the range, which would mean that either we had left
- // the range before or that we started outside of it. Both of these cases
- // are contradictions.
- //
- // Claim: In the case where SolveForBoundary returns None, the correct
- // solution is not some value between the Max for this boundary and the
- // Min of the other boundary.
- //
- // Justification: Assume that we had such Max_A and Min_B corresponding
- // to range boundaries A and B and such that Max_A < Min_B. If there was
- // a solution between Max_A and Min_B, it would have to be caused by an
- // overflow corresponding to either A or B. It cannot correspond to B,
- // since Min_B is the first occurrence of such an overflow. If it
- // corresponded to A, it would have to be either a signed or an unsigned
- // overflow that is larger than both eliminated overflows for A. But
- // between the eliminated overflows and this overflow, the values would
- // cover the entire value space, thus crossing the other boundary, which
- // is a contradiction.
-
- return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth);
-}
-
-ScalarEvolution::ExitLimit
-ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit,
- bool AllowPredicates) {
-
- // This is only used for loops with a "x != y" exit test. The exit condition
- // is now expressed as a single expression, V = x-y. So the exit test is
- // effectively V != 0. We know and take advantage of the fact that this
- // expression only being used in a comparison by zero context.
-
- SmallPtrSet<const SCEVPredicate *, 4> Predicates;
- // If the value is a constant
- if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
- // If the value is already zero, the branch will execute zero times.
- if (C->getValue()->isZero()) return C;
- return getCouldNotCompute(); // Otherwise it will loop infinitely.
- }
-
- const SCEVAddRecExpr *AddRec =
- dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V));
-
- if (!AddRec && AllowPredicates)
- // Try to make this an AddRec using runtime tests, in the first X
- // iterations of this loop, where X is the SCEV expression found by the
- // algorithm below.
- AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates);
-
- if (!AddRec || AddRec->getLoop() != L)
- return getCouldNotCompute();
-
- // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
- // the quadratic equation to solve it.
- if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
- // We can only use this value if the chrec ends up with an exact zero
- // value at this index. When solving for "X*X != 5", for example, we
- // should not accept a root of 2.
- if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) {
- const auto *R = cast<SCEVConstant>(getConstant(S.getValue()));
- return ExitLimit(R, R, false, Predicates);
- }
- return getCouldNotCompute();
- }
-
- // Otherwise we can only handle this if it is affine.
- if (!AddRec->isAffine())
- return getCouldNotCompute();
-
- // If this is an affine expression, the execution count of this branch is
- // the minimum unsigned root of the following equation:
- //
- // Start + Step*N = 0 (mod 2^BW)
- //
- // equivalent to:
- //
- // Step*N = -Start (mod 2^BW)
- //
- // where BW is the common bit width of Start and Step.
-
- // Get the initial value for the loop.
- const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
- const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
-
- // For now we handle only constant steps.
- //
- // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
- // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
- // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
- // We have not yet seen any such cases.
- const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
- if (!StepC || StepC->getValue()->isZero())
- return getCouldNotCompute();
-
- // For positive steps (counting up until unsigned overflow):
- // N = -Start/Step (as unsigned)
- // For negative steps (counting down to zero):
- // N = Start/-Step
- // First compute the unsigned distance from zero in the direction of Step.
- bool CountDown = StepC->getAPInt().isNegative();
- const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
-
- // Handle unitary steps, which cannot wraparound.
- // 1*N = -Start; -1*N = Start (mod 2^BW), so:
- // N = Distance (as unsigned)
- if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) {
- APInt MaxBECount = getUnsignedRangeMax(Distance);
-
- // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated,
- // we end up with a loop whose backedge-taken count is n - 1. Detect this
- // case, and see if we can improve the bound.
- //
- // Explicitly handling this here is necessary because getUnsignedRange
- // isn't context-sensitive; it doesn't know that we only care about the
- // range inside the loop.
- const SCEV *Zero = getZero(Distance->getType());
- const SCEV *One = getOne(Distance->getType());
- const SCEV *DistancePlusOne = getAddExpr(Distance, One);
- if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) {
- // If Distance + 1 doesn't overflow, we can compute the maximum distance
- // as "unsigned_max(Distance + 1) - 1".
- ConstantRange CR = getUnsignedRange(DistancePlusOne);
- MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1);
- }
- return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates);
- }
-
- // If the condition controls loop exit (the loop exits only if the expression
- // is true) and the addition is no-wrap we can use unsigned divide to
- // compute the backedge count. In this case, the step may not divide the
- // distance, but we don't care because if the condition is "missed" the loop
- // will have undefined behavior due to wrapping.
- if (ControlsExit && AddRec->hasNoSelfWrap() &&
- loopHasNoAbnormalExits(AddRec->getLoop())) {
- const SCEV *Exact =
- getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
- const SCEV *Max =
- Exact == getCouldNotCompute()
- ? Exact
- : getConstant(getUnsignedRangeMax(Exact));
- return ExitLimit(Exact, Max, false, Predicates);
- }
-
- // Solve the general equation.
- const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(),
- getNegativeSCEV(Start), *this);
- const SCEV *M = E == getCouldNotCompute()
- ? E
- : getConstant(getUnsignedRangeMax(E));
- return ExitLimit(E, M, false, Predicates);
-}
-
-ScalarEvolution::ExitLimit
-ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) {
- // Loops that look like: while (X == 0) are very strange indeed. We don't
- // handle them yet except for the trivial case. This could be expanded in the
- // future as needed.
-
- // If the value is a constant, check to see if it is known to be non-zero
- // already. If so, the backedge will execute zero times.
- if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
- if (!C->getValue()->isZero())
- return getZero(C->getType());
- return getCouldNotCompute(); // Otherwise it will loop infinitely.
- }
-
- // We could implement others, but I really doubt anyone writes loops like
- // this, and if they did, they would already be constant folded.
- return getCouldNotCompute();
-}
-
-std::pair<BasicBlock *, BasicBlock *>
-ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
- // If the block has a unique predecessor, then there is no path from the
- // predecessor to the block that does not go through the direct edge
- // from the predecessor to the block.
- if (BasicBlock *Pred = BB->getSinglePredecessor())
- return {Pred, BB};
-
- // A loop's header is defined to be a block that dominates the loop.
- // If the header has a unique predecessor outside the loop, it must be
- // a block that has exactly one successor that can reach the loop.
- if (Loop *L = LI.getLoopFor(BB))
- return {L->getLoopPredecessor(), L->getHeader()};
-
- return {nullptr, nullptr};
-}
-
-/// SCEV structural equivalence is usually sufficient for testing whether two
-/// expressions are equal, however for the purposes of looking for a condition
-/// guarding a loop, it can be useful to be a little more general, since a
-/// front-end may have replicated the controlling expression.
-static bool HasSameValue(const SCEV *A, const SCEV *B) {
- // Quick check to see if they are the same SCEV.
- if (A == B) return true;
-
- auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
- // Not all instructions that are "identical" compute the same value. For
- // instance, two distinct alloca instructions allocating the same type are
- // identical and do not read memory; but compute distinct values.
- return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
- };
-
- // Otherwise, if they're both SCEVUnknown, it's possible that they hold
- // two different instructions with the same value. Check for this case.
- if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
- if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
- if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
- if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
- if (ComputesEqualValues(AI, BI))
- return true;
-
- // Otherwise assume they may have a different value.
- return false;
-}
-
-bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
- const SCEV *&LHS, const SCEV *&RHS,
- unsigned Depth) {
- bool Changed = false;
- // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or
- // '0 != 0'.
- auto TrivialCase = [&](bool TriviallyTrue) {
- LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
- Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
- return true;
- };
- // If we hit the max recursion limit bail out.
- if (Depth >= 3)
- return false;
-
- // Canonicalize a constant to the right side.
- if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
- // Check for both operands constant.
- if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
- if (ConstantExpr::getICmp(Pred,
- LHSC->getValue(),
- RHSC->getValue())->isNullValue())
- return TrivialCase(false);
- else
- return TrivialCase(true);
- }
- // Otherwise swap the operands to put the constant on the right.
- std::swap(LHS, RHS);
- Pred = ICmpInst::getSwappedPredicate(Pred);
- Changed = true;
- }
-
- // If we're comparing an addrec with a value which is loop-invariant in the
- // addrec's loop, put the addrec on the left. Also make a dominance check,
- // as both operands could be addrecs loop-invariant in each other's loop.
- if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
- const Loop *L = AR->getLoop();
- if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
- std::swap(LHS, RHS);
- Pred = ICmpInst::getSwappedPredicate(Pred);
- Changed = true;
- }
- }
-
- // If there's a constant operand, canonicalize comparisons with boundary
- // cases, and canonicalize *-or-equal comparisons to regular comparisons.
- if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
- const APInt &RA = RC->getAPInt();
-
- bool SimplifiedByConstantRange = false;
-
- if (!ICmpInst::isEquality(Pred)) {
- ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA);
- if (ExactCR.isFullSet())
- return TrivialCase(true);
- else if (ExactCR.isEmptySet())
- return TrivialCase(false);
-
- APInt NewRHS;
- CmpInst::Predicate NewPred;
- if (ExactCR.getEquivalentICmp(NewPred, NewRHS) &&
- ICmpInst::isEquality(NewPred)) {
- // We were able to convert an inequality to an equality.
- Pred = NewPred;
- RHS = getConstant(NewRHS);
- Changed = SimplifiedByConstantRange = true;
- }
- }
-
- if (!SimplifiedByConstantRange) {
- switch (Pred) {
- default:
- break;
- case ICmpInst::ICMP_EQ:
- case ICmpInst::ICMP_NE:
- // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
- if (!RA)
- if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
- if (const SCEVMulExpr *ME =
- dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
- if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
- ME->getOperand(0)->isAllOnesValue()) {
- RHS = AE->getOperand(1);
- LHS = ME->getOperand(1);
- Changed = true;
- }
- break;
-
-
- // The "Should have been caught earlier!" messages refer to the fact
- // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above
- // should have fired on the corresponding cases, and canonicalized the
- // check to trivial case.
-
- case ICmpInst::ICMP_UGE:
- assert(!RA.isMinValue() && "Should have been caught earlier!");
- Pred = ICmpInst::ICMP_UGT;
- RHS = getConstant(RA - 1);
- Changed = true;
- break;
- case ICmpInst::ICMP_ULE:
- assert(!RA.isMaxValue() && "Should have been caught earlier!");
- Pred = ICmpInst::ICMP_ULT;
- RHS = getConstant(RA + 1);
- Changed = true;
- break;
- case ICmpInst::ICMP_SGE:
- assert(!RA.isMinSignedValue() && "Should have been caught earlier!");
- Pred = ICmpInst::ICMP_SGT;
- RHS = getConstant(RA - 1);
- Changed = true;
- break;
- case ICmpInst::ICMP_SLE:
- assert(!RA.isMaxSignedValue() && "Should have been caught earlier!");
- Pred = ICmpInst::ICMP_SLT;
- RHS = getConstant(RA + 1);
- Changed = true;
- break;
- }
- }
- }
-
- // Check for obvious equality.
- if (HasSameValue(LHS, RHS)) {
- if (ICmpInst::isTrueWhenEqual(Pred))
- return TrivialCase(true);
- if (ICmpInst::isFalseWhenEqual(Pred))
- return TrivialCase(false);
- }
-
- // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
- // adding or subtracting 1 from one of the operands.
- switch (Pred) {
- case ICmpInst::ICMP_SLE:
- if (!getSignedRangeMax(RHS).isMaxSignedValue()) {
- RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
- SCEV::FlagNSW);
- Pred = ICmpInst::ICMP_SLT;
- Changed = true;
- } else if (!getSignedRangeMin(LHS).isMinSignedValue()) {
- LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
- SCEV::FlagNSW);
- Pred = ICmpInst::ICMP_SLT;
- Changed = true;
- }
- break;
- case ICmpInst::ICMP_SGE:
- if (!getSignedRangeMin(RHS).isMinSignedValue()) {
- RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
- SCEV::FlagNSW);
- Pred = ICmpInst::ICMP_SGT;
- Changed = true;
- } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) {
- LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
- SCEV::FlagNSW);
- Pred = ICmpInst::ICMP_SGT;
- Changed = true;
- }
- break;
- case ICmpInst::ICMP_ULE:
- if (!getUnsignedRangeMax(RHS).isMaxValue()) {
- RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
- SCEV::FlagNUW);
- Pred = ICmpInst::ICMP_ULT;
- Changed = true;
- } else if (!getUnsignedRangeMin(LHS).isMinValue()) {
- LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
- Pred = ICmpInst::ICMP_ULT;
- Changed = true;
- }
- break;
- case ICmpInst::ICMP_UGE:
- if (!getUnsignedRangeMin(RHS).isMinValue()) {
- RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
- Pred = ICmpInst::ICMP_UGT;
- Changed = true;
- } else if (!getUnsignedRangeMax(LHS).isMaxValue()) {
- LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
- SCEV::FlagNUW);
- Pred = ICmpInst::ICMP_UGT;
- Changed = true;
- }
- break;
- default:
- break;
- }
-
- // TODO: More simplifications are possible here.
-
- // Recursively simplify until we either hit a recursion limit or nothing
- // changes.
- if (Changed)
- return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
-
- return Changed;
-}
-
-bool ScalarEvolution::isKnownNegative(const SCEV *S) {
- return getSignedRangeMax(S).isNegative();
-}
-
-bool ScalarEvolution::isKnownPositive(const SCEV *S) {
- return getSignedRangeMin(S).isStrictlyPositive();
-}
-
-bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
- return !getSignedRangeMin(S).isNegative();
-}
-
-bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
- return !getSignedRangeMax(S).isStrictlyPositive();
-}
-
-bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
- return isKnownNegative(S) || isKnownPositive(S);
-}
-
-std::pair<const SCEV *, const SCEV *>
-ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) {
- // Compute SCEV on entry of loop L.
- const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this);
- if (Start == getCouldNotCompute())
- return { Start, Start };
- // Compute post increment SCEV for loop L.
- const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this);
- assert(PostInc != getCouldNotCompute() && "Unexpected could not compute");
- return { Start, PostInc };
-}
-
-bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred,
- const SCEV *LHS, const SCEV *RHS) {
- // First collect all loops.
- SmallPtrSet<const Loop *, 8> LoopsUsed;
- getUsedLoops(LHS, LoopsUsed);
- getUsedLoops(RHS, LoopsUsed);
-
- if (LoopsUsed.empty())
- return false;
-
- // Domination relationship must be a linear order on collected loops.
-#ifndef NDEBUG
- for (auto *L1 : LoopsUsed)
- for (auto *L2 : LoopsUsed)
- assert((DT.dominates(L1->getHeader(), L2->getHeader()) ||
- DT.dominates(L2->getHeader(), L1->getHeader())) &&
- "Domination relationship is not a linear order");
-#endif
-
- const Loop *MDL =
- *std::max_element(LoopsUsed.begin(), LoopsUsed.end(),
- [&](const Loop *L1, const Loop *L2) {
- return DT.properlyDominates(L1->getHeader(), L2->getHeader());
- });
-
- // Get init and post increment value for LHS.
- auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS);
- // if LHS contains unknown non-invariant SCEV then bail out.
- if (SplitLHS.first == getCouldNotCompute())
- return false;
- assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC");
- // Get init and post increment value for RHS.
- auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS);
- // if RHS contains unknown non-invariant SCEV then bail out.
- if (SplitRHS.first == getCouldNotCompute())
- return false;
- assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC");
- // It is possible that init SCEV contains an invariant load but it does
- // not dominate MDL and is not available at MDL loop entry, so we should
- // check it here.
- if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) ||
- !isAvailableAtLoopEntry(SplitRHS.first, MDL))
- return false;
-
- return isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first) &&
- isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second,
- SplitRHS.second);
-}
-
-bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
- const SCEV *LHS, const SCEV *RHS) {
- // Canonicalize the inputs first.
- (void)SimplifyICmpOperands(Pred, LHS, RHS);
-
- if (isKnownViaInduction(Pred, LHS, RHS))
- return true;
-
- if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
- return true;
-
- // Otherwise see what can be done with some simple reasoning.
- return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS);
-}
-
-bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred,
- const SCEVAddRecExpr *LHS,
- const SCEV *RHS) {
- const Loop *L = LHS->getLoop();
- return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) &&
- isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS);
-}
-
-bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS,
- ICmpInst::Predicate Pred,
- bool &Increasing) {
- bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing);
-
-#ifndef NDEBUG
- // Verify an invariant: inverting the predicate should turn a monotonically
- // increasing change to a monotonically decreasing one, and vice versa.
- bool IncreasingSwapped;
- bool ResultSwapped = isMonotonicPredicateImpl(
- LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped);
-
- assert(Result == ResultSwapped && "should be able to analyze both!");
- if (ResultSwapped)
- assert(Increasing == !IncreasingSwapped &&
- "monotonicity should flip as we flip the predicate");
-#endif
-
- return Result;
-}
-
-bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS,
- ICmpInst::Predicate Pred,
- bool &Increasing) {
-
- // A zero step value for LHS means the induction variable is essentially a
- // loop invariant value. We don't really depend on the predicate actually
- // flipping from false to true (for increasing predicates, and the other way
- // around for decreasing predicates), all we care about is that *if* the
- // predicate changes then it only changes from false to true.
- //
- // A zero step value in itself is not very useful, but there may be places
- // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
- // as general as possible.
-
- switch (Pred) {
- default:
- return false; // Conservative answer
-
- case ICmpInst::ICMP_UGT:
- case ICmpInst::ICMP_UGE:
- case ICmpInst::ICMP_ULT:
- case ICmpInst::ICMP_ULE:
- if (!LHS->hasNoUnsignedWrap())
- return false;
-
- Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE;
- return true;
-
- case ICmpInst::ICMP_SGT:
- case ICmpInst::ICMP_SGE:
- case ICmpInst::ICMP_SLT:
- case ICmpInst::ICMP_SLE: {
- if (!LHS->hasNoSignedWrap())
- return false;
-
- const SCEV *Step = LHS->getStepRecurrence(*this);
-
- if (isKnownNonNegative(Step)) {
- Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE;
- return true;
- }
-
- if (isKnownNonPositive(Step)) {
- Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE;
- return true;
- }
-
- return false;
- }
-
- }
-
- llvm_unreachable("switch has default clause!");
-}
-
-bool ScalarEvolution::isLoopInvariantPredicate(
- ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
- ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS,
- const SCEV *&InvariantRHS) {
-
- // If there is a loop-invariant, force it into the RHS, otherwise bail out.
- if (!isLoopInvariant(RHS, L)) {
- if (!isLoopInvariant(LHS, L))
- return false;
-
- std::swap(LHS, RHS);
- Pred = ICmpInst::getSwappedPredicate(Pred);
- }
-
- const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
- if (!ArLHS || ArLHS->getLoop() != L)
- return false;
-
- bool Increasing;
- if (!isMonotonicPredicate(ArLHS, Pred, Increasing))
- return false;
-
- // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
- // true as the loop iterates, and the backedge is control dependent on
- // "ArLHS `Pred` RHS" == true then we can reason as follows:
- //
- // * if the predicate was false in the first iteration then the predicate
- // is never evaluated again, since the loop exits without taking the
- // backedge.
- // * if the predicate was true in the first iteration then it will
- // continue to be true for all future iterations since it is
- // monotonically increasing.
- //
- // For both the above possibilities, we can replace the loop varying
- // predicate with its value on the first iteration of the loop (which is
- // loop invariant).
- //
- // A similar reasoning applies for a monotonically decreasing predicate, by
- // replacing true with false and false with true in the above two bullets.
-
- auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
-
- if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
- return false;
-
- InvariantPred = Pred;
- InvariantLHS = ArLHS->getStart();
- InvariantRHS = RHS;
- return true;
-}
-
-bool ScalarEvolution::isKnownPredicateViaConstantRanges(
- ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
- if (HasSameValue(LHS, RHS))
- return ICmpInst::isTrueWhenEqual(Pred);
-
- // This code is split out from isKnownPredicate because it is called from
- // within isLoopEntryGuardedByCond.
-
- auto CheckRanges =
- [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) {
- return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS)
- .contains(RangeLHS);
- };
-
- // The check at the top of the function catches the case where the values are
- // known to be equal.
- if (Pred == CmpInst::ICMP_EQ)
- return false;
-
- if (Pred == CmpInst::ICMP_NE)
- return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) ||
- CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) ||
- isKnownNonZero(getMinusSCEV(LHS, RHS));
-
- if (CmpInst::isSigned(Pred))
- return CheckRanges(getSignedRange(LHS), getSignedRange(RHS));
-
- return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS));
-}
-
-bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
- const SCEV *LHS,
- const SCEV *RHS) {
- // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer.
- // Return Y via OutY.
- auto MatchBinaryAddToConst =
- [this](const SCEV *Result, const SCEV *X, APInt &OutY,
- SCEV::NoWrapFlags ExpectedFlags) {
- const SCEV *NonConstOp, *ConstOp;
- SCEV::NoWrapFlags FlagsPresent;
-
- if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) ||
- !isa<SCEVConstant>(ConstOp) || NonConstOp != X)
- return false;
-
- OutY = cast<SCEVConstant>(ConstOp)->getAPInt();
- return (FlagsPresent & ExpectedFlags) == ExpectedFlags;
- };
-
- APInt C;
-
- switch (Pred) {
- default:
- break;
-
- case ICmpInst::ICMP_SGE:
- std::swap(LHS, RHS);
- LLVM_FALLTHROUGH;
- case ICmpInst::ICMP_SLE:
- // X s<= (X + C)<nsw> if C >= 0
- if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative())
- return true;
-
- // (X + C)<nsw> s<= X if C <= 0
- if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) &&
- !C.isStrictlyPositive())
- return true;
- break;
-
- case ICmpInst::ICMP_SGT:
- std::swap(LHS, RHS);
- LLVM_FALLTHROUGH;
- case ICmpInst::ICMP_SLT:
- // X s< (X + C)<nsw> if C > 0
- if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) &&
- C.isStrictlyPositive())
- return true;
-
- // (X + C)<nsw> s< X if C < 0
- if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative())
- return true;
- break;
- }
-
- return false;
-}
-
-bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
- const SCEV *LHS,
- const SCEV *RHS) {
- if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
- return false;
-
- // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
- // the stack can result in exponential time complexity.
- SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
-
- // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
- //
- // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
- // isKnownPredicate. isKnownPredicate is more powerful, but also more
- // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
- // interesting cases seen in practice. We can consider "upgrading" L >= 0 to
- // use isKnownPredicate later if needed.
- return isKnownNonNegative(RHS) &&
- isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
- isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
-}
-
-bool ScalarEvolution::isImpliedViaGuard(BasicBlock *BB,
- ICmpInst::Predicate Pred,
- const SCEV *LHS, const SCEV *RHS) {
- // No need to even try if we know the module has no guards.
- if (!HasGuards)
- return false;
-
- return any_of(*BB, [&](Instruction &I) {
- using namespace llvm::PatternMatch;
-
- Value *Condition;
- return match(&I, m_Intrinsic<Intrinsic::experimental_guard>(
- m_Value(Condition))) &&
- isImpliedCond(Pred, LHS, RHS, Condition, false);
- });
-}
-
-/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
-/// protected by a conditional between LHS and RHS. This is used to
-/// to eliminate casts.
-bool
-ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
- ICmpInst::Predicate Pred,
- const SCEV *LHS, const SCEV *RHS) {
- // Interpret a null as meaning no loop, where there is obviously no guard
- // (interprocedural conditions notwithstanding).
- if (!L) return true;
-
- if (VerifyIR)
- assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) &&
- "This cannot be done on broken IR!");
-
-
- if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
- return true;
-
- BasicBlock *Latch = L->getLoopLatch();
- if (!Latch)
- return false;
-
- BranchInst *LoopContinuePredicate =
- dyn_cast<BranchInst>(Latch->getTerminator());
- if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
- isImpliedCond(Pred, LHS, RHS,
- LoopContinuePredicate->getCondition(),
- LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
- return true;
-
- // We don't want more than one activation of the following loops on the stack
- // -- that can lead to O(n!) time complexity.
- if (WalkingBEDominatingConds)
- return false;
-
- SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
-
- // See if we can exploit a trip count to prove the predicate.
- const auto &BETakenInfo = getBackedgeTakenInfo(L);
- const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
- if (LatchBECount != getCouldNotCompute()) {
- // We know that Latch branches back to the loop header exactly
- // LatchBECount times. This means the backdege condition at Latch is
- // equivalent to "{0,+,1} u< LatchBECount".
- Type *Ty = LatchBECount->getType();
- auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
- const SCEV *LoopCounter =
- getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
- if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
- LatchBECount))
- return true;
- }
-
- // Check conditions due to any @llvm.assume intrinsics.
- for (auto &AssumeVH : AC.assumptions()) {
- if (!AssumeVH)
- continue;
- auto *CI = cast<CallInst>(AssumeVH);
- if (!DT.dominates(CI, Latch->getTerminator()))
- continue;
-
- if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
- return true;
- }
-
- // If the loop is not reachable from the entry block, we risk running into an
- // infinite loop as we walk up into the dom tree. These loops do not matter
- // anyway, so we just return a conservative answer when we see them.
- if (!DT.isReachableFromEntry(L->getHeader()))
- return false;
-
- if (isImpliedViaGuard(Latch, Pred, LHS, RHS))
- return true;
-
- for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
- DTN != HeaderDTN; DTN = DTN->getIDom()) {
- assert(DTN && "should reach the loop header before reaching the root!");
-
- BasicBlock *BB = DTN->getBlock();
- if (isImpliedViaGuard(BB, Pred, LHS, RHS))
- return true;
-
- BasicBlock *PBB = BB->getSinglePredecessor();
- if (!PBB)
- continue;
-
- BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
- if (!ContinuePredicate || !ContinuePredicate->isConditional())
- continue;
-
- Value *Condition = ContinuePredicate->getCondition();
-
- // If we have an edge `E` within the loop body that dominates the only
- // latch, the condition guarding `E` also guards the backedge. This
- // reasoning works only for loops with a single latch.
-
- BasicBlockEdge DominatingEdge(PBB, BB);
- if (DominatingEdge.isSingleEdge()) {
- // We're constructively (and conservatively) enumerating edges within the
- // loop body that dominate the latch. The dominator tree better agree
- // with us on this:
- assert(DT.dominates(DominatingEdge, Latch) && "should be!");
-
- if (isImpliedCond(Pred, LHS, RHS, Condition,
- BB != ContinuePredicate->getSuccessor(0)))
- return true;
- }
- }
-
- return false;
-}
-
-bool
-ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
- ICmpInst::Predicate Pred,
- const SCEV *LHS, const SCEV *RHS) {
- // Interpret a null as meaning no loop, where there is obviously no guard
- // (interprocedural conditions notwithstanding).
- if (!L) return false;
-
- if (VerifyIR)
- assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) &&
- "This cannot be done on broken IR!");
-
- // Both LHS and RHS must be available at loop entry.
- assert(isAvailableAtLoopEntry(LHS, L) &&
- "LHS is not available at Loop Entry");
- assert(isAvailableAtLoopEntry(RHS, L) &&
- "RHS is not available at Loop Entry");
-
- if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
- return true;
-
- // If we cannot prove strict comparison (e.g. a > b), maybe we can prove
- // the facts (a >= b && a != b) separately. A typical situation is when the
- // non-strict comparison is known from ranges and non-equality is known from
- // dominating predicates. If we are proving strict comparison, we always try
- // to prove non-equality and non-strict comparison separately.
- auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred);
- const bool ProvingStrictComparison = (Pred != NonStrictPredicate);
- bool ProvedNonStrictComparison = false;
- bool ProvedNonEquality = false;
-
- if (ProvingStrictComparison) {
- ProvedNonStrictComparison =
- isKnownViaNonRecursiveReasoning(NonStrictPredicate, LHS, RHS);
- ProvedNonEquality =
- isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_NE, LHS, RHS);
- if (ProvedNonStrictComparison && ProvedNonEquality)
- return true;
- }
-
- // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard.
- auto ProveViaGuard = [&](BasicBlock *Block) {
- if (isImpliedViaGuard(Block, Pred, LHS, RHS))
- return true;
- if (ProvingStrictComparison) {
- if (!ProvedNonStrictComparison)
- ProvedNonStrictComparison =
- isImpliedViaGuard(Block, NonStrictPredicate, LHS, RHS);
- if (!ProvedNonEquality)
- ProvedNonEquality =
- isImpliedViaGuard(Block, ICmpInst::ICMP_NE, LHS, RHS);
- if (ProvedNonStrictComparison && ProvedNonEquality)
- return true;
- }
- return false;
- };
-
- // Try to prove (Pred, LHS, RHS) using isImpliedCond.
- auto ProveViaCond = [&](Value *Condition, bool Inverse) {
- if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse))
- return true;
- if (ProvingStrictComparison) {
- if (!ProvedNonStrictComparison)
- ProvedNonStrictComparison =
- isImpliedCond(NonStrictPredicate, LHS, RHS, Condition, Inverse);
- if (!ProvedNonEquality)
- ProvedNonEquality =
- isImpliedCond(ICmpInst::ICMP_NE, LHS, RHS, Condition, Inverse);
- if (ProvedNonStrictComparison && ProvedNonEquality)
- return true;
- }
- return false;
- };
-
- // Starting at the loop predecessor, climb up the predecessor chain, as long
- // as there are predecessors that can be found that have unique successors
- // leading to the original header.
- for (std::pair<BasicBlock *, BasicBlock *>
- Pair(L->getLoopPredecessor(), L->getHeader());
- Pair.first;
- Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
-
- if (ProveViaGuard(Pair.first))
- return true;
-
- BranchInst *LoopEntryPredicate =
- dyn_cast<BranchInst>(Pair.first->getTerminator());
- if (!LoopEntryPredicate ||
- LoopEntryPredicate->isUnconditional())
- continue;
-
- if (ProveViaCond(LoopEntryPredicate->getCondition(),
- LoopEntryPredicate->getSuccessor(0) != Pair.second))
- return true;
- }
-
- // Check conditions due to any @llvm.assume intrinsics.
- for (auto &AssumeVH : AC.assumptions()) {
- if (!AssumeVH)
- continue;
- auto *CI = cast<CallInst>(AssumeVH);
- if (!DT.dominates(CI, L->getHeader()))
- continue;
-
- if (ProveViaCond(CI->getArgOperand(0), false))
- return true;
- }
-
- return false;
-}
-
-bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
- const SCEV *LHS, const SCEV *RHS,
- Value *FoundCondValue,
- bool Inverse) {
- if (!PendingLoopPredicates.insert(FoundCondValue).second)
- return false;
-
- auto ClearOnExit =
- make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); });
-
- // Recursively handle And and Or conditions.
- if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
- if (BO->getOpcode() == Instruction::And) {
- if (!Inverse)
- return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
- isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
- } else if (BO->getOpcode() == Instruction::Or) {
- if (Inverse)
- return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
- isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
- }
- }
-
- ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
- if (!ICI) return false;
-
- // Now that we found a conditional branch that dominates the loop or controls
- // the loop latch. Check to see if it is the comparison we are looking for.
- ICmpInst::Predicate FoundPred;
- if (Inverse)
- FoundPred = ICI->getInversePredicate();
- else
- FoundPred = ICI->getPredicate();
-
- const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
- const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
-
- return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS);
-}
-
-bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
- const SCEV *RHS,
- ICmpInst::Predicate FoundPred,
- const SCEV *FoundLHS,
- const SCEV *FoundRHS) {
- // Balance the types.
- if (getTypeSizeInBits(LHS->getType()) <
- getTypeSizeInBits(FoundLHS->getType())) {
- if (CmpInst::isSigned(Pred)) {
- LHS = getSignExtendExpr(LHS, FoundLHS->getType());
- RHS = getSignExtendExpr(RHS, FoundLHS->getType());
- } else {
- LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
- RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
- }
- } else if (getTypeSizeInBits(LHS->getType()) >
- getTypeSizeInBits(FoundLHS->getType())) {
- if (CmpInst::isSigned(FoundPred)) {
- FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
- FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
- } else {
- FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
- FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
- }
- }
-
- // Canonicalize the query to match the way instcombine will have
- // canonicalized the comparison.
- if (SimplifyICmpOperands(Pred, LHS, RHS))
- if (LHS == RHS)
- return CmpInst::isTrueWhenEqual(Pred);
- if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
- if (FoundLHS == FoundRHS)
- return CmpInst::isFalseWhenEqual(FoundPred);
-
- // Check to see if we can make the LHS or RHS match.
- if (LHS == FoundRHS || RHS == FoundLHS) {
- if (isa<SCEVConstant>(RHS)) {
- std::swap(FoundLHS, FoundRHS);
- FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
- } else {
- std::swap(LHS, RHS);
- Pred = ICmpInst::getSwappedPredicate(Pred);
- }
- }
-
- // Check whether the found predicate is the same as the desired predicate.
- if (FoundPred == Pred)
- return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
-
- // Check whether swapping the found predicate makes it the same as the
- // desired predicate.
- if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
- if (isa<SCEVConstant>(RHS))
- return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
- else
- return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
- RHS, LHS, FoundLHS, FoundRHS);
- }
-
- // Unsigned comparison is the same as signed comparison when both the operands
- // are non-negative.
- if (CmpInst::isUnsigned(FoundPred) &&
- CmpInst::getSignedPredicate(FoundPred) == Pred &&
- isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS))
- return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
-
- // Check if we can make progress by sharpening ranges.
- if (FoundPred == ICmpInst::ICMP_NE &&
- (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
-
- const SCEVConstant *C = nullptr;
- const SCEV *V = nullptr;
-
- if (isa<SCEVConstant>(FoundLHS)) {
- C = cast<SCEVConstant>(FoundLHS);
- V = FoundRHS;
- } else {
- C = cast<SCEVConstant>(FoundRHS);
- V = FoundLHS;
- }
-
- // The guarding predicate tells us that C != V. If the known range
- // of V is [C, t), we can sharpen the range to [C + 1, t). The
- // range we consider has to correspond to same signedness as the
- // predicate we're interested in folding.
-
- APInt Min = ICmpInst::isSigned(Pred) ?
- getSignedRangeMin(V) : getUnsignedRangeMin(V);
-
- if (Min == C->getAPInt()) {
- // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
- // This is true even if (Min + 1) wraps around -- in case of
- // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
-
- APInt SharperMin = Min + 1;
-
- switch (Pred) {
- case ICmpInst::ICMP_SGE:
- case ICmpInst::ICMP_UGE:
- // We know V `Pred` SharperMin. If this implies LHS `Pred`
- // RHS, we're done.
- if (isImpliedCondOperands(Pred, LHS, RHS, V,
- getConstant(SharperMin)))
- return true;
- LLVM_FALLTHROUGH;
-
- case ICmpInst::ICMP_SGT:
- case ICmpInst::ICMP_UGT:
- // We know from the range information that (V `Pred` Min ||
- // V == Min). We know from the guarding condition that !(V
- // == Min). This gives us
- //
- // V `Pred` Min || V == Min && !(V == Min)
- // => V `Pred` Min
- //
- // If V `Pred` Min implies LHS `Pred` RHS, we're done.
-
- if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min)))
- return true;
- LLVM_FALLTHROUGH;
-
- default:
- // No change
- break;
- }
- }
- }
-
- // Check whether the actual condition is beyond sufficient.
- if (FoundPred == ICmpInst::ICMP_EQ)
- if (ICmpInst::isTrueWhenEqual(Pred))
- if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
- return true;
- if (Pred == ICmpInst::ICMP_NE)
- if (!ICmpInst::isTrueWhenEqual(FoundPred))
- if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
- return true;
-
- // Otherwise assume the worst.
- return false;
-}
-
-bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
- const SCEV *&L, const SCEV *&R,
- SCEV::NoWrapFlags &Flags) {
- const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
- if (!AE || AE->getNumOperands() != 2)
- return false;
-
- L = AE->getOperand(0);
- R = AE->getOperand(1);
- Flags = AE->getNoWrapFlags();
- return true;
-}
-
-Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More,
- const SCEV *Less) {
- // We avoid subtracting expressions here because this function is usually
- // fairly deep in the call stack (i.e. is called many times).
-
- if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
- const auto *LAR = cast<SCEVAddRecExpr>(Less);
- const auto *MAR = cast<SCEVAddRecExpr>(More);
-
- if (LAR->getLoop() != MAR->getLoop())
- return None;
-
- // We look at affine expressions only; not for correctness but to keep
- // getStepRecurrence cheap.
- if (!LAR->isAffine() || !MAR->isAffine())
- return None;
-
- if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
- return None;
-
- Less = LAR->getStart();
- More = MAR->getStart();
-
- // fall through
- }
-
- if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
- const auto &M = cast<SCEVConstant>(More)->getAPInt();
- const auto &L = cast<SCEVConstant>(Less)->getAPInt();
- return M - L;
- }
-
- SCEV::NoWrapFlags Flags;
- const SCEV *LLess = nullptr, *RLess = nullptr;
- const SCEV *LMore = nullptr, *RMore = nullptr;
- const SCEVConstant *C1 = nullptr, *C2 = nullptr;
- // Compare (X + C1) vs X.
- if (splitBinaryAdd(Less, LLess, RLess, Flags))
- if ((C1 = dyn_cast<SCEVConstant>(LLess)))
- if (RLess == More)
- return -(C1->getAPInt());
-
- // Compare X vs (X + C2).
- if (splitBinaryAdd(More, LMore, RMore, Flags))
- if ((C2 = dyn_cast<SCEVConstant>(LMore)))
- if (RMore == Less)
- return C2->getAPInt();
-
- // Compare (X + C1) vs (X + C2).
- if (C1 && C2 && RLess == RMore)
- return C2->getAPInt() - C1->getAPInt();
-
- return None;
-}
-
-bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
- ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
- const SCEV *FoundLHS, const SCEV *FoundRHS) {
- if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
- return false;
-
- const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
- if (!AddRecLHS)
- return false;
-
- const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
- if (!AddRecFoundLHS)
- return false;
-
- // We'd like to let SCEV reason about control dependencies, so we constrain
- // both the inequalities to be about add recurrences on the same loop. This
- // way we can use isLoopEntryGuardedByCond later.
-
- const Loop *L = AddRecFoundLHS->getLoop();
- if (L != AddRecLHS->getLoop())
- return false;
-
- // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1)
- //
- // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
- // ... (2)
- //
- // Informal proof for (2), assuming (1) [*]:
- //
- // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
- //
- // Then
- //
- // FoundLHS s< FoundRHS s< INT_MIN - C
- // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ]
- // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
- // <=> (FoundLHS + INT_MIN + C + INT_MIN) s<
- // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
- // <=> FoundLHS + C s< FoundRHS + C
- //
- // [*]: (1) can be proved by ruling out overflow.
- //
- // [**]: This can be proved by analyzing all the four possibilities:
- // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
- // (A s>= 0, B s>= 0).
- //
- // Note:
- // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
- // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS
- // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS
- // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is
- // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
- // C)".
-
- Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS);
- Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS);
- if (!LDiff || !RDiff || *LDiff != *RDiff)
- return false;
-
- if (LDiff->isMinValue())
- return true;
-
- APInt FoundRHSLimit;
-
- if (Pred == CmpInst::ICMP_ULT) {
- FoundRHSLimit = -(*RDiff);
- } else {
- assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
- FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff;
- }
-
- // Try to prove (1) or (2), as needed.
- return isAvailableAtLoopEntry(FoundRHS, L) &&
- isLoopEntryGuardedByCond(L, Pred, FoundRHS,
- getConstant(FoundRHSLimit));
-}
-
-bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred,
- const SCEV *LHS, const SCEV *RHS,
- const SCEV *FoundLHS,
- const SCEV *FoundRHS, unsigned Depth) {
- const PHINode *LPhi = nullptr, *RPhi = nullptr;
-
- auto ClearOnExit = make_scope_exit([&]() {
- if (LPhi) {
- bool Erased = PendingMerges.erase(LPhi);
- assert(Erased && "Failed to erase LPhi!");
- (void)Erased;
- }
- if (RPhi) {
- bool Erased = PendingMerges.erase(RPhi);
- assert(Erased && "Failed to erase RPhi!");
- (void)Erased;
- }
- });
-
- // Find respective Phis and check that they are not being pending.
- if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS))
- if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) {
- if (!PendingMerges.insert(Phi).second)
- return false;
- LPhi = Phi;
- }
- if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS))
- if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) {
- // If we detect a loop of Phi nodes being processed by this method, for
- // example:
- //
- // %a = phi i32 [ %some1, %preheader ], [ %b, %latch ]
- // %b = phi i32 [ %some2, %preheader ], [ %a, %latch ]
- //
- // we don't want to deal with a case that complex, so return conservative
- // answer false.
- if (!PendingMerges.insert(Phi).second)
- return false;
- RPhi = Phi;
- }
-
- // If none of LHS, RHS is a Phi, nothing to do here.
- if (!LPhi && !RPhi)
- return false;
-
- // If there is a SCEVUnknown Phi we are interested in, make it left.
- if (!LPhi) {
- std::swap(LHS, RHS);
- std::swap(FoundLHS, FoundRHS);
- std::swap(LPhi, RPhi);
- Pred = ICmpInst::getSwappedPredicate(Pred);
- }
-
- assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!");
- const BasicBlock *LBB = LPhi->getParent();
- const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
-
- auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) {
- return isKnownViaNonRecursiveReasoning(Pred, S1, S2) ||
- isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) ||
- isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth);
- };
-
- if (RPhi && RPhi->getParent() == LBB) {
- // Case one: RHS is also a SCEVUnknown Phi from the same basic block.
- // If we compare two Phis from the same block, and for each entry block
- // the predicate is true for incoming values from this block, then the
- // predicate is also true for the Phis.
- for (const BasicBlock *IncBB : predecessors(LBB)) {
- const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
- const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB));
- if (!ProvedEasily(L, R))
- return false;
- }
- } else if (RAR && RAR->getLoop()->getHeader() == LBB) {
- // Case two: RHS is also a Phi from the same basic block, and it is an
- // AddRec. It means that there is a loop which has both AddRec and Unknown
- // PHIs, for it we can compare incoming values of AddRec from above the loop
- // and latch with their respective incoming values of LPhi.
- // TODO: Generalize to handle loops with many inputs in a header.
- if (LPhi->getNumIncomingValues() != 2) return false;
-
- auto *RLoop = RAR->getLoop();
- auto *Predecessor = RLoop->getLoopPredecessor();
- assert(Predecessor && "Loop with AddRec with no predecessor?");
- const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor));
- if (!ProvedEasily(L1, RAR->getStart()))
- return false;
- auto *Latch = RLoop->getLoopLatch();
- assert(Latch && "Loop with AddRec with no latch?");
- const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch));
- if (!ProvedEasily(L2, RAR->getPostIncExpr(*this)))
- return false;
- } else {
- // In all other cases go over inputs of LHS and compare each of them to RHS,
- // the predicate is true for (LHS, RHS) if it is true for all such pairs.
- // At this point RHS is either a non-Phi, or it is a Phi from some block
- // different from LBB.
- for (const BasicBlock *IncBB : predecessors(LBB)) {
- // Check that RHS is available in this block.
- if (!dominates(RHS, IncBB))
- return false;
- const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
- if (!ProvedEasily(L, RHS))
- return false;
- }
- }
- return true;
-}
-
-bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
- const SCEV *LHS, const SCEV *RHS,
- const SCEV *FoundLHS,
- const SCEV *FoundRHS) {
- if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
- return true;
-
- if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
- return true;
-
- return isImpliedCondOperandsHelper(Pred, LHS, RHS,
- FoundLHS, FoundRHS) ||
- // ~x < ~y --> x > y
- isImpliedCondOperandsHelper(Pred, LHS, RHS,
- getNotSCEV(FoundRHS),
- getNotSCEV(FoundLHS));
-}
-
-/// If Expr computes ~A, return A else return nullptr
-static const SCEV *MatchNotExpr(const SCEV *Expr) {
- const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
- if (!Add || Add->getNumOperands() != 2 ||
- !Add->getOperand(0)->isAllOnesValue())
- return nullptr;
-
- const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
- if (!AddRHS || AddRHS->getNumOperands() != 2 ||
- !AddRHS->getOperand(0)->isAllOnesValue())
- return nullptr;
-
- return AddRHS->getOperand(1);
-}
-
-/// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values?
-template<typename MaxExprType>
-static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr,
- const SCEV *Candidate) {
- const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr);
- if (!MaxExpr) return false;
-
- return find(MaxExpr->operands(), Candidate) != MaxExpr->op_end();
-}
-
-/// Is MaybeMinExpr an SMin or UMin of Candidate and some other values?
-template<typename MaxExprType>
-static bool IsMinConsistingOf(ScalarEvolution &SE,
- const SCEV *MaybeMinExpr,
- const SCEV *Candidate) {
- const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr);
- if (!MaybeMaxExpr)
- return false;
-
- return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate));
-}
-
-static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
- ICmpInst::Predicate Pred,
- const SCEV *LHS, const SCEV *RHS) {
- // If both sides are affine addrecs for the same loop, with equal
- // steps, and we know the recurrences don't wrap, then we only
- // need to check the predicate on the starting values.
-
- if (!ICmpInst::isRelational(Pred))
- return false;
-
- const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
- if (!LAR)
- return false;
- const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
- if (!RAR)
- return false;
- if (LAR->getLoop() != RAR->getLoop())
- return false;
- if (!LAR->isAffine() || !RAR->isAffine())
- return false;
-
- if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
- return false;
-
- SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
- SCEV::FlagNSW : SCEV::FlagNUW;
- if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
- return false;
-
- return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
-}
-
-/// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
-/// expression?
-static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
- ICmpInst::Predicate Pred,
- const SCEV *LHS, const SCEV *RHS) {
- switch (Pred) {
- default:
- return false;
-
- case ICmpInst::ICMP_SGE:
- std::swap(LHS, RHS);
- LLVM_FALLTHROUGH;
- case ICmpInst::ICMP_SLE:
- return
- // min(A, ...) <= A
- IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) ||
- // A <= max(A, ...)
- IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
-
- case ICmpInst::ICMP_UGE:
- std::swap(LHS, RHS);
- LLVM_FALLTHROUGH;
- case ICmpInst::ICMP_ULE:
- return
- // min(A, ...) <= A
- IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) ||
- // A <= max(A, ...)
- IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
- }
-
- llvm_unreachable("covered switch fell through?!");
-}
-
-bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred,
- const SCEV *LHS, const SCEV *RHS,
- const SCEV *FoundLHS,
- const SCEV *FoundRHS,
- unsigned Depth) {
- assert(getTypeSizeInBits(LHS->getType()) ==
- getTypeSizeInBits(RHS->getType()) &&
- "LHS and RHS have different sizes?");
- assert(getTypeSizeInBits(FoundLHS->getType()) ==
- getTypeSizeInBits(FoundRHS->getType()) &&
- "FoundLHS and FoundRHS have different sizes?");
- // We want to avoid hurting the compile time with analysis of too big trees.
- if (Depth > MaxSCEVOperationsImplicationDepth)
- return false;
- // We only want to work with ICMP_SGT comparison so far.
- // TODO: Extend to ICMP_UGT?
- if (Pred == ICmpInst::ICMP_SLT) {
- Pred = ICmpInst::ICMP_SGT;
- std::swap(LHS, RHS);
- std::swap(FoundLHS, FoundRHS);
- }
- if (Pred != ICmpInst::ICMP_SGT)
- return false;
-
- auto GetOpFromSExt = [&](const SCEV *S) {
- if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S))
- return Ext->getOperand();
- // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off
- // the constant in some cases.
- return S;
- };
-
- // Acquire values from extensions.
- auto *OrigLHS = LHS;
- auto *OrigFoundLHS = FoundLHS;
- LHS = GetOpFromSExt(LHS);
- FoundLHS = GetOpFromSExt(FoundLHS);
-
- // Is the SGT predicate can be proved trivially or using the found context.
- auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) {
- return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) ||
- isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS,
- FoundRHS, Depth + 1);
- };
-
- if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) {
- // We want to avoid creation of any new non-constant SCEV. Since we are
- // going to compare the operands to RHS, we should be certain that we don't
- // need any size extensions for this. So let's decline all cases when the
- // sizes of types of LHS and RHS do not match.
- // TODO: Maybe try to get RHS from sext to catch more cases?
- if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType()))
- return false;
-
- // Should not overflow.
- if (!LHSAddExpr->hasNoSignedWrap())
- return false;
-
- auto *LL = LHSAddExpr->getOperand(0);
- auto *LR = LHSAddExpr->getOperand(1);
- auto *MinusOne = getNegativeSCEV(getOne(RHS->getType()));
-
- // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context.
- auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) {
- return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS);
- };
- // Try to prove the following rule:
- // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS).
- // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS).
- if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL))
- return true;
- } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) {
- Value *LL, *LR;
- // FIXME: Once we have SDiv implemented, we can get rid of this matching.
-
- using namespace llvm::PatternMatch;
-
- if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) {
- // Rules for division.
- // We are going to perform some comparisons with Denominator and its
- // derivative expressions. In general case, creating a SCEV for it may
- // lead to a complex analysis of the entire graph, and in particular it
- // can request trip count recalculation for the same loop. This would
- // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid
- // this, we only want to create SCEVs that are constants in this section.
- // So we bail if Denominator is not a constant.
- if (!isa<ConstantInt>(LR))
- return false;
-
- auto *Denominator = cast<SCEVConstant>(getSCEV(LR));
-
- // We want to make sure that LHS = FoundLHS / Denominator. If it is so,
- // then a SCEV for the numerator already exists and matches with FoundLHS.
- auto *Numerator = getExistingSCEV(LL);
- if (!Numerator || Numerator->getType() != FoundLHS->getType())
- return false;
-
- // Make sure that the numerator matches with FoundLHS and the denominator
- // is positive.
- if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator))
- return false;
-
- auto *DTy = Denominator->getType();
- auto *FRHSTy = FoundRHS->getType();
- if (DTy->isPointerTy() != FRHSTy->isPointerTy())
- // One of types is a pointer and another one is not. We cannot extend
- // them properly to a wider type, so let us just reject this case.
- // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help
- // to avoid this check.
- return false;
-
- // Given that:
- // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0.
- auto *WTy = getWiderType(DTy, FRHSTy);
- auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy);
- auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy);
-
- // Try to prove the following rule:
- // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS).
- // For example, given that FoundLHS > 2. It means that FoundLHS is at
- // least 3. If we divide it by Denominator < 4, we will have at least 1.
- auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2));
- if (isKnownNonPositive(RHS) &&
- IsSGTViaContext(FoundRHSExt, DenomMinusTwo))
- return true;
-
- // Try to prove the following rule:
- // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS).
- // For example, given that FoundLHS > -3. Then FoundLHS is at least -2.
- // If we divide it by Denominator > 2, then:
- // 1. If FoundLHS is negative, then the result is 0.
- // 2. If FoundLHS is non-negative, then the result is non-negative.
- // Anyways, the result is non-negative.
- auto *MinusOne = getNegativeSCEV(getOne(WTy));
- auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt);
- if (isKnownNegative(RHS) &&
- IsSGTViaContext(FoundRHSExt, NegDenomMinusOne))
- return true;
- }
- }
-
- // If our expression contained SCEVUnknown Phis, and we split it down and now
- // need to prove something for them, try to prove the predicate for every
- // possible incoming values of those Phis.
- if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1))
- return true;
-
- return false;
-}
-
-bool
-ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred,
- const SCEV *LHS, const SCEV *RHS) {
- return isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
- IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
- IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
- isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
-}
-
-bool
-ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
- const SCEV *LHS, const SCEV *RHS,
- const SCEV *FoundLHS,
- const SCEV *FoundRHS) {
- switch (Pred) {
- default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
- case ICmpInst::ICMP_EQ:
- case ICmpInst::ICMP_NE:
- if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
- return true;
- break;
- case ICmpInst::ICMP_SLT:
- case ICmpInst::ICMP_SLE:
- if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
- isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS))
- return true;
- break;
- case ICmpInst::ICMP_SGT:
- case ICmpInst::ICMP_SGE:
- if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
- isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS))
- return true;
- break;
- case ICmpInst::ICMP_ULT:
- case ICmpInst::ICMP_ULE:
- if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
- isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS))
- return true;
- break;
- case ICmpInst::ICMP_UGT:
- case ICmpInst::ICMP_UGE:
- if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
- isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS))
- return true;
- break;
- }
-
- // Maybe it can be proved via operations?
- if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS))
- return true;
-
- return false;
-}
-
-bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
- const SCEV *LHS,
- const SCEV *RHS,
- const SCEV *FoundLHS,
- const SCEV *FoundRHS) {
- if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
- // The restriction on `FoundRHS` be lifted easily -- it exists only to
- // reduce the compile time impact of this optimization.
- return false;
-
- Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS);
- if (!Addend)
- return false;
-
- const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
-
- // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
- // antecedent "`FoundLHS` `Pred` `FoundRHS`".
- ConstantRange FoundLHSRange =
- ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS);
-
- // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`:
- ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend));
-
- // We can also compute the range of values for `LHS` that satisfy the
- // consequent, "`LHS` `Pred` `RHS`":
- const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
- ConstantRange SatisfyingLHSRange =
- ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS);
-
- // The antecedent implies the consequent if every value of `LHS` that
- // satisfies the antecedent also satisfies the consequent.
- return SatisfyingLHSRange.contains(LHSRange);
-}
-
-bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
- bool IsSigned, bool NoWrap) {
- assert(isKnownPositive(Stride) && "Positive stride expected!");
-
- if (NoWrap) return false;
-
- unsigned BitWidth = getTypeSizeInBits(RHS->getType());
- const SCEV *One = getOne(Stride->getType());
-
- if (IsSigned) {
- APInt MaxRHS = getSignedRangeMax(RHS);
- APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
- APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
-
- // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
- return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS);
- }
-
- APInt MaxRHS = getUnsignedRangeMax(RHS);
- APInt MaxValue = APInt::getMaxValue(BitWidth);
- APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
-
- // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
- return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS);
-}
-
-bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
- bool IsSigned, bool NoWrap) {
- if (NoWrap) return false;
-
- unsigned BitWidth = getTypeSizeInBits(RHS->getType());
- const SCEV *One = getOne(Stride->getType());
-
- if (IsSigned) {
- APInt MinRHS = getSignedRangeMin(RHS);
- APInt MinValue = APInt::getSignedMinValue(BitWidth);
- APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
-
- // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
- return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS);
- }
-
- APInt MinRHS = getUnsignedRangeMin(RHS);
- APInt MinValue = APInt::getMinValue(BitWidth);
- APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
-
- // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
- return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS);
-}
-
-const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
- bool Equality) {
- const SCEV *One = getOne(Step->getType());
- Delta = Equality ? getAddExpr(Delta, Step)
- : getAddExpr(Delta, getMinusSCEV(Step, One));
- return getUDivExpr(Delta, Step);
-}
-
-const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start,
- const SCEV *Stride,
- const SCEV *End,
- unsigned BitWidth,
- bool IsSigned) {
-
- assert(!isKnownNonPositive(Stride) &&
- "Stride is expected strictly positive!");
- // Calculate the maximum backedge count based on the range of values
- // permitted by Start, End, and Stride.
- const SCEV *MaxBECount;
- APInt MinStart =
- IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start);
-
- APInt StrideForMaxBECount =
- IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride);
-
- // We already know that the stride is positive, so we paper over conservatism
- // in our range computation by forcing StrideForMaxBECount to be at least one.
- // In theory this is unnecessary, but we expect MaxBECount to be a
- // SCEVConstant, and (udiv <constant> 0) is not constant folded by SCEV (there
- // is nothing to constant fold it to).
- APInt One(BitWidth, 1, IsSigned);
- StrideForMaxBECount = APIntOps::smax(One, StrideForMaxBECount);
-
- APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth)
- : APInt::getMaxValue(BitWidth);
- APInt Limit = MaxValue - (StrideForMaxBECount - 1);
-
- // Although End can be a MAX expression we estimate MaxEnd considering only
- // the case End = RHS of the loop termination condition. This is safe because
- // in the other case (End - Start) is zero, leading to a zero maximum backedge
- // taken count.
- APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit)
- : APIntOps::umin(getUnsignedRangeMax(End), Limit);
-
- MaxBECount = computeBECount(getConstant(MaxEnd - MinStart) /* Delta */,
- getConstant(StrideForMaxBECount) /* Step */,
- false /* Equality */);
-
- return MaxBECount;
-}
-
-ScalarEvolution::ExitLimit
-ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS,
- const Loop *L, bool IsSigned,
- bool ControlsExit, bool AllowPredicates) {
- SmallPtrSet<const SCEVPredicate *, 4> Predicates;
-
- const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
- bool PredicatedIV = false;
-
- if (!IV && AllowPredicates) {
- // Try to make this an AddRec using runtime tests, in the first X
- // iterations of this loop, where X is the SCEV expression found by the
- // algorithm below.
- IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
- PredicatedIV = true;
- }
-
- // Avoid weird loops
- if (!IV || IV->getLoop() != L || !IV->isAffine())
- return getCouldNotCompute();
-
- bool NoWrap = ControlsExit &&
- IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
-
- const SCEV *Stride = IV->getStepRecurrence(*this);
-
- bool PositiveStride = isKnownPositive(Stride);
-
- // Avoid negative or zero stride values.
- if (!PositiveStride) {
- // We can compute the correct backedge taken count for loops with unknown
- // strides if we can prove that the loop is not an infinite loop with side
- // effects. Here's the loop structure we are trying to handle -
- //
- // i = start
- // do {
- // A[i] = i;
- // i += s;
- // } while (i < end);
- //
- // The backedge taken count for such loops is evaluated as -
- // (max(end, start + stride) - start - 1) /u stride
- //
- // The additional preconditions that we need to check to prove correctness
- // of the above formula is as follows -
- //
- // a) IV is either nuw or nsw depending upon signedness (indicated by the
- // NoWrap flag).
- // b) loop is single exit with no side effects.
- //
- //
- // Precondition a) implies that if the stride is negative, this is a single
- // trip loop. The backedge taken count formula reduces to zero in this case.
- //
- // Precondition b) implies that the unknown stride cannot be zero otherwise
- // we have UB.
- //
- // The positive stride case is the same as isKnownPositive(Stride) returning
- // true (original behavior of the function).
- //
- // We want to make sure that the stride is truly unknown as there are edge
- // cases where ScalarEvolution propagates no wrap flags to the
- // post-increment/decrement IV even though the increment/decrement operation
- // itself is wrapping. The computed backedge taken count may be wrong in
- // such cases. This is prevented by checking that the stride is not known to
- // be either positive or non-positive. For example, no wrap flags are
- // propagated to the post-increment IV of this loop with a trip count of 2 -
- //
- // unsigned char i;
- // for(i=127; i<128; i+=129)
- // A[i] = i;
- //
- if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) ||
- !loopHasNoSideEffects(L))
- return getCouldNotCompute();
- } else if (!Stride->isOne() &&
- doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
- // Avoid proven overflow cases: this will ensure that the backedge taken
- // count will not generate any unsigned overflow. Relaxed no-overflow
- // conditions exploit NoWrapFlags, allowing to optimize in presence of
- // undefined behaviors like the case of C language.
- return getCouldNotCompute();
-
- ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
- : ICmpInst::ICMP_ULT;
- const SCEV *Start = IV->getStart();
- const SCEV *End = RHS;
- // When the RHS is not invariant, we do not know the end bound of the loop and
- // cannot calculate the ExactBECount needed by ExitLimit. However, we can
- // calculate the MaxBECount, given the start, stride and max value for the end
- // bound of the loop (RHS), and the fact that IV does not overflow (which is
- // checked above).
- if (!isLoopInvariant(RHS, L)) {
- const SCEV *MaxBECount = computeMaxBECountForLT(
- Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
- return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount,
- false /*MaxOrZero*/, Predicates);
- }
- // If the backedge is taken at least once, then it will be taken
- // (End-Start)/Stride times (rounded up to a multiple of Stride), where Start
- // is the LHS value of the less-than comparison the first time it is evaluated
- // and End is the RHS.
- const SCEV *BECountIfBackedgeTaken =
- computeBECount(getMinusSCEV(End, Start), Stride, false);
- // If the loop entry is guarded by the result of the backedge test of the
- // first loop iteration, then we know the backedge will be taken at least
- // once and so the backedge taken count is as above. If not then we use the
- // expression (max(End,Start)-Start)/Stride to describe the backedge count,
- // as if the backedge is taken at least once max(End,Start) is End and so the
- // result is as above, and if not max(End,Start) is Start so we get a backedge
- // count of zero.
- const SCEV *BECount;
- if (isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS))
- BECount = BECountIfBackedgeTaken;
- else {
- End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start);
- BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
- }
-
- const SCEV *MaxBECount;
- bool MaxOrZero = false;
- if (isa<SCEVConstant>(BECount))
- MaxBECount = BECount;
- else if (isa<SCEVConstant>(BECountIfBackedgeTaken)) {
- // If we know exactly how many times the backedge will be taken if it's
- // taken at least once, then the backedge count will either be that or
- // zero.
- MaxBECount = BECountIfBackedgeTaken;
- MaxOrZero = true;
- } else {
- MaxBECount = computeMaxBECountForLT(
- Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
- }
-
- if (isa<SCEVCouldNotCompute>(MaxBECount) &&
- !isa<SCEVCouldNotCompute>(BECount))
- MaxBECount = getConstant(getUnsignedRangeMax(BECount));
-
- return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates);
-}
-
-ScalarEvolution::ExitLimit
-ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
- const Loop *L, bool IsSigned,
- bool ControlsExit, bool AllowPredicates) {
- SmallPtrSet<const SCEVPredicate *, 4> Predicates;
- // We handle only IV > Invariant
- if (!isLoopInvariant(RHS, L))
- return getCouldNotCompute();
-
- const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
- if (!IV && AllowPredicates)
- // Try to make this an AddRec using runtime tests, in the first X
- // iterations of this loop, where X is the SCEV expression found by the
- // algorithm below.
- IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
-
- // Avoid weird loops
- if (!IV || IV->getLoop() != L || !IV->isAffine())
- return getCouldNotCompute();
-
- bool NoWrap = ControlsExit &&
- IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
-
- const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
-
- // Avoid negative or zero stride values
- if (!isKnownPositive(Stride))
- return getCouldNotCompute();
-
- // Avoid proven overflow cases: this will ensure that the backedge taken count
- // will not generate any unsigned overflow. Relaxed no-overflow conditions
- // exploit NoWrapFlags, allowing to optimize in presence of undefined
- // behaviors like the case of C language.
- if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
- return getCouldNotCompute();
-
- ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
- : ICmpInst::ICMP_UGT;
-
- const SCEV *Start = IV->getStart();
- const SCEV *End = RHS;
- if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS))
- End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start);
-
- const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
-
- APInt MaxStart = IsSigned ? getSignedRangeMax(Start)
- : getUnsignedRangeMax(Start);
-
- APInt MinStride = IsSigned ? getSignedRangeMin(Stride)
- : getUnsignedRangeMin(Stride);
-
- unsigned BitWidth = getTypeSizeInBits(LHS->getType());
- APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
- : APInt::getMinValue(BitWidth) + (MinStride - 1);
-
- // Although End can be a MIN expression we estimate MinEnd considering only
- // the case End = RHS. This is safe because in the other case (Start - End)
- // is zero, leading to a zero maximum backedge taken count.
- APInt MinEnd =
- IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit)
- : APIntOps::umax(getUnsignedRangeMin(RHS), Limit);
-
-
- const SCEV *MaxBECount = getCouldNotCompute();
- if (isa<SCEVConstant>(BECount))
- MaxBECount = BECount;
- else
- MaxBECount = computeBECount(getConstant(MaxStart - MinEnd),
- getConstant(MinStride), false);
-
- if (isa<SCEVCouldNotCompute>(MaxBECount))
- MaxBECount = BECount;
-
- return ExitLimit(BECount, MaxBECount, false, Predicates);
-}
-
-const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range,
- ScalarEvolution &SE) const {
- if (Range.isFullSet()) // Infinite loop.
- return SE.getCouldNotCompute();
-
- // If the start is a non-zero constant, shift the range to simplify things.
- if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
- if (!SC->getValue()->isZero()) {
- SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
- Operands[0] = SE.getZero(SC->getType());
- const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
- getNoWrapFlags(FlagNW));
- if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
- return ShiftedAddRec->getNumIterationsInRange(
- Range.subtract(SC->getAPInt()), SE);
- // This is strange and shouldn't happen.
- return SE.getCouldNotCompute();
- }
-
- // The only time we can solve this is when we have all constant indices.
- // Otherwise, we cannot determine the overflow conditions.
- if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
- return SE.getCouldNotCompute();
-
- // Okay at this point we know that all elements of the chrec are constants and
- // that the start element is zero.
-
- // First check to see if the range contains zero. If not, the first
- // iteration exits.
- unsigned BitWidth = SE.getTypeSizeInBits(getType());
- if (!Range.contains(APInt(BitWidth, 0)))
- return SE.getZero(getType());
-
- if (isAffine()) {
- // If this is an affine expression then we have this situation:
- // Solve {0,+,A} in Range === Ax in Range
-
- // We know that zero is in the range. If A is positive then we know that
- // the upper value of the range must be the first possible exit value.
- // If A is negative then the lower of the range is the last possible loop
- // value. Also note that we already checked for a full range.
- APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
- APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower();
-
- // The exit value should be (End+A)/A.
- APInt ExitVal = (End + A).udiv(A);
- ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
-
- // Evaluate at the exit value. If we really did fall out of the valid
- // range, then we computed our trip count, otherwise wrap around or other
- // things must have happened.
- ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
- if (Range.contains(Val->getValue()))
- return SE.getCouldNotCompute(); // Something strange happened
-
- // Ensure that the previous value is in the range. This is a sanity check.
- assert(Range.contains(
- EvaluateConstantChrecAtConstant(this,
- ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) &&
- "Linear scev computation is off in a bad way!");
- return SE.getConstant(ExitValue);
- }
-
- if (isQuadratic()) {
- if (auto S = SolveQuadraticAddRecRange(this, Range, SE))
- return SE.getConstant(S.getValue());
- }
-
- return SE.getCouldNotCompute();
-}
-
-const SCEVAddRecExpr *
-SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const {
- assert(getNumOperands() > 1 && "AddRec with zero step?");
- // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)),
- // but in this case we cannot guarantee that the value returned will be an
- // AddRec because SCEV does not have a fixed point where it stops
- // simplification: it is legal to return ({rec1} + {rec2}). For example, it
- // may happen if we reach arithmetic depth limit while simplifying. So we
- // construct the returned value explicitly.
- SmallVector<const SCEV *, 3> Ops;
- // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and
- // (this + Step) is {A+B,+,B+C,+...,+,N}.
- for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i)
- Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1)));
- // We know that the last operand is not a constant zero (otherwise it would
- // have been popped out earlier). This guarantees us that if the result has
- // the same last operand, then it will also not be popped out, meaning that
- // the returned value will be an AddRec.
- const SCEV *Last = getOperand(getNumOperands() - 1);
- assert(!Last->isZero() && "Recurrency with zero step?");
- Ops.push_back(Last);
- return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(),
- SCEV::FlagAnyWrap));
-}
-
-// Return true when S contains at least an undef value.
-static inline bool containsUndefs(const SCEV *S) {
- return SCEVExprContains(S, [](const SCEV *S) {
- if (const auto *SU = dyn_cast<SCEVUnknown>(S))
- return isa<UndefValue>(SU->getValue());
- else if (const auto *SC = dyn_cast<SCEVConstant>(S))
- return isa<UndefValue>(SC->getValue());
- return false;
- });
-}
-
-namespace {
-
-// Collect all steps of SCEV expressions.
-struct SCEVCollectStrides {
- ScalarEvolution &SE;
- SmallVectorImpl<const SCEV *> &Strides;
-
- SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
- : SE(SE), Strides(S) {}
-
- bool follow(const SCEV *S) {
- if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
- Strides.push_back(AR->getStepRecurrence(SE));
- return true;
- }
-
- bool isDone() const { return false; }
-};
-
-// Collect all SCEVUnknown and SCEVMulExpr expressions.
-struct SCEVCollectTerms {
- SmallVectorImpl<const SCEV *> &Terms;
-
- SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) : Terms(T) {}
-
- bool follow(const SCEV *S) {
- if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S) ||
- isa<SCEVSignExtendExpr>(S)) {
- if (!containsUndefs(S))
- Terms.push_back(S);
-
- // Stop recursion: once we collected a term, do not walk its operands.
- return false;
- }
-
- // Keep looking.
- return true;
- }
-
- bool isDone() const { return false; }
-};
-
-// Check if a SCEV contains an AddRecExpr.
-struct SCEVHasAddRec {
- bool &ContainsAddRec;
-
- SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) {
- ContainsAddRec = false;
- }
-
- bool follow(const SCEV *S) {
- if (isa<SCEVAddRecExpr>(S)) {
- ContainsAddRec = true;
-
- // Stop recursion: once we collected a term, do not walk its operands.
- return false;
- }
-
- // Keep looking.
- return true;
- }
-
- bool isDone() const { return false; }
-};
-
-// Find factors that are multiplied with an expression that (possibly as a
-// subexpression) contains an AddRecExpr. In the expression:
-//
-// 8 * (100 + %p * %q * (%a + {0, +, 1}_loop))
-//
-// "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)"
-// that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size
-// parameters as they form a product with an induction variable.
-//
-// This collector expects all array size parameters to be in the same MulExpr.
-// It might be necessary to later add support for collecting parameters that are
-// spread over different nested MulExpr.
-struct SCEVCollectAddRecMultiplies {
- SmallVectorImpl<const SCEV *> &Terms;
- ScalarEvolution &SE;
-
- SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE)
- : Terms(T), SE(SE) {}
-
- bool follow(const SCEV *S) {
- if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) {
- bool HasAddRec = false;
- SmallVector<const SCEV *, 0> Operands;
- for (auto Op : Mul->operands()) {
- const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(Op);
- if (Unknown && !isa<CallInst>(Unknown->getValue())) {
- Operands.push_back(Op);
- } else if (Unknown) {
- HasAddRec = true;
- } else {
- bool ContainsAddRec;
- SCEVHasAddRec ContiansAddRec(ContainsAddRec);
- visitAll(Op, ContiansAddRec);
- HasAddRec |= ContainsAddRec;
- }
- }
- if (Operands.size() == 0)
- return true;
-
- if (!HasAddRec)
- return false;
-
- Terms.push_back(SE.getMulExpr(Operands));
- // Stop recursion: once we collected a term, do not walk its operands.
- return false;
- }
-
- // Keep looking.
- return true;
- }
-
- bool isDone() const { return false; }
-};
-
-} // end anonymous namespace
-
-/// Find parametric terms in this SCEVAddRecExpr. We first for parameters in
-/// two places:
-/// 1) The strides of AddRec expressions.
-/// 2) Unknowns that are multiplied with AddRec expressions.
-void ScalarEvolution::collectParametricTerms(const SCEV *Expr,
- SmallVectorImpl<const SCEV *> &Terms) {
- SmallVector<const SCEV *, 4> Strides;
- SCEVCollectStrides StrideCollector(*this, Strides);
- visitAll(Expr, StrideCollector);
-
- LLVM_DEBUG({
- dbgs() << "Strides:\n";
- for (const SCEV *S : Strides)
- dbgs() << *S << "\n";
- });
-
- for (const SCEV *S : Strides) {
- SCEVCollectTerms TermCollector(Terms);
- visitAll(S, TermCollector);
- }
-
- LLVM_DEBUG({
- dbgs() << "Terms:\n";
- for (const SCEV *T : Terms)
- dbgs() << *T << "\n";
- });
-
- SCEVCollectAddRecMultiplies MulCollector(Terms, *this);
- visitAll(Expr, MulCollector);
-}
-
-static bool findArrayDimensionsRec(ScalarEvolution &SE,
- SmallVectorImpl<const SCEV *> &Terms,
- SmallVectorImpl<const SCEV *> &Sizes) {
- int Last = Terms.size() - 1;
- const SCEV *Step = Terms[Last];
-
- // End of recursion.
- if (Last == 0) {
- if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
- SmallVector<const SCEV *, 2> Qs;
- for (const SCEV *Op : M->operands())
- if (!isa<SCEVConstant>(Op))
- Qs.push_back(Op);
-
- Step = SE.getMulExpr(Qs);
- }
-
- Sizes.push_back(Step);
- return true;
- }
-
- for (const SCEV *&Term : Terms) {
- // Normalize the terms before the next call to findArrayDimensionsRec.
- const SCEV *Q, *R;
- SCEVDivision::divide(SE, Term, Step, &Q, &R);
-
- // Bail out when GCD does not evenly divide one of the terms.
- if (!R->isZero())
- return false;
-
- Term = Q;
- }
-
- // Remove all SCEVConstants.
- Terms.erase(
- remove_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); }),
- Terms.end());
-
- if (Terms.size() > 0)
- if (!findArrayDimensionsRec(SE, Terms, Sizes))
- return false;
-
- Sizes.push_back(Step);
- return true;
-}
-
-// Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
-static inline bool containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
- for (const SCEV *T : Terms)
- if (SCEVExprContains(T, isa<SCEVUnknown, const SCEV *>))
- return true;
- return false;
-}
-
-// Return the number of product terms in S.
-static inline int numberOfTerms(const SCEV *S) {
- if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
- return Expr->getNumOperands();
- return 1;
-}
-
-static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
- if (isa<SCEVConstant>(T))
- return nullptr;
-
- if (isa<SCEVUnknown>(T))
- return T;
-
- if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
- SmallVector<const SCEV *, 2> Factors;
- for (const SCEV *Op : M->operands())
- if (!isa<SCEVConstant>(Op))
- Factors.push_back(Op);
-
- return SE.getMulExpr(Factors);
- }
-
- return T;
-}
-
-/// Return the size of an element read or written by Inst.
-const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
- Type *Ty;
- if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
- Ty = Store->getValueOperand()->getType();
- else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
- Ty = Load->getType();
- else
- return nullptr;
-
- Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
- return getSizeOfExpr(ETy, Ty);
-}
-
-void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
- SmallVectorImpl<const SCEV *> &Sizes,
- const SCEV *ElementSize) {
- if (Terms.size() < 1 || !ElementSize)
- return;
-
- // Early return when Terms do not contain parameters: we do not delinearize
- // non parametric SCEVs.
- if (!containsParameters(Terms))
- return;
-
- LLVM_DEBUG({
- dbgs() << "Terms:\n";
- for (const SCEV *T : Terms)
- dbgs() << *T << "\n";
- });
-
- // Remove duplicates.
- array_pod_sort(Terms.begin(), Terms.end());
- Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
-
- // Put larger terms first.
- llvm::sort(Terms, [](const SCEV *LHS, const SCEV *RHS) {
- return numberOfTerms(LHS) > numberOfTerms(RHS);
- });
-
- // Try to divide all terms by the element size. If term is not divisible by
- // element size, proceed with the original term.
- for (const SCEV *&Term : Terms) {
- const SCEV *Q, *R;
- SCEVDivision::divide(*this, Term, ElementSize, &Q, &R);
- if (!Q->isZero())
- Term = Q;
- }
-
- SmallVector<const SCEV *, 4> NewTerms;
-
- // Remove constant factors.
- for (const SCEV *T : Terms)
- if (const SCEV *NewT = removeConstantFactors(*this, T))
- NewTerms.push_back(NewT);
-
- LLVM_DEBUG({
- dbgs() << "Terms after sorting:\n";
- for (const SCEV *T : NewTerms)
- dbgs() << *T << "\n";
- });
-
- if (NewTerms.empty() || !findArrayDimensionsRec(*this, NewTerms, Sizes)) {
- Sizes.clear();
- return;
- }
-
- // The last element to be pushed into Sizes is the size of an element.
- Sizes.push_back(ElementSize);
-
- LLVM_DEBUG({
- dbgs() << "Sizes:\n";
- for (const SCEV *S : Sizes)
- dbgs() << *S << "\n";
- });
-}
-
-void ScalarEvolution::computeAccessFunctions(
- const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
- SmallVectorImpl<const SCEV *> &Sizes) {
- // Early exit in case this SCEV is not an affine multivariate function.
- if (Sizes.empty())
- return;
-
- if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr))
- if (!AR->isAffine())
- return;
-
- const SCEV *Res = Expr;
- int Last = Sizes.size() - 1;
- for (int i = Last; i >= 0; i--) {
- const SCEV *Q, *R;
- SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R);
-
- LLVM_DEBUG({
- dbgs() << "Res: " << *Res << "\n";
- dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
- dbgs() << "Res divided by Sizes[i]:\n";
- dbgs() << "Quotient: " << *Q << "\n";
- dbgs() << "Remainder: " << *R << "\n";
- });
-
- Res = Q;
-
- // Do not record the last subscript corresponding to the size of elements in
- // the array.
- if (i == Last) {
-
- // Bail out if the remainder is too complex.
- if (isa<SCEVAddRecExpr>(R)) {
- Subscripts.clear();
- Sizes.clear();
- return;
- }
-
- continue;
- }
-
- // Record the access function for the current subscript.
- Subscripts.push_back(R);
- }
-
- // Also push in last position the remainder of the last division: it will be
- // the access function of the innermost dimension.
- Subscripts.push_back(Res);
-
- std::reverse(Subscripts.begin(), Subscripts.end());
-
- LLVM_DEBUG({
- dbgs() << "Subscripts:\n";
- for (const SCEV *S : Subscripts)
- dbgs() << *S << "\n";
- });
-}
-
-/// Splits the SCEV into two vectors of SCEVs representing the subscripts and
-/// sizes of an array access. Returns the remainder of the delinearization that
-/// is the offset start of the array. The SCEV->delinearize algorithm computes
-/// the multiples of SCEV coefficients: that is a pattern matching of sub
-/// expressions in the stride and base of a SCEV corresponding to the
-/// computation of a GCD (greatest common divisor) of base and stride. When
-/// SCEV->delinearize fails, it returns the SCEV unchanged.
-///
-/// For example: when analyzing the memory access A[i][j][k] in this loop nest
-///
-/// void foo(long n, long m, long o, double A[n][m][o]) {
-///
-/// for (long i = 0; i < n; i++)
-/// for (long j = 0; j < m; j++)
-/// for (long k = 0; k < o; k++)
-/// A[i][j][k] = 1.0;
-/// }
-///
-/// the delinearization input is the following AddRec SCEV:
-///
-/// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
-///
-/// From this SCEV, we are able to say that the base offset of the access is %A
-/// because it appears as an offset that does not divide any of the strides in
-/// the loops:
-///
-/// CHECK: Base offset: %A
-///
-/// and then SCEV->delinearize determines the size of some of the dimensions of
-/// the array as these are the multiples by which the strides are happening:
-///
-/// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
-///
-/// Note that the outermost dimension remains of UnknownSize because there are
-/// no strides that would help identifying the size of the last dimension: when
-/// the array has been statically allocated, one could compute the size of that
-/// dimension by dividing the overall size of the array by the size of the known
-/// dimensions: %m * %o * 8.
-///
-/// Finally delinearize provides the access functions for the array reference
-/// that does correspond to A[i][j][k] of the above C testcase:
-///
-/// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
-///
-/// The testcases are checking the output of a function pass:
-/// DelinearizationPass that walks through all loads and stores of a function
-/// asking for the SCEV of the memory access with respect to all enclosing
-/// loops, calling SCEV->delinearize on that and printing the results.
-void ScalarEvolution::delinearize(const SCEV *Expr,
- SmallVectorImpl<const SCEV *> &Subscripts,
- SmallVectorImpl<const SCEV *> &Sizes,
- const SCEV *ElementSize) {
- // First step: collect parametric terms.
- SmallVector<const SCEV *, 4> Terms;
- collectParametricTerms(Expr, Terms);
-
- if (Terms.empty())
- return;
-
- // Second step: find subscript sizes.
- findArrayDimensions(Terms, Sizes, ElementSize);
-
- if (Sizes.empty())
- return;
-
- // Third step: compute the access functions for each subscript.
- computeAccessFunctions(Expr, Subscripts, Sizes);
-
- if (Subscripts.empty())
- return;
-
- LLVM_DEBUG({
- dbgs() << "succeeded to delinearize " << *Expr << "\n";
- dbgs() << "ArrayDecl[UnknownSize]";
- for (const SCEV *S : Sizes)
- dbgs() << "[" << *S << "]";
-
- dbgs() << "\nArrayRef";
- for (const SCEV *S : Subscripts)
- dbgs() << "[" << *S << "]";
- dbgs() << "\n";
- });
-}
-
-//===----------------------------------------------------------------------===//
-// SCEVCallbackVH Class Implementation
-//===----------------------------------------------------------------------===//
-
-void ScalarEvolution::SCEVCallbackVH::deleted() {
- assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
- if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
- SE->ConstantEvolutionLoopExitValue.erase(PN);
- SE->eraseValueFromMap(getValPtr());
- // this now dangles!
-}
-
-void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
- assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
-
- // Forget all the expressions associated with users of the old value,
- // so that future queries will recompute the expressions using the new
- // value.
- Value *Old = getValPtr();
- SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
- SmallPtrSet<User *, 8> Visited;
- while (!Worklist.empty()) {
- User *U = Worklist.pop_back_val();
- // Deleting the Old value will cause this to dangle. Postpone
- // that until everything else is done.
- if (U == Old)
- continue;
- if (!Visited.insert(U).second)
- continue;
- if (PHINode *PN = dyn_cast<PHINode>(U))
- SE->ConstantEvolutionLoopExitValue.erase(PN);
- SE->eraseValueFromMap(U);
- Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
- }
- // Delete the Old value.
- if (PHINode *PN = dyn_cast<PHINode>(Old))
- SE->ConstantEvolutionLoopExitValue.erase(PN);
- SE->eraseValueFromMap(Old);
- // this now dangles!
-}
-
-ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
- : CallbackVH(V), SE(se) {}
-
-//===----------------------------------------------------------------------===//
-// ScalarEvolution Class Implementation
-//===----------------------------------------------------------------------===//
-
-ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
- AssumptionCache &AC, DominatorTree &DT,
- LoopInfo &LI)
- : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
- CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64),
- LoopDispositions(64), BlockDispositions(64) {
- // To use guards for proving predicates, we need to scan every instruction in
- // relevant basic blocks, and not just terminators. Doing this is a waste of
- // time if the IR does not actually contain any calls to
- // @llvm.experimental.guard, so do a quick check and remember this beforehand.
- //
- // This pessimizes the case where a pass that preserves ScalarEvolution wants
- // to _add_ guards to the module when there weren't any before, and wants
- // ScalarEvolution to optimize based on those guards. For now we prefer to be
- // efficient in lieu of being smart in that rather obscure case.
-
- auto *GuardDecl = F.getParent()->getFunction(
- Intrinsic::getName(Intrinsic::experimental_guard));
- HasGuards = GuardDecl && !GuardDecl->use_empty();
-}
-
-ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
- : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT),
- LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)),
- ValueExprMap(std::move(Arg.ValueExprMap)),
- PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)),
- PendingPhiRanges(std::move(Arg.PendingPhiRanges)),
- PendingMerges(std::move(Arg.PendingMerges)),
- MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)),
- BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
- PredicatedBackedgeTakenCounts(
- std::move(Arg.PredicatedBackedgeTakenCounts)),
- ConstantEvolutionLoopExitValue(
- std::move(Arg.ConstantEvolutionLoopExitValue)),
- ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
- LoopDispositions(std::move(Arg.LoopDispositions)),
- LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)),
- BlockDispositions(std::move(Arg.BlockDispositions)),
- UnsignedRanges(std::move(Arg.UnsignedRanges)),
- SignedRanges(std::move(Arg.SignedRanges)),
- UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
- UniquePreds(std::move(Arg.UniquePreds)),
- SCEVAllocator(std::move(Arg.SCEVAllocator)),
- LoopUsers(std::move(Arg.LoopUsers)),
- PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)),
- FirstUnknown(Arg.FirstUnknown) {
- Arg.FirstUnknown = nullptr;
-}
-
-ScalarEvolution::~ScalarEvolution() {
- // Iterate through all the SCEVUnknown instances and call their
- // destructors, so that they release their references to their values.
- for (SCEVUnknown *U = FirstUnknown; U;) {
- SCEVUnknown *Tmp = U;
- U = U->Next;
- Tmp->~SCEVUnknown();
- }
- FirstUnknown = nullptr;
-
- ExprValueMap.clear();
- ValueExprMap.clear();
- HasRecMap.clear();
-
- // Free any extra memory created for ExitNotTakenInfo in the unlikely event
- // that a loop had multiple computable exits.
- for (auto &BTCI : BackedgeTakenCounts)
- BTCI.second.clear();
- for (auto &BTCI : PredicatedBackedgeTakenCounts)
- BTCI.second.clear();
-
- assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
- assert(PendingPhiRanges.empty() && "getRangeRef garbage");
- assert(PendingMerges.empty() && "isImpliedViaMerge garbage");
- assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
- assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
-}
-
-bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
- return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
-}
-
-static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
- const Loop *L) {
- // Print all inner loops first
- for (Loop *I : *L)
- PrintLoopInfo(OS, SE, I);
-
- OS << "Loop ";
- L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
- OS << ": ";
-
- SmallVector<BasicBlock *, 8> ExitBlocks;
- L->getExitBlocks(ExitBlocks);
- if (ExitBlocks.size() != 1)
- OS << "<multiple exits> ";
-
- if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
- OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
- } else {
- OS << "Unpredictable backedge-taken count. ";
- }
-
- OS << "\n"
- "Loop ";
- L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
- OS << ": ";
-
- if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
- OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
- if (SE->isBackedgeTakenCountMaxOrZero(L))
- OS << ", actual taken count either this or zero.";
- } else {
- OS << "Unpredictable max backedge-taken count. ";
- }
-
- OS << "\n"
- "Loop ";
- L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
- OS << ": ";
-
- SCEVUnionPredicate Pred;
- auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred);
- if (!isa<SCEVCouldNotCompute>(PBT)) {
- OS << "Predicated backedge-taken count is " << *PBT << "\n";
- OS << " Predicates:\n";
- Pred.print(OS, 4);
- } else {
- OS << "Unpredictable predicated backedge-taken count. ";
- }
- OS << "\n";
-
- if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
- OS << "Loop ";
- L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
- OS << ": ";
- OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n";
- }
-}
-
-static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) {
- switch (LD) {
- case ScalarEvolution::LoopVariant:
- return "Variant";
- case ScalarEvolution::LoopInvariant:
- return "Invariant";
- case ScalarEvolution::LoopComputable:
- return "Computable";
- }
- llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!");
-}
-
-void ScalarEvolution::print(raw_ostream &OS) const {
- // ScalarEvolution's implementation of the print method is to print
- // out SCEV values of all instructions that are interesting. Doing
- // this potentially causes it to create new SCEV objects though,
- // which technically conflicts with the const qualifier. This isn't
- // observable from outside the class though, so casting away the
- // const isn't dangerous.
- ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
-
- OS << "Classifying expressions for: ";
- F.printAsOperand(OS, /*PrintType=*/false);
- OS << "\n";
- for (Instruction &I : instructions(F))
- if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
- OS << I << '\n';
- OS << " --> ";
- const SCEV *SV = SE.getSCEV(&I);
- SV->print(OS);
- if (!isa<SCEVCouldNotCompute>(SV)) {
- OS << " U: ";
- SE.getUnsignedRange(SV).print(OS);
- OS << " S: ";
- SE.getSignedRange(SV).print(OS);
- }
-
- const Loop *L = LI.getLoopFor(I.getParent());
-
- const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
- if (AtUse != SV) {
- OS << " --> ";
- AtUse->print(OS);
- if (!isa<SCEVCouldNotCompute>(AtUse)) {
- OS << " U: ";
- SE.getUnsignedRange(AtUse).print(OS);
- OS << " S: ";
- SE.getSignedRange(AtUse).print(OS);
- }
- }
-
- if (L) {
- OS << "\t\t" "Exits: ";
- const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
- if (!SE.isLoopInvariant(ExitValue, L)) {
- OS << "<<Unknown>>";
- } else {
- OS << *ExitValue;
- }
-
- bool First = true;
- for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) {
- if (First) {
- OS << "\t\t" "LoopDispositions: { ";
- First = false;
- } else {
- OS << ", ";
- }
-
- Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false);
- OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter));
- }
-
- for (auto *InnerL : depth_first(L)) {
- if (InnerL == L)
- continue;
- if (First) {
- OS << "\t\t" "LoopDispositions: { ";
- First = false;
- } else {
- OS << ", ";
- }
-
- InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
- OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL));
- }
-
- OS << " }";
- }
-
- OS << "\n";
- }
-
- OS << "Determining loop execution counts for: ";
- F.printAsOperand(OS, /*PrintType=*/false);
- OS << "\n";
- for (Loop *I : LI)
- PrintLoopInfo(OS, &SE, I);
-}
-
-ScalarEvolution::LoopDisposition
-ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
- auto &Values = LoopDispositions[S];
- for (auto &V : Values) {
- if (V.getPointer() == L)
- return V.getInt();
- }
- Values.emplace_back(L, LoopVariant);
- LoopDisposition D = computeLoopDisposition(S, L);
- auto &Values2 = LoopDispositions[S];
- for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
- if (V.getPointer() == L) {
- V.setInt(D);
- break;
- }
- }
- return D;
-}
-
-ScalarEvolution::LoopDisposition
-ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
- switch (static_cast<SCEVTypes>(S->getSCEVType())) {
- case scConstant:
- return LoopInvariant;
- case scTruncate:
- case scZeroExtend:
- case scSignExtend:
- return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
- case scAddRecExpr: {
- const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
-
- // If L is the addrec's loop, it's computable.
- if (AR->getLoop() == L)
- return LoopComputable;
-
- // Add recurrences are never invariant in the function-body (null loop).
- if (!L)
- return LoopVariant;
-
- // Everything that is not defined at loop entry is variant.
- if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))
- return LoopVariant;
- assert(!L->contains(AR->getLoop()) && "Containing loop's header does not"
- " dominate the contained loop's header?");
-
- // This recurrence is invariant w.r.t. L if AR's loop contains L.
- if (AR->getLoop()->contains(L))
- return LoopInvariant;
-
- // This recurrence is variant w.r.t. L if any of its operands
- // are variant.
- for (auto *Op : AR->operands())
- if (!isLoopInvariant(Op, L))
- return LoopVariant;
-
- // Otherwise it's loop-invariant.
- return LoopInvariant;
- }
- case scAddExpr:
- case scMulExpr:
- case scUMaxExpr:
- case scSMaxExpr: {
- bool HasVarying = false;
- for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) {
- LoopDisposition D = getLoopDisposition(Op, L);
- if (D == LoopVariant)
- return LoopVariant;
- if (D == LoopComputable)
- HasVarying = true;
- }
- return HasVarying ? LoopComputable : LoopInvariant;
- }
- case scUDivExpr: {
- const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
- LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
- if (LD == LoopVariant)
- return LoopVariant;
- LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
- if (RD == LoopVariant)
- return LoopVariant;
- return (LD == LoopInvariant && RD == LoopInvariant) ?
- LoopInvariant : LoopComputable;
- }
- case scUnknown:
- // All non-instruction values are loop invariant. All instructions are loop
- // invariant if they are not contained in the specified loop.
- // Instructions are never considered invariant in the function body
- // (null loop) because they are defined within the "loop".
- if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
- return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
- return LoopInvariant;
- case scCouldNotCompute:
- llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
- }
- llvm_unreachable("Unknown SCEV kind!");
-}
-
-bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
- return getLoopDisposition(S, L) == LoopInvariant;
-}
-
-bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
- return getLoopDisposition(S, L) == LoopComputable;
-}
-
-ScalarEvolution::BlockDisposition
-ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
- auto &Values = BlockDispositions[S];
- for (auto &V : Values) {
- if (V.getPointer() == BB)
- return V.getInt();
- }
- Values.emplace_back(BB, DoesNotDominateBlock);
- BlockDisposition D = computeBlockDisposition(S, BB);
- auto &Values2 = BlockDispositions[S];
- for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
- if (V.getPointer() == BB) {
- V.setInt(D);
- break;
- }
- }
- return D;
-}
-
-ScalarEvolution::BlockDisposition
-ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
- switch (static_cast<SCEVTypes>(S->getSCEVType())) {
- case scConstant:
- return ProperlyDominatesBlock;
- case scTruncate:
- case scZeroExtend:
- case scSignExtend:
- return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
- case scAddRecExpr: {
- // This uses a "dominates" query instead of "properly dominates" query
- // to test for proper dominance too, because the instruction which
- // produces the addrec's value is a PHI, and a PHI effectively properly
- // dominates its entire containing block.
- const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
- if (!DT.dominates(AR->getLoop()->getHeader(), BB))
- return DoesNotDominateBlock;
-
- // Fall through into SCEVNAryExpr handling.
- LLVM_FALLTHROUGH;
- }
- case scAddExpr:
- case scMulExpr:
- case scUMaxExpr:
- case scSMaxExpr: {
- const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
- bool Proper = true;
- for (const SCEV *NAryOp : NAry->operands()) {
- BlockDisposition D = getBlockDisposition(NAryOp, BB);
- if (D == DoesNotDominateBlock)
- return DoesNotDominateBlock;
- if (D == DominatesBlock)
- Proper = false;
- }
- return Proper ? ProperlyDominatesBlock : DominatesBlock;
- }
- case scUDivExpr: {
- const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
- const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
- BlockDisposition LD = getBlockDisposition(LHS, BB);
- if (LD == DoesNotDominateBlock)
- return DoesNotDominateBlock;
- BlockDisposition RD = getBlockDisposition(RHS, BB);
- if (RD == DoesNotDominateBlock)
- return DoesNotDominateBlock;
- return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
- ProperlyDominatesBlock : DominatesBlock;
- }
- case scUnknown:
- if (Instruction *I =
- dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
- if (I->getParent() == BB)
- return DominatesBlock;
- if (DT.properlyDominates(I->getParent(), BB))
- return ProperlyDominatesBlock;
- return DoesNotDominateBlock;
- }
- return ProperlyDominatesBlock;
- case scCouldNotCompute:
- llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
- }
- llvm_unreachable("Unknown SCEV kind!");
-}
-
-bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
- return getBlockDisposition(S, BB) >= DominatesBlock;
-}
-
-bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
- return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
-}
-
-bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
- return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; });
-}
-
-bool ScalarEvolution::ExitLimit::hasOperand(const SCEV *S) const {
- auto IsS = [&](const SCEV *X) { return S == X; };
- auto ContainsS = [&](const SCEV *X) {
- return !isa<SCEVCouldNotCompute>(X) && SCEVExprContains(X, IsS);
- };
- return ContainsS(ExactNotTaken) || ContainsS(MaxNotTaken);
-}
-
-void
-ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
- ValuesAtScopes.erase(S);
- LoopDispositions.erase(S);
- BlockDispositions.erase(S);
- UnsignedRanges.erase(S);
- SignedRanges.erase(S);
- ExprValueMap.erase(S);
- HasRecMap.erase(S);
- MinTrailingZerosCache.erase(S);
-
- for (auto I = PredicatedSCEVRewrites.begin();
- I != PredicatedSCEVRewrites.end();) {
- std::pair<const SCEV *, const Loop *> Entry = I->first;
- if (Entry.first == S)
- PredicatedSCEVRewrites.erase(I++);
- else
- ++I;
- }
-
- auto RemoveSCEVFromBackedgeMap =
- [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) {
- for (auto I = Map.begin(), E = Map.end(); I != E;) {
- BackedgeTakenInfo &BEInfo = I->second;
- if (BEInfo.hasOperand(S, this)) {
- BEInfo.clear();
- Map.erase(I++);
- } else
- ++I;
- }
- };
-
- RemoveSCEVFromBackedgeMap(BackedgeTakenCounts);
- RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts);
-}
-
-void
-ScalarEvolution::getUsedLoops(const SCEV *S,
- SmallPtrSetImpl<const Loop *> &LoopsUsed) {
- struct FindUsedLoops {
- FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed)
- : LoopsUsed(LoopsUsed) {}
- SmallPtrSetImpl<const Loop *> &LoopsUsed;
- bool follow(const SCEV *S) {
- if (auto *AR = dyn_cast<SCEVAddRecExpr>(S))
- LoopsUsed.insert(AR->getLoop());
- return true;
- }
-
- bool isDone() const { return false; }
- };
-
- FindUsedLoops F(LoopsUsed);
- SCEVTraversal<FindUsedLoops>(F).visitAll(S);
-}
-
-void ScalarEvolution::addToLoopUseLists(const SCEV *S) {
- SmallPtrSet<const Loop *, 8> LoopsUsed;
- getUsedLoops(S, LoopsUsed);
- for (auto *L : LoopsUsed)
- LoopUsers[L].push_back(S);
-}
-
-void ScalarEvolution::verify() const {
- ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
- ScalarEvolution SE2(F, TLI, AC, DT, LI);
-
- SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end());
-
- // Map's SCEV expressions from one ScalarEvolution "universe" to another.
- struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> {
- SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {}
-
- const SCEV *visitConstant(const SCEVConstant *Constant) {
- return SE.getConstant(Constant->getAPInt());
- }
-
- const SCEV *visitUnknown(const SCEVUnknown *Expr) {
- return SE.getUnknown(Expr->getValue());
- }
-
- const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
- return SE.getCouldNotCompute();
- }
- };
-
- SCEVMapper SCM(SE2);
-
- while (!LoopStack.empty()) {
- auto *L = LoopStack.pop_back_val();
- LoopStack.insert(LoopStack.end(), L->begin(), L->end());
-
- auto *CurBECount = SCM.visit(
- const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L));
- auto *NewBECount = SE2.getBackedgeTakenCount(L);
-
- if (CurBECount == SE2.getCouldNotCompute() ||
- NewBECount == SE2.getCouldNotCompute()) {
- // NB! This situation is legal, but is very suspicious -- whatever pass
- // change the loop to make a trip count go from could not compute to
- // computable or vice-versa *should have* invalidated SCEV. However, we
- // choose not to assert here (for now) since we don't want false
- // positives.
- continue;
- }
-
- if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) {
- // SCEV treats "undef" as an unknown but consistent value (i.e. it does
- // not propagate undef aggressively). This means we can (and do) fail
- // verification in cases where a transform makes the trip count of a loop
- // go from "undef" to "undef+1" (say). The transform is fine, since in
- // both cases the loop iterates "undef" times, but SCEV thinks we
- // increased the trip count of the loop by 1 incorrectly.
- continue;
- }
-
- if (SE.getTypeSizeInBits(CurBECount->getType()) >
- SE.getTypeSizeInBits(NewBECount->getType()))
- NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType());
- else if (SE.getTypeSizeInBits(CurBECount->getType()) <
- SE.getTypeSizeInBits(NewBECount->getType()))
- CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType());
-
- auto *ConstantDelta =
- dyn_cast<SCEVConstant>(SE2.getMinusSCEV(CurBECount, NewBECount));
-
- if (ConstantDelta && ConstantDelta->getAPInt() != 0) {
- dbgs() << "Trip Count Changed!\n";
- dbgs() << "Old: " << *CurBECount << "\n";
- dbgs() << "New: " << *NewBECount << "\n";
- dbgs() << "Delta: " << *ConstantDelta << "\n";
- std::abort();
- }
- }
-}
-
-bool ScalarEvolution::invalidate(
- Function &F, const PreservedAnalyses &PA,
- FunctionAnalysisManager::Invalidator &Inv) {
- // Invalidate the ScalarEvolution object whenever it isn't preserved or one
- // of its dependencies is invalidated.
- auto PAC = PA.getChecker<ScalarEvolutionAnalysis>();
- return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
- Inv.invalidate<AssumptionAnalysis>(F, PA) ||
- Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
- Inv.invalidate<LoopAnalysis>(F, PA);
-}
-
-AnalysisKey ScalarEvolutionAnalysis::Key;
-
-ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
- FunctionAnalysisManager &AM) {
- return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F),
- AM.getResult<AssumptionAnalysis>(F),
- AM.getResult<DominatorTreeAnalysis>(F),
- AM.getResult<LoopAnalysis>(F));
-}
-
-PreservedAnalyses
-ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
- AM.getResult<ScalarEvolutionAnalysis>(F).print(OS);
- return PreservedAnalyses::all();
-}
-
-INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
- "Scalar Evolution Analysis", false, true)
-INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
-INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
-INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
- "Scalar Evolution Analysis", false, true)
-
-char ScalarEvolutionWrapperPass::ID = 0;
-
-ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
- initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
-}
-
-bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
- SE.reset(new ScalarEvolution(
- F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
- getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
- getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
- getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
- return false;
-}
-
-void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
-
-void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
- SE->print(OS);
-}
-
-void ScalarEvolutionWrapperPass::verifyAnalysis() const {
- if (!VerifySCEV)
- return;
-
- SE->verify();
-}
-
-void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
- AU.setPreservesAll();
- AU.addRequiredTransitive<AssumptionCacheTracker>();
- AU.addRequiredTransitive<LoopInfoWrapperPass>();
- AU.addRequiredTransitive<DominatorTreeWrapperPass>();
- AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
-}
-
-const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS,
- const SCEV *RHS) {
- FoldingSetNodeID ID;
- assert(LHS->getType() == RHS->getType() &&
- "Type mismatch between LHS and RHS");
- // Unique this node based on the arguments
- ID.AddInteger(SCEVPredicate::P_Equal);
- ID.AddPointer(LHS);
- ID.AddPointer(RHS);
- void *IP = nullptr;
- if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
- return S;
- SCEVEqualPredicate *Eq = new (SCEVAllocator)
- SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS);
- UniquePreds.InsertNode(Eq, IP);
- return Eq;
-}
-
-const SCEVPredicate *ScalarEvolution::getWrapPredicate(
- const SCEVAddRecExpr *AR,
- SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
- FoldingSetNodeID ID;
- // Unique this node based on the arguments
- ID.AddInteger(SCEVPredicate::P_Wrap);
- ID.AddPointer(AR);
- ID.AddInteger(AddedFlags);
- void *IP = nullptr;
- if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
- return S;
- auto *OF = new (SCEVAllocator)
- SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags);
- UniquePreds.InsertNode(OF, IP);
- return OF;
-}
-
-namespace {
-
-class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
-public:
-
- /// Rewrites \p S in the context of a loop L and the SCEV predication
- /// infrastructure.
- ///
- /// If \p Pred is non-null, the SCEV expression is rewritten to respect the
- /// equivalences present in \p Pred.
- ///
- /// If \p NewPreds is non-null, rewrite is free to add further predicates to
- /// \p NewPreds such that the result will be an AddRecExpr.
- static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
- SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
- SCEVUnionPredicate *Pred) {
- SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred);
- return Rewriter.visit(S);
- }
-
- const SCEV *visitUnknown(const SCEVUnknown *Expr) {
- if (Pred) {
- auto ExprPreds = Pred->getPredicatesForExpr(Expr);
- for (auto *Pred : ExprPreds)
- if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred))
- if (IPred->getLHS() == Expr)
- return IPred->getRHS();
- }
- return convertToAddRecWithPreds(Expr);
- }
-
- const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
- const SCEV *Operand = visit(Expr->getOperand());
- const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
- if (AR && AR->getLoop() == L && AR->isAffine()) {
- // This couldn't be folded because the operand didn't have the nuw
- // flag. Add the nusw flag as an assumption that we could make.
- const SCEV *Step = AR->getStepRecurrence(SE);
- Type *Ty = Expr->getType();
- if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW))
- return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty),
- SE.getSignExtendExpr(Step, Ty), L,
- AR->getNoWrapFlags());
- }
- return SE.getZeroExtendExpr(Operand, Expr->getType());
- }
-
- const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
- const SCEV *Operand = visit(Expr->getOperand());
- const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
- if (AR && AR->getLoop() == L && AR->isAffine()) {
- // This couldn't be folded because the operand didn't have the nsw
- // flag. Add the nssw flag as an assumption that we could make.
- const SCEV *Step = AR->getStepRecurrence(SE);
- Type *Ty = Expr->getType();
- if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW))
- return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty),
- SE.getSignExtendExpr(Step, Ty), L,
- AR->getNoWrapFlags());
- }
- return SE.getSignExtendExpr(Operand, Expr->getType());
- }
-
-private:
- explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
- SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
- SCEVUnionPredicate *Pred)
- : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {}
-
- bool addOverflowAssumption(const SCEVPredicate *P) {
- if (!NewPreds) {
- // Check if we've already made this assumption.
- return Pred && Pred->implies(P);
- }
- NewPreds->insert(P);
- return true;
- }
-
- bool addOverflowAssumption(const SCEVAddRecExpr *AR,
- SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
- auto *A = SE.getWrapPredicate(AR, AddedFlags);
- return addOverflowAssumption(A);
- }
-
- // If \p Expr represents a PHINode, we try to see if it can be represented
- // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible
- // to add this predicate as a runtime overflow check, we return the AddRec.
- // If \p Expr does not meet these conditions (is not a PHI node, or we
- // couldn't create an AddRec for it, or couldn't add the predicate), we just
- // return \p Expr.
- const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) {
- if (!isa<PHINode>(Expr->getValue()))
- return Expr;
- Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
- PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr);
- if (!PredicatedRewrite)
- return Expr;
- for (auto *P : PredicatedRewrite->second){
- // Wrap predicates from outer loops are not supported.
- if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) {
- auto *AR = cast<const SCEVAddRecExpr>(WP->getExpr());
- if (L != AR->getLoop())
- return Expr;
- }
- if (!addOverflowAssumption(P))
- return Expr;
- }
- return PredicatedRewrite->first;
- }
-
- SmallPtrSetImpl<const SCEVPredicate *> *NewPreds;
- SCEVUnionPredicate *Pred;
- const Loop *L;
-};
-
-} // end anonymous namespace
-
-const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
- SCEVUnionPredicate &Preds) {
- return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds);
-}
-
-const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates(
- const SCEV *S, const Loop *L,
- SmallPtrSetImpl<const SCEVPredicate *> &Preds) {
- SmallPtrSet<const SCEVPredicate *, 4> TransformPreds;
- S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr);
- auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
-
- if (!AddRec)
- return nullptr;
-
- // Since the transformation was successful, we can now transfer the SCEV
- // predicates.
- for (auto *P : TransformPreds)
- Preds.insert(P);
-
- return AddRec;
-}
-
-/// SCEV predicates
-SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
- SCEVPredicateKind Kind)
- : FastID(ID), Kind(Kind) {}
-
-SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID,
- const SCEV *LHS, const SCEV *RHS)
- : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {
- assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match");
- assert(LHS != RHS && "LHS and RHS are the same SCEV");
-}
-
-bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const {
- const auto *Op = dyn_cast<SCEVEqualPredicate>(N);
-
- if (!Op)
- return false;
-
- return Op->LHS == LHS && Op->RHS == RHS;
-}
-
-bool SCEVEqualPredicate::isAlwaysTrue() const { return false; }
-
-const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; }
-
-void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const {
- OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
-}
-
-SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
- const SCEVAddRecExpr *AR,
- IncrementWrapFlags Flags)
- : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
-
-const SCEV *SCEVWrapPredicate::getExpr() const { return AR; }
-
-bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const {
- const auto *Op = dyn_cast<SCEVWrapPredicate>(N);
-
- return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags;
-}
-
-bool SCEVWrapPredicate::isAlwaysTrue() const {
- SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
- IncrementWrapFlags IFlags = Flags;
-
- if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags)
- IFlags = clearFlags(IFlags, IncrementNSSW);
-
- return IFlags == IncrementAnyWrap;
-}
-
-void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
- OS.indent(Depth) << *getExpr() << " Added Flags: ";
- if (SCEVWrapPredicate::IncrementNUSW & getFlags())
- OS << "<nusw>";
- if (SCEVWrapPredicate::IncrementNSSW & getFlags())
- OS << "<nssw>";
- OS << "\n";
-}
-
-SCEVWrapPredicate::IncrementWrapFlags
-SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
- ScalarEvolution &SE) {
- IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
- SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
-
- // We can safely transfer the NSW flag as NSSW.
- if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags)
- ImpliedFlags = IncrementNSSW;
-
- if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) {
- // If the increment is positive, the SCEV NUW flag will also imply the
- // WrapPredicate NUSW flag.
- if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
- if (Step->getValue()->getValue().isNonNegative())
- ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW);
- }
-
- return ImpliedFlags;
-}
-
-/// Union predicates don't get cached so create a dummy set ID for it.
-SCEVUnionPredicate::SCEVUnionPredicate()
- : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {}
-
-bool SCEVUnionPredicate::isAlwaysTrue() const {
- return all_of(Preds,
- [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
-}
-
-ArrayRef<const SCEVPredicate *>
-SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) {
- auto I = SCEVToPreds.find(Expr);
- if (I == SCEVToPreds.end())
- return ArrayRef<const SCEVPredicate *>();
- return I->second;
-}
-
-bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
- if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N))
- return all_of(Set->Preds,
- [this](const SCEVPredicate *I) { return this->implies(I); });
-
- auto ScevPredsIt = SCEVToPreds.find(N->getExpr());
- if (ScevPredsIt == SCEVToPreds.end())
- return false;
- auto &SCEVPreds = ScevPredsIt->second;
-
- return any_of(SCEVPreds,
- [N](const SCEVPredicate *I) { return I->implies(N); });
-}
-
-const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; }
-
-void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
- for (auto Pred : Preds)
- Pred->print(OS, Depth);
-}
-
-void SCEVUnionPredicate::add(const SCEVPredicate *N) {
- if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) {
- for (auto Pred : Set->Preds)
- add(Pred);
- return;
- }
-
- if (implies(N))
- return;
-
- const SCEV *Key = N->getExpr();
- assert(Key && "Only SCEVUnionPredicate doesn't have an "
- " associated expression!");
-
- SCEVToPreds[Key].push_back(N);
- Preds.push_back(N);
-}
-
-PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
- Loop &L)
- : SE(SE), L(L) {}
-
-const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
- const SCEV *Expr = SE.getSCEV(V);
- RewriteEntry &Entry = RewriteMap[Expr];
-
- // If we already have an entry and the version matches, return it.
- if (Entry.second && Generation == Entry.first)
- return Entry.second;
-
- // We found an entry but it's stale. Rewrite the stale entry
- // according to the current predicate.
- if (Entry.second)
- Expr = Entry.second;
-
- const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds);
- Entry = {Generation, NewSCEV};
-
- return NewSCEV;
-}
-
-const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() {
- if (!BackedgeCount) {
- SCEVUnionPredicate BackedgePred;
- BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred);
- addPredicate(BackedgePred);
- }
- return BackedgeCount;
-}
-
-void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
- if (Preds.implies(&Pred))
- return;
- Preds.add(&Pred);
- updateGeneration();
-}
-
-const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const {
- return Preds;
-}
-
-void PredicatedScalarEvolution::updateGeneration() {
- // If the generation number wrapped recompute everything.
- if (++Generation == 0) {
- for (auto &II : RewriteMap) {
- const SCEV *Rewritten = II.second.second;
- II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)};
- }
- }
-}
-
-void PredicatedScalarEvolution::setNoOverflow(
- Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
- const SCEV *Expr = getSCEV(V);
- const auto *AR = cast<SCEVAddRecExpr>(Expr);
-
- auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
-
- // Clear the statically implied flags.
- Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags);
- addPredicate(*SE.getWrapPredicate(AR, Flags));
-
- auto II = FlagsMap.insert({V, Flags});
- if (!II.second)
- II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second);
-}
-
-bool PredicatedScalarEvolution::hasNoOverflow(
- Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
- const SCEV *Expr = getSCEV(V);
- const auto *AR = cast<SCEVAddRecExpr>(Expr);
-
- Flags = SCEVWrapPredicate::clearFlags(
- Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE));
-
- auto II = FlagsMap.find(V);
-
- if (II != FlagsMap.end())
- Flags = SCEVWrapPredicate::clearFlags(Flags, II->second);
-
- return Flags == SCEVWrapPredicate::IncrementAnyWrap;
-}
-
-const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) {
- const SCEV *Expr = this->getSCEV(V);
- SmallPtrSet<const SCEVPredicate *, 4> NewPreds;
- auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds);
-
- if (!New)
- return nullptr;
-
- for (auto *P : NewPreds)
- Preds.add(P);
-
- updateGeneration();
- RewriteMap[SE.getSCEV(V)] = {Generation, New};
- return New;
-}
-
-PredicatedScalarEvolution::PredicatedScalarEvolution(
- const PredicatedScalarEvolution &Init)
- : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds),
- Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) {
- for (const auto &I : Init.FlagsMap)
- FlagsMap.insert(I);
-}
-
-void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const {
- // For each block.
- for (auto *BB : L.getBlocks())
- for (auto &I : *BB) {
- if (!SE.isSCEVable(I.getType()))
- continue;
-
- auto *Expr = SE.getSCEV(&I);
- auto II = RewriteMap.find(Expr);
-
- if (II == RewriteMap.end())
- continue;
-
- // Don't print things that are not interesting.
- if (II->second.second == Expr)
- continue;
-
- OS.indent(Depth) << "[PSE]" << I << ":\n";
- OS.indent(Depth + 2) << *Expr << "\n";
- OS.indent(Depth + 2) << "--> " << *II->second.second << "\n";
- }
-}
-
-// Match the mathematical pattern A - (A / B) * B, where A and B can be
-// arbitrary expressions.
-// It's not always easy, as A and B can be folded (imagine A is X / 2, and B is
-// 4, A / B becomes X / 8).
-bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS,
- const SCEV *&RHS) {
- const auto *Add = dyn_cast<SCEVAddExpr>(Expr);
- if (Add == nullptr || Add->getNumOperands() != 2)
- return false;
-
- const SCEV *A = Add->getOperand(1);
- const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0));
-
- if (Mul == nullptr)
- return false;
-
- const auto MatchURemWithDivisor = [&](const SCEV *B) {
- // (SomeExpr + (-(SomeExpr / B) * B)).
- if (Expr == getURemExpr(A, B)) {
- LHS = A;
- RHS = B;
- return true;
- }
- return false;
- };
-
- // (SomeExpr + (-1 * (SomeExpr / B) * B)).
- if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0)))
- return MatchURemWithDivisor(Mul->getOperand(1)) ||
- MatchURemWithDivisor(Mul->getOperand(2));
-
- // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)).
- if (Mul->getNumOperands() == 2)
- return MatchURemWithDivisor(Mul->getOperand(1)) ||
- MatchURemWithDivisor(Mul->getOperand(0)) ||
- MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) ||
- MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0)));
- return false;
-}