diff options
| author | 2020-08-03 15:06:44 +0000 | |
|---|---|---|
| committer | 2020-08-03 15:06:44 +0000 | |
| commit | b64793999546ed8adebaeebd9d8345d18db8927d (patch) | |
| tree | 4357c27b561d73b0e089727c6ed659f2ceff5f47 /gnu/llvm/lib/Analysis/ScalarEvolution.cpp | |
| parent | Add support for UTF-8 DISPLAY-HINTs with octet length. For now only (diff) | |
| download | wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.tar.xz wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.zip | |
Remove LLVM 8.0.1 files.
Diffstat (limited to 'gnu/llvm/lib/Analysis/ScalarEvolution.cpp')
| -rw-r--r-- | gnu/llvm/lib/Analysis/ScalarEvolution.cpp | 12453 |
1 files changed, 0 insertions, 12453 deletions
diff --git a/gnu/llvm/lib/Analysis/ScalarEvolution.cpp b/gnu/llvm/lib/Analysis/ScalarEvolution.cpp deleted file mode 100644 index e5134f2eeda..00000000000 --- a/gnu/llvm/lib/Analysis/ScalarEvolution.cpp +++ /dev/null @@ -1,12453 +0,0 @@ -//===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file contains the implementation of the scalar evolution analysis -// engine, which is used primarily to analyze expressions involving induction -// variables in loops. -// -// There are several aspects to this library. First is the representation of -// scalar expressions, which are represented as subclasses of the SCEV class. -// These classes are used to represent certain types of subexpressions that we -// can handle. We only create one SCEV of a particular shape, so -// pointer-comparisons for equality are legal. -// -// One important aspect of the SCEV objects is that they are never cyclic, even -// if there is a cycle in the dataflow for an expression (ie, a PHI node). If -// the PHI node is one of the idioms that we can represent (e.g., a polynomial -// recurrence) then we represent it directly as a recurrence node, otherwise we -// represent it as a SCEVUnknown node. -// -// In addition to being able to represent expressions of various types, we also -// have folders that are used to build the *canonical* representation for a -// particular expression. These folders are capable of using a variety of -// rewrite rules to simplify the expressions. -// -// Once the folders are defined, we can implement the more interesting -// higher-level code, such as the code that recognizes PHI nodes of various -// types, computes the execution count of a loop, etc. -// -// TODO: We should use these routines and value representations to implement -// dependence analysis! -// -//===----------------------------------------------------------------------===// -// -// There are several good references for the techniques used in this analysis. -// -// Chains of recurrences -- a method to expedite the evaluation -// of closed-form functions -// Olaf Bachmann, Paul S. Wang, Eugene V. Zima -// -// On computational properties of chains of recurrences -// Eugene V. Zima -// -// Symbolic Evaluation of Chains of Recurrences for Loop Optimization -// Robert A. van Engelen -// -// Efficient Symbolic Analysis for Optimizing Compilers -// Robert A. van Engelen -// -// Using the chains of recurrences algebra for data dependence testing and -// induction variable substitution -// MS Thesis, Johnie Birch -// -//===----------------------------------------------------------------------===// - -#include "llvm/Analysis/ScalarEvolution.h" -#include "llvm/ADT/APInt.h" -#include "llvm/ADT/ArrayRef.h" -#include "llvm/ADT/DenseMap.h" -#include "llvm/ADT/DepthFirstIterator.h" -#include "llvm/ADT/EquivalenceClasses.h" -#include "llvm/ADT/FoldingSet.h" -#include "llvm/ADT/None.h" -#include "llvm/ADT/Optional.h" -#include "llvm/ADT/STLExtras.h" -#include "llvm/ADT/ScopeExit.h" -#include "llvm/ADT/Sequence.h" -#include "llvm/ADT/SetVector.h" -#include "llvm/ADT/SmallPtrSet.h" -#include "llvm/ADT/SmallSet.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/ADT/Statistic.h" -#include "llvm/ADT/StringRef.h" -#include "llvm/Analysis/AssumptionCache.h" -#include "llvm/Analysis/ConstantFolding.h" -#include "llvm/Analysis/InstructionSimplify.h" -#include "llvm/Analysis/LoopInfo.h" -#include "llvm/Analysis/ScalarEvolutionExpressions.h" -#include "llvm/Analysis/TargetLibraryInfo.h" -#include "llvm/Analysis/ValueTracking.h" -#include "llvm/Config/llvm-config.h" -#include "llvm/IR/Argument.h" -#include "llvm/IR/BasicBlock.h" -#include "llvm/IR/CFG.h" -#include "llvm/IR/CallSite.h" -#include "llvm/IR/Constant.h" -#include "llvm/IR/ConstantRange.h" -#include "llvm/IR/Constants.h" -#include "llvm/IR/DataLayout.h" -#include "llvm/IR/DerivedTypes.h" -#include "llvm/IR/Dominators.h" -#include "llvm/IR/Function.h" -#include "llvm/IR/GlobalAlias.h" -#include "llvm/IR/GlobalValue.h" -#include "llvm/IR/GlobalVariable.h" -#include "llvm/IR/InstIterator.h" -#include "llvm/IR/InstrTypes.h" -#include "llvm/IR/Instruction.h" -#include "llvm/IR/Instructions.h" -#include "llvm/IR/IntrinsicInst.h" -#include "llvm/IR/Intrinsics.h" -#include "llvm/IR/LLVMContext.h" -#include "llvm/IR/Metadata.h" -#include "llvm/IR/Operator.h" -#include "llvm/IR/PatternMatch.h" -#include "llvm/IR/Type.h" -#include "llvm/IR/Use.h" -#include "llvm/IR/User.h" -#include "llvm/IR/Value.h" -#include "llvm/IR/Verifier.h" -#include "llvm/Pass.h" -#include "llvm/Support/Casting.h" -#include "llvm/Support/CommandLine.h" -#include "llvm/Support/Compiler.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/ErrorHandling.h" -#include "llvm/Support/KnownBits.h" -#include "llvm/Support/SaveAndRestore.h" -#include "llvm/Support/raw_ostream.h" -#include <algorithm> -#include <cassert> -#include <climits> -#include <cstddef> -#include <cstdint> -#include <cstdlib> -#include <map> -#include <memory> -#include <tuple> -#include <utility> -#include <vector> - -using namespace llvm; - -#define DEBUG_TYPE "scalar-evolution" - -STATISTIC(NumArrayLenItCounts, - "Number of trip counts computed with array length"); -STATISTIC(NumTripCountsComputed, - "Number of loops with predictable loop counts"); -STATISTIC(NumTripCountsNotComputed, - "Number of loops without predictable loop counts"); -STATISTIC(NumBruteForceTripCountsComputed, - "Number of loops with trip counts computed by force"); - -static cl::opt<unsigned> -MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, - cl::desc("Maximum number of iterations SCEV will " - "symbolically execute a constant " - "derived loop"), - cl::init(100)); - -// FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean. -static cl::opt<bool> VerifySCEV( - "verify-scev", cl::Hidden, - cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); -static cl::opt<bool> - VerifySCEVMap("verify-scev-maps", cl::Hidden, - cl::desc("Verify no dangling value in ScalarEvolution's " - "ExprValueMap (slow)")); - -static cl::opt<bool> VerifyIR( - "scev-verify-ir", cl::Hidden, - cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"), - cl::init(false)); - -static cl::opt<unsigned> MulOpsInlineThreshold( - "scev-mulops-inline-threshold", cl::Hidden, - cl::desc("Threshold for inlining multiplication operands into a SCEV"), - cl::init(32)); - -static cl::opt<unsigned> AddOpsInlineThreshold( - "scev-addops-inline-threshold", cl::Hidden, - cl::desc("Threshold for inlining addition operands into a SCEV"), - cl::init(500)); - -static cl::opt<unsigned> MaxSCEVCompareDepth( - "scalar-evolution-max-scev-compare-depth", cl::Hidden, - cl::desc("Maximum depth of recursive SCEV complexity comparisons"), - cl::init(32)); - -static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth( - "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden, - cl::desc("Maximum depth of recursive SCEV operations implication analysis"), - cl::init(2)); - -static cl::opt<unsigned> MaxValueCompareDepth( - "scalar-evolution-max-value-compare-depth", cl::Hidden, - cl::desc("Maximum depth of recursive value complexity comparisons"), - cl::init(2)); - -static cl::opt<unsigned> - MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden, - cl::desc("Maximum depth of recursive arithmetics"), - cl::init(32)); - -static cl::opt<unsigned> MaxConstantEvolvingDepth( - "scalar-evolution-max-constant-evolving-depth", cl::Hidden, - cl::desc("Maximum depth of recursive constant evolving"), cl::init(32)); - -static cl::opt<unsigned> - MaxExtDepth("scalar-evolution-max-ext-depth", cl::Hidden, - cl::desc("Maximum depth of recursive SExt/ZExt"), - cl::init(8)); - -static cl::opt<unsigned> - MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden, - cl::desc("Max coefficients in AddRec during evolving"), - cl::init(8)); - -//===----------------------------------------------------------------------===// -// SCEV class definitions -//===----------------------------------------------------------------------===// - -//===----------------------------------------------------------------------===// -// Implementation of the SCEV class. -// - -#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) -LLVM_DUMP_METHOD void SCEV::dump() const { - print(dbgs()); - dbgs() << '\n'; -} -#endif - -void SCEV::print(raw_ostream &OS) const { - switch (static_cast<SCEVTypes>(getSCEVType())) { - case scConstant: - cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); - return; - case scTruncate: { - const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); - const SCEV *Op = Trunc->getOperand(); - OS << "(trunc " << *Op->getType() << " " << *Op << " to " - << *Trunc->getType() << ")"; - return; - } - case scZeroExtend: { - const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); - const SCEV *Op = ZExt->getOperand(); - OS << "(zext " << *Op->getType() << " " << *Op << " to " - << *ZExt->getType() << ")"; - return; - } - case scSignExtend: { - const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); - const SCEV *Op = SExt->getOperand(); - OS << "(sext " << *Op->getType() << " " << *Op << " to " - << *SExt->getType() << ")"; - return; - } - case scAddRecExpr: { - const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); - OS << "{" << *AR->getOperand(0); - for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) - OS << ",+," << *AR->getOperand(i); - OS << "}<"; - if (AR->hasNoUnsignedWrap()) - OS << "nuw><"; - if (AR->hasNoSignedWrap()) - OS << "nsw><"; - if (AR->hasNoSelfWrap() && - !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) - OS << "nw><"; - AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); - OS << ">"; - return; - } - case scAddExpr: - case scMulExpr: - case scUMaxExpr: - case scSMaxExpr: { - const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); - const char *OpStr = nullptr; - switch (NAry->getSCEVType()) { - case scAddExpr: OpStr = " + "; break; - case scMulExpr: OpStr = " * "; break; - case scUMaxExpr: OpStr = " umax "; break; - case scSMaxExpr: OpStr = " smax "; break; - } - OS << "("; - for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); - I != E; ++I) { - OS << **I; - if (std::next(I) != E) - OS << OpStr; - } - OS << ")"; - switch (NAry->getSCEVType()) { - case scAddExpr: - case scMulExpr: - if (NAry->hasNoUnsignedWrap()) - OS << "<nuw>"; - if (NAry->hasNoSignedWrap()) - OS << "<nsw>"; - } - return; - } - case scUDivExpr: { - const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); - OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; - return; - } - case scUnknown: { - const SCEVUnknown *U = cast<SCEVUnknown>(this); - Type *AllocTy; - if (U->isSizeOf(AllocTy)) { - OS << "sizeof(" << *AllocTy << ")"; - return; - } - if (U->isAlignOf(AllocTy)) { - OS << "alignof(" << *AllocTy << ")"; - return; - } - - Type *CTy; - Constant *FieldNo; - if (U->isOffsetOf(CTy, FieldNo)) { - OS << "offsetof(" << *CTy << ", "; - FieldNo->printAsOperand(OS, false); - OS << ")"; - return; - } - - // Otherwise just print it normally. - U->getValue()->printAsOperand(OS, false); - return; - } - case scCouldNotCompute: - OS << "***COULDNOTCOMPUTE***"; - return; - } - llvm_unreachable("Unknown SCEV kind!"); -} - -Type *SCEV::getType() const { - switch (static_cast<SCEVTypes>(getSCEVType())) { - case scConstant: - return cast<SCEVConstant>(this)->getType(); - case scTruncate: - case scZeroExtend: - case scSignExtend: - return cast<SCEVCastExpr>(this)->getType(); - case scAddRecExpr: - case scMulExpr: - case scUMaxExpr: - case scSMaxExpr: - return cast<SCEVNAryExpr>(this)->getType(); - case scAddExpr: - return cast<SCEVAddExpr>(this)->getType(); - case scUDivExpr: - return cast<SCEVUDivExpr>(this)->getType(); - case scUnknown: - return cast<SCEVUnknown>(this)->getType(); - case scCouldNotCompute: - llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); - } - llvm_unreachable("Unknown SCEV kind!"); -} - -bool SCEV::isZero() const { - if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) - return SC->getValue()->isZero(); - return false; -} - -bool SCEV::isOne() const { - if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) - return SC->getValue()->isOne(); - return false; -} - -bool SCEV::isAllOnesValue() const { - if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) - return SC->getValue()->isMinusOne(); - return false; -} - -bool SCEV::isNonConstantNegative() const { - const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); - if (!Mul) return false; - - // If there is a constant factor, it will be first. - const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); - if (!SC) return false; - - // Return true if the value is negative, this matches things like (-42 * V). - return SC->getAPInt().isNegative(); -} - -SCEVCouldNotCompute::SCEVCouldNotCompute() : - SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {} - -bool SCEVCouldNotCompute::classof(const SCEV *S) { - return S->getSCEVType() == scCouldNotCompute; -} - -const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { - FoldingSetNodeID ID; - ID.AddInteger(scConstant); - ID.AddPointer(V); - void *IP = nullptr; - if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; - SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); - UniqueSCEVs.InsertNode(S, IP); - return S; -} - -const SCEV *ScalarEvolution::getConstant(const APInt &Val) { - return getConstant(ConstantInt::get(getContext(), Val)); -} - -const SCEV * -ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { - IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); - return getConstant(ConstantInt::get(ITy, V, isSigned)); -} - -SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, - unsigned SCEVTy, const SCEV *op, Type *ty) - : SCEV(ID, SCEVTy), Op(op), Ty(ty) {} - -SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, - const SCEV *op, Type *ty) - : SCEVCastExpr(ID, scTruncate, op, ty) { - assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && - "Cannot truncate non-integer value!"); -} - -SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, - const SCEV *op, Type *ty) - : SCEVCastExpr(ID, scZeroExtend, op, ty) { - assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && - "Cannot zero extend non-integer value!"); -} - -SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, - const SCEV *op, Type *ty) - : SCEVCastExpr(ID, scSignExtend, op, ty) { - assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && - "Cannot sign extend non-integer value!"); -} - -void SCEVUnknown::deleted() { - // Clear this SCEVUnknown from various maps. - SE->forgetMemoizedResults(this); - - // Remove this SCEVUnknown from the uniquing map. - SE->UniqueSCEVs.RemoveNode(this); - - // Release the value. - setValPtr(nullptr); -} - -void SCEVUnknown::allUsesReplacedWith(Value *New) { - // Remove this SCEVUnknown from the uniquing map. - SE->UniqueSCEVs.RemoveNode(this); - - // Update this SCEVUnknown to point to the new value. This is needed - // because there may still be outstanding SCEVs which still point to - // this SCEVUnknown. - setValPtr(New); -} - -bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { - if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) - if (VCE->getOpcode() == Instruction::PtrToInt) - if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) - if (CE->getOpcode() == Instruction::GetElementPtr && - CE->getOperand(0)->isNullValue() && - CE->getNumOperands() == 2) - if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) - if (CI->isOne()) { - AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) - ->getElementType(); - return true; - } - - return false; -} - -bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { - if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) - if (VCE->getOpcode() == Instruction::PtrToInt) - if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) - if (CE->getOpcode() == Instruction::GetElementPtr && - CE->getOperand(0)->isNullValue()) { - Type *Ty = - cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); - if (StructType *STy = dyn_cast<StructType>(Ty)) - if (!STy->isPacked() && - CE->getNumOperands() == 3 && - CE->getOperand(1)->isNullValue()) { - if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) - if (CI->isOne() && - STy->getNumElements() == 2 && - STy->getElementType(0)->isIntegerTy(1)) { - AllocTy = STy->getElementType(1); - return true; - } - } - } - - return false; -} - -bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { - if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) - if (VCE->getOpcode() == Instruction::PtrToInt) - if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) - if (CE->getOpcode() == Instruction::GetElementPtr && - CE->getNumOperands() == 3 && - CE->getOperand(0)->isNullValue() && - CE->getOperand(1)->isNullValue()) { - Type *Ty = - cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); - // Ignore vector types here so that ScalarEvolutionExpander doesn't - // emit getelementptrs that index into vectors. - if (Ty->isStructTy() || Ty->isArrayTy()) { - CTy = Ty; - FieldNo = CE->getOperand(2); - return true; - } - } - - return false; -} - -//===----------------------------------------------------------------------===// -// SCEV Utilities -//===----------------------------------------------------------------------===// - -/// Compare the two values \p LV and \p RV in terms of their "complexity" where -/// "complexity" is a partial (and somewhat ad-hoc) relation used to order -/// operands in SCEV expressions. \p EqCache is a set of pairs of values that -/// have been previously deemed to be "equally complex" by this routine. It is -/// intended to avoid exponential time complexity in cases like: -/// -/// %a = f(%x, %y) -/// %b = f(%a, %a) -/// %c = f(%b, %b) -/// -/// %d = f(%x, %y) -/// %e = f(%d, %d) -/// %f = f(%e, %e) -/// -/// CompareValueComplexity(%f, %c) -/// -/// Since we do not continue running this routine on expression trees once we -/// have seen unequal values, there is no need to track them in the cache. -static int -CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue, - const LoopInfo *const LI, Value *LV, Value *RV, - unsigned Depth) { - if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV)) - return 0; - - // Order pointer values after integer values. This helps SCEVExpander form - // GEPs. - bool LIsPointer = LV->getType()->isPointerTy(), - RIsPointer = RV->getType()->isPointerTy(); - if (LIsPointer != RIsPointer) - return (int)LIsPointer - (int)RIsPointer; - - // Compare getValueID values. - unsigned LID = LV->getValueID(), RID = RV->getValueID(); - if (LID != RID) - return (int)LID - (int)RID; - - // Sort arguments by their position. - if (const auto *LA = dyn_cast<Argument>(LV)) { - const auto *RA = cast<Argument>(RV); - unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); - return (int)LArgNo - (int)RArgNo; - } - - if (const auto *LGV = dyn_cast<GlobalValue>(LV)) { - const auto *RGV = cast<GlobalValue>(RV); - - const auto IsGVNameSemantic = [&](const GlobalValue *GV) { - auto LT = GV->getLinkage(); - return !(GlobalValue::isPrivateLinkage(LT) || - GlobalValue::isInternalLinkage(LT)); - }; - - // Use the names to distinguish the two values, but only if the - // names are semantically important. - if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV)) - return LGV->getName().compare(RGV->getName()); - } - - // For instructions, compare their loop depth, and their operand count. This - // is pretty loose. - if (const auto *LInst = dyn_cast<Instruction>(LV)) { - const auto *RInst = cast<Instruction>(RV); - - // Compare loop depths. - const BasicBlock *LParent = LInst->getParent(), - *RParent = RInst->getParent(); - if (LParent != RParent) { - unsigned LDepth = LI->getLoopDepth(LParent), - RDepth = LI->getLoopDepth(RParent); - if (LDepth != RDepth) - return (int)LDepth - (int)RDepth; - } - - // Compare the number of operands. - unsigned LNumOps = LInst->getNumOperands(), - RNumOps = RInst->getNumOperands(); - if (LNumOps != RNumOps) - return (int)LNumOps - (int)RNumOps; - - for (unsigned Idx : seq(0u, LNumOps)) { - int Result = - CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx), - RInst->getOperand(Idx), Depth + 1); - if (Result != 0) - return Result; - } - } - - EqCacheValue.unionSets(LV, RV); - return 0; -} - -// Return negative, zero, or positive, if LHS is less than, equal to, or greater -// than RHS, respectively. A three-way result allows recursive comparisons to be -// more efficient. -static int CompareSCEVComplexity( - EquivalenceClasses<const SCEV *> &EqCacheSCEV, - EquivalenceClasses<const Value *> &EqCacheValue, - const LoopInfo *const LI, const SCEV *LHS, const SCEV *RHS, - DominatorTree &DT, unsigned Depth = 0) { - // Fast-path: SCEVs are uniqued so we can do a quick equality check. - if (LHS == RHS) - return 0; - - // Primarily, sort the SCEVs by their getSCEVType(). - unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); - if (LType != RType) - return (int)LType - (int)RType; - - if (Depth > MaxSCEVCompareDepth || EqCacheSCEV.isEquivalent(LHS, RHS)) - return 0; - // Aside from the getSCEVType() ordering, the particular ordering - // isn't very important except that it's beneficial to be consistent, - // so that (a + b) and (b + a) don't end up as different expressions. - switch (static_cast<SCEVTypes>(LType)) { - case scUnknown: { - const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); - const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); - - int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(), - RU->getValue(), Depth + 1); - if (X == 0) - EqCacheSCEV.unionSets(LHS, RHS); - return X; - } - - case scConstant: { - const SCEVConstant *LC = cast<SCEVConstant>(LHS); - const SCEVConstant *RC = cast<SCEVConstant>(RHS); - - // Compare constant values. - const APInt &LA = LC->getAPInt(); - const APInt &RA = RC->getAPInt(); - unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); - if (LBitWidth != RBitWidth) - return (int)LBitWidth - (int)RBitWidth; - return LA.ult(RA) ? -1 : 1; - } - - case scAddRecExpr: { - const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); - const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); - - // There is always a dominance between two recs that are used by one SCEV, - // so we can safely sort recs by loop header dominance. We require such - // order in getAddExpr. - const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); - if (LLoop != RLoop) { - const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader(); - assert(LHead != RHead && "Two loops share the same header?"); - if (DT.dominates(LHead, RHead)) - return 1; - else - assert(DT.dominates(RHead, LHead) && - "No dominance between recurrences used by one SCEV?"); - return -1; - } - - // Addrec complexity grows with operand count. - unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); - if (LNumOps != RNumOps) - return (int)LNumOps - (int)RNumOps; - - // Lexicographically compare. - for (unsigned i = 0; i != LNumOps; ++i) { - int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, - LA->getOperand(i), RA->getOperand(i), DT, - Depth + 1); - if (X != 0) - return X; - } - EqCacheSCEV.unionSets(LHS, RHS); - return 0; - } - - case scAddExpr: - case scMulExpr: - case scSMaxExpr: - case scUMaxExpr: { - const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); - const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); - - // Lexicographically compare n-ary expressions. - unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); - if (LNumOps != RNumOps) - return (int)LNumOps - (int)RNumOps; - - for (unsigned i = 0; i != LNumOps; ++i) { - int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, - LC->getOperand(i), RC->getOperand(i), DT, - Depth + 1); - if (X != 0) - return X; - } - EqCacheSCEV.unionSets(LHS, RHS); - return 0; - } - - case scUDivExpr: { - const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); - const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); - - // Lexicographically compare udiv expressions. - int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(), - RC->getLHS(), DT, Depth + 1); - if (X != 0) - return X; - X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(), - RC->getRHS(), DT, Depth + 1); - if (X == 0) - EqCacheSCEV.unionSets(LHS, RHS); - return X; - } - - case scTruncate: - case scZeroExtend: - case scSignExtend: { - const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); - const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); - - // Compare cast expressions by operand. - int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, - LC->getOperand(), RC->getOperand(), DT, - Depth + 1); - if (X == 0) - EqCacheSCEV.unionSets(LHS, RHS); - return X; - } - - case scCouldNotCompute: - llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); - } - llvm_unreachable("Unknown SCEV kind!"); -} - -/// Given a list of SCEV objects, order them by their complexity, and group -/// objects of the same complexity together by value. When this routine is -/// finished, we know that any duplicates in the vector are consecutive and that -/// complexity is monotonically increasing. -/// -/// Note that we go take special precautions to ensure that we get deterministic -/// results from this routine. In other words, we don't want the results of -/// this to depend on where the addresses of various SCEV objects happened to -/// land in memory. -static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, - LoopInfo *LI, DominatorTree &DT) { - if (Ops.size() < 2) return; // Noop - - EquivalenceClasses<const SCEV *> EqCacheSCEV; - EquivalenceClasses<const Value *> EqCacheValue; - if (Ops.size() == 2) { - // This is the common case, which also happens to be trivially simple. - // Special case it. - const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; - if (CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, RHS, LHS, DT) < 0) - std::swap(LHS, RHS); - return; - } - - // Do the rough sort by complexity. - std::stable_sort(Ops.begin(), Ops.end(), - [&](const SCEV *LHS, const SCEV *RHS) { - return CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, - LHS, RHS, DT) < 0; - }); - - // Now that we are sorted by complexity, group elements of the same - // complexity. Note that this is, at worst, N^2, but the vector is likely to - // be extremely short in practice. Note that we take this approach because we - // do not want to depend on the addresses of the objects we are grouping. - for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { - const SCEV *S = Ops[i]; - unsigned Complexity = S->getSCEVType(); - - // If there are any objects of the same complexity and same value as this - // one, group them. - for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { - if (Ops[j] == S) { // Found a duplicate. - // Move it to immediately after i'th element. - std::swap(Ops[i+1], Ops[j]); - ++i; // no need to rescan it. - if (i == e-2) return; // Done! - } - } - } -} - -// Returns the size of the SCEV S. -static inline int sizeOfSCEV(const SCEV *S) { - struct FindSCEVSize { - int Size = 0; - - FindSCEVSize() = default; - - bool follow(const SCEV *S) { - ++Size; - // Keep looking at all operands of S. - return true; - } - - bool isDone() const { - return false; - } - }; - - FindSCEVSize F; - SCEVTraversal<FindSCEVSize> ST(F); - ST.visitAll(S); - return F.Size; -} - -namespace { - -struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> { -public: - // Computes the Quotient and Remainder of the division of Numerator by - // Denominator. - static void divide(ScalarEvolution &SE, const SCEV *Numerator, - const SCEV *Denominator, const SCEV **Quotient, - const SCEV **Remainder) { - assert(Numerator && Denominator && "Uninitialized SCEV"); - - SCEVDivision D(SE, Numerator, Denominator); - - // Check for the trivial case here to avoid having to check for it in the - // rest of the code. - if (Numerator == Denominator) { - *Quotient = D.One; - *Remainder = D.Zero; - return; - } - - if (Numerator->isZero()) { - *Quotient = D.Zero; - *Remainder = D.Zero; - return; - } - - // A simple case when N/1. The quotient is N. - if (Denominator->isOne()) { - *Quotient = Numerator; - *Remainder = D.Zero; - return; - } - - // Split the Denominator when it is a product. - if (const SCEVMulExpr *T = dyn_cast<SCEVMulExpr>(Denominator)) { - const SCEV *Q, *R; - *Quotient = Numerator; - for (const SCEV *Op : T->operands()) { - divide(SE, *Quotient, Op, &Q, &R); - *Quotient = Q; - - // Bail out when the Numerator is not divisible by one of the terms of - // the Denominator. - if (!R->isZero()) { - *Quotient = D.Zero; - *Remainder = Numerator; - return; - } - } - *Remainder = D.Zero; - return; - } - - D.visit(Numerator); - *Quotient = D.Quotient; - *Remainder = D.Remainder; - } - - // Except in the trivial case described above, we do not know how to divide - // Expr by Denominator for the following functions with empty implementation. - void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {} - void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {} - void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {} - void visitUDivExpr(const SCEVUDivExpr *Numerator) {} - void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {} - void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {} - void visitUnknown(const SCEVUnknown *Numerator) {} - void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {} - - void visitConstant(const SCEVConstant *Numerator) { - if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) { - APInt NumeratorVal = Numerator->getAPInt(); - APInt DenominatorVal = D->getAPInt(); - uint32_t NumeratorBW = NumeratorVal.getBitWidth(); - uint32_t DenominatorBW = DenominatorVal.getBitWidth(); - - if (NumeratorBW > DenominatorBW) - DenominatorVal = DenominatorVal.sext(NumeratorBW); - else if (NumeratorBW < DenominatorBW) - NumeratorVal = NumeratorVal.sext(DenominatorBW); - - APInt QuotientVal(NumeratorVal.getBitWidth(), 0); - APInt RemainderVal(NumeratorVal.getBitWidth(), 0); - APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal); - Quotient = SE.getConstant(QuotientVal); - Remainder = SE.getConstant(RemainderVal); - return; - } - } - - void visitAddRecExpr(const SCEVAddRecExpr *Numerator) { - const SCEV *StartQ, *StartR, *StepQ, *StepR; - if (!Numerator->isAffine()) - return cannotDivide(Numerator); - divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR); - divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR); - // Bail out if the types do not match. - Type *Ty = Denominator->getType(); - if (Ty != StartQ->getType() || Ty != StartR->getType() || - Ty != StepQ->getType() || Ty != StepR->getType()) - return cannotDivide(Numerator); - Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(), - Numerator->getNoWrapFlags()); - Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(), - Numerator->getNoWrapFlags()); - } - - void visitAddExpr(const SCEVAddExpr *Numerator) { - SmallVector<const SCEV *, 2> Qs, Rs; - Type *Ty = Denominator->getType(); - - for (const SCEV *Op : Numerator->operands()) { - const SCEV *Q, *R; - divide(SE, Op, Denominator, &Q, &R); - - // Bail out if types do not match. - if (Ty != Q->getType() || Ty != R->getType()) - return cannotDivide(Numerator); - - Qs.push_back(Q); - Rs.push_back(R); - } - - if (Qs.size() == 1) { - Quotient = Qs[0]; - Remainder = Rs[0]; - return; - } - - Quotient = SE.getAddExpr(Qs); - Remainder = SE.getAddExpr(Rs); - } - - void visitMulExpr(const SCEVMulExpr *Numerator) { - SmallVector<const SCEV *, 2> Qs; - Type *Ty = Denominator->getType(); - - bool FoundDenominatorTerm = false; - for (const SCEV *Op : Numerator->operands()) { - // Bail out if types do not match. - if (Ty != Op->getType()) - return cannotDivide(Numerator); - - if (FoundDenominatorTerm) { - Qs.push_back(Op); - continue; - } - - // Check whether Denominator divides one of the product operands. - const SCEV *Q, *R; - divide(SE, Op, Denominator, &Q, &R); - if (!R->isZero()) { - Qs.push_back(Op); - continue; - } - - // Bail out if types do not match. - if (Ty != Q->getType()) - return cannotDivide(Numerator); - - FoundDenominatorTerm = true; - Qs.push_back(Q); - } - - if (FoundDenominatorTerm) { - Remainder = Zero; - if (Qs.size() == 1) - Quotient = Qs[0]; - else - Quotient = SE.getMulExpr(Qs); - return; - } - - if (!isa<SCEVUnknown>(Denominator)) - return cannotDivide(Numerator); - - // The Remainder is obtained by replacing Denominator by 0 in Numerator. - ValueToValueMap RewriteMap; - RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = - cast<SCEVConstant>(Zero)->getValue(); - Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); - - if (Remainder->isZero()) { - // The Quotient is obtained by replacing Denominator by 1 in Numerator. - RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = - cast<SCEVConstant>(One)->getValue(); - Quotient = - SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); - return; - } - - // Quotient is (Numerator - Remainder) divided by Denominator. - const SCEV *Q, *R; - const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder); - // This SCEV does not seem to simplify: fail the division here. - if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) - return cannotDivide(Numerator); - divide(SE, Diff, Denominator, &Q, &R); - if (R != Zero) - return cannotDivide(Numerator); - Quotient = Q; - } - -private: - SCEVDivision(ScalarEvolution &S, const SCEV *Numerator, - const SCEV *Denominator) - : SE(S), Denominator(Denominator) { - Zero = SE.getZero(Denominator->getType()); - One = SE.getOne(Denominator->getType()); - - // We generally do not know how to divide Expr by Denominator. We - // initialize the division to a "cannot divide" state to simplify the rest - // of the code. - cannotDivide(Numerator); - } - - // Convenience function for giving up on the division. We set the quotient to - // be equal to zero and the remainder to be equal to the numerator. - void cannotDivide(const SCEV *Numerator) { - Quotient = Zero; - Remainder = Numerator; - } - - ScalarEvolution &SE; - const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One; -}; - -} // end anonymous namespace - -//===----------------------------------------------------------------------===// -// Simple SCEV method implementations -//===----------------------------------------------------------------------===// - -/// Compute BC(It, K). The result has width W. Assume, K > 0. -static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, - ScalarEvolution &SE, - Type *ResultTy) { - // Handle the simplest case efficiently. - if (K == 1) - return SE.getTruncateOrZeroExtend(It, ResultTy); - - // We are using the following formula for BC(It, K): - // - // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! - // - // Suppose, W is the bitwidth of the return value. We must be prepared for - // overflow. Hence, we must assure that the result of our computation is - // equal to the accurate one modulo 2^W. Unfortunately, division isn't - // safe in modular arithmetic. - // - // However, this code doesn't use exactly that formula; the formula it uses - // is something like the following, where T is the number of factors of 2 in - // K! (i.e. trailing zeros in the binary representation of K!), and ^ is - // exponentiation: - // - // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) - // - // This formula is trivially equivalent to the previous formula. However, - // this formula can be implemented much more efficiently. The trick is that - // K! / 2^T is odd, and exact division by an odd number *is* safe in modular - // arithmetic. To do exact division in modular arithmetic, all we have - // to do is multiply by the inverse. Therefore, this step can be done at - // width W. - // - // The next issue is how to safely do the division by 2^T. The way this - // is done is by doing the multiplication step at a width of at least W + T - // bits. This way, the bottom W+T bits of the product are accurate. Then, - // when we perform the division by 2^T (which is equivalent to a right shift - // by T), the bottom W bits are accurate. Extra bits are okay; they'll get - // truncated out after the division by 2^T. - // - // In comparison to just directly using the first formula, this technique - // is much more efficient; using the first formula requires W * K bits, - // but this formula less than W + K bits. Also, the first formula requires - // a division step, whereas this formula only requires multiplies and shifts. - // - // It doesn't matter whether the subtraction step is done in the calculation - // width or the input iteration count's width; if the subtraction overflows, - // the result must be zero anyway. We prefer here to do it in the width of - // the induction variable because it helps a lot for certain cases; CodeGen - // isn't smart enough to ignore the overflow, which leads to much less - // efficient code if the width of the subtraction is wider than the native - // register width. - // - // (It's possible to not widen at all by pulling out factors of 2 before - // the multiplication; for example, K=2 can be calculated as - // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires - // extra arithmetic, so it's not an obvious win, and it gets - // much more complicated for K > 3.) - - // Protection from insane SCEVs; this bound is conservative, - // but it probably doesn't matter. - if (K > 1000) - return SE.getCouldNotCompute(); - - unsigned W = SE.getTypeSizeInBits(ResultTy); - - // Calculate K! / 2^T and T; we divide out the factors of two before - // multiplying for calculating K! / 2^T to avoid overflow. - // Other overflow doesn't matter because we only care about the bottom - // W bits of the result. - APInt OddFactorial(W, 1); - unsigned T = 1; - for (unsigned i = 3; i <= K; ++i) { - APInt Mult(W, i); - unsigned TwoFactors = Mult.countTrailingZeros(); - T += TwoFactors; - Mult.lshrInPlace(TwoFactors); - OddFactorial *= Mult; - } - - // We need at least W + T bits for the multiplication step - unsigned CalculationBits = W + T; - - // Calculate 2^T, at width T+W. - APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); - - // Calculate the multiplicative inverse of K! / 2^T; - // this multiplication factor will perform the exact division by - // K! / 2^T. - APInt Mod = APInt::getSignedMinValue(W+1); - APInt MultiplyFactor = OddFactorial.zext(W+1); - MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); - MultiplyFactor = MultiplyFactor.trunc(W); - - // Calculate the product, at width T+W - IntegerType *CalculationTy = IntegerType::get(SE.getContext(), - CalculationBits); - const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); - for (unsigned i = 1; i != K; ++i) { - const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); - Dividend = SE.getMulExpr(Dividend, - SE.getTruncateOrZeroExtend(S, CalculationTy)); - } - - // Divide by 2^T - const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); - - // Truncate the result, and divide by K! / 2^T. - - return SE.getMulExpr(SE.getConstant(MultiplyFactor), - SE.getTruncateOrZeroExtend(DivResult, ResultTy)); -} - -/// Return the value of this chain of recurrences at the specified iteration -/// number. We can evaluate this recurrence by multiplying each element in the -/// chain by the binomial coefficient corresponding to it. In other words, we -/// can evaluate {A,+,B,+,C,+,D} as: -/// -/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) -/// -/// where BC(It, k) stands for binomial coefficient. -const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, - ScalarEvolution &SE) const { - const SCEV *Result = getStart(); - for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { - // The computation is correct in the face of overflow provided that the - // multiplication is performed _after_ the evaluation of the binomial - // coefficient. - const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); - if (isa<SCEVCouldNotCompute>(Coeff)) - return Coeff; - - Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); - } - return Result; -} - -//===----------------------------------------------------------------------===// -// SCEV Expression folder implementations -//===----------------------------------------------------------------------===// - -const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, - Type *Ty) { - assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && - "This is not a truncating conversion!"); - assert(isSCEVable(Ty) && - "This is not a conversion to a SCEVable type!"); - Ty = getEffectiveSCEVType(Ty); - - FoldingSetNodeID ID; - ID.AddInteger(scTruncate); - ID.AddPointer(Op); - ID.AddPointer(Ty); - void *IP = nullptr; - if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; - - // Fold if the operand is constant. - if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) - return getConstant( - cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); - - // trunc(trunc(x)) --> trunc(x) - if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) - return getTruncateExpr(ST->getOperand(), Ty); - - // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing - if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) - return getTruncateOrSignExtend(SS->getOperand(), Ty); - - // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing - if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) - return getTruncateOrZeroExtend(SZ->getOperand(), Ty); - - // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and - // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN), - // if after transforming we have at most one truncate, not counting truncates - // that replace other casts. - if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) { - auto *CommOp = cast<SCEVCommutativeExpr>(Op); - SmallVector<const SCEV *, 4> Operands; - unsigned numTruncs = 0; - for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2; - ++i) { - const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty); - if (!isa<SCEVCastExpr>(CommOp->getOperand(i)) && isa<SCEVTruncateExpr>(S)) - numTruncs++; - Operands.push_back(S); - } - if (numTruncs < 2) { - if (isa<SCEVAddExpr>(Op)) - return getAddExpr(Operands); - else if (isa<SCEVMulExpr>(Op)) - return getMulExpr(Operands); - else - llvm_unreachable("Unexpected SCEV type for Op."); - } - // Although we checked in the beginning that ID is not in the cache, it is - // possible that during recursion and different modification ID was inserted - // into the cache. So if we find it, just return it. - if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) - return S; - } - - // If the input value is a chrec scev, truncate the chrec's operands. - if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { - SmallVector<const SCEV *, 4> Operands; - for (const SCEV *Op : AddRec->operands()) - Operands.push_back(getTruncateExpr(Op, Ty)); - return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); - } - - // The cast wasn't folded; create an explicit cast node. We can reuse - // the existing insert position since if we get here, we won't have - // made any changes which would invalidate it. - SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), - Op, Ty); - UniqueSCEVs.InsertNode(S, IP); - addToLoopUseLists(S); - return S; -} - -// Get the limit of a recurrence such that incrementing by Step cannot cause -// signed overflow as long as the value of the recurrence within the -// loop does not exceed this limit before incrementing. -static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, - ICmpInst::Predicate *Pred, - ScalarEvolution *SE) { - unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); - if (SE->isKnownPositive(Step)) { - *Pred = ICmpInst::ICMP_SLT; - return SE->getConstant(APInt::getSignedMinValue(BitWidth) - - SE->getSignedRangeMax(Step)); - } - if (SE->isKnownNegative(Step)) { - *Pred = ICmpInst::ICMP_SGT; - return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - - SE->getSignedRangeMin(Step)); - } - return nullptr; -} - -// Get the limit of a recurrence such that incrementing by Step cannot cause -// unsigned overflow as long as the value of the recurrence within the loop does -// not exceed this limit before incrementing. -static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, - ICmpInst::Predicate *Pred, - ScalarEvolution *SE) { - unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); - *Pred = ICmpInst::ICMP_ULT; - - return SE->getConstant(APInt::getMinValue(BitWidth) - - SE->getUnsignedRangeMax(Step)); -} - -namespace { - -struct ExtendOpTraitsBase { - typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *, - unsigned); -}; - -// Used to make code generic over signed and unsigned overflow. -template <typename ExtendOp> struct ExtendOpTraits { - // Members present: - // - // static const SCEV::NoWrapFlags WrapType; - // - // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; - // - // static const SCEV *getOverflowLimitForStep(const SCEV *Step, - // ICmpInst::Predicate *Pred, - // ScalarEvolution *SE); -}; - -template <> -struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { - static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; - - static const GetExtendExprTy GetExtendExpr; - - static const SCEV *getOverflowLimitForStep(const SCEV *Step, - ICmpInst::Predicate *Pred, - ScalarEvolution *SE) { - return getSignedOverflowLimitForStep(Step, Pred, SE); - } -}; - -const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< - SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; - -template <> -struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { - static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; - - static const GetExtendExprTy GetExtendExpr; - - static const SCEV *getOverflowLimitForStep(const SCEV *Step, - ICmpInst::Predicate *Pred, - ScalarEvolution *SE) { - return getUnsignedOverflowLimitForStep(Step, Pred, SE); - } -}; - -const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< - SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; - -} // end anonymous namespace - -// The recurrence AR has been shown to have no signed/unsigned wrap or something -// close to it. Typically, if we can prove NSW/NUW for AR, then we can just as -// easily prove NSW/NUW for its preincrement or postincrement sibling. This -// allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + -// Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the -// expression "Step + sext/zext(PreIncAR)" is congruent with -// "sext/zext(PostIncAR)" -template <typename ExtendOpTy> -static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, - ScalarEvolution *SE, unsigned Depth) { - auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; - auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; - - const Loop *L = AR->getLoop(); - const SCEV *Start = AR->getStart(); - const SCEV *Step = AR->getStepRecurrence(*SE); - - // Check for a simple looking step prior to loop entry. - const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); - if (!SA) - return nullptr; - - // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV - // subtraction is expensive. For this purpose, perform a quick and dirty - // difference, by checking for Step in the operand list. - SmallVector<const SCEV *, 4> DiffOps; - for (const SCEV *Op : SA->operands()) - if (Op != Step) - DiffOps.push_back(Op); - - if (DiffOps.size() == SA->getNumOperands()) - return nullptr; - - // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + - // `Step`: - - // 1. NSW/NUW flags on the step increment. - auto PreStartFlags = - ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW); - const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags); - const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( - SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); - - // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies - // "S+X does not sign/unsign-overflow". - // - - const SCEV *BECount = SE->getBackedgeTakenCount(L); - if (PreAR && PreAR->getNoWrapFlags(WrapType) && - !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) - return PreStart; - - // 2. Direct overflow check on the step operation's expression. - unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); - Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); - const SCEV *OperandExtendedStart = - SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth), - (SE->*GetExtendExpr)(Step, WideTy, Depth)); - if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) { - if (PreAR && AR->getNoWrapFlags(WrapType)) { - // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW - // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then - // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. - const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType); - } - return PreStart; - } - - // 3. Loop precondition. - ICmpInst::Predicate Pred; - const SCEV *OverflowLimit = - ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); - - if (OverflowLimit && - SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) - return PreStart; - - return nullptr; -} - -// Get the normalized zero or sign extended expression for this AddRec's Start. -template <typename ExtendOpTy> -static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, - ScalarEvolution *SE, - unsigned Depth) { - auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; - - const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth); - if (!PreStart) - return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth); - - return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty, - Depth), - (SE->*GetExtendExpr)(PreStart, Ty, Depth)); -} - -// Try to prove away overflow by looking at "nearby" add recurrences. A -// motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it -// does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. -// -// Formally: -// -// {S,+,X} == {S-T,+,X} + T -// => Ext({S,+,X}) == Ext({S-T,+,X} + T) -// -// If ({S-T,+,X} + T) does not overflow ... (1) -// -// RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) -// -// If {S-T,+,X} does not overflow ... (2) -// -// RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) -// == {Ext(S-T)+Ext(T),+,Ext(X)} -// -// If (S-T)+T does not overflow ... (3) -// -// RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} -// == {Ext(S),+,Ext(X)} == LHS -// -// Thus, if (1), (2) and (3) are true for some T, then -// Ext({S,+,X}) == {Ext(S),+,Ext(X)} -// -// (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) -// does not overflow" restricted to the 0th iteration. Therefore we only need -// to check for (1) and (2). -// -// In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T -// is `Delta` (defined below). -template <typename ExtendOpTy> -bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, - const SCEV *Step, - const Loop *L) { - auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; - - // We restrict `Start` to a constant to prevent SCEV from spending too much - // time here. It is correct (but more expensive) to continue with a - // non-constant `Start` and do a general SCEV subtraction to compute - // `PreStart` below. - const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); - if (!StartC) - return false; - - APInt StartAI = StartC->getAPInt(); - - for (unsigned Delta : {-2, -1, 1, 2}) { - const SCEV *PreStart = getConstant(StartAI - Delta); - - FoldingSetNodeID ID; - ID.AddInteger(scAddRecExpr); - ID.AddPointer(PreStart); - ID.AddPointer(Step); - ID.AddPointer(L); - void *IP = nullptr; - const auto *PreAR = - static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); - - // Give up if we don't already have the add recurrence we need because - // actually constructing an add recurrence is relatively expensive. - if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) - const SCEV *DeltaS = getConstant(StartC->getType(), Delta); - ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; - const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( - DeltaS, &Pred, this); - if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) - return true; - } - } - - return false; -} - -// Finds an integer D for an expression (C + x + y + ...) such that the top -// level addition in (D + (C - D + x + y + ...)) would not wrap (signed or -// unsigned) and the number of trailing zeros of (C - D + x + y + ...) is -// maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and -// the (C + x + y + ...) expression is \p WholeAddExpr. -static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, - const SCEVConstant *ConstantTerm, - const SCEVAddExpr *WholeAddExpr) { - const APInt C = ConstantTerm->getAPInt(); - const unsigned BitWidth = C.getBitWidth(); - // Find number of trailing zeros of (x + y + ...) w/o the C first: - uint32_t TZ = BitWidth; - for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I) - TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I))); - if (TZ) { - // Set D to be as many least significant bits of C as possible while still - // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap: - return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C; - } - return APInt(BitWidth, 0); -} - -// Finds an integer D for an affine AddRec expression {C,+,x} such that the top -// level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the -// number of trailing zeros of (C - D + x * n) is maximized, where C is the \p -// ConstantStart, x is an arbitrary \p Step, and n is the loop trip count. -static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, - const APInt &ConstantStart, - const SCEV *Step) { - const unsigned BitWidth = ConstantStart.getBitWidth(); - const uint32_t TZ = SE.GetMinTrailingZeros(Step); - if (TZ) - return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth) - : ConstantStart; - return APInt(BitWidth, 0); -} - -const SCEV * -ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { - assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && - "This is not an extending conversion!"); - assert(isSCEVable(Ty) && - "This is not a conversion to a SCEVable type!"); - Ty = getEffectiveSCEVType(Ty); - - // Fold if the operand is constant. - if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) - return getConstant( - cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); - - // zext(zext(x)) --> zext(x) - if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) - return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); - - // Before doing any expensive analysis, check to see if we've already - // computed a SCEV for this Op and Ty. - FoldingSetNodeID ID; - ID.AddInteger(scZeroExtend); - ID.AddPointer(Op); - ID.AddPointer(Ty); - void *IP = nullptr; - if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; - if (Depth > MaxExtDepth) { - SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), - Op, Ty); - UniqueSCEVs.InsertNode(S, IP); - addToLoopUseLists(S); - return S; - } - - // zext(trunc(x)) --> zext(x) or x or trunc(x) - if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { - // It's possible the bits taken off by the truncate were all zero bits. If - // so, we should be able to simplify this further. - const SCEV *X = ST->getOperand(); - ConstantRange CR = getUnsignedRange(X); - unsigned TruncBits = getTypeSizeInBits(ST->getType()); - unsigned NewBits = getTypeSizeInBits(Ty); - if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( - CR.zextOrTrunc(NewBits))) - return getTruncateOrZeroExtend(X, Ty); - } - - // If the input value is a chrec scev, and we can prove that the value - // did not overflow the old, smaller, value, we can zero extend all of the - // operands (often constants). This allows analysis of something like - // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } - if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) - if (AR->isAffine()) { - const SCEV *Start = AR->getStart(); - const SCEV *Step = AR->getStepRecurrence(*this); - unsigned BitWidth = getTypeSizeInBits(AR->getType()); - const Loop *L = AR->getLoop(); - - if (!AR->hasNoUnsignedWrap()) { - auto NewFlags = proveNoWrapViaConstantRanges(AR); - const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags); - } - - // If we have special knowledge that this addrec won't overflow, - // we don't need to do any further analysis. - if (AR->hasNoUnsignedWrap()) - return getAddRecExpr( - getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), - getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); - - // Check whether the backedge-taken count is SCEVCouldNotCompute. - // Note that this serves two purposes: It filters out loops that are - // simply not analyzable, and it covers the case where this code is - // being called from within backedge-taken count analysis, such that - // attempting to ask for the backedge-taken count would likely result - // in infinite recursion. In the later case, the analysis code will - // cope with a conservative value, and it will take care to purge - // that value once it has finished. - const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); - if (!isa<SCEVCouldNotCompute>(MaxBECount)) { - // Manually compute the final value for AR, checking for - // overflow. - - // Check whether the backedge-taken count can be losslessly casted to - // the addrec's type. The count is always unsigned. - const SCEV *CastedMaxBECount = - getTruncateOrZeroExtend(MaxBECount, Start->getType()); - const SCEV *RecastedMaxBECount = - getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); - if (MaxBECount == RecastedMaxBECount) { - Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); - // Check whether Start+Step*MaxBECount has no unsigned overflow. - const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step, - SCEV::FlagAnyWrap, Depth + 1); - const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul, - SCEV::FlagAnyWrap, - Depth + 1), - WideTy, Depth + 1); - const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1); - const SCEV *WideMaxBECount = - getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); - const SCEV *OperandExtendedAdd = - getAddExpr(WideStart, - getMulExpr(WideMaxBECount, - getZeroExtendExpr(Step, WideTy, Depth + 1), - SCEV::FlagAnyWrap, Depth + 1), - SCEV::FlagAnyWrap, Depth + 1); - if (ZAdd == OperandExtendedAdd) { - // Cache knowledge of AR NUW, which is propagated to this AddRec. - const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); - // Return the expression with the addrec on the outside. - return getAddRecExpr( - getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, - Depth + 1), - getZeroExtendExpr(Step, Ty, Depth + 1), L, - AR->getNoWrapFlags()); - } - // Similar to above, only this time treat the step value as signed. - // This covers loops that count down. - OperandExtendedAdd = - getAddExpr(WideStart, - getMulExpr(WideMaxBECount, - getSignExtendExpr(Step, WideTy, Depth + 1), - SCEV::FlagAnyWrap, Depth + 1), - SCEV::FlagAnyWrap, Depth + 1); - if (ZAdd == OperandExtendedAdd) { - // Cache knowledge of AR NW, which is propagated to this AddRec. - // Negative step causes unsigned wrap, but it still can't self-wrap. - const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); - // Return the expression with the addrec on the outside. - return getAddRecExpr( - getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, - Depth + 1), - getSignExtendExpr(Step, Ty, Depth + 1), L, - AR->getNoWrapFlags()); - } - } - } - - // Normally, in the cases we can prove no-overflow via a - // backedge guarding condition, we can also compute a backedge - // taken count for the loop. The exceptions are assumptions and - // guards present in the loop -- SCEV is not great at exploiting - // these to compute max backedge taken counts, but can still use - // these to prove lack of overflow. Use this fact to avoid - // doing extra work that may not pay off. - if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || - !AC.assumptions().empty()) { - // If the backedge is guarded by a comparison with the pre-inc - // value the addrec is safe. Also, if the entry is guarded by - // a comparison with the start value and the backedge is - // guarded by a comparison with the post-inc value, the addrec - // is safe. - if (isKnownPositive(Step)) { - const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - - getUnsignedRangeMax(Step)); - if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || - isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) { - // Cache knowledge of AR NUW, which is propagated to this - // AddRec. - const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); - // Return the expression with the addrec on the outside. - return getAddRecExpr( - getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, - Depth + 1), - getZeroExtendExpr(Step, Ty, Depth + 1), L, - AR->getNoWrapFlags()); - } - } else if (isKnownNegative(Step)) { - const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - - getSignedRangeMin(Step)); - if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || - isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) { - // Cache knowledge of AR NW, which is propagated to this - // AddRec. Negative step causes unsigned wrap, but it - // still can't self-wrap. - const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); - // Return the expression with the addrec on the outside. - return getAddRecExpr( - getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, - Depth + 1), - getSignExtendExpr(Step, Ty, Depth + 1), L, - AR->getNoWrapFlags()); - } - } - } - - // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw> - // if D + (C - D + Step * n) could be proven to not unsigned wrap - // where D maximizes the number of trailing zeros of (C - D + Step * n) - if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { - const APInt &C = SC->getAPInt(); - const APInt &D = extractConstantWithoutWrapping(*this, C, Step); - if (D != 0) { - const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); - const SCEV *SResidual = - getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); - const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); - return getAddExpr(SZExtD, SZExtR, - (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), - Depth + 1); - } - } - - if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { - const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); - return getAddRecExpr( - getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), - getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); - } - } - - // zext(A % B) --> zext(A) % zext(B) - { - const SCEV *LHS; - const SCEV *RHS; - if (matchURem(Op, LHS, RHS)) - return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1), - getZeroExtendExpr(RHS, Ty, Depth + 1)); - } - - // zext(A / B) --> zext(A) / zext(B). - if (auto *Div = dyn_cast<SCEVUDivExpr>(Op)) - return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1), - getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1)); - - if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { - // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw> - if (SA->hasNoUnsignedWrap()) { - // If the addition does not unsign overflow then we can, by definition, - // commute the zero extension with the addition operation. - SmallVector<const SCEV *, 4> Ops; - for (const auto *Op : SA->operands()) - Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); - return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1); - } - - // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...)) - // if D + (C - D + x + y + ...) could be proven to not unsigned wrap - // where D maximizes the number of trailing zeros of (C - D + x + y + ...) - // - // Often address arithmetics contain expressions like - // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))). - // This transformation is useful while proving that such expressions are - // equal or differ by a small constant amount, see LoadStoreVectorizer pass. - if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { - const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); - if (D != 0) { - const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); - const SCEV *SResidual = - getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); - const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); - return getAddExpr(SZExtD, SZExtR, - (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), - Depth + 1); - } - } - } - - if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) { - // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw> - if (SM->hasNoUnsignedWrap()) { - // If the multiply does not unsign overflow then we can, by definition, - // commute the zero extension with the multiply operation. - SmallVector<const SCEV *, 4> Ops; - for (const auto *Op : SM->operands()) - Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); - return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1); - } - - // zext(2^K * (trunc X to iN)) to iM -> - // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw> - // - // Proof: - // - // zext(2^K * (trunc X to iN)) to iM - // = zext((trunc X to iN) << K) to iM - // = zext((trunc X to i{N-K}) << K)<nuw> to iM - // (because shl removes the top K bits) - // = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM - // = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>. - // - if (SM->getNumOperands() == 2) - if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0))) - if (MulLHS->getAPInt().isPowerOf2()) - if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) { - int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) - - MulLHS->getAPInt().logBase2(); - Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits); - return getMulExpr( - getZeroExtendExpr(MulLHS, Ty), - getZeroExtendExpr( - getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty), - SCEV::FlagNUW, Depth + 1); - } - } - - // The cast wasn't folded; create an explicit cast node. - // Recompute the insert position, as it may have been invalidated. - if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; - SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), - Op, Ty); - UniqueSCEVs.InsertNode(S, IP); - addToLoopUseLists(S); - return S; -} - -const SCEV * -ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { - assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && - "This is not an extending conversion!"); - assert(isSCEVable(Ty) && - "This is not a conversion to a SCEVable type!"); - Ty = getEffectiveSCEVType(Ty); - - // Fold if the operand is constant. - if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) - return getConstant( - cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); - - // sext(sext(x)) --> sext(x) - if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) - return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1); - - // sext(zext(x)) --> zext(x) - if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) - return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); - - // Before doing any expensive analysis, check to see if we've already - // computed a SCEV for this Op and Ty. - FoldingSetNodeID ID; - ID.AddInteger(scSignExtend); - ID.AddPointer(Op); - ID.AddPointer(Ty); - void *IP = nullptr; - if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; - // Limit recursion depth. - if (Depth > MaxExtDepth) { - SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), - Op, Ty); - UniqueSCEVs.InsertNode(S, IP); - addToLoopUseLists(S); - return S; - } - - // sext(trunc(x)) --> sext(x) or x or trunc(x) - if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { - // It's possible the bits taken off by the truncate were all sign bits. If - // so, we should be able to simplify this further. - const SCEV *X = ST->getOperand(); - ConstantRange CR = getSignedRange(X); - unsigned TruncBits = getTypeSizeInBits(ST->getType()); - unsigned NewBits = getTypeSizeInBits(Ty); - if (CR.truncate(TruncBits).signExtend(NewBits).contains( - CR.sextOrTrunc(NewBits))) - return getTruncateOrSignExtend(X, Ty); - } - - if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { - // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> - if (SA->hasNoSignedWrap()) { - // If the addition does not sign overflow then we can, by definition, - // commute the sign extension with the addition operation. - SmallVector<const SCEV *, 4> Ops; - for (const auto *Op : SA->operands()) - Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1)); - return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1); - } - - // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...)) - // if D + (C - D + x + y + ...) could be proven to not signed wrap - // where D maximizes the number of trailing zeros of (C - D + x + y + ...) - // - // For instance, this will bring two seemingly different expressions: - // 1 + sext(5 + 20 * %x + 24 * %y) and - // sext(6 + 20 * %x + 24 * %y) - // to the same form: - // 2 + sext(4 + 20 * %x + 24 * %y) - if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { - const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); - if (D != 0) { - const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); - const SCEV *SResidual = - getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); - const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); - return getAddExpr(SSExtD, SSExtR, - (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), - Depth + 1); - } - } - } - // If the input value is a chrec scev, and we can prove that the value - // did not overflow the old, smaller, value, we can sign extend all of the - // operands (often constants). This allows analysis of something like - // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } - if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) - if (AR->isAffine()) { - const SCEV *Start = AR->getStart(); - const SCEV *Step = AR->getStepRecurrence(*this); - unsigned BitWidth = getTypeSizeInBits(AR->getType()); - const Loop *L = AR->getLoop(); - - if (!AR->hasNoSignedWrap()) { - auto NewFlags = proveNoWrapViaConstantRanges(AR); - const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags); - } - - // If we have special knowledge that this addrec won't overflow, - // we don't need to do any further analysis. - if (AR->hasNoSignedWrap()) - return getAddRecExpr( - getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), - getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW); - - // Check whether the backedge-taken count is SCEVCouldNotCompute. - // Note that this serves two purposes: It filters out loops that are - // simply not analyzable, and it covers the case where this code is - // being called from within backedge-taken count analysis, such that - // attempting to ask for the backedge-taken count would likely result - // in infinite recursion. In the later case, the analysis code will - // cope with a conservative value, and it will take care to purge - // that value once it has finished. - const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); - if (!isa<SCEVCouldNotCompute>(MaxBECount)) { - // Manually compute the final value for AR, checking for - // overflow. - - // Check whether the backedge-taken count can be losslessly casted to - // the addrec's type. The count is always unsigned. - const SCEV *CastedMaxBECount = - getTruncateOrZeroExtend(MaxBECount, Start->getType()); - const SCEV *RecastedMaxBECount = - getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); - if (MaxBECount == RecastedMaxBECount) { - Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); - // Check whether Start+Step*MaxBECount has no signed overflow. - const SCEV *SMul = getMulExpr(CastedMaxBECount, Step, - SCEV::FlagAnyWrap, Depth + 1); - const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul, - SCEV::FlagAnyWrap, - Depth + 1), - WideTy, Depth + 1); - const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1); - const SCEV *WideMaxBECount = - getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); - const SCEV *OperandExtendedAdd = - getAddExpr(WideStart, - getMulExpr(WideMaxBECount, - getSignExtendExpr(Step, WideTy, Depth + 1), - SCEV::FlagAnyWrap, Depth + 1), - SCEV::FlagAnyWrap, Depth + 1); - if (SAdd == OperandExtendedAdd) { - // Cache knowledge of AR NSW, which is propagated to this AddRec. - const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); - // Return the expression with the addrec on the outside. - return getAddRecExpr( - getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, - Depth + 1), - getSignExtendExpr(Step, Ty, Depth + 1), L, - AR->getNoWrapFlags()); - } - // Similar to above, only this time treat the step value as unsigned. - // This covers loops that count up with an unsigned step. - OperandExtendedAdd = - getAddExpr(WideStart, - getMulExpr(WideMaxBECount, - getZeroExtendExpr(Step, WideTy, Depth + 1), - SCEV::FlagAnyWrap, Depth + 1), - SCEV::FlagAnyWrap, Depth + 1); - if (SAdd == OperandExtendedAdd) { - // If AR wraps around then - // - // abs(Step) * MaxBECount > unsigned-max(AR->getType()) - // => SAdd != OperandExtendedAdd - // - // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> - // (SAdd == OperandExtendedAdd => AR is NW) - - const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); - - // Return the expression with the addrec on the outside. - return getAddRecExpr( - getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, - Depth + 1), - getZeroExtendExpr(Step, Ty, Depth + 1), L, - AR->getNoWrapFlags()); - } - } - } - - // Normally, in the cases we can prove no-overflow via a - // backedge guarding condition, we can also compute a backedge - // taken count for the loop. The exceptions are assumptions and - // guards present in the loop -- SCEV is not great at exploiting - // these to compute max backedge taken counts, but can still use - // these to prove lack of overflow. Use this fact to avoid - // doing extra work that may not pay off. - - if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || - !AC.assumptions().empty()) { - // If the backedge is guarded by a comparison with the pre-inc - // value the addrec is safe. Also, if the entry is guarded by - // a comparison with the start value and the backedge is - // guarded by a comparison with the post-inc value, the addrec - // is safe. - ICmpInst::Predicate Pred; - const SCEV *OverflowLimit = - getSignedOverflowLimitForStep(Step, &Pred, this); - if (OverflowLimit && - (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || - isKnownOnEveryIteration(Pred, AR, OverflowLimit))) { - // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec. - const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); - return getAddRecExpr( - getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), - getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); - } - } - - // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw> - // if D + (C - D + Step * n) could be proven to not signed wrap - // where D maximizes the number of trailing zeros of (C - D + Step * n) - if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { - const APInt &C = SC->getAPInt(); - const APInt &D = extractConstantWithoutWrapping(*this, C, Step); - if (D != 0) { - const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); - const SCEV *SResidual = - getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); - const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); - return getAddExpr(SSExtD, SSExtR, - (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), - Depth + 1); - } - } - - if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { - const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); - return getAddRecExpr( - getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), - getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); - } - } - - // If the input value is provably positive and we could not simplify - // away the sext build a zext instead. - if (isKnownNonNegative(Op)) - return getZeroExtendExpr(Op, Ty, Depth + 1); - - // The cast wasn't folded; create an explicit cast node. - // Recompute the insert position, as it may have been invalidated. - if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; - SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), - Op, Ty); - UniqueSCEVs.InsertNode(S, IP); - addToLoopUseLists(S); - return S; -} - -/// getAnyExtendExpr - Return a SCEV for the given operand extended with -/// unspecified bits out to the given type. -const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, - Type *Ty) { - assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && - "This is not an extending conversion!"); - assert(isSCEVable(Ty) && - "This is not a conversion to a SCEVable type!"); - Ty = getEffectiveSCEVType(Ty); - - // Sign-extend negative constants. - if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) - if (SC->getAPInt().isNegative()) - return getSignExtendExpr(Op, Ty); - - // Peel off a truncate cast. - if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { - const SCEV *NewOp = T->getOperand(); - if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) - return getAnyExtendExpr(NewOp, Ty); - return getTruncateOrNoop(NewOp, Ty); - } - - // Next try a zext cast. If the cast is folded, use it. - const SCEV *ZExt = getZeroExtendExpr(Op, Ty); - if (!isa<SCEVZeroExtendExpr>(ZExt)) - return ZExt; - - // Next try a sext cast. If the cast is folded, use it. - const SCEV *SExt = getSignExtendExpr(Op, Ty); - if (!isa<SCEVSignExtendExpr>(SExt)) - return SExt; - - // Force the cast to be folded into the operands of an addrec. - if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { - SmallVector<const SCEV *, 4> Ops; - for (const SCEV *Op : AR->operands()) - Ops.push_back(getAnyExtendExpr(Op, Ty)); - return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); - } - - // If the expression is obviously signed, use the sext cast value. - if (isa<SCEVSMaxExpr>(Op)) - return SExt; - - // Absent any other information, use the zext cast value. - return ZExt; -} - -/// Process the given Ops list, which is a list of operands to be added under -/// the given scale, update the given map. This is a helper function for -/// getAddRecExpr. As an example of what it does, given a sequence of operands -/// that would form an add expression like this: -/// -/// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) -/// -/// where A and B are constants, update the map with these values: -/// -/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) -/// -/// and add 13 + A*B*29 to AccumulatedConstant. -/// This will allow getAddRecExpr to produce this: -/// -/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) -/// -/// This form often exposes folding opportunities that are hidden in -/// the original operand list. -/// -/// Return true iff it appears that any interesting folding opportunities -/// may be exposed. This helps getAddRecExpr short-circuit extra work in -/// the common case where no interesting opportunities are present, and -/// is also used as a check to avoid infinite recursion. -static bool -CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, - SmallVectorImpl<const SCEV *> &NewOps, - APInt &AccumulatedConstant, - const SCEV *const *Ops, size_t NumOperands, - const APInt &Scale, - ScalarEvolution &SE) { - bool Interesting = false; - - // Iterate over the add operands. They are sorted, with constants first. - unsigned i = 0; - while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { - ++i; - // Pull a buried constant out to the outside. - if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) - Interesting = true; - AccumulatedConstant += Scale * C->getAPInt(); - } - - // Next comes everything else. We're especially interested in multiplies - // here, but they're in the middle, so just visit the rest with one loop. - for (; i != NumOperands; ++i) { - const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); - if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { - APInt NewScale = - Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt(); - if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { - // A multiplication of a constant with another add; recurse. - const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); - Interesting |= - CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, - Add->op_begin(), Add->getNumOperands(), - NewScale, SE); - } else { - // A multiplication of a constant with some other value. Update - // the map. - SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); - const SCEV *Key = SE.getMulExpr(MulOps); - auto Pair = M.insert({Key, NewScale}); - if (Pair.second) { - NewOps.push_back(Pair.first->first); - } else { - Pair.first->second += NewScale; - // The map already had an entry for this value, which may indicate - // a folding opportunity. - Interesting = true; - } - } - } else { - // An ordinary operand. Update the map. - std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = - M.insert({Ops[i], Scale}); - if (Pair.second) { - NewOps.push_back(Pair.first->first); - } else { - Pair.first->second += Scale; - // The map already had an entry for this value, which may indicate - // a folding opportunity. - Interesting = true; - } - } - } - - return Interesting; -} - -// We're trying to construct a SCEV of type `Type' with `Ops' as operands and -// `OldFlags' as can't-wrap behavior. Infer a more aggressive set of -// can't-overflow flags for the operation if possible. -static SCEV::NoWrapFlags -StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, - const SmallVectorImpl<const SCEV *> &Ops, - SCEV::NoWrapFlags Flags) { - using namespace std::placeholders; - - using OBO = OverflowingBinaryOperator; - - bool CanAnalyze = - Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; - (void)CanAnalyze; - assert(CanAnalyze && "don't call from other places!"); - - int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; - SCEV::NoWrapFlags SignOrUnsignWrap = - ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); - - // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. - auto IsKnownNonNegative = [&](const SCEV *S) { - return SE->isKnownNonNegative(S); - }; - - if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative)) - Flags = - ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); - - SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); - - if (SignOrUnsignWrap != SignOrUnsignMask && - (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 && - isa<SCEVConstant>(Ops[0])) { - - auto Opcode = [&] { - switch (Type) { - case scAddExpr: - return Instruction::Add; - case scMulExpr: - return Instruction::Mul; - default: - llvm_unreachable("Unexpected SCEV op."); - } - }(); - - const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt(); - - // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow. - if (!(SignOrUnsignWrap & SCEV::FlagNSW)) { - auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( - Opcode, C, OBO::NoSignedWrap); - if (NSWRegion.contains(SE->getSignedRange(Ops[1]))) - Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); - } - - // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow. - if (!(SignOrUnsignWrap & SCEV::FlagNUW)) { - auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( - Opcode, C, OBO::NoUnsignedWrap); - if (NUWRegion.contains(SE->getUnsignedRange(Ops[1]))) - Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); - } - } - - return Flags; -} - -bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) { - return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader()); -} - -/// Get a canonical add expression, or something simpler if possible. -const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, - SCEV::NoWrapFlags Flags, - unsigned Depth) { - assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && - "only nuw or nsw allowed"); - assert(!Ops.empty() && "Cannot get empty add!"); - if (Ops.size() == 1) return Ops[0]; -#ifndef NDEBUG - Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); - for (unsigned i = 1, e = Ops.size(); i != e; ++i) - assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && - "SCEVAddExpr operand types don't match!"); -#endif - - // Sort by complexity, this groups all similar expression types together. - GroupByComplexity(Ops, &LI, DT); - - Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags); - - // If there are any constants, fold them together. - unsigned Idx = 0; - if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { - ++Idx; - assert(Idx < Ops.size()); - while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { - // We found two constants, fold them together! - Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt()); - if (Ops.size() == 2) return Ops[0]; - Ops.erase(Ops.begin()+1); // Erase the folded element - LHSC = cast<SCEVConstant>(Ops[0]); - } - - // If we are left with a constant zero being added, strip it off. - if (LHSC->getValue()->isZero()) { - Ops.erase(Ops.begin()); - --Idx; - } - - if (Ops.size() == 1) return Ops[0]; - } - - // Limit recursion calls depth. - if (Depth > MaxArithDepth) - return getOrCreateAddExpr(Ops, Flags); - - // Okay, check to see if the same value occurs in the operand list more than - // once. If so, merge them together into an multiply expression. Since we - // sorted the list, these values are required to be adjacent. - Type *Ty = Ops[0]->getType(); - bool FoundMatch = false; - for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) - if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 - // Scan ahead to count how many equal operands there are. - unsigned Count = 2; - while (i+Count != e && Ops[i+Count] == Ops[i]) - ++Count; - // Merge the values into a multiply. - const SCEV *Scale = getConstant(Ty, Count); - const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1); - if (Ops.size() == Count) - return Mul; - Ops[i] = Mul; - Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); - --i; e -= Count - 1; - FoundMatch = true; - } - if (FoundMatch) - return getAddExpr(Ops, Flags, Depth + 1); - - // Check for truncates. If all the operands are truncated from the same - // type, see if factoring out the truncate would permit the result to be - // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y) - // if the contents of the resulting outer trunc fold to something simple. - auto FindTruncSrcType = [&]() -> Type * { - // We're ultimately looking to fold an addrec of truncs and muls of only - // constants and truncs, so if we find any other types of SCEV - // as operands of the addrec then we bail and return nullptr here. - // Otherwise, we return the type of the operand of a trunc that we find. - if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx])) - return T->getOperand()->getType(); - if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { - const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1); - if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp)) - return T->getOperand()->getType(); - } - return nullptr; - }; - if (auto *SrcType = FindTruncSrcType()) { - SmallVector<const SCEV *, 8> LargeOps; - bool Ok = true; - // Check all the operands to see if they can be represented in the - // source type of the truncate. - for (unsigned i = 0, e = Ops.size(); i != e; ++i) { - if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { - if (T->getOperand()->getType() != SrcType) { - Ok = false; - break; - } - LargeOps.push_back(T->getOperand()); - } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { - LargeOps.push_back(getAnyExtendExpr(C, SrcType)); - } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { - SmallVector<const SCEV *, 8> LargeMulOps; - for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { - if (const SCEVTruncateExpr *T = - dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { - if (T->getOperand()->getType() != SrcType) { - Ok = false; - break; - } - LargeMulOps.push_back(T->getOperand()); - } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) { - LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); - } else { - Ok = false; - break; - } - } - if (Ok) - LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1)); - } else { - Ok = false; - break; - } - } - if (Ok) { - // Evaluate the expression in the larger type. - const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1); - // If it folds to something simple, use it. Otherwise, don't. - if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) - return getTruncateExpr(Fold, Ty); - } - } - - // Skip past any other cast SCEVs. - while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) - ++Idx; - - // If there are add operands they would be next. - if (Idx < Ops.size()) { - bool DeletedAdd = false; - while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { - if (Ops.size() > AddOpsInlineThreshold || - Add->getNumOperands() > AddOpsInlineThreshold) - break; - // If we have an add, expand the add operands onto the end of the operands - // list. - Ops.erase(Ops.begin()+Idx); - Ops.append(Add->op_begin(), Add->op_end()); - DeletedAdd = true; - } - - // If we deleted at least one add, we added operands to the end of the list, - // and they are not necessarily sorted. Recurse to resort and resimplify - // any operands we just acquired. - if (DeletedAdd) - return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); - } - - // Skip over the add expression until we get to a multiply. - while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) - ++Idx; - - // Check to see if there are any folding opportunities present with - // operands multiplied by constant values. - if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { - uint64_t BitWidth = getTypeSizeInBits(Ty); - DenseMap<const SCEV *, APInt> M; - SmallVector<const SCEV *, 8> NewOps; - APInt AccumulatedConstant(BitWidth, 0); - if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, - Ops.data(), Ops.size(), - APInt(BitWidth, 1), *this)) { - struct APIntCompare { - bool operator()(const APInt &LHS, const APInt &RHS) const { - return LHS.ult(RHS); - } - }; - - // Some interesting folding opportunity is present, so its worthwhile to - // re-generate the operands list. Group the operands by constant scale, - // to avoid multiplying by the same constant scale multiple times. - std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; - for (const SCEV *NewOp : NewOps) - MulOpLists[M.find(NewOp)->second].push_back(NewOp); - // Re-generate the operands list. - Ops.clear(); - if (AccumulatedConstant != 0) - Ops.push_back(getConstant(AccumulatedConstant)); - for (auto &MulOp : MulOpLists) - if (MulOp.first != 0) - Ops.push_back(getMulExpr( - getConstant(MulOp.first), - getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1), - SCEV::FlagAnyWrap, Depth + 1)); - if (Ops.empty()) - return getZero(Ty); - if (Ops.size() == 1) - return Ops[0]; - return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); - } - } - - // If we are adding something to a multiply expression, make sure the - // something is not already an operand of the multiply. If so, merge it into - // the multiply. - for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { - const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); - for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { - const SCEV *MulOpSCEV = Mul->getOperand(MulOp); - if (isa<SCEVConstant>(MulOpSCEV)) - continue; - for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) - if (MulOpSCEV == Ops[AddOp]) { - // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) - const SCEV *InnerMul = Mul->getOperand(MulOp == 0); - if (Mul->getNumOperands() != 2) { - // If the multiply has more than two operands, we must get the - // Y*Z term. - SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), - Mul->op_begin()+MulOp); - MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); - InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); - } - SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul}; - const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); - const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV, - SCEV::FlagAnyWrap, Depth + 1); - if (Ops.size() == 2) return OuterMul; - if (AddOp < Idx) { - Ops.erase(Ops.begin()+AddOp); - Ops.erase(Ops.begin()+Idx-1); - } else { - Ops.erase(Ops.begin()+Idx); - Ops.erase(Ops.begin()+AddOp-1); - } - Ops.push_back(OuterMul); - return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); - } - - // Check this multiply against other multiplies being added together. - for (unsigned OtherMulIdx = Idx+1; - OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); - ++OtherMulIdx) { - const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); - // If MulOp occurs in OtherMul, we can fold the two multiplies - // together. - for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); - OMulOp != e; ++OMulOp) - if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { - // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) - const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); - if (Mul->getNumOperands() != 2) { - SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), - Mul->op_begin()+MulOp); - MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); - InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); - } - const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); - if (OtherMul->getNumOperands() != 2) { - SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), - OtherMul->op_begin()+OMulOp); - MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); - InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); - } - SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2}; - const SCEV *InnerMulSum = - getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); - const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum, - SCEV::FlagAnyWrap, Depth + 1); - if (Ops.size() == 2) return OuterMul; - Ops.erase(Ops.begin()+Idx); - Ops.erase(Ops.begin()+OtherMulIdx-1); - Ops.push_back(OuterMul); - return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); - } - } - } - } - - // If there are any add recurrences in the operands list, see if any other - // added values are loop invariant. If so, we can fold them into the - // recurrence. - while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) - ++Idx; - - // Scan over all recurrences, trying to fold loop invariants into them. - for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { - // Scan all of the other operands to this add and add them to the vector if - // they are loop invariant w.r.t. the recurrence. - SmallVector<const SCEV *, 8> LIOps; - const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); - const Loop *AddRecLoop = AddRec->getLoop(); - for (unsigned i = 0, e = Ops.size(); i != e; ++i) - if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { - LIOps.push_back(Ops[i]); - Ops.erase(Ops.begin()+i); - --i; --e; - } - - // If we found some loop invariants, fold them into the recurrence. - if (!LIOps.empty()) { - // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} - LIOps.push_back(AddRec->getStart()); - - SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), - AddRec->op_end()); - // This follows from the fact that the no-wrap flags on the outer add - // expression are applicable on the 0th iteration, when the add recurrence - // will be equal to its start value. - AddRecOps[0] = getAddExpr(LIOps, Flags, Depth + 1); - - // Build the new addrec. Propagate the NUW and NSW flags if both the - // outer add and the inner addrec are guaranteed to have no overflow. - // Always propagate NW. - Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); - const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); - - // If all of the other operands were loop invariant, we are done. - if (Ops.size() == 1) return NewRec; - - // Otherwise, add the folded AddRec by the non-invariant parts. - for (unsigned i = 0;; ++i) - if (Ops[i] == AddRec) { - Ops[i] = NewRec; - break; - } - return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); - } - - // Okay, if there weren't any loop invariants to be folded, check to see if - // there are multiple AddRec's with the same loop induction variable being - // added together. If so, we can fold them. - for (unsigned OtherIdx = Idx+1; - OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); - ++OtherIdx) { - // We expect the AddRecExpr's to be sorted in reverse dominance order, - // so that the 1st found AddRecExpr is dominated by all others. - assert(DT.dominates( - cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(), - AddRec->getLoop()->getHeader()) && - "AddRecExprs are not sorted in reverse dominance order?"); - if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { - // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> - SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), - AddRec->op_end()); - for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); - ++OtherIdx) { - const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); - if (OtherAddRec->getLoop() == AddRecLoop) { - for (unsigned i = 0, e = OtherAddRec->getNumOperands(); - i != e; ++i) { - if (i >= AddRecOps.size()) { - AddRecOps.append(OtherAddRec->op_begin()+i, - OtherAddRec->op_end()); - break; - } - SmallVector<const SCEV *, 2> TwoOps = { - AddRecOps[i], OtherAddRec->getOperand(i)}; - AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); - } - Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; - } - } - // Step size has changed, so we cannot guarantee no self-wraparound. - Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); - return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); - } - } - - // Otherwise couldn't fold anything into this recurrence. Move onto the - // next one. - } - - // Okay, it looks like we really DO need an add expr. Check to see if we - // already have one, otherwise create a new one. - return getOrCreateAddExpr(Ops, Flags); -} - -const SCEV * -ScalarEvolution::getOrCreateAddExpr(SmallVectorImpl<const SCEV *> &Ops, - SCEV::NoWrapFlags Flags) { - FoldingSetNodeID ID; - ID.AddInteger(scAddExpr); - for (const SCEV *Op : Ops) - ID.AddPointer(Op); - void *IP = nullptr; - SCEVAddExpr *S = - static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); - if (!S) { - const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); - std::uninitialized_copy(Ops.begin(), Ops.end(), O); - S = new (SCEVAllocator) - SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size()); - UniqueSCEVs.InsertNode(S, IP); - addToLoopUseLists(S); - } - S->setNoWrapFlags(Flags); - return S; -} - -const SCEV * -ScalarEvolution::getOrCreateAddRecExpr(SmallVectorImpl<const SCEV *> &Ops, - const Loop *L, SCEV::NoWrapFlags Flags) { - FoldingSetNodeID ID; - ID.AddInteger(scAddRecExpr); - for (unsigned i = 0, e = Ops.size(); i != e; ++i) - ID.AddPointer(Ops[i]); - ID.AddPointer(L); - void *IP = nullptr; - SCEVAddRecExpr *S = - static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); - if (!S) { - const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); - std::uninitialized_copy(Ops.begin(), Ops.end(), O); - S = new (SCEVAllocator) - SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L); - UniqueSCEVs.InsertNode(S, IP); - addToLoopUseLists(S); - } - S->setNoWrapFlags(Flags); - return S; -} - -const SCEV * -ScalarEvolution::getOrCreateMulExpr(SmallVectorImpl<const SCEV *> &Ops, - SCEV::NoWrapFlags Flags) { - FoldingSetNodeID ID; - ID.AddInteger(scMulExpr); - for (unsigned i = 0, e = Ops.size(); i != e; ++i) - ID.AddPointer(Ops[i]); - void *IP = nullptr; - SCEVMulExpr *S = - static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); - if (!S) { - const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); - std::uninitialized_copy(Ops.begin(), Ops.end(), O); - S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), - O, Ops.size()); - UniqueSCEVs.InsertNode(S, IP); - addToLoopUseLists(S); - } - S->setNoWrapFlags(Flags); - return S; -} - -static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { - uint64_t k = i*j; - if (j > 1 && k / j != i) Overflow = true; - return k; -} - -/// Compute the result of "n choose k", the binomial coefficient. If an -/// intermediate computation overflows, Overflow will be set and the return will -/// be garbage. Overflow is not cleared on absence of overflow. -static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { - // We use the multiplicative formula: - // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . - // At each iteration, we take the n-th term of the numeral and divide by the - // (k-n)th term of the denominator. This division will always produce an - // integral result, and helps reduce the chance of overflow in the - // intermediate computations. However, we can still overflow even when the - // final result would fit. - - if (n == 0 || n == k) return 1; - if (k > n) return 0; - - if (k > n/2) - k = n-k; - - uint64_t r = 1; - for (uint64_t i = 1; i <= k; ++i) { - r = umul_ov(r, n-(i-1), Overflow); - r /= i; - } - return r; -} - -/// Determine if any of the operands in this SCEV are a constant or if -/// any of the add or multiply expressions in this SCEV contain a constant. -static bool containsConstantInAddMulChain(const SCEV *StartExpr) { - struct FindConstantInAddMulChain { - bool FoundConstant = false; - - bool follow(const SCEV *S) { - FoundConstant |= isa<SCEVConstant>(S); - return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S); - } - - bool isDone() const { - return FoundConstant; - } - }; - - FindConstantInAddMulChain F; - SCEVTraversal<FindConstantInAddMulChain> ST(F); - ST.visitAll(StartExpr); - return F.FoundConstant; -} - -/// Get a canonical multiply expression, or something simpler if possible. -const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, - SCEV::NoWrapFlags Flags, - unsigned Depth) { - assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) && - "only nuw or nsw allowed"); - assert(!Ops.empty() && "Cannot get empty mul!"); - if (Ops.size() == 1) return Ops[0]; -#ifndef NDEBUG - Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); - for (unsigned i = 1, e = Ops.size(); i != e; ++i) - assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && - "SCEVMulExpr operand types don't match!"); -#endif - - // Sort by complexity, this groups all similar expression types together. - GroupByComplexity(Ops, &LI, DT); - - Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags); - - // Limit recursion calls depth. - if (Depth > MaxArithDepth) - return getOrCreateMulExpr(Ops, Flags); - - // If there are any constants, fold them together. - unsigned Idx = 0; - if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { - - if (Ops.size() == 2) - // C1*(C2+V) -> C1*C2 + C1*V - if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) - // If any of Add's ops are Adds or Muls with a constant, apply this - // transformation as well. - // - // TODO: There are some cases where this transformation is not - // profitable; for example, Add = (C0 + X) * Y + Z. Maybe the scope of - // this transformation should be narrowed down. - if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add)) - return getAddExpr(getMulExpr(LHSC, Add->getOperand(0), - SCEV::FlagAnyWrap, Depth + 1), - getMulExpr(LHSC, Add->getOperand(1), - SCEV::FlagAnyWrap, Depth + 1), - SCEV::FlagAnyWrap, Depth + 1); - - ++Idx; - while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { - // We found two constants, fold them together! - ConstantInt *Fold = - ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt()); - Ops[0] = getConstant(Fold); - Ops.erase(Ops.begin()+1); // Erase the folded element - if (Ops.size() == 1) return Ops[0]; - LHSC = cast<SCEVConstant>(Ops[0]); - } - - // If we are left with a constant one being multiplied, strip it off. - if (cast<SCEVConstant>(Ops[0])->getValue()->isOne()) { - Ops.erase(Ops.begin()); - --Idx; - } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { - // If we have a multiply of zero, it will always be zero. - return Ops[0]; - } else if (Ops[0]->isAllOnesValue()) { - // If we have a mul by -1 of an add, try distributing the -1 among the - // add operands. - if (Ops.size() == 2) { - if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { - SmallVector<const SCEV *, 4> NewOps; - bool AnyFolded = false; - for (const SCEV *AddOp : Add->operands()) { - const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap, - Depth + 1); - if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; - NewOps.push_back(Mul); - } - if (AnyFolded) - return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1); - } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { - // Negation preserves a recurrence's no self-wrap property. - SmallVector<const SCEV *, 4> Operands; - for (const SCEV *AddRecOp : AddRec->operands()) - Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap, - Depth + 1)); - - return getAddRecExpr(Operands, AddRec->getLoop(), - AddRec->getNoWrapFlags(SCEV::FlagNW)); - } - } - } - - if (Ops.size() == 1) - return Ops[0]; - } - - // Skip over the add expression until we get to a multiply. - while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) - ++Idx; - - // If there are mul operands inline them all into this expression. - if (Idx < Ops.size()) { - bool DeletedMul = false; - while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { - if (Ops.size() > MulOpsInlineThreshold) - break; - // If we have an mul, expand the mul operands onto the end of the - // operands list. - Ops.erase(Ops.begin()+Idx); - Ops.append(Mul->op_begin(), Mul->op_end()); - DeletedMul = true; - } - - // If we deleted at least one mul, we added operands to the end of the - // list, and they are not necessarily sorted. Recurse to resort and - // resimplify any operands we just acquired. - if (DeletedMul) - return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); - } - - // If there are any add recurrences in the operands list, see if any other - // added values are loop invariant. If so, we can fold them into the - // recurrence. - while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) - ++Idx; - - // Scan over all recurrences, trying to fold loop invariants into them. - for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { - // Scan all of the other operands to this mul and add them to the vector - // if they are loop invariant w.r.t. the recurrence. - SmallVector<const SCEV *, 8> LIOps; - const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); - const Loop *AddRecLoop = AddRec->getLoop(); - for (unsigned i = 0, e = Ops.size(); i != e; ++i) - if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { - LIOps.push_back(Ops[i]); - Ops.erase(Ops.begin()+i); - --i; --e; - } - - // If we found some loop invariants, fold them into the recurrence. - if (!LIOps.empty()) { - // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} - SmallVector<const SCEV *, 4> NewOps; - NewOps.reserve(AddRec->getNumOperands()); - const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1); - for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) - NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i), - SCEV::FlagAnyWrap, Depth + 1)); - - // Build the new addrec. Propagate the NUW and NSW flags if both the - // outer mul and the inner addrec are guaranteed to have no overflow. - // - // No self-wrap cannot be guaranteed after changing the step size, but - // will be inferred if either NUW or NSW is true. - Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW)); - const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags); - - // If all of the other operands were loop invariant, we are done. - if (Ops.size() == 1) return NewRec; - - // Otherwise, multiply the folded AddRec by the non-invariant parts. - for (unsigned i = 0;; ++i) - if (Ops[i] == AddRec) { - Ops[i] = NewRec; - break; - } - return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); - } - - // Okay, if there weren't any loop invariants to be folded, check to see - // if there are multiple AddRec's with the same loop induction variable - // being multiplied together. If so, we can fold them. - - // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> - // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ - // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z - // ]]],+,...up to x=2n}. - // Note that the arguments to choose() are always integers with values - // known at compile time, never SCEV objects. - // - // The implementation avoids pointless extra computations when the two - // addrec's are of different length (mathematically, it's equivalent to - // an infinite stream of zeros on the right). - bool OpsModified = false; - for (unsigned OtherIdx = Idx+1; - OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); - ++OtherIdx) { - const SCEVAddRecExpr *OtherAddRec = - dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); - if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) - continue; - - // Limit max number of arguments to avoid creation of unreasonably big - // SCEVAddRecs with very complex operands. - if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 > - MaxAddRecSize) - continue; - - bool Overflow = false; - Type *Ty = AddRec->getType(); - bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; - SmallVector<const SCEV*, 7> AddRecOps; - for (int x = 0, xe = AddRec->getNumOperands() + - OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { - SmallVector <const SCEV *, 7> SumOps; - for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { - uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); - for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), - ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); - z < ze && !Overflow; ++z) { - uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); - uint64_t Coeff; - if (LargerThan64Bits) - Coeff = umul_ov(Coeff1, Coeff2, Overflow); - else - Coeff = Coeff1*Coeff2; - const SCEV *CoeffTerm = getConstant(Ty, Coeff); - const SCEV *Term1 = AddRec->getOperand(y-z); - const SCEV *Term2 = OtherAddRec->getOperand(z); - SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2, - SCEV::FlagAnyWrap, Depth + 1)); - } - } - if (SumOps.empty()) - SumOps.push_back(getZero(Ty)); - AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1)); - } - if (!Overflow) { - const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(), - SCEV::FlagAnyWrap); - if (Ops.size() == 2) return NewAddRec; - Ops[Idx] = NewAddRec; - Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; - OpsModified = true; - AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); - if (!AddRec) - break; - } - } - if (OpsModified) - return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); - - // Otherwise couldn't fold anything into this recurrence. Move onto the - // next one. - } - - // Okay, it looks like we really DO need an mul expr. Check to see if we - // already have one, otherwise create a new one. - return getOrCreateMulExpr(Ops, Flags); -} - -/// Represents an unsigned remainder expression based on unsigned division. -const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS, - const SCEV *RHS) { - assert(getEffectiveSCEVType(LHS->getType()) == - getEffectiveSCEVType(RHS->getType()) && - "SCEVURemExpr operand types don't match!"); - - // Short-circuit easy cases - if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { - // If constant is one, the result is trivial - if (RHSC->getValue()->isOne()) - return getZero(LHS->getType()); // X urem 1 --> 0 - - // If constant is a power of two, fold into a zext(trunc(LHS)). - if (RHSC->getAPInt().isPowerOf2()) { - Type *FullTy = LHS->getType(); - Type *TruncTy = - IntegerType::get(getContext(), RHSC->getAPInt().logBase2()); - return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy); - } - } - - // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y) - const SCEV *UDiv = getUDivExpr(LHS, RHS); - const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW); - return getMinusSCEV(LHS, Mult, SCEV::FlagNUW); -} - -/// Get a canonical unsigned division expression, or something simpler if -/// possible. -const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, - const SCEV *RHS) { - assert(getEffectiveSCEVType(LHS->getType()) == - getEffectiveSCEVType(RHS->getType()) && - "SCEVUDivExpr operand types don't match!"); - - if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { - if (RHSC->getValue()->isOne()) - return LHS; // X udiv 1 --> x - // If the denominator is zero, the result of the udiv is undefined. Don't - // try to analyze it, because the resolution chosen here may differ from - // the resolution chosen in other parts of the compiler. - if (!RHSC->getValue()->isZero()) { - // Determine if the division can be folded into the operands of - // its operands. - // TODO: Generalize this to non-constants by using known-bits information. - Type *Ty = LHS->getType(); - unsigned LZ = RHSC->getAPInt().countLeadingZeros(); - unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; - // For non-power-of-two values, effectively round the value up to the - // nearest power of two. - if (!RHSC->getAPInt().isPowerOf2()) - ++MaxShiftAmt; - IntegerType *ExtTy = - IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); - if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) - if (const SCEVConstant *Step = - dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { - // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. - const APInt &StepInt = Step->getAPInt(); - const APInt &DivInt = RHSC->getAPInt(); - if (!StepInt.urem(DivInt) && - getZeroExtendExpr(AR, ExtTy) == - getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), - getZeroExtendExpr(Step, ExtTy), - AR->getLoop(), SCEV::FlagAnyWrap)) { - SmallVector<const SCEV *, 4> Operands; - for (const SCEV *Op : AR->operands()) - Operands.push_back(getUDivExpr(Op, RHS)); - return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW); - } - /// Get a canonical UDivExpr for a recurrence. - /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. - // We can currently only fold X%N if X is constant. - const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); - if (StartC && !DivInt.urem(StepInt) && - getZeroExtendExpr(AR, ExtTy) == - getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), - getZeroExtendExpr(Step, ExtTy), - AR->getLoop(), SCEV::FlagAnyWrap)) { - const APInt &StartInt = StartC->getAPInt(); - const APInt &StartRem = StartInt.urem(StepInt); - if (StartRem != 0) - LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step, - AR->getLoop(), SCEV::FlagNW); - } - } - // (A*B)/C --> A*(B/C) if safe and B/C can be folded. - if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { - SmallVector<const SCEV *, 4> Operands; - for (const SCEV *Op : M->operands()) - Operands.push_back(getZeroExtendExpr(Op, ExtTy)); - if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) - // Find an operand that's safely divisible. - for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { - const SCEV *Op = M->getOperand(i); - const SCEV *Div = getUDivExpr(Op, RHSC); - if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { - Operands = SmallVector<const SCEV *, 4>(M->op_begin(), - M->op_end()); - Operands[i] = Div; - return getMulExpr(Operands); - } - } - } - - // (A/B)/C --> A/(B*C) if safe and B*C can be folded. - if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) { - if (auto *DivisorConstant = - dyn_cast<SCEVConstant>(OtherDiv->getRHS())) { - bool Overflow = false; - APInt NewRHS = - DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow); - if (Overflow) { - return getConstant(RHSC->getType(), 0, false); - } - return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS)); - } - } - - // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. - if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { - SmallVector<const SCEV *, 4> Operands; - for (const SCEV *Op : A->operands()) - Operands.push_back(getZeroExtendExpr(Op, ExtTy)); - if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { - Operands.clear(); - for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { - const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); - if (isa<SCEVUDivExpr>(Op) || - getMulExpr(Op, RHS) != A->getOperand(i)) - break; - Operands.push_back(Op); - } - if (Operands.size() == A->getNumOperands()) - return getAddExpr(Operands); - } - } - - // Fold if both operands are constant. - if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { - Constant *LHSCV = LHSC->getValue(); - Constant *RHSCV = RHSC->getValue(); - return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, - RHSCV))); - } - } - } - - FoldingSetNodeID ID; - ID.AddInteger(scUDivExpr); - ID.AddPointer(LHS); - ID.AddPointer(RHS); - void *IP = nullptr; - if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; - SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), - LHS, RHS); - UniqueSCEVs.InsertNode(S, IP); - addToLoopUseLists(S); - return S; -} - -static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { - APInt A = C1->getAPInt().abs(); - APInt B = C2->getAPInt().abs(); - uint32_t ABW = A.getBitWidth(); - uint32_t BBW = B.getBitWidth(); - - if (ABW > BBW) - B = B.zext(ABW); - else if (ABW < BBW) - A = A.zext(BBW); - - return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B)); -} - -/// Get a canonical unsigned division expression, or something simpler if -/// possible. There is no representation for an exact udiv in SCEV IR, but we -/// can attempt to remove factors from the LHS and RHS. We can't do this when -/// it's not exact because the udiv may be clearing bits. -const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, - const SCEV *RHS) { - // TODO: we could try to find factors in all sorts of things, but for now we - // just deal with u/exact (multiply, constant). See SCEVDivision towards the - // end of this file for inspiration. - - const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); - if (!Mul || !Mul->hasNoUnsignedWrap()) - return getUDivExpr(LHS, RHS); - - if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { - // If the mulexpr multiplies by a constant, then that constant must be the - // first element of the mulexpr. - if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) { - if (LHSCst == RHSCst) { - SmallVector<const SCEV *, 2> Operands; - Operands.append(Mul->op_begin() + 1, Mul->op_end()); - return getMulExpr(Operands); - } - - // We can't just assume that LHSCst divides RHSCst cleanly, it could be - // that there's a factor provided by one of the other terms. We need to - // check. - APInt Factor = gcd(LHSCst, RHSCst); - if (!Factor.isIntN(1)) { - LHSCst = - cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor))); - RHSCst = - cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor))); - SmallVector<const SCEV *, 2> Operands; - Operands.push_back(LHSCst); - Operands.append(Mul->op_begin() + 1, Mul->op_end()); - LHS = getMulExpr(Operands); - RHS = RHSCst; - Mul = dyn_cast<SCEVMulExpr>(LHS); - if (!Mul) - return getUDivExactExpr(LHS, RHS); - } - } - } - - for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { - if (Mul->getOperand(i) == RHS) { - SmallVector<const SCEV *, 2> Operands; - Operands.append(Mul->op_begin(), Mul->op_begin() + i); - Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); - return getMulExpr(Operands); - } - } - - return getUDivExpr(LHS, RHS); -} - -/// Get an add recurrence expression for the specified loop. Simplify the -/// expression as much as possible. -const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, - const Loop *L, - SCEV::NoWrapFlags Flags) { - SmallVector<const SCEV *, 4> Operands; - Operands.push_back(Start); - if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) - if (StepChrec->getLoop() == L) { - Operands.append(StepChrec->op_begin(), StepChrec->op_end()); - return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); - } - - Operands.push_back(Step); - return getAddRecExpr(Operands, L, Flags); -} - -/// Get an add recurrence expression for the specified loop. Simplify the -/// expression as much as possible. -const SCEV * -ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, - const Loop *L, SCEV::NoWrapFlags Flags) { - if (Operands.size() == 1) return Operands[0]; -#ifndef NDEBUG - Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); - for (unsigned i = 1, e = Operands.size(); i != e; ++i) - assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && - "SCEVAddRecExpr operand types don't match!"); - for (unsigned i = 0, e = Operands.size(); i != e; ++i) - assert(isLoopInvariant(Operands[i], L) && - "SCEVAddRecExpr operand is not loop-invariant!"); -#endif - - if (Operands.back()->isZero()) { - Operands.pop_back(); - return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X - } - - // It's tempting to want to call getMaxBackedgeTakenCount count here and - // use that information to infer NUW and NSW flags. However, computing a - // BE count requires calling getAddRecExpr, so we may not yet have a - // meaningful BE count at this point (and if we don't, we'd be stuck - // with a SCEVCouldNotCompute as the cached BE count). - - Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); - - // Canonicalize nested AddRecs in by nesting them in order of loop depth. - if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { - const Loop *NestedLoop = NestedAR->getLoop(); - if (L->contains(NestedLoop) - ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) - : (!NestedLoop->contains(L) && - DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { - SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), - NestedAR->op_end()); - Operands[0] = NestedAR->getStart(); - // AddRecs require their operands be loop-invariant with respect to their - // loops. Don't perform this transformation if it would break this - // requirement. - bool AllInvariant = all_of( - Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); }); - - if (AllInvariant) { - // Create a recurrence for the outer loop with the same step size. - // - // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the - // inner recurrence has the same property. - SCEV::NoWrapFlags OuterFlags = - maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); - - NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); - AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) { - return isLoopInvariant(Op, NestedLoop); - }); - - if (AllInvariant) { - // Ok, both add recurrences are valid after the transformation. - // - // The inner recurrence keeps its NW flag but only keeps NUW/NSW if - // the outer recurrence has the same property. - SCEV::NoWrapFlags InnerFlags = - maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); - return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); - } - } - // Reset Operands to its original state. - Operands[0] = NestedAR; - } - } - - // Okay, it looks like we really DO need an addrec expr. Check to see if we - // already have one, otherwise create a new one. - return getOrCreateAddRecExpr(Operands, L, Flags); -} - -const SCEV * -ScalarEvolution::getGEPExpr(GEPOperator *GEP, - const SmallVectorImpl<const SCEV *> &IndexExprs) { - const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand()); - // getSCEV(Base)->getType() has the same address space as Base->getType() - // because SCEV::getType() preserves the address space. - Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType()); - // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP - // instruction to its SCEV, because the Instruction may be guarded by control - // flow and the no-overflow bits may not be valid for the expression in any - // context. This can be fixed similarly to how these flags are handled for - // adds. - SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW - : SCEV::FlagAnyWrap; - - const SCEV *TotalOffset = getZero(IntPtrTy); - // The array size is unimportant. The first thing we do on CurTy is getting - // its element type. - Type *CurTy = ArrayType::get(GEP->getSourceElementType(), 0); - for (const SCEV *IndexExpr : IndexExprs) { - // Compute the (potentially symbolic) offset in bytes for this index. - if (StructType *STy = dyn_cast<StructType>(CurTy)) { - // For a struct, add the member offset. - ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); - unsigned FieldNo = Index->getZExtValue(); - const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo); - - // Add the field offset to the running total offset. - TotalOffset = getAddExpr(TotalOffset, FieldOffset); - - // Update CurTy to the type of the field at Index. - CurTy = STy->getTypeAtIndex(Index); - } else { - // Update CurTy to its element type. - CurTy = cast<SequentialType>(CurTy)->getElementType(); - // For an array, add the element offset, explicitly scaled. - const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy); - // Getelementptr indices are signed. - IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy); - - // Multiply the index by the element size to compute the element offset. - const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap); - - // Add the element offset to the running total offset. - TotalOffset = getAddExpr(TotalOffset, LocalOffset); - } - } - - // Add the total offset from all the GEP indices to the base. - return getAddExpr(BaseExpr, TotalOffset, Wrap); -} - -const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, - const SCEV *RHS) { - SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; - return getSMaxExpr(Ops); -} - -const SCEV * -ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { - assert(!Ops.empty() && "Cannot get empty smax!"); - if (Ops.size() == 1) return Ops[0]; -#ifndef NDEBUG - Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); - for (unsigned i = 1, e = Ops.size(); i != e; ++i) - assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && - "SCEVSMaxExpr operand types don't match!"); -#endif - - // Sort by complexity, this groups all similar expression types together. - GroupByComplexity(Ops, &LI, DT); - - // If there are any constants, fold them together. - unsigned Idx = 0; - if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { - ++Idx; - assert(Idx < Ops.size()); - while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { - // We found two constants, fold them together! - ConstantInt *Fold = ConstantInt::get( - getContext(), APIntOps::smax(LHSC->getAPInt(), RHSC->getAPInt())); - Ops[0] = getConstant(Fold); - Ops.erase(Ops.begin()+1); // Erase the folded element - if (Ops.size() == 1) return Ops[0]; - LHSC = cast<SCEVConstant>(Ops[0]); - } - - // If we are left with a constant minimum-int, strip it off. - if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { - Ops.erase(Ops.begin()); - --Idx; - } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) { - // If we have an smax with a constant maximum-int, it will always be - // maximum-int. - return Ops[0]; - } - - if (Ops.size() == 1) return Ops[0]; - } - - // Find the first SMax - while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) - ++Idx; - - // Check to see if one of the operands is an SMax. If so, expand its operands - // onto our operand list, and recurse to simplify. - if (Idx < Ops.size()) { - bool DeletedSMax = false; - while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { - Ops.erase(Ops.begin()+Idx); - Ops.append(SMax->op_begin(), SMax->op_end()); - DeletedSMax = true; - } - - if (DeletedSMax) - return getSMaxExpr(Ops); - } - - // Okay, check to see if the same value occurs in the operand list twice. If - // so, delete one. Since we sorted the list, these values are required to - // be adjacent. - for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) - // X smax Y smax Y --> X smax Y - // X smax Y --> X, if X is always greater than Y - if (Ops[i] == Ops[i+1] || - isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) { - Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); - --i; --e; - } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) { - Ops.erase(Ops.begin()+i, Ops.begin()+i+1); - --i; --e; - } - - if (Ops.size() == 1) return Ops[0]; - - assert(!Ops.empty() && "Reduced smax down to nothing!"); - - // Okay, it looks like we really DO need an smax expr. Check to see if we - // already have one, otherwise create a new one. - FoldingSetNodeID ID; - ID.AddInteger(scSMaxExpr); - for (unsigned i = 0, e = Ops.size(); i != e; ++i) - ID.AddPointer(Ops[i]); - void *IP = nullptr; - if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; - const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); - std::uninitialized_copy(Ops.begin(), Ops.end(), O); - SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator), - O, Ops.size()); - UniqueSCEVs.InsertNode(S, IP); - addToLoopUseLists(S); - return S; -} - -const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, - const SCEV *RHS) { - SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; - return getUMaxExpr(Ops); -} - -const SCEV * -ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { - assert(!Ops.empty() && "Cannot get empty umax!"); - if (Ops.size() == 1) return Ops[0]; -#ifndef NDEBUG - Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); - for (unsigned i = 1, e = Ops.size(); i != e; ++i) - assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && - "SCEVUMaxExpr operand types don't match!"); -#endif - - // Sort by complexity, this groups all similar expression types together. - GroupByComplexity(Ops, &LI, DT); - - // If there are any constants, fold them together. - unsigned Idx = 0; - if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { - ++Idx; - assert(Idx < Ops.size()); - while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { - // We found two constants, fold them together! - ConstantInt *Fold = ConstantInt::get( - getContext(), APIntOps::umax(LHSC->getAPInt(), RHSC->getAPInt())); - Ops[0] = getConstant(Fold); - Ops.erase(Ops.begin()+1); // Erase the folded element - if (Ops.size() == 1) return Ops[0]; - LHSC = cast<SCEVConstant>(Ops[0]); - } - - // If we are left with a constant minimum-int, strip it off. - if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { - Ops.erase(Ops.begin()); - --Idx; - } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) { - // If we have an umax with a constant maximum-int, it will always be - // maximum-int. - return Ops[0]; - } - - if (Ops.size() == 1) return Ops[0]; - } - - // Find the first UMax - while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) - ++Idx; - - // Check to see if one of the operands is a UMax. If so, expand its operands - // onto our operand list, and recurse to simplify. - if (Idx < Ops.size()) { - bool DeletedUMax = false; - while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { - Ops.erase(Ops.begin()+Idx); - Ops.append(UMax->op_begin(), UMax->op_end()); - DeletedUMax = true; - } - - if (DeletedUMax) - return getUMaxExpr(Ops); - } - - // Okay, check to see if the same value occurs in the operand list twice. If - // so, delete one. Since we sorted the list, these values are required to - // be adjacent. - for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) - // X umax Y umax Y --> X umax Y - // X umax Y --> X, if X is always greater than Y - if (Ops[i] == Ops[i + 1] || isKnownViaNonRecursiveReasoning( - ICmpInst::ICMP_UGE, Ops[i], Ops[i + 1])) { - Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2); - --i; --e; - } else if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, Ops[i], - Ops[i + 1])) { - Ops.erase(Ops.begin() + i, Ops.begin() + i + 1); - --i; --e; - } - - if (Ops.size() == 1) return Ops[0]; - - assert(!Ops.empty() && "Reduced umax down to nothing!"); - - // Okay, it looks like we really DO need a umax expr. Check to see if we - // already have one, otherwise create a new one. - FoldingSetNodeID ID; - ID.AddInteger(scUMaxExpr); - for (unsigned i = 0, e = Ops.size(); i != e; ++i) - ID.AddPointer(Ops[i]); - void *IP = nullptr; - if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; - const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); - std::uninitialized_copy(Ops.begin(), Ops.end(), O); - SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator), - O, Ops.size()); - UniqueSCEVs.InsertNode(S, IP); - addToLoopUseLists(S); - return S; -} - -const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, - const SCEV *RHS) { - SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; - return getSMinExpr(Ops); -} - -const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) { - // ~smax(~x, ~y, ~z) == smin(x, y, z). - SmallVector<const SCEV *, 2> NotOps; - for (auto *S : Ops) - NotOps.push_back(getNotSCEV(S)); - return getNotSCEV(getSMaxExpr(NotOps)); -} - -const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, - const SCEV *RHS) { - SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; - return getUMinExpr(Ops); -} - -const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops) { - assert(!Ops.empty() && "At least one operand must be!"); - // Trivial case. - if (Ops.size() == 1) - return Ops[0]; - - // ~umax(~x, ~y, ~z) == umin(x, y, z). - SmallVector<const SCEV *, 2> NotOps; - for (auto *S : Ops) - NotOps.push_back(getNotSCEV(S)); - return getNotSCEV(getUMaxExpr(NotOps)); -} - -const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { - // We can bypass creating a target-independent - // constant expression and then folding it back into a ConstantInt. - // This is just a compile-time optimization. - return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy)); -} - -const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, - StructType *STy, - unsigned FieldNo) { - // We can bypass creating a target-independent - // constant expression and then folding it back into a ConstantInt. - // This is just a compile-time optimization. - return getConstant( - IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo)); -} - -const SCEV *ScalarEvolution::getUnknown(Value *V) { - // Don't attempt to do anything other than create a SCEVUnknown object - // here. createSCEV only calls getUnknown after checking for all other - // interesting possibilities, and any other code that calls getUnknown - // is doing so in order to hide a value from SCEV canonicalization. - - FoldingSetNodeID ID; - ID.AddInteger(scUnknown); - ID.AddPointer(V); - void *IP = nullptr; - if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { - assert(cast<SCEVUnknown>(S)->getValue() == V && - "Stale SCEVUnknown in uniquing map!"); - return S; - } - SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, - FirstUnknown); - FirstUnknown = cast<SCEVUnknown>(S); - UniqueSCEVs.InsertNode(S, IP); - return S; -} - -//===----------------------------------------------------------------------===// -// Basic SCEV Analysis and PHI Idiom Recognition Code -// - -/// Test if values of the given type are analyzable within the SCEV -/// framework. This primarily includes integer types, and it can optionally -/// include pointer types if the ScalarEvolution class has access to -/// target-specific information. -bool ScalarEvolution::isSCEVable(Type *Ty) const { - // Integers and pointers are always SCEVable. - return Ty->isIntOrPtrTy(); -} - -/// Return the size in bits of the specified type, for which isSCEVable must -/// return true. -uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { - assert(isSCEVable(Ty) && "Type is not SCEVable!"); - if (Ty->isPointerTy()) - return getDataLayout().getIndexTypeSizeInBits(Ty); - return getDataLayout().getTypeSizeInBits(Ty); -} - -/// Return a type with the same bitwidth as the given type and which represents -/// how SCEV will treat the given type, for which isSCEVable must return -/// true. For pointer types, this is the pointer-sized integer type. -Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { - assert(isSCEVable(Ty) && "Type is not SCEVable!"); - - if (Ty->isIntegerTy()) - return Ty; - - // The only other support type is pointer. - assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); - return getDataLayout().getIntPtrType(Ty); -} - -Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const { - return getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2; -} - -const SCEV *ScalarEvolution::getCouldNotCompute() { - return CouldNotCompute.get(); -} - -bool ScalarEvolution::checkValidity(const SCEV *S) const { - bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) { - auto *SU = dyn_cast<SCEVUnknown>(S); - return SU && SU->getValue() == nullptr; - }); - - return !ContainsNulls; -} - -bool ScalarEvolution::containsAddRecurrence(const SCEV *S) { - HasRecMapType::iterator I = HasRecMap.find(S); - if (I != HasRecMap.end()) - return I->second; - - bool FoundAddRec = SCEVExprContains(S, isa<SCEVAddRecExpr, const SCEV *>); - HasRecMap.insert({S, FoundAddRec}); - return FoundAddRec; -} - -/// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}. -/// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an -/// offset I, then return {S', I}, else return {\p S, nullptr}. -static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) { - const auto *Add = dyn_cast<SCEVAddExpr>(S); - if (!Add) - return {S, nullptr}; - - if (Add->getNumOperands() != 2) - return {S, nullptr}; - - auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0)); - if (!ConstOp) - return {S, nullptr}; - - return {Add->getOperand(1), ConstOp->getValue()}; -} - -/// Return the ValueOffsetPair set for \p S. \p S can be represented -/// by the value and offset from any ValueOffsetPair in the set. -SetVector<ScalarEvolution::ValueOffsetPair> * -ScalarEvolution::getSCEVValues(const SCEV *S) { - ExprValueMapType::iterator SI = ExprValueMap.find_as(S); - if (SI == ExprValueMap.end()) - return nullptr; -#ifndef NDEBUG - if (VerifySCEVMap) { - // Check there is no dangling Value in the set returned. - for (const auto &VE : SI->second) - assert(ValueExprMap.count(VE.first)); - } -#endif - return &SI->second; -} - -/// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V) -/// cannot be used separately. eraseValueFromMap should be used to remove -/// V from ValueExprMap and ExprValueMap at the same time. -void ScalarEvolution::eraseValueFromMap(Value *V) { - ValueExprMapType::iterator I = ValueExprMap.find_as(V); - if (I != ValueExprMap.end()) { - const SCEV *S = I->second; - // Remove {V, 0} from the set of ExprValueMap[S] - if (SetVector<ValueOffsetPair> *SV = getSCEVValues(S)) - SV->remove({V, nullptr}); - - // Remove {V, Offset} from the set of ExprValueMap[Stripped] - const SCEV *Stripped; - ConstantInt *Offset; - std::tie(Stripped, Offset) = splitAddExpr(S); - if (Offset != nullptr) { - if (SetVector<ValueOffsetPair> *SV = getSCEVValues(Stripped)) - SV->remove({V, Offset}); - } - ValueExprMap.erase(V); - } -} - -/// Check whether value has nuw/nsw/exact set but SCEV does not. -/// TODO: In reality it is better to check the poison recursevely -/// but this is better than nothing. -static bool SCEVLostPoisonFlags(const SCEV *S, const Value *V) { - if (auto *I = dyn_cast<Instruction>(V)) { - if (isa<OverflowingBinaryOperator>(I)) { - if (auto *NS = dyn_cast<SCEVNAryExpr>(S)) { - if (I->hasNoSignedWrap() && !NS->hasNoSignedWrap()) - return true; - if (I->hasNoUnsignedWrap() && !NS->hasNoUnsignedWrap()) - return true; - } - } else if (isa<PossiblyExactOperator>(I) && I->isExact()) - return true; - } - return false; -} - -/// Return an existing SCEV if it exists, otherwise analyze the expression and -/// create a new one. -const SCEV *ScalarEvolution::getSCEV(Value *V) { - assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); - - const SCEV *S = getExistingSCEV(V); - if (S == nullptr) { - S = createSCEV(V); - // During PHI resolution, it is possible to create two SCEVs for the same - // V, so it is needed to double check whether V->S is inserted into - // ValueExprMap before insert S->{V, 0} into ExprValueMap. - std::pair<ValueExprMapType::iterator, bool> Pair = - ValueExprMap.insert({SCEVCallbackVH(V, this), S}); - if (Pair.second && !SCEVLostPoisonFlags(S, V)) { - ExprValueMap[S].insert({V, nullptr}); - - // If S == Stripped + Offset, add Stripped -> {V, Offset} into - // ExprValueMap. - const SCEV *Stripped = S; - ConstantInt *Offset = nullptr; - std::tie(Stripped, Offset) = splitAddExpr(S); - // If stripped is SCEVUnknown, don't bother to save - // Stripped -> {V, offset}. It doesn't simplify and sometimes even - // increase the complexity of the expansion code. - // If V is GetElementPtrInst, don't save Stripped -> {V, offset} - // because it may generate add/sub instead of GEP in SCEV expansion. - if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) && - !isa<GetElementPtrInst>(V)) - ExprValueMap[Stripped].insert({V, Offset}); - } - } - return S; -} - -const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { - assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); - - ValueExprMapType::iterator I = ValueExprMap.find_as(V); - if (I != ValueExprMap.end()) { - const SCEV *S = I->second; - if (checkValidity(S)) - return S; - eraseValueFromMap(V); - forgetMemoizedResults(S); - } - return nullptr; -} - -/// Return a SCEV corresponding to -V = -1*V -const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, - SCEV::NoWrapFlags Flags) { - if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) - return getConstant( - cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); - - Type *Ty = V->getType(); - Ty = getEffectiveSCEVType(Ty); - return getMulExpr( - V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags); -} - -/// Return a SCEV corresponding to ~V = -1-V -const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { - if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) - return getConstant( - cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); - - Type *Ty = V->getType(); - Ty = getEffectiveSCEVType(Ty); - const SCEV *AllOnes = - getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); - return getMinusSCEV(AllOnes, V); -} - -const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, - SCEV::NoWrapFlags Flags, - unsigned Depth) { - // Fast path: X - X --> 0. - if (LHS == RHS) - return getZero(LHS->getType()); - - // We represent LHS - RHS as LHS + (-1)*RHS. This transformation - // makes it so that we cannot make much use of NUW. - auto AddFlags = SCEV::FlagAnyWrap; - const bool RHSIsNotMinSigned = - !getSignedRangeMin(RHS).isMinSignedValue(); - if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) { - // Let M be the minimum representable signed value. Then (-1)*RHS - // signed-wraps if and only if RHS is M. That can happen even for - // a NSW subtraction because e.g. (-1)*M signed-wraps even though - // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + - // (-1)*RHS, we need to prove that RHS != M. - // - // If LHS is non-negative and we know that LHS - RHS does not - // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap - // either by proving that RHS > M or that LHS >= 0. - if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { - AddFlags = SCEV::FlagNSW; - } - } - - // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - - // RHS is NSW and LHS >= 0. - // - // The difficulty here is that the NSW flag may have been proven - // relative to a loop that is to be found in a recurrence in LHS and - // not in RHS. Applying NSW to (-1)*M may then let the NSW have a - // larger scope than intended. - auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; - - return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth); -} - -const SCEV * -ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) { - Type *SrcTy = V->getType(); - assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && - "Cannot truncate or zero extend with non-integer arguments!"); - if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) - return V; // No conversion - if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) - return getTruncateExpr(V, Ty); - return getZeroExtendExpr(V, Ty); -} - -const SCEV * -ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, - Type *Ty) { - Type *SrcTy = V->getType(); - assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && - "Cannot truncate or zero extend with non-integer arguments!"); - if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) - return V; // No conversion - if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) - return getTruncateExpr(V, Ty); - return getSignExtendExpr(V, Ty); -} - -const SCEV * -ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { - Type *SrcTy = V->getType(); - assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && - "Cannot noop or zero extend with non-integer arguments!"); - assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && - "getNoopOrZeroExtend cannot truncate!"); - if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) - return V; // No conversion - return getZeroExtendExpr(V, Ty); -} - -const SCEV * -ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { - Type *SrcTy = V->getType(); - assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && - "Cannot noop or sign extend with non-integer arguments!"); - assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && - "getNoopOrSignExtend cannot truncate!"); - if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) - return V; // No conversion - return getSignExtendExpr(V, Ty); -} - -const SCEV * -ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { - Type *SrcTy = V->getType(); - assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && - "Cannot noop or any extend with non-integer arguments!"); - assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && - "getNoopOrAnyExtend cannot truncate!"); - if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) - return V; // No conversion - return getAnyExtendExpr(V, Ty); -} - -const SCEV * -ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { - Type *SrcTy = V->getType(); - assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && - "Cannot truncate or noop with non-integer arguments!"); - assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && - "getTruncateOrNoop cannot extend!"); - if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) - return V; // No conversion - return getTruncateExpr(V, Ty); -} - -const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, - const SCEV *RHS) { - const SCEV *PromotedLHS = LHS; - const SCEV *PromotedRHS = RHS; - - if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) - PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); - else - PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); - - return getUMaxExpr(PromotedLHS, PromotedRHS); -} - -const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, - const SCEV *RHS) { - SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; - return getUMinFromMismatchedTypes(Ops); -} - -const SCEV *ScalarEvolution::getUMinFromMismatchedTypes( - SmallVectorImpl<const SCEV *> &Ops) { - assert(!Ops.empty() && "At least one operand must be!"); - // Trivial case. - if (Ops.size() == 1) - return Ops[0]; - - // Find the max type first. - Type *MaxType = nullptr; - for (auto *S : Ops) - if (MaxType) - MaxType = getWiderType(MaxType, S->getType()); - else - MaxType = S->getType(); - - // Extend all ops to max type. - SmallVector<const SCEV *, 2> PromotedOps; - for (auto *S : Ops) - PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType)); - - // Generate umin. - return getUMinExpr(PromotedOps); -} - -const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { - // A pointer operand may evaluate to a nonpointer expression, such as null. - if (!V->getType()->isPointerTy()) - return V; - - if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) { - return getPointerBase(Cast->getOperand()); - } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) { - const SCEV *PtrOp = nullptr; - for (const SCEV *NAryOp : NAry->operands()) { - if (NAryOp->getType()->isPointerTy()) { - // Cannot find the base of an expression with multiple pointer operands. - if (PtrOp) - return V; - PtrOp = NAryOp; - } - } - if (!PtrOp) - return V; - return getPointerBase(PtrOp); - } - return V; -} - -/// Push users of the given Instruction onto the given Worklist. -static void -PushDefUseChildren(Instruction *I, - SmallVectorImpl<Instruction *> &Worklist) { - // Push the def-use children onto the Worklist stack. - for (User *U : I->users()) - Worklist.push_back(cast<Instruction>(U)); -} - -void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) { - SmallVector<Instruction *, 16> Worklist; - PushDefUseChildren(PN, Worklist); - - SmallPtrSet<Instruction *, 8> Visited; - Visited.insert(PN); - while (!Worklist.empty()) { - Instruction *I = Worklist.pop_back_val(); - if (!Visited.insert(I).second) - continue; - - auto It = ValueExprMap.find_as(static_cast<Value *>(I)); - if (It != ValueExprMap.end()) { - const SCEV *Old = It->second; - - // Short-circuit the def-use traversal if the symbolic name - // ceases to appear in expressions. - if (Old != SymName && !hasOperand(Old, SymName)) - continue; - - // SCEVUnknown for a PHI either means that it has an unrecognized - // structure, it's a PHI that's in the progress of being computed - // by createNodeForPHI, or it's a single-value PHI. In the first case, - // additional loop trip count information isn't going to change anything. - // In the second case, createNodeForPHI will perform the necessary - // updates on its own when it gets to that point. In the third, we do - // want to forget the SCEVUnknown. - if (!isa<PHINode>(I) || - !isa<SCEVUnknown>(Old) || - (I != PN && Old == SymName)) { - eraseValueFromMap(It->first); - forgetMemoizedResults(Old); - } - } - - PushDefUseChildren(I, Worklist); - } -} - -namespace { - -/// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start -/// expression in case its Loop is L. If it is not L then -/// if IgnoreOtherLoops is true then use AddRec itself -/// otherwise rewrite cannot be done. -/// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. -class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> { -public: - static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, - bool IgnoreOtherLoops = true) { - SCEVInitRewriter Rewriter(L, SE); - const SCEV *Result = Rewriter.visit(S); - if (Rewriter.hasSeenLoopVariantSCEVUnknown()) - return SE.getCouldNotCompute(); - return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops - ? SE.getCouldNotCompute() - : Result; - } - - const SCEV *visitUnknown(const SCEVUnknown *Expr) { - if (!SE.isLoopInvariant(Expr, L)) - SeenLoopVariantSCEVUnknown = true; - return Expr; - } - - const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { - // Only re-write AddRecExprs for this loop. - if (Expr->getLoop() == L) - return Expr->getStart(); - SeenOtherLoops = true; - return Expr; - } - - bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } - - bool hasSeenOtherLoops() { return SeenOtherLoops; } - -private: - explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE) - : SCEVRewriteVisitor(SE), L(L) {} - - const Loop *L; - bool SeenLoopVariantSCEVUnknown = false; - bool SeenOtherLoops = false; -}; - -/// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post -/// increment expression in case its Loop is L. If it is not L then -/// use AddRec itself. -/// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. -class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> { -public: - static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) { - SCEVPostIncRewriter Rewriter(L, SE); - const SCEV *Result = Rewriter.visit(S); - return Rewriter.hasSeenLoopVariantSCEVUnknown() - ? SE.getCouldNotCompute() - : Result; - } - - const SCEV *visitUnknown(const SCEVUnknown *Expr) { - if (!SE.isLoopInvariant(Expr, L)) - SeenLoopVariantSCEVUnknown = true; - return Expr; - } - - const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { - // Only re-write AddRecExprs for this loop. - if (Expr->getLoop() == L) - return Expr->getPostIncExpr(SE); - SeenOtherLoops = true; - return Expr; - } - - bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } - - bool hasSeenOtherLoops() { return SeenOtherLoops; } - -private: - explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE) - : SCEVRewriteVisitor(SE), L(L) {} - - const Loop *L; - bool SeenLoopVariantSCEVUnknown = false; - bool SeenOtherLoops = false; -}; - -/// This class evaluates the compare condition by matching it against the -/// condition of loop latch. If there is a match we assume a true value -/// for the condition while building SCEV nodes. -class SCEVBackedgeConditionFolder - : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> { -public: - static const SCEV *rewrite(const SCEV *S, const Loop *L, - ScalarEvolution &SE) { - bool IsPosBECond = false; - Value *BECond = nullptr; - if (BasicBlock *Latch = L->getLoopLatch()) { - BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator()); - if (BI && BI->isConditional()) { - assert(BI->getSuccessor(0) != BI->getSuccessor(1) && - "Both outgoing branches should not target same header!"); - BECond = BI->getCondition(); - IsPosBECond = BI->getSuccessor(0) == L->getHeader(); - } else { - return S; - } - } - SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE); - return Rewriter.visit(S); - } - - const SCEV *visitUnknown(const SCEVUnknown *Expr) { - const SCEV *Result = Expr; - bool InvariantF = SE.isLoopInvariant(Expr, L); - - if (!InvariantF) { - Instruction *I = cast<Instruction>(Expr->getValue()); - switch (I->getOpcode()) { - case Instruction::Select: { - SelectInst *SI = cast<SelectInst>(I); - Optional<const SCEV *> Res = - compareWithBackedgeCondition(SI->getCondition()); - if (Res.hasValue()) { - bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne(); - Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue()); - } - break; - } - default: { - Optional<const SCEV *> Res = compareWithBackedgeCondition(I); - if (Res.hasValue()) - Result = Res.getValue(); - break; - } - } - } - return Result; - } - -private: - explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond, - bool IsPosBECond, ScalarEvolution &SE) - : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond), - IsPositiveBECond(IsPosBECond) {} - - Optional<const SCEV *> compareWithBackedgeCondition(Value *IC); - - const Loop *L; - /// Loop back condition. - Value *BackedgeCond = nullptr; - /// Set to true if loop back is on positive branch condition. - bool IsPositiveBECond; -}; - -Optional<const SCEV *> -SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) { - - // If value matches the backedge condition for loop latch, - // then return a constant evolution node based on loopback - // branch taken. - if (BackedgeCond == IC) - return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext())) - : SE.getZero(Type::getInt1Ty(SE.getContext())); - return None; -} - -class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> { -public: - static const SCEV *rewrite(const SCEV *S, const Loop *L, - ScalarEvolution &SE) { - SCEVShiftRewriter Rewriter(L, SE); - const SCEV *Result = Rewriter.visit(S); - return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); - } - - const SCEV *visitUnknown(const SCEVUnknown *Expr) { - // Only allow AddRecExprs for this loop. - if (!SE.isLoopInvariant(Expr, L)) - Valid = false; - return Expr; - } - - const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { - if (Expr->getLoop() == L && Expr->isAffine()) - return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE)); - Valid = false; - return Expr; - } - - bool isValid() { return Valid; } - -private: - explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE) - : SCEVRewriteVisitor(SE), L(L) {} - - const Loop *L; - bool Valid = true; -}; - -} // end anonymous namespace - -SCEV::NoWrapFlags -ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) { - if (!AR->isAffine()) - return SCEV::FlagAnyWrap; - - using OBO = OverflowingBinaryOperator; - - SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap; - - if (!AR->hasNoSignedWrap()) { - ConstantRange AddRecRange = getSignedRange(AR); - ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this)); - - auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( - Instruction::Add, IncRange, OBO::NoSignedWrap); - if (NSWRegion.contains(AddRecRange)) - Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW); - } - - if (!AR->hasNoUnsignedWrap()) { - ConstantRange AddRecRange = getUnsignedRange(AR); - ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this)); - - auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( - Instruction::Add, IncRange, OBO::NoUnsignedWrap); - if (NUWRegion.contains(AddRecRange)) - Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW); - } - - return Result; -} - -namespace { - -/// Represents an abstract binary operation. This may exist as a -/// normal instruction or constant expression, or may have been -/// derived from an expression tree. -struct BinaryOp { - unsigned Opcode; - Value *LHS; - Value *RHS; - bool IsNSW = false; - bool IsNUW = false; - - /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or - /// constant expression. - Operator *Op = nullptr; - - explicit BinaryOp(Operator *Op) - : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)), - Op(Op) { - if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) { - IsNSW = OBO->hasNoSignedWrap(); - IsNUW = OBO->hasNoUnsignedWrap(); - } - } - - explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false, - bool IsNUW = false) - : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {} -}; - -} // end anonymous namespace - -/// Try to map \p V into a BinaryOp, and return \c None on failure. -static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) { - auto *Op = dyn_cast<Operator>(V); - if (!Op) - return None; - - // Implementation detail: all the cleverness here should happen without - // creating new SCEV expressions -- our caller knowns tricks to avoid creating - // SCEV expressions when possible, and we should not break that. - - switch (Op->getOpcode()) { - case Instruction::Add: - case Instruction::Sub: - case Instruction::Mul: - case Instruction::UDiv: - case Instruction::URem: - case Instruction::And: - case Instruction::Or: - case Instruction::AShr: - case Instruction::Shl: - return BinaryOp(Op); - - case Instruction::Xor: - if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1))) - // If the RHS of the xor is a signmask, then this is just an add. - // Instcombine turns add of signmask into xor as a strength reduction step. - if (RHSC->getValue().isSignMask()) - return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1)); - return BinaryOp(Op); - - case Instruction::LShr: - // Turn logical shift right of a constant into a unsigned divide. - if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) { - uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth(); - - // If the shift count is not less than the bitwidth, the result of - // the shift is undefined. Don't try to analyze it, because the - // resolution chosen here may differ from the resolution chosen in - // other parts of the compiler. - if (SA->getValue().ult(BitWidth)) { - Constant *X = - ConstantInt::get(SA->getContext(), - APInt::getOneBitSet(BitWidth, SA->getZExtValue())); - return BinaryOp(Instruction::UDiv, Op->getOperand(0), X); - } - } - return BinaryOp(Op); - - case Instruction::ExtractValue: { - auto *EVI = cast<ExtractValueInst>(Op); - if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0) - break; - - auto *CI = dyn_cast<CallInst>(EVI->getAggregateOperand()); - if (!CI) - break; - - if (auto *F = CI->getCalledFunction()) - switch (F->getIntrinsicID()) { - case Intrinsic::sadd_with_overflow: - case Intrinsic::uadd_with_overflow: - if (!isOverflowIntrinsicNoWrap(cast<IntrinsicInst>(CI), DT)) - return BinaryOp(Instruction::Add, CI->getArgOperand(0), - CI->getArgOperand(1)); - - // Now that we know that all uses of the arithmetic-result component of - // CI are guarded by the overflow check, we can go ahead and pretend - // that the arithmetic is non-overflowing. - if (F->getIntrinsicID() == Intrinsic::sadd_with_overflow) - return BinaryOp(Instruction::Add, CI->getArgOperand(0), - CI->getArgOperand(1), /* IsNSW = */ true, - /* IsNUW = */ false); - else - return BinaryOp(Instruction::Add, CI->getArgOperand(0), - CI->getArgOperand(1), /* IsNSW = */ false, - /* IsNUW*/ true); - case Intrinsic::ssub_with_overflow: - case Intrinsic::usub_with_overflow: - if (!isOverflowIntrinsicNoWrap(cast<IntrinsicInst>(CI), DT)) - return BinaryOp(Instruction::Sub, CI->getArgOperand(0), - CI->getArgOperand(1)); - - // The same reasoning as sadd/uadd above. - if (F->getIntrinsicID() == Intrinsic::ssub_with_overflow) - return BinaryOp(Instruction::Sub, CI->getArgOperand(0), - CI->getArgOperand(1), /* IsNSW = */ true, - /* IsNUW = */ false); - else - return BinaryOp(Instruction::Sub, CI->getArgOperand(0), - CI->getArgOperand(1), /* IsNSW = */ false, - /* IsNUW = */ true); - case Intrinsic::smul_with_overflow: - case Intrinsic::umul_with_overflow: - return BinaryOp(Instruction::Mul, CI->getArgOperand(0), - CI->getArgOperand(1)); - default: - break; - } - break; - } - - default: - break; - } - - return None; -} - -/// Helper function to createAddRecFromPHIWithCasts. We have a phi -/// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via -/// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the -/// way. This function checks if \p Op, an operand of this SCEVAddExpr, -/// follows one of the following patterns: -/// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) -/// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) -/// If the SCEV expression of \p Op conforms with one of the expected patterns -/// we return the type of the truncation operation, and indicate whether the -/// truncated type should be treated as signed/unsigned by setting -/// \p Signed to true/false, respectively. -static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI, - bool &Signed, ScalarEvolution &SE) { - // The case where Op == SymbolicPHI (that is, with no type conversions on - // the way) is handled by the regular add recurrence creating logic and - // would have already been triggered in createAddRecForPHI. Reaching it here - // means that createAddRecFromPHI had failed for this PHI before (e.g., - // because one of the other operands of the SCEVAddExpr updating this PHI is - // not invariant). - // - // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in - // this case predicates that allow us to prove that Op == SymbolicPHI will - // be added. - if (Op == SymbolicPHI) - return nullptr; - - unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType()); - unsigned NewBits = SE.getTypeSizeInBits(Op->getType()); - if (SourceBits != NewBits) - return nullptr; - - const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op); - const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op); - if (!SExt && !ZExt) - return nullptr; - const SCEVTruncateExpr *Trunc = - SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand()) - : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand()); - if (!Trunc) - return nullptr; - const SCEV *X = Trunc->getOperand(); - if (X != SymbolicPHI) - return nullptr; - Signed = SExt != nullptr; - return Trunc->getType(); -} - -static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) { - if (!PN->getType()->isIntegerTy()) - return nullptr; - const Loop *L = LI.getLoopFor(PN->getParent()); - if (!L || L->getHeader() != PN->getParent()) - return nullptr; - return L; -} - -// Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the -// computation that updates the phi follows the following pattern: -// (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum -// which correspond to a phi->trunc->sext/zext->add->phi update chain. -// If so, try to see if it can be rewritten as an AddRecExpr under some -// Predicates. If successful, return them as a pair. Also cache the results -// of the analysis. -// -// Example usage scenario: -// Say the Rewriter is called for the following SCEV: -// 8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step) -// where: -// %X = phi i64 (%Start, %BEValue) -// It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X), -// and call this function with %SymbolicPHI = %X. -// -// The analysis will find that the value coming around the backedge has -// the following SCEV: -// BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step) -// Upon concluding that this matches the desired pattern, the function -// will return the pair {NewAddRec, SmallPredsVec} where: -// NewAddRec = {%Start,+,%Step} -// SmallPredsVec = {P1, P2, P3} as follows: -// P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw> -// P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64) -// P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64) -// The returned pair means that SymbolicPHI can be rewritten into NewAddRec -// under the predicates {P1,P2,P3}. -// This predicated rewrite will be cached in PredicatedSCEVRewrites: -// PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)} -// -// TODO's: -// -// 1) Extend the Induction descriptor to also support inductions that involve -// casts: When needed (namely, when we are called in the context of the -// vectorizer induction analysis), a Set of cast instructions will be -// populated by this method, and provided back to isInductionPHI. This is -// needed to allow the vectorizer to properly record them to be ignored by -// the cost model and to avoid vectorizing them (otherwise these casts, -// which are redundant under the runtime overflow checks, will be -// vectorized, which can be costly). -// -// 2) Support additional induction/PHISCEV patterns: We also want to support -// inductions where the sext-trunc / zext-trunc operations (partly) occur -// after the induction update operation (the induction increment): -// -// (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix) -// which correspond to a phi->add->trunc->sext/zext->phi update chain. -// -// (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix) -// which correspond to a phi->trunc->add->sext/zext->phi update chain. -// -// 3) Outline common code with createAddRecFromPHI to avoid duplication. -Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> -ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) { - SmallVector<const SCEVPredicate *, 3> Predicates; - - // *** Part1: Analyze if we have a phi-with-cast pattern for which we can - // return an AddRec expression under some predicate. - - auto *PN = cast<PHINode>(SymbolicPHI->getValue()); - const Loop *L = isIntegerLoopHeaderPHI(PN, LI); - assert(L && "Expecting an integer loop header phi"); - - // The loop may have multiple entrances or multiple exits; we can analyze - // this phi as an addrec if it has a unique entry value and a unique - // backedge value. - Value *BEValueV = nullptr, *StartValueV = nullptr; - for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { - Value *V = PN->getIncomingValue(i); - if (L->contains(PN->getIncomingBlock(i))) { - if (!BEValueV) { - BEValueV = V; - } else if (BEValueV != V) { - BEValueV = nullptr; - break; - } - } else if (!StartValueV) { - StartValueV = V; - } else if (StartValueV != V) { - StartValueV = nullptr; - break; - } - } - if (!BEValueV || !StartValueV) - return None; - - const SCEV *BEValue = getSCEV(BEValueV); - - // If the value coming around the backedge is an add with the symbolic - // value we just inserted, possibly with casts that we can ignore under - // an appropriate runtime guard, then we found a simple induction variable! - const auto *Add = dyn_cast<SCEVAddExpr>(BEValue); - if (!Add) - return None; - - // If there is a single occurrence of the symbolic value, possibly - // casted, replace it with a recurrence. - unsigned FoundIndex = Add->getNumOperands(); - Type *TruncTy = nullptr; - bool Signed; - for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) - if ((TruncTy = - isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this))) - if (FoundIndex == e) { - FoundIndex = i; - break; - } - - if (FoundIndex == Add->getNumOperands()) - return None; - - // Create an add with everything but the specified operand. - SmallVector<const SCEV *, 8> Ops; - for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) - if (i != FoundIndex) - Ops.push_back(Add->getOperand(i)); - const SCEV *Accum = getAddExpr(Ops); - - // The runtime checks will not be valid if the step amount is - // varying inside the loop. - if (!isLoopInvariant(Accum, L)) - return None; - - // *** Part2: Create the predicates - - // Analysis was successful: we have a phi-with-cast pattern for which we - // can return an AddRec expression under the following predicates: - // - // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum) - // fits within the truncated type (does not overflow) for i = 0 to n-1. - // P2: An Equal predicate that guarantees that - // Start = (Ext ix (Trunc iy (Start) to ix) to iy) - // P3: An Equal predicate that guarantees that - // Accum = (Ext ix (Trunc iy (Accum) to ix) to iy) - // - // As we next prove, the above predicates guarantee that: - // Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy) - // - // - // More formally, we want to prove that: - // Expr(i+1) = Start + (i+1) * Accum - // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum - // - // Given that: - // 1) Expr(0) = Start - // 2) Expr(1) = Start + Accum - // = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2 - // 3) Induction hypothesis (step i): - // Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum - // - // Proof: - // Expr(i+1) = - // = Start + (i+1)*Accum - // = (Start + i*Accum) + Accum - // = Expr(i) + Accum - // = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum - // :: from step i - // - // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum - // - // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) - // + (Ext ix (Trunc iy (Accum) to ix) to iy) - // + Accum :: from P3 - // - // = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy) - // + Accum :: from P1: Ext(x)+Ext(y)=>Ext(x+y) - // - // = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum - // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum - // - // By induction, the same applies to all iterations 1<=i<n: - // - - // Create a truncated addrec for which we will add a no overflow check (P1). - const SCEV *StartVal = getSCEV(StartValueV); - const SCEV *PHISCEV = - getAddRecExpr(getTruncateExpr(StartVal, TruncTy), - getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap); - - // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr. - // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV - // will be constant. - // - // If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't - // add P1. - if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) { - SCEVWrapPredicate::IncrementWrapFlags AddedFlags = - Signed ? SCEVWrapPredicate::IncrementNSSW - : SCEVWrapPredicate::IncrementNUSW; - const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags); - Predicates.push_back(AddRecPred); - } - - // Create the Equal Predicates P2,P3: - - // It is possible that the predicates P2 and/or P3 are computable at - // compile time due to StartVal and/or Accum being constants. - // If either one is, then we can check that now and escape if either P2 - // or P3 is false. - - // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy) - // for each of StartVal and Accum - auto getExtendedExpr = [&](const SCEV *Expr, - bool CreateSignExtend) -> const SCEV * { - assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant"); - const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy); - const SCEV *ExtendedExpr = - CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType()) - : getZeroExtendExpr(TruncatedExpr, Expr->getType()); - return ExtendedExpr; - }; - - // Given: - // ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy - // = getExtendedExpr(Expr) - // Determine whether the predicate P: Expr == ExtendedExpr - // is known to be false at compile time - auto PredIsKnownFalse = [&](const SCEV *Expr, - const SCEV *ExtendedExpr) -> bool { - return Expr != ExtendedExpr && - isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr); - }; - - const SCEV *StartExtended = getExtendedExpr(StartVal, Signed); - if (PredIsKnownFalse(StartVal, StartExtended)) { - LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";); - return None; - } - - // The Step is always Signed (because the overflow checks are either - // NSSW or NUSW) - const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true); - if (PredIsKnownFalse(Accum, AccumExtended)) { - LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";); - return None; - } - - auto AppendPredicate = [&](const SCEV *Expr, - const SCEV *ExtendedExpr) -> void { - if (Expr != ExtendedExpr && - !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) { - const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr); - LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred); - Predicates.push_back(Pred); - } - }; - - AppendPredicate(StartVal, StartExtended); - AppendPredicate(Accum, AccumExtended); - - // *** Part3: Predicates are ready. Now go ahead and create the new addrec in - // which the casts had been folded away. The caller can rewrite SymbolicPHI - // into NewAR if it will also add the runtime overflow checks specified in - // Predicates. - auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap); - - std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite = - std::make_pair(NewAR, Predicates); - // Remember the result of the analysis for this SCEV at this locayyytion. - PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite; - return PredRewrite; -} - -Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> -ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) { - auto *PN = cast<PHINode>(SymbolicPHI->getValue()); - const Loop *L = isIntegerLoopHeaderPHI(PN, LI); - if (!L) - return None; - - // Check to see if we already analyzed this PHI. - auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L}); - if (I != PredicatedSCEVRewrites.end()) { - std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite = - I->second; - // Analysis was done before and failed to create an AddRec: - if (Rewrite.first == SymbolicPHI) - return None; - // Analysis was done before and succeeded to create an AddRec under - // a predicate: - assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec"); - assert(!(Rewrite.second).empty() && "Expected to find Predicates"); - return Rewrite; - } - - Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> - Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI); - - // Record in the cache that the analysis failed - if (!Rewrite) { - SmallVector<const SCEVPredicate *, 3> Predicates; - PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates}; - return None; - } - - return Rewrite; -} - -// FIXME: This utility is currently required because the Rewriter currently -// does not rewrite this expression: -// {0, +, (sext ix (trunc iy to ix) to iy)} -// into {0, +, %step}, -// even when the following Equal predicate exists: -// "%step == (sext ix (trunc iy to ix) to iy)". -bool PredicatedScalarEvolution::areAddRecsEqualWithPreds( - const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const { - if (AR1 == AR2) - return true; - - auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool { - if (Expr1 != Expr2 && !Preds.implies(SE.getEqualPredicate(Expr1, Expr2)) && - !Preds.implies(SE.getEqualPredicate(Expr2, Expr1))) - return false; - return true; - }; - - if (!areExprsEqual(AR1->getStart(), AR2->getStart()) || - !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE))) - return false; - return true; -} - -/// A helper function for createAddRecFromPHI to handle simple cases. -/// -/// This function tries to find an AddRec expression for the simplest (yet most -/// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)). -/// If it fails, createAddRecFromPHI will use a more general, but slow, -/// technique for finding the AddRec expression. -const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN, - Value *BEValueV, - Value *StartValueV) { - const Loop *L = LI.getLoopFor(PN->getParent()); - assert(L && L->getHeader() == PN->getParent()); - assert(BEValueV && StartValueV); - - auto BO = MatchBinaryOp(BEValueV, DT); - if (!BO) - return nullptr; - - if (BO->Opcode != Instruction::Add) - return nullptr; - - const SCEV *Accum = nullptr; - if (BO->LHS == PN && L->isLoopInvariant(BO->RHS)) - Accum = getSCEV(BO->RHS); - else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS)) - Accum = getSCEV(BO->LHS); - - if (!Accum) - return nullptr; - - SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; - if (BO->IsNUW) - Flags = setFlags(Flags, SCEV::FlagNUW); - if (BO->IsNSW) - Flags = setFlags(Flags, SCEV::FlagNSW); - - const SCEV *StartVal = getSCEV(StartValueV); - const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); - - ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; - - // We can add Flags to the post-inc expression only if we - // know that it is *undefined behavior* for BEValueV to - // overflow. - if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) - if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) - (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); - - return PHISCEV; -} - -const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) { - const Loop *L = LI.getLoopFor(PN->getParent()); - if (!L || L->getHeader() != PN->getParent()) - return nullptr; - - // The loop may have multiple entrances or multiple exits; we can analyze - // this phi as an addrec if it has a unique entry value and a unique - // backedge value. - Value *BEValueV = nullptr, *StartValueV = nullptr; - for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { - Value *V = PN->getIncomingValue(i); - if (L->contains(PN->getIncomingBlock(i))) { - if (!BEValueV) { - BEValueV = V; - } else if (BEValueV != V) { - BEValueV = nullptr; - break; - } - } else if (!StartValueV) { - StartValueV = V; - } else if (StartValueV != V) { - StartValueV = nullptr; - break; - } - } - if (!BEValueV || !StartValueV) - return nullptr; - - assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && - "PHI node already processed?"); - - // First, try to find AddRec expression without creating a fictituos symbolic - // value for PN. - if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV)) - return S; - - // Handle PHI node value symbolically. - const SCEV *SymbolicName = getUnknown(PN); - ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName}); - - // Using this symbolic name for the PHI, analyze the value coming around - // the back-edge. - const SCEV *BEValue = getSCEV(BEValueV); - - // NOTE: If BEValue is loop invariant, we know that the PHI node just - // has a special value for the first iteration of the loop. - - // If the value coming around the backedge is an add with the symbolic - // value we just inserted, then we found a simple induction variable! - if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { - // If there is a single occurrence of the symbolic value, replace it - // with a recurrence. - unsigned FoundIndex = Add->getNumOperands(); - for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) - if (Add->getOperand(i) == SymbolicName) - if (FoundIndex == e) { - FoundIndex = i; - break; - } - - if (FoundIndex != Add->getNumOperands()) { - // Create an add with everything but the specified operand. - SmallVector<const SCEV *, 8> Ops; - for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) - if (i != FoundIndex) - Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i), - L, *this)); - const SCEV *Accum = getAddExpr(Ops); - - // This is not a valid addrec if the step amount is varying each - // loop iteration, but is not itself an addrec in this loop. - if (isLoopInvariant(Accum, L) || - (isa<SCEVAddRecExpr>(Accum) && - cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { - SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; - - if (auto BO = MatchBinaryOp(BEValueV, DT)) { - if (BO->Opcode == Instruction::Add && BO->LHS == PN) { - if (BO->IsNUW) - Flags = setFlags(Flags, SCEV::FlagNUW); - if (BO->IsNSW) - Flags = setFlags(Flags, SCEV::FlagNSW); - } - } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { - // If the increment is an inbounds GEP, then we know the address - // space cannot be wrapped around. We cannot make any guarantee - // about signed or unsigned overflow because pointers are - // unsigned but we may have a negative index from the base - // pointer. We can guarantee that no unsigned wrap occurs if the - // indices form a positive value. - if (GEP->isInBounds() && GEP->getOperand(0) == PN) { - Flags = setFlags(Flags, SCEV::FlagNW); - - const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); - if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) - Flags = setFlags(Flags, SCEV::FlagNUW); - } - - // We cannot transfer nuw and nsw flags from subtraction - // operations -- sub nuw X, Y is not the same as add nuw X, -Y - // for instance. - } - - const SCEV *StartVal = getSCEV(StartValueV); - const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); - - // Okay, for the entire analysis of this edge we assumed the PHI - // to be symbolic. We now need to go back and purge all of the - // entries for the scalars that use the symbolic expression. - forgetSymbolicName(PN, SymbolicName); - ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; - - // We can add Flags to the post-inc expression only if we - // know that it is *undefined behavior* for BEValueV to - // overflow. - if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) - if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) - (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); - - return PHISCEV; - } - } - } else { - // Otherwise, this could be a loop like this: - // i = 0; for (j = 1; ..; ++j) { .... i = j; } - // In this case, j = {1,+,1} and BEValue is j. - // Because the other in-value of i (0) fits the evolution of BEValue - // i really is an addrec evolution. - // - // We can generalize this saying that i is the shifted value of BEValue - // by one iteration: - // PHI(f(0), f({1,+,1})) --> f({0,+,1}) - const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this); - const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false); - if (Shifted != getCouldNotCompute() && - Start != getCouldNotCompute()) { - const SCEV *StartVal = getSCEV(StartValueV); - if (Start == StartVal) { - // Okay, for the entire analysis of this edge we assumed the PHI - // to be symbolic. We now need to go back and purge all of the - // entries for the scalars that use the symbolic expression. - forgetSymbolicName(PN, SymbolicName); - ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted; - return Shifted; - } - } - } - - // Remove the temporary PHI node SCEV that has been inserted while intending - // to create an AddRecExpr for this PHI node. We can not keep this temporary - // as it will prevent later (possibly simpler) SCEV expressions to be added - // to the ValueExprMap. - eraseValueFromMap(PN); - - return nullptr; -} - -// Checks if the SCEV S is available at BB. S is considered available at BB -// if S can be materialized at BB without introducing a fault. -static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S, - BasicBlock *BB) { - struct CheckAvailable { - bool TraversalDone = false; - bool Available = true; - - const Loop *L = nullptr; // The loop BB is in (can be nullptr) - BasicBlock *BB = nullptr; - DominatorTree &DT; - - CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT) - : L(L), BB(BB), DT(DT) {} - - bool setUnavailable() { - TraversalDone = true; - Available = false; - return false; - } - - bool follow(const SCEV *S) { - switch (S->getSCEVType()) { - case scConstant: case scTruncate: case scZeroExtend: case scSignExtend: - case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr: - // These expressions are available if their operand(s) is/are. - return true; - - case scAddRecExpr: { - // We allow add recurrences that are on the loop BB is in, or some - // outer loop. This guarantees availability because the value of the - // add recurrence at BB is simply the "current" value of the induction - // variable. We can relax this in the future; for instance an add - // recurrence on a sibling dominating loop is also available at BB. - const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop(); - if (L && (ARLoop == L || ARLoop->contains(L))) - return true; - - return setUnavailable(); - } - - case scUnknown: { - // For SCEVUnknown, we check for simple dominance. - const auto *SU = cast<SCEVUnknown>(S); - Value *V = SU->getValue(); - - if (isa<Argument>(V)) - return false; - - if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB)) - return false; - - return setUnavailable(); - } - - case scUDivExpr: - case scCouldNotCompute: - // We do not try to smart about these at all. - return setUnavailable(); - } - llvm_unreachable("switch should be fully covered!"); - } - - bool isDone() { return TraversalDone; } - }; - - CheckAvailable CA(L, BB, DT); - SCEVTraversal<CheckAvailable> ST(CA); - - ST.visitAll(S); - return CA.Available; -} - -// Try to match a control flow sequence that branches out at BI and merges back -// at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful -// match. -static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge, - Value *&C, Value *&LHS, Value *&RHS) { - C = BI->getCondition(); - - BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0)); - BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1)); - - if (!LeftEdge.isSingleEdge()) - return false; - - assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()"); - - Use &LeftUse = Merge->getOperandUse(0); - Use &RightUse = Merge->getOperandUse(1); - - if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) { - LHS = LeftUse; - RHS = RightUse; - return true; - } - - if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) { - LHS = RightUse; - RHS = LeftUse; - return true; - } - - return false; -} - -const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) { - auto IsReachable = - [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); }; - if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) { - const Loop *L = LI.getLoopFor(PN->getParent()); - - // We don't want to break LCSSA, even in a SCEV expression tree. - for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) - if (LI.getLoopFor(PN->getIncomingBlock(i)) != L) - return nullptr; - - // Try to match - // - // br %cond, label %left, label %right - // left: - // br label %merge - // right: - // br label %merge - // merge: - // V = phi [ %x, %left ], [ %y, %right ] - // - // as "select %cond, %x, %y" - - BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock(); - assert(IDom && "At least the entry block should dominate PN"); - - auto *BI = dyn_cast<BranchInst>(IDom->getTerminator()); - Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr; - - if (BI && BI->isConditional() && - BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) && - IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) && - IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent())) - return createNodeForSelectOrPHI(PN, Cond, LHS, RHS); - } - - return nullptr; -} - -const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { - if (const SCEV *S = createAddRecFromPHI(PN)) - return S; - - if (const SCEV *S = createNodeFromSelectLikePHI(PN)) - return S; - - // If the PHI has a single incoming value, follow that value, unless the - // PHI's incoming blocks are in a different loop, in which case doing so - // risks breaking LCSSA form. Instcombine would normally zap these, but - // it doesn't have DominatorTree information, so it may miss cases. - if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC})) - if (LI.replacementPreservesLCSSAForm(PN, V)) - return getSCEV(V); - - // If it's not a loop phi, we can't handle it yet. - return getUnknown(PN); -} - -const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I, - Value *Cond, - Value *TrueVal, - Value *FalseVal) { - // Handle "constant" branch or select. This can occur for instance when a - // loop pass transforms an inner loop and moves on to process the outer loop. - if (auto *CI = dyn_cast<ConstantInt>(Cond)) - return getSCEV(CI->isOne() ? TrueVal : FalseVal); - - // Try to match some simple smax or umax patterns. - auto *ICI = dyn_cast<ICmpInst>(Cond); - if (!ICI) - return getUnknown(I); - - Value *LHS = ICI->getOperand(0); - Value *RHS = ICI->getOperand(1); - - switch (ICI->getPredicate()) { - case ICmpInst::ICMP_SLT: - case ICmpInst::ICMP_SLE: - std::swap(LHS, RHS); - LLVM_FALLTHROUGH; - case ICmpInst::ICMP_SGT: - case ICmpInst::ICMP_SGE: - // a >s b ? a+x : b+x -> smax(a, b)+x - // a >s b ? b+x : a+x -> smin(a, b)+x - if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { - const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType()); - const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType()); - const SCEV *LA = getSCEV(TrueVal); - const SCEV *RA = getSCEV(FalseVal); - const SCEV *LDiff = getMinusSCEV(LA, LS); - const SCEV *RDiff = getMinusSCEV(RA, RS); - if (LDiff == RDiff) - return getAddExpr(getSMaxExpr(LS, RS), LDiff); - LDiff = getMinusSCEV(LA, RS); - RDiff = getMinusSCEV(RA, LS); - if (LDiff == RDiff) - return getAddExpr(getSMinExpr(LS, RS), LDiff); - } - break; - case ICmpInst::ICMP_ULT: - case ICmpInst::ICMP_ULE: - std::swap(LHS, RHS); - LLVM_FALLTHROUGH; - case ICmpInst::ICMP_UGT: - case ICmpInst::ICMP_UGE: - // a >u b ? a+x : b+x -> umax(a, b)+x - // a >u b ? b+x : a+x -> umin(a, b)+x - if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { - const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); - const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType()); - const SCEV *LA = getSCEV(TrueVal); - const SCEV *RA = getSCEV(FalseVal); - const SCEV *LDiff = getMinusSCEV(LA, LS); - const SCEV *RDiff = getMinusSCEV(RA, RS); - if (LDiff == RDiff) - return getAddExpr(getUMaxExpr(LS, RS), LDiff); - LDiff = getMinusSCEV(LA, RS); - RDiff = getMinusSCEV(RA, LS); - if (LDiff == RDiff) - return getAddExpr(getUMinExpr(LS, RS), LDiff); - } - break; - case ICmpInst::ICMP_NE: - // n != 0 ? n+x : 1+x -> umax(n, 1)+x - if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && - isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { - const SCEV *One = getOne(I->getType()); - const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); - const SCEV *LA = getSCEV(TrueVal); - const SCEV *RA = getSCEV(FalseVal); - const SCEV *LDiff = getMinusSCEV(LA, LS); - const SCEV *RDiff = getMinusSCEV(RA, One); - if (LDiff == RDiff) - return getAddExpr(getUMaxExpr(One, LS), LDiff); - } - break; - case ICmpInst::ICMP_EQ: - // n == 0 ? 1+x : n+x -> umax(n, 1)+x - if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && - isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { - const SCEV *One = getOne(I->getType()); - const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); - const SCEV *LA = getSCEV(TrueVal); - const SCEV *RA = getSCEV(FalseVal); - const SCEV *LDiff = getMinusSCEV(LA, One); - const SCEV *RDiff = getMinusSCEV(RA, LS); - if (LDiff == RDiff) - return getAddExpr(getUMaxExpr(One, LS), LDiff); - } - break; - default: - break; - } - - return getUnknown(I); -} - -/// Expand GEP instructions into add and multiply operations. This allows them -/// to be analyzed by regular SCEV code. -const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { - // Don't attempt to analyze GEPs over unsized objects. - if (!GEP->getSourceElementType()->isSized()) - return getUnknown(GEP); - - SmallVector<const SCEV *, 4> IndexExprs; - for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index) - IndexExprs.push_back(getSCEV(*Index)); - return getGEPExpr(GEP, IndexExprs); -} - -uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) { - if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) - return C->getAPInt().countTrailingZeros(); - - if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) - return std::min(GetMinTrailingZeros(T->getOperand()), - (uint32_t)getTypeSizeInBits(T->getType())); - - if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { - uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); - return OpRes == getTypeSizeInBits(E->getOperand()->getType()) - ? getTypeSizeInBits(E->getType()) - : OpRes; - } - - if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { - uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); - return OpRes == getTypeSizeInBits(E->getOperand()->getType()) - ? getTypeSizeInBits(E->getType()) - : OpRes; - } - - if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { - // The result is the min of all operands results. - uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); - for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) - MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); - return MinOpRes; - } - - if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { - // The result is the sum of all operands results. - uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); - uint32_t BitWidth = getTypeSizeInBits(M->getType()); - for (unsigned i = 1, e = M->getNumOperands(); - SumOpRes != BitWidth && i != e; ++i) - SumOpRes = - std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth); - return SumOpRes; - } - - if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { - // The result is the min of all operands results. - uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); - for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) - MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); - return MinOpRes; - } - - if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { - // The result is the min of all operands results. - uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); - for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) - MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); - return MinOpRes; - } - - if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { - // The result is the min of all operands results. - uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); - for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) - MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); - return MinOpRes; - } - - if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { - // For a SCEVUnknown, ask ValueTracking. - KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT); - return Known.countMinTrailingZeros(); - } - - // SCEVUDivExpr - return 0; -} - -uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { - auto I = MinTrailingZerosCache.find(S); - if (I != MinTrailingZerosCache.end()) - return I->second; - - uint32_t Result = GetMinTrailingZerosImpl(S); - auto InsertPair = MinTrailingZerosCache.insert({S, Result}); - assert(InsertPair.second && "Should insert a new key"); - return InsertPair.first->second; -} - -/// Helper method to assign a range to V from metadata present in the IR. -static Optional<ConstantRange> GetRangeFromMetadata(Value *V) { - if (Instruction *I = dyn_cast<Instruction>(V)) - if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) - return getConstantRangeFromMetadata(*MD); - - return None; -} - -/// Determine the range for a particular SCEV. If SignHint is -/// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges -/// with a "cleaner" unsigned (resp. signed) representation. -const ConstantRange & -ScalarEvolution::getRangeRef(const SCEV *S, - ScalarEvolution::RangeSignHint SignHint) { - DenseMap<const SCEV *, ConstantRange> &Cache = - SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges - : SignedRanges; - - // See if we've computed this range already. - DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); - if (I != Cache.end()) - return I->second; - - if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) - return setRange(C, SignHint, ConstantRange(C->getAPInt())); - - unsigned BitWidth = getTypeSizeInBits(S->getType()); - ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); - - // If the value has known zeros, the maximum value will have those known zeros - // as well. - uint32_t TZ = GetMinTrailingZeros(S); - if (TZ != 0) { - if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) - ConservativeResult = - ConstantRange(APInt::getMinValue(BitWidth), - APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); - else - ConservativeResult = ConstantRange( - APInt::getSignedMinValue(BitWidth), - APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); - } - - if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { - ConstantRange X = getRangeRef(Add->getOperand(0), SignHint); - for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) - X = X.add(getRangeRef(Add->getOperand(i), SignHint)); - return setRange(Add, SignHint, ConservativeResult.intersectWith(X)); - } - - if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { - ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint); - for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) - X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint)); - return setRange(Mul, SignHint, ConservativeResult.intersectWith(X)); - } - - if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { - ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint); - for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) - X = X.smax(getRangeRef(SMax->getOperand(i), SignHint)); - return setRange(SMax, SignHint, ConservativeResult.intersectWith(X)); - } - - if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { - ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint); - for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) - X = X.umax(getRangeRef(UMax->getOperand(i), SignHint)); - return setRange(UMax, SignHint, ConservativeResult.intersectWith(X)); - } - - if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { - ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint); - ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint); - return setRange(UDiv, SignHint, - ConservativeResult.intersectWith(X.udiv(Y))); - } - - if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { - ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint); - return setRange(ZExt, SignHint, - ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); - } - - if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { - ConstantRange X = getRangeRef(SExt->getOperand(), SignHint); - return setRange(SExt, SignHint, - ConservativeResult.intersectWith(X.signExtend(BitWidth))); - } - - if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { - ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint); - return setRange(Trunc, SignHint, - ConservativeResult.intersectWith(X.truncate(BitWidth))); - } - - if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { - // If there's no unsigned wrap, the value will never be less than its - // initial value. - if (AddRec->hasNoUnsignedWrap()) - if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart())) - if (!C->getValue()->isZero()) - ConservativeResult = ConservativeResult.intersectWith( - ConstantRange(C->getAPInt(), APInt(BitWidth, 0))); - - // If there's no signed wrap, and all the operands have the same sign or - // zero, the value won't ever change sign. - if (AddRec->hasNoSignedWrap()) { - bool AllNonNeg = true; - bool AllNonPos = true; - for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { - if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false; - if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false; - } - if (AllNonNeg) - ConservativeResult = ConservativeResult.intersectWith( - ConstantRange(APInt(BitWidth, 0), - APInt::getSignedMinValue(BitWidth))); - else if (AllNonPos) - ConservativeResult = ConservativeResult.intersectWith( - ConstantRange(APInt::getSignedMinValue(BitWidth), - APInt(BitWidth, 1))); - } - - // TODO: non-affine addrec - if (AddRec->isAffine()) { - const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); - if (!isa<SCEVCouldNotCompute>(MaxBECount) && - getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { - auto RangeFromAffine = getRangeForAffineAR( - AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, - BitWidth); - if (!RangeFromAffine.isFullSet()) - ConservativeResult = - ConservativeResult.intersectWith(RangeFromAffine); - - auto RangeFromFactoring = getRangeViaFactoring( - AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, - BitWidth); - if (!RangeFromFactoring.isFullSet()) - ConservativeResult = - ConservativeResult.intersectWith(RangeFromFactoring); - } - } - - return setRange(AddRec, SignHint, std::move(ConservativeResult)); - } - - if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { - // Check if the IR explicitly contains !range metadata. - Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); - if (MDRange.hasValue()) - ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue()); - - // Split here to avoid paying the compile-time cost of calling both - // computeKnownBits and ComputeNumSignBits. This restriction can be lifted - // if needed. - const DataLayout &DL = getDataLayout(); - if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) { - // For a SCEVUnknown, ask ValueTracking. - KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT); - if (Known.One != ~Known.Zero + 1) - ConservativeResult = - ConservativeResult.intersectWith(ConstantRange(Known.One, - ~Known.Zero + 1)); - } else { - assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED && - "generalize as needed!"); - unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT); - if (NS > 1) - ConservativeResult = ConservativeResult.intersectWith( - ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), - APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1)); - } - - // A range of Phi is a subset of union of all ranges of its input. - if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) { - // Make sure that we do not run over cycled Phis. - if (PendingPhiRanges.insert(Phi).second) { - ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false); - for (auto &Op : Phi->operands()) { - auto OpRange = getRangeRef(getSCEV(Op), SignHint); - RangeFromOps = RangeFromOps.unionWith(OpRange); - // No point to continue if we already have a full set. - if (RangeFromOps.isFullSet()) - break; - } - ConservativeResult = ConservativeResult.intersectWith(RangeFromOps); - bool Erased = PendingPhiRanges.erase(Phi); - assert(Erased && "Failed to erase Phi properly?"); - (void) Erased; - } - } - - return setRange(U, SignHint, std::move(ConservativeResult)); - } - - return setRange(S, SignHint, std::move(ConservativeResult)); -} - -// Given a StartRange, Step and MaxBECount for an expression compute a range of -// values that the expression can take. Initially, the expression has a value -// from StartRange and then is changed by Step up to MaxBECount times. Signed -// argument defines if we treat Step as signed or unsigned. -static ConstantRange getRangeForAffineARHelper(APInt Step, - const ConstantRange &StartRange, - const APInt &MaxBECount, - unsigned BitWidth, bool Signed) { - // If either Step or MaxBECount is 0, then the expression won't change, and we - // just need to return the initial range. - if (Step == 0 || MaxBECount == 0) - return StartRange; - - // If we don't know anything about the initial value (i.e. StartRange is - // FullRange), then we don't know anything about the final range either. - // Return FullRange. - if (StartRange.isFullSet()) - return ConstantRange(BitWidth, /* isFullSet = */ true); - - // If Step is signed and negative, then we use its absolute value, but we also - // note that we're moving in the opposite direction. - bool Descending = Signed && Step.isNegative(); - - if (Signed) - // This is correct even for INT_SMIN. Let's look at i8 to illustrate this: - // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128. - // This equations hold true due to the well-defined wrap-around behavior of - // APInt. - Step = Step.abs(); - - // Check if Offset is more than full span of BitWidth. If it is, the - // expression is guaranteed to overflow. - if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount)) - return ConstantRange(BitWidth, /* isFullSet = */ true); - - // Offset is by how much the expression can change. Checks above guarantee no - // overflow here. - APInt Offset = Step * MaxBECount; - - // Minimum value of the final range will match the minimal value of StartRange - // if the expression is increasing and will be decreased by Offset otherwise. - // Maximum value of the final range will match the maximal value of StartRange - // if the expression is decreasing and will be increased by Offset otherwise. - APInt StartLower = StartRange.getLower(); - APInt StartUpper = StartRange.getUpper() - 1; - APInt MovedBoundary = Descending ? (StartLower - std::move(Offset)) - : (StartUpper + std::move(Offset)); - - // It's possible that the new minimum/maximum value will fall into the initial - // range (due to wrap around). This means that the expression can take any - // value in this bitwidth, and we have to return full range. - if (StartRange.contains(MovedBoundary)) - return ConstantRange(BitWidth, /* isFullSet = */ true); - - APInt NewLower = - Descending ? std::move(MovedBoundary) : std::move(StartLower); - APInt NewUpper = - Descending ? std::move(StartUpper) : std::move(MovedBoundary); - NewUpper += 1; - - // If we end up with full range, return a proper full range. - if (NewLower == NewUpper) - return ConstantRange(BitWidth, /* isFullSet = */ true); - - // No overflow detected, return [StartLower, StartUpper + Offset + 1) range. - return ConstantRange(std::move(NewLower), std::move(NewUpper)); -} - -ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start, - const SCEV *Step, - const SCEV *MaxBECount, - unsigned BitWidth) { - assert(!isa<SCEVCouldNotCompute>(MaxBECount) && - getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && - "Precondition!"); - - MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType()); - APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount); - - // First, consider step signed. - ConstantRange StartSRange = getSignedRange(Start); - ConstantRange StepSRange = getSignedRange(Step); - - // If Step can be both positive and negative, we need to find ranges for the - // maximum absolute step values in both directions and union them. - ConstantRange SR = - getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange, - MaxBECountValue, BitWidth, /* Signed = */ true); - SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(), - StartSRange, MaxBECountValue, - BitWidth, /* Signed = */ true)); - - // Next, consider step unsigned. - ConstantRange UR = getRangeForAffineARHelper( - getUnsignedRangeMax(Step), getUnsignedRange(Start), - MaxBECountValue, BitWidth, /* Signed = */ false); - - // Finally, intersect signed and unsigned ranges. - return SR.intersectWith(UR); -} - -ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start, - const SCEV *Step, - const SCEV *MaxBECount, - unsigned BitWidth) { - // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q}) - // == RangeOf({A,+,P}) union RangeOf({B,+,Q}) - - struct SelectPattern { - Value *Condition = nullptr; - APInt TrueValue; - APInt FalseValue; - - explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth, - const SCEV *S) { - Optional<unsigned> CastOp; - APInt Offset(BitWidth, 0); - - assert(SE.getTypeSizeInBits(S->getType()) == BitWidth && - "Should be!"); - - // Peel off a constant offset: - if (auto *SA = dyn_cast<SCEVAddExpr>(S)) { - // In the future we could consider being smarter here and handle - // {Start+Step,+,Step} too. - if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0))) - return; - - Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt(); - S = SA->getOperand(1); - } - - // Peel off a cast operation - if (auto *SCast = dyn_cast<SCEVCastExpr>(S)) { - CastOp = SCast->getSCEVType(); - S = SCast->getOperand(); - } - - using namespace llvm::PatternMatch; - - auto *SU = dyn_cast<SCEVUnknown>(S); - const APInt *TrueVal, *FalseVal; - if (!SU || - !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal), - m_APInt(FalseVal)))) { - Condition = nullptr; - return; - } - - TrueValue = *TrueVal; - FalseValue = *FalseVal; - - // Re-apply the cast we peeled off earlier - if (CastOp.hasValue()) - switch (*CastOp) { - default: - llvm_unreachable("Unknown SCEV cast type!"); - - case scTruncate: - TrueValue = TrueValue.trunc(BitWidth); - FalseValue = FalseValue.trunc(BitWidth); - break; - case scZeroExtend: - TrueValue = TrueValue.zext(BitWidth); - FalseValue = FalseValue.zext(BitWidth); - break; - case scSignExtend: - TrueValue = TrueValue.sext(BitWidth); - FalseValue = FalseValue.sext(BitWidth); - break; - } - - // Re-apply the constant offset we peeled off earlier - TrueValue += Offset; - FalseValue += Offset; - } - - bool isRecognized() { return Condition != nullptr; } - }; - - SelectPattern StartPattern(*this, BitWidth, Start); - if (!StartPattern.isRecognized()) - return ConstantRange(BitWidth, /* isFullSet = */ true); - - SelectPattern StepPattern(*this, BitWidth, Step); - if (!StepPattern.isRecognized()) - return ConstantRange(BitWidth, /* isFullSet = */ true); - - if (StartPattern.Condition != StepPattern.Condition) { - // We don't handle this case today; but we could, by considering four - // possibilities below instead of two. I'm not sure if there are cases where - // that will help over what getRange already does, though. - return ConstantRange(BitWidth, /* isFullSet = */ true); - } - - // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to - // construct arbitrary general SCEV expressions here. This function is called - // from deep in the call stack, and calling getSCEV (on a sext instruction, - // say) can end up caching a suboptimal value. - - // FIXME: without the explicit `this` receiver below, MSVC errors out with - // C2352 and C2512 (otherwise it isn't needed). - - const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue); - const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue); - const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue); - const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue); - - ConstantRange TrueRange = - this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth); - ConstantRange FalseRange = - this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth); - - return TrueRange.unionWith(FalseRange); -} - -SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { - if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; - const BinaryOperator *BinOp = cast<BinaryOperator>(V); - - // Return early if there are no flags to propagate to the SCEV. - SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; - if (BinOp->hasNoUnsignedWrap()) - Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); - if (BinOp->hasNoSignedWrap()) - Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); - if (Flags == SCEV::FlagAnyWrap) - return SCEV::FlagAnyWrap; - - return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap; -} - -bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) { - // Here we check that I is in the header of the innermost loop containing I, - // since we only deal with instructions in the loop header. The actual loop we - // need to check later will come from an add recurrence, but getting that - // requires computing the SCEV of the operands, which can be expensive. This - // check we can do cheaply to rule out some cases early. - Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent()); - if (InnermostContainingLoop == nullptr || - InnermostContainingLoop->getHeader() != I->getParent()) - return false; - - // Only proceed if we can prove that I does not yield poison. - if (!programUndefinedIfFullPoison(I)) - return false; - - // At this point we know that if I is executed, then it does not wrap - // according to at least one of NSW or NUW. If I is not executed, then we do - // not know if the calculation that I represents would wrap. Multiple - // instructions can map to the same SCEV. If we apply NSW or NUW from I to - // the SCEV, we must guarantee no wrapping for that SCEV also when it is - // derived from other instructions that map to the same SCEV. We cannot make - // that guarantee for cases where I is not executed. So we need to find the - // loop that I is considered in relation to and prove that I is executed for - // every iteration of that loop. That implies that the value that I - // calculates does not wrap anywhere in the loop, so then we can apply the - // flags to the SCEV. - // - // We check isLoopInvariant to disambiguate in case we are adding recurrences - // from different loops, so that we know which loop to prove that I is - // executed in. - for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) { - // I could be an extractvalue from a call to an overflow intrinsic. - // TODO: We can do better here in some cases. - if (!isSCEVable(I->getOperand(OpIndex)->getType())) - return false; - const SCEV *Op = getSCEV(I->getOperand(OpIndex)); - if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { - bool AllOtherOpsLoopInvariant = true; - for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands(); - ++OtherOpIndex) { - if (OtherOpIndex != OpIndex) { - const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex)); - if (!isLoopInvariant(OtherOp, AddRec->getLoop())) { - AllOtherOpsLoopInvariant = false; - break; - } - } - } - if (AllOtherOpsLoopInvariant && - isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop())) - return true; - } - } - return false; -} - -bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) { - // If we know that \c I can never be poison period, then that's enough. - if (isSCEVExprNeverPoison(I)) - return true; - - // For an add recurrence specifically, we assume that infinite loops without - // side effects are undefined behavior, and then reason as follows: - // - // If the add recurrence is poison in any iteration, it is poison on all - // future iterations (since incrementing poison yields poison). If the result - // of the add recurrence is fed into the loop latch condition and the loop - // does not contain any throws or exiting blocks other than the latch, we now - // have the ability to "choose" whether the backedge is taken or not (by - // choosing a sufficiently evil value for the poison feeding into the branch) - // for every iteration including and after the one in which \p I first became - // poison. There are two possibilities (let's call the iteration in which \p - // I first became poison as K): - // - // 1. In the set of iterations including and after K, the loop body executes - // no side effects. In this case executing the backege an infinte number - // of times will yield undefined behavior. - // - // 2. In the set of iterations including and after K, the loop body executes - // at least one side effect. In this case, that specific instance of side - // effect is control dependent on poison, which also yields undefined - // behavior. - - auto *ExitingBB = L->getExitingBlock(); - auto *LatchBB = L->getLoopLatch(); - if (!ExitingBB || !LatchBB || ExitingBB != LatchBB) - return false; - - SmallPtrSet<const Instruction *, 16> Pushed; - SmallVector<const Instruction *, 8> PoisonStack; - - // We start by assuming \c I, the post-inc add recurrence, is poison. Only - // things that are known to be fully poison under that assumption go on the - // PoisonStack. - Pushed.insert(I); - PoisonStack.push_back(I); - - bool LatchControlDependentOnPoison = false; - while (!PoisonStack.empty() && !LatchControlDependentOnPoison) { - const Instruction *Poison = PoisonStack.pop_back_val(); - - for (auto *PoisonUser : Poison->users()) { - if (propagatesFullPoison(cast<Instruction>(PoisonUser))) { - if (Pushed.insert(cast<Instruction>(PoisonUser)).second) - PoisonStack.push_back(cast<Instruction>(PoisonUser)); - } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) { - assert(BI->isConditional() && "Only possibility!"); - if (BI->getParent() == LatchBB) { - LatchControlDependentOnPoison = true; - break; - } - } - } - } - - return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L); -} - -ScalarEvolution::LoopProperties -ScalarEvolution::getLoopProperties(const Loop *L) { - using LoopProperties = ScalarEvolution::LoopProperties; - - auto Itr = LoopPropertiesCache.find(L); - if (Itr == LoopPropertiesCache.end()) { - auto HasSideEffects = [](Instruction *I) { - if (auto *SI = dyn_cast<StoreInst>(I)) - return !SI->isSimple(); - - return I->mayHaveSideEffects(); - }; - - LoopProperties LP = {/* HasNoAbnormalExits */ true, - /*HasNoSideEffects*/ true}; - - for (auto *BB : L->getBlocks()) - for (auto &I : *BB) { - if (!isGuaranteedToTransferExecutionToSuccessor(&I)) - LP.HasNoAbnormalExits = false; - if (HasSideEffects(&I)) - LP.HasNoSideEffects = false; - if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects) - break; // We're already as pessimistic as we can get. - } - - auto InsertPair = LoopPropertiesCache.insert({L, LP}); - assert(InsertPair.second && "We just checked!"); - Itr = InsertPair.first; - } - - return Itr->second; -} - -const SCEV *ScalarEvolution::createSCEV(Value *V) { - if (!isSCEVable(V->getType())) - return getUnknown(V); - - if (Instruction *I = dyn_cast<Instruction>(V)) { - // Don't attempt to analyze instructions in blocks that aren't - // reachable. Such instructions don't matter, and they aren't required - // to obey basic rules for definitions dominating uses which this - // analysis depends on. - if (!DT.isReachableFromEntry(I->getParent())) - return getUnknown(V); - } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) - return getConstant(CI); - else if (isa<ConstantPointerNull>(V)) - return getZero(V->getType()); - else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) - return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee()); - else if (!isa<ConstantExpr>(V)) - return getUnknown(V); - - Operator *U = cast<Operator>(V); - if (auto BO = MatchBinaryOp(U, DT)) { - switch (BO->Opcode) { - case Instruction::Add: { - // The simple thing to do would be to just call getSCEV on both operands - // and call getAddExpr with the result. However if we're looking at a - // bunch of things all added together, this can be quite inefficient, - // because it leads to N-1 getAddExpr calls for N ultimate operands. - // Instead, gather up all the operands and make a single getAddExpr call. - // LLVM IR canonical form means we need only traverse the left operands. - SmallVector<const SCEV *, 4> AddOps; - do { - if (BO->Op) { - if (auto *OpSCEV = getExistingSCEV(BO->Op)) { - AddOps.push_back(OpSCEV); - break; - } - - // If a NUW or NSW flag can be applied to the SCEV for this - // addition, then compute the SCEV for this addition by itself - // with a separate call to getAddExpr. We need to do that - // instead of pushing the operands of the addition onto AddOps, - // since the flags are only known to apply to this particular - // addition - they may not apply to other additions that can be - // formed with operands from AddOps. - const SCEV *RHS = getSCEV(BO->RHS); - SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); - if (Flags != SCEV::FlagAnyWrap) { - const SCEV *LHS = getSCEV(BO->LHS); - if (BO->Opcode == Instruction::Sub) - AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); - else - AddOps.push_back(getAddExpr(LHS, RHS, Flags)); - break; - } - } - - if (BO->Opcode == Instruction::Sub) - AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS))); - else - AddOps.push_back(getSCEV(BO->RHS)); - - auto NewBO = MatchBinaryOp(BO->LHS, DT); - if (!NewBO || (NewBO->Opcode != Instruction::Add && - NewBO->Opcode != Instruction::Sub)) { - AddOps.push_back(getSCEV(BO->LHS)); - break; - } - BO = NewBO; - } while (true); - - return getAddExpr(AddOps); - } - - case Instruction::Mul: { - SmallVector<const SCEV *, 4> MulOps; - do { - if (BO->Op) { - if (auto *OpSCEV = getExistingSCEV(BO->Op)) { - MulOps.push_back(OpSCEV); - break; - } - - SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); - if (Flags != SCEV::FlagAnyWrap) { - MulOps.push_back( - getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags)); - break; - } - } - - MulOps.push_back(getSCEV(BO->RHS)); - auto NewBO = MatchBinaryOp(BO->LHS, DT); - if (!NewBO || NewBO->Opcode != Instruction::Mul) { - MulOps.push_back(getSCEV(BO->LHS)); - break; - } - BO = NewBO; - } while (true); - - return getMulExpr(MulOps); - } - case Instruction::UDiv: - return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); - case Instruction::URem: - return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); - case Instruction::Sub: { - SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; - if (BO->Op) - Flags = getNoWrapFlagsFromUB(BO->Op); - return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags); - } - case Instruction::And: - // For an expression like x&255 that merely masks off the high bits, - // use zext(trunc(x)) as the SCEV expression. - if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { - if (CI->isZero()) - return getSCEV(BO->RHS); - if (CI->isMinusOne()) - return getSCEV(BO->LHS); - const APInt &A = CI->getValue(); - - // Instcombine's ShrinkDemandedConstant may strip bits out of - // constants, obscuring what would otherwise be a low-bits mask. - // Use computeKnownBits to compute what ShrinkDemandedConstant - // knew about to reconstruct a low-bits mask value. - unsigned LZ = A.countLeadingZeros(); - unsigned TZ = A.countTrailingZeros(); - unsigned BitWidth = A.getBitWidth(); - KnownBits Known(BitWidth); - computeKnownBits(BO->LHS, Known, getDataLayout(), - 0, &AC, nullptr, &DT); - - APInt EffectiveMask = - APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); - if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) { - const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ)); - const SCEV *LHS = getSCEV(BO->LHS); - const SCEV *ShiftedLHS = nullptr; - if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) { - if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) { - // For an expression like (x * 8) & 8, simplify the multiply. - unsigned MulZeros = OpC->getAPInt().countTrailingZeros(); - unsigned GCD = std::min(MulZeros, TZ); - APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD); - SmallVector<const SCEV*, 4> MulOps; - MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD))); - MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end()); - auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags()); - ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt)); - } - } - if (!ShiftedLHS) - ShiftedLHS = getUDivExpr(LHS, MulCount); - return getMulExpr( - getZeroExtendExpr( - getTruncateExpr(ShiftedLHS, - IntegerType::get(getContext(), BitWidth - LZ - TZ)), - BO->LHS->getType()), - MulCount); - } - } - break; - - case Instruction::Or: - // If the RHS of the Or is a constant, we may have something like: - // X*4+1 which got turned into X*4|1. Handle this as an Add so loop - // optimizations will transparently handle this case. - // - // In order for this transformation to be safe, the LHS must be of the - // form X*(2^n) and the Or constant must be less than 2^n. - if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { - const SCEV *LHS = getSCEV(BO->LHS); - const APInt &CIVal = CI->getValue(); - if (GetMinTrailingZeros(LHS) >= - (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { - // Build a plain add SCEV. - const SCEV *S = getAddExpr(LHS, getSCEV(CI)); - // If the LHS of the add was an addrec and it has no-wrap flags, - // transfer the no-wrap flags, since an or won't introduce a wrap. - if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) { - const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS); - const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags( - OldAR->getNoWrapFlags()); - } - return S; - } - } - break; - - case Instruction::Xor: - if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { - // If the RHS of xor is -1, then this is a not operation. - if (CI->isMinusOne()) - return getNotSCEV(getSCEV(BO->LHS)); - - // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. - // This is a variant of the check for xor with -1, and it handles - // the case where instcombine has trimmed non-demanded bits out - // of an xor with -1. - if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS)) - if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1))) - if (LBO->getOpcode() == Instruction::And && - LCI->getValue() == CI->getValue()) - if (const SCEVZeroExtendExpr *Z = - dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) { - Type *UTy = BO->LHS->getType(); - const SCEV *Z0 = Z->getOperand(); - Type *Z0Ty = Z0->getType(); - unsigned Z0TySize = getTypeSizeInBits(Z0Ty); - - // If C is a low-bits mask, the zero extend is serving to - // mask off the high bits. Complement the operand and - // re-apply the zext. - if (CI->getValue().isMask(Z0TySize)) - return getZeroExtendExpr(getNotSCEV(Z0), UTy); - - // If C is a single bit, it may be in the sign-bit position - // before the zero-extend. In this case, represent the xor - // using an add, which is equivalent, and re-apply the zext. - APInt Trunc = CI->getValue().trunc(Z0TySize); - if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && - Trunc.isSignMask()) - return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), - UTy); - } - } - break; - - case Instruction::Shl: - // Turn shift left of a constant amount into a multiply. - if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) { - uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth(); - - // If the shift count is not less than the bitwidth, the result of - // the shift is undefined. Don't try to analyze it, because the - // resolution chosen here may differ from the resolution chosen in - // other parts of the compiler. - if (SA->getValue().uge(BitWidth)) - break; - - // It is currently not resolved how to interpret NSW for left - // shift by BitWidth - 1, so we avoid applying flags in that - // case. Remove this check (or this comment) once the situation - // is resolved. See - // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html - // and http://reviews.llvm.org/D8890 . - auto Flags = SCEV::FlagAnyWrap; - if (BO->Op && SA->getValue().ult(BitWidth - 1)) - Flags = getNoWrapFlagsFromUB(BO->Op); - - Constant *X = ConstantInt::get( - getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue())); - return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags); - } - break; - - case Instruction::AShr: { - // AShr X, C, where C is a constant. - ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS); - if (!CI) - break; - - Type *OuterTy = BO->LHS->getType(); - uint64_t BitWidth = getTypeSizeInBits(OuterTy); - // If the shift count is not less than the bitwidth, the result of - // the shift is undefined. Don't try to analyze it, because the - // resolution chosen here may differ from the resolution chosen in - // other parts of the compiler. - if (CI->getValue().uge(BitWidth)) - break; - - if (CI->isZero()) - return getSCEV(BO->LHS); // shift by zero --> noop - - uint64_t AShrAmt = CI->getZExtValue(); - Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt); - - Operator *L = dyn_cast<Operator>(BO->LHS); - if (L && L->getOpcode() == Instruction::Shl) { - // X = Shl A, n - // Y = AShr X, m - // Both n and m are constant. - - const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0)); - if (L->getOperand(1) == BO->RHS) - // For a two-shift sext-inreg, i.e. n = m, - // use sext(trunc(x)) as the SCEV expression. - return getSignExtendExpr( - getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy); - - ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1)); - if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) { - uint64_t ShlAmt = ShlAmtCI->getZExtValue(); - if (ShlAmt > AShrAmt) { - // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV - // expression. We already checked that ShlAmt < BitWidth, so - // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as - // ShlAmt - AShrAmt < Amt. - APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt, - ShlAmt - AShrAmt); - return getSignExtendExpr( - getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy), - getConstant(Mul)), OuterTy); - } - } - } - break; - } - } - } - - switch (U->getOpcode()) { - case Instruction::Trunc: - return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); - - case Instruction::ZExt: - return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); - - case Instruction::SExt: - if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) { - // The NSW flag of a subtract does not always survive the conversion to - // A + (-1)*B. By pushing sign extension onto its operands we are much - // more likely to preserve NSW and allow later AddRec optimisations. - // - // NOTE: This is effectively duplicating this logic from getSignExtend: - // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> - // but by that point the NSW information has potentially been lost. - if (BO->Opcode == Instruction::Sub && BO->IsNSW) { - Type *Ty = U->getType(); - auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty); - auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty); - return getMinusSCEV(V1, V2, SCEV::FlagNSW); - } - } - return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); - - case Instruction::BitCast: - // BitCasts are no-op casts so we just eliminate the cast. - if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) - return getSCEV(U->getOperand(0)); - break; - - // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can - // lead to pointer expressions which cannot safely be expanded to GEPs, - // because ScalarEvolution doesn't respect the GEP aliasing rules when - // simplifying integer expressions. - - case Instruction::GetElementPtr: - return createNodeForGEP(cast<GEPOperator>(U)); - - case Instruction::PHI: - return createNodeForPHI(cast<PHINode>(U)); - - case Instruction::Select: - // U can also be a select constant expr, which let fall through. Since - // createNodeForSelect only works for a condition that is an `ICmpInst`, and - // constant expressions cannot have instructions as operands, we'd have - // returned getUnknown for a select constant expressions anyway. - if (isa<Instruction>(U)) - return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0), - U->getOperand(1), U->getOperand(2)); - break; - - case Instruction::Call: - case Instruction::Invoke: - if (Value *RV = CallSite(U).getReturnedArgOperand()) - return getSCEV(RV); - break; - } - - return getUnknown(V); -} - -//===----------------------------------------------------------------------===// -// Iteration Count Computation Code -// - -static unsigned getConstantTripCount(const SCEVConstant *ExitCount) { - if (!ExitCount) - return 0; - - ConstantInt *ExitConst = ExitCount->getValue(); - - // Guard against huge trip counts. - if (ExitConst->getValue().getActiveBits() > 32) - return 0; - - // In case of integer overflow, this returns 0, which is correct. - return ((unsigned)ExitConst->getZExtValue()) + 1; -} - -unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) { - if (BasicBlock *ExitingBB = L->getExitingBlock()) - return getSmallConstantTripCount(L, ExitingBB); - - // No trip count information for multiple exits. - return 0; -} - -unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L, - BasicBlock *ExitingBlock) { - assert(ExitingBlock && "Must pass a non-null exiting block!"); - assert(L->isLoopExiting(ExitingBlock) && - "Exiting block must actually branch out of the loop!"); - const SCEVConstant *ExitCount = - dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); - return getConstantTripCount(ExitCount); -} - -unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) { - const auto *MaxExitCount = - dyn_cast<SCEVConstant>(getMaxBackedgeTakenCount(L)); - return getConstantTripCount(MaxExitCount); -} - -unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) { - if (BasicBlock *ExitingBB = L->getExitingBlock()) - return getSmallConstantTripMultiple(L, ExitingBB); - - // No trip multiple information for multiple exits. - return 0; -} - -/// Returns the largest constant divisor of the trip count of this loop as a -/// normal unsigned value, if possible. This means that the actual trip count is -/// always a multiple of the returned value (don't forget the trip count could -/// very well be zero as well!). -/// -/// Returns 1 if the trip count is unknown or not guaranteed to be the -/// multiple of a constant (which is also the case if the trip count is simply -/// constant, use getSmallConstantTripCount for that case), Will also return 1 -/// if the trip count is very large (>= 2^32). -/// -/// As explained in the comments for getSmallConstantTripCount, this assumes -/// that control exits the loop via ExitingBlock. -unsigned -ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, - BasicBlock *ExitingBlock) { - assert(ExitingBlock && "Must pass a non-null exiting block!"); - assert(L->isLoopExiting(ExitingBlock) && - "Exiting block must actually branch out of the loop!"); - const SCEV *ExitCount = getExitCount(L, ExitingBlock); - if (ExitCount == getCouldNotCompute()) - return 1; - - // Get the trip count from the BE count by adding 1. - const SCEV *TCExpr = getAddExpr(ExitCount, getOne(ExitCount->getType())); - - const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr); - if (!TC) - // Attempt to factor more general cases. Returns the greatest power of - // two divisor. If overflow happens, the trip count expression is still - // divisible by the greatest power of 2 divisor returned. - return 1U << std::min((uint32_t)31, GetMinTrailingZeros(TCExpr)); - - ConstantInt *Result = TC->getValue(); - - // Guard against huge trip counts (this requires checking - // for zero to handle the case where the trip count == -1 and the - // addition wraps). - if (!Result || Result->getValue().getActiveBits() > 32 || - Result->getValue().getActiveBits() == 0) - return 1; - - return (unsigned)Result->getZExtValue(); -} - -/// Get the expression for the number of loop iterations for which this loop is -/// guaranteed not to exit via ExitingBlock. Otherwise return -/// SCEVCouldNotCompute. -const SCEV *ScalarEvolution::getExitCount(const Loop *L, - BasicBlock *ExitingBlock) { - return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); -} - -const SCEV * -ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L, - SCEVUnionPredicate &Preds) { - return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds); -} - -const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) { - return getBackedgeTakenInfo(L).getExact(L, this); -} - -/// Similar to getBackedgeTakenCount, except return the least SCEV value that is -/// known never to be less than the actual backedge taken count. -const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { - return getBackedgeTakenInfo(L).getMax(this); -} - -bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) { - return getBackedgeTakenInfo(L).isMaxOrZero(this); -} - -/// Push PHI nodes in the header of the given loop onto the given Worklist. -static void -PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { - BasicBlock *Header = L->getHeader(); - - // Push all Loop-header PHIs onto the Worklist stack. - for (PHINode &PN : Header->phis()) - Worklist.push_back(&PN); -} - -const ScalarEvolution::BackedgeTakenInfo & -ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) { - auto &BTI = getBackedgeTakenInfo(L); - if (BTI.hasFullInfo()) - return BTI; - - auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); - - if (!Pair.second) - return Pair.first->second; - - BackedgeTakenInfo Result = - computeBackedgeTakenCount(L, /*AllowPredicates=*/true); - - return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result); -} - -const ScalarEvolution::BackedgeTakenInfo & -ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { - // Initially insert an invalid entry for this loop. If the insertion - // succeeds, proceed to actually compute a backedge-taken count and - // update the value. The temporary CouldNotCompute value tells SCEV - // code elsewhere that it shouldn't attempt to request a new - // backedge-taken count, which could result in infinite recursion. - std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = - BackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); - if (!Pair.second) - return Pair.first->second; - - // computeBackedgeTakenCount may allocate memory for its result. Inserting it - // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result - // must be cleared in this scope. - BackedgeTakenInfo Result = computeBackedgeTakenCount(L); - - // In product build, there are no usage of statistic. - (void)NumTripCountsComputed; - (void)NumTripCountsNotComputed; -#if LLVM_ENABLE_STATS || !defined(NDEBUG) - const SCEV *BEExact = Result.getExact(L, this); - if (BEExact != getCouldNotCompute()) { - assert(isLoopInvariant(BEExact, L) && - isLoopInvariant(Result.getMax(this), L) && - "Computed backedge-taken count isn't loop invariant for loop!"); - ++NumTripCountsComputed; - } - else if (Result.getMax(this) == getCouldNotCompute() && - isa<PHINode>(L->getHeader()->begin())) { - // Only count loops that have phi nodes as not being computable. - ++NumTripCountsNotComputed; - } -#endif // LLVM_ENABLE_STATS || !defined(NDEBUG) - - // Now that we know more about the trip count for this loop, forget any - // existing SCEV values for PHI nodes in this loop since they are only - // conservative estimates made without the benefit of trip count - // information. This is similar to the code in forgetLoop, except that - // it handles SCEVUnknown PHI nodes specially. - if (Result.hasAnyInfo()) { - SmallVector<Instruction *, 16> Worklist; - PushLoopPHIs(L, Worklist); - - SmallPtrSet<Instruction *, 8> Discovered; - while (!Worklist.empty()) { - Instruction *I = Worklist.pop_back_val(); - - ValueExprMapType::iterator It = - ValueExprMap.find_as(static_cast<Value *>(I)); - if (It != ValueExprMap.end()) { - const SCEV *Old = It->second; - - // SCEVUnknown for a PHI either means that it has an unrecognized - // structure, or it's a PHI that's in the progress of being computed - // by createNodeForPHI. In the former case, additional loop trip - // count information isn't going to change anything. In the later - // case, createNodeForPHI will perform the necessary updates on its - // own when it gets to that point. - if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { - eraseValueFromMap(It->first); - forgetMemoizedResults(Old); - } - if (PHINode *PN = dyn_cast<PHINode>(I)) - ConstantEvolutionLoopExitValue.erase(PN); - } - - // Since we don't need to invalidate anything for correctness and we're - // only invalidating to make SCEV's results more precise, we get to stop - // early to avoid invalidating too much. This is especially important in - // cases like: - // - // %v = f(pn0, pn1) // pn0 and pn1 used through some other phi node - // loop0: - // %pn0 = phi - // ... - // loop1: - // %pn1 = phi - // ... - // - // where both loop0 and loop1's backedge taken count uses the SCEV - // expression for %v. If we don't have the early stop below then in cases - // like the above, getBackedgeTakenInfo(loop1) will clear out the trip - // count for loop0 and getBackedgeTakenInfo(loop0) will clear out the trip - // count for loop1, effectively nullifying SCEV's trip count cache. - for (auto *U : I->users()) - if (auto *I = dyn_cast<Instruction>(U)) { - auto *LoopForUser = LI.getLoopFor(I->getParent()); - if (LoopForUser && L->contains(LoopForUser) && - Discovered.insert(I).second) - Worklist.push_back(I); - } - } - } - - // Re-lookup the insert position, since the call to - // computeBackedgeTakenCount above could result in a - // recusive call to getBackedgeTakenInfo (on a different - // loop), which would invalidate the iterator computed - // earlier. - return BackedgeTakenCounts.find(L)->second = std::move(Result); -} - -void ScalarEvolution::forgetLoop(const Loop *L) { - // Drop any stored trip count value. - auto RemoveLoopFromBackedgeMap = - [](DenseMap<const Loop *, BackedgeTakenInfo> &Map, const Loop *L) { - auto BTCPos = Map.find(L); - if (BTCPos != Map.end()) { - BTCPos->second.clear(); - Map.erase(BTCPos); - } - }; - - SmallVector<const Loop *, 16> LoopWorklist(1, L); - SmallVector<Instruction *, 32> Worklist; - SmallPtrSet<Instruction *, 16> Visited; - - // Iterate over all the loops and sub-loops to drop SCEV information. - while (!LoopWorklist.empty()) { - auto *CurrL = LoopWorklist.pop_back_val(); - - RemoveLoopFromBackedgeMap(BackedgeTakenCounts, CurrL); - RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts, CurrL); - - // Drop information about predicated SCEV rewrites for this loop. - for (auto I = PredicatedSCEVRewrites.begin(); - I != PredicatedSCEVRewrites.end();) { - std::pair<const SCEV *, const Loop *> Entry = I->first; - if (Entry.second == CurrL) - PredicatedSCEVRewrites.erase(I++); - else - ++I; - } - - auto LoopUsersItr = LoopUsers.find(CurrL); - if (LoopUsersItr != LoopUsers.end()) { - for (auto *S : LoopUsersItr->second) - forgetMemoizedResults(S); - LoopUsers.erase(LoopUsersItr); - } - - // Drop information about expressions based on loop-header PHIs. - PushLoopPHIs(CurrL, Worklist); - - while (!Worklist.empty()) { - Instruction *I = Worklist.pop_back_val(); - if (!Visited.insert(I).second) - continue; - - ValueExprMapType::iterator It = - ValueExprMap.find_as(static_cast<Value *>(I)); - if (It != ValueExprMap.end()) { - eraseValueFromMap(It->first); - forgetMemoizedResults(It->second); - if (PHINode *PN = dyn_cast<PHINode>(I)) - ConstantEvolutionLoopExitValue.erase(PN); - } - - PushDefUseChildren(I, Worklist); - } - - LoopPropertiesCache.erase(CurrL); - // Forget all contained loops too, to avoid dangling entries in the - // ValuesAtScopes map. - LoopWorklist.append(CurrL->begin(), CurrL->end()); - } -} - -void ScalarEvolution::forgetTopmostLoop(const Loop *L) { - while (Loop *Parent = L->getParentLoop()) - L = Parent; - forgetLoop(L); -} - -void ScalarEvolution::forgetValue(Value *V) { - Instruction *I = dyn_cast<Instruction>(V); - if (!I) return; - - // Drop information about expressions based on loop-header PHIs. - SmallVector<Instruction *, 16> Worklist; - Worklist.push_back(I); - - SmallPtrSet<Instruction *, 8> Visited; - while (!Worklist.empty()) { - I = Worklist.pop_back_val(); - if (!Visited.insert(I).second) - continue; - - ValueExprMapType::iterator It = - ValueExprMap.find_as(static_cast<Value *>(I)); - if (It != ValueExprMap.end()) { - eraseValueFromMap(It->first); - forgetMemoizedResults(It->second); - if (PHINode *PN = dyn_cast<PHINode>(I)) - ConstantEvolutionLoopExitValue.erase(PN); - } - - PushDefUseChildren(I, Worklist); - } -} - -/// Get the exact loop backedge taken count considering all loop exits. A -/// computable result can only be returned for loops with all exiting blocks -/// dominating the latch. howFarToZero assumes that the limit of each loop test -/// is never skipped. This is a valid assumption as long as the loop exits via -/// that test. For precise results, it is the caller's responsibility to specify -/// the relevant loop exiting block using getExact(ExitingBlock, SE). -const SCEV * -ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE, - SCEVUnionPredicate *Preds) const { - // If any exits were not computable, the loop is not computable. - if (!isComplete() || ExitNotTaken.empty()) - return SE->getCouldNotCompute(); - - const BasicBlock *Latch = L->getLoopLatch(); - // All exiting blocks we have collected must dominate the only backedge. - if (!Latch) - return SE->getCouldNotCompute(); - - // All exiting blocks we have gathered dominate loop's latch, so exact trip - // count is simply a minimum out of all these calculated exit counts. - SmallVector<const SCEV *, 2> Ops; - for (auto &ENT : ExitNotTaken) { - const SCEV *BECount = ENT.ExactNotTaken; - assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!"); - assert(SE->DT.dominates(ENT.ExitingBlock, Latch) && - "We should only have known counts for exiting blocks that dominate " - "latch!"); - - Ops.push_back(BECount); - - if (Preds && !ENT.hasAlwaysTruePredicate()) - Preds->add(ENT.Predicate.get()); - - assert((Preds || ENT.hasAlwaysTruePredicate()) && - "Predicate should be always true!"); - } - - return SE->getUMinFromMismatchedTypes(Ops); -} - -/// Get the exact not taken count for this loop exit. -const SCEV * -ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock, - ScalarEvolution *SE) const { - for (auto &ENT : ExitNotTaken) - if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) - return ENT.ExactNotTaken; - - return SE->getCouldNotCompute(); -} - -/// getMax - Get the max backedge taken count for the loop. -const SCEV * -ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const { - auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { - return !ENT.hasAlwaysTruePredicate(); - }; - - if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getMax()) - return SE->getCouldNotCompute(); - - assert((isa<SCEVCouldNotCompute>(getMax()) || isa<SCEVConstant>(getMax())) && - "No point in having a non-constant max backedge taken count!"); - return getMax(); -} - -bool ScalarEvolution::BackedgeTakenInfo::isMaxOrZero(ScalarEvolution *SE) const { - auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { - return !ENT.hasAlwaysTruePredicate(); - }; - return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue); -} - -bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S, - ScalarEvolution *SE) const { - if (getMax() && getMax() != SE->getCouldNotCompute() && - SE->hasOperand(getMax(), S)) - return true; - - for (auto &ENT : ExitNotTaken) - if (ENT.ExactNotTaken != SE->getCouldNotCompute() && - SE->hasOperand(ENT.ExactNotTaken, S)) - return true; - - return false; -} - -ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E) - : ExactNotTaken(E), MaxNotTaken(E) { - assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || - isa<SCEVConstant>(MaxNotTaken)) && - "No point in having a non-constant max backedge taken count!"); -} - -ScalarEvolution::ExitLimit::ExitLimit( - const SCEV *E, const SCEV *M, bool MaxOrZero, - ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList) - : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) { - assert((isa<SCEVCouldNotCompute>(ExactNotTaken) || - !isa<SCEVCouldNotCompute>(MaxNotTaken)) && - "Exact is not allowed to be less precise than Max"); - assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || - isa<SCEVConstant>(MaxNotTaken)) && - "No point in having a non-constant max backedge taken count!"); - for (auto *PredSet : PredSetList) - for (auto *P : *PredSet) - addPredicate(P); -} - -ScalarEvolution::ExitLimit::ExitLimit( - const SCEV *E, const SCEV *M, bool MaxOrZero, - const SmallPtrSetImpl<const SCEVPredicate *> &PredSet) - : ExitLimit(E, M, MaxOrZero, {&PredSet}) { - assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || - isa<SCEVConstant>(MaxNotTaken)) && - "No point in having a non-constant max backedge taken count!"); -} - -ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M, - bool MaxOrZero) - : ExitLimit(E, M, MaxOrZero, None) { - assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || - isa<SCEVConstant>(MaxNotTaken)) && - "No point in having a non-constant max backedge taken count!"); -} - -/// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each -/// computable exit into a persistent ExitNotTakenInfo array. -ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( - SmallVectorImpl<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> - &&ExitCounts, - bool Complete, const SCEV *MaxCount, bool MaxOrZero) - : MaxAndComplete(MaxCount, Complete), MaxOrZero(MaxOrZero) { - using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; - - ExitNotTaken.reserve(ExitCounts.size()); - std::transform( - ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken), - [&](const EdgeExitInfo &EEI) { - BasicBlock *ExitBB = EEI.first; - const ExitLimit &EL = EEI.second; - if (EL.Predicates.empty()) - return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, nullptr); - - std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate); - for (auto *Pred : EL.Predicates) - Predicate->add(Pred); - - return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, std::move(Predicate)); - }); - assert((isa<SCEVCouldNotCompute>(MaxCount) || isa<SCEVConstant>(MaxCount)) && - "No point in having a non-constant max backedge taken count!"); -} - -/// Invalidate this result and free the ExitNotTakenInfo array. -void ScalarEvolution::BackedgeTakenInfo::clear() { - ExitNotTaken.clear(); -} - -/// Compute the number of times the backedge of the specified loop will execute. -ScalarEvolution::BackedgeTakenInfo -ScalarEvolution::computeBackedgeTakenCount(const Loop *L, - bool AllowPredicates) { - SmallVector<BasicBlock *, 8> ExitingBlocks; - L->getExitingBlocks(ExitingBlocks); - - using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; - - SmallVector<EdgeExitInfo, 4> ExitCounts; - bool CouldComputeBECount = true; - BasicBlock *Latch = L->getLoopLatch(); // may be NULL. - const SCEV *MustExitMaxBECount = nullptr; - const SCEV *MayExitMaxBECount = nullptr; - bool MustExitMaxOrZero = false; - - // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts - // and compute maxBECount. - // Do a union of all the predicates here. - for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { - BasicBlock *ExitBB = ExitingBlocks[i]; - ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates); - - assert((AllowPredicates || EL.Predicates.empty()) && - "Predicated exit limit when predicates are not allowed!"); - - // 1. For each exit that can be computed, add an entry to ExitCounts. - // CouldComputeBECount is true only if all exits can be computed. - if (EL.ExactNotTaken == getCouldNotCompute()) - // We couldn't compute an exact value for this exit, so - // we won't be able to compute an exact value for the loop. - CouldComputeBECount = false; - else - ExitCounts.emplace_back(ExitBB, EL); - - // 2. Derive the loop's MaxBECount from each exit's max number of - // non-exiting iterations. Partition the loop exits into two kinds: - // LoopMustExits and LoopMayExits. - // - // If the exit dominates the loop latch, it is a LoopMustExit otherwise it - // is a LoopMayExit. If any computable LoopMustExit is found, then - // MaxBECount is the minimum EL.MaxNotTaken of computable - // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum - // EL.MaxNotTaken, where CouldNotCompute is considered greater than any - // computable EL.MaxNotTaken. - if (EL.MaxNotTaken != getCouldNotCompute() && Latch && - DT.dominates(ExitBB, Latch)) { - if (!MustExitMaxBECount) { - MustExitMaxBECount = EL.MaxNotTaken; - MustExitMaxOrZero = EL.MaxOrZero; - } else { - MustExitMaxBECount = - getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken); - } - } else if (MayExitMaxBECount != getCouldNotCompute()) { - if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute()) - MayExitMaxBECount = EL.MaxNotTaken; - else { - MayExitMaxBECount = - getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken); - } - } - } - const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : - (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); - // The loop backedge will be taken the maximum or zero times if there's - // a single exit that must be taken the maximum or zero times. - bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1); - return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount, - MaxBECount, MaxOrZero); -} - -ScalarEvolution::ExitLimit -ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock, - bool AllowPredicates) { - assert(L->contains(ExitingBlock) && "Exit count for non-loop block?"); - // If our exiting block does not dominate the latch, then its connection with - // loop's exit limit may be far from trivial. - const BasicBlock *Latch = L->getLoopLatch(); - if (!Latch || !DT.dominates(ExitingBlock, Latch)) - return getCouldNotCompute(); - - bool IsOnlyExit = (L->getExitingBlock() != nullptr); - Instruction *Term = ExitingBlock->getTerminator(); - if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { - assert(BI->isConditional() && "If unconditional, it can't be in loop!"); - bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); - assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) && - "It should have one successor in loop and one exit block!"); - // Proceed to the next level to examine the exit condition expression. - return computeExitLimitFromCond( - L, BI->getCondition(), ExitIfTrue, - /*ControlsExit=*/IsOnlyExit, AllowPredicates); - } - - if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) { - // For switch, make sure that there is a single exit from the loop. - BasicBlock *Exit = nullptr; - for (auto *SBB : successors(ExitingBlock)) - if (!L->contains(SBB)) { - if (Exit) // Multiple exit successors. - return getCouldNotCompute(); - Exit = SBB; - } - assert(Exit && "Exiting block must have at least one exit"); - return computeExitLimitFromSingleExitSwitch(L, SI, Exit, - /*ControlsExit=*/IsOnlyExit); - } - - return getCouldNotCompute(); -} - -ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond( - const Loop *L, Value *ExitCond, bool ExitIfTrue, - bool ControlsExit, bool AllowPredicates) { - ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates); - return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue, - ControlsExit, AllowPredicates); -} - -Optional<ScalarEvolution::ExitLimit> -ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond, - bool ExitIfTrue, bool ControlsExit, - bool AllowPredicates) { - (void)this->L; - (void)this->ExitIfTrue; - (void)this->AllowPredicates; - - assert(this->L == L && this->ExitIfTrue == ExitIfTrue && - this->AllowPredicates == AllowPredicates && - "Variance in assumed invariant key components!"); - auto Itr = TripCountMap.find({ExitCond, ControlsExit}); - if (Itr == TripCountMap.end()) - return None; - return Itr->second; -} - -void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond, - bool ExitIfTrue, - bool ControlsExit, - bool AllowPredicates, - const ExitLimit &EL) { - assert(this->L == L && this->ExitIfTrue == ExitIfTrue && - this->AllowPredicates == AllowPredicates && - "Variance in assumed invariant key components!"); - - auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL}); - assert(InsertResult.second && "Expected successful insertion!"); - (void)InsertResult; - (void)ExitIfTrue; -} - -ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached( - ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, - bool ControlsExit, bool AllowPredicates) { - - if (auto MaybeEL = - Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates)) - return *MaybeEL; - - ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue, - ControlsExit, AllowPredicates); - Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL); - return EL; -} - -ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl( - ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, - bool ControlsExit, bool AllowPredicates) { - // Check if the controlling expression for this loop is an And or Or. - if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { - if (BO->getOpcode() == Instruction::And) { - // Recurse on the operands of the and. - bool EitherMayExit = !ExitIfTrue; - ExitLimit EL0 = computeExitLimitFromCondCached( - Cache, L, BO->getOperand(0), ExitIfTrue, - ControlsExit && !EitherMayExit, AllowPredicates); - ExitLimit EL1 = computeExitLimitFromCondCached( - Cache, L, BO->getOperand(1), ExitIfTrue, - ControlsExit && !EitherMayExit, AllowPredicates); - const SCEV *BECount = getCouldNotCompute(); - const SCEV *MaxBECount = getCouldNotCompute(); - if (EitherMayExit) { - // Both conditions must be true for the loop to continue executing. - // Choose the less conservative count. - if (EL0.ExactNotTaken == getCouldNotCompute() || - EL1.ExactNotTaken == getCouldNotCompute()) - BECount = getCouldNotCompute(); - else - BECount = - getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken); - if (EL0.MaxNotTaken == getCouldNotCompute()) - MaxBECount = EL1.MaxNotTaken; - else if (EL1.MaxNotTaken == getCouldNotCompute()) - MaxBECount = EL0.MaxNotTaken; - else - MaxBECount = - getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken); - } else { - // Both conditions must be true at the same time for the loop to exit. - // For now, be conservative. - if (EL0.MaxNotTaken == EL1.MaxNotTaken) - MaxBECount = EL0.MaxNotTaken; - if (EL0.ExactNotTaken == EL1.ExactNotTaken) - BECount = EL0.ExactNotTaken; - } - - // There are cases (e.g. PR26207) where computeExitLimitFromCond is able - // to be more aggressive when computing BECount than when computing - // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and - // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken - // to not. - if (isa<SCEVCouldNotCompute>(MaxBECount) && - !isa<SCEVCouldNotCompute>(BECount)) - MaxBECount = getConstant(getUnsignedRangeMax(BECount)); - - return ExitLimit(BECount, MaxBECount, false, - {&EL0.Predicates, &EL1.Predicates}); - } - if (BO->getOpcode() == Instruction::Or) { - // Recurse on the operands of the or. - bool EitherMayExit = ExitIfTrue; - ExitLimit EL0 = computeExitLimitFromCondCached( - Cache, L, BO->getOperand(0), ExitIfTrue, - ControlsExit && !EitherMayExit, AllowPredicates); - ExitLimit EL1 = computeExitLimitFromCondCached( - Cache, L, BO->getOperand(1), ExitIfTrue, - ControlsExit && !EitherMayExit, AllowPredicates); - const SCEV *BECount = getCouldNotCompute(); - const SCEV *MaxBECount = getCouldNotCompute(); - if (EitherMayExit) { - // Both conditions must be false for the loop to continue executing. - // Choose the less conservative count. - if (EL0.ExactNotTaken == getCouldNotCompute() || - EL1.ExactNotTaken == getCouldNotCompute()) - BECount = getCouldNotCompute(); - else - BECount = - getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken); - if (EL0.MaxNotTaken == getCouldNotCompute()) - MaxBECount = EL1.MaxNotTaken; - else if (EL1.MaxNotTaken == getCouldNotCompute()) - MaxBECount = EL0.MaxNotTaken; - else - MaxBECount = - getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken); - } else { - // Both conditions must be false at the same time for the loop to exit. - // For now, be conservative. - if (EL0.MaxNotTaken == EL1.MaxNotTaken) - MaxBECount = EL0.MaxNotTaken; - if (EL0.ExactNotTaken == EL1.ExactNotTaken) - BECount = EL0.ExactNotTaken; - } - - return ExitLimit(BECount, MaxBECount, false, - {&EL0.Predicates, &EL1.Predicates}); - } - } - - // With an icmp, it may be feasible to compute an exact backedge-taken count. - // Proceed to the next level to examine the icmp. - if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) { - ExitLimit EL = - computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit); - if (EL.hasFullInfo() || !AllowPredicates) - return EL; - - // Try again, but use SCEV predicates this time. - return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit, - /*AllowPredicates=*/true); - } - - // Check for a constant condition. These are normally stripped out by - // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to - // preserve the CFG and is temporarily leaving constant conditions - // in place. - if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { - if (ExitIfTrue == !CI->getZExtValue()) - // The backedge is always taken. - return getCouldNotCompute(); - else - // The backedge is never taken. - return getZero(CI->getType()); - } - - // If it's not an integer or pointer comparison then compute it the hard way. - return computeExitCountExhaustively(L, ExitCond, ExitIfTrue); -} - -ScalarEvolution::ExitLimit -ScalarEvolution::computeExitLimitFromICmp(const Loop *L, - ICmpInst *ExitCond, - bool ExitIfTrue, - bool ControlsExit, - bool AllowPredicates) { - // If the condition was exit on true, convert the condition to exit on false - ICmpInst::Predicate Pred; - if (!ExitIfTrue) - Pred = ExitCond->getPredicate(); - else - Pred = ExitCond->getInversePredicate(); - const ICmpInst::Predicate OriginalPred = Pred; - - // Handle common loops like: for (X = "string"; *X; ++X) - if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) - if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { - ExitLimit ItCnt = - computeLoadConstantCompareExitLimit(LI, RHS, L, Pred); - if (ItCnt.hasAnyInfo()) - return ItCnt; - } - - const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); - const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); - - // Try to evaluate any dependencies out of the loop. - LHS = getSCEVAtScope(LHS, L); - RHS = getSCEVAtScope(RHS, L); - - // At this point, we would like to compute how many iterations of the - // loop the predicate will return true for these inputs. - if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { - // If there is a loop-invariant, force it into the RHS. - std::swap(LHS, RHS); - Pred = ICmpInst::getSwappedPredicate(Pred); - } - - // Simplify the operands before analyzing them. - (void)SimplifyICmpOperands(Pred, LHS, RHS); - - // If we have a comparison of a chrec against a constant, try to use value - // ranges to answer this query. - if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) - if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) - if (AddRec->getLoop() == L) { - // Form the constant range. - ConstantRange CompRange = - ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt()); - - const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); - if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; - } - - switch (Pred) { - case ICmpInst::ICMP_NE: { // while (X != Y) - // Convert to: while (X-Y != 0) - ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit, - AllowPredicates); - if (EL.hasAnyInfo()) return EL; - break; - } - case ICmpInst::ICMP_EQ: { // while (X == Y) - // Convert to: while (X-Y == 0) - ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L); - if (EL.hasAnyInfo()) return EL; - break; - } - case ICmpInst::ICMP_SLT: - case ICmpInst::ICMP_ULT: { // while (X < Y) - bool IsSigned = Pred == ICmpInst::ICMP_SLT; - ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit, - AllowPredicates); - if (EL.hasAnyInfo()) return EL; - break; - } - case ICmpInst::ICMP_SGT: - case ICmpInst::ICMP_UGT: { // while (X > Y) - bool IsSigned = Pred == ICmpInst::ICMP_SGT; - ExitLimit EL = - howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit, - AllowPredicates); - if (EL.hasAnyInfo()) return EL; - break; - } - default: - break; - } - - auto *ExhaustiveCount = - computeExitCountExhaustively(L, ExitCond, ExitIfTrue); - - if (!isa<SCEVCouldNotCompute>(ExhaustiveCount)) - return ExhaustiveCount; - - return computeShiftCompareExitLimit(ExitCond->getOperand(0), - ExitCond->getOperand(1), L, OriginalPred); -} - -ScalarEvolution::ExitLimit -ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L, - SwitchInst *Switch, - BasicBlock *ExitingBlock, - bool ControlsExit) { - assert(!L->contains(ExitingBlock) && "Not an exiting block!"); - - // Give up if the exit is the default dest of a switch. - if (Switch->getDefaultDest() == ExitingBlock) - return getCouldNotCompute(); - - assert(L->contains(Switch->getDefaultDest()) && - "Default case must not exit the loop!"); - const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); - const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); - - // while (X != Y) --> while (X-Y != 0) - ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); - if (EL.hasAnyInfo()) - return EL; - - return getCouldNotCompute(); -} - -static ConstantInt * -EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, - ScalarEvolution &SE) { - const SCEV *InVal = SE.getConstant(C); - const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); - assert(isa<SCEVConstant>(Val) && - "Evaluation of SCEV at constant didn't fold correctly?"); - return cast<SCEVConstant>(Val)->getValue(); -} - -/// Given an exit condition of 'icmp op load X, cst', try to see if we can -/// compute the backedge execution count. -ScalarEvolution::ExitLimit -ScalarEvolution::computeLoadConstantCompareExitLimit( - LoadInst *LI, - Constant *RHS, - const Loop *L, - ICmpInst::Predicate predicate) { - if (LI->isVolatile()) return getCouldNotCompute(); - - // Check to see if the loaded pointer is a getelementptr of a global. - // TODO: Use SCEV instead of manually grubbing with GEPs. - GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); - if (!GEP) return getCouldNotCompute(); - - // Make sure that it is really a constant global we are gepping, with an - // initializer, and make sure the first IDX is really 0. - GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); - if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || - GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || - !cast<Constant>(GEP->getOperand(1))->isNullValue()) - return getCouldNotCompute(); - - // Okay, we allow one non-constant index into the GEP instruction. - Value *VarIdx = nullptr; - std::vector<Constant*> Indexes; - unsigned VarIdxNum = 0; - for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) - if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { - Indexes.push_back(CI); - } else if (!isa<ConstantInt>(GEP->getOperand(i))) { - if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. - VarIdx = GEP->getOperand(i); - VarIdxNum = i-2; - Indexes.push_back(nullptr); - } - - // Loop-invariant loads may be a byproduct of loop optimization. Skip them. - if (!VarIdx) - return getCouldNotCompute(); - - // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. - // Check to see if X is a loop variant variable value now. - const SCEV *Idx = getSCEV(VarIdx); - Idx = getSCEVAtScope(Idx, L); - - // We can only recognize very limited forms of loop index expressions, in - // particular, only affine AddRec's like {C1,+,C2}. - const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); - if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) || - !isa<SCEVConstant>(IdxExpr->getOperand(0)) || - !isa<SCEVConstant>(IdxExpr->getOperand(1))) - return getCouldNotCompute(); - - unsigned MaxSteps = MaxBruteForceIterations; - for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { - ConstantInt *ItCst = ConstantInt::get( - cast<IntegerType>(IdxExpr->getType()), IterationNum); - ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); - - // Form the GEP offset. - Indexes[VarIdxNum] = Val; - - Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(), - Indexes); - if (!Result) break; // Cannot compute! - - // Evaluate the condition for this iteration. - Result = ConstantExpr::getICmp(predicate, Result, RHS); - if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure - if (cast<ConstantInt>(Result)->getValue().isMinValue()) { - ++NumArrayLenItCounts; - return getConstant(ItCst); // Found terminating iteration! - } - } - return getCouldNotCompute(); -} - -ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit( - Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) { - ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV); - if (!RHS) - return getCouldNotCompute(); - - const BasicBlock *Latch = L->getLoopLatch(); - if (!Latch) - return getCouldNotCompute(); - - const BasicBlock *Predecessor = L->getLoopPredecessor(); - if (!Predecessor) - return getCouldNotCompute(); - - // Return true if V is of the form "LHS `shift_op` <positive constant>". - // Return LHS in OutLHS and shift_opt in OutOpCode. - auto MatchPositiveShift = - [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) { - - using namespace PatternMatch; - - ConstantInt *ShiftAmt; - if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) - OutOpCode = Instruction::LShr; - else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) - OutOpCode = Instruction::AShr; - else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) - OutOpCode = Instruction::Shl; - else - return false; - - return ShiftAmt->getValue().isStrictlyPositive(); - }; - - // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in - // - // loop: - // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ] - // %iv.shifted = lshr i32 %iv, <positive constant> - // - // Return true on a successful match. Return the corresponding PHI node (%iv - // above) in PNOut and the opcode of the shift operation in OpCodeOut. - auto MatchShiftRecurrence = - [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) { - Optional<Instruction::BinaryOps> PostShiftOpCode; - - { - Instruction::BinaryOps OpC; - Value *V; - - // If we encounter a shift instruction, "peel off" the shift operation, - // and remember that we did so. Later when we inspect %iv's backedge - // value, we will make sure that the backedge value uses the same - // operation. - // - // Note: the peeled shift operation does not have to be the same - // instruction as the one feeding into the PHI's backedge value. We only - // really care about it being the same *kind* of shift instruction -- - // that's all that is required for our later inferences to hold. - if (MatchPositiveShift(LHS, V, OpC)) { - PostShiftOpCode = OpC; - LHS = V; - } - } - - PNOut = dyn_cast<PHINode>(LHS); - if (!PNOut || PNOut->getParent() != L->getHeader()) - return false; - - Value *BEValue = PNOut->getIncomingValueForBlock(Latch); - Value *OpLHS; - - return - // The backedge value for the PHI node must be a shift by a positive - // amount - MatchPositiveShift(BEValue, OpLHS, OpCodeOut) && - - // of the PHI node itself - OpLHS == PNOut && - - // and the kind of shift should be match the kind of shift we peeled - // off, if any. - (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut); - }; - - PHINode *PN; - Instruction::BinaryOps OpCode; - if (!MatchShiftRecurrence(LHS, PN, OpCode)) - return getCouldNotCompute(); - - const DataLayout &DL = getDataLayout(); - - // The key rationale for this optimization is that for some kinds of shift - // recurrences, the value of the recurrence "stabilizes" to either 0 or -1 - // within a finite number of iterations. If the condition guarding the - // backedge (in the sense that the backedge is taken if the condition is true) - // is false for the value the shift recurrence stabilizes to, then we know - // that the backedge is taken only a finite number of times. - - ConstantInt *StableValue = nullptr; - switch (OpCode) { - default: - llvm_unreachable("Impossible case!"); - - case Instruction::AShr: { - // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most - // bitwidth(K) iterations. - Value *FirstValue = PN->getIncomingValueForBlock(Predecessor); - KnownBits Known = computeKnownBits(FirstValue, DL, 0, nullptr, - Predecessor->getTerminator(), &DT); - auto *Ty = cast<IntegerType>(RHS->getType()); - if (Known.isNonNegative()) - StableValue = ConstantInt::get(Ty, 0); - else if (Known.isNegative()) - StableValue = ConstantInt::get(Ty, -1, true); - else - return getCouldNotCompute(); - - break; - } - case Instruction::LShr: - case Instruction::Shl: - // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>} - // stabilize to 0 in at most bitwidth(K) iterations. - StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0); - break; - } - - auto *Result = - ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI); - assert(Result->getType()->isIntegerTy(1) && - "Otherwise cannot be an operand to a branch instruction"); - - if (Result->isZeroValue()) { - unsigned BitWidth = getTypeSizeInBits(RHS->getType()); - const SCEV *UpperBound = - getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth); - return ExitLimit(getCouldNotCompute(), UpperBound, false); - } - - return getCouldNotCompute(); -} - -/// Return true if we can constant fold an instruction of the specified type, -/// assuming that all operands were constants. -static bool CanConstantFold(const Instruction *I) { - if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || - isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || - isa<LoadInst>(I)) - return true; - - if (const CallInst *CI = dyn_cast<CallInst>(I)) - if (const Function *F = CI->getCalledFunction()) - return canConstantFoldCallTo(CI, F); - return false; -} - -/// Determine whether this instruction can constant evolve within this loop -/// assuming its operands can all constant evolve. -static bool canConstantEvolve(Instruction *I, const Loop *L) { - // An instruction outside of the loop can't be derived from a loop PHI. - if (!L->contains(I)) return false; - - if (isa<PHINode>(I)) { - // We don't currently keep track of the control flow needed to evaluate - // PHIs, so we cannot handle PHIs inside of loops. - return L->getHeader() == I->getParent(); - } - - // If we won't be able to constant fold this expression even if the operands - // are constants, bail early. - return CanConstantFold(I); -} - -/// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by -/// recursing through each instruction operand until reaching a loop header phi. -static PHINode * -getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, - DenseMap<Instruction *, PHINode *> &PHIMap, - unsigned Depth) { - if (Depth > MaxConstantEvolvingDepth) - return nullptr; - - // Otherwise, we can evaluate this instruction if all of its operands are - // constant or derived from a PHI node themselves. - PHINode *PHI = nullptr; - for (Value *Op : UseInst->operands()) { - if (isa<Constant>(Op)) continue; - - Instruction *OpInst = dyn_cast<Instruction>(Op); - if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; - - PHINode *P = dyn_cast<PHINode>(OpInst); - if (!P) - // If this operand is already visited, reuse the prior result. - // We may have P != PHI if this is the deepest point at which the - // inconsistent paths meet. - P = PHIMap.lookup(OpInst); - if (!P) { - // Recurse and memoize the results, whether a phi is found or not. - // This recursive call invalidates pointers into PHIMap. - P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1); - PHIMap[OpInst] = P; - } - if (!P) - return nullptr; // Not evolving from PHI - if (PHI && PHI != P) - return nullptr; // Evolving from multiple different PHIs. - PHI = P; - } - // This is a expression evolving from a constant PHI! - return PHI; -} - -/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node -/// in the loop that V is derived from. We allow arbitrary operations along the -/// way, but the operands of an operation must either be constants or a value -/// derived from a constant PHI. If this expression does not fit with these -/// constraints, return null. -static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { - Instruction *I = dyn_cast<Instruction>(V); - if (!I || !canConstantEvolve(I, L)) return nullptr; - - if (PHINode *PN = dyn_cast<PHINode>(I)) - return PN; - - // Record non-constant instructions contained by the loop. - DenseMap<Instruction *, PHINode *> PHIMap; - return getConstantEvolvingPHIOperands(I, L, PHIMap, 0); -} - -/// EvaluateExpression - Given an expression that passes the -/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node -/// in the loop has the value PHIVal. If we can't fold this expression for some -/// reason, return null. -static Constant *EvaluateExpression(Value *V, const Loop *L, - DenseMap<Instruction *, Constant *> &Vals, - const DataLayout &DL, - const TargetLibraryInfo *TLI) { - // Convenient constant check, but redundant for recursive calls. - if (Constant *C = dyn_cast<Constant>(V)) return C; - Instruction *I = dyn_cast<Instruction>(V); - if (!I) return nullptr; - - if (Constant *C = Vals.lookup(I)) return C; - - // An instruction inside the loop depends on a value outside the loop that we - // weren't given a mapping for, or a value such as a call inside the loop. - if (!canConstantEvolve(I, L)) return nullptr; - - // An unmapped PHI can be due to a branch or another loop inside this loop, - // or due to this not being the initial iteration through a loop where we - // couldn't compute the evolution of this particular PHI last time. - if (isa<PHINode>(I)) return nullptr; - - std::vector<Constant*> Operands(I->getNumOperands()); - - for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { - Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); - if (!Operand) { - Operands[i] = dyn_cast<Constant>(I->getOperand(i)); - if (!Operands[i]) return nullptr; - continue; - } - Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); - Vals[Operand] = C; - if (!C) return nullptr; - Operands[i] = C; - } - - if (CmpInst *CI = dyn_cast<CmpInst>(I)) - return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], - Operands[1], DL, TLI); - if (LoadInst *LI = dyn_cast<LoadInst>(I)) { - if (!LI->isVolatile()) - return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); - } - return ConstantFoldInstOperands(I, Operands, DL, TLI); -} - - -// If every incoming value to PN except the one for BB is a specific Constant, -// return that, else return nullptr. -static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) { - Constant *IncomingVal = nullptr; - - for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { - if (PN->getIncomingBlock(i) == BB) - continue; - - auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i)); - if (!CurrentVal) - return nullptr; - - if (IncomingVal != CurrentVal) { - if (IncomingVal) - return nullptr; - IncomingVal = CurrentVal; - } - } - - return IncomingVal; -} - -/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is -/// in the header of its containing loop, we know the loop executes a -/// constant number of times, and the PHI node is just a recurrence -/// involving constants, fold it. -Constant * -ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, - const APInt &BEs, - const Loop *L) { - auto I = ConstantEvolutionLoopExitValue.find(PN); - if (I != ConstantEvolutionLoopExitValue.end()) - return I->second; - - if (BEs.ugt(MaxBruteForceIterations)) - return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. - - Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; - - DenseMap<Instruction *, Constant *> CurrentIterVals; - BasicBlock *Header = L->getHeader(); - assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); - - BasicBlock *Latch = L->getLoopLatch(); - if (!Latch) - return nullptr; - - for (PHINode &PHI : Header->phis()) { - if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) - CurrentIterVals[&PHI] = StartCST; - } - if (!CurrentIterVals.count(PN)) - return RetVal = nullptr; - - Value *BEValue = PN->getIncomingValueForBlock(Latch); - - // Execute the loop symbolically to determine the exit value. - assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) && - "BEs is <= MaxBruteForceIterations which is an 'unsigned'!"); - - unsigned NumIterations = BEs.getZExtValue(); // must be in range - unsigned IterationNum = 0; - const DataLayout &DL = getDataLayout(); - for (; ; ++IterationNum) { - if (IterationNum == NumIterations) - return RetVal = CurrentIterVals[PN]; // Got exit value! - - // Compute the value of the PHIs for the next iteration. - // EvaluateExpression adds non-phi values to the CurrentIterVals map. - DenseMap<Instruction *, Constant *> NextIterVals; - Constant *NextPHI = - EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); - if (!NextPHI) - return nullptr; // Couldn't evaluate! - NextIterVals[PN] = NextPHI; - - bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; - - // Also evaluate the other PHI nodes. However, we don't get to stop if we - // cease to be able to evaluate one of them or if they stop evolving, - // because that doesn't necessarily prevent us from computing PN. - SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; - for (const auto &I : CurrentIterVals) { - PHINode *PHI = dyn_cast<PHINode>(I.first); - if (!PHI || PHI == PN || PHI->getParent() != Header) continue; - PHIsToCompute.emplace_back(PHI, I.second); - } - // We use two distinct loops because EvaluateExpression may invalidate any - // iterators into CurrentIterVals. - for (const auto &I : PHIsToCompute) { - PHINode *PHI = I.first; - Constant *&NextPHI = NextIterVals[PHI]; - if (!NextPHI) { // Not already computed. - Value *BEValue = PHI->getIncomingValueForBlock(Latch); - NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); - } - if (NextPHI != I.second) - StoppedEvolving = false; - } - - // If all entries in CurrentIterVals == NextIterVals then we can stop - // iterating, the loop can't continue to change. - if (StoppedEvolving) - return RetVal = CurrentIterVals[PN]; - - CurrentIterVals.swap(NextIterVals); - } -} - -const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L, - Value *Cond, - bool ExitWhen) { - PHINode *PN = getConstantEvolvingPHI(Cond, L); - if (!PN) return getCouldNotCompute(); - - // If the loop is canonicalized, the PHI will have exactly two entries. - // That's the only form we support here. - if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); - - DenseMap<Instruction *, Constant *> CurrentIterVals; - BasicBlock *Header = L->getHeader(); - assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); - - BasicBlock *Latch = L->getLoopLatch(); - assert(Latch && "Should follow from NumIncomingValues == 2!"); - - for (PHINode &PHI : Header->phis()) { - if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) - CurrentIterVals[&PHI] = StartCST; - } - if (!CurrentIterVals.count(PN)) - return getCouldNotCompute(); - - // Okay, we find a PHI node that defines the trip count of this loop. Execute - // the loop symbolically to determine when the condition gets a value of - // "ExitWhen". - unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. - const DataLayout &DL = getDataLayout(); - for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ - auto *CondVal = dyn_cast_or_null<ConstantInt>( - EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); - - // Couldn't symbolically evaluate. - if (!CondVal) return getCouldNotCompute(); - - if (CondVal->getValue() == uint64_t(ExitWhen)) { - ++NumBruteForceTripCountsComputed; - return getConstant(Type::getInt32Ty(getContext()), IterationNum); - } - - // Update all the PHI nodes for the next iteration. - DenseMap<Instruction *, Constant *> NextIterVals; - - // Create a list of which PHIs we need to compute. We want to do this before - // calling EvaluateExpression on them because that may invalidate iterators - // into CurrentIterVals. - SmallVector<PHINode *, 8> PHIsToCompute; - for (const auto &I : CurrentIterVals) { - PHINode *PHI = dyn_cast<PHINode>(I.first); - if (!PHI || PHI->getParent() != Header) continue; - PHIsToCompute.push_back(PHI); - } - for (PHINode *PHI : PHIsToCompute) { - Constant *&NextPHI = NextIterVals[PHI]; - if (NextPHI) continue; // Already computed! - - Value *BEValue = PHI->getIncomingValueForBlock(Latch); - NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); - } - CurrentIterVals.swap(NextIterVals); - } - - // Too many iterations were needed to evaluate. - return getCouldNotCompute(); -} - -const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { - SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = - ValuesAtScopes[V]; - // Check to see if we've folded this expression at this loop before. - for (auto &LS : Values) - if (LS.first == L) - return LS.second ? LS.second : V; - - Values.emplace_back(L, nullptr); - - // Otherwise compute it. - const SCEV *C = computeSCEVAtScope(V, L); - for (auto &LS : reverse(ValuesAtScopes[V])) - if (LS.first == L) { - LS.second = C; - break; - } - return C; -} - -/// This builds up a Constant using the ConstantExpr interface. That way, we -/// will return Constants for objects which aren't represented by a -/// SCEVConstant, because SCEVConstant is restricted to ConstantInt. -/// Returns NULL if the SCEV isn't representable as a Constant. -static Constant *BuildConstantFromSCEV(const SCEV *V) { - switch (static_cast<SCEVTypes>(V->getSCEVType())) { - case scCouldNotCompute: - case scAddRecExpr: - break; - case scConstant: - return cast<SCEVConstant>(V)->getValue(); - case scUnknown: - return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); - case scSignExtend: { - const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); - if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) - return ConstantExpr::getSExt(CastOp, SS->getType()); - break; - } - case scZeroExtend: { - const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); - if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) - return ConstantExpr::getZExt(CastOp, SZ->getType()); - break; - } - case scTruncate: { - const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); - if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) - return ConstantExpr::getTrunc(CastOp, ST->getType()); - break; - } - case scAddExpr: { - const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); - if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { - if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { - unsigned AS = PTy->getAddressSpace(); - Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); - C = ConstantExpr::getBitCast(C, DestPtrTy); - } - for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { - Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); - if (!C2) return nullptr; - - // First pointer! - if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { - unsigned AS = C2->getType()->getPointerAddressSpace(); - std::swap(C, C2); - Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); - // The offsets have been converted to bytes. We can add bytes to an - // i8* by GEP with the byte count in the first index. - C = ConstantExpr::getBitCast(C, DestPtrTy); - } - - // Don't bother trying to sum two pointers. We probably can't - // statically compute a load that results from it anyway. - if (C2->getType()->isPointerTy()) - return nullptr; - - if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { - if (PTy->getElementType()->isStructTy()) - C2 = ConstantExpr::getIntegerCast( - C2, Type::getInt32Ty(C->getContext()), true); - C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2); - } else - C = ConstantExpr::getAdd(C, C2); - } - return C; - } - break; - } - case scMulExpr: { - const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); - if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { - // Don't bother with pointers at all. - if (C->getType()->isPointerTy()) return nullptr; - for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { - Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); - if (!C2 || C2->getType()->isPointerTy()) return nullptr; - C = ConstantExpr::getMul(C, C2); - } - return C; - } - break; - } - case scUDivExpr: { - const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); - if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) - if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) - if (LHS->getType() == RHS->getType()) - return ConstantExpr::getUDiv(LHS, RHS); - break; - } - case scSMaxExpr: - case scUMaxExpr: - break; // TODO: smax, umax. - } - return nullptr; -} - -const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { - if (isa<SCEVConstant>(V)) return V; - - // If this instruction is evolved from a constant-evolving PHI, compute the - // exit value from the loop without using SCEVs. - if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { - if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { - const Loop *LI = this->LI[I->getParent()]; - if (LI && LI->getParentLoop() == L) // Looking for loop exit value. - if (PHINode *PN = dyn_cast<PHINode>(I)) - if (PN->getParent() == LI->getHeader()) { - // Okay, there is no closed form solution for the PHI node. Check - // to see if the loop that contains it has a known backedge-taken - // count. If so, we may be able to force computation of the exit - // value. - const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); - if (const SCEVConstant *BTCC = - dyn_cast<SCEVConstant>(BackedgeTakenCount)) { - - // This trivial case can show up in some degenerate cases where - // the incoming IR has not yet been fully simplified. - if (BTCC->getValue()->isZero()) { - Value *InitValue = nullptr; - bool MultipleInitValues = false; - for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { - if (!LI->contains(PN->getIncomingBlock(i))) { - if (!InitValue) - InitValue = PN->getIncomingValue(i); - else if (InitValue != PN->getIncomingValue(i)) { - MultipleInitValues = true; - break; - } - } - if (!MultipleInitValues && InitValue) - return getSCEV(InitValue); - } - } - // Okay, we know how many times the containing loop executes. If - // this is a constant evolving PHI node, get the final value at - // the specified iteration number. - Constant *RV = - getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), LI); - if (RV) return getSCEV(RV); - } - } - - // Okay, this is an expression that we cannot symbolically evaluate - // into a SCEV. Check to see if it's possible to symbolically evaluate - // the arguments into constants, and if so, try to constant propagate the - // result. This is particularly useful for computing loop exit values. - if (CanConstantFold(I)) { - SmallVector<Constant *, 4> Operands; - bool MadeImprovement = false; - for (Value *Op : I->operands()) { - if (Constant *C = dyn_cast<Constant>(Op)) { - Operands.push_back(C); - continue; - } - - // If any of the operands is non-constant and if they are - // non-integer and non-pointer, don't even try to analyze them - // with scev techniques. - if (!isSCEVable(Op->getType())) - return V; - - const SCEV *OrigV = getSCEV(Op); - const SCEV *OpV = getSCEVAtScope(OrigV, L); - MadeImprovement |= OrigV != OpV; - - Constant *C = BuildConstantFromSCEV(OpV); - if (!C) return V; - if (C->getType() != Op->getType()) - C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, - Op->getType(), - false), - C, Op->getType()); - Operands.push_back(C); - } - - // Check to see if getSCEVAtScope actually made an improvement. - if (MadeImprovement) { - Constant *C = nullptr; - const DataLayout &DL = getDataLayout(); - if (const CmpInst *CI = dyn_cast<CmpInst>(I)) - C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], - Operands[1], DL, &TLI); - else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) { - if (!LI->isVolatile()) - C = ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); - } else - C = ConstantFoldInstOperands(I, Operands, DL, &TLI); - if (!C) return V; - return getSCEV(C); - } - } - } - - // This is some other type of SCEVUnknown, just return it. - return V; - } - - if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { - // Avoid performing the look-up in the common case where the specified - // expression has no loop-variant portions. - for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { - const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); - if (OpAtScope != Comm->getOperand(i)) { - // Okay, at least one of these operands is loop variant but might be - // foldable. Build a new instance of the folded commutative expression. - SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), - Comm->op_begin()+i); - NewOps.push_back(OpAtScope); - - for (++i; i != e; ++i) { - OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); - NewOps.push_back(OpAtScope); - } - if (isa<SCEVAddExpr>(Comm)) - return getAddExpr(NewOps); - if (isa<SCEVMulExpr>(Comm)) - return getMulExpr(NewOps); - if (isa<SCEVSMaxExpr>(Comm)) - return getSMaxExpr(NewOps); - if (isa<SCEVUMaxExpr>(Comm)) - return getUMaxExpr(NewOps); - llvm_unreachable("Unknown commutative SCEV type!"); - } - } - // If we got here, all operands are loop invariant. - return Comm; - } - - if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { - const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); - const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); - if (LHS == Div->getLHS() && RHS == Div->getRHS()) - return Div; // must be loop invariant - return getUDivExpr(LHS, RHS); - } - - // If this is a loop recurrence for a loop that does not contain L, then we - // are dealing with the final value computed by the loop. - if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { - // First, attempt to evaluate each operand. - // Avoid performing the look-up in the common case where the specified - // expression has no loop-variant portions. - for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { - const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); - if (OpAtScope == AddRec->getOperand(i)) - continue; - - // Okay, at least one of these operands is loop variant but might be - // foldable. Build a new instance of the folded commutative expression. - SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), - AddRec->op_begin()+i); - NewOps.push_back(OpAtScope); - for (++i; i != e; ++i) - NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); - - const SCEV *FoldedRec = - getAddRecExpr(NewOps, AddRec->getLoop(), - AddRec->getNoWrapFlags(SCEV::FlagNW)); - AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); - // The addrec may be folded to a nonrecurrence, for example, if the - // induction variable is multiplied by zero after constant folding. Go - // ahead and return the folded value. - if (!AddRec) - return FoldedRec; - break; - } - - // If the scope is outside the addrec's loop, evaluate it by using the - // loop exit value of the addrec. - if (!AddRec->getLoop()->contains(L)) { - // To evaluate this recurrence, we need to know how many times the AddRec - // loop iterates. Compute this now. - const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); - if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; - - // Then, evaluate the AddRec. - return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); - } - - return AddRec; - } - - if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { - const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); - if (Op == Cast->getOperand()) - return Cast; // must be loop invariant - return getZeroExtendExpr(Op, Cast->getType()); - } - - if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { - const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); - if (Op == Cast->getOperand()) - return Cast; // must be loop invariant - return getSignExtendExpr(Op, Cast->getType()); - } - - if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { - const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); - if (Op == Cast->getOperand()) - return Cast; // must be loop invariant - return getTruncateExpr(Op, Cast->getType()); - } - - llvm_unreachable("Unknown SCEV type!"); -} - -const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { - return getSCEVAtScope(getSCEV(V), L); -} - -const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const { - if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) - return stripInjectiveFunctions(ZExt->getOperand()); - if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) - return stripInjectiveFunctions(SExt->getOperand()); - return S; -} - -/// Finds the minimum unsigned root of the following equation: -/// -/// A * X = B (mod N) -/// -/// where N = 2^BW and BW is the common bit width of A and B. The signedness of -/// A and B isn't important. -/// -/// If the equation does not have a solution, SCEVCouldNotCompute is returned. -static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B, - ScalarEvolution &SE) { - uint32_t BW = A.getBitWidth(); - assert(BW == SE.getTypeSizeInBits(B->getType())); - assert(A != 0 && "A must be non-zero."); - - // 1. D = gcd(A, N) - // - // The gcd of A and N may have only one prime factor: 2. The number of - // trailing zeros in A is its multiplicity - uint32_t Mult2 = A.countTrailingZeros(); - // D = 2^Mult2 - - // 2. Check if B is divisible by D. - // - // B is divisible by D if and only if the multiplicity of prime factor 2 for B - // is not less than multiplicity of this prime factor for D. - if (SE.GetMinTrailingZeros(B) < Mult2) - return SE.getCouldNotCompute(); - - // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic - // modulo (N / D). - // - // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent - // (N / D) in general. The inverse itself always fits into BW bits, though, - // so we immediately truncate it. - APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D - APInt Mod(BW + 1, 0); - Mod.setBit(BW - Mult2); // Mod = N / D - APInt I = AD.multiplicativeInverse(Mod).trunc(BW); - - // 4. Compute the minimum unsigned root of the equation: - // I * (B / D) mod (N / D) - // To simplify the computation, we factor out the divide by D: - // (I * B mod N) / D - const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2)); - return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D); -} - -/// For a given quadratic addrec, generate coefficients of the corresponding -/// quadratic equation, multiplied by a common value to ensure that they are -/// integers. -/// The returned value is a tuple { A, B, C, M, BitWidth }, where -/// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C -/// were multiplied by, and BitWidth is the bit width of the original addrec -/// coefficients. -/// This function returns None if the addrec coefficients are not compile- -/// time constants. -static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>> -GetQuadraticEquation(const SCEVAddRecExpr *AddRec) { - assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); - const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); - const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); - const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); - LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: " - << *AddRec << '\n'); - - // We currently can only solve this if the coefficients are constants. - if (!LC || !MC || !NC) { - LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n"); - return None; - } - - APInt L = LC->getAPInt(); - APInt M = MC->getAPInt(); - APInt N = NC->getAPInt(); - assert(!N.isNullValue() && "This is not a quadratic addrec"); - - unsigned BitWidth = LC->getAPInt().getBitWidth(); - unsigned NewWidth = BitWidth + 1; - LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: " - << BitWidth << '\n'); - // The sign-extension (as opposed to a zero-extension) here matches the - // extension used in SolveQuadraticEquationWrap (with the same motivation). - N = N.sext(NewWidth); - M = M.sext(NewWidth); - L = L.sext(NewWidth); - - // The increments are M, M+N, M+2N, ..., so the accumulated values are - // L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is, - // L+M, L+2M+N, L+3M+3N, ... - // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N. - // - // The equation Acc = 0 is then - // L + nM + n(n-1)/2 N = 0, or 2L + 2M n + n(n-1) N = 0. - // In a quadratic form it becomes: - // N n^2 + (2M-N) n + 2L = 0. - - APInt A = N; - APInt B = 2 * M - A; - APInt C = 2 * L; - APInt T = APInt(NewWidth, 2); - LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B - << "x + " << C << ", coeff bw: " << NewWidth - << ", multiplied by " << T << '\n'); - return std::make_tuple(A, B, C, T, BitWidth); -} - -/// Helper function to compare optional APInts: -/// (a) if X and Y both exist, return min(X, Y), -/// (b) if neither X nor Y exist, return None, -/// (c) if exactly one of X and Y exists, return that value. -static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) { - if (X.hasValue() && Y.hasValue()) { - unsigned W = std::max(X->getBitWidth(), Y->getBitWidth()); - APInt XW = X->sextOrSelf(W); - APInt YW = Y->sextOrSelf(W); - return XW.slt(YW) ? *X : *Y; - } - if (!X.hasValue() && !Y.hasValue()) - return None; - return X.hasValue() ? *X : *Y; -} - -/// Helper function to truncate an optional APInt to a given BitWidth. -/// When solving addrec-related equations, it is preferable to return a value -/// that has the same bit width as the original addrec's coefficients. If the -/// solution fits in the original bit width, truncate it (except for i1). -/// Returning a value of a different bit width may inhibit some optimizations. -/// -/// In general, a solution to a quadratic equation generated from an addrec -/// may require BW+1 bits, where BW is the bit width of the addrec's -/// coefficients. The reason is that the coefficients of the quadratic -/// equation are BW+1 bits wide (to avoid truncation when converting from -/// the addrec to the equation). -static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) { - if (!X.hasValue()) - return None; - unsigned W = X->getBitWidth(); - if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth)) - return X->trunc(BitWidth); - return X; -} - -/// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n -/// iterations. The values L, M, N are assumed to be signed, and they -/// should all have the same bit widths. -/// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW, -/// where BW is the bit width of the addrec's coefficients. -/// If the calculated value is a BW-bit integer (for BW > 1), it will be -/// returned as such, otherwise the bit width of the returned value may -/// be greater than BW. -/// -/// This function returns None if -/// (a) the addrec coefficients are not constant, or -/// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases -/// like x^2 = 5, no integer solutions exist, in other cases an integer -/// solution may exist, but SolveQuadraticEquationWrap may fail to find it. -static Optional<APInt> -SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { - APInt A, B, C, M; - unsigned BitWidth; - auto T = GetQuadraticEquation(AddRec); - if (!T.hasValue()) - return None; - - std::tie(A, B, C, M, BitWidth) = *T; - LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n"); - Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1); - if (!X.hasValue()) - return None; - - ConstantInt *CX = ConstantInt::get(SE.getContext(), *X); - ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE); - if (!V->isZero()) - return None; - - return TruncIfPossible(X, BitWidth); -} - -/// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n -/// iterations. The values M, N are assumed to be signed, and they -/// should all have the same bit widths. -/// Find the least n such that c(n) does not belong to the given range, -/// while c(n-1) does. -/// -/// This function returns None if -/// (a) the addrec coefficients are not constant, or -/// (b) SolveQuadraticEquationWrap was unable to find a solution for the -/// bounds of the range. -static Optional<APInt> -SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec, - const ConstantRange &Range, ScalarEvolution &SE) { - assert(AddRec->getOperand(0)->isZero() && - "Starting value of addrec should be 0"); - LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range " - << Range << ", addrec " << *AddRec << '\n'); - // This case is handled in getNumIterationsInRange. Here we can assume that - // we start in the range. - assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) && - "Addrec's initial value should be in range"); - - APInt A, B, C, M; - unsigned BitWidth; - auto T = GetQuadraticEquation(AddRec); - if (!T.hasValue()) - return None; - - // Be careful about the return value: there can be two reasons for not - // returning an actual number. First, if no solutions to the equations - // were found, and second, if the solutions don't leave the given range. - // The first case means that the actual solution is "unknown", the second - // means that it's known, but not valid. If the solution is unknown, we - // cannot make any conclusions. - // Return a pair: the optional solution and a flag indicating if the - // solution was found. - auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> { - // Solve for signed overflow and unsigned overflow, pick the lower - // solution. - LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary " - << Bound << " (before multiplying by " << M << ")\n"); - Bound *= M; // The quadratic equation multiplier. - - Optional<APInt> SO = None; - if (BitWidth > 1) { - LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " - "signed overflow\n"); - SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth); - } - LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " - "unsigned overflow\n"); - Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, - BitWidth+1); - - auto LeavesRange = [&] (const APInt &X) { - ConstantInt *C0 = ConstantInt::get(SE.getContext(), X); - ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE); - if (Range.contains(V0->getValue())) - return false; - // X should be at least 1, so X-1 is non-negative. - ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1); - ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE); - if (Range.contains(V1->getValue())) - return true; - return false; - }; - - // If SolveQuadraticEquationWrap returns None, it means that there can - // be a solution, but the function failed to find it. We cannot treat it - // as "no solution". - if (!SO.hasValue() || !UO.hasValue()) - return { None, false }; - - // Check the smaller value first to see if it leaves the range. - // At this point, both SO and UO must have values. - Optional<APInt> Min = MinOptional(SO, UO); - if (LeavesRange(*Min)) - return { Min, true }; - Optional<APInt> Max = Min == SO ? UO : SO; - if (LeavesRange(*Max)) - return { Max, true }; - - // Solutions were found, but were eliminated, hence the "true". - return { None, true }; - }; - - std::tie(A, B, C, M, BitWidth) = *T; - // Lower bound is inclusive, subtract 1 to represent the exiting value. - APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1; - APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth()); - auto SL = SolveForBoundary(Lower); - auto SU = SolveForBoundary(Upper); - // If any of the solutions was unknown, no meaninigful conclusions can - // be made. - if (!SL.second || !SU.second) - return None; - - // Claim: The correct solution is not some value between Min and Max. - // - // Justification: Assuming that Min and Max are different values, one of - // them is when the first signed overflow happens, the other is when the - // first unsigned overflow happens. Crossing the range boundary is only - // possible via an overflow (treating 0 as a special case of it, modeling - // an overflow as crossing k*2^W for some k). - // - // The interesting case here is when Min was eliminated as an invalid - // solution, but Max was not. The argument is that if there was another - // overflow between Min and Max, it would also have been eliminated if - // it was considered. - // - // For a given boundary, it is possible to have two overflows of the same - // type (signed/unsigned) without having the other type in between: this - // can happen when the vertex of the parabola is between the iterations - // corresponding to the overflows. This is only possible when the two - // overflows cross k*2^W for the same k. In such case, if the second one - // left the range (and was the first one to do so), the first overflow - // would have to enter the range, which would mean that either we had left - // the range before or that we started outside of it. Both of these cases - // are contradictions. - // - // Claim: In the case where SolveForBoundary returns None, the correct - // solution is not some value between the Max for this boundary and the - // Min of the other boundary. - // - // Justification: Assume that we had such Max_A and Min_B corresponding - // to range boundaries A and B and such that Max_A < Min_B. If there was - // a solution between Max_A and Min_B, it would have to be caused by an - // overflow corresponding to either A or B. It cannot correspond to B, - // since Min_B is the first occurrence of such an overflow. If it - // corresponded to A, it would have to be either a signed or an unsigned - // overflow that is larger than both eliminated overflows for A. But - // between the eliminated overflows and this overflow, the values would - // cover the entire value space, thus crossing the other boundary, which - // is a contradiction. - - return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth); -} - -ScalarEvolution::ExitLimit -ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit, - bool AllowPredicates) { - - // This is only used for loops with a "x != y" exit test. The exit condition - // is now expressed as a single expression, V = x-y. So the exit test is - // effectively V != 0. We know and take advantage of the fact that this - // expression only being used in a comparison by zero context. - - SmallPtrSet<const SCEVPredicate *, 4> Predicates; - // If the value is a constant - if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { - // If the value is already zero, the branch will execute zero times. - if (C->getValue()->isZero()) return C; - return getCouldNotCompute(); // Otherwise it will loop infinitely. - } - - const SCEVAddRecExpr *AddRec = - dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V)); - - if (!AddRec && AllowPredicates) - // Try to make this an AddRec using runtime tests, in the first X - // iterations of this loop, where X is the SCEV expression found by the - // algorithm below. - AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates); - - if (!AddRec || AddRec->getLoop() != L) - return getCouldNotCompute(); - - // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of - // the quadratic equation to solve it. - if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { - // We can only use this value if the chrec ends up with an exact zero - // value at this index. When solving for "X*X != 5", for example, we - // should not accept a root of 2. - if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) { - const auto *R = cast<SCEVConstant>(getConstant(S.getValue())); - return ExitLimit(R, R, false, Predicates); - } - return getCouldNotCompute(); - } - - // Otherwise we can only handle this if it is affine. - if (!AddRec->isAffine()) - return getCouldNotCompute(); - - // If this is an affine expression, the execution count of this branch is - // the minimum unsigned root of the following equation: - // - // Start + Step*N = 0 (mod 2^BW) - // - // equivalent to: - // - // Step*N = -Start (mod 2^BW) - // - // where BW is the common bit width of Start and Step. - - // Get the initial value for the loop. - const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); - const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); - - // For now we handle only constant steps. - // - // TODO: Handle a nonconstant Step given AddRec<NUW>. If the - // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap - // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. - // We have not yet seen any such cases. - const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); - if (!StepC || StepC->getValue()->isZero()) - return getCouldNotCompute(); - - // For positive steps (counting up until unsigned overflow): - // N = -Start/Step (as unsigned) - // For negative steps (counting down to zero): - // N = Start/-Step - // First compute the unsigned distance from zero in the direction of Step. - bool CountDown = StepC->getAPInt().isNegative(); - const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); - - // Handle unitary steps, which cannot wraparound. - // 1*N = -Start; -1*N = Start (mod 2^BW), so: - // N = Distance (as unsigned) - if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) { - APInt MaxBECount = getUnsignedRangeMax(Distance); - - // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated, - // we end up with a loop whose backedge-taken count is n - 1. Detect this - // case, and see if we can improve the bound. - // - // Explicitly handling this here is necessary because getUnsignedRange - // isn't context-sensitive; it doesn't know that we only care about the - // range inside the loop. - const SCEV *Zero = getZero(Distance->getType()); - const SCEV *One = getOne(Distance->getType()); - const SCEV *DistancePlusOne = getAddExpr(Distance, One); - if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) { - // If Distance + 1 doesn't overflow, we can compute the maximum distance - // as "unsigned_max(Distance + 1) - 1". - ConstantRange CR = getUnsignedRange(DistancePlusOne); - MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1); - } - return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates); - } - - // If the condition controls loop exit (the loop exits only if the expression - // is true) and the addition is no-wrap we can use unsigned divide to - // compute the backedge count. In this case, the step may not divide the - // distance, but we don't care because if the condition is "missed" the loop - // will have undefined behavior due to wrapping. - if (ControlsExit && AddRec->hasNoSelfWrap() && - loopHasNoAbnormalExits(AddRec->getLoop())) { - const SCEV *Exact = - getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); - const SCEV *Max = - Exact == getCouldNotCompute() - ? Exact - : getConstant(getUnsignedRangeMax(Exact)); - return ExitLimit(Exact, Max, false, Predicates); - } - - // Solve the general equation. - const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(), - getNegativeSCEV(Start), *this); - const SCEV *M = E == getCouldNotCompute() - ? E - : getConstant(getUnsignedRangeMax(E)); - return ExitLimit(E, M, false, Predicates); -} - -ScalarEvolution::ExitLimit -ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) { - // Loops that look like: while (X == 0) are very strange indeed. We don't - // handle them yet except for the trivial case. This could be expanded in the - // future as needed. - - // If the value is a constant, check to see if it is known to be non-zero - // already. If so, the backedge will execute zero times. - if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { - if (!C->getValue()->isZero()) - return getZero(C->getType()); - return getCouldNotCompute(); // Otherwise it will loop infinitely. - } - - // We could implement others, but I really doubt anyone writes loops like - // this, and if they did, they would already be constant folded. - return getCouldNotCompute(); -} - -std::pair<BasicBlock *, BasicBlock *> -ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { - // If the block has a unique predecessor, then there is no path from the - // predecessor to the block that does not go through the direct edge - // from the predecessor to the block. - if (BasicBlock *Pred = BB->getSinglePredecessor()) - return {Pred, BB}; - - // A loop's header is defined to be a block that dominates the loop. - // If the header has a unique predecessor outside the loop, it must be - // a block that has exactly one successor that can reach the loop. - if (Loop *L = LI.getLoopFor(BB)) - return {L->getLoopPredecessor(), L->getHeader()}; - - return {nullptr, nullptr}; -} - -/// SCEV structural equivalence is usually sufficient for testing whether two -/// expressions are equal, however for the purposes of looking for a condition -/// guarding a loop, it can be useful to be a little more general, since a -/// front-end may have replicated the controlling expression. -static bool HasSameValue(const SCEV *A, const SCEV *B) { - // Quick check to see if they are the same SCEV. - if (A == B) return true; - - auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { - // Not all instructions that are "identical" compute the same value. For - // instance, two distinct alloca instructions allocating the same type are - // identical and do not read memory; but compute distinct values. - return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A)); - }; - - // Otherwise, if they're both SCEVUnknown, it's possible that they hold - // two different instructions with the same value. Check for this case. - if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) - if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) - if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) - if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) - if (ComputesEqualValues(AI, BI)) - return true; - - // Otherwise assume they may have a different value. - return false; -} - -bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, - const SCEV *&LHS, const SCEV *&RHS, - unsigned Depth) { - bool Changed = false; - // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or - // '0 != 0'. - auto TrivialCase = [&](bool TriviallyTrue) { - LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); - Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE; - return true; - }; - // If we hit the max recursion limit bail out. - if (Depth >= 3) - return false; - - // Canonicalize a constant to the right side. - if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { - // Check for both operands constant. - if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { - if (ConstantExpr::getICmp(Pred, - LHSC->getValue(), - RHSC->getValue())->isNullValue()) - return TrivialCase(false); - else - return TrivialCase(true); - } - // Otherwise swap the operands to put the constant on the right. - std::swap(LHS, RHS); - Pred = ICmpInst::getSwappedPredicate(Pred); - Changed = true; - } - - // If we're comparing an addrec with a value which is loop-invariant in the - // addrec's loop, put the addrec on the left. Also make a dominance check, - // as both operands could be addrecs loop-invariant in each other's loop. - if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { - const Loop *L = AR->getLoop(); - if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { - std::swap(LHS, RHS); - Pred = ICmpInst::getSwappedPredicate(Pred); - Changed = true; - } - } - - // If there's a constant operand, canonicalize comparisons with boundary - // cases, and canonicalize *-or-equal comparisons to regular comparisons. - if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { - const APInt &RA = RC->getAPInt(); - - bool SimplifiedByConstantRange = false; - - if (!ICmpInst::isEquality(Pred)) { - ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA); - if (ExactCR.isFullSet()) - return TrivialCase(true); - else if (ExactCR.isEmptySet()) - return TrivialCase(false); - - APInt NewRHS; - CmpInst::Predicate NewPred; - if (ExactCR.getEquivalentICmp(NewPred, NewRHS) && - ICmpInst::isEquality(NewPred)) { - // We were able to convert an inequality to an equality. - Pred = NewPred; - RHS = getConstant(NewRHS); - Changed = SimplifiedByConstantRange = true; - } - } - - if (!SimplifiedByConstantRange) { - switch (Pred) { - default: - break; - case ICmpInst::ICMP_EQ: - case ICmpInst::ICMP_NE: - // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. - if (!RA) - if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) - if (const SCEVMulExpr *ME = - dyn_cast<SCEVMulExpr>(AE->getOperand(0))) - if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && - ME->getOperand(0)->isAllOnesValue()) { - RHS = AE->getOperand(1); - LHS = ME->getOperand(1); - Changed = true; - } - break; - - - // The "Should have been caught earlier!" messages refer to the fact - // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above - // should have fired on the corresponding cases, and canonicalized the - // check to trivial case. - - case ICmpInst::ICMP_UGE: - assert(!RA.isMinValue() && "Should have been caught earlier!"); - Pred = ICmpInst::ICMP_UGT; - RHS = getConstant(RA - 1); - Changed = true; - break; - case ICmpInst::ICMP_ULE: - assert(!RA.isMaxValue() && "Should have been caught earlier!"); - Pred = ICmpInst::ICMP_ULT; - RHS = getConstant(RA + 1); - Changed = true; - break; - case ICmpInst::ICMP_SGE: - assert(!RA.isMinSignedValue() && "Should have been caught earlier!"); - Pred = ICmpInst::ICMP_SGT; - RHS = getConstant(RA - 1); - Changed = true; - break; - case ICmpInst::ICMP_SLE: - assert(!RA.isMaxSignedValue() && "Should have been caught earlier!"); - Pred = ICmpInst::ICMP_SLT; - RHS = getConstant(RA + 1); - Changed = true; - break; - } - } - } - - // Check for obvious equality. - if (HasSameValue(LHS, RHS)) { - if (ICmpInst::isTrueWhenEqual(Pred)) - return TrivialCase(true); - if (ICmpInst::isFalseWhenEqual(Pred)) - return TrivialCase(false); - } - - // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by - // adding or subtracting 1 from one of the operands. - switch (Pred) { - case ICmpInst::ICMP_SLE: - if (!getSignedRangeMax(RHS).isMaxSignedValue()) { - RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, - SCEV::FlagNSW); - Pred = ICmpInst::ICMP_SLT; - Changed = true; - } else if (!getSignedRangeMin(LHS).isMinSignedValue()) { - LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, - SCEV::FlagNSW); - Pred = ICmpInst::ICMP_SLT; - Changed = true; - } - break; - case ICmpInst::ICMP_SGE: - if (!getSignedRangeMin(RHS).isMinSignedValue()) { - RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, - SCEV::FlagNSW); - Pred = ICmpInst::ICMP_SGT; - Changed = true; - } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) { - LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, - SCEV::FlagNSW); - Pred = ICmpInst::ICMP_SGT; - Changed = true; - } - break; - case ICmpInst::ICMP_ULE: - if (!getUnsignedRangeMax(RHS).isMaxValue()) { - RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, - SCEV::FlagNUW); - Pred = ICmpInst::ICMP_ULT; - Changed = true; - } else if (!getUnsignedRangeMin(LHS).isMinValue()) { - LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS); - Pred = ICmpInst::ICMP_ULT; - Changed = true; - } - break; - case ICmpInst::ICMP_UGE: - if (!getUnsignedRangeMin(RHS).isMinValue()) { - RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS); - Pred = ICmpInst::ICMP_UGT; - Changed = true; - } else if (!getUnsignedRangeMax(LHS).isMaxValue()) { - LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, - SCEV::FlagNUW); - Pred = ICmpInst::ICMP_UGT; - Changed = true; - } - break; - default: - break; - } - - // TODO: More simplifications are possible here. - - // Recursively simplify until we either hit a recursion limit or nothing - // changes. - if (Changed) - return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); - - return Changed; -} - -bool ScalarEvolution::isKnownNegative(const SCEV *S) { - return getSignedRangeMax(S).isNegative(); -} - -bool ScalarEvolution::isKnownPositive(const SCEV *S) { - return getSignedRangeMin(S).isStrictlyPositive(); -} - -bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { - return !getSignedRangeMin(S).isNegative(); -} - -bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { - return !getSignedRangeMax(S).isStrictlyPositive(); -} - -bool ScalarEvolution::isKnownNonZero(const SCEV *S) { - return isKnownNegative(S) || isKnownPositive(S); -} - -std::pair<const SCEV *, const SCEV *> -ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) { - // Compute SCEV on entry of loop L. - const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this); - if (Start == getCouldNotCompute()) - return { Start, Start }; - // Compute post increment SCEV for loop L. - const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this); - assert(PostInc != getCouldNotCompute() && "Unexpected could not compute"); - return { Start, PostInc }; -} - -bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred, - const SCEV *LHS, const SCEV *RHS) { - // First collect all loops. - SmallPtrSet<const Loop *, 8> LoopsUsed; - getUsedLoops(LHS, LoopsUsed); - getUsedLoops(RHS, LoopsUsed); - - if (LoopsUsed.empty()) - return false; - - // Domination relationship must be a linear order on collected loops. -#ifndef NDEBUG - for (auto *L1 : LoopsUsed) - for (auto *L2 : LoopsUsed) - assert((DT.dominates(L1->getHeader(), L2->getHeader()) || - DT.dominates(L2->getHeader(), L1->getHeader())) && - "Domination relationship is not a linear order"); -#endif - - const Loop *MDL = - *std::max_element(LoopsUsed.begin(), LoopsUsed.end(), - [&](const Loop *L1, const Loop *L2) { - return DT.properlyDominates(L1->getHeader(), L2->getHeader()); - }); - - // Get init and post increment value for LHS. - auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS); - // if LHS contains unknown non-invariant SCEV then bail out. - if (SplitLHS.first == getCouldNotCompute()) - return false; - assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC"); - // Get init and post increment value for RHS. - auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS); - // if RHS contains unknown non-invariant SCEV then bail out. - if (SplitRHS.first == getCouldNotCompute()) - return false; - assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC"); - // It is possible that init SCEV contains an invariant load but it does - // not dominate MDL and is not available at MDL loop entry, so we should - // check it here. - if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) || - !isAvailableAtLoopEntry(SplitRHS.first, MDL)) - return false; - - return isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first) && - isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second, - SplitRHS.second); -} - -bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, - const SCEV *LHS, const SCEV *RHS) { - // Canonicalize the inputs first. - (void)SimplifyICmpOperands(Pred, LHS, RHS); - - if (isKnownViaInduction(Pred, LHS, RHS)) - return true; - - if (isKnownPredicateViaSplitting(Pred, LHS, RHS)) - return true; - - // Otherwise see what can be done with some simple reasoning. - return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS); -} - -bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred, - const SCEVAddRecExpr *LHS, - const SCEV *RHS) { - const Loop *L = LHS->getLoop(); - return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) && - isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS); -} - -bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS, - ICmpInst::Predicate Pred, - bool &Increasing) { - bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing); - -#ifndef NDEBUG - // Verify an invariant: inverting the predicate should turn a monotonically - // increasing change to a monotonically decreasing one, and vice versa. - bool IncreasingSwapped; - bool ResultSwapped = isMonotonicPredicateImpl( - LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped); - - assert(Result == ResultSwapped && "should be able to analyze both!"); - if (ResultSwapped) - assert(Increasing == !IncreasingSwapped && - "monotonicity should flip as we flip the predicate"); -#endif - - return Result; -} - -bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS, - ICmpInst::Predicate Pred, - bool &Increasing) { - - // A zero step value for LHS means the induction variable is essentially a - // loop invariant value. We don't really depend on the predicate actually - // flipping from false to true (for increasing predicates, and the other way - // around for decreasing predicates), all we care about is that *if* the - // predicate changes then it only changes from false to true. - // - // A zero step value in itself is not very useful, but there may be places - // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be - // as general as possible. - - switch (Pred) { - default: - return false; // Conservative answer - - case ICmpInst::ICMP_UGT: - case ICmpInst::ICMP_UGE: - case ICmpInst::ICMP_ULT: - case ICmpInst::ICMP_ULE: - if (!LHS->hasNoUnsignedWrap()) - return false; - - Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE; - return true; - - case ICmpInst::ICMP_SGT: - case ICmpInst::ICMP_SGE: - case ICmpInst::ICMP_SLT: - case ICmpInst::ICMP_SLE: { - if (!LHS->hasNoSignedWrap()) - return false; - - const SCEV *Step = LHS->getStepRecurrence(*this); - - if (isKnownNonNegative(Step)) { - Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE; - return true; - } - - if (isKnownNonPositive(Step)) { - Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE; - return true; - } - - return false; - } - - } - - llvm_unreachable("switch has default clause!"); -} - -bool ScalarEvolution::isLoopInvariantPredicate( - ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, - ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS, - const SCEV *&InvariantRHS) { - - // If there is a loop-invariant, force it into the RHS, otherwise bail out. - if (!isLoopInvariant(RHS, L)) { - if (!isLoopInvariant(LHS, L)) - return false; - - std::swap(LHS, RHS); - Pred = ICmpInst::getSwappedPredicate(Pred); - } - - const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); - if (!ArLHS || ArLHS->getLoop() != L) - return false; - - bool Increasing; - if (!isMonotonicPredicate(ArLHS, Pred, Increasing)) - return false; - - // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to - // true as the loop iterates, and the backedge is control dependent on - // "ArLHS `Pred` RHS" == true then we can reason as follows: - // - // * if the predicate was false in the first iteration then the predicate - // is never evaluated again, since the loop exits without taking the - // backedge. - // * if the predicate was true in the first iteration then it will - // continue to be true for all future iterations since it is - // monotonically increasing. - // - // For both the above possibilities, we can replace the loop varying - // predicate with its value on the first iteration of the loop (which is - // loop invariant). - // - // A similar reasoning applies for a monotonically decreasing predicate, by - // replacing true with false and false with true in the above two bullets. - - auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); - - if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) - return false; - - InvariantPred = Pred; - InvariantLHS = ArLHS->getStart(); - InvariantRHS = RHS; - return true; -} - -bool ScalarEvolution::isKnownPredicateViaConstantRanges( - ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { - if (HasSameValue(LHS, RHS)) - return ICmpInst::isTrueWhenEqual(Pred); - - // This code is split out from isKnownPredicate because it is called from - // within isLoopEntryGuardedByCond. - - auto CheckRanges = - [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) { - return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS) - .contains(RangeLHS); - }; - - // The check at the top of the function catches the case where the values are - // known to be equal. - if (Pred == CmpInst::ICMP_EQ) - return false; - - if (Pred == CmpInst::ICMP_NE) - return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) || - CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) || - isKnownNonZero(getMinusSCEV(LHS, RHS)); - - if (CmpInst::isSigned(Pred)) - return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)); - - return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)); -} - -bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, - const SCEV *LHS, - const SCEV *RHS) { - // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer. - // Return Y via OutY. - auto MatchBinaryAddToConst = - [this](const SCEV *Result, const SCEV *X, APInt &OutY, - SCEV::NoWrapFlags ExpectedFlags) { - const SCEV *NonConstOp, *ConstOp; - SCEV::NoWrapFlags FlagsPresent; - - if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) || - !isa<SCEVConstant>(ConstOp) || NonConstOp != X) - return false; - - OutY = cast<SCEVConstant>(ConstOp)->getAPInt(); - return (FlagsPresent & ExpectedFlags) == ExpectedFlags; - }; - - APInt C; - - switch (Pred) { - default: - break; - - case ICmpInst::ICMP_SGE: - std::swap(LHS, RHS); - LLVM_FALLTHROUGH; - case ICmpInst::ICMP_SLE: - // X s<= (X + C)<nsw> if C >= 0 - if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative()) - return true; - - // (X + C)<nsw> s<= X if C <= 0 - if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && - !C.isStrictlyPositive()) - return true; - break; - - case ICmpInst::ICMP_SGT: - std::swap(LHS, RHS); - LLVM_FALLTHROUGH; - case ICmpInst::ICMP_SLT: - // X s< (X + C)<nsw> if C > 0 - if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && - C.isStrictlyPositive()) - return true; - - // (X + C)<nsw> s< X if C < 0 - if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative()) - return true; - break; - } - - return false; -} - -bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, - const SCEV *LHS, - const SCEV *RHS) { - if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate) - return false; - - // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on - // the stack can result in exponential time complexity. - SaveAndRestore<bool> Restore(ProvingSplitPredicate, true); - - // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L - // - // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use - // isKnownPredicate. isKnownPredicate is more powerful, but also more - // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the - // interesting cases seen in practice. We can consider "upgrading" L >= 0 to - // use isKnownPredicate later if needed. - return isKnownNonNegative(RHS) && - isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) && - isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS); -} - -bool ScalarEvolution::isImpliedViaGuard(BasicBlock *BB, - ICmpInst::Predicate Pred, - const SCEV *LHS, const SCEV *RHS) { - // No need to even try if we know the module has no guards. - if (!HasGuards) - return false; - - return any_of(*BB, [&](Instruction &I) { - using namespace llvm::PatternMatch; - - Value *Condition; - return match(&I, m_Intrinsic<Intrinsic::experimental_guard>( - m_Value(Condition))) && - isImpliedCond(Pred, LHS, RHS, Condition, false); - }); -} - -/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is -/// protected by a conditional between LHS and RHS. This is used to -/// to eliminate casts. -bool -ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, - ICmpInst::Predicate Pred, - const SCEV *LHS, const SCEV *RHS) { - // Interpret a null as meaning no loop, where there is obviously no guard - // (interprocedural conditions notwithstanding). - if (!L) return true; - - if (VerifyIR) - assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) && - "This cannot be done on broken IR!"); - - - if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) - return true; - - BasicBlock *Latch = L->getLoopLatch(); - if (!Latch) - return false; - - BranchInst *LoopContinuePredicate = - dyn_cast<BranchInst>(Latch->getTerminator()); - if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && - isImpliedCond(Pred, LHS, RHS, - LoopContinuePredicate->getCondition(), - LoopContinuePredicate->getSuccessor(0) != L->getHeader())) - return true; - - // We don't want more than one activation of the following loops on the stack - // -- that can lead to O(n!) time complexity. - if (WalkingBEDominatingConds) - return false; - - SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true); - - // See if we can exploit a trip count to prove the predicate. - const auto &BETakenInfo = getBackedgeTakenInfo(L); - const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this); - if (LatchBECount != getCouldNotCompute()) { - // We know that Latch branches back to the loop header exactly - // LatchBECount times. This means the backdege condition at Latch is - // equivalent to "{0,+,1} u< LatchBECount". - Type *Ty = LatchBECount->getType(); - auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); - const SCEV *LoopCounter = - getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags); - if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter, - LatchBECount)) - return true; - } - - // Check conditions due to any @llvm.assume intrinsics. - for (auto &AssumeVH : AC.assumptions()) { - if (!AssumeVH) - continue; - auto *CI = cast<CallInst>(AssumeVH); - if (!DT.dominates(CI, Latch->getTerminator())) - continue; - - if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) - return true; - } - - // If the loop is not reachable from the entry block, we risk running into an - // infinite loop as we walk up into the dom tree. These loops do not matter - // anyway, so we just return a conservative answer when we see them. - if (!DT.isReachableFromEntry(L->getHeader())) - return false; - - if (isImpliedViaGuard(Latch, Pred, LHS, RHS)) - return true; - - for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; - DTN != HeaderDTN; DTN = DTN->getIDom()) { - assert(DTN && "should reach the loop header before reaching the root!"); - - BasicBlock *BB = DTN->getBlock(); - if (isImpliedViaGuard(BB, Pred, LHS, RHS)) - return true; - - BasicBlock *PBB = BB->getSinglePredecessor(); - if (!PBB) - continue; - - BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); - if (!ContinuePredicate || !ContinuePredicate->isConditional()) - continue; - - Value *Condition = ContinuePredicate->getCondition(); - - // If we have an edge `E` within the loop body that dominates the only - // latch, the condition guarding `E` also guards the backedge. This - // reasoning works only for loops with a single latch. - - BasicBlockEdge DominatingEdge(PBB, BB); - if (DominatingEdge.isSingleEdge()) { - // We're constructively (and conservatively) enumerating edges within the - // loop body that dominate the latch. The dominator tree better agree - // with us on this: - assert(DT.dominates(DominatingEdge, Latch) && "should be!"); - - if (isImpliedCond(Pred, LHS, RHS, Condition, - BB != ContinuePredicate->getSuccessor(0))) - return true; - } - } - - return false; -} - -bool -ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, - ICmpInst::Predicate Pred, - const SCEV *LHS, const SCEV *RHS) { - // Interpret a null as meaning no loop, where there is obviously no guard - // (interprocedural conditions notwithstanding). - if (!L) return false; - - if (VerifyIR) - assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) && - "This cannot be done on broken IR!"); - - // Both LHS and RHS must be available at loop entry. - assert(isAvailableAtLoopEntry(LHS, L) && - "LHS is not available at Loop Entry"); - assert(isAvailableAtLoopEntry(RHS, L) && - "RHS is not available at Loop Entry"); - - if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) - return true; - - // If we cannot prove strict comparison (e.g. a > b), maybe we can prove - // the facts (a >= b && a != b) separately. A typical situation is when the - // non-strict comparison is known from ranges and non-equality is known from - // dominating predicates. If we are proving strict comparison, we always try - // to prove non-equality and non-strict comparison separately. - auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred); - const bool ProvingStrictComparison = (Pred != NonStrictPredicate); - bool ProvedNonStrictComparison = false; - bool ProvedNonEquality = false; - - if (ProvingStrictComparison) { - ProvedNonStrictComparison = - isKnownViaNonRecursiveReasoning(NonStrictPredicate, LHS, RHS); - ProvedNonEquality = - isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_NE, LHS, RHS); - if (ProvedNonStrictComparison && ProvedNonEquality) - return true; - } - - // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard. - auto ProveViaGuard = [&](BasicBlock *Block) { - if (isImpliedViaGuard(Block, Pred, LHS, RHS)) - return true; - if (ProvingStrictComparison) { - if (!ProvedNonStrictComparison) - ProvedNonStrictComparison = - isImpliedViaGuard(Block, NonStrictPredicate, LHS, RHS); - if (!ProvedNonEquality) - ProvedNonEquality = - isImpliedViaGuard(Block, ICmpInst::ICMP_NE, LHS, RHS); - if (ProvedNonStrictComparison && ProvedNonEquality) - return true; - } - return false; - }; - - // Try to prove (Pred, LHS, RHS) using isImpliedCond. - auto ProveViaCond = [&](Value *Condition, bool Inverse) { - if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse)) - return true; - if (ProvingStrictComparison) { - if (!ProvedNonStrictComparison) - ProvedNonStrictComparison = - isImpliedCond(NonStrictPredicate, LHS, RHS, Condition, Inverse); - if (!ProvedNonEquality) - ProvedNonEquality = - isImpliedCond(ICmpInst::ICMP_NE, LHS, RHS, Condition, Inverse); - if (ProvedNonStrictComparison && ProvedNonEquality) - return true; - } - return false; - }; - - // Starting at the loop predecessor, climb up the predecessor chain, as long - // as there are predecessors that can be found that have unique successors - // leading to the original header. - for (std::pair<BasicBlock *, BasicBlock *> - Pair(L->getLoopPredecessor(), L->getHeader()); - Pair.first; - Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { - - if (ProveViaGuard(Pair.first)) - return true; - - BranchInst *LoopEntryPredicate = - dyn_cast<BranchInst>(Pair.first->getTerminator()); - if (!LoopEntryPredicate || - LoopEntryPredicate->isUnconditional()) - continue; - - if (ProveViaCond(LoopEntryPredicate->getCondition(), - LoopEntryPredicate->getSuccessor(0) != Pair.second)) - return true; - } - - // Check conditions due to any @llvm.assume intrinsics. - for (auto &AssumeVH : AC.assumptions()) { - if (!AssumeVH) - continue; - auto *CI = cast<CallInst>(AssumeVH); - if (!DT.dominates(CI, L->getHeader())) - continue; - - if (ProveViaCond(CI->getArgOperand(0), false)) - return true; - } - - return false; -} - -bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, - const SCEV *LHS, const SCEV *RHS, - Value *FoundCondValue, - bool Inverse) { - if (!PendingLoopPredicates.insert(FoundCondValue).second) - return false; - - auto ClearOnExit = - make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); }); - - // Recursively handle And and Or conditions. - if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { - if (BO->getOpcode() == Instruction::And) { - if (!Inverse) - return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || - isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); - } else if (BO->getOpcode() == Instruction::Or) { - if (Inverse) - return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || - isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); - } - } - - ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); - if (!ICI) return false; - - // Now that we found a conditional branch that dominates the loop or controls - // the loop latch. Check to see if it is the comparison we are looking for. - ICmpInst::Predicate FoundPred; - if (Inverse) - FoundPred = ICI->getInversePredicate(); - else - FoundPred = ICI->getPredicate(); - - const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); - const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); - - return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS); -} - -bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, - const SCEV *RHS, - ICmpInst::Predicate FoundPred, - const SCEV *FoundLHS, - const SCEV *FoundRHS) { - // Balance the types. - if (getTypeSizeInBits(LHS->getType()) < - getTypeSizeInBits(FoundLHS->getType())) { - if (CmpInst::isSigned(Pred)) { - LHS = getSignExtendExpr(LHS, FoundLHS->getType()); - RHS = getSignExtendExpr(RHS, FoundLHS->getType()); - } else { - LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); - RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); - } - } else if (getTypeSizeInBits(LHS->getType()) > - getTypeSizeInBits(FoundLHS->getType())) { - if (CmpInst::isSigned(FoundPred)) { - FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); - FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); - } else { - FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); - FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); - } - } - - // Canonicalize the query to match the way instcombine will have - // canonicalized the comparison. - if (SimplifyICmpOperands(Pred, LHS, RHS)) - if (LHS == RHS) - return CmpInst::isTrueWhenEqual(Pred); - if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) - if (FoundLHS == FoundRHS) - return CmpInst::isFalseWhenEqual(FoundPred); - - // Check to see if we can make the LHS or RHS match. - if (LHS == FoundRHS || RHS == FoundLHS) { - if (isa<SCEVConstant>(RHS)) { - std::swap(FoundLHS, FoundRHS); - FoundPred = ICmpInst::getSwappedPredicate(FoundPred); - } else { - std::swap(LHS, RHS); - Pred = ICmpInst::getSwappedPredicate(Pred); - } - } - - // Check whether the found predicate is the same as the desired predicate. - if (FoundPred == Pred) - return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); - - // Check whether swapping the found predicate makes it the same as the - // desired predicate. - if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { - if (isa<SCEVConstant>(RHS)) - return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); - else - return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), - RHS, LHS, FoundLHS, FoundRHS); - } - - // Unsigned comparison is the same as signed comparison when both the operands - // are non-negative. - if (CmpInst::isUnsigned(FoundPred) && - CmpInst::getSignedPredicate(FoundPred) == Pred && - isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) - return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); - - // Check if we can make progress by sharpening ranges. - if (FoundPred == ICmpInst::ICMP_NE && - (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { - - const SCEVConstant *C = nullptr; - const SCEV *V = nullptr; - - if (isa<SCEVConstant>(FoundLHS)) { - C = cast<SCEVConstant>(FoundLHS); - V = FoundRHS; - } else { - C = cast<SCEVConstant>(FoundRHS); - V = FoundLHS; - } - - // The guarding predicate tells us that C != V. If the known range - // of V is [C, t), we can sharpen the range to [C + 1, t). The - // range we consider has to correspond to same signedness as the - // predicate we're interested in folding. - - APInt Min = ICmpInst::isSigned(Pred) ? - getSignedRangeMin(V) : getUnsignedRangeMin(V); - - if (Min == C->getAPInt()) { - // Given (V >= Min && V != Min) we conclude V >= (Min + 1). - // This is true even if (Min + 1) wraps around -- in case of - // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). - - APInt SharperMin = Min + 1; - - switch (Pred) { - case ICmpInst::ICMP_SGE: - case ICmpInst::ICMP_UGE: - // We know V `Pred` SharperMin. If this implies LHS `Pred` - // RHS, we're done. - if (isImpliedCondOperands(Pred, LHS, RHS, V, - getConstant(SharperMin))) - return true; - LLVM_FALLTHROUGH; - - case ICmpInst::ICMP_SGT: - case ICmpInst::ICMP_UGT: - // We know from the range information that (V `Pred` Min || - // V == Min). We know from the guarding condition that !(V - // == Min). This gives us - // - // V `Pred` Min || V == Min && !(V == Min) - // => V `Pred` Min - // - // If V `Pred` Min implies LHS `Pred` RHS, we're done. - - if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min))) - return true; - LLVM_FALLTHROUGH; - - default: - // No change - break; - } - } - } - - // Check whether the actual condition is beyond sufficient. - if (FoundPred == ICmpInst::ICMP_EQ) - if (ICmpInst::isTrueWhenEqual(Pred)) - if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) - return true; - if (Pred == ICmpInst::ICMP_NE) - if (!ICmpInst::isTrueWhenEqual(FoundPred)) - if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) - return true; - - // Otherwise assume the worst. - return false; -} - -bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr, - const SCEV *&L, const SCEV *&R, - SCEV::NoWrapFlags &Flags) { - const auto *AE = dyn_cast<SCEVAddExpr>(Expr); - if (!AE || AE->getNumOperands() != 2) - return false; - - L = AE->getOperand(0); - R = AE->getOperand(1); - Flags = AE->getNoWrapFlags(); - return true; -} - -Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More, - const SCEV *Less) { - // We avoid subtracting expressions here because this function is usually - // fairly deep in the call stack (i.e. is called many times). - - if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) { - const auto *LAR = cast<SCEVAddRecExpr>(Less); - const auto *MAR = cast<SCEVAddRecExpr>(More); - - if (LAR->getLoop() != MAR->getLoop()) - return None; - - // We look at affine expressions only; not for correctness but to keep - // getStepRecurrence cheap. - if (!LAR->isAffine() || !MAR->isAffine()) - return None; - - if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this)) - return None; - - Less = LAR->getStart(); - More = MAR->getStart(); - - // fall through - } - - if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) { - const auto &M = cast<SCEVConstant>(More)->getAPInt(); - const auto &L = cast<SCEVConstant>(Less)->getAPInt(); - return M - L; - } - - SCEV::NoWrapFlags Flags; - const SCEV *LLess = nullptr, *RLess = nullptr; - const SCEV *LMore = nullptr, *RMore = nullptr; - const SCEVConstant *C1 = nullptr, *C2 = nullptr; - // Compare (X + C1) vs X. - if (splitBinaryAdd(Less, LLess, RLess, Flags)) - if ((C1 = dyn_cast<SCEVConstant>(LLess))) - if (RLess == More) - return -(C1->getAPInt()); - - // Compare X vs (X + C2). - if (splitBinaryAdd(More, LMore, RMore, Flags)) - if ((C2 = dyn_cast<SCEVConstant>(LMore))) - if (RMore == Less) - return C2->getAPInt(); - - // Compare (X + C1) vs (X + C2). - if (C1 && C2 && RLess == RMore) - return C2->getAPInt() - C1->getAPInt(); - - return None; -} - -bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow( - ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, - const SCEV *FoundLHS, const SCEV *FoundRHS) { - if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) - return false; - - const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS); - if (!AddRecLHS) - return false; - - const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS); - if (!AddRecFoundLHS) - return false; - - // We'd like to let SCEV reason about control dependencies, so we constrain - // both the inequalities to be about add recurrences on the same loop. This - // way we can use isLoopEntryGuardedByCond later. - - const Loop *L = AddRecFoundLHS->getLoop(); - if (L != AddRecLHS->getLoop()) - return false; - - // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1) - // - // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) - // ... (2) - // - // Informal proof for (2), assuming (1) [*]: - // - // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] - // - // Then - // - // FoundLHS s< FoundRHS s< INT_MIN - C - // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ] - // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] - // <=> (FoundLHS + INT_MIN + C + INT_MIN) s< - // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] - // <=> FoundLHS + C s< FoundRHS + C - // - // [*]: (1) can be proved by ruling out overflow. - // - // [**]: This can be proved by analyzing all the four possibilities: - // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and - // (A s>= 0, B s>= 0). - // - // Note: - // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" - // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS - // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS - // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is - // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + - // C)". - - Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS); - Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS); - if (!LDiff || !RDiff || *LDiff != *RDiff) - return false; - - if (LDiff->isMinValue()) - return true; - - APInt FoundRHSLimit; - - if (Pred == CmpInst::ICMP_ULT) { - FoundRHSLimit = -(*RDiff); - } else { - assert(Pred == CmpInst::ICMP_SLT && "Checked above!"); - FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff; - } - - // Try to prove (1) or (2), as needed. - return isAvailableAtLoopEntry(FoundRHS, L) && - isLoopEntryGuardedByCond(L, Pred, FoundRHS, - getConstant(FoundRHSLimit)); -} - -bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred, - const SCEV *LHS, const SCEV *RHS, - const SCEV *FoundLHS, - const SCEV *FoundRHS, unsigned Depth) { - const PHINode *LPhi = nullptr, *RPhi = nullptr; - - auto ClearOnExit = make_scope_exit([&]() { - if (LPhi) { - bool Erased = PendingMerges.erase(LPhi); - assert(Erased && "Failed to erase LPhi!"); - (void)Erased; - } - if (RPhi) { - bool Erased = PendingMerges.erase(RPhi); - assert(Erased && "Failed to erase RPhi!"); - (void)Erased; - } - }); - - // Find respective Phis and check that they are not being pending. - if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) - if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) { - if (!PendingMerges.insert(Phi).second) - return false; - LPhi = Phi; - } - if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS)) - if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) { - // If we detect a loop of Phi nodes being processed by this method, for - // example: - // - // %a = phi i32 [ %some1, %preheader ], [ %b, %latch ] - // %b = phi i32 [ %some2, %preheader ], [ %a, %latch ] - // - // we don't want to deal with a case that complex, so return conservative - // answer false. - if (!PendingMerges.insert(Phi).second) - return false; - RPhi = Phi; - } - - // If none of LHS, RHS is a Phi, nothing to do here. - if (!LPhi && !RPhi) - return false; - - // If there is a SCEVUnknown Phi we are interested in, make it left. - if (!LPhi) { - std::swap(LHS, RHS); - std::swap(FoundLHS, FoundRHS); - std::swap(LPhi, RPhi); - Pred = ICmpInst::getSwappedPredicate(Pred); - } - - assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!"); - const BasicBlock *LBB = LPhi->getParent(); - const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); - - auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) { - return isKnownViaNonRecursiveReasoning(Pred, S1, S2) || - isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) || - isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth); - }; - - if (RPhi && RPhi->getParent() == LBB) { - // Case one: RHS is also a SCEVUnknown Phi from the same basic block. - // If we compare two Phis from the same block, and for each entry block - // the predicate is true for incoming values from this block, then the - // predicate is also true for the Phis. - for (const BasicBlock *IncBB : predecessors(LBB)) { - const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); - const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB)); - if (!ProvedEasily(L, R)) - return false; - } - } else if (RAR && RAR->getLoop()->getHeader() == LBB) { - // Case two: RHS is also a Phi from the same basic block, and it is an - // AddRec. It means that there is a loop which has both AddRec and Unknown - // PHIs, for it we can compare incoming values of AddRec from above the loop - // and latch with their respective incoming values of LPhi. - // TODO: Generalize to handle loops with many inputs in a header. - if (LPhi->getNumIncomingValues() != 2) return false; - - auto *RLoop = RAR->getLoop(); - auto *Predecessor = RLoop->getLoopPredecessor(); - assert(Predecessor && "Loop with AddRec with no predecessor?"); - const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor)); - if (!ProvedEasily(L1, RAR->getStart())) - return false; - auto *Latch = RLoop->getLoopLatch(); - assert(Latch && "Loop with AddRec with no latch?"); - const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch)); - if (!ProvedEasily(L2, RAR->getPostIncExpr(*this))) - return false; - } else { - // In all other cases go over inputs of LHS and compare each of them to RHS, - // the predicate is true for (LHS, RHS) if it is true for all such pairs. - // At this point RHS is either a non-Phi, or it is a Phi from some block - // different from LBB. - for (const BasicBlock *IncBB : predecessors(LBB)) { - // Check that RHS is available in this block. - if (!dominates(RHS, IncBB)) - return false; - const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); - if (!ProvedEasily(L, RHS)) - return false; - } - } - return true; -} - -bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, - const SCEV *LHS, const SCEV *RHS, - const SCEV *FoundLHS, - const SCEV *FoundRHS) { - if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) - return true; - - if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) - return true; - - return isImpliedCondOperandsHelper(Pred, LHS, RHS, - FoundLHS, FoundRHS) || - // ~x < ~y --> x > y - isImpliedCondOperandsHelper(Pred, LHS, RHS, - getNotSCEV(FoundRHS), - getNotSCEV(FoundLHS)); -} - -/// If Expr computes ~A, return A else return nullptr -static const SCEV *MatchNotExpr(const SCEV *Expr) { - const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); - if (!Add || Add->getNumOperands() != 2 || - !Add->getOperand(0)->isAllOnesValue()) - return nullptr; - - const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); - if (!AddRHS || AddRHS->getNumOperands() != 2 || - !AddRHS->getOperand(0)->isAllOnesValue()) - return nullptr; - - return AddRHS->getOperand(1); -} - -/// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values? -template<typename MaxExprType> -static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr, - const SCEV *Candidate) { - const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr); - if (!MaxExpr) return false; - - return find(MaxExpr->operands(), Candidate) != MaxExpr->op_end(); -} - -/// Is MaybeMinExpr an SMin or UMin of Candidate and some other values? -template<typename MaxExprType> -static bool IsMinConsistingOf(ScalarEvolution &SE, - const SCEV *MaybeMinExpr, - const SCEV *Candidate) { - const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr); - if (!MaybeMaxExpr) - return false; - - return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate)); -} - -static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, - ICmpInst::Predicate Pred, - const SCEV *LHS, const SCEV *RHS) { - // If both sides are affine addrecs for the same loop, with equal - // steps, and we know the recurrences don't wrap, then we only - // need to check the predicate on the starting values. - - if (!ICmpInst::isRelational(Pred)) - return false; - - const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); - if (!LAR) - return false; - const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); - if (!RAR) - return false; - if (LAR->getLoop() != RAR->getLoop()) - return false; - if (!LAR->isAffine() || !RAR->isAffine()) - return false; - - if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) - return false; - - SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? - SCEV::FlagNSW : SCEV::FlagNUW; - if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) - return false; - - return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); -} - -/// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max -/// expression? -static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, - ICmpInst::Predicate Pred, - const SCEV *LHS, const SCEV *RHS) { - switch (Pred) { - default: - return false; - - case ICmpInst::ICMP_SGE: - std::swap(LHS, RHS); - LLVM_FALLTHROUGH; - case ICmpInst::ICMP_SLE: - return - // min(A, ...) <= A - IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) || - // A <= max(A, ...) - IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); - - case ICmpInst::ICMP_UGE: - std::swap(LHS, RHS); - LLVM_FALLTHROUGH; - case ICmpInst::ICMP_ULE: - return - // min(A, ...) <= A - IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) || - // A <= max(A, ...) - IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); - } - - llvm_unreachable("covered switch fell through?!"); -} - -bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred, - const SCEV *LHS, const SCEV *RHS, - const SCEV *FoundLHS, - const SCEV *FoundRHS, - unsigned Depth) { - assert(getTypeSizeInBits(LHS->getType()) == - getTypeSizeInBits(RHS->getType()) && - "LHS and RHS have different sizes?"); - assert(getTypeSizeInBits(FoundLHS->getType()) == - getTypeSizeInBits(FoundRHS->getType()) && - "FoundLHS and FoundRHS have different sizes?"); - // We want to avoid hurting the compile time with analysis of too big trees. - if (Depth > MaxSCEVOperationsImplicationDepth) - return false; - // We only want to work with ICMP_SGT comparison so far. - // TODO: Extend to ICMP_UGT? - if (Pred == ICmpInst::ICMP_SLT) { - Pred = ICmpInst::ICMP_SGT; - std::swap(LHS, RHS); - std::swap(FoundLHS, FoundRHS); - } - if (Pred != ICmpInst::ICMP_SGT) - return false; - - auto GetOpFromSExt = [&](const SCEV *S) { - if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S)) - return Ext->getOperand(); - // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off - // the constant in some cases. - return S; - }; - - // Acquire values from extensions. - auto *OrigLHS = LHS; - auto *OrigFoundLHS = FoundLHS; - LHS = GetOpFromSExt(LHS); - FoundLHS = GetOpFromSExt(FoundLHS); - - // Is the SGT predicate can be proved trivially or using the found context. - auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) { - return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) || - isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS, - FoundRHS, Depth + 1); - }; - - if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) { - // We want to avoid creation of any new non-constant SCEV. Since we are - // going to compare the operands to RHS, we should be certain that we don't - // need any size extensions for this. So let's decline all cases when the - // sizes of types of LHS and RHS do not match. - // TODO: Maybe try to get RHS from sext to catch more cases? - if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType())) - return false; - - // Should not overflow. - if (!LHSAddExpr->hasNoSignedWrap()) - return false; - - auto *LL = LHSAddExpr->getOperand(0); - auto *LR = LHSAddExpr->getOperand(1); - auto *MinusOne = getNegativeSCEV(getOne(RHS->getType())); - - // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context. - auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) { - return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS); - }; - // Try to prove the following rule: - // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS). - // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS). - if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL)) - return true; - } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) { - Value *LL, *LR; - // FIXME: Once we have SDiv implemented, we can get rid of this matching. - - using namespace llvm::PatternMatch; - - if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) { - // Rules for division. - // We are going to perform some comparisons with Denominator and its - // derivative expressions. In general case, creating a SCEV for it may - // lead to a complex analysis of the entire graph, and in particular it - // can request trip count recalculation for the same loop. This would - // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid - // this, we only want to create SCEVs that are constants in this section. - // So we bail if Denominator is not a constant. - if (!isa<ConstantInt>(LR)) - return false; - - auto *Denominator = cast<SCEVConstant>(getSCEV(LR)); - - // We want to make sure that LHS = FoundLHS / Denominator. If it is so, - // then a SCEV for the numerator already exists and matches with FoundLHS. - auto *Numerator = getExistingSCEV(LL); - if (!Numerator || Numerator->getType() != FoundLHS->getType()) - return false; - - // Make sure that the numerator matches with FoundLHS and the denominator - // is positive. - if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator)) - return false; - - auto *DTy = Denominator->getType(); - auto *FRHSTy = FoundRHS->getType(); - if (DTy->isPointerTy() != FRHSTy->isPointerTy()) - // One of types is a pointer and another one is not. We cannot extend - // them properly to a wider type, so let us just reject this case. - // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help - // to avoid this check. - return false; - - // Given that: - // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0. - auto *WTy = getWiderType(DTy, FRHSTy); - auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy); - auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy); - - // Try to prove the following rule: - // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS). - // For example, given that FoundLHS > 2. It means that FoundLHS is at - // least 3. If we divide it by Denominator < 4, we will have at least 1. - auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2)); - if (isKnownNonPositive(RHS) && - IsSGTViaContext(FoundRHSExt, DenomMinusTwo)) - return true; - - // Try to prove the following rule: - // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS). - // For example, given that FoundLHS > -3. Then FoundLHS is at least -2. - // If we divide it by Denominator > 2, then: - // 1. If FoundLHS is negative, then the result is 0. - // 2. If FoundLHS is non-negative, then the result is non-negative. - // Anyways, the result is non-negative. - auto *MinusOne = getNegativeSCEV(getOne(WTy)); - auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt); - if (isKnownNegative(RHS) && - IsSGTViaContext(FoundRHSExt, NegDenomMinusOne)) - return true; - } - } - - // If our expression contained SCEVUnknown Phis, and we split it down and now - // need to prove something for them, try to prove the predicate for every - // possible incoming values of those Phis. - if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1)) - return true; - - return false; -} - -bool -ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred, - const SCEV *LHS, const SCEV *RHS) { - return isKnownPredicateViaConstantRanges(Pred, LHS, RHS) || - IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || - IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) || - isKnownPredicateViaNoOverflow(Pred, LHS, RHS); -} - -bool -ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, - const SCEV *LHS, const SCEV *RHS, - const SCEV *FoundLHS, - const SCEV *FoundRHS) { - switch (Pred) { - default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); - case ICmpInst::ICMP_EQ: - case ICmpInst::ICMP_NE: - if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) - return true; - break; - case ICmpInst::ICMP_SLT: - case ICmpInst::ICMP_SLE: - if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) && - isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS)) - return true; - break; - case ICmpInst::ICMP_SGT: - case ICmpInst::ICMP_SGE: - if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) && - isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS)) - return true; - break; - case ICmpInst::ICMP_ULT: - case ICmpInst::ICMP_ULE: - if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) && - isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS)) - return true; - break; - case ICmpInst::ICMP_UGT: - case ICmpInst::ICMP_UGE: - if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) && - isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS)) - return true; - break; - } - - // Maybe it can be proved via operations? - if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS)) - return true; - - return false; -} - -bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, - const SCEV *LHS, - const SCEV *RHS, - const SCEV *FoundLHS, - const SCEV *FoundRHS) { - if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) - // The restriction on `FoundRHS` be lifted easily -- it exists only to - // reduce the compile time impact of this optimization. - return false; - - Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS); - if (!Addend) - return false; - - const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt(); - - // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the - // antecedent "`FoundLHS` `Pred` `FoundRHS`". - ConstantRange FoundLHSRange = - ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS); - - // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`: - ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend)); - - // We can also compute the range of values for `LHS` that satisfy the - // consequent, "`LHS` `Pred` `RHS`": - const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt(); - ConstantRange SatisfyingLHSRange = - ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS); - - // The antecedent implies the consequent if every value of `LHS` that - // satisfies the antecedent also satisfies the consequent. - return SatisfyingLHSRange.contains(LHSRange); -} - -bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, - bool IsSigned, bool NoWrap) { - assert(isKnownPositive(Stride) && "Positive stride expected!"); - - if (NoWrap) return false; - - unsigned BitWidth = getTypeSizeInBits(RHS->getType()); - const SCEV *One = getOne(Stride->getType()); - - if (IsSigned) { - APInt MaxRHS = getSignedRangeMax(RHS); - APInt MaxValue = APInt::getSignedMaxValue(BitWidth); - APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); - - // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! - return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS); - } - - APInt MaxRHS = getUnsignedRangeMax(RHS); - APInt MaxValue = APInt::getMaxValue(BitWidth); - APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); - - // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! - return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS); -} - -bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, - bool IsSigned, bool NoWrap) { - if (NoWrap) return false; - - unsigned BitWidth = getTypeSizeInBits(RHS->getType()); - const SCEV *One = getOne(Stride->getType()); - - if (IsSigned) { - APInt MinRHS = getSignedRangeMin(RHS); - APInt MinValue = APInt::getSignedMinValue(BitWidth); - APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); - - // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! - return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS); - } - - APInt MinRHS = getUnsignedRangeMin(RHS); - APInt MinValue = APInt::getMinValue(BitWidth); - APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); - - // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! - return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS); -} - -const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step, - bool Equality) { - const SCEV *One = getOne(Step->getType()); - Delta = Equality ? getAddExpr(Delta, Step) - : getAddExpr(Delta, getMinusSCEV(Step, One)); - return getUDivExpr(Delta, Step); -} - -const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start, - const SCEV *Stride, - const SCEV *End, - unsigned BitWidth, - bool IsSigned) { - - assert(!isKnownNonPositive(Stride) && - "Stride is expected strictly positive!"); - // Calculate the maximum backedge count based on the range of values - // permitted by Start, End, and Stride. - const SCEV *MaxBECount; - APInt MinStart = - IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start); - - APInt StrideForMaxBECount = - IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride); - - // We already know that the stride is positive, so we paper over conservatism - // in our range computation by forcing StrideForMaxBECount to be at least one. - // In theory this is unnecessary, but we expect MaxBECount to be a - // SCEVConstant, and (udiv <constant> 0) is not constant folded by SCEV (there - // is nothing to constant fold it to). - APInt One(BitWidth, 1, IsSigned); - StrideForMaxBECount = APIntOps::smax(One, StrideForMaxBECount); - - APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth) - : APInt::getMaxValue(BitWidth); - APInt Limit = MaxValue - (StrideForMaxBECount - 1); - - // Although End can be a MAX expression we estimate MaxEnd considering only - // the case End = RHS of the loop termination condition. This is safe because - // in the other case (End - Start) is zero, leading to a zero maximum backedge - // taken count. - APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit) - : APIntOps::umin(getUnsignedRangeMax(End), Limit); - - MaxBECount = computeBECount(getConstant(MaxEnd - MinStart) /* Delta */, - getConstant(StrideForMaxBECount) /* Step */, - false /* Equality */); - - return MaxBECount; -} - -ScalarEvolution::ExitLimit -ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS, - const Loop *L, bool IsSigned, - bool ControlsExit, bool AllowPredicates) { - SmallPtrSet<const SCEVPredicate *, 4> Predicates; - - const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); - bool PredicatedIV = false; - - if (!IV && AllowPredicates) { - // Try to make this an AddRec using runtime tests, in the first X - // iterations of this loop, where X is the SCEV expression found by the - // algorithm below. - IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); - PredicatedIV = true; - } - - // Avoid weird loops - if (!IV || IV->getLoop() != L || !IV->isAffine()) - return getCouldNotCompute(); - - bool NoWrap = ControlsExit && - IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); - - const SCEV *Stride = IV->getStepRecurrence(*this); - - bool PositiveStride = isKnownPositive(Stride); - - // Avoid negative or zero stride values. - if (!PositiveStride) { - // We can compute the correct backedge taken count for loops with unknown - // strides if we can prove that the loop is not an infinite loop with side - // effects. Here's the loop structure we are trying to handle - - // - // i = start - // do { - // A[i] = i; - // i += s; - // } while (i < end); - // - // The backedge taken count for such loops is evaluated as - - // (max(end, start + stride) - start - 1) /u stride - // - // The additional preconditions that we need to check to prove correctness - // of the above formula is as follows - - // - // a) IV is either nuw or nsw depending upon signedness (indicated by the - // NoWrap flag). - // b) loop is single exit with no side effects. - // - // - // Precondition a) implies that if the stride is negative, this is a single - // trip loop. The backedge taken count formula reduces to zero in this case. - // - // Precondition b) implies that the unknown stride cannot be zero otherwise - // we have UB. - // - // The positive stride case is the same as isKnownPositive(Stride) returning - // true (original behavior of the function). - // - // We want to make sure that the stride is truly unknown as there are edge - // cases where ScalarEvolution propagates no wrap flags to the - // post-increment/decrement IV even though the increment/decrement operation - // itself is wrapping. The computed backedge taken count may be wrong in - // such cases. This is prevented by checking that the stride is not known to - // be either positive or non-positive. For example, no wrap flags are - // propagated to the post-increment IV of this loop with a trip count of 2 - - // - // unsigned char i; - // for(i=127; i<128; i+=129) - // A[i] = i; - // - if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) || - !loopHasNoSideEffects(L)) - return getCouldNotCompute(); - } else if (!Stride->isOne() && - doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap)) - // Avoid proven overflow cases: this will ensure that the backedge taken - // count will not generate any unsigned overflow. Relaxed no-overflow - // conditions exploit NoWrapFlags, allowing to optimize in presence of - // undefined behaviors like the case of C language. - return getCouldNotCompute(); - - ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT - : ICmpInst::ICMP_ULT; - const SCEV *Start = IV->getStart(); - const SCEV *End = RHS; - // When the RHS is not invariant, we do not know the end bound of the loop and - // cannot calculate the ExactBECount needed by ExitLimit. However, we can - // calculate the MaxBECount, given the start, stride and max value for the end - // bound of the loop (RHS), and the fact that IV does not overflow (which is - // checked above). - if (!isLoopInvariant(RHS, L)) { - const SCEV *MaxBECount = computeMaxBECountForLT( - Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); - return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount, - false /*MaxOrZero*/, Predicates); - } - // If the backedge is taken at least once, then it will be taken - // (End-Start)/Stride times (rounded up to a multiple of Stride), where Start - // is the LHS value of the less-than comparison the first time it is evaluated - // and End is the RHS. - const SCEV *BECountIfBackedgeTaken = - computeBECount(getMinusSCEV(End, Start), Stride, false); - // If the loop entry is guarded by the result of the backedge test of the - // first loop iteration, then we know the backedge will be taken at least - // once and so the backedge taken count is as above. If not then we use the - // expression (max(End,Start)-Start)/Stride to describe the backedge count, - // as if the backedge is taken at least once max(End,Start) is End and so the - // result is as above, and if not max(End,Start) is Start so we get a backedge - // count of zero. - const SCEV *BECount; - if (isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) - BECount = BECountIfBackedgeTaken; - else { - End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start); - BECount = computeBECount(getMinusSCEV(End, Start), Stride, false); - } - - const SCEV *MaxBECount; - bool MaxOrZero = false; - if (isa<SCEVConstant>(BECount)) - MaxBECount = BECount; - else if (isa<SCEVConstant>(BECountIfBackedgeTaken)) { - // If we know exactly how many times the backedge will be taken if it's - // taken at least once, then the backedge count will either be that or - // zero. - MaxBECount = BECountIfBackedgeTaken; - MaxOrZero = true; - } else { - MaxBECount = computeMaxBECountForLT( - Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); - } - - if (isa<SCEVCouldNotCompute>(MaxBECount) && - !isa<SCEVCouldNotCompute>(BECount)) - MaxBECount = getConstant(getUnsignedRangeMax(BECount)); - - return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates); -} - -ScalarEvolution::ExitLimit -ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, - const Loop *L, bool IsSigned, - bool ControlsExit, bool AllowPredicates) { - SmallPtrSet<const SCEVPredicate *, 4> Predicates; - // We handle only IV > Invariant - if (!isLoopInvariant(RHS, L)) - return getCouldNotCompute(); - - const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); - if (!IV && AllowPredicates) - // Try to make this an AddRec using runtime tests, in the first X - // iterations of this loop, where X is the SCEV expression found by the - // algorithm below. - IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); - - // Avoid weird loops - if (!IV || IV->getLoop() != L || !IV->isAffine()) - return getCouldNotCompute(); - - bool NoWrap = ControlsExit && - IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); - - const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); - - // Avoid negative or zero stride values - if (!isKnownPositive(Stride)) - return getCouldNotCompute(); - - // Avoid proven overflow cases: this will ensure that the backedge taken count - // will not generate any unsigned overflow. Relaxed no-overflow conditions - // exploit NoWrapFlags, allowing to optimize in presence of undefined - // behaviors like the case of C language. - if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap)) - return getCouldNotCompute(); - - ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT - : ICmpInst::ICMP_UGT; - - const SCEV *Start = IV->getStart(); - const SCEV *End = RHS; - if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) - End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start); - - const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false); - - APInt MaxStart = IsSigned ? getSignedRangeMax(Start) - : getUnsignedRangeMax(Start); - - APInt MinStride = IsSigned ? getSignedRangeMin(Stride) - : getUnsignedRangeMin(Stride); - - unsigned BitWidth = getTypeSizeInBits(LHS->getType()); - APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) - : APInt::getMinValue(BitWidth) + (MinStride - 1); - - // Although End can be a MIN expression we estimate MinEnd considering only - // the case End = RHS. This is safe because in the other case (Start - End) - // is zero, leading to a zero maximum backedge taken count. - APInt MinEnd = - IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit) - : APIntOps::umax(getUnsignedRangeMin(RHS), Limit); - - - const SCEV *MaxBECount = getCouldNotCompute(); - if (isa<SCEVConstant>(BECount)) - MaxBECount = BECount; - else - MaxBECount = computeBECount(getConstant(MaxStart - MinEnd), - getConstant(MinStride), false); - - if (isa<SCEVCouldNotCompute>(MaxBECount)) - MaxBECount = BECount; - - return ExitLimit(BECount, MaxBECount, false, Predicates); -} - -const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range, - ScalarEvolution &SE) const { - if (Range.isFullSet()) // Infinite loop. - return SE.getCouldNotCompute(); - - // If the start is a non-zero constant, shift the range to simplify things. - if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) - if (!SC->getValue()->isZero()) { - SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); - Operands[0] = SE.getZero(SC->getType()); - const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), - getNoWrapFlags(FlagNW)); - if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) - return ShiftedAddRec->getNumIterationsInRange( - Range.subtract(SC->getAPInt()), SE); - // This is strange and shouldn't happen. - return SE.getCouldNotCompute(); - } - - // The only time we can solve this is when we have all constant indices. - // Otherwise, we cannot determine the overflow conditions. - if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); })) - return SE.getCouldNotCompute(); - - // Okay at this point we know that all elements of the chrec are constants and - // that the start element is zero. - - // First check to see if the range contains zero. If not, the first - // iteration exits. - unsigned BitWidth = SE.getTypeSizeInBits(getType()); - if (!Range.contains(APInt(BitWidth, 0))) - return SE.getZero(getType()); - - if (isAffine()) { - // If this is an affine expression then we have this situation: - // Solve {0,+,A} in Range === Ax in Range - - // We know that zero is in the range. If A is positive then we know that - // the upper value of the range must be the first possible exit value. - // If A is negative then the lower of the range is the last possible loop - // value. Also note that we already checked for a full range. - APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt(); - APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower(); - - // The exit value should be (End+A)/A. - APInt ExitVal = (End + A).udiv(A); - ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); - - // Evaluate at the exit value. If we really did fall out of the valid - // range, then we computed our trip count, otherwise wrap around or other - // things must have happened. - ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); - if (Range.contains(Val->getValue())) - return SE.getCouldNotCompute(); // Something strange happened - - // Ensure that the previous value is in the range. This is a sanity check. - assert(Range.contains( - EvaluateConstantChrecAtConstant(this, - ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) && - "Linear scev computation is off in a bad way!"); - return SE.getConstant(ExitValue); - } - - if (isQuadratic()) { - if (auto S = SolveQuadraticAddRecRange(this, Range, SE)) - return SE.getConstant(S.getValue()); - } - - return SE.getCouldNotCompute(); -} - -const SCEVAddRecExpr * -SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const { - assert(getNumOperands() > 1 && "AddRec with zero step?"); - // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)), - // but in this case we cannot guarantee that the value returned will be an - // AddRec because SCEV does not have a fixed point where it stops - // simplification: it is legal to return ({rec1} + {rec2}). For example, it - // may happen if we reach arithmetic depth limit while simplifying. So we - // construct the returned value explicitly. - SmallVector<const SCEV *, 3> Ops; - // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and - // (this + Step) is {A+B,+,B+C,+...,+,N}. - for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i) - Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1))); - // We know that the last operand is not a constant zero (otherwise it would - // have been popped out earlier). This guarantees us that if the result has - // the same last operand, then it will also not be popped out, meaning that - // the returned value will be an AddRec. - const SCEV *Last = getOperand(getNumOperands() - 1); - assert(!Last->isZero() && "Recurrency with zero step?"); - Ops.push_back(Last); - return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(), - SCEV::FlagAnyWrap)); -} - -// Return true when S contains at least an undef value. -static inline bool containsUndefs(const SCEV *S) { - return SCEVExprContains(S, [](const SCEV *S) { - if (const auto *SU = dyn_cast<SCEVUnknown>(S)) - return isa<UndefValue>(SU->getValue()); - else if (const auto *SC = dyn_cast<SCEVConstant>(S)) - return isa<UndefValue>(SC->getValue()); - return false; - }); -} - -namespace { - -// Collect all steps of SCEV expressions. -struct SCEVCollectStrides { - ScalarEvolution &SE; - SmallVectorImpl<const SCEV *> &Strides; - - SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S) - : SE(SE), Strides(S) {} - - bool follow(const SCEV *S) { - if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) - Strides.push_back(AR->getStepRecurrence(SE)); - return true; - } - - bool isDone() const { return false; } -}; - -// Collect all SCEVUnknown and SCEVMulExpr expressions. -struct SCEVCollectTerms { - SmallVectorImpl<const SCEV *> &Terms; - - SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) : Terms(T) {} - - bool follow(const SCEV *S) { - if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S) || - isa<SCEVSignExtendExpr>(S)) { - if (!containsUndefs(S)) - Terms.push_back(S); - - // Stop recursion: once we collected a term, do not walk its operands. - return false; - } - - // Keep looking. - return true; - } - - bool isDone() const { return false; } -}; - -// Check if a SCEV contains an AddRecExpr. -struct SCEVHasAddRec { - bool &ContainsAddRec; - - SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) { - ContainsAddRec = false; - } - - bool follow(const SCEV *S) { - if (isa<SCEVAddRecExpr>(S)) { - ContainsAddRec = true; - - // Stop recursion: once we collected a term, do not walk its operands. - return false; - } - - // Keep looking. - return true; - } - - bool isDone() const { return false; } -}; - -// Find factors that are multiplied with an expression that (possibly as a -// subexpression) contains an AddRecExpr. In the expression: -// -// 8 * (100 + %p * %q * (%a + {0, +, 1}_loop)) -// -// "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)" -// that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size -// parameters as they form a product with an induction variable. -// -// This collector expects all array size parameters to be in the same MulExpr. -// It might be necessary to later add support for collecting parameters that are -// spread over different nested MulExpr. -struct SCEVCollectAddRecMultiplies { - SmallVectorImpl<const SCEV *> &Terms; - ScalarEvolution &SE; - - SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE) - : Terms(T), SE(SE) {} - - bool follow(const SCEV *S) { - if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) { - bool HasAddRec = false; - SmallVector<const SCEV *, 0> Operands; - for (auto Op : Mul->operands()) { - const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(Op); - if (Unknown && !isa<CallInst>(Unknown->getValue())) { - Operands.push_back(Op); - } else if (Unknown) { - HasAddRec = true; - } else { - bool ContainsAddRec; - SCEVHasAddRec ContiansAddRec(ContainsAddRec); - visitAll(Op, ContiansAddRec); - HasAddRec |= ContainsAddRec; - } - } - if (Operands.size() == 0) - return true; - - if (!HasAddRec) - return false; - - Terms.push_back(SE.getMulExpr(Operands)); - // Stop recursion: once we collected a term, do not walk its operands. - return false; - } - - // Keep looking. - return true; - } - - bool isDone() const { return false; } -}; - -} // end anonymous namespace - -/// Find parametric terms in this SCEVAddRecExpr. We first for parameters in -/// two places: -/// 1) The strides of AddRec expressions. -/// 2) Unknowns that are multiplied with AddRec expressions. -void ScalarEvolution::collectParametricTerms(const SCEV *Expr, - SmallVectorImpl<const SCEV *> &Terms) { - SmallVector<const SCEV *, 4> Strides; - SCEVCollectStrides StrideCollector(*this, Strides); - visitAll(Expr, StrideCollector); - - LLVM_DEBUG({ - dbgs() << "Strides:\n"; - for (const SCEV *S : Strides) - dbgs() << *S << "\n"; - }); - - for (const SCEV *S : Strides) { - SCEVCollectTerms TermCollector(Terms); - visitAll(S, TermCollector); - } - - LLVM_DEBUG({ - dbgs() << "Terms:\n"; - for (const SCEV *T : Terms) - dbgs() << *T << "\n"; - }); - - SCEVCollectAddRecMultiplies MulCollector(Terms, *this); - visitAll(Expr, MulCollector); -} - -static bool findArrayDimensionsRec(ScalarEvolution &SE, - SmallVectorImpl<const SCEV *> &Terms, - SmallVectorImpl<const SCEV *> &Sizes) { - int Last = Terms.size() - 1; - const SCEV *Step = Terms[Last]; - - // End of recursion. - if (Last == 0) { - if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) { - SmallVector<const SCEV *, 2> Qs; - for (const SCEV *Op : M->operands()) - if (!isa<SCEVConstant>(Op)) - Qs.push_back(Op); - - Step = SE.getMulExpr(Qs); - } - - Sizes.push_back(Step); - return true; - } - - for (const SCEV *&Term : Terms) { - // Normalize the terms before the next call to findArrayDimensionsRec. - const SCEV *Q, *R; - SCEVDivision::divide(SE, Term, Step, &Q, &R); - - // Bail out when GCD does not evenly divide one of the terms. - if (!R->isZero()) - return false; - - Term = Q; - } - - // Remove all SCEVConstants. - Terms.erase( - remove_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); }), - Terms.end()); - - if (Terms.size() > 0) - if (!findArrayDimensionsRec(SE, Terms, Sizes)) - return false; - - Sizes.push_back(Step); - return true; -} - -// Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter. -static inline bool containsParameters(SmallVectorImpl<const SCEV *> &Terms) { - for (const SCEV *T : Terms) - if (SCEVExprContains(T, isa<SCEVUnknown, const SCEV *>)) - return true; - return false; -} - -// Return the number of product terms in S. -static inline int numberOfTerms(const SCEV *S) { - if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S)) - return Expr->getNumOperands(); - return 1; -} - -static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) { - if (isa<SCEVConstant>(T)) - return nullptr; - - if (isa<SCEVUnknown>(T)) - return T; - - if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) { - SmallVector<const SCEV *, 2> Factors; - for (const SCEV *Op : M->operands()) - if (!isa<SCEVConstant>(Op)) - Factors.push_back(Op); - - return SE.getMulExpr(Factors); - } - - return T; -} - -/// Return the size of an element read or written by Inst. -const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { - Type *Ty; - if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) - Ty = Store->getValueOperand()->getType(); - else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) - Ty = Load->getType(); - else - return nullptr; - - Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); - return getSizeOfExpr(ETy, Ty); -} - -void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms, - SmallVectorImpl<const SCEV *> &Sizes, - const SCEV *ElementSize) { - if (Terms.size() < 1 || !ElementSize) - return; - - // Early return when Terms do not contain parameters: we do not delinearize - // non parametric SCEVs. - if (!containsParameters(Terms)) - return; - - LLVM_DEBUG({ - dbgs() << "Terms:\n"; - for (const SCEV *T : Terms) - dbgs() << *T << "\n"; - }); - - // Remove duplicates. - array_pod_sort(Terms.begin(), Terms.end()); - Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end()); - - // Put larger terms first. - llvm::sort(Terms, [](const SCEV *LHS, const SCEV *RHS) { - return numberOfTerms(LHS) > numberOfTerms(RHS); - }); - - // Try to divide all terms by the element size. If term is not divisible by - // element size, proceed with the original term. - for (const SCEV *&Term : Terms) { - const SCEV *Q, *R; - SCEVDivision::divide(*this, Term, ElementSize, &Q, &R); - if (!Q->isZero()) - Term = Q; - } - - SmallVector<const SCEV *, 4> NewTerms; - - // Remove constant factors. - for (const SCEV *T : Terms) - if (const SCEV *NewT = removeConstantFactors(*this, T)) - NewTerms.push_back(NewT); - - LLVM_DEBUG({ - dbgs() << "Terms after sorting:\n"; - for (const SCEV *T : NewTerms) - dbgs() << *T << "\n"; - }); - - if (NewTerms.empty() || !findArrayDimensionsRec(*this, NewTerms, Sizes)) { - Sizes.clear(); - return; - } - - // The last element to be pushed into Sizes is the size of an element. - Sizes.push_back(ElementSize); - - LLVM_DEBUG({ - dbgs() << "Sizes:\n"; - for (const SCEV *S : Sizes) - dbgs() << *S << "\n"; - }); -} - -void ScalarEvolution::computeAccessFunctions( - const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts, - SmallVectorImpl<const SCEV *> &Sizes) { - // Early exit in case this SCEV is not an affine multivariate function. - if (Sizes.empty()) - return; - - if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr)) - if (!AR->isAffine()) - return; - - const SCEV *Res = Expr; - int Last = Sizes.size() - 1; - for (int i = Last; i >= 0; i--) { - const SCEV *Q, *R; - SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R); - - LLVM_DEBUG({ - dbgs() << "Res: " << *Res << "\n"; - dbgs() << "Sizes[i]: " << *Sizes[i] << "\n"; - dbgs() << "Res divided by Sizes[i]:\n"; - dbgs() << "Quotient: " << *Q << "\n"; - dbgs() << "Remainder: " << *R << "\n"; - }); - - Res = Q; - - // Do not record the last subscript corresponding to the size of elements in - // the array. - if (i == Last) { - - // Bail out if the remainder is too complex. - if (isa<SCEVAddRecExpr>(R)) { - Subscripts.clear(); - Sizes.clear(); - return; - } - - continue; - } - - // Record the access function for the current subscript. - Subscripts.push_back(R); - } - - // Also push in last position the remainder of the last division: it will be - // the access function of the innermost dimension. - Subscripts.push_back(Res); - - std::reverse(Subscripts.begin(), Subscripts.end()); - - LLVM_DEBUG({ - dbgs() << "Subscripts:\n"; - for (const SCEV *S : Subscripts) - dbgs() << *S << "\n"; - }); -} - -/// Splits the SCEV into two vectors of SCEVs representing the subscripts and -/// sizes of an array access. Returns the remainder of the delinearization that -/// is the offset start of the array. The SCEV->delinearize algorithm computes -/// the multiples of SCEV coefficients: that is a pattern matching of sub -/// expressions in the stride and base of a SCEV corresponding to the -/// computation of a GCD (greatest common divisor) of base and stride. When -/// SCEV->delinearize fails, it returns the SCEV unchanged. -/// -/// For example: when analyzing the memory access A[i][j][k] in this loop nest -/// -/// void foo(long n, long m, long o, double A[n][m][o]) { -/// -/// for (long i = 0; i < n; i++) -/// for (long j = 0; j < m; j++) -/// for (long k = 0; k < o; k++) -/// A[i][j][k] = 1.0; -/// } -/// -/// the delinearization input is the following AddRec SCEV: -/// -/// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k> -/// -/// From this SCEV, we are able to say that the base offset of the access is %A -/// because it appears as an offset that does not divide any of the strides in -/// the loops: -/// -/// CHECK: Base offset: %A -/// -/// and then SCEV->delinearize determines the size of some of the dimensions of -/// the array as these are the multiples by which the strides are happening: -/// -/// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes. -/// -/// Note that the outermost dimension remains of UnknownSize because there are -/// no strides that would help identifying the size of the last dimension: when -/// the array has been statically allocated, one could compute the size of that -/// dimension by dividing the overall size of the array by the size of the known -/// dimensions: %m * %o * 8. -/// -/// Finally delinearize provides the access functions for the array reference -/// that does correspond to A[i][j][k] of the above C testcase: -/// -/// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>] -/// -/// The testcases are checking the output of a function pass: -/// DelinearizationPass that walks through all loads and stores of a function -/// asking for the SCEV of the memory access with respect to all enclosing -/// loops, calling SCEV->delinearize on that and printing the results. -void ScalarEvolution::delinearize(const SCEV *Expr, - SmallVectorImpl<const SCEV *> &Subscripts, - SmallVectorImpl<const SCEV *> &Sizes, - const SCEV *ElementSize) { - // First step: collect parametric terms. - SmallVector<const SCEV *, 4> Terms; - collectParametricTerms(Expr, Terms); - - if (Terms.empty()) - return; - - // Second step: find subscript sizes. - findArrayDimensions(Terms, Sizes, ElementSize); - - if (Sizes.empty()) - return; - - // Third step: compute the access functions for each subscript. - computeAccessFunctions(Expr, Subscripts, Sizes); - - if (Subscripts.empty()) - return; - - LLVM_DEBUG({ - dbgs() << "succeeded to delinearize " << *Expr << "\n"; - dbgs() << "ArrayDecl[UnknownSize]"; - for (const SCEV *S : Sizes) - dbgs() << "[" << *S << "]"; - - dbgs() << "\nArrayRef"; - for (const SCEV *S : Subscripts) - dbgs() << "[" << *S << "]"; - dbgs() << "\n"; - }); -} - -//===----------------------------------------------------------------------===// -// SCEVCallbackVH Class Implementation -//===----------------------------------------------------------------------===// - -void ScalarEvolution::SCEVCallbackVH::deleted() { - assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); - if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) - SE->ConstantEvolutionLoopExitValue.erase(PN); - SE->eraseValueFromMap(getValPtr()); - // this now dangles! -} - -void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { - assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); - - // Forget all the expressions associated with users of the old value, - // so that future queries will recompute the expressions using the new - // value. - Value *Old = getValPtr(); - SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end()); - SmallPtrSet<User *, 8> Visited; - while (!Worklist.empty()) { - User *U = Worklist.pop_back_val(); - // Deleting the Old value will cause this to dangle. Postpone - // that until everything else is done. - if (U == Old) - continue; - if (!Visited.insert(U).second) - continue; - if (PHINode *PN = dyn_cast<PHINode>(U)) - SE->ConstantEvolutionLoopExitValue.erase(PN); - SE->eraseValueFromMap(U); - Worklist.insert(Worklist.end(), U->user_begin(), U->user_end()); - } - // Delete the Old value. - if (PHINode *PN = dyn_cast<PHINode>(Old)) - SE->ConstantEvolutionLoopExitValue.erase(PN); - SE->eraseValueFromMap(Old); - // this now dangles! -} - -ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) - : CallbackVH(V), SE(se) {} - -//===----------------------------------------------------------------------===// -// ScalarEvolution Class Implementation -//===----------------------------------------------------------------------===// - -ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, - AssumptionCache &AC, DominatorTree &DT, - LoopInfo &LI) - : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI), - CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64), - LoopDispositions(64), BlockDispositions(64) { - // To use guards for proving predicates, we need to scan every instruction in - // relevant basic blocks, and not just terminators. Doing this is a waste of - // time if the IR does not actually contain any calls to - // @llvm.experimental.guard, so do a quick check and remember this beforehand. - // - // This pessimizes the case where a pass that preserves ScalarEvolution wants - // to _add_ guards to the module when there weren't any before, and wants - // ScalarEvolution to optimize based on those guards. For now we prefer to be - // efficient in lieu of being smart in that rather obscure case. - - auto *GuardDecl = F.getParent()->getFunction( - Intrinsic::getName(Intrinsic::experimental_guard)); - HasGuards = GuardDecl && !GuardDecl->use_empty(); -} - -ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) - : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), - LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)), - ValueExprMap(std::move(Arg.ValueExprMap)), - PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)), - PendingPhiRanges(std::move(Arg.PendingPhiRanges)), - PendingMerges(std::move(Arg.PendingMerges)), - MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)), - BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), - PredicatedBackedgeTakenCounts( - std::move(Arg.PredicatedBackedgeTakenCounts)), - ConstantEvolutionLoopExitValue( - std::move(Arg.ConstantEvolutionLoopExitValue)), - ValuesAtScopes(std::move(Arg.ValuesAtScopes)), - LoopDispositions(std::move(Arg.LoopDispositions)), - LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)), - BlockDispositions(std::move(Arg.BlockDispositions)), - UnsignedRanges(std::move(Arg.UnsignedRanges)), - SignedRanges(std::move(Arg.SignedRanges)), - UniqueSCEVs(std::move(Arg.UniqueSCEVs)), - UniquePreds(std::move(Arg.UniquePreds)), - SCEVAllocator(std::move(Arg.SCEVAllocator)), - LoopUsers(std::move(Arg.LoopUsers)), - PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)), - FirstUnknown(Arg.FirstUnknown) { - Arg.FirstUnknown = nullptr; -} - -ScalarEvolution::~ScalarEvolution() { - // Iterate through all the SCEVUnknown instances and call their - // destructors, so that they release their references to their values. - for (SCEVUnknown *U = FirstUnknown; U;) { - SCEVUnknown *Tmp = U; - U = U->Next; - Tmp->~SCEVUnknown(); - } - FirstUnknown = nullptr; - - ExprValueMap.clear(); - ValueExprMap.clear(); - HasRecMap.clear(); - - // Free any extra memory created for ExitNotTakenInfo in the unlikely event - // that a loop had multiple computable exits. - for (auto &BTCI : BackedgeTakenCounts) - BTCI.second.clear(); - for (auto &BTCI : PredicatedBackedgeTakenCounts) - BTCI.second.clear(); - - assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); - assert(PendingPhiRanges.empty() && "getRangeRef garbage"); - assert(PendingMerges.empty() && "isImpliedViaMerge garbage"); - assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); - assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!"); -} - -bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { - return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); -} - -static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, - const Loop *L) { - // Print all inner loops first - for (Loop *I : *L) - PrintLoopInfo(OS, SE, I); - - OS << "Loop "; - L->getHeader()->printAsOperand(OS, /*PrintType=*/false); - OS << ": "; - - SmallVector<BasicBlock *, 8> ExitBlocks; - L->getExitBlocks(ExitBlocks); - if (ExitBlocks.size() != 1) - OS << "<multiple exits> "; - - if (SE->hasLoopInvariantBackedgeTakenCount(L)) { - OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); - } else { - OS << "Unpredictable backedge-taken count. "; - } - - OS << "\n" - "Loop "; - L->getHeader()->printAsOperand(OS, /*PrintType=*/false); - OS << ": "; - - if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) { - OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L); - if (SE->isBackedgeTakenCountMaxOrZero(L)) - OS << ", actual taken count either this or zero."; - } else { - OS << "Unpredictable max backedge-taken count. "; - } - - OS << "\n" - "Loop "; - L->getHeader()->printAsOperand(OS, /*PrintType=*/false); - OS << ": "; - - SCEVUnionPredicate Pred; - auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred); - if (!isa<SCEVCouldNotCompute>(PBT)) { - OS << "Predicated backedge-taken count is " << *PBT << "\n"; - OS << " Predicates:\n"; - Pred.print(OS, 4); - } else { - OS << "Unpredictable predicated backedge-taken count. "; - } - OS << "\n"; - - if (SE->hasLoopInvariantBackedgeTakenCount(L)) { - OS << "Loop "; - L->getHeader()->printAsOperand(OS, /*PrintType=*/false); - OS << ": "; - OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n"; - } -} - -static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) { - switch (LD) { - case ScalarEvolution::LoopVariant: - return "Variant"; - case ScalarEvolution::LoopInvariant: - return "Invariant"; - case ScalarEvolution::LoopComputable: - return "Computable"; - } - llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!"); -} - -void ScalarEvolution::print(raw_ostream &OS) const { - // ScalarEvolution's implementation of the print method is to print - // out SCEV values of all instructions that are interesting. Doing - // this potentially causes it to create new SCEV objects though, - // which technically conflicts with the const qualifier. This isn't - // observable from outside the class though, so casting away the - // const isn't dangerous. - ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); - - OS << "Classifying expressions for: "; - F.printAsOperand(OS, /*PrintType=*/false); - OS << "\n"; - for (Instruction &I : instructions(F)) - if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) { - OS << I << '\n'; - OS << " --> "; - const SCEV *SV = SE.getSCEV(&I); - SV->print(OS); - if (!isa<SCEVCouldNotCompute>(SV)) { - OS << " U: "; - SE.getUnsignedRange(SV).print(OS); - OS << " S: "; - SE.getSignedRange(SV).print(OS); - } - - const Loop *L = LI.getLoopFor(I.getParent()); - - const SCEV *AtUse = SE.getSCEVAtScope(SV, L); - if (AtUse != SV) { - OS << " --> "; - AtUse->print(OS); - if (!isa<SCEVCouldNotCompute>(AtUse)) { - OS << " U: "; - SE.getUnsignedRange(AtUse).print(OS); - OS << " S: "; - SE.getSignedRange(AtUse).print(OS); - } - } - - if (L) { - OS << "\t\t" "Exits: "; - const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); - if (!SE.isLoopInvariant(ExitValue, L)) { - OS << "<<Unknown>>"; - } else { - OS << *ExitValue; - } - - bool First = true; - for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) { - if (First) { - OS << "\t\t" "LoopDispositions: { "; - First = false; - } else { - OS << ", "; - } - - Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false); - OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter)); - } - - for (auto *InnerL : depth_first(L)) { - if (InnerL == L) - continue; - if (First) { - OS << "\t\t" "LoopDispositions: { "; - First = false; - } else { - OS << ", "; - } - - InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false); - OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL)); - } - - OS << " }"; - } - - OS << "\n"; - } - - OS << "Determining loop execution counts for: "; - F.printAsOperand(OS, /*PrintType=*/false); - OS << "\n"; - for (Loop *I : LI) - PrintLoopInfo(OS, &SE, I); -} - -ScalarEvolution::LoopDisposition -ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { - auto &Values = LoopDispositions[S]; - for (auto &V : Values) { - if (V.getPointer() == L) - return V.getInt(); - } - Values.emplace_back(L, LoopVariant); - LoopDisposition D = computeLoopDisposition(S, L); - auto &Values2 = LoopDispositions[S]; - for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { - if (V.getPointer() == L) { - V.setInt(D); - break; - } - } - return D; -} - -ScalarEvolution::LoopDisposition -ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { - switch (static_cast<SCEVTypes>(S->getSCEVType())) { - case scConstant: - return LoopInvariant; - case scTruncate: - case scZeroExtend: - case scSignExtend: - return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); - case scAddRecExpr: { - const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); - - // If L is the addrec's loop, it's computable. - if (AR->getLoop() == L) - return LoopComputable; - - // Add recurrences are never invariant in the function-body (null loop). - if (!L) - return LoopVariant; - - // Everything that is not defined at loop entry is variant. - if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader())) - return LoopVariant; - assert(!L->contains(AR->getLoop()) && "Containing loop's header does not" - " dominate the contained loop's header?"); - - // This recurrence is invariant w.r.t. L if AR's loop contains L. - if (AR->getLoop()->contains(L)) - return LoopInvariant; - - // This recurrence is variant w.r.t. L if any of its operands - // are variant. - for (auto *Op : AR->operands()) - if (!isLoopInvariant(Op, L)) - return LoopVariant; - - // Otherwise it's loop-invariant. - return LoopInvariant; - } - case scAddExpr: - case scMulExpr: - case scUMaxExpr: - case scSMaxExpr: { - bool HasVarying = false; - for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) { - LoopDisposition D = getLoopDisposition(Op, L); - if (D == LoopVariant) - return LoopVariant; - if (D == LoopComputable) - HasVarying = true; - } - return HasVarying ? LoopComputable : LoopInvariant; - } - case scUDivExpr: { - const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); - LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); - if (LD == LoopVariant) - return LoopVariant; - LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); - if (RD == LoopVariant) - return LoopVariant; - return (LD == LoopInvariant && RD == LoopInvariant) ? - LoopInvariant : LoopComputable; - } - case scUnknown: - // All non-instruction values are loop invariant. All instructions are loop - // invariant if they are not contained in the specified loop. - // Instructions are never considered invariant in the function body - // (null loop) because they are defined within the "loop". - if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) - return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; - return LoopInvariant; - case scCouldNotCompute: - llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); - } - llvm_unreachable("Unknown SCEV kind!"); -} - -bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { - return getLoopDisposition(S, L) == LoopInvariant; -} - -bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { - return getLoopDisposition(S, L) == LoopComputable; -} - -ScalarEvolution::BlockDisposition -ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { - auto &Values = BlockDispositions[S]; - for (auto &V : Values) { - if (V.getPointer() == BB) - return V.getInt(); - } - Values.emplace_back(BB, DoesNotDominateBlock); - BlockDisposition D = computeBlockDisposition(S, BB); - auto &Values2 = BlockDispositions[S]; - for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { - if (V.getPointer() == BB) { - V.setInt(D); - break; - } - } - return D; -} - -ScalarEvolution::BlockDisposition -ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { - switch (static_cast<SCEVTypes>(S->getSCEVType())) { - case scConstant: - return ProperlyDominatesBlock; - case scTruncate: - case scZeroExtend: - case scSignExtend: - return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); - case scAddRecExpr: { - // This uses a "dominates" query instead of "properly dominates" query - // to test for proper dominance too, because the instruction which - // produces the addrec's value is a PHI, and a PHI effectively properly - // dominates its entire containing block. - const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); - if (!DT.dominates(AR->getLoop()->getHeader(), BB)) - return DoesNotDominateBlock; - - // Fall through into SCEVNAryExpr handling. - LLVM_FALLTHROUGH; - } - case scAddExpr: - case scMulExpr: - case scUMaxExpr: - case scSMaxExpr: { - const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); - bool Proper = true; - for (const SCEV *NAryOp : NAry->operands()) { - BlockDisposition D = getBlockDisposition(NAryOp, BB); - if (D == DoesNotDominateBlock) - return DoesNotDominateBlock; - if (D == DominatesBlock) - Proper = false; - } - return Proper ? ProperlyDominatesBlock : DominatesBlock; - } - case scUDivExpr: { - const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); - const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); - BlockDisposition LD = getBlockDisposition(LHS, BB); - if (LD == DoesNotDominateBlock) - return DoesNotDominateBlock; - BlockDisposition RD = getBlockDisposition(RHS, BB); - if (RD == DoesNotDominateBlock) - return DoesNotDominateBlock; - return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? - ProperlyDominatesBlock : DominatesBlock; - } - case scUnknown: - if (Instruction *I = - dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { - if (I->getParent() == BB) - return DominatesBlock; - if (DT.properlyDominates(I->getParent(), BB)) - return ProperlyDominatesBlock; - return DoesNotDominateBlock; - } - return ProperlyDominatesBlock; - case scCouldNotCompute: - llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); - } - llvm_unreachable("Unknown SCEV kind!"); -} - -bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { - return getBlockDisposition(S, BB) >= DominatesBlock; -} - -bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { - return getBlockDisposition(S, BB) == ProperlyDominatesBlock; -} - -bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { - return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; }); -} - -bool ScalarEvolution::ExitLimit::hasOperand(const SCEV *S) const { - auto IsS = [&](const SCEV *X) { return S == X; }; - auto ContainsS = [&](const SCEV *X) { - return !isa<SCEVCouldNotCompute>(X) && SCEVExprContains(X, IsS); - }; - return ContainsS(ExactNotTaken) || ContainsS(MaxNotTaken); -} - -void -ScalarEvolution::forgetMemoizedResults(const SCEV *S) { - ValuesAtScopes.erase(S); - LoopDispositions.erase(S); - BlockDispositions.erase(S); - UnsignedRanges.erase(S); - SignedRanges.erase(S); - ExprValueMap.erase(S); - HasRecMap.erase(S); - MinTrailingZerosCache.erase(S); - - for (auto I = PredicatedSCEVRewrites.begin(); - I != PredicatedSCEVRewrites.end();) { - std::pair<const SCEV *, const Loop *> Entry = I->first; - if (Entry.first == S) - PredicatedSCEVRewrites.erase(I++); - else - ++I; - } - - auto RemoveSCEVFromBackedgeMap = - [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) { - for (auto I = Map.begin(), E = Map.end(); I != E;) { - BackedgeTakenInfo &BEInfo = I->second; - if (BEInfo.hasOperand(S, this)) { - BEInfo.clear(); - Map.erase(I++); - } else - ++I; - } - }; - - RemoveSCEVFromBackedgeMap(BackedgeTakenCounts); - RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts); -} - -void -ScalarEvolution::getUsedLoops(const SCEV *S, - SmallPtrSetImpl<const Loop *> &LoopsUsed) { - struct FindUsedLoops { - FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed) - : LoopsUsed(LoopsUsed) {} - SmallPtrSetImpl<const Loop *> &LoopsUsed; - bool follow(const SCEV *S) { - if (auto *AR = dyn_cast<SCEVAddRecExpr>(S)) - LoopsUsed.insert(AR->getLoop()); - return true; - } - - bool isDone() const { return false; } - }; - - FindUsedLoops F(LoopsUsed); - SCEVTraversal<FindUsedLoops>(F).visitAll(S); -} - -void ScalarEvolution::addToLoopUseLists(const SCEV *S) { - SmallPtrSet<const Loop *, 8> LoopsUsed; - getUsedLoops(S, LoopsUsed); - for (auto *L : LoopsUsed) - LoopUsers[L].push_back(S); -} - -void ScalarEvolution::verify() const { - ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); - ScalarEvolution SE2(F, TLI, AC, DT, LI); - - SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end()); - - // Map's SCEV expressions from one ScalarEvolution "universe" to another. - struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> { - SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {} - - const SCEV *visitConstant(const SCEVConstant *Constant) { - return SE.getConstant(Constant->getAPInt()); - } - - const SCEV *visitUnknown(const SCEVUnknown *Expr) { - return SE.getUnknown(Expr->getValue()); - } - - const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { - return SE.getCouldNotCompute(); - } - }; - - SCEVMapper SCM(SE2); - - while (!LoopStack.empty()) { - auto *L = LoopStack.pop_back_val(); - LoopStack.insert(LoopStack.end(), L->begin(), L->end()); - - auto *CurBECount = SCM.visit( - const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L)); - auto *NewBECount = SE2.getBackedgeTakenCount(L); - - if (CurBECount == SE2.getCouldNotCompute() || - NewBECount == SE2.getCouldNotCompute()) { - // NB! This situation is legal, but is very suspicious -- whatever pass - // change the loop to make a trip count go from could not compute to - // computable or vice-versa *should have* invalidated SCEV. However, we - // choose not to assert here (for now) since we don't want false - // positives. - continue; - } - - if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) { - // SCEV treats "undef" as an unknown but consistent value (i.e. it does - // not propagate undef aggressively). This means we can (and do) fail - // verification in cases where a transform makes the trip count of a loop - // go from "undef" to "undef+1" (say). The transform is fine, since in - // both cases the loop iterates "undef" times, but SCEV thinks we - // increased the trip count of the loop by 1 incorrectly. - continue; - } - - if (SE.getTypeSizeInBits(CurBECount->getType()) > - SE.getTypeSizeInBits(NewBECount->getType())) - NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType()); - else if (SE.getTypeSizeInBits(CurBECount->getType()) < - SE.getTypeSizeInBits(NewBECount->getType())) - CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType()); - - auto *ConstantDelta = - dyn_cast<SCEVConstant>(SE2.getMinusSCEV(CurBECount, NewBECount)); - - if (ConstantDelta && ConstantDelta->getAPInt() != 0) { - dbgs() << "Trip Count Changed!\n"; - dbgs() << "Old: " << *CurBECount << "\n"; - dbgs() << "New: " << *NewBECount << "\n"; - dbgs() << "Delta: " << *ConstantDelta << "\n"; - std::abort(); - } - } -} - -bool ScalarEvolution::invalidate( - Function &F, const PreservedAnalyses &PA, - FunctionAnalysisManager::Invalidator &Inv) { - // Invalidate the ScalarEvolution object whenever it isn't preserved or one - // of its dependencies is invalidated. - auto PAC = PA.getChecker<ScalarEvolutionAnalysis>(); - return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || - Inv.invalidate<AssumptionAnalysis>(F, PA) || - Inv.invalidate<DominatorTreeAnalysis>(F, PA) || - Inv.invalidate<LoopAnalysis>(F, PA); -} - -AnalysisKey ScalarEvolutionAnalysis::Key; - -ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, - FunctionAnalysisManager &AM) { - return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F), - AM.getResult<AssumptionAnalysis>(F), - AM.getResult<DominatorTreeAnalysis>(F), - AM.getResult<LoopAnalysis>(F)); -} - -PreservedAnalyses -ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { - AM.getResult<ScalarEvolutionAnalysis>(F).print(OS); - return PreservedAnalyses::all(); -} - -INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution", - "Scalar Evolution Analysis", false, true) -INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) -INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) -INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) -INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) -INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution", - "Scalar Evolution Analysis", false, true) - -char ScalarEvolutionWrapperPass::ID = 0; - -ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { - initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); -} - -bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { - SE.reset(new ScalarEvolution( - F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), - getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), - getAnalysis<DominatorTreeWrapperPass>().getDomTree(), - getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); - return false; -} - -void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } - -void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { - SE->print(OS); -} - -void ScalarEvolutionWrapperPass::verifyAnalysis() const { - if (!VerifySCEV) - return; - - SE->verify(); -} - -void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { - AU.setPreservesAll(); - AU.addRequiredTransitive<AssumptionCacheTracker>(); - AU.addRequiredTransitive<LoopInfoWrapperPass>(); - AU.addRequiredTransitive<DominatorTreeWrapperPass>(); - AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); -} - -const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS, - const SCEV *RHS) { - FoldingSetNodeID ID; - assert(LHS->getType() == RHS->getType() && - "Type mismatch between LHS and RHS"); - // Unique this node based on the arguments - ID.AddInteger(SCEVPredicate::P_Equal); - ID.AddPointer(LHS); - ID.AddPointer(RHS); - void *IP = nullptr; - if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) - return S; - SCEVEqualPredicate *Eq = new (SCEVAllocator) - SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS); - UniquePreds.InsertNode(Eq, IP); - return Eq; -} - -const SCEVPredicate *ScalarEvolution::getWrapPredicate( - const SCEVAddRecExpr *AR, - SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { - FoldingSetNodeID ID; - // Unique this node based on the arguments - ID.AddInteger(SCEVPredicate::P_Wrap); - ID.AddPointer(AR); - ID.AddInteger(AddedFlags); - void *IP = nullptr; - if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) - return S; - auto *OF = new (SCEVAllocator) - SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags); - UniquePreds.InsertNode(OF, IP); - return OF; -} - -namespace { - -class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> { -public: - - /// Rewrites \p S in the context of a loop L and the SCEV predication - /// infrastructure. - /// - /// If \p Pred is non-null, the SCEV expression is rewritten to respect the - /// equivalences present in \p Pred. - /// - /// If \p NewPreds is non-null, rewrite is free to add further predicates to - /// \p NewPreds such that the result will be an AddRecExpr. - static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, - SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, - SCEVUnionPredicate *Pred) { - SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred); - return Rewriter.visit(S); - } - - const SCEV *visitUnknown(const SCEVUnknown *Expr) { - if (Pred) { - auto ExprPreds = Pred->getPredicatesForExpr(Expr); - for (auto *Pred : ExprPreds) - if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred)) - if (IPred->getLHS() == Expr) - return IPred->getRHS(); - } - return convertToAddRecWithPreds(Expr); - } - - const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { - const SCEV *Operand = visit(Expr->getOperand()); - const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); - if (AR && AR->getLoop() == L && AR->isAffine()) { - // This couldn't be folded because the operand didn't have the nuw - // flag. Add the nusw flag as an assumption that we could make. - const SCEV *Step = AR->getStepRecurrence(SE); - Type *Ty = Expr->getType(); - if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW)) - return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty), - SE.getSignExtendExpr(Step, Ty), L, - AR->getNoWrapFlags()); - } - return SE.getZeroExtendExpr(Operand, Expr->getType()); - } - - const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { - const SCEV *Operand = visit(Expr->getOperand()); - const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); - if (AR && AR->getLoop() == L && AR->isAffine()) { - // This couldn't be folded because the operand didn't have the nsw - // flag. Add the nssw flag as an assumption that we could make. - const SCEV *Step = AR->getStepRecurrence(SE); - Type *Ty = Expr->getType(); - if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW)) - return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty), - SE.getSignExtendExpr(Step, Ty), L, - AR->getNoWrapFlags()); - } - return SE.getSignExtendExpr(Operand, Expr->getType()); - } - -private: - explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE, - SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, - SCEVUnionPredicate *Pred) - : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {} - - bool addOverflowAssumption(const SCEVPredicate *P) { - if (!NewPreds) { - // Check if we've already made this assumption. - return Pred && Pred->implies(P); - } - NewPreds->insert(P); - return true; - } - - bool addOverflowAssumption(const SCEVAddRecExpr *AR, - SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { - auto *A = SE.getWrapPredicate(AR, AddedFlags); - return addOverflowAssumption(A); - } - - // If \p Expr represents a PHINode, we try to see if it can be represented - // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible - // to add this predicate as a runtime overflow check, we return the AddRec. - // If \p Expr does not meet these conditions (is not a PHI node, or we - // couldn't create an AddRec for it, or couldn't add the predicate), we just - // return \p Expr. - const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) { - if (!isa<PHINode>(Expr->getValue())) - return Expr; - Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> - PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr); - if (!PredicatedRewrite) - return Expr; - for (auto *P : PredicatedRewrite->second){ - // Wrap predicates from outer loops are not supported. - if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) { - auto *AR = cast<const SCEVAddRecExpr>(WP->getExpr()); - if (L != AR->getLoop()) - return Expr; - } - if (!addOverflowAssumption(P)) - return Expr; - } - return PredicatedRewrite->first; - } - - SmallPtrSetImpl<const SCEVPredicate *> *NewPreds; - SCEVUnionPredicate *Pred; - const Loop *L; -}; - -} // end anonymous namespace - -const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L, - SCEVUnionPredicate &Preds) { - return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds); -} - -const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates( - const SCEV *S, const Loop *L, - SmallPtrSetImpl<const SCEVPredicate *> &Preds) { - SmallPtrSet<const SCEVPredicate *, 4> TransformPreds; - S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr); - auto *AddRec = dyn_cast<SCEVAddRecExpr>(S); - - if (!AddRec) - return nullptr; - - // Since the transformation was successful, we can now transfer the SCEV - // predicates. - for (auto *P : TransformPreds) - Preds.insert(P); - - return AddRec; -} - -/// SCEV predicates -SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID, - SCEVPredicateKind Kind) - : FastID(ID), Kind(Kind) {} - -SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID, - const SCEV *LHS, const SCEV *RHS) - : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) { - assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match"); - assert(LHS != RHS && "LHS and RHS are the same SCEV"); -} - -bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const { - const auto *Op = dyn_cast<SCEVEqualPredicate>(N); - - if (!Op) - return false; - - return Op->LHS == LHS && Op->RHS == RHS; -} - -bool SCEVEqualPredicate::isAlwaysTrue() const { return false; } - -const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; } - -void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const { - OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n"; -} - -SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID, - const SCEVAddRecExpr *AR, - IncrementWrapFlags Flags) - : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {} - -const SCEV *SCEVWrapPredicate::getExpr() const { return AR; } - -bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const { - const auto *Op = dyn_cast<SCEVWrapPredicate>(N); - - return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags; -} - -bool SCEVWrapPredicate::isAlwaysTrue() const { - SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags(); - IncrementWrapFlags IFlags = Flags; - - if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags) - IFlags = clearFlags(IFlags, IncrementNSSW); - - return IFlags == IncrementAnyWrap; -} - -void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const { - OS.indent(Depth) << *getExpr() << " Added Flags: "; - if (SCEVWrapPredicate::IncrementNUSW & getFlags()) - OS << "<nusw>"; - if (SCEVWrapPredicate::IncrementNSSW & getFlags()) - OS << "<nssw>"; - OS << "\n"; -} - -SCEVWrapPredicate::IncrementWrapFlags -SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR, - ScalarEvolution &SE) { - IncrementWrapFlags ImpliedFlags = IncrementAnyWrap; - SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags(); - - // We can safely transfer the NSW flag as NSSW. - if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags) - ImpliedFlags = IncrementNSSW; - - if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) { - // If the increment is positive, the SCEV NUW flag will also imply the - // WrapPredicate NUSW flag. - if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) - if (Step->getValue()->getValue().isNonNegative()) - ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW); - } - - return ImpliedFlags; -} - -/// Union predicates don't get cached so create a dummy set ID for it. -SCEVUnionPredicate::SCEVUnionPredicate() - : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {} - -bool SCEVUnionPredicate::isAlwaysTrue() const { - return all_of(Preds, - [](const SCEVPredicate *I) { return I->isAlwaysTrue(); }); -} - -ArrayRef<const SCEVPredicate *> -SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) { - auto I = SCEVToPreds.find(Expr); - if (I == SCEVToPreds.end()) - return ArrayRef<const SCEVPredicate *>(); - return I->second; -} - -bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const { - if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) - return all_of(Set->Preds, - [this](const SCEVPredicate *I) { return this->implies(I); }); - - auto ScevPredsIt = SCEVToPreds.find(N->getExpr()); - if (ScevPredsIt == SCEVToPreds.end()) - return false; - auto &SCEVPreds = ScevPredsIt->second; - - return any_of(SCEVPreds, - [N](const SCEVPredicate *I) { return I->implies(N); }); -} - -const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; } - -void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const { - for (auto Pred : Preds) - Pred->print(OS, Depth); -} - -void SCEVUnionPredicate::add(const SCEVPredicate *N) { - if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) { - for (auto Pred : Set->Preds) - add(Pred); - return; - } - - if (implies(N)) - return; - - const SCEV *Key = N->getExpr(); - assert(Key && "Only SCEVUnionPredicate doesn't have an " - " associated expression!"); - - SCEVToPreds[Key].push_back(N); - Preds.push_back(N); -} - -PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE, - Loop &L) - : SE(SE), L(L) {} - -const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) { - const SCEV *Expr = SE.getSCEV(V); - RewriteEntry &Entry = RewriteMap[Expr]; - - // If we already have an entry and the version matches, return it. - if (Entry.second && Generation == Entry.first) - return Entry.second; - - // We found an entry but it's stale. Rewrite the stale entry - // according to the current predicate. - if (Entry.second) - Expr = Entry.second; - - const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds); - Entry = {Generation, NewSCEV}; - - return NewSCEV; -} - -const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() { - if (!BackedgeCount) { - SCEVUnionPredicate BackedgePred; - BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred); - addPredicate(BackedgePred); - } - return BackedgeCount; -} - -void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) { - if (Preds.implies(&Pred)) - return; - Preds.add(&Pred); - updateGeneration(); -} - -const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const { - return Preds; -} - -void PredicatedScalarEvolution::updateGeneration() { - // If the generation number wrapped recompute everything. - if (++Generation == 0) { - for (auto &II : RewriteMap) { - const SCEV *Rewritten = II.second.second; - II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)}; - } - } -} - -void PredicatedScalarEvolution::setNoOverflow( - Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { - const SCEV *Expr = getSCEV(V); - const auto *AR = cast<SCEVAddRecExpr>(Expr); - - auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE); - - // Clear the statically implied flags. - Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags); - addPredicate(*SE.getWrapPredicate(AR, Flags)); - - auto II = FlagsMap.insert({V, Flags}); - if (!II.second) - II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second); -} - -bool PredicatedScalarEvolution::hasNoOverflow( - Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { - const SCEV *Expr = getSCEV(V); - const auto *AR = cast<SCEVAddRecExpr>(Expr); - - Flags = SCEVWrapPredicate::clearFlags( - Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE)); - - auto II = FlagsMap.find(V); - - if (II != FlagsMap.end()) - Flags = SCEVWrapPredicate::clearFlags(Flags, II->second); - - return Flags == SCEVWrapPredicate::IncrementAnyWrap; -} - -const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) { - const SCEV *Expr = this->getSCEV(V); - SmallPtrSet<const SCEVPredicate *, 4> NewPreds; - auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds); - - if (!New) - return nullptr; - - for (auto *P : NewPreds) - Preds.add(P); - - updateGeneration(); - RewriteMap[SE.getSCEV(V)] = {Generation, New}; - return New; -} - -PredicatedScalarEvolution::PredicatedScalarEvolution( - const PredicatedScalarEvolution &Init) - : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds), - Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) { - for (const auto &I : Init.FlagsMap) - FlagsMap.insert(I); -} - -void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const { - // For each block. - for (auto *BB : L.getBlocks()) - for (auto &I : *BB) { - if (!SE.isSCEVable(I.getType())) - continue; - - auto *Expr = SE.getSCEV(&I); - auto II = RewriteMap.find(Expr); - - if (II == RewriteMap.end()) - continue; - - // Don't print things that are not interesting. - if (II->second.second == Expr) - continue; - - OS.indent(Depth) << "[PSE]" << I << ":\n"; - OS.indent(Depth + 2) << *Expr << "\n"; - OS.indent(Depth + 2) << "--> " << *II->second.second << "\n"; - } -} - -// Match the mathematical pattern A - (A / B) * B, where A and B can be -// arbitrary expressions. -// It's not always easy, as A and B can be folded (imagine A is X / 2, and B is -// 4, A / B becomes X / 8). -bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS, - const SCEV *&RHS) { - const auto *Add = dyn_cast<SCEVAddExpr>(Expr); - if (Add == nullptr || Add->getNumOperands() != 2) - return false; - - const SCEV *A = Add->getOperand(1); - const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0)); - - if (Mul == nullptr) - return false; - - const auto MatchURemWithDivisor = [&](const SCEV *B) { - // (SomeExpr + (-(SomeExpr / B) * B)). - if (Expr == getURemExpr(A, B)) { - LHS = A; - RHS = B; - return true; - } - return false; - }; - - // (SomeExpr + (-1 * (SomeExpr / B) * B)). - if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0))) - return MatchURemWithDivisor(Mul->getOperand(1)) || - MatchURemWithDivisor(Mul->getOperand(2)); - - // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)). - if (Mul->getNumOperands() == 2) - return MatchURemWithDivisor(Mul->getOperand(1)) || - MatchURemWithDivisor(Mul->getOperand(0)) || - MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) || - MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0))); - return false; -} |
