diff options
| author | 2020-08-03 15:06:44 +0000 | |
|---|---|---|
| committer | 2020-08-03 15:06:44 +0000 | |
| commit | b64793999546ed8adebaeebd9d8345d18db8927d (patch) | |
| tree | 4357c27b561d73b0e089727c6ed659f2ceff5f47 /gnu/llvm/lib/Analysis/ValueTracking.cpp | |
| parent | Add support for UTF-8 DISPLAY-HINTs with octet length. For now only (diff) | |
| download | wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.tar.xz wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.zip | |
Remove LLVM 8.0.1 files.
Diffstat (limited to 'gnu/llvm/lib/Analysis/ValueTracking.cpp')
| -rw-r--r-- | gnu/llvm/lib/Analysis/ValueTracking.cpp | 5432 |
1 files changed, 0 insertions, 5432 deletions
diff --git a/gnu/llvm/lib/Analysis/ValueTracking.cpp b/gnu/llvm/lib/Analysis/ValueTracking.cpp deleted file mode 100644 index 0446426c0e6..00000000000 --- a/gnu/llvm/lib/Analysis/ValueTracking.cpp +++ /dev/null @@ -1,5432 +0,0 @@ -//===- ValueTracking.cpp - Walk computations to compute properties --------===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file contains routines that help analyze properties that chains of -// computations have. -// -//===----------------------------------------------------------------------===// - -#include "llvm/Analysis/ValueTracking.h" -#include "llvm/ADT/APFloat.h" -#include "llvm/ADT/APInt.h" -#include "llvm/ADT/ArrayRef.h" -#include "llvm/ADT/None.h" -#include "llvm/ADT/Optional.h" -#include "llvm/ADT/STLExtras.h" -#include "llvm/ADT/SmallPtrSet.h" -#include "llvm/ADT/SmallSet.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/ADT/StringRef.h" -#include "llvm/ADT/iterator_range.h" -#include "llvm/Analysis/AliasAnalysis.h" -#include "llvm/Analysis/AssumptionCache.h" -#include "llvm/Analysis/GuardUtils.h" -#include "llvm/Analysis/InstructionSimplify.h" -#include "llvm/Analysis/Loads.h" -#include "llvm/Analysis/LoopInfo.h" -#include "llvm/Analysis/OptimizationRemarkEmitter.h" -#include "llvm/Analysis/TargetLibraryInfo.h" -#include "llvm/IR/Argument.h" -#include "llvm/IR/Attributes.h" -#include "llvm/IR/BasicBlock.h" -#include "llvm/IR/CallSite.h" -#include "llvm/IR/Constant.h" -#include "llvm/IR/ConstantRange.h" -#include "llvm/IR/Constants.h" -#include "llvm/IR/DataLayout.h" -#include "llvm/IR/DerivedTypes.h" -#include "llvm/IR/DiagnosticInfo.h" -#include "llvm/IR/Dominators.h" -#include "llvm/IR/Function.h" -#include "llvm/IR/GetElementPtrTypeIterator.h" -#include "llvm/IR/GlobalAlias.h" -#include "llvm/IR/GlobalValue.h" -#include "llvm/IR/GlobalVariable.h" -#include "llvm/IR/InstrTypes.h" -#include "llvm/IR/Instruction.h" -#include "llvm/IR/Instructions.h" -#include "llvm/IR/IntrinsicInst.h" -#include "llvm/IR/Intrinsics.h" -#include "llvm/IR/LLVMContext.h" -#include "llvm/IR/Metadata.h" -#include "llvm/IR/Module.h" -#include "llvm/IR/Operator.h" -#include "llvm/IR/PatternMatch.h" -#include "llvm/IR/Type.h" -#include "llvm/IR/User.h" -#include "llvm/IR/Value.h" -#include "llvm/Support/Casting.h" -#include "llvm/Support/CommandLine.h" -#include "llvm/Support/Compiler.h" -#include "llvm/Support/ErrorHandling.h" -#include "llvm/Support/KnownBits.h" -#include "llvm/Support/MathExtras.h" -#include <algorithm> -#include <array> -#include <cassert> -#include <cstdint> -#include <iterator> -#include <utility> - -using namespace llvm; -using namespace llvm::PatternMatch; - -const unsigned MaxDepth = 6; - -// Controls the number of uses of the value searched for possible -// dominating comparisons. -static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", - cl::Hidden, cl::init(20)); - -/// Returns the bitwidth of the given scalar or pointer type. For vector types, -/// returns the element type's bitwidth. -static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { - if (unsigned BitWidth = Ty->getScalarSizeInBits()) - return BitWidth; - - return DL.getIndexTypeSizeInBits(Ty); -} - -namespace { - -// Simplifying using an assume can only be done in a particular control-flow -// context (the context instruction provides that context). If an assume and -// the context instruction are not in the same block then the DT helps in -// figuring out if we can use it. -struct Query { - const DataLayout &DL; - AssumptionCache *AC; - const Instruction *CxtI; - const DominatorTree *DT; - - // Unlike the other analyses, this may be a nullptr because not all clients - // provide it currently. - OptimizationRemarkEmitter *ORE; - - /// Set of assumptions that should be excluded from further queries. - /// This is because of the potential for mutual recursion to cause - /// computeKnownBits to repeatedly visit the same assume intrinsic. The - /// classic case of this is assume(x = y), which will attempt to determine - /// bits in x from bits in y, which will attempt to determine bits in y from - /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call - /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo - /// (all of which can call computeKnownBits), and so on. - std::array<const Value *, MaxDepth> Excluded; - - /// If true, it is safe to use metadata during simplification. - InstrInfoQuery IIQ; - - unsigned NumExcluded = 0; - - Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, - const DominatorTree *DT, bool UseInstrInfo, - OptimizationRemarkEmitter *ORE = nullptr) - : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} - - Query(const Query &Q, const Value *NewExcl) - : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ), - NumExcluded(Q.NumExcluded) { - Excluded = Q.Excluded; - Excluded[NumExcluded++] = NewExcl; - assert(NumExcluded <= Excluded.size()); - } - - bool isExcluded(const Value *Value) const { - if (NumExcluded == 0) - return false; - auto End = Excluded.begin() + NumExcluded; - return std::find(Excluded.begin(), End, Value) != End; - } -}; - -} // end anonymous namespace - -// Given the provided Value and, potentially, a context instruction, return -// the preferred context instruction (if any). -static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { - // If we've been provided with a context instruction, then use that (provided - // it has been inserted). - if (CxtI && CxtI->getParent()) - return CxtI; - - // If the value is really an already-inserted instruction, then use that. - CxtI = dyn_cast<Instruction>(V); - if (CxtI && CxtI->getParent()) - return CxtI; - - return nullptr; -} - -static void computeKnownBits(const Value *V, KnownBits &Known, - unsigned Depth, const Query &Q); - -void llvm::computeKnownBits(const Value *V, KnownBits &Known, - const DataLayout &DL, unsigned Depth, - AssumptionCache *AC, const Instruction *CxtI, - const DominatorTree *DT, - OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { - ::computeKnownBits(V, Known, Depth, - Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); -} - -static KnownBits computeKnownBits(const Value *V, unsigned Depth, - const Query &Q); - -KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, - unsigned Depth, AssumptionCache *AC, - const Instruction *CxtI, - const DominatorTree *DT, - OptimizationRemarkEmitter *ORE, - bool UseInstrInfo) { - return ::computeKnownBits( - V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); -} - -bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, - const DataLayout &DL, AssumptionCache *AC, - const Instruction *CxtI, const DominatorTree *DT, - bool UseInstrInfo) { - assert(LHS->getType() == RHS->getType() && - "LHS and RHS should have the same type"); - assert(LHS->getType()->isIntOrIntVectorTy() && - "LHS and RHS should be integers"); - // Look for an inverted mask: (X & ~M) op (Y & M). - Value *M; - if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && - match(RHS, m_c_And(m_Specific(M), m_Value()))) - return true; - if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && - match(LHS, m_c_And(m_Specific(M), m_Value()))) - return true; - IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); - KnownBits LHSKnown(IT->getBitWidth()); - KnownBits RHSKnown(IT->getBitWidth()); - computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); - computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); - return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue(); -} - -bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { - for (const User *U : CxtI->users()) { - if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) - if (IC->isEquality()) - if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) - if (C->isNullValue()) - continue; - return false; - } - return true; -} - -static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, - const Query &Q); - -bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, - bool OrZero, unsigned Depth, - AssumptionCache *AC, const Instruction *CxtI, - const DominatorTree *DT, bool UseInstrInfo) { - return ::isKnownToBeAPowerOfTwo( - V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); -} - -static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); - -bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, - AssumptionCache *AC, const Instruction *CxtI, - const DominatorTree *DT, bool UseInstrInfo) { - return ::isKnownNonZero(V, Depth, - Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); -} - -bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, - unsigned Depth, AssumptionCache *AC, - const Instruction *CxtI, const DominatorTree *DT, - bool UseInstrInfo) { - KnownBits Known = - computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); - return Known.isNonNegative(); -} - -bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, - AssumptionCache *AC, const Instruction *CxtI, - const DominatorTree *DT, bool UseInstrInfo) { - if (auto *CI = dyn_cast<ConstantInt>(V)) - return CI->getValue().isStrictlyPositive(); - - // TODO: We'd doing two recursive queries here. We should factor this such - // that only a single query is needed. - return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && - isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); -} - -bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, - AssumptionCache *AC, const Instruction *CxtI, - const DominatorTree *DT, bool UseInstrInfo) { - KnownBits Known = - computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); - return Known.isNegative(); -} - -static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); - -bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, - const DataLayout &DL, AssumptionCache *AC, - const Instruction *CxtI, const DominatorTree *DT, - bool UseInstrInfo) { - return ::isKnownNonEqual(V1, V2, - Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT, - UseInstrInfo, /*ORE=*/nullptr)); -} - -static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, - const Query &Q); - -bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, - const DataLayout &DL, unsigned Depth, - AssumptionCache *AC, const Instruction *CxtI, - const DominatorTree *DT, bool UseInstrInfo) { - return ::MaskedValueIsZero( - V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); -} - -static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, - const Query &Q); - -unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, - unsigned Depth, AssumptionCache *AC, - const Instruction *CxtI, - const DominatorTree *DT, bool UseInstrInfo) { - return ::ComputeNumSignBits( - V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); -} - -static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, - bool NSW, - KnownBits &KnownOut, KnownBits &Known2, - unsigned Depth, const Query &Q) { - unsigned BitWidth = KnownOut.getBitWidth(); - - // If an initial sequence of bits in the result is not needed, the - // corresponding bits in the operands are not needed. - KnownBits LHSKnown(BitWidth); - computeKnownBits(Op0, LHSKnown, Depth + 1, Q); - computeKnownBits(Op1, Known2, Depth + 1, Q); - - KnownOut = KnownBits::computeForAddSub(Add, NSW, LHSKnown, Known2); -} - -static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, - KnownBits &Known, KnownBits &Known2, - unsigned Depth, const Query &Q) { - unsigned BitWidth = Known.getBitWidth(); - computeKnownBits(Op1, Known, Depth + 1, Q); - computeKnownBits(Op0, Known2, Depth + 1, Q); - - bool isKnownNegative = false; - bool isKnownNonNegative = false; - // If the multiplication is known not to overflow, compute the sign bit. - if (NSW) { - if (Op0 == Op1) { - // The product of a number with itself is non-negative. - isKnownNonNegative = true; - } else { - bool isKnownNonNegativeOp1 = Known.isNonNegative(); - bool isKnownNonNegativeOp0 = Known2.isNonNegative(); - bool isKnownNegativeOp1 = Known.isNegative(); - bool isKnownNegativeOp0 = Known2.isNegative(); - // The product of two numbers with the same sign is non-negative. - isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || - (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); - // The product of a negative number and a non-negative number is either - // negative or zero. - if (!isKnownNonNegative) - isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && - isKnownNonZero(Op0, Depth, Q)) || - (isKnownNegativeOp0 && isKnownNonNegativeOp1 && - isKnownNonZero(Op1, Depth, Q)); - } - } - - assert(!Known.hasConflict() && !Known2.hasConflict()); - // Compute a conservative estimate for high known-0 bits. - unsigned LeadZ = std::max(Known.countMinLeadingZeros() + - Known2.countMinLeadingZeros(), - BitWidth) - BitWidth; - LeadZ = std::min(LeadZ, BitWidth); - - // The result of the bottom bits of an integer multiply can be - // inferred by looking at the bottom bits of both operands and - // multiplying them together. - // We can infer at least the minimum number of known trailing bits - // of both operands. Depending on number of trailing zeros, we can - // infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming - // a and b are divisible by m and n respectively. - // We then calculate how many of those bits are inferrable and set - // the output. For example, the i8 mul: - // a = XXXX1100 (12) - // b = XXXX1110 (14) - // We know the bottom 3 bits are zero since the first can be divided by - // 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4). - // Applying the multiplication to the trimmed arguments gets: - // XX11 (3) - // X111 (7) - // ------- - // XX11 - // XX11 - // XX11 - // XX11 - // ------- - // XXXXX01 - // Which allows us to infer the 2 LSBs. Since we're multiplying the result - // by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits. - // The proof for this can be described as: - // Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) && - // (C7 == (1 << (umin(countTrailingZeros(C1), C5) + - // umin(countTrailingZeros(C2), C6) + - // umin(C5 - umin(countTrailingZeros(C1), C5), - // C6 - umin(countTrailingZeros(C2), C6)))) - 1) - // %aa = shl i8 %a, C5 - // %bb = shl i8 %b, C6 - // %aaa = or i8 %aa, C1 - // %bbb = or i8 %bb, C2 - // %mul = mul i8 %aaa, %bbb - // %mask = and i8 %mul, C7 - // => - // %mask = i8 ((C1*C2)&C7) - // Where C5, C6 describe the known bits of %a, %b - // C1, C2 describe the known bottom bits of %a, %b. - // C7 describes the mask of the known bits of the result. - APInt Bottom0 = Known.One; - APInt Bottom1 = Known2.One; - - // How many times we'd be able to divide each argument by 2 (shr by 1). - // This gives us the number of trailing zeros on the multiplication result. - unsigned TrailBitsKnown0 = (Known.Zero | Known.One).countTrailingOnes(); - unsigned TrailBitsKnown1 = (Known2.Zero | Known2.One).countTrailingOnes(); - unsigned TrailZero0 = Known.countMinTrailingZeros(); - unsigned TrailZero1 = Known2.countMinTrailingZeros(); - unsigned TrailZ = TrailZero0 + TrailZero1; - - // Figure out the fewest known-bits operand. - unsigned SmallestOperand = std::min(TrailBitsKnown0 - TrailZero0, - TrailBitsKnown1 - TrailZero1); - unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ, BitWidth); - - APInt BottomKnown = Bottom0.getLoBits(TrailBitsKnown0) * - Bottom1.getLoBits(TrailBitsKnown1); - - Known.resetAll(); - Known.Zero.setHighBits(LeadZ); - Known.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown); - Known.One |= BottomKnown.getLoBits(ResultBitsKnown); - - // Only make use of no-wrap flags if we failed to compute the sign bit - // directly. This matters if the multiplication always overflows, in - // which case we prefer to follow the result of the direct computation, - // though as the program is invoking undefined behaviour we can choose - // whatever we like here. - if (isKnownNonNegative && !Known.isNegative()) - Known.makeNonNegative(); - else if (isKnownNegative && !Known.isNonNegative()) - Known.makeNegative(); -} - -void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, - KnownBits &Known) { - unsigned BitWidth = Known.getBitWidth(); - unsigned NumRanges = Ranges.getNumOperands() / 2; - assert(NumRanges >= 1); - - Known.Zero.setAllBits(); - Known.One.setAllBits(); - - for (unsigned i = 0; i < NumRanges; ++i) { - ConstantInt *Lower = - mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); - ConstantInt *Upper = - mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); - ConstantRange Range(Lower->getValue(), Upper->getValue()); - - // The first CommonPrefixBits of all values in Range are equal. - unsigned CommonPrefixBits = - (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); - - APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); - Known.One &= Range.getUnsignedMax() & Mask; - Known.Zero &= ~Range.getUnsignedMax() & Mask; - } -} - -static bool isEphemeralValueOf(const Instruction *I, const Value *E) { - SmallVector<const Value *, 16> WorkSet(1, I); - SmallPtrSet<const Value *, 32> Visited; - SmallPtrSet<const Value *, 16> EphValues; - - // The instruction defining an assumption's condition itself is always - // considered ephemeral to that assumption (even if it has other - // non-ephemeral users). See r246696's test case for an example. - if (is_contained(I->operands(), E)) - return true; - - while (!WorkSet.empty()) { - const Value *V = WorkSet.pop_back_val(); - if (!Visited.insert(V).second) - continue; - - // If all uses of this value are ephemeral, then so is this value. - if (llvm::all_of(V->users(), [&](const User *U) { - return EphValues.count(U); - })) { - if (V == E) - return true; - - if (V == I || isSafeToSpeculativelyExecute(V)) { - EphValues.insert(V); - if (const User *U = dyn_cast<User>(V)) - for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); - J != JE; ++J) - WorkSet.push_back(*J); - } - } - } - - return false; -} - -// Is this an intrinsic that cannot be speculated but also cannot trap? -bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { - if (const CallInst *CI = dyn_cast<CallInst>(I)) - if (Function *F = CI->getCalledFunction()) - switch (F->getIntrinsicID()) { - default: break; - // FIXME: This list is repeated from NoTTI::getIntrinsicCost. - case Intrinsic::assume: - case Intrinsic::sideeffect: - case Intrinsic::dbg_declare: - case Intrinsic::dbg_value: - case Intrinsic::dbg_label: - case Intrinsic::invariant_start: - case Intrinsic::invariant_end: - case Intrinsic::lifetime_start: - case Intrinsic::lifetime_end: - case Intrinsic::objectsize: - case Intrinsic::ptr_annotation: - case Intrinsic::var_annotation: - return true; - } - - return false; -} - -bool llvm::isValidAssumeForContext(const Instruction *Inv, - const Instruction *CxtI, - const DominatorTree *DT) { - // There are two restrictions on the use of an assume: - // 1. The assume must dominate the context (or the control flow must - // reach the assume whenever it reaches the context). - // 2. The context must not be in the assume's set of ephemeral values - // (otherwise we will use the assume to prove that the condition - // feeding the assume is trivially true, thus causing the removal of - // the assume). - - if (DT) { - if (DT->dominates(Inv, CxtI)) - return true; - } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { - // We don't have a DT, but this trivially dominates. - return true; - } - - // With or without a DT, the only remaining case we will check is if the - // instructions are in the same BB. Give up if that is not the case. - if (Inv->getParent() != CxtI->getParent()) - return false; - - // If we have a dom tree, then we now know that the assume doesn't dominate - // the other instruction. If we don't have a dom tree then we can check if - // the assume is first in the BB. - if (!DT) { - // Search forward from the assume until we reach the context (or the end - // of the block); the common case is that the assume will come first. - for (auto I = std::next(BasicBlock::const_iterator(Inv)), - IE = Inv->getParent()->end(); I != IE; ++I) - if (&*I == CxtI) - return true; - } - - // The context comes first, but they're both in the same block. Make sure - // there is nothing in between that might interrupt the control flow. - for (BasicBlock::const_iterator I = - std::next(BasicBlock::const_iterator(CxtI)), IE(Inv); - I != IE; ++I) - if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I)) - return false; - - return !isEphemeralValueOf(Inv, CxtI); -} - -static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, - unsigned Depth, const Query &Q) { - // Use of assumptions is context-sensitive. If we don't have a context, we - // cannot use them! - if (!Q.AC || !Q.CxtI) - return; - - unsigned BitWidth = Known.getBitWidth(); - - // Note that the patterns below need to be kept in sync with the code - // in AssumptionCache::updateAffectedValues. - - for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { - if (!AssumeVH) - continue; - CallInst *I = cast<CallInst>(AssumeVH); - assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && - "Got assumption for the wrong function!"); - if (Q.isExcluded(I)) - continue; - - // Warning: This loop can end up being somewhat performance sensitive. - // We're running this loop for once for each value queried resulting in a - // runtime of ~O(#assumes * #values). - - assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && - "must be an assume intrinsic"); - - Value *Arg = I->getArgOperand(0); - - if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { - assert(BitWidth == 1 && "assume operand is not i1?"); - Known.setAllOnes(); - return; - } - if (match(Arg, m_Not(m_Specific(V))) && - isValidAssumeForContext(I, Q.CxtI, Q.DT)) { - assert(BitWidth == 1 && "assume operand is not i1?"); - Known.setAllZero(); - return; - } - - // The remaining tests are all recursive, so bail out if we hit the limit. - if (Depth == MaxDepth) - continue; - - Value *A, *B; - auto m_V = m_CombineOr(m_Specific(V), - m_CombineOr(m_PtrToInt(m_Specific(V)), - m_BitCast(m_Specific(V)))); - - CmpInst::Predicate Pred; - uint64_t C; - // assume(v = a) - if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) && - Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { - KnownBits RHSKnown(BitWidth); - computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); - Known.Zero |= RHSKnown.Zero; - Known.One |= RHSKnown.One; - // assume(v & b = a) - } else if (match(Arg, - m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && - Pred == ICmpInst::ICMP_EQ && - isValidAssumeForContext(I, Q.CxtI, Q.DT)) { - KnownBits RHSKnown(BitWidth); - computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); - KnownBits MaskKnown(BitWidth); - computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); - - // For those bits in the mask that are known to be one, we can propagate - // known bits from the RHS to V. - Known.Zero |= RHSKnown.Zero & MaskKnown.One; - Known.One |= RHSKnown.One & MaskKnown.One; - // assume(~(v & b) = a) - } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), - m_Value(A))) && - Pred == ICmpInst::ICMP_EQ && - isValidAssumeForContext(I, Q.CxtI, Q.DT)) { - KnownBits RHSKnown(BitWidth); - computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); - KnownBits MaskKnown(BitWidth); - computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); - - // For those bits in the mask that are known to be one, we can propagate - // inverted known bits from the RHS to V. - Known.Zero |= RHSKnown.One & MaskKnown.One; - Known.One |= RHSKnown.Zero & MaskKnown.One; - // assume(v | b = a) - } else if (match(Arg, - m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && - Pred == ICmpInst::ICMP_EQ && - isValidAssumeForContext(I, Q.CxtI, Q.DT)) { - KnownBits RHSKnown(BitWidth); - computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); - KnownBits BKnown(BitWidth); - computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); - - // For those bits in B that are known to be zero, we can propagate known - // bits from the RHS to V. - Known.Zero |= RHSKnown.Zero & BKnown.Zero; - Known.One |= RHSKnown.One & BKnown.Zero; - // assume(~(v | b) = a) - } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), - m_Value(A))) && - Pred == ICmpInst::ICMP_EQ && - isValidAssumeForContext(I, Q.CxtI, Q.DT)) { - KnownBits RHSKnown(BitWidth); - computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); - KnownBits BKnown(BitWidth); - computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); - - // For those bits in B that are known to be zero, we can propagate - // inverted known bits from the RHS to V. - Known.Zero |= RHSKnown.One & BKnown.Zero; - Known.One |= RHSKnown.Zero & BKnown.Zero; - // assume(v ^ b = a) - } else if (match(Arg, - m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && - Pred == ICmpInst::ICMP_EQ && - isValidAssumeForContext(I, Q.CxtI, Q.DT)) { - KnownBits RHSKnown(BitWidth); - computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); - KnownBits BKnown(BitWidth); - computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); - - // For those bits in B that are known to be zero, we can propagate known - // bits from the RHS to V. For those bits in B that are known to be one, - // we can propagate inverted known bits from the RHS to V. - Known.Zero |= RHSKnown.Zero & BKnown.Zero; - Known.One |= RHSKnown.One & BKnown.Zero; - Known.Zero |= RHSKnown.One & BKnown.One; - Known.One |= RHSKnown.Zero & BKnown.One; - // assume(~(v ^ b) = a) - } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), - m_Value(A))) && - Pred == ICmpInst::ICMP_EQ && - isValidAssumeForContext(I, Q.CxtI, Q.DT)) { - KnownBits RHSKnown(BitWidth); - computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); - KnownBits BKnown(BitWidth); - computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); - - // For those bits in B that are known to be zero, we can propagate - // inverted known bits from the RHS to V. For those bits in B that are - // known to be one, we can propagate known bits from the RHS to V. - Known.Zero |= RHSKnown.One & BKnown.Zero; - Known.One |= RHSKnown.Zero & BKnown.Zero; - Known.Zero |= RHSKnown.Zero & BKnown.One; - Known.One |= RHSKnown.One & BKnown.One; - // assume(v << c = a) - } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), - m_Value(A))) && - Pred == ICmpInst::ICMP_EQ && - isValidAssumeForContext(I, Q.CxtI, Q.DT) && - C < BitWidth) { - KnownBits RHSKnown(BitWidth); - computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); - // For those bits in RHS that are known, we can propagate them to known - // bits in V shifted to the right by C. - RHSKnown.Zero.lshrInPlace(C); - Known.Zero |= RHSKnown.Zero; - RHSKnown.One.lshrInPlace(C); - Known.One |= RHSKnown.One; - // assume(~(v << c) = a) - } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), - m_Value(A))) && - Pred == ICmpInst::ICMP_EQ && - isValidAssumeForContext(I, Q.CxtI, Q.DT) && - C < BitWidth) { - KnownBits RHSKnown(BitWidth); - computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); - // For those bits in RHS that are known, we can propagate them inverted - // to known bits in V shifted to the right by C. - RHSKnown.One.lshrInPlace(C); - Known.Zero |= RHSKnown.One; - RHSKnown.Zero.lshrInPlace(C); - Known.One |= RHSKnown.Zero; - // assume(v >> c = a) - } else if (match(Arg, - m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), - m_Value(A))) && - Pred == ICmpInst::ICMP_EQ && - isValidAssumeForContext(I, Q.CxtI, Q.DT) && - C < BitWidth) { - KnownBits RHSKnown(BitWidth); - computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); - // For those bits in RHS that are known, we can propagate them to known - // bits in V shifted to the right by C. - Known.Zero |= RHSKnown.Zero << C; - Known.One |= RHSKnown.One << C; - // assume(~(v >> c) = a) - } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), - m_Value(A))) && - Pred == ICmpInst::ICMP_EQ && - isValidAssumeForContext(I, Q.CxtI, Q.DT) && - C < BitWidth) { - KnownBits RHSKnown(BitWidth); - computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); - // For those bits in RHS that are known, we can propagate them inverted - // to known bits in V shifted to the right by C. - Known.Zero |= RHSKnown.One << C; - Known.One |= RHSKnown.Zero << C; - // assume(v >=_s c) where c is non-negative - } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && - Pred == ICmpInst::ICMP_SGE && - isValidAssumeForContext(I, Q.CxtI, Q.DT)) { - KnownBits RHSKnown(BitWidth); - computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); - - if (RHSKnown.isNonNegative()) { - // We know that the sign bit is zero. - Known.makeNonNegative(); - } - // assume(v >_s c) where c is at least -1. - } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && - Pred == ICmpInst::ICMP_SGT && - isValidAssumeForContext(I, Q.CxtI, Q.DT)) { - KnownBits RHSKnown(BitWidth); - computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); - - if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { - // We know that the sign bit is zero. - Known.makeNonNegative(); - } - // assume(v <=_s c) where c is negative - } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && - Pred == ICmpInst::ICMP_SLE && - isValidAssumeForContext(I, Q.CxtI, Q.DT)) { - KnownBits RHSKnown(BitWidth); - computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); - - if (RHSKnown.isNegative()) { - // We know that the sign bit is one. - Known.makeNegative(); - } - // assume(v <_s c) where c is non-positive - } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && - Pred == ICmpInst::ICMP_SLT && - isValidAssumeForContext(I, Q.CxtI, Q.DT)) { - KnownBits RHSKnown(BitWidth); - computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); - - if (RHSKnown.isZero() || RHSKnown.isNegative()) { - // We know that the sign bit is one. - Known.makeNegative(); - } - // assume(v <=_u c) - } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && - Pred == ICmpInst::ICMP_ULE && - isValidAssumeForContext(I, Q.CxtI, Q.DT)) { - KnownBits RHSKnown(BitWidth); - computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); - - // Whatever high bits in c are zero are known to be zero. - Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); - // assume(v <_u c) - } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && - Pred == ICmpInst::ICMP_ULT && - isValidAssumeForContext(I, Q.CxtI, Q.DT)) { - KnownBits RHSKnown(BitWidth); - computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); - - // If the RHS is known zero, then this assumption must be wrong (nothing - // is unsigned less than zero). Signal a conflict and get out of here. - if (RHSKnown.isZero()) { - Known.Zero.setAllBits(); - Known.One.setAllBits(); - break; - } - - // Whatever high bits in c are zero are known to be zero (if c is a power - // of 2, then one more). - if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) - Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); - else - Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); - } - } - - // If assumptions conflict with each other or previous known bits, then we - // have a logical fallacy. It's possible that the assumption is not reachable, - // so this isn't a real bug. On the other hand, the program may have undefined - // behavior, or we might have a bug in the compiler. We can't assert/crash, so - // clear out the known bits, try to warn the user, and hope for the best. - if (Known.Zero.intersects(Known.One)) { - Known.resetAll(); - - if (Q.ORE) - Q.ORE->emit([&]() { - auto *CxtI = const_cast<Instruction *>(Q.CxtI); - return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", - CxtI) - << "Detected conflicting code assumptions. Program may " - "have undefined behavior, or compiler may have " - "internal error."; - }); - } -} - -/// Compute known bits from a shift operator, including those with a -/// non-constant shift amount. Known is the output of this function. Known2 is a -/// pre-allocated temporary with the same bit width as Known. KZF and KOF are -/// operator-specific functions that, given the known-zero or known-one bits -/// respectively, and a shift amount, compute the implied known-zero or -/// known-one bits of the shift operator's result respectively for that shift -/// amount. The results from calling KZF and KOF are conservatively combined for -/// all permitted shift amounts. -static void computeKnownBitsFromShiftOperator( - const Operator *I, KnownBits &Known, KnownBits &Known2, - unsigned Depth, const Query &Q, - function_ref<APInt(const APInt &, unsigned)> KZF, - function_ref<APInt(const APInt &, unsigned)> KOF) { - unsigned BitWidth = Known.getBitWidth(); - - if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { - unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1); - - computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); - Known.Zero = KZF(Known.Zero, ShiftAmt); - Known.One = KOF(Known.One, ShiftAmt); - // If the known bits conflict, this must be an overflowing left shift, so - // the shift result is poison. We can return anything we want. Choose 0 for - // the best folding opportunity. - if (Known.hasConflict()) - Known.setAllZero(); - - return; - } - - computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); - - // If the shift amount could be greater than or equal to the bit-width of the - // LHS, the value could be poison, but bail out because the check below is - // expensive. TODO: Should we just carry on? - if ((~Known.Zero).uge(BitWidth)) { - Known.resetAll(); - return; - } - - // Note: We cannot use Known.Zero.getLimitedValue() here, because if - // BitWidth > 64 and any upper bits are known, we'll end up returning the - // limit value (which implies all bits are known). - uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); - uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); - - // It would be more-clearly correct to use the two temporaries for this - // calculation. Reusing the APInts here to prevent unnecessary allocations. - Known.resetAll(); - - // If we know the shifter operand is nonzero, we can sometimes infer more - // known bits. However this is expensive to compute, so be lazy about it and - // only compute it when absolutely necessary. - Optional<bool> ShifterOperandIsNonZero; - - // Early exit if we can't constrain any well-defined shift amount. - if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && - !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { - ShifterOperandIsNonZero = isKnownNonZero(I->getOperand(1), Depth + 1, Q); - if (!*ShifterOperandIsNonZero) - return; - } - - computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); - - Known.Zero.setAllBits(); - Known.One.setAllBits(); - for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { - // Combine the shifted known input bits only for those shift amounts - // compatible with its known constraints. - if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) - continue; - if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) - continue; - // If we know the shifter is nonzero, we may be able to infer more known - // bits. This check is sunk down as far as possible to avoid the expensive - // call to isKnownNonZero if the cheaper checks above fail. - if (ShiftAmt == 0) { - if (!ShifterOperandIsNonZero.hasValue()) - ShifterOperandIsNonZero = - isKnownNonZero(I->getOperand(1), Depth + 1, Q); - if (*ShifterOperandIsNonZero) - continue; - } - - Known.Zero &= KZF(Known2.Zero, ShiftAmt); - Known.One &= KOF(Known2.One, ShiftAmt); - } - - // If the known bits conflict, the result is poison. Return a 0 and hope the - // caller can further optimize that. - if (Known.hasConflict()) - Known.setAllZero(); -} - -static void computeKnownBitsFromOperator(const Operator *I, KnownBits &Known, - unsigned Depth, const Query &Q) { - unsigned BitWidth = Known.getBitWidth(); - - KnownBits Known2(Known); - switch (I->getOpcode()) { - default: break; - case Instruction::Load: - if (MDNode *MD = - Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) - computeKnownBitsFromRangeMetadata(*MD, Known); - break; - case Instruction::And: { - // If either the LHS or the RHS are Zero, the result is zero. - computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); - computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); - - // Output known-1 bits are only known if set in both the LHS & RHS. - Known.One &= Known2.One; - // Output known-0 are known to be clear if zero in either the LHS | RHS. - Known.Zero |= Known2.Zero; - - // and(x, add (x, -1)) is a common idiom that always clears the low bit; - // here we handle the more general case of adding any odd number by - // matching the form add(x, add(x, y)) where y is odd. - // TODO: This could be generalized to clearing any bit set in y where the - // following bit is known to be unset in y. - Value *X = nullptr, *Y = nullptr; - if (!Known.Zero[0] && !Known.One[0] && - match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { - Known2.resetAll(); - computeKnownBits(Y, Known2, Depth + 1, Q); - if (Known2.countMinTrailingOnes() > 0) - Known.Zero.setBit(0); - } - break; - } - case Instruction::Or: - computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); - computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); - - // Output known-0 bits are only known if clear in both the LHS & RHS. - Known.Zero &= Known2.Zero; - // Output known-1 are known to be set if set in either the LHS | RHS. - Known.One |= Known2.One; - break; - case Instruction::Xor: { - computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); - computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); - - // Output known-0 bits are known if clear or set in both the LHS & RHS. - APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); - // Output known-1 are known to be set if set in only one of the LHS, RHS. - Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); - Known.Zero = std::move(KnownZeroOut); - break; - } - case Instruction::Mul: { - bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); - computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, Known, - Known2, Depth, Q); - break; - } - case Instruction::UDiv: { - // For the purposes of computing leading zeros we can conservatively - // treat a udiv as a logical right shift by the power of 2 known to - // be less than the denominator. - computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); - unsigned LeadZ = Known2.countMinLeadingZeros(); - - Known2.resetAll(); - computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); - unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); - if (RHSMaxLeadingZeros != BitWidth) - LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); - - Known.Zero.setHighBits(LeadZ); - break; - } - case Instruction::Select: { - const Value *LHS, *RHS; - SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; - if (SelectPatternResult::isMinOrMax(SPF)) { - computeKnownBits(RHS, Known, Depth + 1, Q); - computeKnownBits(LHS, Known2, Depth + 1, Q); - } else { - computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); - computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); - } - - unsigned MaxHighOnes = 0; - unsigned MaxHighZeros = 0; - if (SPF == SPF_SMAX) { - // If both sides are negative, the result is negative. - if (Known.isNegative() && Known2.isNegative()) - // We can derive a lower bound on the result by taking the max of the - // leading one bits. - MaxHighOnes = - std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); - // If either side is non-negative, the result is non-negative. - else if (Known.isNonNegative() || Known2.isNonNegative()) - MaxHighZeros = 1; - } else if (SPF == SPF_SMIN) { - // If both sides are non-negative, the result is non-negative. - if (Known.isNonNegative() && Known2.isNonNegative()) - // We can derive an upper bound on the result by taking the max of the - // leading zero bits. - MaxHighZeros = std::max(Known.countMinLeadingZeros(), - Known2.countMinLeadingZeros()); - // If either side is negative, the result is negative. - else if (Known.isNegative() || Known2.isNegative()) - MaxHighOnes = 1; - } else if (SPF == SPF_UMAX) { - // We can derive a lower bound on the result by taking the max of the - // leading one bits. - MaxHighOnes = - std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); - } else if (SPF == SPF_UMIN) { - // We can derive an upper bound on the result by taking the max of the - // leading zero bits. - MaxHighZeros = - std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); - } else if (SPF == SPF_ABS) { - // RHS from matchSelectPattern returns the negation part of abs pattern. - // If the negate has an NSW flag we can assume the sign bit of the result - // will be 0 because that makes abs(INT_MIN) undefined. - if (Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) - MaxHighZeros = 1; - } - - // Only known if known in both the LHS and RHS. - Known.One &= Known2.One; - Known.Zero &= Known2.Zero; - if (MaxHighOnes > 0) - Known.One.setHighBits(MaxHighOnes); - if (MaxHighZeros > 0) - Known.Zero.setHighBits(MaxHighZeros); - break; - } - case Instruction::FPTrunc: - case Instruction::FPExt: - case Instruction::FPToUI: - case Instruction::FPToSI: - case Instruction::SIToFP: - case Instruction::UIToFP: - break; // Can't work with floating point. - case Instruction::PtrToInt: - case Instruction::IntToPtr: - // Fall through and handle them the same as zext/trunc. - LLVM_FALLTHROUGH; - case Instruction::ZExt: - case Instruction::Trunc: { - Type *SrcTy = I->getOperand(0)->getType(); - - unsigned SrcBitWidth; - // Note that we handle pointer operands here because of inttoptr/ptrtoint - // which fall through here. - Type *ScalarTy = SrcTy->getScalarType(); - SrcBitWidth = ScalarTy->isPointerTy() ? - Q.DL.getIndexTypeSizeInBits(ScalarTy) : - Q.DL.getTypeSizeInBits(ScalarTy); - - assert(SrcBitWidth && "SrcBitWidth can't be zero"); - Known = Known.zextOrTrunc(SrcBitWidth); - computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); - Known = Known.zextOrTrunc(BitWidth); - // Any top bits are known to be zero. - if (BitWidth > SrcBitWidth) - Known.Zero.setBitsFrom(SrcBitWidth); - break; - } - case Instruction::BitCast: { - Type *SrcTy = I->getOperand(0)->getType(); - if (SrcTy->isIntOrPtrTy() && - // TODO: For now, not handling conversions like: - // (bitcast i64 %x to <2 x i32>) - !I->getType()->isVectorTy()) { - computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); - break; - } - break; - } - case Instruction::SExt: { - // Compute the bits in the result that are not present in the input. - unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); - - Known = Known.trunc(SrcBitWidth); - computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); - // If the sign bit of the input is known set or clear, then we know the - // top bits of the result. - Known = Known.sext(BitWidth); - break; - } - case Instruction::Shl: { - // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 - bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); - auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) { - APInt KZResult = KnownZero << ShiftAmt; - KZResult.setLowBits(ShiftAmt); // Low bits known 0. - // If this shift has "nsw" keyword, then the result is either a poison - // value or has the same sign bit as the first operand. - if (NSW && KnownZero.isSignBitSet()) - KZResult.setSignBit(); - return KZResult; - }; - - auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) { - APInt KOResult = KnownOne << ShiftAmt; - if (NSW && KnownOne.isSignBitSet()) - KOResult.setSignBit(); - return KOResult; - }; - - computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); - break; - } - case Instruction::LShr: { - // (lshr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 - auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { - APInt KZResult = KnownZero.lshr(ShiftAmt); - // High bits known zero. - KZResult.setHighBits(ShiftAmt); - return KZResult; - }; - - auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { - return KnownOne.lshr(ShiftAmt); - }; - - computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); - break; - } - case Instruction::AShr: { - // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 - auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { - return KnownZero.ashr(ShiftAmt); - }; - - auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { - return KnownOne.ashr(ShiftAmt); - }; - - computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); - break; - } - case Instruction::Sub: { - bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); - computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, - Known, Known2, Depth, Q); - break; - } - case Instruction::Add: { - bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); - computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, - Known, Known2, Depth, Q); - break; - } - case Instruction::SRem: - if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { - APInt RA = Rem->getValue().abs(); - if (RA.isPowerOf2()) { - APInt LowBits = RA - 1; - computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); - - // The low bits of the first operand are unchanged by the srem. - Known.Zero = Known2.Zero & LowBits; - Known.One = Known2.One & LowBits; - - // If the first operand is non-negative or has all low bits zero, then - // the upper bits are all zero. - if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) - Known.Zero |= ~LowBits; - - // If the first operand is negative and not all low bits are zero, then - // the upper bits are all one. - if (Known2.isNegative() && LowBits.intersects(Known2.One)) - Known.One |= ~LowBits; - - assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); - break; - } - } - - // The sign bit is the LHS's sign bit, except when the result of the - // remainder is zero. - computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); - // If it's known zero, our sign bit is also zero. - if (Known2.isNonNegative()) - Known.makeNonNegative(); - - break; - case Instruction::URem: { - if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { - const APInt &RA = Rem->getValue(); - if (RA.isPowerOf2()) { - APInt LowBits = (RA - 1); - computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); - Known.Zero |= ~LowBits; - Known.One &= LowBits; - break; - } - } - - // Since the result is less than or equal to either operand, any leading - // zero bits in either operand must also exist in the result. - computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); - computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); - - unsigned Leaders = - std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); - Known.resetAll(); - Known.Zero.setHighBits(Leaders); - break; - } - - case Instruction::Alloca: { - const AllocaInst *AI = cast<AllocaInst>(I); - unsigned Align = AI->getAlignment(); - if (Align == 0) - Align = Q.DL.getABITypeAlignment(AI->getAllocatedType()); - - if (Align > 0) - Known.Zero.setLowBits(countTrailingZeros(Align)); - break; - } - case Instruction::GetElementPtr: { - // Analyze all of the subscripts of this getelementptr instruction - // to determine if we can prove known low zero bits. - KnownBits LocalKnown(BitWidth); - computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q); - unsigned TrailZ = LocalKnown.countMinTrailingZeros(); - - gep_type_iterator GTI = gep_type_begin(I); - for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { - Value *Index = I->getOperand(i); - if (StructType *STy = GTI.getStructTypeOrNull()) { - // Handle struct member offset arithmetic. - - // Handle case when index is vector zeroinitializer - Constant *CIndex = cast<Constant>(Index); - if (CIndex->isZeroValue()) - continue; - - if (CIndex->getType()->isVectorTy()) - Index = CIndex->getSplatValue(); - - unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); - const StructLayout *SL = Q.DL.getStructLayout(STy); - uint64_t Offset = SL->getElementOffset(Idx); - TrailZ = std::min<unsigned>(TrailZ, - countTrailingZeros(Offset)); - } else { - // Handle array index arithmetic. - Type *IndexedTy = GTI.getIndexedType(); - if (!IndexedTy->isSized()) { - TrailZ = 0; - break; - } - unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); - uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy); - LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0); - computeKnownBits(Index, LocalKnown, Depth + 1, Q); - TrailZ = std::min(TrailZ, - unsigned(countTrailingZeros(TypeSize) + - LocalKnown.countMinTrailingZeros())); - } - } - - Known.Zero.setLowBits(TrailZ); - break; - } - case Instruction::PHI: { - const PHINode *P = cast<PHINode>(I); - // Handle the case of a simple two-predecessor recurrence PHI. - // There's a lot more that could theoretically be done here, but - // this is sufficient to catch some interesting cases. - if (P->getNumIncomingValues() == 2) { - for (unsigned i = 0; i != 2; ++i) { - Value *L = P->getIncomingValue(i); - Value *R = P->getIncomingValue(!i); - Operator *LU = dyn_cast<Operator>(L); - if (!LU) - continue; - unsigned Opcode = LU->getOpcode(); - // Check for operations that have the property that if - // both their operands have low zero bits, the result - // will have low zero bits. - if (Opcode == Instruction::Add || - Opcode == Instruction::Sub || - Opcode == Instruction::And || - Opcode == Instruction::Or || - Opcode == Instruction::Mul) { - Value *LL = LU->getOperand(0); - Value *LR = LU->getOperand(1); - // Find a recurrence. - if (LL == I) - L = LR; - else if (LR == I) - L = LL; - else - break; - // Ok, we have a PHI of the form L op= R. Check for low - // zero bits. - computeKnownBits(R, Known2, Depth + 1, Q); - - // We need to take the minimum number of known bits - KnownBits Known3(Known); - computeKnownBits(L, Known3, Depth + 1, Q); - - Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), - Known3.countMinTrailingZeros())); - - auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); - if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { - // If initial value of recurrence is nonnegative, and we are adding - // a nonnegative number with nsw, the result can only be nonnegative - // or poison value regardless of the number of times we execute the - // add in phi recurrence. If initial value is negative and we are - // adding a negative number with nsw, the result can only be - // negative or poison value. Similar arguments apply to sub and mul. - // - // (add non-negative, non-negative) --> non-negative - // (add negative, negative) --> negative - if (Opcode == Instruction::Add) { - if (Known2.isNonNegative() && Known3.isNonNegative()) - Known.makeNonNegative(); - else if (Known2.isNegative() && Known3.isNegative()) - Known.makeNegative(); - } - - // (sub nsw non-negative, negative) --> non-negative - // (sub nsw negative, non-negative) --> negative - else if (Opcode == Instruction::Sub && LL == I) { - if (Known2.isNonNegative() && Known3.isNegative()) - Known.makeNonNegative(); - else if (Known2.isNegative() && Known3.isNonNegative()) - Known.makeNegative(); - } - - // (mul nsw non-negative, non-negative) --> non-negative - else if (Opcode == Instruction::Mul && Known2.isNonNegative() && - Known3.isNonNegative()) - Known.makeNonNegative(); - } - - break; - } - } - } - - // Unreachable blocks may have zero-operand PHI nodes. - if (P->getNumIncomingValues() == 0) - break; - - // Otherwise take the unions of the known bit sets of the operands, - // taking conservative care to avoid excessive recursion. - if (Depth < MaxDepth - 1 && !Known.Zero && !Known.One) { - // Skip if every incoming value references to ourself. - if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) - break; - - Known.Zero.setAllBits(); - Known.One.setAllBits(); - for (Value *IncValue : P->incoming_values()) { - // Skip direct self references. - if (IncValue == P) continue; - - Known2 = KnownBits(BitWidth); - // Recurse, but cap the recursion to one level, because we don't - // want to waste time spinning around in loops. - computeKnownBits(IncValue, Known2, MaxDepth - 1, Q); - Known.Zero &= Known2.Zero; - Known.One &= Known2.One; - // If all bits have been ruled out, there's no need to check - // more operands. - if (!Known.Zero && !Known.One) - break; - } - } - break; - } - case Instruction::Call: - case Instruction::Invoke: - // If range metadata is attached to this call, set known bits from that, - // and then intersect with known bits based on other properties of the - // function. - if (MDNode *MD = - Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) - computeKnownBitsFromRangeMetadata(*MD, Known); - if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) { - computeKnownBits(RV, Known2, Depth + 1, Q); - Known.Zero |= Known2.Zero; - Known.One |= Known2.One; - } - if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { - switch (II->getIntrinsicID()) { - default: break; - case Intrinsic::bitreverse: - computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); - Known.Zero |= Known2.Zero.reverseBits(); - Known.One |= Known2.One.reverseBits(); - break; - case Intrinsic::bswap: - computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); - Known.Zero |= Known2.Zero.byteSwap(); - Known.One |= Known2.One.byteSwap(); - break; - case Intrinsic::ctlz: { - computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); - // If we have a known 1, its position is our upper bound. - unsigned PossibleLZ = Known2.One.countLeadingZeros(); - // If this call is undefined for 0, the result will be less than 2^n. - if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) - PossibleLZ = std::min(PossibleLZ, BitWidth - 1); - unsigned LowBits = Log2_32(PossibleLZ)+1; - Known.Zero.setBitsFrom(LowBits); - break; - } - case Intrinsic::cttz: { - computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); - // If we have a known 1, its position is our upper bound. - unsigned PossibleTZ = Known2.One.countTrailingZeros(); - // If this call is undefined for 0, the result will be less than 2^n. - if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) - PossibleTZ = std::min(PossibleTZ, BitWidth - 1); - unsigned LowBits = Log2_32(PossibleTZ)+1; - Known.Zero.setBitsFrom(LowBits); - break; - } - case Intrinsic::ctpop: { - computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); - // We can bound the space the count needs. Also, bits known to be zero - // can't contribute to the population. - unsigned BitsPossiblySet = Known2.countMaxPopulation(); - unsigned LowBits = Log2_32(BitsPossiblySet)+1; - Known.Zero.setBitsFrom(LowBits); - // TODO: we could bound KnownOne using the lower bound on the number - // of bits which might be set provided by popcnt KnownOne2. - break; - } - case Intrinsic::fshr: - case Intrinsic::fshl: { - const APInt *SA; - if (!match(I->getOperand(2), m_APInt(SA))) - break; - - // Normalize to funnel shift left. - uint64_t ShiftAmt = SA->urem(BitWidth); - if (II->getIntrinsicID() == Intrinsic::fshr) - ShiftAmt = BitWidth - ShiftAmt; - - KnownBits Known3(Known); - computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); - computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q); - - Known.Zero = - Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); - Known.One = - Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); - break; - } - case Intrinsic::x86_sse42_crc32_64_64: - Known.Zero.setBitsFrom(32); - break; - } - } - break; - case Instruction::ExtractElement: - // Look through extract element. At the moment we keep this simple and skip - // tracking the specific element. But at least we might find information - // valid for all elements of the vector (for example if vector is sign - // extended, shifted, etc). - computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); - break; - case Instruction::ExtractValue: - if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { - const ExtractValueInst *EVI = cast<ExtractValueInst>(I); - if (EVI->getNumIndices() != 1) break; - if (EVI->getIndices()[0] == 0) { - switch (II->getIntrinsicID()) { - default: break; - case Intrinsic::uadd_with_overflow: - case Intrinsic::sadd_with_overflow: - computeKnownBitsAddSub(true, II->getArgOperand(0), - II->getArgOperand(1), false, Known, Known2, - Depth, Q); - break; - case Intrinsic::usub_with_overflow: - case Intrinsic::ssub_with_overflow: - computeKnownBitsAddSub(false, II->getArgOperand(0), - II->getArgOperand(1), false, Known, Known2, - Depth, Q); - break; - case Intrinsic::umul_with_overflow: - case Intrinsic::smul_with_overflow: - computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, - Known, Known2, Depth, Q); - break; - } - } - } - } -} - -/// Determine which bits of V are known to be either zero or one and return -/// them. -KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { - KnownBits Known(getBitWidth(V->getType(), Q.DL)); - computeKnownBits(V, Known, Depth, Q); - return Known; -} - -/// Determine which bits of V are known to be either zero or one and return -/// them in the Known bit set. -/// -/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that -/// we cannot optimize based on the assumption that it is zero without changing -/// it to be an explicit zero. If we don't change it to zero, other code could -/// optimized based on the contradictory assumption that it is non-zero. -/// Because instcombine aggressively folds operations with undef args anyway, -/// this won't lose us code quality. -/// -/// This function is defined on values with integer type, values with pointer -/// type, and vectors of integers. In the case -/// where V is a vector, known zero, and known one values are the -/// same width as the vector element, and the bit is set only if it is true -/// for all of the elements in the vector. -void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, - const Query &Q) { - assert(V && "No Value?"); - assert(Depth <= MaxDepth && "Limit Search Depth"); - unsigned BitWidth = Known.getBitWidth(); - - assert((V->getType()->isIntOrIntVectorTy(BitWidth) || - V->getType()->isPtrOrPtrVectorTy()) && - "Not integer or pointer type!"); - - Type *ScalarTy = V->getType()->getScalarType(); - unsigned ExpectedWidth = ScalarTy->isPointerTy() ? - Q.DL.getIndexTypeSizeInBits(ScalarTy) : Q.DL.getTypeSizeInBits(ScalarTy); - assert(ExpectedWidth == BitWidth && "V and Known should have same BitWidth"); - (void)BitWidth; - (void)ExpectedWidth; - - const APInt *C; - if (match(V, m_APInt(C))) { - // We know all of the bits for a scalar constant or a splat vector constant! - Known.One = *C; - Known.Zero = ~Known.One; - return; - } - // Null and aggregate-zero are all-zeros. - if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { - Known.setAllZero(); - return; - } - // Handle a constant vector by taking the intersection of the known bits of - // each element. - if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { - // We know that CDS must be a vector of integers. Take the intersection of - // each element. - Known.Zero.setAllBits(); Known.One.setAllBits(); - for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { - APInt Elt = CDS->getElementAsAPInt(i); - Known.Zero &= ~Elt; - Known.One &= Elt; - } - return; - } - - if (const auto *CV = dyn_cast<ConstantVector>(V)) { - // We know that CV must be a vector of integers. Take the intersection of - // each element. - Known.Zero.setAllBits(); Known.One.setAllBits(); - for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { - Constant *Element = CV->getAggregateElement(i); - auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); - if (!ElementCI) { - Known.resetAll(); - return; - } - const APInt &Elt = ElementCI->getValue(); - Known.Zero &= ~Elt; - Known.One &= Elt; - } - return; - } - - // Start out not knowing anything. - Known.resetAll(); - - // We can't imply anything about undefs. - if (isa<UndefValue>(V)) - return; - - // There's no point in looking through other users of ConstantData for - // assumptions. Confirm that we've handled them all. - assert(!isa<ConstantData>(V) && "Unhandled constant data!"); - - // Limit search depth. - // All recursive calls that increase depth must come after this. - if (Depth == MaxDepth) - return; - - // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has - // the bits of its aliasee. - if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { - if (!GA->isInterposable()) - computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); - return; - } - - if (const Operator *I = dyn_cast<Operator>(V)) - computeKnownBitsFromOperator(I, Known, Depth, Q); - - // Aligned pointers have trailing zeros - refine Known.Zero set - if (V->getType()->isPointerTy()) { - unsigned Align = V->getPointerAlignment(Q.DL); - if (Align) - Known.Zero.setLowBits(countTrailingZeros(Align)); - } - - // computeKnownBitsFromAssume strictly refines Known. - // Therefore, we run them after computeKnownBitsFromOperator. - - // Check whether a nearby assume intrinsic can determine some known bits. - computeKnownBitsFromAssume(V, Known, Depth, Q); - - assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); -} - -/// Return true if the given value is known to have exactly one -/// bit set when defined. For vectors return true if every element is known to -/// be a power of two when defined. Supports values with integer or pointer -/// types and vectors of integers. -bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, - const Query &Q) { - assert(Depth <= MaxDepth && "Limit Search Depth"); - - // Attempt to match against constants. - if (OrZero && match(V, m_Power2OrZero())) - return true; - if (match(V, m_Power2())) - return true; - - // 1 << X is clearly a power of two if the one is not shifted off the end. If - // it is shifted off the end then the result is undefined. - if (match(V, m_Shl(m_One(), m_Value()))) - return true; - - // (signmask) >>l X is clearly a power of two if the one is not shifted off - // the bottom. If it is shifted off the bottom then the result is undefined. - if (match(V, m_LShr(m_SignMask(), m_Value()))) - return true; - - // The remaining tests are all recursive, so bail out if we hit the limit. - if (Depth++ == MaxDepth) - return false; - - Value *X = nullptr, *Y = nullptr; - // A shift left or a logical shift right of a power of two is a power of two - // or zero. - if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || - match(V, m_LShr(m_Value(X), m_Value())))) - return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); - - if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) - return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); - - if (const SelectInst *SI = dyn_cast<SelectInst>(V)) - return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && - isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); - - if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { - // A power of two and'd with anything is a power of two or zero. - if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || - isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) - return true; - // X & (-X) is always a power of two or zero. - if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) - return true; - return false; - } - - // Adding a power-of-two or zero to the same power-of-two or zero yields - // either the original power-of-two, a larger power-of-two or zero. - if (match(V, m_Add(m_Value(X), m_Value(Y)))) { - const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); - if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || - Q.IIQ.hasNoSignedWrap(VOBO)) { - if (match(X, m_And(m_Specific(Y), m_Value())) || - match(X, m_And(m_Value(), m_Specific(Y)))) - if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) - return true; - if (match(Y, m_And(m_Specific(X), m_Value())) || - match(Y, m_And(m_Value(), m_Specific(X)))) - if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) - return true; - - unsigned BitWidth = V->getType()->getScalarSizeInBits(); - KnownBits LHSBits(BitWidth); - computeKnownBits(X, LHSBits, Depth, Q); - - KnownBits RHSBits(BitWidth); - computeKnownBits(Y, RHSBits, Depth, Q); - // If i8 V is a power of two or zero: - // ZeroBits: 1 1 1 0 1 1 1 1 - // ~ZeroBits: 0 0 0 1 0 0 0 0 - if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) - // If OrZero isn't set, we cannot give back a zero result. - // Make sure either the LHS or RHS has a bit set. - if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) - return true; - } - } - - // An exact divide or right shift can only shift off zero bits, so the result - // is a power of two only if the first operand is a power of two and not - // copying a sign bit (sdiv int_min, 2). - if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || - match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { - return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, - Depth, Q); - } - - return false; -} - -/// Test whether a GEP's result is known to be non-null. -/// -/// Uses properties inherent in a GEP to try to determine whether it is known -/// to be non-null. -/// -/// Currently this routine does not support vector GEPs. -static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, - const Query &Q) { - const Function *F = nullptr; - if (const Instruction *I = dyn_cast<Instruction>(GEP)) - F = I->getFunction(); - - if (!GEP->isInBounds() || - NullPointerIsDefined(F, GEP->getPointerAddressSpace())) - return false; - - // FIXME: Support vector-GEPs. - assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); - - // If the base pointer is non-null, we cannot walk to a null address with an - // inbounds GEP in address space zero. - if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) - return true; - - // Walk the GEP operands and see if any operand introduces a non-zero offset. - // If so, then the GEP cannot produce a null pointer, as doing so would - // inherently violate the inbounds contract within address space zero. - for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); - GTI != GTE; ++GTI) { - // Struct types are easy -- they must always be indexed by a constant. - if (StructType *STy = GTI.getStructTypeOrNull()) { - ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); - unsigned ElementIdx = OpC->getZExtValue(); - const StructLayout *SL = Q.DL.getStructLayout(STy); - uint64_t ElementOffset = SL->getElementOffset(ElementIdx); - if (ElementOffset > 0) - return true; - continue; - } - - // If we have a zero-sized type, the index doesn't matter. Keep looping. - if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0) - continue; - - // Fast path the constant operand case both for efficiency and so we don't - // increment Depth when just zipping down an all-constant GEP. - if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { - if (!OpC->isZero()) - return true; - continue; - } - - // We post-increment Depth here because while isKnownNonZero increments it - // as well, when we pop back up that increment won't persist. We don't want - // to recurse 10k times just because we have 10k GEP operands. We don't - // bail completely out because we want to handle constant GEPs regardless - // of depth. - if (Depth++ >= MaxDepth) - continue; - - if (isKnownNonZero(GTI.getOperand(), Depth, Q)) - return true; - } - - return false; -} - -static bool isKnownNonNullFromDominatingCondition(const Value *V, - const Instruction *CtxI, - const DominatorTree *DT) { - assert(V->getType()->isPointerTy() && "V must be pointer type"); - assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull"); - - if (!CtxI || !DT) - return false; - - unsigned NumUsesExplored = 0; - for (auto *U : V->users()) { - // Avoid massive lists - if (NumUsesExplored >= DomConditionsMaxUses) - break; - NumUsesExplored++; - - // If the value is used as an argument to a call or invoke, then argument - // attributes may provide an answer about null-ness. - if (auto CS = ImmutableCallSite(U)) - if (auto *CalledFunc = CS.getCalledFunction()) - for (const Argument &Arg : CalledFunc->args()) - if (CS.getArgOperand(Arg.getArgNo()) == V && - Arg.hasNonNullAttr() && DT->dominates(CS.getInstruction(), CtxI)) - return true; - - // Consider only compare instructions uniquely controlling a branch - CmpInst::Predicate Pred; - if (!match(const_cast<User *>(U), - m_c_ICmp(Pred, m_Specific(V), m_Zero())) || - (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) - continue; - - SmallVector<const User *, 4> WorkList; - SmallPtrSet<const User *, 4> Visited; - for (auto *CmpU : U->users()) { - assert(WorkList.empty() && "Should be!"); - if (Visited.insert(CmpU).second) - WorkList.push_back(CmpU); - - while (!WorkList.empty()) { - auto *Curr = WorkList.pop_back_val(); - - // If a user is an AND, add all its users to the work list. We only - // propagate "pred != null" condition through AND because it is only - // correct to assume that all conditions of AND are met in true branch. - // TODO: Support similar logic of OR and EQ predicate? - if (Pred == ICmpInst::ICMP_NE) - if (auto *BO = dyn_cast<BinaryOperator>(Curr)) - if (BO->getOpcode() == Instruction::And) { - for (auto *BOU : BO->users()) - if (Visited.insert(BOU).second) - WorkList.push_back(BOU); - continue; - } - - if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { - assert(BI->isConditional() && "uses a comparison!"); - - BasicBlock *NonNullSuccessor = - BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); - BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); - if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) - return true; - } else if (Pred == ICmpInst::ICMP_NE && isGuard(Curr) && - DT->dominates(cast<Instruction>(Curr), CtxI)) { - return true; - } - } - } - } - - return false; -} - -/// Does the 'Range' metadata (which must be a valid MD_range operand list) -/// ensure that the value it's attached to is never Value? 'RangeType' is -/// is the type of the value described by the range. -static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { - const unsigned NumRanges = Ranges->getNumOperands() / 2; - assert(NumRanges >= 1); - for (unsigned i = 0; i < NumRanges; ++i) { - ConstantInt *Lower = - mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); - ConstantInt *Upper = - mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); - ConstantRange Range(Lower->getValue(), Upper->getValue()); - if (Range.contains(Value)) - return false; - } - return true; -} - -/// Return true if the given value is known to be non-zero when defined. For -/// vectors, return true if every element is known to be non-zero when -/// defined. For pointers, if the context instruction and dominator tree are -/// specified, perform context-sensitive analysis and return true if the -/// pointer couldn't possibly be null at the specified instruction. -/// Supports values with integer or pointer type and vectors of integers. -bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) { - if (auto *C = dyn_cast<Constant>(V)) { - if (C->isNullValue()) - return false; - if (isa<ConstantInt>(C)) - // Must be non-zero due to null test above. - return true; - - // For constant vectors, check that all elements are undefined or known - // non-zero to determine that the whole vector is known non-zero. - if (auto *VecTy = dyn_cast<VectorType>(C->getType())) { - for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { - Constant *Elt = C->getAggregateElement(i); - if (!Elt || Elt->isNullValue()) - return false; - if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) - return false; - } - return true; - } - - // A global variable in address space 0 is non null unless extern weak - // or an absolute symbol reference. Other address spaces may have null as a - // valid address for a global, so we can't assume anything. - if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { - if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && - GV->getType()->getAddressSpace() == 0) - return true; - } else - return false; - } - - if (auto *I = dyn_cast<Instruction>(V)) { - if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { - // If the possible ranges don't contain zero, then the value is - // definitely non-zero. - if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { - const APInt ZeroValue(Ty->getBitWidth(), 0); - if (rangeMetadataExcludesValue(Ranges, ZeroValue)) - return true; - } - } - } - - // Some of the tests below are recursive, so bail out if we hit the limit. - if (Depth++ >= MaxDepth) - return false; - - // Check for pointer simplifications. - if (V->getType()->isPointerTy()) { - // Alloca never returns null, malloc might. - if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) - return true; - - // A byval, inalloca, or nonnull argument is never null. - if (const Argument *A = dyn_cast<Argument>(V)) - if (A->hasByValOrInAllocaAttr() || A->hasNonNullAttr()) - return true; - - // A Load tagged with nonnull metadata is never null. - if (const LoadInst *LI = dyn_cast<LoadInst>(V)) - if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) - return true; - - if (const auto *Call = dyn_cast<CallBase>(V)) { - if (Call->isReturnNonNull()) - return true; - if (const auto *RP = getArgumentAliasingToReturnedPointer(Call)) - return isKnownNonZero(RP, Depth, Q); - } - } - - - // Check for recursive pointer simplifications. - if (V->getType()->isPointerTy()) { - if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) - return true; - - if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) - if (isGEPKnownNonNull(GEP, Depth, Q)) - return true; - } - - unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); - - // X | Y != 0 if X != 0 or Y != 0. - Value *X = nullptr, *Y = nullptr; - if (match(V, m_Or(m_Value(X), m_Value(Y)))) - return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q); - - // ext X != 0 if X != 0. - if (isa<SExtInst>(V) || isa<ZExtInst>(V)) - return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); - - // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined - // if the lowest bit is shifted off the end. - if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { - // shl nuw can't remove any non-zero bits. - const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); - if (Q.IIQ.hasNoUnsignedWrap(BO)) - return isKnownNonZero(X, Depth, Q); - - KnownBits Known(BitWidth); - computeKnownBits(X, Known, Depth, Q); - if (Known.One[0]) - return true; - } - // shr X, Y != 0 if X is negative. Note that the value of the shift is not - // defined if the sign bit is shifted off the end. - else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { - // shr exact can only shift out zero bits. - const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); - if (BO->isExact()) - return isKnownNonZero(X, Depth, Q); - - KnownBits Known = computeKnownBits(X, Depth, Q); - if (Known.isNegative()) - return true; - - // If the shifter operand is a constant, and all of the bits shifted - // out are known to be zero, and X is known non-zero then at least one - // non-zero bit must remain. - if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { - auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); - // Is there a known one in the portion not shifted out? - if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) - return true; - // Are all the bits to be shifted out known zero? - if (Known.countMinTrailingZeros() >= ShiftVal) - return isKnownNonZero(X, Depth, Q); - } - } - // div exact can only produce a zero if the dividend is zero. - else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { - return isKnownNonZero(X, Depth, Q); - } - // X + Y. - else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { - KnownBits XKnown = computeKnownBits(X, Depth, Q); - KnownBits YKnown = computeKnownBits(Y, Depth, Q); - - // If X and Y are both non-negative (as signed values) then their sum is not - // zero unless both X and Y are zero. - if (XKnown.isNonNegative() && YKnown.isNonNegative()) - if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q)) - return true; - - // If X and Y are both negative (as signed values) then their sum is not - // zero unless both X and Y equal INT_MIN. - if (XKnown.isNegative() && YKnown.isNegative()) { - APInt Mask = APInt::getSignedMaxValue(BitWidth); - // The sign bit of X is set. If some other bit is set then X is not equal - // to INT_MIN. - if (XKnown.One.intersects(Mask)) - return true; - // The sign bit of Y is set. If some other bit is set then Y is not equal - // to INT_MIN. - if (YKnown.One.intersects(Mask)) - return true; - } - - // The sum of a non-negative number and a power of two is not zero. - if (XKnown.isNonNegative() && - isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) - return true; - if (YKnown.isNonNegative() && - isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) - return true; - } - // X * Y. - else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { - const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); - // If X and Y are non-zero then so is X * Y as long as the multiplication - // does not overflow. - if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && - isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q)) - return true; - } - // (C ? X : Y) != 0 if X != 0 and Y != 0. - else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { - if (isKnownNonZero(SI->getTrueValue(), Depth, Q) && - isKnownNonZero(SI->getFalseValue(), Depth, Q)) - return true; - } - // PHI - else if (const PHINode *PN = dyn_cast<PHINode>(V)) { - // Try and detect a recurrence that monotonically increases from a - // starting value, as these are common as induction variables. - if (PN->getNumIncomingValues() == 2) { - Value *Start = PN->getIncomingValue(0); - Value *Induction = PN->getIncomingValue(1); - if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) - std::swap(Start, Induction); - if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { - if (!C->isZero() && !C->isNegative()) { - ConstantInt *X; - if (Q.IIQ.UseInstrInfo && - (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || - match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && - !X->isNegative()) - return true; - } - } - } - // Check if all incoming values are non-zero constant. - bool AllNonZeroConstants = llvm::all_of(PN->operands(), [](Value *V) { - return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZero(); - }); - if (AllNonZeroConstants) - return true; - } - - KnownBits Known(BitWidth); - computeKnownBits(V, Known, Depth, Q); - return Known.One != 0; -} - -/// Return true if V2 == V1 + X, where X is known non-zero. -static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { - const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); - if (!BO || BO->getOpcode() != Instruction::Add) - return false; - Value *Op = nullptr; - if (V2 == BO->getOperand(0)) - Op = BO->getOperand(1); - else if (V2 == BO->getOperand(1)) - Op = BO->getOperand(0); - else - return false; - return isKnownNonZero(Op, 0, Q); -} - -/// Return true if it is known that V1 != V2. -static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { - if (V1 == V2) - return false; - if (V1->getType() != V2->getType()) - // We can't look through casts yet. - return false; - if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) - return true; - - if (V1->getType()->isIntOrIntVectorTy()) { - // Are any known bits in V1 contradictory to known bits in V2? If V1 - // has a known zero where V2 has a known one, they must not be equal. - KnownBits Known1 = computeKnownBits(V1, 0, Q); - KnownBits Known2 = computeKnownBits(V2, 0, Q); - - if (Known1.Zero.intersects(Known2.One) || - Known2.Zero.intersects(Known1.One)) - return true; - } - return false; -} - -/// Return true if 'V & Mask' is known to be zero. We use this predicate to -/// simplify operations downstream. Mask is known to be zero for bits that V -/// cannot have. -/// -/// This function is defined on values with integer type, values with pointer -/// type, and vectors of integers. In the case -/// where V is a vector, the mask, known zero, and known one values are the -/// same width as the vector element, and the bit is set only if it is true -/// for all of the elements in the vector. -bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, - const Query &Q) { - KnownBits Known(Mask.getBitWidth()); - computeKnownBits(V, Known, Depth, Q); - return Mask.isSubsetOf(Known.Zero); -} - -// Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). -// Returns the input and lower/upper bounds. -static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, - const APInt *&CLow, const APInt *&CHigh) { - assert(isa<Operator>(Select) && - cast<Operator>(Select)->getOpcode() == Instruction::Select && - "Input should be a Select!"); - - const Value *LHS, *RHS, *LHS2, *RHS2; - SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; - if (SPF != SPF_SMAX && SPF != SPF_SMIN) - return false; - - if (!match(RHS, m_APInt(CLow))) - return false; - - SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; - if (getInverseMinMaxFlavor(SPF) != SPF2) - return false; - - if (!match(RHS2, m_APInt(CHigh))) - return false; - - if (SPF == SPF_SMIN) - std::swap(CLow, CHigh); - - In = LHS2; - return CLow->sle(*CHigh); -} - -/// For vector constants, loop over the elements and find the constant with the -/// minimum number of sign bits. Return 0 if the value is not a vector constant -/// or if any element was not analyzed; otherwise, return the count for the -/// element with the minimum number of sign bits. -static unsigned computeNumSignBitsVectorConstant(const Value *V, - unsigned TyBits) { - const auto *CV = dyn_cast<Constant>(V); - if (!CV || !CV->getType()->isVectorTy()) - return 0; - - unsigned MinSignBits = TyBits; - unsigned NumElts = CV->getType()->getVectorNumElements(); - for (unsigned i = 0; i != NumElts; ++i) { - // If we find a non-ConstantInt, bail out. - auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); - if (!Elt) - return 0; - - MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); - } - - return MinSignBits; -} - -static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth, - const Query &Q); - -static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, - const Query &Q) { - unsigned Result = ComputeNumSignBitsImpl(V, Depth, Q); - assert(Result > 0 && "At least one sign bit needs to be present!"); - return Result; -} - -/// Return the number of times the sign bit of the register is replicated into -/// the other bits. We know that at least 1 bit is always equal to the sign bit -/// (itself), but other cases can give us information. For example, immediately -/// after an "ashr X, 2", we know that the top 3 bits are all equal to each -/// other, so we return 3. For vectors, return the number of sign bits for the -/// vector element with the minimum number of known sign bits. -static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth, - const Query &Q) { - assert(Depth <= MaxDepth && "Limit Search Depth"); - - // We return the minimum number of sign bits that are guaranteed to be present - // in V, so for undef we have to conservatively return 1. We don't have the - // same behavior for poison though -- that's a FIXME today. - - Type *ScalarTy = V->getType()->getScalarType(); - unsigned TyBits = ScalarTy->isPointerTy() ? - Q.DL.getIndexTypeSizeInBits(ScalarTy) : - Q.DL.getTypeSizeInBits(ScalarTy); - - unsigned Tmp, Tmp2; - unsigned FirstAnswer = 1; - - // Note that ConstantInt is handled by the general computeKnownBits case - // below. - - if (Depth == MaxDepth) - return 1; // Limit search depth. - - const Operator *U = dyn_cast<Operator>(V); - switch (Operator::getOpcode(V)) { - default: break; - case Instruction::SExt: - Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); - return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; - - case Instruction::SDiv: { - const APInt *Denominator; - // sdiv X, C -> adds log(C) sign bits. - if (match(U->getOperand(1), m_APInt(Denominator))) { - - // Ignore non-positive denominator. - if (!Denominator->isStrictlyPositive()) - break; - - // Calculate the incoming numerator bits. - unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); - - // Add floor(log(C)) bits to the numerator bits. - return std::min(TyBits, NumBits + Denominator->logBase2()); - } - break; - } - - case Instruction::SRem: { - const APInt *Denominator; - // srem X, C -> we know that the result is within [-C+1,C) when C is a - // positive constant. This let us put a lower bound on the number of sign - // bits. - if (match(U->getOperand(1), m_APInt(Denominator))) { - - // Ignore non-positive denominator. - if (!Denominator->isStrictlyPositive()) - break; - - // Calculate the incoming numerator bits. SRem by a positive constant - // can't lower the number of sign bits. - unsigned NumrBits = - ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); - - // Calculate the leading sign bit constraints by examining the - // denominator. Given that the denominator is positive, there are two - // cases: - // - // 1. the numerator is positive. The result range is [0,C) and [0,C) u< - // (1 << ceilLogBase2(C)). - // - // 2. the numerator is negative. Then the result range is (-C,0] and - // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). - // - // Thus a lower bound on the number of sign bits is `TyBits - - // ceilLogBase2(C)`. - - unsigned ResBits = TyBits - Denominator->ceilLogBase2(); - return std::max(NumrBits, ResBits); - } - break; - } - - case Instruction::AShr: { - Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); - // ashr X, C -> adds C sign bits. Vectors too. - const APInt *ShAmt; - if (match(U->getOperand(1), m_APInt(ShAmt))) { - if (ShAmt->uge(TyBits)) - break; // Bad shift. - unsigned ShAmtLimited = ShAmt->getZExtValue(); - Tmp += ShAmtLimited; - if (Tmp > TyBits) Tmp = TyBits; - } - return Tmp; - } - case Instruction::Shl: { - const APInt *ShAmt; - if (match(U->getOperand(1), m_APInt(ShAmt))) { - // shl destroys sign bits. - Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); - if (ShAmt->uge(TyBits) || // Bad shift. - ShAmt->uge(Tmp)) break; // Shifted all sign bits out. - Tmp2 = ShAmt->getZExtValue(); - return Tmp - Tmp2; - } - break; - } - case Instruction::And: - case Instruction::Or: - case Instruction::Xor: // NOT is handled here. - // Logical binary ops preserve the number of sign bits at the worst. - Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); - if (Tmp != 1) { - Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); - FirstAnswer = std::min(Tmp, Tmp2); - // We computed what we know about the sign bits as our first - // answer. Now proceed to the generic code that uses - // computeKnownBits, and pick whichever answer is better. - } - break; - - case Instruction::Select: { - // If we have a clamp pattern, we know that the number of sign bits will be - // the minimum of the clamp min/max range. - const Value *X; - const APInt *CLow, *CHigh; - if (isSignedMinMaxClamp(U, X, CLow, CHigh)) - return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); - - Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); - if (Tmp == 1) break; - Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); - return std::min(Tmp, Tmp2); - } - - case Instruction::Add: - // Add can have at most one carry bit. Thus we know that the output - // is, at worst, one more bit than the inputs. - Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); - if (Tmp == 1) break; - - // Special case decrementing a value (ADD X, -1): - if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) - if (CRHS->isAllOnesValue()) { - KnownBits Known(TyBits); - computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); - - // If the input is known to be 0 or 1, the output is 0/-1, which is all - // sign bits set. - if ((Known.Zero | 1).isAllOnesValue()) - return TyBits; - - // If we are subtracting one from a positive number, there is no carry - // out of the result. - if (Known.isNonNegative()) - return Tmp; - } - - Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); - if (Tmp2 == 1) break; - return std::min(Tmp, Tmp2)-1; - - case Instruction::Sub: - Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); - if (Tmp2 == 1) break; - - // Handle NEG. - if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) - if (CLHS->isNullValue()) { - KnownBits Known(TyBits); - computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); - // If the input is known to be 0 or 1, the output is 0/-1, which is all - // sign bits set. - if ((Known.Zero | 1).isAllOnesValue()) - return TyBits; - - // If the input is known to be positive (the sign bit is known clear), - // the output of the NEG has the same number of sign bits as the input. - if (Known.isNonNegative()) - return Tmp2; - - // Otherwise, we treat this like a SUB. - } - - // Sub can have at most one carry bit. Thus we know that the output - // is, at worst, one more bit than the inputs. - Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); - if (Tmp == 1) break; - return std::min(Tmp, Tmp2)-1; - - case Instruction::Mul: { - // The output of the Mul can be at most twice the valid bits in the inputs. - unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); - if (SignBitsOp0 == 1) break; - unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); - if (SignBitsOp1 == 1) break; - unsigned OutValidBits = - (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); - return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; - } - - case Instruction::PHI: { - const PHINode *PN = cast<PHINode>(U); - unsigned NumIncomingValues = PN->getNumIncomingValues(); - // Don't analyze large in-degree PHIs. - if (NumIncomingValues > 4) break; - // Unreachable blocks may have zero-operand PHI nodes. - if (NumIncomingValues == 0) break; - - // Take the minimum of all incoming values. This can't infinitely loop - // because of our depth threshold. - Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q); - for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { - if (Tmp == 1) return Tmp; - Tmp = std::min( - Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q)); - } - return Tmp; - } - - case Instruction::Trunc: - // FIXME: it's tricky to do anything useful for this, but it is an important - // case for targets like X86. - break; - - case Instruction::ExtractElement: - // Look through extract element. At the moment we keep this simple and skip - // tracking the specific element. But at least we might find information - // valid for all elements of the vector (for example if vector is sign - // extended, shifted, etc). - return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); - - case Instruction::ShuffleVector: { - // TODO: This is copied almost directly from the SelectionDAG version of - // ComputeNumSignBits. It would be better if we could share common - // code. If not, make sure that changes are translated to the DAG. - - // Collect the minimum number of sign bits that are shared by every vector - // element referenced by the shuffle. - auto *Shuf = cast<ShuffleVectorInst>(U); - int NumElts = Shuf->getOperand(0)->getType()->getVectorNumElements(); - int NumMaskElts = Shuf->getMask()->getType()->getVectorNumElements(); - APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); - for (int i = 0; i != NumMaskElts; ++i) { - int M = Shuf->getMaskValue(i); - assert(M < NumElts * 2 && "Invalid shuffle mask constant"); - // For undef elements, we don't know anything about the common state of - // the shuffle result. - if (M == -1) - return 1; - if (M < NumElts) - DemandedLHS.setBit(M % NumElts); - else - DemandedRHS.setBit(M % NumElts); - } - Tmp = std::numeric_limits<unsigned>::max(); - if (!!DemandedLHS) - Tmp = ComputeNumSignBits(Shuf->getOperand(0), Depth + 1, Q); - if (!!DemandedRHS) { - Tmp2 = ComputeNumSignBits(Shuf->getOperand(1), Depth + 1, Q); - Tmp = std::min(Tmp, Tmp2); - } - // If we don't know anything, early out and try computeKnownBits fall-back. - if (Tmp == 1) - break; - assert(Tmp <= V->getType()->getScalarSizeInBits() && - "Failed to determine minimum sign bits"); - return Tmp; - } - } - - // Finally, if we can prove that the top bits of the result are 0's or 1's, - // use this information. - - // If we can examine all elements of a vector constant successfully, we're - // done (we can't do any better than that). If not, keep trying. - if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits)) - return VecSignBits; - - KnownBits Known(TyBits); - computeKnownBits(V, Known, Depth, Q); - - // If we know that the sign bit is either zero or one, determine the number of - // identical bits in the top of the input value. - return std::max(FirstAnswer, Known.countMinSignBits()); -} - -/// This function computes the integer multiple of Base that equals V. -/// If successful, it returns true and returns the multiple in -/// Multiple. If unsuccessful, it returns false. It looks -/// through SExt instructions only if LookThroughSExt is true. -bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, - bool LookThroughSExt, unsigned Depth) { - const unsigned MaxDepth = 6; - - assert(V && "No Value?"); - assert(Depth <= MaxDepth && "Limit Search Depth"); - assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); - - Type *T = V->getType(); - - ConstantInt *CI = dyn_cast<ConstantInt>(V); - - if (Base == 0) - return false; - - if (Base == 1) { - Multiple = V; - return true; - } - - ConstantExpr *CO = dyn_cast<ConstantExpr>(V); - Constant *BaseVal = ConstantInt::get(T, Base); - if (CO && CO == BaseVal) { - // Multiple is 1. - Multiple = ConstantInt::get(T, 1); - return true; - } - - if (CI && CI->getZExtValue() % Base == 0) { - Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); - return true; - } - - if (Depth == MaxDepth) return false; // Limit search depth. - - Operator *I = dyn_cast<Operator>(V); - if (!I) return false; - - switch (I->getOpcode()) { - default: break; - case Instruction::SExt: - if (!LookThroughSExt) return false; - // otherwise fall through to ZExt - LLVM_FALLTHROUGH; - case Instruction::ZExt: - return ComputeMultiple(I->getOperand(0), Base, Multiple, - LookThroughSExt, Depth+1); - case Instruction::Shl: - case Instruction::Mul: { - Value *Op0 = I->getOperand(0); - Value *Op1 = I->getOperand(1); - - if (I->getOpcode() == Instruction::Shl) { - ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); - if (!Op1CI) return false; - // Turn Op0 << Op1 into Op0 * 2^Op1 - APInt Op1Int = Op1CI->getValue(); - uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); - APInt API(Op1Int.getBitWidth(), 0); - API.setBit(BitToSet); - Op1 = ConstantInt::get(V->getContext(), API); - } - - Value *Mul0 = nullptr; - if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { - if (Constant *Op1C = dyn_cast<Constant>(Op1)) - if (Constant *MulC = dyn_cast<Constant>(Mul0)) { - if (Op1C->getType()->getPrimitiveSizeInBits() < - MulC->getType()->getPrimitiveSizeInBits()) - Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); - if (Op1C->getType()->getPrimitiveSizeInBits() > - MulC->getType()->getPrimitiveSizeInBits()) - MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); - - // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) - Multiple = ConstantExpr::getMul(MulC, Op1C); - return true; - } - - if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) - if (Mul0CI->getValue() == 1) { - // V == Base * Op1, so return Op1 - Multiple = Op1; - return true; - } - } - - Value *Mul1 = nullptr; - if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { - if (Constant *Op0C = dyn_cast<Constant>(Op0)) - if (Constant *MulC = dyn_cast<Constant>(Mul1)) { - if (Op0C->getType()->getPrimitiveSizeInBits() < - MulC->getType()->getPrimitiveSizeInBits()) - Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); - if (Op0C->getType()->getPrimitiveSizeInBits() > - MulC->getType()->getPrimitiveSizeInBits()) - MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); - - // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) - Multiple = ConstantExpr::getMul(MulC, Op0C); - return true; - } - - if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) - if (Mul1CI->getValue() == 1) { - // V == Base * Op0, so return Op0 - Multiple = Op0; - return true; - } - } - } - } - - // We could not determine if V is a multiple of Base. - return false; -} - -Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS, - const TargetLibraryInfo *TLI) { - const Function *F = ICS.getCalledFunction(); - if (!F) - return Intrinsic::not_intrinsic; - - if (F->isIntrinsic()) - return F->getIntrinsicID(); - - if (!TLI) - return Intrinsic::not_intrinsic; - - LibFunc Func; - // We're going to make assumptions on the semantics of the functions, check - // that the target knows that it's available in this environment and it does - // not have local linkage. - if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func)) - return Intrinsic::not_intrinsic; - - if (!ICS.onlyReadsMemory()) - return Intrinsic::not_intrinsic; - - // Otherwise check if we have a call to a function that can be turned into a - // vector intrinsic. - switch (Func) { - default: - break; - case LibFunc_sin: - case LibFunc_sinf: - case LibFunc_sinl: - return Intrinsic::sin; - case LibFunc_cos: - case LibFunc_cosf: - case LibFunc_cosl: - return Intrinsic::cos; - case LibFunc_exp: - case LibFunc_expf: - case LibFunc_expl: - return Intrinsic::exp; - case LibFunc_exp2: - case LibFunc_exp2f: - case LibFunc_exp2l: - return Intrinsic::exp2; - case LibFunc_log: - case LibFunc_logf: - case LibFunc_logl: - return Intrinsic::log; - case LibFunc_log10: - case LibFunc_log10f: - case LibFunc_log10l: - return Intrinsic::log10; - case LibFunc_log2: - case LibFunc_log2f: - case LibFunc_log2l: - return Intrinsic::log2; - case LibFunc_fabs: - case LibFunc_fabsf: - case LibFunc_fabsl: - return Intrinsic::fabs; - case LibFunc_fmin: - case LibFunc_fminf: - case LibFunc_fminl: - return Intrinsic::minnum; - case LibFunc_fmax: - case LibFunc_fmaxf: - case LibFunc_fmaxl: - return Intrinsic::maxnum; - case LibFunc_copysign: - case LibFunc_copysignf: - case LibFunc_copysignl: - return Intrinsic::copysign; - case LibFunc_floor: - case LibFunc_floorf: - case LibFunc_floorl: - return Intrinsic::floor; - case LibFunc_ceil: - case LibFunc_ceilf: - case LibFunc_ceill: - return Intrinsic::ceil; - case LibFunc_trunc: - case LibFunc_truncf: - case LibFunc_truncl: - return Intrinsic::trunc; - case LibFunc_rint: - case LibFunc_rintf: - case LibFunc_rintl: - return Intrinsic::rint; - case LibFunc_nearbyint: - case LibFunc_nearbyintf: - case LibFunc_nearbyintl: - return Intrinsic::nearbyint; - case LibFunc_round: - case LibFunc_roundf: - case LibFunc_roundl: - return Intrinsic::round; - case LibFunc_pow: - case LibFunc_powf: - case LibFunc_powl: - return Intrinsic::pow; - case LibFunc_sqrt: - case LibFunc_sqrtf: - case LibFunc_sqrtl: - return Intrinsic::sqrt; - } - - return Intrinsic::not_intrinsic; -} - -/// Return true if we can prove that the specified FP value is never equal to -/// -0.0. -/// -/// NOTE: this function will need to be revisited when we support non-default -/// rounding modes! -bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, - unsigned Depth) { - if (auto *CFP = dyn_cast<ConstantFP>(V)) - return !CFP->getValueAPF().isNegZero(); - - // Limit search depth. - if (Depth == MaxDepth) - return false; - - auto *Op = dyn_cast<Operator>(V); - if (!Op) - return false; - - // Check if the nsz fast-math flag is set. - if (auto *FPO = dyn_cast<FPMathOperator>(Op)) - if (FPO->hasNoSignedZeros()) - return true; - - // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. - if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) - return true; - - // sitofp and uitofp turn into +0.0 for zero. - if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) - return true; - - if (auto *Call = dyn_cast<CallInst>(Op)) { - Intrinsic::ID IID = getIntrinsicForCallSite(Call, TLI); - switch (IID) { - default: - break; - // sqrt(-0.0) = -0.0, no other negative results are possible. - case Intrinsic::sqrt: - case Intrinsic::canonicalize: - return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); - // fabs(x) != -0.0 - case Intrinsic::fabs: - return true; - } - } - - return false; -} - -/// If \p SignBitOnly is true, test for a known 0 sign bit rather than a -/// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign -/// bit despite comparing equal. -static bool cannotBeOrderedLessThanZeroImpl(const Value *V, - const TargetLibraryInfo *TLI, - bool SignBitOnly, - unsigned Depth) { - // TODO: This function does not do the right thing when SignBitOnly is true - // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform - // which flips the sign bits of NaNs. See - // https://llvm.org/bugs/show_bug.cgi?id=31702. - - if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { - return !CFP->getValueAPF().isNegative() || - (!SignBitOnly && CFP->getValueAPF().isZero()); - } - - // Handle vector of constants. - if (auto *CV = dyn_cast<Constant>(V)) { - if (CV->getType()->isVectorTy()) { - unsigned NumElts = CV->getType()->getVectorNumElements(); - for (unsigned i = 0; i != NumElts; ++i) { - auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); - if (!CFP) - return false; - if (CFP->getValueAPF().isNegative() && - (SignBitOnly || !CFP->getValueAPF().isZero())) - return false; - } - - // All non-negative ConstantFPs. - return true; - } - } - - if (Depth == MaxDepth) - return false; // Limit search depth. - - const Operator *I = dyn_cast<Operator>(V); - if (!I) - return false; - - switch (I->getOpcode()) { - default: - break; - // Unsigned integers are always nonnegative. - case Instruction::UIToFP: - return true; - case Instruction::FMul: - // x*x is always non-negative or a NaN. - if (I->getOperand(0) == I->getOperand(1) && - (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) - return true; - - LLVM_FALLTHROUGH; - case Instruction::FAdd: - case Instruction::FDiv: - case Instruction::FRem: - return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, - Depth + 1) && - cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, - Depth + 1); - case Instruction::Select: - return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, - Depth + 1) && - cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, - Depth + 1); - case Instruction::FPExt: - case Instruction::FPTrunc: - // Widening/narrowing never change sign. - return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, - Depth + 1); - case Instruction::ExtractElement: - // Look through extract element. At the moment we keep this simple and skip - // tracking the specific element. But at least we might find information - // valid for all elements of the vector. - return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, - Depth + 1); - case Instruction::Call: - const auto *CI = cast<CallInst>(I); - Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI); - switch (IID) { - default: - break; - case Intrinsic::maxnum: - return (isKnownNeverNaN(I->getOperand(0), TLI) && - cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, - SignBitOnly, Depth + 1)) || - (isKnownNeverNaN(I->getOperand(1), TLI) && - cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, - SignBitOnly, Depth + 1)); - - case Intrinsic::maximum: - return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, - Depth + 1) || - cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, - Depth + 1); - case Intrinsic::minnum: - case Intrinsic::minimum: - return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, - Depth + 1) && - cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, - Depth + 1); - case Intrinsic::exp: - case Intrinsic::exp2: - case Intrinsic::fabs: - return true; - - case Intrinsic::sqrt: - // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. - if (!SignBitOnly) - return true; - return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || - CannotBeNegativeZero(CI->getOperand(0), TLI)); - - case Intrinsic::powi: - if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { - // powi(x,n) is non-negative if n is even. - if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) - return true; - } - // TODO: This is not correct. Given that exp is an integer, here are the - // ways that pow can return a negative value: - // - // pow(x, exp) --> negative if exp is odd and x is negative. - // pow(-0, exp) --> -inf if exp is negative odd. - // pow(-0, exp) --> -0 if exp is positive odd. - // pow(-inf, exp) --> -0 if exp is negative odd. - // pow(-inf, exp) --> -inf if exp is positive odd. - // - // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, - // but we must return false if x == -0. Unfortunately we do not currently - // have a way of expressing this constraint. See details in - // https://llvm.org/bugs/show_bug.cgi?id=31702. - return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, - Depth + 1); - - case Intrinsic::fma: - case Intrinsic::fmuladd: - // x*x+y is non-negative if y is non-negative. - return I->getOperand(0) == I->getOperand(1) && - (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && - cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, - Depth + 1); - } - break; - } - return false; -} - -bool llvm::CannotBeOrderedLessThanZero(const Value *V, - const TargetLibraryInfo *TLI) { - return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); -} - -bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { - return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); -} - -bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, - unsigned Depth) { - assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); - - // If we're told that NaNs won't happen, assume they won't. - if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) - if (FPMathOp->hasNoNaNs()) - return true; - - // Handle scalar constants. - if (auto *CFP = dyn_cast<ConstantFP>(V)) - return !CFP->isNaN(); - - if (Depth == MaxDepth) - return false; - - if (auto *Inst = dyn_cast<Instruction>(V)) { - switch (Inst->getOpcode()) { - case Instruction::FAdd: - case Instruction::FMul: - case Instruction::FSub: - case Instruction::FDiv: - case Instruction::FRem: { - // TODO: Need isKnownNeverInfinity - return false; - } - case Instruction::Select: { - return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && - isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); - } - case Instruction::SIToFP: - case Instruction::UIToFP: - return true; - case Instruction::FPTrunc: - case Instruction::FPExt: - return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); - default: - break; - } - } - - if (const auto *II = dyn_cast<IntrinsicInst>(V)) { - switch (II->getIntrinsicID()) { - case Intrinsic::canonicalize: - case Intrinsic::fabs: - case Intrinsic::copysign: - case Intrinsic::exp: - case Intrinsic::exp2: - case Intrinsic::floor: - case Intrinsic::ceil: - case Intrinsic::trunc: - case Intrinsic::rint: - case Intrinsic::nearbyint: - case Intrinsic::round: - return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); - case Intrinsic::sqrt: - return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && - CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); - default: - return false; - } - } - - // Bail out for constant expressions, but try to handle vector constants. - if (!V->getType()->isVectorTy() || !isa<Constant>(V)) - return false; - - // For vectors, verify that each element is not NaN. - unsigned NumElts = V->getType()->getVectorNumElements(); - for (unsigned i = 0; i != NumElts; ++i) { - Constant *Elt = cast<Constant>(V)->getAggregateElement(i); - if (!Elt) - return false; - if (isa<UndefValue>(Elt)) - continue; - auto *CElt = dyn_cast<ConstantFP>(Elt); - if (!CElt || CElt->isNaN()) - return false; - } - // All elements were confirmed not-NaN or undefined. - return true; -} - -Value *llvm::isBytewiseValue(Value *V) { - - // All byte-wide stores are splatable, even of arbitrary variables. - if (V->getType()->isIntegerTy(8)) - return V; - - LLVMContext &Ctx = V->getContext(); - - // Undef don't care. - auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); - if (isa<UndefValue>(V)) - return UndefInt8; - - Constant *C = dyn_cast<Constant>(V); - if (!C) { - // Conceptually, we could handle things like: - // %a = zext i8 %X to i16 - // %b = shl i16 %a, 8 - // %c = or i16 %a, %b - // but until there is an example that actually needs this, it doesn't seem - // worth worrying about. - return nullptr; - } - - // Handle 'null' ConstantArrayZero etc. - if (C->isNullValue()) - return Constant::getNullValue(Type::getInt8Ty(Ctx)); - - // Constant floating-point values can be handled as integer values if the - // corresponding integer value is "byteable". An important case is 0.0. - if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { - Type *Ty = nullptr; - if (CFP->getType()->isHalfTy()) - Ty = Type::getInt16Ty(Ctx); - else if (CFP->getType()->isFloatTy()) - Ty = Type::getInt32Ty(Ctx); - else if (CFP->getType()->isDoubleTy()) - Ty = Type::getInt64Ty(Ctx); - // Don't handle long double formats, which have strange constraints. - return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty)) : nullptr; - } - - // We can handle constant integers that are multiple of 8 bits. - if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { - if (CI->getBitWidth() % 8 == 0) { - assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); - if (!CI->getValue().isSplat(8)) - return nullptr; - return ConstantInt::get(Ctx, CI->getValue().trunc(8)); - } - } - - auto Merge = [&](Value *LHS, Value *RHS) -> Value * { - if (LHS == RHS) - return LHS; - if (!LHS || !RHS) - return nullptr; - if (LHS == UndefInt8) - return RHS; - if (RHS == UndefInt8) - return LHS; - return nullptr; - }; - - if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) { - Value *Val = UndefInt8; - for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) - if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I))))) - return nullptr; - return Val; - } - - if (isa<ConstantVector>(C)) { - Constant *Splat = cast<ConstantVector>(C)->getSplatValue(); - return Splat ? isBytewiseValue(Splat) : nullptr; - } - - if (isa<ConstantArray>(C) || isa<ConstantStruct>(C)) { - Value *Val = UndefInt8; - for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) - if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I))))) - return nullptr; - return Val; - } - - // Don't try to handle the handful of other constants. - return nullptr; -} - -// This is the recursive version of BuildSubAggregate. It takes a few different -// arguments. Idxs is the index within the nested struct From that we are -// looking at now (which is of type IndexedType). IdxSkip is the number of -// indices from Idxs that should be left out when inserting into the resulting -// struct. To is the result struct built so far, new insertvalue instructions -// build on that. -static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, - SmallVectorImpl<unsigned> &Idxs, - unsigned IdxSkip, - Instruction *InsertBefore) { - StructType *STy = dyn_cast<StructType>(IndexedType); - if (STy) { - // Save the original To argument so we can modify it - Value *OrigTo = To; - // General case, the type indexed by Idxs is a struct - for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { - // Process each struct element recursively - Idxs.push_back(i); - Value *PrevTo = To; - To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, - InsertBefore); - Idxs.pop_back(); - if (!To) { - // Couldn't find any inserted value for this index? Cleanup - while (PrevTo != OrigTo) { - InsertValueInst* Del = cast<InsertValueInst>(PrevTo); - PrevTo = Del->getAggregateOperand(); - Del->eraseFromParent(); - } - // Stop processing elements - break; - } - } - // If we successfully found a value for each of our subaggregates - if (To) - return To; - } - // Base case, the type indexed by SourceIdxs is not a struct, or not all of - // the struct's elements had a value that was inserted directly. In the latter - // case, perhaps we can't determine each of the subelements individually, but - // we might be able to find the complete struct somewhere. - - // Find the value that is at that particular spot - Value *V = FindInsertedValue(From, Idxs); - - if (!V) - return nullptr; - - // Insert the value in the new (sub) aggregate - return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), - "tmp", InsertBefore); -} - -// This helper takes a nested struct and extracts a part of it (which is again a -// struct) into a new value. For example, given the struct: -// { a, { b, { c, d }, e } } -// and the indices "1, 1" this returns -// { c, d }. -// -// It does this by inserting an insertvalue for each element in the resulting -// struct, as opposed to just inserting a single struct. This will only work if -// each of the elements of the substruct are known (ie, inserted into From by an -// insertvalue instruction somewhere). -// -// All inserted insertvalue instructions are inserted before InsertBefore -static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, - Instruction *InsertBefore) { - assert(InsertBefore && "Must have someplace to insert!"); - Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), - idx_range); - Value *To = UndefValue::get(IndexedType); - SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); - unsigned IdxSkip = Idxs.size(); - - return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); -} - -/// Given an aggregate and a sequence of indices, see if the scalar value -/// indexed is already around as a register, for example if it was inserted -/// directly into the aggregate. -/// -/// If InsertBefore is not null, this function will duplicate (modified) -/// insertvalues when a part of a nested struct is extracted. -Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, - Instruction *InsertBefore) { - // Nothing to index? Just return V then (this is useful at the end of our - // recursion). - if (idx_range.empty()) - return V; - // We have indices, so V should have an indexable type. - assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && - "Not looking at a struct or array?"); - assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && - "Invalid indices for type?"); - - if (Constant *C = dyn_cast<Constant>(V)) { - C = C->getAggregateElement(idx_range[0]); - if (!C) return nullptr; - return FindInsertedValue(C, idx_range.slice(1), InsertBefore); - } - - if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { - // Loop the indices for the insertvalue instruction in parallel with the - // requested indices - const unsigned *req_idx = idx_range.begin(); - for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); - i != e; ++i, ++req_idx) { - if (req_idx == idx_range.end()) { - // We can't handle this without inserting insertvalues - if (!InsertBefore) - return nullptr; - - // The requested index identifies a part of a nested aggregate. Handle - // this specially. For example, - // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 - // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 - // %C = extractvalue {i32, { i32, i32 } } %B, 1 - // This can be changed into - // %A = insertvalue {i32, i32 } undef, i32 10, 0 - // %C = insertvalue {i32, i32 } %A, i32 11, 1 - // which allows the unused 0,0 element from the nested struct to be - // removed. - return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), - InsertBefore); - } - - // This insert value inserts something else than what we are looking for. - // See if the (aggregate) value inserted into has the value we are - // looking for, then. - if (*req_idx != *i) - return FindInsertedValue(I->getAggregateOperand(), idx_range, - InsertBefore); - } - // If we end up here, the indices of the insertvalue match with those - // requested (though possibly only partially). Now we recursively look at - // the inserted value, passing any remaining indices. - return FindInsertedValue(I->getInsertedValueOperand(), - makeArrayRef(req_idx, idx_range.end()), - InsertBefore); - } - - if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { - // If we're extracting a value from an aggregate that was extracted from - // something else, we can extract from that something else directly instead. - // However, we will need to chain I's indices with the requested indices. - - // Calculate the number of indices required - unsigned size = I->getNumIndices() + idx_range.size(); - // Allocate some space to put the new indices in - SmallVector<unsigned, 5> Idxs; - Idxs.reserve(size); - // Add indices from the extract value instruction - Idxs.append(I->idx_begin(), I->idx_end()); - - // Add requested indices - Idxs.append(idx_range.begin(), idx_range.end()); - - assert(Idxs.size() == size - && "Number of indices added not correct?"); - - return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); - } - // Otherwise, we don't know (such as, extracting from a function return value - // or load instruction) - return nullptr; -} - -/// Analyze the specified pointer to see if it can be expressed as a base -/// pointer plus a constant offset. Return the base and offset to the caller. -Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, - const DataLayout &DL) { - unsigned BitWidth = DL.getIndexTypeSizeInBits(Ptr->getType()); - APInt ByteOffset(BitWidth, 0); - - // We walk up the defs but use a visited set to handle unreachable code. In - // that case, we stop after accumulating the cycle once (not that it - // matters). - SmallPtrSet<Value *, 16> Visited; - while (Visited.insert(Ptr).second) { - if (Ptr->getType()->isVectorTy()) - break; - - if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { - // If one of the values we have visited is an addrspacecast, then - // the pointer type of this GEP may be different from the type - // of the Ptr parameter which was passed to this function. This - // means when we construct GEPOffset, we need to use the size - // of GEP's pointer type rather than the size of the original - // pointer type. - APInt GEPOffset(DL.getIndexTypeSizeInBits(Ptr->getType()), 0); - if (!GEP->accumulateConstantOffset(DL, GEPOffset)) - break; - - APInt OrigByteOffset(ByteOffset); - ByteOffset += GEPOffset.sextOrTrunc(ByteOffset.getBitWidth()); - if (ByteOffset.getMinSignedBits() > 64) { - // Stop traversal if the pointer offset wouldn't fit into int64_t - // (this should be removed if Offset is updated to an APInt) - ByteOffset = OrigByteOffset; - break; - } - - Ptr = GEP->getPointerOperand(); - } else if (Operator::getOpcode(Ptr) == Instruction::BitCast || - Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) { - Ptr = cast<Operator>(Ptr)->getOperand(0); - } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { - if (GA->isInterposable()) - break; - Ptr = GA->getAliasee(); - } else { - break; - } - } - Offset = ByteOffset.getSExtValue(); - return Ptr; -} - -bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, - unsigned CharSize) { - // Make sure the GEP has exactly three arguments. - if (GEP->getNumOperands() != 3) - return false; - - // Make sure the index-ee is a pointer to array of \p CharSize integers. - // CharSize. - ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); - if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) - return false; - - // Check to make sure that the first operand of the GEP is an integer and - // has value 0 so that we are sure we're indexing into the initializer. - const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); - if (!FirstIdx || !FirstIdx->isZero()) - return false; - - return true; -} - -bool llvm::getConstantDataArrayInfo(const Value *V, - ConstantDataArraySlice &Slice, - unsigned ElementSize, uint64_t Offset) { - assert(V); - - // Look through bitcast instructions and geps. - V = V->stripPointerCasts(); - - // If the value is a GEP instruction or constant expression, treat it as an - // offset. - if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { - // The GEP operator should be based on a pointer to string constant, and is - // indexing into the string constant. - if (!isGEPBasedOnPointerToString(GEP, ElementSize)) - return false; - - // If the second index isn't a ConstantInt, then this is a variable index - // into the array. If this occurs, we can't say anything meaningful about - // the string. - uint64_t StartIdx = 0; - if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) - StartIdx = CI->getZExtValue(); - else - return false; - return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, - StartIdx + Offset); - } - - // The GEP instruction, constant or instruction, must reference a global - // variable that is a constant and is initialized. The referenced constant - // initializer is the array that we'll use for optimization. - const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); - if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) - return false; - - const ConstantDataArray *Array; - ArrayType *ArrayTy; - if (GV->getInitializer()->isNullValue()) { - Type *GVTy = GV->getValueType(); - if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { - // A zeroinitializer for the array; there is no ConstantDataArray. - Array = nullptr; - } else { - const DataLayout &DL = GV->getParent()->getDataLayout(); - uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy); - uint64_t Length = SizeInBytes / (ElementSize / 8); - if (Length <= Offset) - return false; - - Slice.Array = nullptr; - Slice.Offset = 0; - Slice.Length = Length - Offset; - return true; - } - } else { - // This must be a ConstantDataArray. - Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); - if (!Array) - return false; - ArrayTy = Array->getType(); - } - if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) - return false; - - uint64_t NumElts = ArrayTy->getArrayNumElements(); - if (Offset > NumElts) - return false; - - Slice.Array = Array; - Slice.Offset = Offset; - Slice.Length = NumElts - Offset; - return true; -} - -/// This function computes the length of a null-terminated C string pointed to -/// by V. If successful, it returns true and returns the string in Str. -/// If unsuccessful, it returns false. -bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, - uint64_t Offset, bool TrimAtNul) { - ConstantDataArraySlice Slice; - if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) - return false; - - if (Slice.Array == nullptr) { - if (TrimAtNul) { - Str = StringRef(); - return true; - } - if (Slice.Length == 1) { - Str = StringRef("", 1); - return true; - } - // We cannot instantiate a StringRef as we do not have an appropriate string - // of 0s at hand. - return false; - } - - // Start out with the entire array in the StringRef. - Str = Slice.Array->getAsString(); - // Skip over 'offset' bytes. - Str = Str.substr(Slice.Offset); - - if (TrimAtNul) { - // Trim off the \0 and anything after it. If the array is not nul - // terminated, we just return the whole end of string. The client may know - // some other way that the string is length-bound. - Str = Str.substr(0, Str.find('\0')); - } - return true; -} - -// These next two are very similar to the above, but also look through PHI -// nodes. -// TODO: See if we can integrate these two together. - -/// If we can compute the length of the string pointed to by -/// the specified pointer, return 'len+1'. If we can't, return 0. -static uint64_t GetStringLengthH(const Value *V, - SmallPtrSetImpl<const PHINode*> &PHIs, - unsigned CharSize) { - // Look through noop bitcast instructions. - V = V->stripPointerCasts(); - - // If this is a PHI node, there are two cases: either we have already seen it - // or we haven't. - if (const PHINode *PN = dyn_cast<PHINode>(V)) { - if (!PHIs.insert(PN).second) - return ~0ULL; // already in the set. - - // If it was new, see if all the input strings are the same length. - uint64_t LenSoFar = ~0ULL; - for (Value *IncValue : PN->incoming_values()) { - uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); - if (Len == 0) return 0; // Unknown length -> unknown. - - if (Len == ~0ULL) continue; - - if (Len != LenSoFar && LenSoFar != ~0ULL) - return 0; // Disagree -> unknown. - LenSoFar = Len; - } - - // Success, all agree. - return LenSoFar; - } - - // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) - if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { - uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); - if (Len1 == 0) return 0; - uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); - if (Len2 == 0) return 0; - if (Len1 == ~0ULL) return Len2; - if (Len2 == ~0ULL) return Len1; - if (Len1 != Len2) return 0; - return Len1; - } - - // Otherwise, see if we can read the string. - ConstantDataArraySlice Slice; - if (!getConstantDataArrayInfo(V, Slice, CharSize)) - return 0; - - if (Slice.Array == nullptr) - return 1; - - // Search for nul characters - unsigned NullIndex = 0; - for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { - if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) - break; - } - - return NullIndex + 1; -} - -/// If we can compute the length of the string pointed to by -/// the specified pointer, return 'len+1'. If we can't, return 0. -uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { - if (!V->getType()->isPointerTy()) - return 0; - - SmallPtrSet<const PHINode*, 32> PHIs; - uint64_t Len = GetStringLengthH(V, PHIs, CharSize); - // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return - // an empty string as a length. - return Len == ~0ULL ? 1 : Len; -} - -const Value *llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call) { - assert(Call && - "getArgumentAliasingToReturnedPointer only works on nonnull calls"); - if (const Value *RV = Call->getReturnedArgOperand()) - return RV; - // This can be used only as a aliasing property. - if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(Call)) - return Call->getArgOperand(0); - return nullptr; -} - -bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( - const CallBase *Call) { - return Call->getIntrinsicID() == Intrinsic::launder_invariant_group || - Call->getIntrinsicID() == Intrinsic::strip_invariant_group; -} - -/// \p PN defines a loop-variant pointer to an object. Check if the -/// previous iteration of the loop was referring to the same object as \p PN. -static bool isSameUnderlyingObjectInLoop(const PHINode *PN, - const LoopInfo *LI) { - // Find the loop-defined value. - Loop *L = LI->getLoopFor(PN->getParent()); - if (PN->getNumIncomingValues() != 2) - return true; - - // Find the value from previous iteration. - auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); - if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) - PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); - if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) - return true; - - // If a new pointer is loaded in the loop, the pointer references a different - // object in every iteration. E.g.: - // for (i) - // int *p = a[i]; - // ... - if (auto *Load = dyn_cast<LoadInst>(PrevValue)) - if (!L->isLoopInvariant(Load->getPointerOperand())) - return false; - return true; -} - -Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL, - unsigned MaxLookup) { - if (!V->getType()->isPointerTy()) - return V; - for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { - if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { - V = GEP->getPointerOperand(); - } else if (Operator::getOpcode(V) == Instruction::BitCast || - Operator::getOpcode(V) == Instruction::AddrSpaceCast) { - V = cast<Operator>(V)->getOperand(0); - } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { - if (GA->isInterposable()) - return V; - V = GA->getAliasee(); - } else if (isa<AllocaInst>(V)) { - // An alloca can't be further simplified. - return V; - } else { - if (auto *Call = dyn_cast<CallBase>(V)) { - // CaptureTracking can know about special capturing properties of some - // intrinsics like launder.invariant.group, that can't be expressed with - // the attributes, but have properties like returning aliasing pointer. - // Because some analysis may assume that nocaptured pointer is not - // returned from some special intrinsic (because function would have to - // be marked with returns attribute), it is crucial to use this function - // because it should be in sync with CaptureTracking. Not using it may - // cause weird miscompilations where 2 aliasing pointers are assumed to - // noalias. - if (auto *RP = getArgumentAliasingToReturnedPointer(Call)) { - V = RP; - continue; - } - } - - // See if InstructionSimplify knows any relevant tricks. - if (Instruction *I = dyn_cast<Instruction>(V)) - // TODO: Acquire a DominatorTree and AssumptionCache and use them. - if (Value *Simplified = SimplifyInstruction(I, {DL, I})) { - V = Simplified; - continue; - } - - return V; - } - assert(V->getType()->isPointerTy() && "Unexpected operand type!"); - } - return V; -} - -void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects, - const DataLayout &DL, LoopInfo *LI, - unsigned MaxLookup) { - SmallPtrSet<Value *, 4> Visited; - SmallVector<Value *, 4> Worklist; - Worklist.push_back(V); - do { - Value *P = Worklist.pop_back_val(); - P = GetUnderlyingObject(P, DL, MaxLookup); - - if (!Visited.insert(P).second) - continue; - - if (SelectInst *SI = dyn_cast<SelectInst>(P)) { - Worklist.push_back(SI->getTrueValue()); - Worklist.push_back(SI->getFalseValue()); - continue; - } - - if (PHINode *PN = dyn_cast<PHINode>(P)) { - // If this PHI changes the underlying object in every iteration of the - // loop, don't look through it. Consider: - // int **A; - // for (i) { - // Prev = Curr; // Prev = PHI (Prev_0, Curr) - // Curr = A[i]; - // *Prev, *Curr; - // - // Prev is tracking Curr one iteration behind so they refer to different - // underlying objects. - if (!LI || !LI->isLoopHeader(PN->getParent()) || - isSameUnderlyingObjectInLoop(PN, LI)) - for (Value *IncValue : PN->incoming_values()) - Worklist.push_back(IncValue); - continue; - } - - Objects.push_back(P); - } while (!Worklist.empty()); -} - -/// This is the function that does the work of looking through basic -/// ptrtoint+arithmetic+inttoptr sequences. -static const Value *getUnderlyingObjectFromInt(const Value *V) { - do { - if (const Operator *U = dyn_cast<Operator>(V)) { - // If we find a ptrtoint, we can transfer control back to the - // regular getUnderlyingObjectFromInt. - if (U->getOpcode() == Instruction::PtrToInt) - return U->getOperand(0); - // If we find an add of a constant, a multiplied value, or a phi, it's - // likely that the other operand will lead us to the base - // object. We don't have to worry about the case where the - // object address is somehow being computed by the multiply, - // because our callers only care when the result is an - // identifiable object. - if (U->getOpcode() != Instruction::Add || - (!isa<ConstantInt>(U->getOperand(1)) && - Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && - !isa<PHINode>(U->getOperand(1)))) - return V; - V = U->getOperand(0); - } else { - return V; - } - assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); - } while (true); -} - -/// This is a wrapper around GetUnderlyingObjects and adds support for basic -/// ptrtoint+arithmetic+inttoptr sequences. -/// It returns false if unidentified object is found in GetUnderlyingObjects. -bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, - SmallVectorImpl<Value *> &Objects, - const DataLayout &DL) { - SmallPtrSet<const Value *, 16> Visited; - SmallVector<const Value *, 4> Working(1, V); - do { - V = Working.pop_back_val(); - - SmallVector<Value *, 4> Objs; - GetUnderlyingObjects(const_cast<Value *>(V), Objs, DL); - - for (Value *V : Objs) { - if (!Visited.insert(V).second) - continue; - if (Operator::getOpcode(V) == Instruction::IntToPtr) { - const Value *O = - getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); - if (O->getType()->isPointerTy()) { - Working.push_back(O); - continue; - } - } - // If GetUnderlyingObjects fails to find an identifiable object, - // getUnderlyingObjectsForCodeGen also fails for safety. - if (!isIdentifiedObject(V)) { - Objects.clear(); - return false; - } - Objects.push_back(const_cast<Value *>(V)); - } - } while (!Working.empty()); - return true; -} - -/// Return true if the only users of this pointer are lifetime markers. -bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { - for (const User *U : V->users()) { - const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); - if (!II) return false; - - if (!II->isLifetimeStartOrEnd()) - return false; - } - return true; -} - -bool llvm::isSafeToSpeculativelyExecute(const Value *V, - const Instruction *CtxI, - const DominatorTree *DT) { - const Operator *Inst = dyn_cast<Operator>(V); - if (!Inst) - return false; - - for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) - if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) - if (C->canTrap()) - return false; - - switch (Inst->getOpcode()) { - default: - return true; - case Instruction::UDiv: - case Instruction::URem: { - // x / y is undefined if y == 0. - const APInt *V; - if (match(Inst->getOperand(1), m_APInt(V))) - return *V != 0; - return false; - } - case Instruction::SDiv: - case Instruction::SRem: { - // x / y is undefined if y == 0 or x == INT_MIN and y == -1 - const APInt *Numerator, *Denominator; - if (!match(Inst->getOperand(1), m_APInt(Denominator))) - return false; - // We cannot hoist this division if the denominator is 0. - if (*Denominator == 0) - return false; - // It's safe to hoist if the denominator is not 0 or -1. - if (*Denominator != -1) - return true; - // At this point we know that the denominator is -1. It is safe to hoist as - // long we know that the numerator is not INT_MIN. - if (match(Inst->getOperand(0), m_APInt(Numerator))) - return !Numerator->isMinSignedValue(); - // The numerator *might* be MinSignedValue. - return false; - } - case Instruction::Load: { - const LoadInst *LI = cast<LoadInst>(Inst); - if (!LI->isUnordered() || - // Speculative load may create a race that did not exist in the source. - LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) || - // Speculative load may load data from dirty regions. - LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress) || - LI->getFunction()->hasFnAttribute(Attribute::SanitizeHWAddress)) - return false; - const DataLayout &DL = LI->getModule()->getDataLayout(); - return isDereferenceableAndAlignedPointer(LI->getPointerOperand(), - LI->getAlignment(), DL, CtxI, DT); - } - case Instruction::Call: { - auto *CI = cast<const CallInst>(Inst); - const Function *Callee = CI->getCalledFunction(); - - // The called function could have undefined behavior or side-effects, even - // if marked readnone nounwind. - return Callee && Callee->isSpeculatable(); - } - case Instruction::VAArg: - case Instruction::Alloca: - case Instruction::Invoke: - case Instruction::PHI: - case Instruction::Store: - case Instruction::Ret: - case Instruction::Br: - case Instruction::IndirectBr: - case Instruction::Switch: - case Instruction::Unreachable: - case Instruction::Fence: - case Instruction::AtomicRMW: - case Instruction::AtomicCmpXchg: - case Instruction::LandingPad: - case Instruction::Resume: - case Instruction::CatchSwitch: - case Instruction::CatchPad: - case Instruction::CatchRet: - case Instruction::CleanupPad: - case Instruction::CleanupRet: - return false; // Misc instructions which have effects - } -} - -bool llvm::mayBeMemoryDependent(const Instruction &I) { - return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); -} - -OverflowResult llvm::computeOverflowForUnsignedMul( - const Value *LHS, const Value *RHS, const DataLayout &DL, - AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, - bool UseInstrInfo) { - // Multiplying n * m significant bits yields a result of n + m significant - // bits. If the total number of significant bits does not exceed the - // result bit width (minus 1), there is no overflow. - // This means if we have enough leading zero bits in the operands - // we can guarantee that the result does not overflow. - // Ref: "Hacker's Delight" by Henry Warren - unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); - KnownBits LHSKnown(BitWidth); - KnownBits RHSKnown(BitWidth); - computeKnownBits(LHS, LHSKnown, DL, /*Depth=*/0, AC, CxtI, DT, nullptr, - UseInstrInfo); - computeKnownBits(RHS, RHSKnown, DL, /*Depth=*/0, AC, CxtI, DT, nullptr, - UseInstrInfo); - // Note that underestimating the number of zero bits gives a more - // conservative answer. - unsigned ZeroBits = LHSKnown.countMinLeadingZeros() + - RHSKnown.countMinLeadingZeros(); - // First handle the easy case: if we have enough zero bits there's - // definitely no overflow. - if (ZeroBits >= BitWidth) - return OverflowResult::NeverOverflows; - - // Get the largest possible values for each operand. - APInt LHSMax = ~LHSKnown.Zero; - APInt RHSMax = ~RHSKnown.Zero; - - // We know the multiply operation doesn't overflow if the maximum values for - // each operand will not overflow after we multiply them together. - bool MaxOverflow; - (void)LHSMax.umul_ov(RHSMax, MaxOverflow); - if (!MaxOverflow) - return OverflowResult::NeverOverflows; - - // We know it always overflows if multiplying the smallest possible values for - // the operands also results in overflow. - bool MinOverflow; - (void)LHSKnown.One.umul_ov(RHSKnown.One, MinOverflow); - if (MinOverflow) - return OverflowResult::AlwaysOverflows; - - return OverflowResult::MayOverflow; -} - -OverflowResult -llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, - const DataLayout &DL, AssumptionCache *AC, - const Instruction *CxtI, - const DominatorTree *DT, bool UseInstrInfo) { - // Multiplying n * m significant bits yields a result of n + m significant - // bits. If the total number of significant bits does not exceed the - // result bit width (minus 1), there is no overflow. - // This means if we have enough leading sign bits in the operands - // we can guarantee that the result does not overflow. - // Ref: "Hacker's Delight" by Henry Warren - unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); - - // Note that underestimating the number of sign bits gives a more - // conservative answer. - unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + - ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); - - // First handle the easy case: if we have enough sign bits there's - // definitely no overflow. - if (SignBits > BitWidth + 1) - return OverflowResult::NeverOverflows; - - // There are two ambiguous cases where there can be no overflow: - // SignBits == BitWidth + 1 and - // SignBits == BitWidth - // The second case is difficult to check, therefore we only handle the - // first case. - if (SignBits == BitWidth + 1) { - // It overflows only when both arguments are negative and the true - // product is exactly the minimum negative number. - // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 - // For simplicity we just check if at least one side is not negative. - KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, - nullptr, UseInstrInfo); - KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, - nullptr, UseInstrInfo); - if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) - return OverflowResult::NeverOverflows; - } - return OverflowResult::MayOverflow; -} - -OverflowResult llvm::computeOverflowForUnsignedAdd( - const Value *LHS, const Value *RHS, const DataLayout &DL, - AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, - bool UseInstrInfo) { - KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, - nullptr, UseInstrInfo); - if (LHSKnown.isNonNegative() || LHSKnown.isNegative()) { - KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, - nullptr, UseInstrInfo); - - if (LHSKnown.isNegative() && RHSKnown.isNegative()) { - // The sign bit is set in both cases: this MUST overflow. - return OverflowResult::AlwaysOverflows; - } - - if (LHSKnown.isNonNegative() && RHSKnown.isNonNegative()) { - // The sign bit is clear in both cases: this CANNOT overflow. - return OverflowResult::NeverOverflows; - } - } - - return OverflowResult::MayOverflow; -} - -/// Return true if we can prove that adding the two values of the -/// knownbits will not overflow. -/// Otherwise return false. -static bool checkRippleForSignedAdd(const KnownBits &LHSKnown, - const KnownBits &RHSKnown) { - // Addition of two 2's complement numbers having opposite signs will never - // overflow. - if ((LHSKnown.isNegative() && RHSKnown.isNonNegative()) || - (LHSKnown.isNonNegative() && RHSKnown.isNegative())) - return true; - - // If either of the values is known to be non-negative, adding them can only - // overflow if the second is also non-negative, so we can assume that. - // Two non-negative numbers will only overflow if there is a carry to the - // sign bit, so we can check if even when the values are as big as possible - // there is no overflow to the sign bit. - if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) { - APInt MaxLHS = ~LHSKnown.Zero; - MaxLHS.clearSignBit(); - APInt MaxRHS = ~RHSKnown.Zero; - MaxRHS.clearSignBit(); - APInt Result = std::move(MaxLHS) + std::move(MaxRHS); - return Result.isSignBitClear(); - } - - // If either of the values is known to be negative, adding them can only - // overflow if the second is also negative, so we can assume that. - // Two negative number will only overflow if there is no carry to the sign - // bit, so we can check if even when the values are as small as possible - // there is overflow to the sign bit. - if (LHSKnown.isNegative() || RHSKnown.isNegative()) { - APInt MinLHS = LHSKnown.One; - MinLHS.clearSignBit(); - APInt MinRHS = RHSKnown.One; - MinRHS.clearSignBit(); - APInt Result = std::move(MinLHS) + std::move(MinRHS); - return Result.isSignBitSet(); - } - - // If we reached here it means that we know nothing about the sign bits. - // In this case we can't know if there will be an overflow, since by - // changing the sign bits any two values can be made to overflow. - return false; -} - -static OverflowResult computeOverflowForSignedAdd(const Value *LHS, - const Value *RHS, - const AddOperator *Add, - const DataLayout &DL, - AssumptionCache *AC, - const Instruction *CxtI, - const DominatorTree *DT) { - if (Add && Add->hasNoSignedWrap()) { - return OverflowResult::NeverOverflows; - } - - // If LHS and RHS each have at least two sign bits, the addition will look - // like - // - // XX..... + - // YY..... - // - // If the carry into the most significant position is 0, X and Y can't both - // be 1 and therefore the carry out of the addition is also 0. - // - // If the carry into the most significant position is 1, X and Y can't both - // be 0 and therefore the carry out of the addition is also 1. - // - // Since the carry into the most significant position is always equal to - // the carry out of the addition, there is no signed overflow. - if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && - ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) - return OverflowResult::NeverOverflows; - - KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT); - KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT); - - if (checkRippleForSignedAdd(LHSKnown, RHSKnown)) - return OverflowResult::NeverOverflows; - - // The remaining code needs Add to be available. Early returns if not so. - if (!Add) - return OverflowResult::MayOverflow; - - // If the sign of Add is the same as at least one of the operands, this add - // CANNOT overflow. This is particularly useful when the sum is - // @llvm.assume'ed non-negative rather than proved so from analyzing its - // operands. - bool LHSOrRHSKnownNonNegative = - (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()); - bool LHSOrRHSKnownNegative = - (LHSKnown.isNegative() || RHSKnown.isNegative()); - if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { - KnownBits AddKnown = computeKnownBits(Add, DL, /*Depth=*/0, AC, CxtI, DT); - if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || - (AddKnown.isNegative() && LHSOrRHSKnownNegative)) { - return OverflowResult::NeverOverflows; - } - } - - return OverflowResult::MayOverflow; -} - -OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, - const Value *RHS, - const DataLayout &DL, - AssumptionCache *AC, - const Instruction *CxtI, - const DominatorTree *DT) { - KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT); - if (LHSKnown.isNonNegative() || LHSKnown.isNegative()) { - KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT); - - // If the LHS is negative and the RHS is non-negative, no unsigned wrap. - if (LHSKnown.isNegative() && RHSKnown.isNonNegative()) - return OverflowResult::NeverOverflows; - - // If the LHS is non-negative and the RHS negative, we always wrap. - if (LHSKnown.isNonNegative() && RHSKnown.isNegative()) - return OverflowResult::AlwaysOverflows; - } - - return OverflowResult::MayOverflow; -} - -OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, - const Value *RHS, - const DataLayout &DL, - AssumptionCache *AC, - const Instruction *CxtI, - const DominatorTree *DT) { - // If LHS and RHS each have at least two sign bits, the subtraction - // cannot overflow. - if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && - ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) - return OverflowResult::NeverOverflows; - - KnownBits LHSKnown = computeKnownBits(LHS, DL, 0, AC, CxtI, DT); - - KnownBits RHSKnown = computeKnownBits(RHS, DL, 0, AC, CxtI, DT); - - // Subtraction of two 2's complement numbers having identical signs will - // never overflow. - if ((LHSKnown.isNegative() && RHSKnown.isNegative()) || - (LHSKnown.isNonNegative() && RHSKnown.isNonNegative())) - return OverflowResult::NeverOverflows; - - // TODO: implement logic similar to checkRippleForAdd - return OverflowResult::MayOverflow; -} - -bool llvm::isOverflowIntrinsicNoWrap(const IntrinsicInst *II, - const DominatorTree &DT) { -#ifndef NDEBUG - auto IID = II->getIntrinsicID(); - assert((IID == Intrinsic::sadd_with_overflow || - IID == Intrinsic::uadd_with_overflow || - IID == Intrinsic::ssub_with_overflow || - IID == Intrinsic::usub_with_overflow || - IID == Intrinsic::smul_with_overflow || - IID == Intrinsic::umul_with_overflow) && - "Not an overflow intrinsic!"); -#endif - - SmallVector<const BranchInst *, 2> GuardingBranches; - SmallVector<const ExtractValueInst *, 2> Results; - - for (const User *U : II->users()) { - if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { - assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); - - if (EVI->getIndices()[0] == 0) - Results.push_back(EVI); - else { - assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); - - for (const auto *U : EVI->users()) - if (const auto *B = dyn_cast<BranchInst>(U)) { - assert(B->isConditional() && "How else is it using an i1?"); - GuardingBranches.push_back(B); - } - } - } else { - // We are using the aggregate directly in a way we don't want to analyze - // here (storing it to a global, say). - return false; - } - } - - auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { - BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); - if (!NoWrapEdge.isSingleEdge()) - return false; - - // Check if all users of the add are provably no-wrap. - for (const auto *Result : Results) { - // If the extractvalue itself is not executed on overflow, the we don't - // need to check each use separately, since domination is transitive. - if (DT.dominates(NoWrapEdge, Result->getParent())) - continue; - - for (auto &RU : Result->uses()) - if (!DT.dominates(NoWrapEdge, RU)) - return false; - } - - return true; - }; - - return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); -} - - -OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, - const DataLayout &DL, - AssumptionCache *AC, - const Instruction *CxtI, - const DominatorTree *DT) { - return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), - Add, DL, AC, CxtI, DT); -} - -OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, - const Value *RHS, - const DataLayout &DL, - AssumptionCache *AC, - const Instruction *CxtI, - const DominatorTree *DT) { - return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); -} - -bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { - // A memory operation returns normally if it isn't volatile. A volatile - // operation is allowed to trap. - // - // An atomic operation isn't guaranteed to return in a reasonable amount of - // time because it's possible for another thread to interfere with it for an - // arbitrary length of time, but programs aren't allowed to rely on that. - if (const LoadInst *LI = dyn_cast<LoadInst>(I)) - return !LI->isVolatile(); - if (const StoreInst *SI = dyn_cast<StoreInst>(I)) - return !SI->isVolatile(); - if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I)) - return !CXI->isVolatile(); - if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) - return !RMWI->isVolatile(); - if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I)) - return !MII->isVolatile(); - - // If there is no successor, then execution can't transfer to it. - if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) - return !CRI->unwindsToCaller(); - if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) - return !CatchSwitch->unwindsToCaller(); - if (isa<ResumeInst>(I)) - return false; - if (isa<ReturnInst>(I)) - return false; - if (isa<UnreachableInst>(I)) - return false; - - // Calls can throw, or contain an infinite loop, or kill the process. - if (auto CS = ImmutableCallSite(I)) { - // Call sites that throw have implicit non-local control flow. - if (!CS.doesNotThrow()) - return false; - - // Non-throwing call sites can loop infinitely, call exit/pthread_exit - // etc. and thus not return. However, LLVM already assumes that - // - // - Thread exiting actions are modeled as writes to memory invisible to - // the program. - // - // - Loops that don't have side effects (side effects are volatile/atomic - // stores and IO) always terminate (see http://llvm.org/PR965). - // Furthermore IO itself is also modeled as writes to memory invisible to - // the program. - // - // We rely on those assumptions here, and use the memory effects of the call - // target as a proxy for checking that it always returns. - - // FIXME: This isn't aggressive enough; a call which only writes to a global - // is guaranteed to return. - return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() || - match(I, m_Intrinsic<Intrinsic::assume>()) || - match(I, m_Intrinsic<Intrinsic::sideeffect>()); - } - - // Other instructions return normally. - return true; -} - -bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { - // TODO: This is slightly consdervative for invoke instruction since exiting - // via an exception *is* normal control for them. - for (auto I = BB->begin(), E = BB->end(); I != E; ++I) - if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) - return false; - return true; -} - -bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, - const Loop *L) { - // The loop header is guaranteed to be executed for every iteration. - // - // FIXME: Relax this constraint to cover all basic blocks that are - // guaranteed to be executed at every iteration. - if (I->getParent() != L->getHeader()) return false; - - for (const Instruction &LI : *L->getHeader()) { - if (&LI == I) return true; - if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; - } - llvm_unreachable("Instruction not contained in its own parent basic block."); -} - -bool llvm::propagatesFullPoison(const Instruction *I) { - switch (I->getOpcode()) { - case Instruction::Add: - case Instruction::Sub: - case Instruction::Xor: - case Instruction::Trunc: - case Instruction::BitCast: - case Instruction::AddrSpaceCast: - case Instruction::Mul: - case Instruction::Shl: - case Instruction::GetElementPtr: - // These operations all propagate poison unconditionally. Note that poison - // is not any particular value, so xor or subtraction of poison with - // itself still yields poison, not zero. - return true; - - case Instruction::AShr: - case Instruction::SExt: - // For these operations, one bit of the input is replicated across - // multiple output bits. A replicated poison bit is still poison. - return true; - - case Instruction::ICmp: - // Comparing poison with any value yields poison. This is why, for - // instance, x s< (x +nsw 1) can be folded to true. - return true; - - default: - return false; - } -} - -const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) { - switch (I->getOpcode()) { - case Instruction::Store: - return cast<StoreInst>(I)->getPointerOperand(); - - case Instruction::Load: - return cast<LoadInst>(I)->getPointerOperand(); - - case Instruction::AtomicCmpXchg: - return cast<AtomicCmpXchgInst>(I)->getPointerOperand(); - - case Instruction::AtomicRMW: - return cast<AtomicRMWInst>(I)->getPointerOperand(); - - case Instruction::UDiv: - case Instruction::SDiv: - case Instruction::URem: - case Instruction::SRem: - return I->getOperand(1); - - default: - return nullptr; - } -} - -bool llvm::programUndefinedIfFullPoison(const Instruction *PoisonI) { - // We currently only look for uses of poison values within the same basic - // block, as that makes it easier to guarantee that the uses will be - // executed given that PoisonI is executed. - // - // FIXME: Expand this to consider uses beyond the same basic block. To do - // this, look out for the distinction between post-dominance and strong - // post-dominance. - const BasicBlock *BB = PoisonI->getParent(); - - // Set of instructions that we have proved will yield poison if PoisonI - // does. - SmallSet<const Value *, 16> YieldsPoison; - SmallSet<const BasicBlock *, 4> Visited; - YieldsPoison.insert(PoisonI); - Visited.insert(PoisonI->getParent()); - - BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end(); - - unsigned Iter = 0; - while (Iter++ < MaxDepth) { - for (auto &I : make_range(Begin, End)) { - if (&I != PoisonI) { - const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I); - if (NotPoison != nullptr && YieldsPoison.count(NotPoison)) - return true; - if (!isGuaranteedToTransferExecutionToSuccessor(&I)) - return false; - } - - // Mark poison that propagates from I through uses of I. - if (YieldsPoison.count(&I)) { - for (const User *User : I.users()) { - const Instruction *UserI = cast<Instruction>(User); - if (propagatesFullPoison(UserI)) - YieldsPoison.insert(User); - } - } - } - - if (auto *NextBB = BB->getSingleSuccessor()) { - if (Visited.insert(NextBB).second) { - BB = NextBB; - Begin = BB->getFirstNonPHI()->getIterator(); - End = BB->end(); - continue; - } - } - - break; - } - return false; -} - -static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { - if (FMF.noNaNs()) - return true; - - if (auto *C = dyn_cast<ConstantFP>(V)) - return !C->isNaN(); - - if (auto *C = dyn_cast<ConstantDataVector>(V)) { - if (!C->getElementType()->isFloatingPointTy()) - return false; - for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { - if (C->getElementAsAPFloat(I).isNaN()) - return false; - } - return true; - } - - return false; -} - -static bool isKnownNonZero(const Value *V) { - if (auto *C = dyn_cast<ConstantFP>(V)) - return !C->isZero(); - - if (auto *C = dyn_cast<ConstantDataVector>(V)) { - if (!C->getElementType()->isFloatingPointTy()) - return false; - for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { - if (C->getElementAsAPFloat(I).isZero()) - return false; - } - return true; - } - - return false; -} - -/// Match clamp pattern for float types without care about NaNs or signed zeros. -/// Given non-min/max outer cmp/select from the clamp pattern this -/// function recognizes if it can be substitued by a "canonical" min/max -/// pattern. -static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, - Value *CmpLHS, Value *CmpRHS, - Value *TrueVal, Value *FalseVal, - Value *&LHS, Value *&RHS) { - // Try to match - // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) - // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) - // and return description of the outer Max/Min. - - // First, check if select has inverse order: - if (CmpRHS == FalseVal) { - std::swap(TrueVal, FalseVal); - Pred = CmpInst::getInversePredicate(Pred); - } - - // Assume success now. If there's no match, callers should not use these anyway. - LHS = TrueVal; - RHS = FalseVal; - - const APFloat *FC1; - if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) - return {SPF_UNKNOWN, SPNB_NA, false}; - - const APFloat *FC2; - switch (Pred) { - case CmpInst::FCMP_OLT: - case CmpInst::FCMP_OLE: - case CmpInst::FCMP_ULT: - case CmpInst::FCMP_ULE: - if (match(FalseVal, - m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), - m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && - FC1->compare(*FC2) == APFloat::cmpResult::cmpLessThan) - return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; - break; - case CmpInst::FCMP_OGT: - case CmpInst::FCMP_OGE: - case CmpInst::FCMP_UGT: - case CmpInst::FCMP_UGE: - if (match(FalseVal, - m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), - m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && - FC1->compare(*FC2) == APFloat::cmpResult::cmpGreaterThan) - return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; - break; - default: - break; - } - - return {SPF_UNKNOWN, SPNB_NA, false}; -} - -/// Recognize variations of: -/// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) -static SelectPatternResult matchClamp(CmpInst::Predicate Pred, - Value *CmpLHS, Value *CmpRHS, - Value *TrueVal, Value *FalseVal) { - // Swap the select operands and predicate to match the patterns below. - if (CmpRHS != TrueVal) { - Pred = ICmpInst::getSwappedPredicate(Pred); - std::swap(TrueVal, FalseVal); - } - const APInt *C1; - if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { - const APInt *C2; - // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) - if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && - C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) - return {SPF_SMAX, SPNB_NA, false}; - - // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) - if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && - C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) - return {SPF_SMIN, SPNB_NA, false}; - - // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) - if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && - C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) - return {SPF_UMAX, SPNB_NA, false}; - - // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) - if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && - C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) - return {SPF_UMIN, SPNB_NA, false}; - } - return {SPF_UNKNOWN, SPNB_NA, false}; -} - -/// Recognize variations of: -/// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) -static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, - Value *CmpLHS, Value *CmpRHS, - Value *TVal, Value *FVal, - unsigned Depth) { - // TODO: Allow FP min/max with nnan/nsz. - assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); - - Value *A, *B; - SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); - if (!SelectPatternResult::isMinOrMax(L.Flavor)) - return {SPF_UNKNOWN, SPNB_NA, false}; - - Value *C, *D; - SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); - if (L.Flavor != R.Flavor) - return {SPF_UNKNOWN, SPNB_NA, false}; - - // We have something like: x Pred y ? min(a, b) : min(c, d). - // Try to match the compare to the min/max operations of the select operands. - // First, make sure we have the right compare predicate. - switch (L.Flavor) { - case SPF_SMIN: - if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { - Pred = ICmpInst::getSwappedPredicate(Pred); - std::swap(CmpLHS, CmpRHS); - } - if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) - break; - return {SPF_UNKNOWN, SPNB_NA, false}; - case SPF_SMAX: - if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { - Pred = ICmpInst::getSwappedPredicate(Pred); - std::swap(CmpLHS, CmpRHS); - } - if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) - break; - return {SPF_UNKNOWN, SPNB_NA, false}; - case SPF_UMIN: - if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { - Pred = ICmpInst::getSwappedPredicate(Pred); - std::swap(CmpLHS, CmpRHS); - } - if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) - break; - return {SPF_UNKNOWN, SPNB_NA, false}; - case SPF_UMAX: - if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { - Pred = ICmpInst::getSwappedPredicate(Pred); - std::swap(CmpLHS, CmpRHS); - } - if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) - break; - return {SPF_UNKNOWN, SPNB_NA, false}; - default: - return {SPF_UNKNOWN, SPNB_NA, false}; - } - - // If there is a common operand in the already matched min/max and the other - // min/max operands match the compare operands (either directly or inverted), - // then this is min/max of the same flavor. - - // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) - // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) - if (D == B) { - if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && - match(A, m_Not(m_Specific(CmpRHS))))) - return {L.Flavor, SPNB_NA, false}; - } - // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) - // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) - if (C == B) { - if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && - match(A, m_Not(m_Specific(CmpRHS))))) - return {L.Flavor, SPNB_NA, false}; - } - // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) - // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) - if (D == A) { - if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && - match(B, m_Not(m_Specific(CmpRHS))))) - return {L.Flavor, SPNB_NA, false}; - } - // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) - // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) - if (C == A) { - if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && - match(B, m_Not(m_Specific(CmpRHS))))) - return {L.Flavor, SPNB_NA, false}; - } - - return {SPF_UNKNOWN, SPNB_NA, false}; -} - -/// Match non-obvious integer minimum and maximum sequences. -static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, - Value *CmpLHS, Value *CmpRHS, - Value *TrueVal, Value *FalseVal, - Value *&LHS, Value *&RHS, - unsigned Depth) { - // Assume success. If there's no match, callers should not use these anyway. - LHS = TrueVal; - RHS = FalseVal; - - SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); - if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) - return SPR; - - SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); - if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) - return SPR; - - if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) - return {SPF_UNKNOWN, SPNB_NA, false}; - - // Z = X -nsw Y - // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) - // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) - if (match(TrueVal, m_Zero()) && - match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) - return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; - - // Z = X -nsw Y - // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) - // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) - if (match(FalseVal, m_Zero()) && - match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) - return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; - - const APInt *C1; - if (!match(CmpRHS, m_APInt(C1))) - return {SPF_UNKNOWN, SPNB_NA, false}; - - // An unsigned min/max can be written with a signed compare. - const APInt *C2; - if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || - (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { - // Is the sign bit set? - // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX - // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN - if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() && - C2->isMaxSignedValue()) - return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; - - // Is the sign bit clear? - // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX - // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN - if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && - C2->isMinSignedValue()) - return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; - } - - // Look through 'not' ops to find disguised signed min/max. - // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C) - // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C) - if (match(TrueVal, m_Not(m_Specific(CmpLHS))) && - match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2) - return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; - - // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X) - // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X) - if (match(FalseVal, m_Not(m_Specific(CmpLHS))) && - match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2) - return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; - - return {SPF_UNKNOWN, SPNB_NA, false}; -} - -bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { - assert(X && Y && "Invalid operand"); - - // X = sub (0, Y) || X = sub nsw (0, Y) - if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || - (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) - return true; - - // Y = sub (0, X) || Y = sub nsw (0, X) - if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || - (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) - return true; - - // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) - Value *A, *B; - return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && - match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || - (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && - match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); -} - -static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, - FastMathFlags FMF, - Value *CmpLHS, Value *CmpRHS, - Value *TrueVal, Value *FalseVal, - Value *&LHS, Value *&RHS, - unsigned Depth) { - if (CmpInst::isFPPredicate(Pred)) { - // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one - // 0.0 operand, set the compare's 0.0 operands to that same value for the - // purpose of identifying min/max. Disregard vector constants with undefined - // elements because those can not be back-propagated for analysis. - Value *OutputZeroVal = nullptr; - if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && - !cast<Constant>(TrueVal)->containsUndefElement()) - OutputZeroVal = TrueVal; - else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && - !cast<Constant>(FalseVal)->containsUndefElement()) - OutputZeroVal = FalseVal; - - if (OutputZeroVal) { - if (match(CmpLHS, m_AnyZeroFP())) - CmpLHS = OutputZeroVal; - if (match(CmpRHS, m_AnyZeroFP())) - CmpRHS = OutputZeroVal; - } - } - - LHS = CmpLHS; - RHS = CmpRHS; - - // Signed zero may return inconsistent results between implementations. - // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 - // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) - // Therefore, we behave conservatively and only proceed if at least one of the - // operands is known to not be zero or if we don't care about signed zero. - switch (Pred) { - default: break; - // FIXME: Include OGT/OLT/UGT/ULT. - case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: - case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: - if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && - !isKnownNonZero(CmpRHS)) - return {SPF_UNKNOWN, SPNB_NA, false}; - } - - SelectPatternNaNBehavior NaNBehavior = SPNB_NA; - bool Ordered = false; - - // When given one NaN and one non-NaN input: - // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. - // - A simple C99 (a < b ? a : b) construction will return 'b' (as the - // ordered comparison fails), which could be NaN or non-NaN. - // so here we discover exactly what NaN behavior is required/accepted. - if (CmpInst::isFPPredicate(Pred)) { - bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); - bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); - - if (LHSSafe && RHSSafe) { - // Both operands are known non-NaN. - NaNBehavior = SPNB_RETURNS_ANY; - } else if (CmpInst::isOrdered(Pred)) { - // An ordered comparison will return false when given a NaN, so it - // returns the RHS. - Ordered = true; - if (LHSSafe) - // LHS is non-NaN, so if RHS is NaN then NaN will be returned. - NaNBehavior = SPNB_RETURNS_NAN; - else if (RHSSafe) - NaNBehavior = SPNB_RETURNS_OTHER; - else - // Completely unsafe. - return {SPF_UNKNOWN, SPNB_NA, false}; - } else { - Ordered = false; - // An unordered comparison will return true when given a NaN, so it - // returns the LHS. - if (LHSSafe) - // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. - NaNBehavior = SPNB_RETURNS_OTHER; - else if (RHSSafe) - NaNBehavior = SPNB_RETURNS_NAN; - else - // Completely unsafe. - return {SPF_UNKNOWN, SPNB_NA, false}; - } - } - - if (TrueVal == CmpRHS && FalseVal == CmpLHS) { - std::swap(CmpLHS, CmpRHS); - Pred = CmpInst::getSwappedPredicate(Pred); - if (NaNBehavior == SPNB_RETURNS_NAN) - NaNBehavior = SPNB_RETURNS_OTHER; - else if (NaNBehavior == SPNB_RETURNS_OTHER) - NaNBehavior = SPNB_RETURNS_NAN; - Ordered = !Ordered; - } - - // ([if]cmp X, Y) ? X : Y - if (TrueVal == CmpLHS && FalseVal == CmpRHS) { - switch (Pred) { - default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. - case ICmpInst::ICMP_UGT: - case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; - case ICmpInst::ICMP_SGT: - case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; - case ICmpInst::ICMP_ULT: - case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; - case ICmpInst::ICMP_SLT: - case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; - case FCmpInst::FCMP_UGT: - case FCmpInst::FCMP_UGE: - case FCmpInst::FCMP_OGT: - case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; - case FCmpInst::FCMP_ULT: - case FCmpInst::FCMP_ULE: - case FCmpInst::FCMP_OLT: - case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; - } - } - - if (isKnownNegation(TrueVal, FalseVal)) { - // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can - // match against either LHS or sext(LHS). - auto MaybeSExtCmpLHS = - m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); - auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); - auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); - if (match(TrueVal, MaybeSExtCmpLHS)) { - // Set the return values. If the compare uses the negated value (-X >s 0), - // swap the return values because the negated value is always 'RHS'. - LHS = TrueVal; - RHS = FalseVal; - if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) - std::swap(LHS, RHS); - - // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) - // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) - if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) - return {SPF_ABS, SPNB_NA, false}; - - // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) - // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) - if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) - return {SPF_NABS, SPNB_NA, false}; - } - else if (match(FalseVal, MaybeSExtCmpLHS)) { - // Set the return values. If the compare uses the negated value (-X >s 0), - // swap the return values because the negated value is always 'RHS'. - LHS = FalseVal; - RHS = TrueVal; - if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) - std::swap(LHS, RHS); - - // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) - // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) - if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) - return {SPF_NABS, SPNB_NA, false}; - - // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) - // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) - if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) - return {SPF_ABS, SPNB_NA, false}; - } - } - - if (CmpInst::isIntPredicate(Pred)) - return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); - - // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar - // may return either -0.0 or 0.0, so fcmp/select pair has stricter - // semantics than minNum. Be conservative in such case. - if (NaNBehavior != SPNB_RETURNS_ANY || - (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && - !isKnownNonZero(CmpRHS))) - return {SPF_UNKNOWN, SPNB_NA, false}; - - return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); -} - -/// Helps to match a select pattern in case of a type mismatch. -/// -/// The function processes the case when type of true and false values of a -/// select instruction differs from type of the cmp instruction operands because -/// of a cast instruction. The function checks if it is legal to move the cast -/// operation after "select". If yes, it returns the new second value of -/// "select" (with the assumption that cast is moved): -/// 1. As operand of cast instruction when both values of "select" are same cast -/// instructions. -/// 2. As restored constant (by applying reverse cast operation) when the first -/// value of the "select" is a cast operation and the second value is a -/// constant. -/// NOTE: We return only the new second value because the first value could be -/// accessed as operand of cast instruction. -static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, - Instruction::CastOps *CastOp) { - auto *Cast1 = dyn_cast<CastInst>(V1); - if (!Cast1) - return nullptr; - - *CastOp = Cast1->getOpcode(); - Type *SrcTy = Cast1->getSrcTy(); - if (auto *Cast2 = dyn_cast<CastInst>(V2)) { - // If V1 and V2 are both the same cast from the same type, look through V1. - if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) - return Cast2->getOperand(0); - return nullptr; - } - - auto *C = dyn_cast<Constant>(V2); - if (!C) - return nullptr; - - Constant *CastedTo = nullptr; - switch (*CastOp) { - case Instruction::ZExt: - if (CmpI->isUnsigned()) - CastedTo = ConstantExpr::getTrunc(C, SrcTy); - break; - case Instruction::SExt: - if (CmpI->isSigned()) - CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); - break; - case Instruction::Trunc: - Constant *CmpConst; - if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && - CmpConst->getType() == SrcTy) { - // Here we have the following case: - // - // %cond = cmp iN %x, CmpConst - // %tr = trunc iN %x to iK - // %narrowsel = select i1 %cond, iK %t, iK C - // - // We can always move trunc after select operation: - // - // %cond = cmp iN %x, CmpConst - // %widesel = select i1 %cond, iN %x, iN CmpConst - // %tr = trunc iN %widesel to iK - // - // Note that C could be extended in any way because we don't care about - // upper bits after truncation. It can't be abs pattern, because it would - // look like: - // - // select i1 %cond, x, -x. - // - // So only min/max pattern could be matched. Such match requires widened C - // == CmpConst. That is why set widened C = CmpConst, condition trunc - // CmpConst == C is checked below. - CastedTo = CmpConst; - } else { - CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); - } - break; - case Instruction::FPTrunc: - CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); - break; - case Instruction::FPExt: - CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); - break; - case Instruction::FPToUI: - CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); - break; - case Instruction::FPToSI: - CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); - break; - case Instruction::UIToFP: - CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); - break; - case Instruction::SIToFP: - CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); - break; - default: - break; - } - - if (!CastedTo) - return nullptr; - - // Make sure the cast doesn't lose any information. - Constant *CastedBack = - ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); - if (CastedBack != C) - return nullptr; - - return CastedTo; -} - -SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, - Instruction::CastOps *CastOp, - unsigned Depth) { - if (Depth >= MaxDepth) - return {SPF_UNKNOWN, SPNB_NA, false}; - - SelectInst *SI = dyn_cast<SelectInst>(V); - if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; - - CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); - if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; - - CmpInst::Predicate Pred = CmpI->getPredicate(); - Value *CmpLHS = CmpI->getOperand(0); - Value *CmpRHS = CmpI->getOperand(1); - Value *TrueVal = SI->getTrueValue(); - Value *FalseVal = SI->getFalseValue(); - FastMathFlags FMF; - if (isa<FPMathOperator>(CmpI)) - FMF = CmpI->getFastMathFlags(); - - // Bail out early. - if (CmpI->isEquality()) - return {SPF_UNKNOWN, SPNB_NA, false}; - - // Deal with type mismatches. - if (CastOp && CmpLHS->getType() != TrueVal->getType()) { - if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { - // If this is a potential fmin/fmax with a cast to integer, then ignore - // -0.0 because there is no corresponding integer value. - if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) - FMF.setNoSignedZeros(); - return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, - cast<CastInst>(TrueVal)->getOperand(0), C, - LHS, RHS, Depth); - } - if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { - // If this is a potential fmin/fmax with a cast to integer, then ignore - // -0.0 because there is no corresponding integer value. - if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) - FMF.setNoSignedZeros(); - return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, - C, cast<CastInst>(FalseVal)->getOperand(0), - LHS, RHS, Depth); - } - } - return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, - LHS, RHS, Depth); -} - -CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { - if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; - if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; - if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; - if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; - if (SPF == SPF_FMINNUM) - return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; - if (SPF == SPF_FMAXNUM) - return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; - llvm_unreachable("unhandled!"); -} - -SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { - if (SPF == SPF_SMIN) return SPF_SMAX; - if (SPF == SPF_UMIN) return SPF_UMAX; - if (SPF == SPF_SMAX) return SPF_SMIN; - if (SPF == SPF_UMAX) return SPF_UMIN; - llvm_unreachable("unhandled!"); -} - -CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { - return getMinMaxPred(getInverseMinMaxFlavor(SPF)); -} - -/// Return true if "icmp Pred LHS RHS" is always true. -static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, - const Value *RHS, const DataLayout &DL, - unsigned Depth) { - assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); - if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) - return true; - - switch (Pred) { - default: - return false; - - case CmpInst::ICMP_SLE: { - const APInt *C; - - // LHS s<= LHS +_{nsw} C if C >= 0 - if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) - return !C->isNegative(); - return false; - } - - case CmpInst::ICMP_ULE: { - const APInt *C; - - // LHS u<= LHS +_{nuw} C for any C - if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) - return true; - - // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) - auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, - const Value *&X, - const APInt *&CA, const APInt *&CB) { - if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && - match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) - return true; - - // If X & C == 0 then (X | C) == X +_{nuw} C - if (match(A, m_Or(m_Value(X), m_APInt(CA))) && - match(B, m_Or(m_Specific(X), m_APInt(CB)))) { - KnownBits Known(CA->getBitWidth()); - computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, - /*CxtI*/ nullptr, /*DT*/ nullptr); - if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) - return true; - } - - return false; - }; - - const Value *X; - const APInt *CLHS, *CRHS; - if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) - return CLHS->ule(*CRHS); - - return false; - } - } -} - -/// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred -/// ALHS ARHS" is true. Otherwise, return None. -static Optional<bool> -isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, - const Value *ARHS, const Value *BLHS, const Value *BRHS, - const DataLayout &DL, unsigned Depth) { - switch (Pred) { - default: - return None; - - case CmpInst::ICMP_SLT: - case CmpInst::ICMP_SLE: - if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && - isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) - return true; - return None; - - case CmpInst::ICMP_ULT: - case CmpInst::ICMP_ULE: - if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && - isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) - return true; - return None; - } -} - -/// Return true if the operands of the two compares match. IsSwappedOps is true -/// when the operands match, but are swapped. -static bool isMatchingOps(const Value *ALHS, const Value *ARHS, - const Value *BLHS, const Value *BRHS, - bool &IsSwappedOps) { - - bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); - IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); - return IsMatchingOps || IsSwappedOps; -} - -/// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true. -/// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false. -/// Otherwise, return None if we can't infer anything. -static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, - CmpInst::Predicate BPred, - bool AreSwappedOps) { - // Canonicalize the predicate as if the operands were not commuted. - if (AreSwappedOps) - BPred = ICmpInst::getSwappedPredicate(BPred); - - if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) - return true; - if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) - return false; - - return None; -} - -/// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true. -/// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false. -/// Otherwise, return None if we can't infer anything. -static Optional<bool> -isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, - const ConstantInt *C1, - CmpInst::Predicate BPred, - const ConstantInt *C2) { - ConstantRange DomCR = - ConstantRange::makeExactICmpRegion(APred, C1->getValue()); - ConstantRange CR = - ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); - ConstantRange Intersection = DomCR.intersectWith(CR); - ConstantRange Difference = DomCR.difference(CR); - if (Intersection.isEmptySet()) - return false; - if (Difference.isEmptySet()) - return true; - return None; -} - -/// Return true if LHS implies RHS is true. Return false if LHS implies RHS is -/// false. Otherwise, return None if we can't infer anything. -static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, - const ICmpInst *RHS, - const DataLayout &DL, bool LHSIsTrue, - unsigned Depth) { - Value *ALHS = LHS->getOperand(0); - Value *ARHS = LHS->getOperand(1); - // The rest of the logic assumes the LHS condition is true. If that's not the - // case, invert the predicate to make it so. - ICmpInst::Predicate APred = - LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); - - Value *BLHS = RHS->getOperand(0); - Value *BRHS = RHS->getOperand(1); - ICmpInst::Predicate BPred = RHS->getPredicate(); - - // Can we infer anything when the two compares have matching operands? - bool AreSwappedOps; - if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) { - if (Optional<bool> Implication = isImpliedCondMatchingOperands( - APred, BPred, AreSwappedOps)) - return Implication; - // No amount of additional analysis will infer the second condition, so - // early exit. - return None; - } - - // Can we infer anything when the LHS operands match and the RHS operands are - // constants (not necessarily matching)? - if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { - if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( - APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS))) - return Implication; - // No amount of additional analysis will infer the second condition, so - // early exit. - return None; - } - - if (APred == BPred) - return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); - return None; -} - -/// Return true if LHS implies RHS is true. Return false if LHS implies RHS is -/// false. Otherwise, return None if we can't infer anything. We expect the -/// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction. -static Optional<bool> isImpliedCondAndOr(const BinaryOperator *LHS, - const ICmpInst *RHS, - const DataLayout &DL, bool LHSIsTrue, - unsigned Depth) { - // The LHS must be an 'or' or an 'and' instruction. - assert((LHS->getOpcode() == Instruction::And || - LHS->getOpcode() == Instruction::Or) && - "Expected LHS to be 'and' or 'or'."); - - assert(Depth <= MaxDepth && "Hit recursion limit"); - - // If the result of an 'or' is false, then we know both legs of the 'or' are - // false. Similarly, if the result of an 'and' is true, then we know both - // legs of the 'and' are true. - Value *ALHS, *ARHS; - if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) || - (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) { - // FIXME: Make this non-recursion. - if (Optional<bool> Implication = - isImpliedCondition(ALHS, RHS, DL, LHSIsTrue, Depth + 1)) - return Implication; - if (Optional<bool> Implication = - isImpliedCondition(ARHS, RHS, DL, LHSIsTrue, Depth + 1)) - return Implication; - return None; - } - return None; -} - -Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, - const DataLayout &DL, bool LHSIsTrue, - unsigned Depth) { - // Bail out when we hit the limit. - if (Depth == MaxDepth) - return None; - - // A mismatch occurs when we compare a scalar cmp to a vector cmp, for - // example. - if (LHS->getType() != RHS->getType()) - return None; - - Type *OpTy = LHS->getType(); - assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); - - // LHS ==> RHS by definition - if (LHS == RHS) - return LHSIsTrue; - - // FIXME: Extending the code below to handle vectors. - if (OpTy->isVectorTy()) - return None; - - assert(OpTy->isIntegerTy(1) && "implied by above"); - - // Both LHS and RHS are icmps. - const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); - const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); - if (LHSCmp && RHSCmp) - return isImpliedCondICmps(LHSCmp, RHSCmp, DL, LHSIsTrue, Depth); - - // The LHS should be an 'or' or an 'and' instruction. We expect the RHS to be - // an icmp. FIXME: Add support for and/or on the RHS. - const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS); - if (LHSBO && RHSCmp) { - if ((LHSBO->getOpcode() == Instruction::And || - LHSBO->getOpcode() == Instruction::Or)) - return isImpliedCondAndOr(LHSBO, RHSCmp, DL, LHSIsTrue, Depth); - } - return None; -} - -Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond, - const Instruction *ContextI, - const DataLayout &DL) { - assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"); - if (!ContextI || !ContextI->getParent()) - return None; - - // TODO: This is a poor/cheap way to determine dominance. Should we use a - // dominator tree (eg, from a SimplifyQuery) instead? - const BasicBlock *ContextBB = ContextI->getParent(); - const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); - if (!PredBB) - return None; - - // We need a conditional branch in the predecessor. - Value *PredCond; - BasicBlock *TrueBB, *FalseBB; - if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) - return None; - - // The branch should get simplified. Don't bother simplifying this condition. - if (TrueBB == FalseBB) - return None; - - assert((TrueBB == ContextBB || FalseBB == ContextBB) && - "Predecessor block does not point to successor?"); - - // Is this condition implied by the predecessor condition? - bool CondIsTrue = TrueBB == ContextBB; - return isImpliedCondition(PredCond, Cond, DL, CondIsTrue); -} |
