summaryrefslogtreecommitdiffstats
path: root/gnu/llvm/lib/Analysis/ValueTracking.cpp
diff options
context:
space:
mode:
authorpatrick <patrick@openbsd.org>2020-08-03 15:06:44 +0000
committerpatrick <patrick@openbsd.org>2020-08-03 15:06:44 +0000
commitb64793999546ed8adebaeebd9d8345d18db8927d (patch)
tree4357c27b561d73b0e089727c6ed659f2ceff5f47 /gnu/llvm/lib/Analysis/ValueTracking.cpp
parentAdd support for UTF-8 DISPLAY-HINTs with octet length. For now only (diff)
downloadwireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.tar.xz
wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.zip
Remove LLVM 8.0.1 files.
Diffstat (limited to 'gnu/llvm/lib/Analysis/ValueTracking.cpp')
-rw-r--r--gnu/llvm/lib/Analysis/ValueTracking.cpp5432
1 files changed, 0 insertions, 5432 deletions
diff --git a/gnu/llvm/lib/Analysis/ValueTracking.cpp b/gnu/llvm/lib/Analysis/ValueTracking.cpp
deleted file mode 100644
index 0446426c0e6..00000000000
--- a/gnu/llvm/lib/Analysis/ValueTracking.cpp
+++ /dev/null
@@ -1,5432 +0,0 @@
-//===- ValueTracking.cpp - Walk computations to compute properties --------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file contains routines that help analyze properties that chains of
-// computations have.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/ADT/APFloat.h"
-#include "llvm/ADT/APInt.h"
-#include "llvm/ADT/ArrayRef.h"
-#include "llvm/ADT/None.h"
-#include "llvm/ADT/Optional.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/ADT/SmallSet.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/StringRef.h"
-#include "llvm/ADT/iterator_range.h"
-#include "llvm/Analysis/AliasAnalysis.h"
-#include "llvm/Analysis/AssumptionCache.h"
-#include "llvm/Analysis/GuardUtils.h"
-#include "llvm/Analysis/InstructionSimplify.h"
-#include "llvm/Analysis/Loads.h"
-#include "llvm/Analysis/LoopInfo.h"
-#include "llvm/Analysis/OptimizationRemarkEmitter.h"
-#include "llvm/Analysis/TargetLibraryInfo.h"
-#include "llvm/IR/Argument.h"
-#include "llvm/IR/Attributes.h"
-#include "llvm/IR/BasicBlock.h"
-#include "llvm/IR/CallSite.h"
-#include "llvm/IR/Constant.h"
-#include "llvm/IR/ConstantRange.h"
-#include "llvm/IR/Constants.h"
-#include "llvm/IR/DataLayout.h"
-#include "llvm/IR/DerivedTypes.h"
-#include "llvm/IR/DiagnosticInfo.h"
-#include "llvm/IR/Dominators.h"
-#include "llvm/IR/Function.h"
-#include "llvm/IR/GetElementPtrTypeIterator.h"
-#include "llvm/IR/GlobalAlias.h"
-#include "llvm/IR/GlobalValue.h"
-#include "llvm/IR/GlobalVariable.h"
-#include "llvm/IR/InstrTypes.h"
-#include "llvm/IR/Instruction.h"
-#include "llvm/IR/Instructions.h"
-#include "llvm/IR/IntrinsicInst.h"
-#include "llvm/IR/Intrinsics.h"
-#include "llvm/IR/LLVMContext.h"
-#include "llvm/IR/Metadata.h"
-#include "llvm/IR/Module.h"
-#include "llvm/IR/Operator.h"
-#include "llvm/IR/PatternMatch.h"
-#include "llvm/IR/Type.h"
-#include "llvm/IR/User.h"
-#include "llvm/IR/Value.h"
-#include "llvm/Support/Casting.h"
-#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/Compiler.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/KnownBits.h"
-#include "llvm/Support/MathExtras.h"
-#include <algorithm>
-#include <array>
-#include <cassert>
-#include <cstdint>
-#include <iterator>
-#include <utility>
-
-using namespace llvm;
-using namespace llvm::PatternMatch;
-
-const unsigned MaxDepth = 6;
-
-// Controls the number of uses of the value searched for possible
-// dominating comparisons.
-static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
- cl::Hidden, cl::init(20));
-
-/// Returns the bitwidth of the given scalar or pointer type. For vector types,
-/// returns the element type's bitwidth.
-static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
- if (unsigned BitWidth = Ty->getScalarSizeInBits())
- return BitWidth;
-
- return DL.getIndexTypeSizeInBits(Ty);
-}
-
-namespace {
-
-// Simplifying using an assume can only be done in a particular control-flow
-// context (the context instruction provides that context). If an assume and
-// the context instruction are not in the same block then the DT helps in
-// figuring out if we can use it.
-struct Query {
- const DataLayout &DL;
- AssumptionCache *AC;
- const Instruction *CxtI;
- const DominatorTree *DT;
-
- // Unlike the other analyses, this may be a nullptr because not all clients
- // provide it currently.
- OptimizationRemarkEmitter *ORE;
-
- /// Set of assumptions that should be excluded from further queries.
- /// This is because of the potential for mutual recursion to cause
- /// computeKnownBits to repeatedly visit the same assume intrinsic. The
- /// classic case of this is assume(x = y), which will attempt to determine
- /// bits in x from bits in y, which will attempt to determine bits in y from
- /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
- /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo
- /// (all of which can call computeKnownBits), and so on.
- std::array<const Value *, MaxDepth> Excluded;
-
- /// If true, it is safe to use metadata during simplification.
- InstrInfoQuery IIQ;
-
- unsigned NumExcluded = 0;
-
- Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
- const DominatorTree *DT, bool UseInstrInfo,
- OptimizationRemarkEmitter *ORE = nullptr)
- : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {}
-
- Query(const Query &Q, const Value *NewExcl)
- : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ),
- NumExcluded(Q.NumExcluded) {
- Excluded = Q.Excluded;
- Excluded[NumExcluded++] = NewExcl;
- assert(NumExcluded <= Excluded.size());
- }
-
- bool isExcluded(const Value *Value) const {
- if (NumExcluded == 0)
- return false;
- auto End = Excluded.begin() + NumExcluded;
- return std::find(Excluded.begin(), End, Value) != End;
- }
-};
-
-} // end anonymous namespace
-
-// Given the provided Value and, potentially, a context instruction, return
-// the preferred context instruction (if any).
-static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
- // If we've been provided with a context instruction, then use that (provided
- // it has been inserted).
- if (CxtI && CxtI->getParent())
- return CxtI;
-
- // If the value is really an already-inserted instruction, then use that.
- CxtI = dyn_cast<Instruction>(V);
- if (CxtI && CxtI->getParent())
- return CxtI;
-
- return nullptr;
-}
-
-static void computeKnownBits(const Value *V, KnownBits &Known,
- unsigned Depth, const Query &Q);
-
-void llvm::computeKnownBits(const Value *V, KnownBits &Known,
- const DataLayout &DL, unsigned Depth,
- AssumptionCache *AC, const Instruction *CxtI,
- const DominatorTree *DT,
- OptimizationRemarkEmitter *ORE, bool UseInstrInfo) {
- ::computeKnownBits(V, Known, Depth,
- Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
-}
-
-static KnownBits computeKnownBits(const Value *V, unsigned Depth,
- const Query &Q);
-
-KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL,
- unsigned Depth, AssumptionCache *AC,
- const Instruction *CxtI,
- const DominatorTree *DT,
- OptimizationRemarkEmitter *ORE,
- bool UseInstrInfo) {
- return ::computeKnownBits(
- V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
-}
-
-bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
- const DataLayout &DL, AssumptionCache *AC,
- const Instruction *CxtI, const DominatorTree *DT,
- bool UseInstrInfo) {
- assert(LHS->getType() == RHS->getType() &&
- "LHS and RHS should have the same type");
- assert(LHS->getType()->isIntOrIntVectorTy() &&
- "LHS and RHS should be integers");
- // Look for an inverted mask: (X & ~M) op (Y & M).
- Value *M;
- if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
- match(RHS, m_c_And(m_Specific(M), m_Value())))
- return true;
- if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
- match(LHS, m_c_And(m_Specific(M), m_Value())))
- return true;
- IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
- KnownBits LHSKnown(IT->getBitWidth());
- KnownBits RHSKnown(IT->getBitWidth());
- computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
- computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
- return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue();
-}
-
-bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) {
- for (const User *U : CxtI->users()) {
- if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
- if (IC->isEquality())
- if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
- if (C->isNullValue())
- continue;
- return false;
- }
- return true;
-}
-
-static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
- const Query &Q);
-
-bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
- bool OrZero, unsigned Depth,
- AssumptionCache *AC, const Instruction *CxtI,
- const DominatorTree *DT, bool UseInstrInfo) {
- return ::isKnownToBeAPowerOfTwo(
- V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
-}
-
-static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q);
-
-bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
- AssumptionCache *AC, const Instruction *CxtI,
- const DominatorTree *DT, bool UseInstrInfo) {
- return ::isKnownNonZero(V, Depth,
- Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
-}
-
-bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL,
- unsigned Depth, AssumptionCache *AC,
- const Instruction *CxtI, const DominatorTree *DT,
- bool UseInstrInfo) {
- KnownBits Known =
- computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
- return Known.isNonNegative();
-}
-
-bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth,
- AssumptionCache *AC, const Instruction *CxtI,
- const DominatorTree *DT, bool UseInstrInfo) {
- if (auto *CI = dyn_cast<ConstantInt>(V))
- return CI->getValue().isStrictlyPositive();
-
- // TODO: We'd doing two recursive queries here. We should factor this such
- // that only a single query is needed.
- return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) &&
- isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo);
-}
-
-bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth,
- AssumptionCache *AC, const Instruction *CxtI,
- const DominatorTree *DT, bool UseInstrInfo) {
- KnownBits Known =
- computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
- return Known.isNegative();
-}
-
-static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q);
-
-bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
- const DataLayout &DL, AssumptionCache *AC,
- const Instruction *CxtI, const DominatorTree *DT,
- bool UseInstrInfo) {
- return ::isKnownNonEqual(V1, V2,
- Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT,
- UseInstrInfo, /*ORE=*/nullptr));
-}
-
-static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
- const Query &Q);
-
-bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
- const DataLayout &DL, unsigned Depth,
- AssumptionCache *AC, const Instruction *CxtI,
- const DominatorTree *DT, bool UseInstrInfo) {
- return ::MaskedValueIsZero(
- V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
-}
-
-static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
- const Query &Q);
-
-unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
- unsigned Depth, AssumptionCache *AC,
- const Instruction *CxtI,
- const DominatorTree *DT, bool UseInstrInfo) {
- return ::ComputeNumSignBits(
- V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
-}
-
-static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
- bool NSW,
- KnownBits &KnownOut, KnownBits &Known2,
- unsigned Depth, const Query &Q) {
- unsigned BitWidth = KnownOut.getBitWidth();
-
- // If an initial sequence of bits in the result is not needed, the
- // corresponding bits in the operands are not needed.
- KnownBits LHSKnown(BitWidth);
- computeKnownBits(Op0, LHSKnown, Depth + 1, Q);
- computeKnownBits(Op1, Known2, Depth + 1, Q);
-
- KnownOut = KnownBits::computeForAddSub(Add, NSW, LHSKnown, Known2);
-}
-
-static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
- KnownBits &Known, KnownBits &Known2,
- unsigned Depth, const Query &Q) {
- unsigned BitWidth = Known.getBitWidth();
- computeKnownBits(Op1, Known, Depth + 1, Q);
- computeKnownBits(Op0, Known2, Depth + 1, Q);
-
- bool isKnownNegative = false;
- bool isKnownNonNegative = false;
- // If the multiplication is known not to overflow, compute the sign bit.
- if (NSW) {
- if (Op0 == Op1) {
- // The product of a number with itself is non-negative.
- isKnownNonNegative = true;
- } else {
- bool isKnownNonNegativeOp1 = Known.isNonNegative();
- bool isKnownNonNegativeOp0 = Known2.isNonNegative();
- bool isKnownNegativeOp1 = Known.isNegative();
- bool isKnownNegativeOp0 = Known2.isNegative();
- // The product of two numbers with the same sign is non-negative.
- isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
- (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
- // The product of a negative number and a non-negative number is either
- // negative or zero.
- if (!isKnownNonNegative)
- isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
- isKnownNonZero(Op0, Depth, Q)) ||
- (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
- isKnownNonZero(Op1, Depth, Q));
- }
- }
-
- assert(!Known.hasConflict() && !Known2.hasConflict());
- // Compute a conservative estimate for high known-0 bits.
- unsigned LeadZ = std::max(Known.countMinLeadingZeros() +
- Known2.countMinLeadingZeros(),
- BitWidth) - BitWidth;
- LeadZ = std::min(LeadZ, BitWidth);
-
- // The result of the bottom bits of an integer multiply can be
- // inferred by looking at the bottom bits of both operands and
- // multiplying them together.
- // We can infer at least the minimum number of known trailing bits
- // of both operands. Depending on number of trailing zeros, we can
- // infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming
- // a and b are divisible by m and n respectively.
- // We then calculate how many of those bits are inferrable and set
- // the output. For example, the i8 mul:
- // a = XXXX1100 (12)
- // b = XXXX1110 (14)
- // We know the bottom 3 bits are zero since the first can be divided by
- // 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4).
- // Applying the multiplication to the trimmed arguments gets:
- // XX11 (3)
- // X111 (7)
- // -------
- // XX11
- // XX11
- // XX11
- // XX11
- // -------
- // XXXXX01
- // Which allows us to infer the 2 LSBs. Since we're multiplying the result
- // by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits.
- // The proof for this can be described as:
- // Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) &&
- // (C7 == (1 << (umin(countTrailingZeros(C1), C5) +
- // umin(countTrailingZeros(C2), C6) +
- // umin(C5 - umin(countTrailingZeros(C1), C5),
- // C6 - umin(countTrailingZeros(C2), C6)))) - 1)
- // %aa = shl i8 %a, C5
- // %bb = shl i8 %b, C6
- // %aaa = or i8 %aa, C1
- // %bbb = or i8 %bb, C2
- // %mul = mul i8 %aaa, %bbb
- // %mask = and i8 %mul, C7
- // =>
- // %mask = i8 ((C1*C2)&C7)
- // Where C5, C6 describe the known bits of %a, %b
- // C1, C2 describe the known bottom bits of %a, %b.
- // C7 describes the mask of the known bits of the result.
- APInt Bottom0 = Known.One;
- APInt Bottom1 = Known2.One;
-
- // How many times we'd be able to divide each argument by 2 (shr by 1).
- // This gives us the number of trailing zeros on the multiplication result.
- unsigned TrailBitsKnown0 = (Known.Zero | Known.One).countTrailingOnes();
- unsigned TrailBitsKnown1 = (Known2.Zero | Known2.One).countTrailingOnes();
- unsigned TrailZero0 = Known.countMinTrailingZeros();
- unsigned TrailZero1 = Known2.countMinTrailingZeros();
- unsigned TrailZ = TrailZero0 + TrailZero1;
-
- // Figure out the fewest known-bits operand.
- unsigned SmallestOperand = std::min(TrailBitsKnown0 - TrailZero0,
- TrailBitsKnown1 - TrailZero1);
- unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ, BitWidth);
-
- APInt BottomKnown = Bottom0.getLoBits(TrailBitsKnown0) *
- Bottom1.getLoBits(TrailBitsKnown1);
-
- Known.resetAll();
- Known.Zero.setHighBits(LeadZ);
- Known.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown);
- Known.One |= BottomKnown.getLoBits(ResultBitsKnown);
-
- // Only make use of no-wrap flags if we failed to compute the sign bit
- // directly. This matters if the multiplication always overflows, in
- // which case we prefer to follow the result of the direct computation,
- // though as the program is invoking undefined behaviour we can choose
- // whatever we like here.
- if (isKnownNonNegative && !Known.isNegative())
- Known.makeNonNegative();
- else if (isKnownNegative && !Known.isNonNegative())
- Known.makeNegative();
-}
-
-void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
- KnownBits &Known) {
- unsigned BitWidth = Known.getBitWidth();
- unsigned NumRanges = Ranges.getNumOperands() / 2;
- assert(NumRanges >= 1);
-
- Known.Zero.setAllBits();
- Known.One.setAllBits();
-
- for (unsigned i = 0; i < NumRanges; ++i) {
- ConstantInt *Lower =
- mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
- ConstantInt *Upper =
- mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
- ConstantRange Range(Lower->getValue(), Upper->getValue());
-
- // The first CommonPrefixBits of all values in Range are equal.
- unsigned CommonPrefixBits =
- (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
-
- APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
- Known.One &= Range.getUnsignedMax() & Mask;
- Known.Zero &= ~Range.getUnsignedMax() & Mask;
- }
-}
-
-static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
- SmallVector<const Value *, 16> WorkSet(1, I);
- SmallPtrSet<const Value *, 32> Visited;
- SmallPtrSet<const Value *, 16> EphValues;
-
- // The instruction defining an assumption's condition itself is always
- // considered ephemeral to that assumption (even if it has other
- // non-ephemeral users). See r246696's test case for an example.
- if (is_contained(I->operands(), E))
- return true;
-
- while (!WorkSet.empty()) {
- const Value *V = WorkSet.pop_back_val();
- if (!Visited.insert(V).second)
- continue;
-
- // If all uses of this value are ephemeral, then so is this value.
- if (llvm::all_of(V->users(), [&](const User *U) {
- return EphValues.count(U);
- })) {
- if (V == E)
- return true;
-
- if (V == I || isSafeToSpeculativelyExecute(V)) {
- EphValues.insert(V);
- if (const User *U = dyn_cast<User>(V))
- for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
- J != JE; ++J)
- WorkSet.push_back(*J);
- }
- }
- }
-
- return false;
-}
-
-// Is this an intrinsic that cannot be speculated but also cannot trap?
-bool llvm::isAssumeLikeIntrinsic(const Instruction *I) {
- if (const CallInst *CI = dyn_cast<CallInst>(I))
- if (Function *F = CI->getCalledFunction())
- switch (F->getIntrinsicID()) {
- default: break;
- // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
- case Intrinsic::assume:
- case Intrinsic::sideeffect:
- case Intrinsic::dbg_declare:
- case Intrinsic::dbg_value:
- case Intrinsic::dbg_label:
- case Intrinsic::invariant_start:
- case Intrinsic::invariant_end:
- case Intrinsic::lifetime_start:
- case Intrinsic::lifetime_end:
- case Intrinsic::objectsize:
- case Intrinsic::ptr_annotation:
- case Intrinsic::var_annotation:
- return true;
- }
-
- return false;
-}
-
-bool llvm::isValidAssumeForContext(const Instruction *Inv,
- const Instruction *CxtI,
- const DominatorTree *DT) {
- // There are two restrictions on the use of an assume:
- // 1. The assume must dominate the context (or the control flow must
- // reach the assume whenever it reaches the context).
- // 2. The context must not be in the assume's set of ephemeral values
- // (otherwise we will use the assume to prove that the condition
- // feeding the assume is trivially true, thus causing the removal of
- // the assume).
-
- if (DT) {
- if (DT->dominates(Inv, CxtI))
- return true;
- } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
- // We don't have a DT, but this trivially dominates.
- return true;
- }
-
- // With or without a DT, the only remaining case we will check is if the
- // instructions are in the same BB. Give up if that is not the case.
- if (Inv->getParent() != CxtI->getParent())
- return false;
-
- // If we have a dom tree, then we now know that the assume doesn't dominate
- // the other instruction. If we don't have a dom tree then we can check if
- // the assume is first in the BB.
- if (!DT) {
- // Search forward from the assume until we reach the context (or the end
- // of the block); the common case is that the assume will come first.
- for (auto I = std::next(BasicBlock::const_iterator(Inv)),
- IE = Inv->getParent()->end(); I != IE; ++I)
- if (&*I == CxtI)
- return true;
- }
-
- // The context comes first, but they're both in the same block. Make sure
- // there is nothing in between that might interrupt the control flow.
- for (BasicBlock::const_iterator I =
- std::next(BasicBlock::const_iterator(CxtI)), IE(Inv);
- I != IE; ++I)
- if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
- return false;
-
- return !isEphemeralValueOf(Inv, CxtI);
-}
-
-static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known,
- unsigned Depth, const Query &Q) {
- // Use of assumptions is context-sensitive. If we don't have a context, we
- // cannot use them!
- if (!Q.AC || !Q.CxtI)
- return;
-
- unsigned BitWidth = Known.getBitWidth();
-
- // Note that the patterns below need to be kept in sync with the code
- // in AssumptionCache::updateAffectedValues.
-
- for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
- if (!AssumeVH)
- continue;
- CallInst *I = cast<CallInst>(AssumeVH);
- assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
- "Got assumption for the wrong function!");
- if (Q.isExcluded(I))
- continue;
-
- // Warning: This loop can end up being somewhat performance sensitive.
- // We're running this loop for once for each value queried resulting in a
- // runtime of ~O(#assumes * #values).
-
- assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
- "must be an assume intrinsic");
-
- Value *Arg = I->getArgOperand(0);
-
- if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
- assert(BitWidth == 1 && "assume operand is not i1?");
- Known.setAllOnes();
- return;
- }
- if (match(Arg, m_Not(m_Specific(V))) &&
- isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
- assert(BitWidth == 1 && "assume operand is not i1?");
- Known.setAllZero();
- return;
- }
-
- // The remaining tests are all recursive, so bail out if we hit the limit.
- if (Depth == MaxDepth)
- continue;
-
- Value *A, *B;
- auto m_V = m_CombineOr(m_Specific(V),
- m_CombineOr(m_PtrToInt(m_Specific(V)),
- m_BitCast(m_Specific(V))));
-
- CmpInst::Predicate Pred;
- uint64_t C;
- // assume(v = a)
- if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
- Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
- KnownBits RHSKnown(BitWidth);
- computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
- Known.Zero |= RHSKnown.Zero;
- Known.One |= RHSKnown.One;
- // assume(v & b = a)
- } else if (match(Arg,
- m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
- Pred == ICmpInst::ICMP_EQ &&
- isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
- KnownBits RHSKnown(BitWidth);
- computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
- KnownBits MaskKnown(BitWidth);
- computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I));
-
- // For those bits in the mask that are known to be one, we can propagate
- // known bits from the RHS to V.
- Known.Zero |= RHSKnown.Zero & MaskKnown.One;
- Known.One |= RHSKnown.One & MaskKnown.One;
- // assume(~(v & b) = a)
- } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
- m_Value(A))) &&
- Pred == ICmpInst::ICMP_EQ &&
- isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
- KnownBits RHSKnown(BitWidth);
- computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
- KnownBits MaskKnown(BitWidth);
- computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I));
-
- // For those bits in the mask that are known to be one, we can propagate
- // inverted known bits from the RHS to V.
- Known.Zero |= RHSKnown.One & MaskKnown.One;
- Known.One |= RHSKnown.Zero & MaskKnown.One;
- // assume(v | b = a)
- } else if (match(Arg,
- m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
- Pred == ICmpInst::ICMP_EQ &&
- isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
- KnownBits RHSKnown(BitWidth);
- computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
- KnownBits BKnown(BitWidth);
- computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
-
- // For those bits in B that are known to be zero, we can propagate known
- // bits from the RHS to V.
- Known.Zero |= RHSKnown.Zero & BKnown.Zero;
- Known.One |= RHSKnown.One & BKnown.Zero;
- // assume(~(v | b) = a)
- } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
- m_Value(A))) &&
- Pred == ICmpInst::ICMP_EQ &&
- isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
- KnownBits RHSKnown(BitWidth);
- computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
- KnownBits BKnown(BitWidth);
- computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
-
- // For those bits in B that are known to be zero, we can propagate
- // inverted known bits from the RHS to V.
- Known.Zero |= RHSKnown.One & BKnown.Zero;
- Known.One |= RHSKnown.Zero & BKnown.Zero;
- // assume(v ^ b = a)
- } else if (match(Arg,
- m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
- Pred == ICmpInst::ICMP_EQ &&
- isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
- KnownBits RHSKnown(BitWidth);
- computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
- KnownBits BKnown(BitWidth);
- computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
-
- // For those bits in B that are known to be zero, we can propagate known
- // bits from the RHS to V. For those bits in B that are known to be one,
- // we can propagate inverted known bits from the RHS to V.
- Known.Zero |= RHSKnown.Zero & BKnown.Zero;
- Known.One |= RHSKnown.One & BKnown.Zero;
- Known.Zero |= RHSKnown.One & BKnown.One;
- Known.One |= RHSKnown.Zero & BKnown.One;
- // assume(~(v ^ b) = a)
- } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
- m_Value(A))) &&
- Pred == ICmpInst::ICMP_EQ &&
- isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
- KnownBits RHSKnown(BitWidth);
- computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
- KnownBits BKnown(BitWidth);
- computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
-
- // For those bits in B that are known to be zero, we can propagate
- // inverted known bits from the RHS to V. For those bits in B that are
- // known to be one, we can propagate known bits from the RHS to V.
- Known.Zero |= RHSKnown.One & BKnown.Zero;
- Known.One |= RHSKnown.Zero & BKnown.Zero;
- Known.Zero |= RHSKnown.Zero & BKnown.One;
- Known.One |= RHSKnown.One & BKnown.One;
- // assume(v << c = a)
- } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
- m_Value(A))) &&
- Pred == ICmpInst::ICMP_EQ &&
- isValidAssumeForContext(I, Q.CxtI, Q.DT) &&
- C < BitWidth) {
- KnownBits RHSKnown(BitWidth);
- computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
- // For those bits in RHS that are known, we can propagate them to known
- // bits in V shifted to the right by C.
- RHSKnown.Zero.lshrInPlace(C);
- Known.Zero |= RHSKnown.Zero;
- RHSKnown.One.lshrInPlace(C);
- Known.One |= RHSKnown.One;
- // assume(~(v << c) = a)
- } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
- m_Value(A))) &&
- Pred == ICmpInst::ICMP_EQ &&
- isValidAssumeForContext(I, Q.CxtI, Q.DT) &&
- C < BitWidth) {
- KnownBits RHSKnown(BitWidth);
- computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
- // For those bits in RHS that are known, we can propagate them inverted
- // to known bits in V shifted to the right by C.
- RHSKnown.One.lshrInPlace(C);
- Known.Zero |= RHSKnown.One;
- RHSKnown.Zero.lshrInPlace(C);
- Known.One |= RHSKnown.Zero;
- // assume(v >> c = a)
- } else if (match(Arg,
- m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)),
- m_Value(A))) &&
- Pred == ICmpInst::ICMP_EQ &&
- isValidAssumeForContext(I, Q.CxtI, Q.DT) &&
- C < BitWidth) {
- KnownBits RHSKnown(BitWidth);
- computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
- // For those bits in RHS that are known, we can propagate them to known
- // bits in V shifted to the right by C.
- Known.Zero |= RHSKnown.Zero << C;
- Known.One |= RHSKnown.One << C;
- // assume(~(v >> c) = a)
- } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))),
- m_Value(A))) &&
- Pred == ICmpInst::ICMP_EQ &&
- isValidAssumeForContext(I, Q.CxtI, Q.DT) &&
- C < BitWidth) {
- KnownBits RHSKnown(BitWidth);
- computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
- // For those bits in RHS that are known, we can propagate them inverted
- // to known bits in V shifted to the right by C.
- Known.Zero |= RHSKnown.One << C;
- Known.One |= RHSKnown.Zero << C;
- // assume(v >=_s c) where c is non-negative
- } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
- Pred == ICmpInst::ICMP_SGE &&
- isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
- KnownBits RHSKnown(BitWidth);
- computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
-
- if (RHSKnown.isNonNegative()) {
- // We know that the sign bit is zero.
- Known.makeNonNegative();
- }
- // assume(v >_s c) where c is at least -1.
- } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
- Pred == ICmpInst::ICMP_SGT &&
- isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
- KnownBits RHSKnown(BitWidth);
- computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
-
- if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) {
- // We know that the sign bit is zero.
- Known.makeNonNegative();
- }
- // assume(v <=_s c) where c is negative
- } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
- Pred == ICmpInst::ICMP_SLE &&
- isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
- KnownBits RHSKnown(BitWidth);
- computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
-
- if (RHSKnown.isNegative()) {
- // We know that the sign bit is one.
- Known.makeNegative();
- }
- // assume(v <_s c) where c is non-positive
- } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
- Pred == ICmpInst::ICMP_SLT &&
- isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
- KnownBits RHSKnown(BitWidth);
- computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
-
- if (RHSKnown.isZero() || RHSKnown.isNegative()) {
- // We know that the sign bit is one.
- Known.makeNegative();
- }
- // assume(v <=_u c)
- } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
- Pred == ICmpInst::ICMP_ULE &&
- isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
- KnownBits RHSKnown(BitWidth);
- computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
-
- // Whatever high bits in c are zero are known to be zero.
- Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
- // assume(v <_u c)
- } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
- Pred == ICmpInst::ICMP_ULT &&
- isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
- KnownBits RHSKnown(BitWidth);
- computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
-
- // If the RHS is known zero, then this assumption must be wrong (nothing
- // is unsigned less than zero). Signal a conflict and get out of here.
- if (RHSKnown.isZero()) {
- Known.Zero.setAllBits();
- Known.One.setAllBits();
- break;
- }
-
- // Whatever high bits in c are zero are known to be zero (if c is a power
- // of 2, then one more).
- if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
- Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1);
- else
- Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
- }
- }
-
- // If assumptions conflict with each other or previous known bits, then we
- // have a logical fallacy. It's possible that the assumption is not reachable,
- // so this isn't a real bug. On the other hand, the program may have undefined
- // behavior, or we might have a bug in the compiler. We can't assert/crash, so
- // clear out the known bits, try to warn the user, and hope for the best.
- if (Known.Zero.intersects(Known.One)) {
- Known.resetAll();
-
- if (Q.ORE)
- Q.ORE->emit([&]() {
- auto *CxtI = const_cast<Instruction *>(Q.CxtI);
- return OptimizationRemarkAnalysis("value-tracking", "BadAssumption",
- CxtI)
- << "Detected conflicting code assumptions. Program may "
- "have undefined behavior, or compiler may have "
- "internal error.";
- });
- }
-}
-
-/// Compute known bits from a shift operator, including those with a
-/// non-constant shift amount. Known is the output of this function. Known2 is a
-/// pre-allocated temporary with the same bit width as Known. KZF and KOF are
-/// operator-specific functions that, given the known-zero or known-one bits
-/// respectively, and a shift amount, compute the implied known-zero or
-/// known-one bits of the shift operator's result respectively for that shift
-/// amount. The results from calling KZF and KOF are conservatively combined for
-/// all permitted shift amounts.
-static void computeKnownBitsFromShiftOperator(
- const Operator *I, KnownBits &Known, KnownBits &Known2,
- unsigned Depth, const Query &Q,
- function_ref<APInt(const APInt &, unsigned)> KZF,
- function_ref<APInt(const APInt &, unsigned)> KOF) {
- unsigned BitWidth = Known.getBitWidth();
-
- if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
- unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1);
-
- computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
- Known.Zero = KZF(Known.Zero, ShiftAmt);
- Known.One = KOF(Known.One, ShiftAmt);
- // If the known bits conflict, this must be an overflowing left shift, so
- // the shift result is poison. We can return anything we want. Choose 0 for
- // the best folding opportunity.
- if (Known.hasConflict())
- Known.setAllZero();
-
- return;
- }
-
- computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
-
- // If the shift amount could be greater than or equal to the bit-width of the
- // LHS, the value could be poison, but bail out because the check below is
- // expensive. TODO: Should we just carry on?
- if ((~Known.Zero).uge(BitWidth)) {
- Known.resetAll();
- return;
- }
-
- // Note: We cannot use Known.Zero.getLimitedValue() here, because if
- // BitWidth > 64 and any upper bits are known, we'll end up returning the
- // limit value (which implies all bits are known).
- uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue();
- uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue();
-
- // It would be more-clearly correct to use the two temporaries for this
- // calculation. Reusing the APInts here to prevent unnecessary allocations.
- Known.resetAll();
-
- // If we know the shifter operand is nonzero, we can sometimes infer more
- // known bits. However this is expensive to compute, so be lazy about it and
- // only compute it when absolutely necessary.
- Optional<bool> ShifterOperandIsNonZero;
-
- // Early exit if we can't constrain any well-defined shift amount.
- if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) &&
- !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) {
- ShifterOperandIsNonZero = isKnownNonZero(I->getOperand(1), Depth + 1, Q);
- if (!*ShifterOperandIsNonZero)
- return;
- }
-
- computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
-
- Known.Zero.setAllBits();
- Known.One.setAllBits();
- for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
- // Combine the shifted known input bits only for those shift amounts
- // compatible with its known constraints.
- if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
- continue;
- if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
- continue;
- // If we know the shifter is nonzero, we may be able to infer more known
- // bits. This check is sunk down as far as possible to avoid the expensive
- // call to isKnownNonZero if the cheaper checks above fail.
- if (ShiftAmt == 0) {
- if (!ShifterOperandIsNonZero.hasValue())
- ShifterOperandIsNonZero =
- isKnownNonZero(I->getOperand(1), Depth + 1, Q);
- if (*ShifterOperandIsNonZero)
- continue;
- }
-
- Known.Zero &= KZF(Known2.Zero, ShiftAmt);
- Known.One &= KOF(Known2.One, ShiftAmt);
- }
-
- // If the known bits conflict, the result is poison. Return a 0 and hope the
- // caller can further optimize that.
- if (Known.hasConflict())
- Known.setAllZero();
-}
-
-static void computeKnownBitsFromOperator(const Operator *I, KnownBits &Known,
- unsigned Depth, const Query &Q) {
- unsigned BitWidth = Known.getBitWidth();
-
- KnownBits Known2(Known);
- switch (I->getOpcode()) {
- default: break;
- case Instruction::Load:
- if (MDNode *MD =
- Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range))
- computeKnownBitsFromRangeMetadata(*MD, Known);
- break;
- case Instruction::And: {
- // If either the LHS or the RHS are Zero, the result is zero.
- computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
- computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
-
- // Output known-1 bits are only known if set in both the LHS & RHS.
- Known.One &= Known2.One;
- // Output known-0 are known to be clear if zero in either the LHS | RHS.
- Known.Zero |= Known2.Zero;
-
- // and(x, add (x, -1)) is a common idiom that always clears the low bit;
- // here we handle the more general case of adding any odd number by
- // matching the form add(x, add(x, y)) where y is odd.
- // TODO: This could be generalized to clearing any bit set in y where the
- // following bit is known to be unset in y.
- Value *X = nullptr, *Y = nullptr;
- if (!Known.Zero[0] && !Known.One[0] &&
- match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) {
- Known2.resetAll();
- computeKnownBits(Y, Known2, Depth + 1, Q);
- if (Known2.countMinTrailingOnes() > 0)
- Known.Zero.setBit(0);
- }
- break;
- }
- case Instruction::Or:
- computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
- computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
-
- // Output known-0 bits are only known if clear in both the LHS & RHS.
- Known.Zero &= Known2.Zero;
- // Output known-1 are known to be set if set in either the LHS | RHS.
- Known.One |= Known2.One;
- break;
- case Instruction::Xor: {
- computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
- computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
-
- // Output known-0 bits are known if clear or set in both the LHS & RHS.
- APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
- // Output known-1 are known to be set if set in only one of the LHS, RHS.
- Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
- Known.Zero = std::move(KnownZeroOut);
- break;
- }
- case Instruction::Mul: {
- bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
- computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, Known,
- Known2, Depth, Q);
- break;
- }
- case Instruction::UDiv: {
- // For the purposes of computing leading zeros we can conservatively
- // treat a udiv as a logical right shift by the power of 2 known to
- // be less than the denominator.
- computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
- unsigned LeadZ = Known2.countMinLeadingZeros();
-
- Known2.resetAll();
- computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
- unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
- if (RHSMaxLeadingZeros != BitWidth)
- LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
-
- Known.Zero.setHighBits(LeadZ);
- break;
- }
- case Instruction::Select: {
- const Value *LHS, *RHS;
- SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
- if (SelectPatternResult::isMinOrMax(SPF)) {
- computeKnownBits(RHS, Known, Depth + 1, Q);
- computeKnownBits(LHS, Known2, Depth + 1, Q);
- } else {
- computeKnownBits(I->getOperand(2), Known, Depth + 1, Q);
- computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
- }
-
- unsigned MaxHighOnes = 0;
- unsigned MaxHighZeros = 0;
- if (SPF == SPF_SMAX) {
- // If both sides are negative, the result is negative.
- if (Known.isNegative() && Known2.isNegative())
- // We can derive a lower bound on the result by taking the max of the
- // leading one bits.
- MaxHighOnes =
- std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes());
- // If either side is non-negative, the result is non-negative.
- else if (Known.isNonNegative() || Known2.isNonNegative())
- MaxHighZeros = 1;
- } else if (SPF == SPF_SMIN) {
- // If both sides are non-negative, the result is non-negative.
- if (Known.isNonNegative() && Known2.isNonNegative())
- // We can derive an upper bound on the result by taking the max of the
- // leading zero bits.
- MaxHighZeros = std::max(Known.countMinLeadingZeros(),
- Known2.countMinLeadingZeros());
- // If either side is negative, the result is negative.
- else if (Known.isNegative() || Known2.isNegative())
- MaxHighOnes = 1;
- } else if (SPF == SPF_UMAX) {
- // We can derive a lower bound on the result by taking the max of the
- // leading one bits.
- MaxHighOnes =
- std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes());
- } else if (SPF == SPF_UMIN) {
- // We can derive an upper bound on the result by taking the max of the
- // leading zero bits.
- MaxHighZeros =
- std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
- } else if (SPF == SPF_ABS) {
- // RHS from matchSelectPattern returns the negation part of abs pattern.
- // If the negate has an NSW flag we can assume the sign bit of the result
- // will be 0 because that makes abs(INT_MIN) undefined.
- if (Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS)))
- MaxHighZeros = 1;
- }
-
- // Only known if known in both the LHS and RHS.
- Known.One &= Known2.One;
- Known.Zero &= Known2.Zero;
- if (MaxHighOnes > 0)
- Known.One.setHighBits(MaxHighOnes);
- if (MaxHighZeros > 0)
- Known.Zero.setHighBits(MaxHighZeros);
- break;
- }
- case Instruction::FPTrunc:
- case Instruction::FPExt:
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- case Instruction::SIToFP:
- case Instruction::UIToFP:
- break; // Can't work with floating point.
- case Instruction::PtrToInt:
- case Instruction::IntToPtr:
- // Fall through and handle them the same as zext/trunc.
- LLVM_FALLTHROUGH;
- case Instruction::ZExt:
- case Instruction::Trunc: {
- Type *SrcTy = I->getOperand(0)->getType();
-
- unsigned SrcBitWidth;
- // Note that we handle pointer operands here because of inttoptr/ptrtoint
- // which fall through here.
- Type *ScalarTy = SrcTy->getScalarType();
- SrcBitWidth = ScalarTy->isPointerTy() ?
- Q.DL.getIndexTypeSizeInBits(ScalarTy) :
- Q.DL.getTypeSizeInBits(ScalarTy);
-
- assert(SrcBitWidth && "SrcBitWidth can't be zero");
- Known = Known.zextOrTrunc(SrcBitWidth);
- computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
- Known = Known.zextOrTrunc(BitWidth);
- // Any top bits are known to be zero.
- if (BitWidth > SrcBitWidth)
- Known.Zero.setBitsFrom(SrcBitWidth);
- break;
- }
- case Instruction::BitCast: {
- Type *SrcTy = I->getOperand(0)->getType();
- if (SrcTy->isIntOrPtrTy() &&
- // TODO: For now, not handling conversions like:
- // (bitcast i64 %x to <2 x i32>)
- !I->getType()->isVectorTy()) {
- computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
- break;
- }
- break;
- }
- case Instruction::SExt: {
- // Compute the bits in the result that are not present in the input.
- unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
-
- Known = Known.trunc(SrcBitWidth);
- computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
- // If the sign bit of the input is known set or clear, then we know the
- // top bits of the result.
- Known = Known.sext(BitWidth);
- break;
- }
- case Instruction::Shl: {
- // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
- bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
- auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) {
- APInt KZResult = KnownZero << ShiftAmt;
- KZResult.setLowBits(ShiftAmt); // Low bits known 0.
- // If this shift has "nsw" keyword, then the result is either a poison
- // value or has the same sign bit as the first operand.
- if (NSW && KnownZero.isSignBitSet())
- KZResult.setSignBit();
- return KZResult;
- };
-
- auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) {
- APInt KOResult = KnownOne << ShiftAmt;
- if (NSW && KnownOne.isSignBitSet())
- KOResult.setSignBit();
- return KOResult;
- };
-
- computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
- break;
- }
- case Instruction::LShr: {
- // (lshr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
- auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
- APInt KZResult = KnownZero.lshr(ShiftAmt);
- // High bits known zero.
- KZResult.setHighBits(ShiftAmt);
- return KZResult;
- };
-
- auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
- return KnownOne.lshr(ShiftAmt);
- };
-
- computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
- break;
- }
- case Instruction::AShr: {
- // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
- auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
- return KnownZero.ashr(ShiftAmt);
- };
-
- auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
- return KnownOne.ashr(ShiftAmt);
- };
-
- computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
- break;
- }
- case Instruction::Sub: {
- bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
- computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
- Known, Known2, Depth, Q);
- break;
- }
- case Instruction::Add: {
- bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
- computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
- Known, Known2, Depth, Q);
- break;
- }
- case Instruction::SRem:
- if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
- APInt RA = Rem->getValue().abs();
- if (RA.isPowerOf2()) {
- APInt LowBits = RA - 1;
- computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
-
- // The low bits of the first operand are unchanged by the srem.
- Known.Zero = Known2.Zero & LowBits;
- Known.One = Known2.One & LowBits;
-
- // If the first operand is non-negative or has all low bits zero, then
- // the upper bits are all zero.
- if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero))
- Known.Zero |= ~LowBits;
-
- // If the first operand is negative and not all low bits are zero, then
- // the upper bits are all one.
- if (Known2.isNegative() && LowBits.intersects(Known2.One))
- Known.One |= ~LowBits;
-
- assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
- break;
- }
- }
-
- // The sign bit is the LHS's sign bit, except when the result of the
- // remainder is zero.
- computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
- // If it's known zero, our sign bit is also zero.
- if (Known2.isNonNegative())
- Known.makeNonNegative();
-
- break;
- case Instruction::URem: {
- if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
- const APInt &RA = Rem->getValue();
- if (RA.isPowerOf2()) {
- APInt LowBits = (RA - 1);
- computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
- Known.Zero |= ~LowBits;
- Known.One &= LowBits;
- break;
- }
- }
-
- // Since the result is less than or equal to either operand, any leading
- // zero bits in either operand must also exist in the result.
- computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
- computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
-
- unsigned Leaders =
- std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
- Known.resetAll();
- Known.Zero.setHighBits(Leaders);
- break;
- }
-
- case Instruction::Alloca: {
- const AllocaInst *AI = cast<AllocaInst>(I);
- unsigned Align = AI->getAlignment();
- if (Align == 0)
- Align = Q.DL.getABITypeAlignment(AI->getAllocatedType());
-
- if (Align > 0)
- Known.Zero.setLowBits(countTrailingZeros(Align));
- break;
- }
- case Instruction::GetElementPtr: {
- // Analyze all of the subscripts of this getelementptr instruction
- // to determine if we can prove known low zero bits.
- KnownBits LocalKnown(BitWidth);
- computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q);
- unsigned TrailZ = LocalKnown.countMinTrailingZeros();
-
- gep_type_iterator GTI = gep_type_begin(I);
- for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
- Value *Index = I->getOperand(i);
- if (StructType *STy = GTI.getStructTypeOrNull()) {
- // Handle struct member offset arithmetic.
-
- // Handle case when index is vector zeroinitializer
- Constant *CIndex = cast<Constant>(Index);
- if (CIndex->isZeroValue())
- continue;
-
- if (CIndex->getType()->isVectorTy())
- Index = CIndex->getSplatValue();
-
- unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
- const StructLayout *SL = Q.DL.getStructLayout(STy);
- uint64_t Offset = SL->getElementOffset(Idx);
- TrailZ = std::min<unsigned>(TrailZ,
- countTrailingZeros(Offset));
- } else {
- // Handle array index arithmetic.
- Type *IndexedTy = GTI.getIndexedType();
- if (!IndexedTy->isSized()) {
- TrailZ = 0;
- break;
- }
- unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
- uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy);
- LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0);
- computeKnownBits(Index, LocalKnown, Depth + 1, Q);
- TrailZ = std::min(TrailZ,
- unsigned(countTrailingZeros(TypeSize) +
- LocalKnown.countMinTrailingZeros()));
- }
- }
-
- Known.Zero.setLowBits(TrailZ);
- break;
- }
- case Instruction::PHI: {
- const PHINode *P = cast<PHINode>(I);
- // Handle the case of a simple two-predecessor recurrence PHI.
- // There's a lot more that could theoretically be done here, but
- // this is sufficient to catch some interesting cases.
- if (P->getNumIncomingValues() == 2) {
- for (unsigned i = 0; i != 2; ++i) {
- Value *L = P->getIncomingValue(i);
- Value *R = P->getIncomingValue(!i);
- Operator *LU = dyn_cast<Operator>(L);
- if (!LU)
- continue;
- unsigned Opcode = LU->getOpcode();
- // Check for operations that have the property that if
- // both their operands have low zero bits, the result
- // will have low zero bits.
- if (Opcode == Instruction::Add ||
- Opcode == Instruction::Sub ||
- Opcode == Instruction::And ||
- Opcode == Instruction::Or ||
- Opcode == Instruction::Mul) {
- Value *LL = LU->getOperand(0);
- Value *LR = LU->getOperand(1);
- // Find a recurrence.
- if (LL == I)
- L = LR;
- else if (LR == I)
- L = LL;
- else
- break;
- // Ok, we have a PHI of the form L op= R. Check for low
- // zero bits.
- computeKnownBits(R, Known2, Depth + 1, Q);
-
- // We need to take the minimum number of known bits
- KnownBits Known3(Known);
- computeKnownBits(L, Known3, Depth + 1, Q);
-
- Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(),
- Known3.countMinTrailingZeros()));
-
- auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU);
- if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) {
- // If initial value of recurrence is nonnegative, and we are adding
- // a nonnegative number with nsw, the result can only be nonnegative
- // or poison value regardless of the number of times we execute the
- // add in phi recurrence. If initial value is negative and we are
- // adding a negative number with nsw, the result can only be
- // negative or poison value. Similar arguments apply to sub and mul.
- //
- // (add non-negative, non-negative) --> non-negative
- // (add negative, negative) --> negative
- if (Opcode == Instruction::Add) {
- if (Known2.isNonNegative() && Known3.isNonNegative())
- Known.makeNonNegative();
- else if (Known2.isNegative() && Known3.isNegative())
- Known.makeNegative();
- }
-
- // (sub nsw non-negative, negative) --> non-negative
- // (sub nsw negative, non-negative) --> negative
- else if (Opcode == Instruction::Sub && LL == I) {
- if (Known2.isNonNegative() && Known3.isNegative())
- Known.makeNonNegative();
- else if (Known2.isNegative() && Known3.isNonNegative())
- Known.makeNegative();
- }
-
- // (mul nsw non-negative, non-negative) --> non-negative
- else if (Opcode == Instruction::Mul && Known2.isNonNegative() &&
- Known3.isNonNegative())
- Known.makeNonNegative();
- }
-
- break;
- }
- }
- }
-
- // Unreachable blocks may have zero-operand PHI nodes.
- if (P->getNumIncomingValues() == 0)
- break;
-
- // Otherwise take the unions of the known bit sets of the operands,
- // taking conservative care to avoid excessive recursion.
- if (Depth < MaxDepth - 1 && !Known.Zero && !Known.One) {
- // Skip if every incoming value references to ourself.
- if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
- break;
-
- Known.Zero.setAllBits();
- Known.One.setAllBits();
- for (Value *IncValue : P->incoming_values()) {
- // Skip direct self references.
- if (IncValue == P) continue;
-
- Known2 = KnownBits(BitWidth);
- // Recurse, but cap the recursion to one level, because we don't
- // want to waste time spinning around in loops.
- computeKnownBits(IncValue, Known2, MaxDepth - 1, Q);
- Known.Zero &= Known2.Zero;
- Known.One &= Known2.One;
- // If all bits have been ruled out, there's no need to check
- // more operands.
- if (!Known.Zero && !Known.One)
- break;
- }
- }
- break;
- }
- case Instruction::Call:
- case Instruction::Invoke:
- // If range metadata is attached to this call, set known bits from that,
- // and then intersect with known bits based on other properties of the
- // function.
- if (MDNode *MD =
- Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range))
- computeKnownBitsFromRangeMetadata(*MD, Known);
- if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) {
- computeKnownBits(RV, Known2, Depth + 1, Q);
- Known.Zero |= Known2.Zero;
- Known.One |= Known2.One;
- }
- if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
- switch (II->getIntrinsicID()) {
- default: break;
- case Intrinsic::bitreverse:
- computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
- Known.Zero |= Known2.Zero.reverseBits();
- Known.One |= Known2.One.reverseBits();
- break;
- case Intrinsic::bswap:
- computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
- Known.Zero |= Known2.Zero.byteSwap();
- Known.One |= Known2.One.byteSwap();
- break;
- case Intrinsic::ctlz: {
- computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
- // If we have a known 1, its position is our upper bound.
- unsigned PossibleLZ = Known2.One.countLeadingZeros();
- // If this call is undefined for 0, the result will be less than 2^n.
- if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
- PossibleLZ = std::min(PossibleLZ, BitWidth - 1);
- unsigned LowBits = Log2_32(PossibleLZ)+1;
- Known.Zero.setBitsFrom(LowBits);
- break;
- }
- case Intrinsic::cttz: {
- computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
- // If we have a known 1, its position is our upper bound.
- unsigned PossibleTZ = Known2.One.countTrailingZeros();
- // If this call is undefined for 0, the result will be less than 2^n.
- if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
- PossibleTZ = std::min(PossibleTZ, BitWidth - 1);
- unsigned LowBits = Log2_32(PossibleTZ)+1;
- Known.Zero.setBitsFrom(LowBits);
- break;
- }
- case Intrinsic::ctpop: {
- computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
- // We can bound the space the count needs. Also, bits known to be zero
- // can't contribute to the population.
- unsigned BitsPossiblySet = Known2.countMaxPopulation();
- unsigned LowBits = Log2_32(BitsPossiblySet)+1;
- Known.Zero.setBitsFrom(LowBits);
- // TODO: we could bound KnownOne using the lower bound on the number
- // of bits which might be set provided by popcnt KnownOne2.
- break;
- }
- case Intrinsic::fshr:
- case Intrinsic::fshl: {
- const APInt *SA;
- if (!match(I->getOperand(2), m_APInt(SA)))
- break;
-
- // Normalize to funnel shift left.
- uint64_t ShiftAmt = SA->urem(BitWidth);
- if (II->getIntrinsicID() == Intrinsic::fshr)
- ShiftAmt = BitWidth - ShiftAmt;
-
- KnownBits Known3(Known);
- computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
- computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q);
-
- Known.Zero =
- Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt);
- Known.One =
- Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt);
- break;
- }
- case Intrinsic::x86_sse42_crc32_64_64:
- Known.Zero.setBitsFrom(32);
- break;
- }
- }
- break;
- case Instruction::ExtractElement:
- // Look through extract element. At the moment we keep this simple and skip
- // tracking the specific element. But at least we might find information
- // valid for all elements of the vector (for example if vector is sign
- // extended, shifted, etc).
- computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
- break;
- case Instruction::ExtractValue:
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
- const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
- if (EVI->getNumIndices() != 1) break;
- if (EVI->getIndices()[0] == 0) {
- switch (II->getIntrinsicID()) {
- default: break;
- case Intrinsic::uadd_with_overflow:
- case Intrinsic::sadd_with_overflow:
- computeKnownBitsAddSub(true, II->getArgOperand(0),
- II->getArgOperand(1), false, Known, Known2,
- Depth, Q);
- break;
- case Intrinsic::usub_with_overflow:
- case Intrinsic::ssub_with_overflow:
- computeKnownBitsAddSub(false, II->getArgOperand(0),
- II->getArgOperand(1), false, Known, Known2,
- Depth, Q);
- break;
- case Intrinsic::umul_with_overflow:
- case Intrinsic::smul_with_overflow:
- computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
- Known, Known2, Depth, Q);
- break;
- }
- }
- }
- }
-}
-
-/// Determine which bits of V are known to be either zero or one and return
-/// them.
-KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) {
- KnownBits Known(getBitWidth(V->getType(), Q.DL));
- computeKnownBits(V, Known, Depth, Q);
- return Known;
-}
-
-/// Determine which bits of V are known to be either zero or one and return
-/// them in the Known bit set.
-///
-/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
-/// we cannot optimize based on the assumption that it is zero without changing
-/// it to be an explicit zero. If we don't change it to zero, other code could
-/// optimized based on the contradictory assumption that it is non-zero.
-/// Because instcombine aggressively folds operations with undef args anyway,
-/// this won't lose us code quality.
-///
-/// This function is defined on values with integer type, values with pointer
-/// type, and vectors of integers. In the case
-/// where V is a vector, known zero, and known one values are the
-/// same width as the vector element, and the bit is set only if it is true
-/// for all of the elements in the vector.
-void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth,
- const Query &Q) {
- assert(V && "No Value?");
- assert(Depth <= MaxDepth && "Limit Search Depth");
- unsigned BitWidth = Known.getBitWidth();
-
- assert((V->getType()->isIntOrIntVectorTy(BitWidth) ||
- V->getType()->isPtrOrPtrVectorTy()) &&
- "Not integer or pointer type!");
-
- Type *ScalarTy = V->getType()->getScalarType();
- unsigned ExpectedWidth = ScalarTy->isPointerTy() ?
- Q.DL.getIndexTypeSizeInBits(ScalarTy) : Q.DL.getTypeSizeInBits(ScalarTy);
- assert(ExpectedWidth == BitWidth && "V and Known should have same BitWidth");
- (void)BitWidth;
- (void)ExpectedWidth;
-
- const APInt *C;
- if (match(V, m_APInt(C))) {
- // We know all of the bits for a scalar constant or a splat vector constant!
- Known.One = *C;
- Known.Zero = ~Known.One;
- return;
- }
- // Null and aggregate-zero are all-zeros.
- if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
- Known.setAllZero();
- return;
- }
- // Handle a constant vector by taking the intersection of the known bits of
- // each element.
- if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
- // We know that CDS must be a vector of integers. Take the intersection of
- // each element.
- Known.Zero.setAllBits(); Known.One.setAllBits();
- for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
- APInt Elt = CDS->getElementAsAPInt(i);
- Known.Zero &= ~Elt;
- Known.One &= Elt;
- }
- return;
- }
-
- if (const auto *CV = dyn_cast<ConstantVector>(V)) {
- // We know that CV must be a vector of integers. Take the intersection of
- // each element.
- Known.Zero.setAllBits(); Known.One.setAllBits();
- for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
- Constant *Element = CV->getAggregateElement(i);
- auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
- if (!ElementCI) {
- Known.resetAll();
- return;
- }
- const APInt &Elt = ElementCI->getValue();
- Known.Zero &= ~Elt;
- Known.One &= Elt;
- }
- return;
- }
-
- // Start out not knowing anything.
- Known.resetAll();
-
- // We can't imply anything about undefs.
- if (isa<UndefValue>(V))
- return;
-
- // There's no point in looking through other users of ConstantData for
- // assumptions. Confirm that we've handled them all.
- assert(!isa<ConstantData>(V) && "Unhandled constant data!");
-
- // Limit search depth.
- // All recursive calls that increase depth must come after this.
- if (Depth == MaxDepth)
- return;
-
- // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
- // the bits of its aliasee.
- if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
- if (!GA->isInterposable())
- computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q);
- return;
- }
-
- if (const Operator *I = dyn_cast<Operator>(V))
- computeKnownBitsFromOperator(I, Known, Depth, Q);
-
- // Aligned pointers have trailing zeros - refine Known.Zero set
- if (V->getType()->isPointerTy()) {
- unsigned Align = V->getPointerAlignment(Q.DL);
- if (Align)
- Known.Zero.setLowBits(countTrailingZeros(Align));
- }
-
- // computeKnownBitsFromAssume strictly refines Known.
- // Therefore, we run them after computeKnownBitsFromOperator.
-
- // Check whether a nearby assume intrinsic can determine some known bits.
- computeKnownBitsFromAssume(V, Known, Depth, Q);
-
- assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
-}
-
-/// Return true if the given value is known to have exactly one
-/// bit set when defined. For vectors return true if every element is known to
-/// be a power of two when defined. Supports values with integer or pointer
-/// types and vectors of integers.
-bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
- const Query &Q) {
- assert(Depth <= MaxDepth && "Limit Search Depth");
-
- // Attempt to match against constants.
- if (OrZero && match(V, m_Power2OrZero()))
- return true;
- if (match(V, m_Power2()))
- return true;
-
- // 1 << X is clearly a power of two if the one is not shifted off the end. If
- // it is shifted off the end then the result is undefined.
- if (match(V, m_Shl(m_One(), m_Value())))
- return true;
-
- // (signmask) >>l X is clearly a power of two if the one is not shifted off
- // the bottom. If it is shifted off the bottom then the result is undefined.
- if (match(V, m_LShr(m_SignMask(), m_Value())))
- return true;
-
- // The remaining tests are all recursive, so bail out if we hit the limit.
- if (Depth++ == MaxDepth)
- return false;
-
- Value *X = nullptr, *Y = nullptr;
- // A shift left or a logical shift right of a power of two is a power of two
- // or zero.
- if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
- match(V, m_LShr(m_Value(X), m_Value()))))
- return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
-
- if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V))
- return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
-
- if (const SelectInst *SI = dyn_cast<SelectInst>(V))
- return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
- isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
-
- if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
- // A power of two and'd with anything is a power of two or zero.
- if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
- isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
- return true;
- // X & (-X) is always a power of two or zero.
- if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
- return true;
- return false;
- }
-
- // Adding a power-of-two or zero to the same power-of-two or zero yields
- // either the original power-of-two, a larger power-of-two or zero.
- if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
- const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
- if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) ||
- Q.IIQ.hasNoSignedWrap(VOBO)) {
- if (match(X, m_And(m_Specific(Y), m_Value())) ||
- match(X, m_And(m_Value(), m_Specific(Y))))
- if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
- return true;
- if (match(Y, m_And(m_Specific(X), m_Value())) ||
- match(Y, m_And(m_Value(), m_Specific(X))))
- if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
- return true;
-
- unsigned BitWidth = V->getType()->getScalarSizeInBits();
- KnownBits LHSBits(BitWidth);
- computeKnownBits(X, LHSBits, Depth, Q);
-
- KnownBits RHSBits(BitWidth);
- computeKnownBits(Y, RHSBits, Depth, Q);
- // If i8 V is a power of two or zero:
- // ZeroBits: 1 1 1 0 1 1 1 1
- // ~ZeroBits: 0 0 0 1 0 0 0 0
- if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2())
- // If OrZero isn't set, we cannot give back a zero result.
- // Make sure either the LHS or RHS has a bit set.
- if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue())
- return true;
- }
- }
-
- // An exact divide or right shift can only shift off zero bits, so the result
- // is a power of two only if the first operand is a power of two and not
- // copying a sign bit (sdiv int_min, 2).
- if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
- match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
- return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
- Depth, Q);
- }
-
- return false;
-}
-
-/// Test whether a GEP's result is known to be non-null.
-///
-/// Uses properties inherent in a GEP to try to determine whether it is known
-/// to be non-null.
-///
-/// Currently this routine does not support vector GEPs.
-static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
- const Query &Q) {
- const Function *F = nullptr;
- if (const Instruction *I = dyn_cast<Instruction>(GEP))
- F = I->getFunction();
-
- if (!GEP->isInBounds() ||
- NullPointerIsDefined(F, GEP->getPointerAddressSpace()))
- return false;
-
- // FIXME: Support vector-GEPs.
- assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
-
- // If the base pointer is non-null, we cannot walk to a null address with an
- // inbounds GEP in address space zero.
- if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
- return true;
-
- // Walk the GEP operands and see if any operand introduces a non-zero offset.
- // If so, then the GEP cannot produce a null pointer, as doing so would
- // inherently violate the inbounds contract within address space zero.
- for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
- GTI != GTE; ++GTI) {
- // Struct types are easy -- they must always be indexed by a constant.
- if (StructType *STy = GTI.getStructTypeOrNull()) {
- ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
- unsigned ElementIdx = OpC->getZExtValue();
- const StructLayout *SL = Q.DL.getStructLayout(STy);
- uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
- if (ElementOffset > 0)
- return true;
- continue;
- }
-
- // If we have a zero-sized type, the index doesn't matter. Keep looping.
- if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
- continue;
-
- // Fast path the constant operand case both for efficiency and so we don't
- // increment Depth when just zipping down an all-constant GEP.
- if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
- if (!OpC->isZero())
- return true;
- continue;
- }
-
- // We post-increment Depth here because while isKnownNonZero increments it
- // as well, when we pop back up that increment won't persist. We don't want
- // to recurse 10k times just because we have 10k GEP operands. We don't
- // bail completely out because we want to handle constant GEPs regardless
- // of depth.
- if (Depth++ >= MaxDepth)
- continue;
-
- if (isKnownNonZero(GTI.getOperand(), Depth, Q))
- return true;
- }
-
- return false;
-}
-
-static bool isKnownNonNullFromDominatingCondition(const Value *V,
- const Instruction *CtxI,
- const DominatorTree *DT) {
- assert(V->getType()->isPointerTy() && "V must be pointer type");
- assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull");
-
- if (!CtxI || !DT)
- return false;
-
- unsigned NumUsesExplored = 0;
- for (auto *U : V->users()) {
- // Avoid massive lists
- if (NumUsesExplored >= DomConditionsMaxUses)
- break;
- NumUsesExplored++;
-
- // If the value is used as an argument to a call or invoke, then argument
- // attributes may provide an answer about null-ness.
- if (auto CS = ImmutableCallSite(U))
- if (auto *CalledFunc = CS.getCalledFunction())
- for (const Argument &Arg : CalledFunc->args())
- if (CS.getArgOperand(Arg.getArgNo()) == V &&
- Arg.hasNonNullAttr() && DT->dominates(CS.getInstruction(), CtxI))
- return true;
-
- // Consider only compare instructions uniquely controlling a branch
- CmpInst::Predicate Pred;
- if (!match(const_cast<User *>(U),
- m_c_ICmp(Pred, m_Specific(V), m_Zero())) ||
- (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE))
- continue;
-
- SmallVector<const User *, 4> WorkList;
- SmallPtrSet<const User *, 4> Visited;
- for (auto *CmpU : U->users()) {
- assert(WorkList.empty() && "Should be!");
- if (Visited.insert(CmpU).second)
- WorkList.push_back(CmpU);
-
- while (!WorkList.empty()) {
- auto *Curr = WorkList.pop_back_val();
-
- // If a user is an AND, add all its users to the work list. We only
- // propagate "pred != null" condition through AND because it is only
- // correct to assume that all conditions of AND are met in true branch.
- // TODO: Support similar logic of OR and EQ predicate?
- if (Pred == ICmpInst::ICMP_NE)
- if (auto *BO = dyn_cast<BinaryOperator>(Curr))
- if (BO->getOpcode() == Instruction::And) {
- for (auto *BOU : BO->users())
- if (Visited.insert(BOU).second)
- WorkList.push_back(BOU);
- continue;
- }
-
- if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) {
- assert(BI->isConditional() && "uses a comparison!");
-
- BasicBlock *NonNullSuccessor =
- BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0);
- BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
- if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
- return true;
- } else if (Pred == ICmpInst::ICMP_NE && isGuard(Curr) &&
- DT->dominates(cast<Instruction>(Curr), CtxI)) {
- return true;
- }
- }
- }
- }
-
- return false;
-}
-
-/// Does the 'Range' metadata (which must be a valid MD_range operand list)
-/// ensure that the value it's attached to is never Value? 'RangeType' is
-/// is the type of the value described by the range.
-static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
- const unsigned NumRanges = Ranges->getNumOperands() / 2;
- assert(NumRanges >= 1);
- for (unsigned i = 0; i < NumRanges; ++i) {
- ConstantInt *Lower =
- mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
- ConstantInt *Upper =
- mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
- ConstantRange Range(Lower->getValue(), Upper->getValue());
- if (Range.contains(Value))
- return false;
- }
- return true;
-}
-
-/// Return true if the given value is known to be non-zero when defined. For
-/// vectors, return true if every element is known to be non-zero when
-/// defined. For pointers, if the context instruction and dominator tree are
-/// specified, perform context-sensitive analysis and return true if the
-/// pointer couldn't possibly be null at the specified instruction.
-/// Supports values with integer or pointer type and vectors of integers.
-bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) {
- if (auto *C = dyn_cast<Constant>(V)) {
- if (C->isNullValue())
- return false;
- if (isa<ConstantInt>(C))
- // Must be non-zero due to null test above.
- return true;
-
- // For constant vectors, check that all elements are undefined or known
- // non-zero to determine that the whole vector is known non-zero.
- if (auto *VecTy = dyn_cast<VectorType>(C->getType())) {
- for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
- Constant *Elt = C->getAggregateElement(i);
- if (!Elt || Elt->isNullValue())
- return false;
- if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
- return false;
- }
- return true;
- }
-
- // A global variable in address space 0 is non null unless extern weak
- // or an absolute symbol reference. Other address spaces may have null as a
- // valid address for a global, so we can't assume anything.
- if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
- if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
- GV->getType()->getAddressSpace() == 0)
- return true;
- } else
- return false;
- }
-
- if (auto *I = dyn_cast<Instruction>(V)) {
- if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) {
- // If the possible ranges don't contain zero, then the value is
- // definitely non-zero.
- if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
- const APInt ZeroValue(Ty->getBitWidth(), 0);
- if (rangeMetadataExcludesValue(Ranges, ZeroValue))
- return true;
- }
- }
- }
-
- // Some of the tests below are recursive, so bail out if we hit the limit.
- if (Depth++ >= MaxDepth)
- return false;
-
- // Check for pointer simplifications.
- if (V->getType()->isPointerTy()) {
- // Alloca never returns null, malloc might.
- if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0)
- return true;
-
- // A byval, inalloca, or nonnull argument is never null.
- if (const Argument *A = dyn_cast<Argument>(V))
- if (A->hasByValOrInAllocaAttr() || A->hasNonNullAttr())
- return true;
-
- // A Load tagged with nonnull metadata is never null.
- if (const LoadInst *LI = dyn_cast<LoadInst>(V))
- if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull))
- return true;
-
- if (const auto *Call = dyn_cast<CallBase>(V)) {
- if (Call->isReturnNonNull())
- return true;
- if (const auto *RP = getArgumentAliasingToReturnedPointer(Call))
- return isKnownNonZero(RP, Depth, Q);
- }
- }
-
-
- // Check for recursive pointer simplifications.
- if (V->getType()->isPointerTy()) {
- if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT))
- return true;
-
- if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V))
- if (isGEPKnownNonNull(GEP, Depth, Q))
- return true;
- }
-
- unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
-
- // X | Y != 0 if X != 0 or Y != 0.
- Value *X = nullptr, *Y = nullptr;
- if (match(V, m_Or(m_Value(X), m_Value(Y))))
- return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q);
-
- // ext X != 0 if X != 0.
- if (isa<SExtInst>(V) || isa<ZExtInst>(V))
- return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
-
- // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
- // if the lowest bit is shifted off the end.
- if (match(V, m_Shl(m_Value(X), m_Value(Y)))) {
- // shl nuw can't remove any non-zero bits.
- const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
- if (Q.IIQ.hasNoUnsignedWrap(BO))
- return isKnownNonZero(X, Depth, Q);
-
- KnownBits Known(BitWidth);
- computeKnownBits(X, Known, Depth, Q);
- if (Known.One[0])
- return true;
- }
- // shr X, Y != 0 if X is negative. Note that the value of the shift is not
- // defined if the sign bit is shifted off the end.
- else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
- // shr exact can only shift out zero bits.
- const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
- if (BO->isExact())
- return isKnownNonZero(X, Depth, Q);
-
- KnownBits Known = computeKnownBits(X, Depth, Q);
- if (Known.isNegative())
- return true;
-
- // If the shifter operand is a constant, and all of the bits shifted
- // out are known to be zero, and X is known non-zero then at least one
- // non-zero bit must remain.
- if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
- auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
- // Is there a known one in the portion not shifted out?
- if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal)
- return true;
- // Are all the bits to be shifted out known zero?
- if (Known.countMinTrailingZeros() >= ShiftVal)
- return isKnownNonZero(X, Depth, Q);
- }
- }
- // div exact can only produce a zero if the dividend is zero.
- else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
- return isKnownNonZero(X, Depth, Q);
- }
- // X + Y.
- else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
- KnownBits XKnown = computeKnownBits(X, Depth, Q);
- KnownBits YKnown = computeKnownBits(Y, Depth, Q);
-
- // If X and Y are both non-negative (as signed values) then their sum is not
- // zero unless both X and Y are zero.
- if (XKnown.isNonNegative() && YKnown.isNonNegative())
- if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q))
- return true;
-
- // If X and Y are both negative (as signed values) then their sum is not
- // zero unless both X and Y equal INT_MIN.
- if (XKnown.isNegative() && YKnown.isNegative()) {
- APInt Mask = APInt::getSignedMaxValue(BitWidth);
- // The sign bit of X is set. If some other bit is set then X is not equal
- // to INT_MIN.
- if (XKnown.One.intersects(Mask))
- return true;
- // The sign bit of Y is set. If some other bit is set then Y is not equal
- // to INT_MIN.
- if (YKnown.One.intersects(Mask))
- return true;
- }
-
- // The sum of a non-negative number and a power of two is not zero.
- if (XKnown.isNonNegative() &&
- isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
- return true;
- if (YKnown.isNonNegative() &&
- isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
- return true;
- }
- // X * Y.
- else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
- const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
- // If X and Y are non-zero then so is X * Y as long as the multiplication
- // does not overflow.
- if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) &&
- isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q))
- return true;
- }
- // (C ? X : Y) != 0 if X != 0 and Y != 0.
- else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
- if (isKnownNonZero(SI->getTrueValue(), Depth, Q) &&
- isKnownNonZero(SI->getFalseValue(), Depth, Q))
- return true;
- }
- // PHI
- else if (const PHINode *PN = dyn_cast<PHINode>(V)) {
- // Try and detect a recurrence that monotonically increases from a
- // starting value, as these are common as induction variables.
- if (PN->getNumIncomingValues() == 2) {
- Value *Start = PN->getIncomingValue(0);
- Value *Induction = PN->getIncomingValue(1);
- if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
- std::swap(Start, Induction);
- if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
- if (!C->isZero() && !C->isNegative()) {
- ConstantInt *X;
- if (Q.IIQ.UseInstrInfo &&
- (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
- match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
- !X->isNegative())
- return true;
- }
- }
- }
- // Check if all incoming values are non-zero constant.
- bool AllNonZeroConstants = llvm::all_of(PN->operands(), [](Value *V) {
- return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZero();
- });
- if (AllNonZeroConstants)
- return true;
- }
-
- KnownBits Known(BitWidth);
- computeKnownBits(V, Known, Depth, Q);
- return Known.One != 0;
-}
-
-/// Return true if V2 == V1 + X, where X is known non-zero.
-static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) {
- const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
- if (!BO || BO->getOpcode() != Instruction::Add)
- return false;
- Value *Op = nullptr;
- if (V2 == BO->getOperand(0))
- Op = BO->getOperand(1);
- else if (V2 == BO->getOperand(1))
- Op = BO->getOperand(0);
- else
- return false;
- return isKnownNonZero(Op, 0, Q);
-}
-
-/// Return true if it is known that V1 != V2.
-static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) {
- if (V1 == V2)
- return false;
- if (V1->getType() != V2->getType())
- // We can't look through casts yet.
- return false;
- if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
- return true;
-
- if (V1->getType()->isIntOrIntVectorTy()) {
- // Are any known bits in V1 contradictory to known bits in V2? If V1
- // has a known zero where V2 has a known one, they must not be equal.
- KnownBits Known1 = computeKnownBits(V1, 0, Q);
- KnownBits Known2 = computeKnownBits(V2, 0, Q);
-
- if (Known1.Zero.intersects(Known2.One) ||
- Known2.Zero.intersects(Known1.One))
- return true;
- }
- return false;
-}
-
-/// Return true if 'V & Mask' is known to be zero. We use this predicate to
-/// simplify operations downstream. Mask is known to be zero for bits that V
-/// cannot have.
-///
-/// This function is defined on values with integer type, values with pointer
-/// type, and vectors of integers. In the case
-/// where V is a vector, the mask, known zero, and known one values are the
-/// same width as the vector element, and the bit is set only if it is true
-/// for all of the elements in the vector.
-bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
- const Query &Q) {
- KnownBits Known(Mask.getBitWidth());
- computeKnownBits(V, Known, Depth, Q);
- return Mask.isSubsetOf(Known.Zero);
-}
-
-// Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow).
-// Returns the input and lower/upper bounds.
-static bool isSignedMinMaxClamp(const Value *Select, const Value *&In,
- const APInt *&CLow, const APInt *&CHigh) {
- assert(isa<Operator>(Select) &&
- cast<Operator>(Select)->getOpcode() == Instruction::Select &&
- "Input should be a Select!");
-
- const Value *LHS, *RHS, *LHS2, *RHS2;
- SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor;
- if (SPF != SPF_SMAX && SPF != SPF_SMIN)
- return false;
-
- if (!match(RHS, m_APInt(CLow)))
- return false;
-
- SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor;
- if (getInverseMinMaxFlavor(SPF) != SPF2)
- return false;
-
- if (!match(RHS2, m_APInt(CHigh)))
- return false;
-
- if (SPF == SPF_SMIN)
- std::swap(CLow, CHigh);
-
- In = LHS2;
- return CLow->sle(*CHigh);
-}
-
-/// For vector constants, loop over the elements and find the constant with the
-/// minimum number of sign bits. Return 0 if the value is not a vector constant
-/// or if any element was not analyzed; otherwise, return the count for the
-/// element with the minimum number of sign bits.
-static unsigned computeNumSignBitsVectorConstant(const Value *V,
- unsigned TyBits) {
- const auto *CV = dyn_cast<Constant>(V);
- if (!CV || !CV->getType()->isVectorTy())
- return 0;
-
- unsigned MinSignBits = TyBits;
- unsigned NumElts = CV->getType()->getVectorNumElements();
- for (unsigned i = 0; i != NumElts; ++i) {
- // If we find a non-ConstantInt, bail out.
- auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
- if (!Elt)
- return 0;
-
- MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits());
- }
-
- return MinSignBits;
-}
-
-static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth,
- const Query &Q);
-
-static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
- const Query &Q) {
- unsigned Result = ComputeNumSignBitsImpl(V, Depth, Q);
- assert(Result > 0 && "At least one sign bit needs to be present!");
- return Result;
-}
-
-/// Return the number of times the sign bit of the register is replicated into
-/// the other bits. We know that at least 1 bit is always equal to the sign bit
-/// (itself), but other cases can give us information. For example, immediately
-/// after an "ashr X, 2", we know that the top 3 bits are all equal to each
-/// other, so we return 3. For vectors, return the number of sign bits for the
-/// vector element with the minimum number of known sign bits.
-static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth,
- const Query &Q) {
- assert(Depth <= MaxDepth && "Limit Search Depth");
-
- // We return the minimum number of sign bits that are guaranteed to be present
- // in V, so for undef we have to conservatively return 1. We don't have the
- // same behavior for poison though -- that's a FIXME today.
-
- Type *ScalarTy = V->getType()->getScalarType();
- unsigned TyBits = ScalarTy->isPointerTy() ?
- Q.DL.getIndexTypeSizeInBits(ScalarTy) :
- Q.DL.getTypeSizeInBits(ScalarTy);
-
- unsigned Tmp, Tmp2;
- unsigned FirstAnswer = 1;
-
- // Note that ConstantInt is handled by the general computeKnownBits case
- // below.
-
- if (Depth == MaxDepth)
- return 1; // Limit search depth.
-
- const Operator *U = dyn_cast<Operator>(V);
- switch (Operator::getOpcode(V)) {
- default: break;
- case Instruction::SExt:
- Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
- return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
-
- case Instruction::SDiv: {
- const APInt *Denominator;
- // sdiv X, C -> adds log(C) sign bits.
- if (match(U->getOperand(1), m_APInt(Denominator))) {
-
- // Ignore non-positive denominator.
- if (!Denominator->isStrictlyPositive())
- break;
-
- // Calculate the incoming numerator bits.
- unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
-
- // Add floor(log(C)) bits to the numerator bits.
- return std::min(TyBits, NumBits + Denominator->logBase2());
- }
- break;
- }
-
- case Instruction::SRem: {
- const APInt *Denominator;
- // srem X, C -> we know that the result is within [-C+1,C) when C is a
- // positive constant. This let us put a lower bound on the number of sign
- // bits.
- if (match(U->getOperand(1), m_APInt(Denominator))) {
-
- // Ignore non-positive denominator.
- if (!Denominator->isStrictlyPositive())
- break;
-
- // Calculate the incoming numerator bits. SRem by a positive constant
- // can't lower the number of sign bits.
- unsigned NumrBits =
- ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
-
- // Calculate the leading sign bit constraints by examining the
- // denominator. Given that the denominator is positive, there are two
- // cases:
- //
- // 1. the numerator is positive. The result range is [0,C) and [0,C) u<
- // (1 << ceilLogBase2(C)).
- //
- // 2. the numerator is negative. Then the result range is (-C,0] and
- // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
- //
- // Thus a lower bound on the number of sign bits is `TyBits -
- // ceilLogBase2(C)`.
-
- unsigned ResBits = TyBits - Denominator->ceilLogBase2();
- return std::max(NumrBits, ResBits);
- }
- break;
- }
-
- case Instruction::AShr: {
- Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
- // ashr X, C -> adds C sign bits. Vectors too.
- const APInt *ShAmt;
- if (match(U->getOperand(1), m_APInt(ShAmt))) {
- if (ShAmt->uge(TyBits))
- break; // Bad shift.
- unsigned ShAmtLimited = ShAmt->getZExtValue();
- Tmp += ShAmtLimited;
- if (Tmp > TyBits) Tmp = TyBits;
- }
- return Tmp;
- }
- case Instruction::Shl: {
- const APInt *ShAmt;
- if (match(U->getOperand(1), m_APInt(ShAmt))) {
- // shl destroys sign bits.
- Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
- if (ShAmt->uge(TyBits) || // Bad shift.
- ShAmt->uge(Tmp)) break; // Shifted all sign bits out.
- Tmp2 = ShAmt->getZExtValue();
- return Tmp - Tmp2;
- }
- break;
- }
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor: // NOT is handled here.
- // Logical binary ops preserve the number of sign bits at the worst.
- Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
- if (Tmp != 1) {
- Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
- FirstAnswer = std::min(Tmp, Tmp2);
- // We computed what we know about the sign bits as our first
- // answer. Now proceed to the generic code that uses
- // computeKnownBits, and pick whichever answer is better.
- }
- break;
-
- case Instruction::Select: {
- // If we have a clamp pattern, we know that the number of sign bits will be
- // the minimum of the clamp min/max range.
- const Value *X;
- const APInt *CLow, *CHigh;
- if (isSignedMinMaxClamp(U, X, CLow, CHigh))
- return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits());
-
- Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
- if (Tmp == 1) break;
- Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
- return std::min(Tmp, Tmp2);
- }
-
- case Instruction::Add:
- // Add can have at most one carry bit. Thus we know that the output
- // is, at worst, one more bit than the inputs.
- Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
- if (Tmp == 1) break;
-
- // Special case decrementing a value (ADD X, -1):
- if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
- if (CRHS->isAllOnesValue()) {
- KnownBits Known(TyBits);
- computeKnownBits(U->getOperand(0), Known, Depth + 1, Q);
-
- // If the input is known to be 0 or 1, the output is 0/-1, which is all
- // sign bits set.
- if ((Known.Zero | 1).isAllOnesValue())
- return TyBits;
-
- // If we are subtracting one from a positive number, there is no carry
- // out of the result.
- if (Known.isNonNegative())
- return Tmp;
- }
-
- Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
- if (Tmp2 == 1) break;
- return std::min(Tmp, Tmp2)-1;
-
- case Instruction::Sub:
- Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
- if (Tmp2 == 1) break;
-
- // Handle NEG.
- if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
- if (CLHS->isNullValue()) {
- KnownBits Known(TyBits);
- computeKnownBits(U->getOperand(1), Known, Depth + 1, Q);
- // If the input is known to be 0 or 1, the output is 0/-1, which is all
- // sign bits set.
- if ((Known.Zero | 1).isAllOnesValue())
- return TyBits;
-
- // If the input is known to be positive (the sign bit is known clear),
- // the output of the NEG has the same number of sign bits as the input.
- if (Known.isNonNegative())
- return Tmp2;
-
- // Otherwise, we treat this like a SUB.
- }
-
- // Sub can have at most one carry bit. Thus we know that the output
- // is, at worst, one more bit than the inputs.
- Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
- if (Tmp == 1) break;
- return std::min(Tmp, Tmp2)-1;
-
- case Instruction::Mul: {
- // The output of the Mul can be at most twice the valid bits in the inputs.
- unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
- if (SignBitsOp0 == 1) break;
- unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
- if (SignBitsOp1 == 1) break;
- unsigned OutValidBits =
- (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1);
- return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1;
- }
-
- case Instruction::PHI: {
- const PHINode *PN = cast<PHINode>(U);
- unsigned NumIncomingValues = PN->getNumIncomingValues();
- // Don't analyze large in-degree PHIs.
- if (NumIncomingValues > 4) break;
- // Unreachable blocks may have zero-operand PHI nodes.
- if (NumIncomingValues == 0) break;
-
- // Take the minimum of all incoming values. This can't infinitely loop
- // because of our depth threshold.
- Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q);
- for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
- if (Tmp == 1) return Tmp;
- Tmp = std::min(
- Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q));
- }
- return Tmp;
- }
-
- case Instruction::Trunc:
- // FIXME: it's tricky to do anything useful for this, but it is an important
- // case for targets like X86.
- break;
-
- case Instruction::ExtractElement:
- // Look through extract element. At the moment we keep this simple and skip
- // tracking the specific element. But at least we might find information
- // valid for all elements of the vector (for example if vector is sign
- // extended, shifted, etc).
- return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
-
- case Instruction::ShuffleVector: {
- // TODO: This is copied almost directly from the SelectionDAG version of
- // ComputeNumSignBits. It would be better if we could share common
- // code. If not, make sure that changes are translated to the DAG.
-
- // Collect the minimum number of sign bits that are shared by every vector
- // element referenced by the shuffle.
- auto *Shuf = cast<ShuffleVectorInst>(U);
- int NumElts = Shuf->getOperand(0)->getType()->getVectorNumElements();
- int NumMaskElts = Shuf->getMask()->getType()->getVectorNumElements();
- APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
- for (int i = 0; i != NumMaskElts; ++i) {
- int M = Shuf->getMaskValue(i);
- assert(M < NumElts * 2 && "Invalid shuffle mask constant");
- // For undef elements, we don't know anything about the common state of
- // the shuffle result.
- if (M == -1)
- return 1;
- if (M < NumElts)
- DemandedLHS.setBit(M % NumElts);
- else
- DemandedRHS.setBit(M % NumElts);
- }
- Tmp = std::numeric_limits<unsigned>::max();
- if (!!DemandedLHS)
- Tmp = ComputeNumSignBits(Shuf->getOperand(0), Depth + 1, Q);
- if (!!DemandedRHS) {
- Tmp2 = ComputeNumSignBits(Shuf->getOperand(1), Depth + 1, Q);
- Tmp = std::min(Tmp, Tmp2);
- }
- // If we don't know anything, early out and try computeKnownBits fall-back.
- if (Tmp == 1)
- break;
- assert(Tmp <= V->getType()->getScalarSizeInBits() &&
- "Failed to determine minimum sign bits");
- return Tmp;
- }
- }
-
- // Finally, if we can prove that the top bits of the result are 0's or 1's,
- // use this information.
-
- // If we can examine all elements of a vector constant successfully, we're
- // done (we can't do any better than that). If not, keep trying.
- if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits))
- return VecSignBits;
-
- KnownBits Known(TyBits);
- computeKnownBits(V, Known, Depth, Q);
-
- // If we know that the sign bit is either zero or one, determine the number of
- // identical bits in the top of the input value.
- return std::max(FirstAnswer, Known.countMinSignBits());
-}
-
-/// This function computes the integer multiple of Base that equals V.
-/// If successful, it returns true and returns the multiple in
-/// Multiple. If unsuccessful, it returns false. It looks
-/// through SExt instructions only if LookThroughSExt is true.
-bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
- bool LookThroughSExt, unsigned Depth) {
- const unsigned MaxDepth = 6;
-
- assert(V && "No Value?");
- assert(Depth <= MaxDepth && "Limit Search Depth");
- assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
-
- Type *T = V->getType();
-
- ConstantInt *CI = dyn_cast<ConstantInt>(V);
-
- if (Base == 0)
- return false;
-
- if (Base == 1) {
- Multiple = V;
- return true;
- }
-
- ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
- Constant *BaseVal = ConstantInt::get(T, Base);
- if (CO && CO == BaseVal) {
- // Multiple is 1.
- Multiple = ConstantInt::get(T, 1);
- return true;
- }
-
- if (CI && CI->getZExtValue() % Base == 0) {
- Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
- return true;
- }
-
- if (Depth == MaxDepth) return false; // Limit search depth.
-
- Operator *I = dyn_cast<Operator>(V);
- if (!I) return false;
-
- switch (I->getOpcode()) {
- default: break;
- case Instruction::SExt:
- if (!LookThroughSExt) return false;
- // otherwise fall through to ZExt
- LLVM_FALLTHROUGH;
- case Instruction::ZExt:
- return ComputeMultiple(I->getOperand(0), Base, Multiple,
- LookThroughSExt, Depth+1);
- case Instruction::Shl:
- case Instruction::Mul: {
- Value *Op0 = I->getOperand(0);
- Value *Op1 = I->getOperand(1);
-
- if (I->getOpcode() == Instruction::Shl) {
- ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
- if (!Op1CI) return false;
- // Turn Op0 << Op1 into Op0 * 2^Op1
- APInt Op1Int = Op1CI->getValue();
- uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
- APInt API(Op1Int.getBitWidth(), 0);
- API.setBit(BitToSet);
- Op1 = ConstantInt::get(V->getContext(), API);
- }
-
- Value *Mul0 = nullptr;
- if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
- if (Constant *Op1C = dyn_cast<Constant>(Op1))
- if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
- if (Op1C->getType()->getPrimitiveSizeInBits() <
- MulC->getType()->getPrimitiveSizeInBits())
- Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
- if (Op1C->getType()->getPrimitiveSizeInBits() >
- MulC->getType()->getPrimitiveSizeInBits())
- MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
-
- // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
- Multiple = ConstantExpr::getMul(MulC, Op1C);
- return true;
- }
-
- if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
- if (Mul0CI->getValue() == 1) {
- // V == Base * Op1, so return Op1
- Multiple = Op1;
- return true;
- }
- }
-
- Value *Mul1 = nullptr;
- if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
- if (Constant *Op0C = dyn_cast<Constant>(Op0))
- if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
- if (Op0C->getType()->getPrimitiveSizeInBits() <
- MulC->getType()->getPrimitiveSizeInBits())
- Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
- if (Op0C->getType()->getPrimitiveSizeInBits() >
- MulC->getType()->getPrimitiveSizeInBits())
- MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
-
- // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
- Multiple = ConstantExpr::getMul(MulC, Op0C);
- return true;
- }
-
- if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
- if (Mul1CI->getValue() == 1) {
- // V == Base * Op0, so return Op0
- Multiple = Op0;
- return true;
- }
- }
- }
- }
-
- // We could not determine if V is a multiple of Base.
- return false;
-}
-
-Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS,
- const TargetLibraryInfo *TLI) {
- const Function *F = ICS.getCalledFunction();
- if (!F)
- return Intrinsic::not_intrinsic;
-
- if (F->isIntrinsic())
- return F->getIntrinsicID();
-
- if (!TLI)
- return Intrinsic::not_intrinsic;
-
- LibFunc Func;
- // We're going to make assumptions on the semantics of the functions, check
- // that the target knows that it's available in this environment and it does
- // not have local linkage.
- if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func))
- return Intrinsic::not_intrinsic;
-
- if (!ICS.onlyReadsMemory())
- return Intrinsic::not_intrinsic;
-
- // Otherwise check if we have a call to a function that can be turned into a
- // vector intrinsic.
- switch (Func) {
- default:
- break;
- case LibFunc_sin:
- case LibFunc_sinf:
- case LibFunc_sinl:
- return Intrinsic::sin;
- case LibFunc_cos:
- case LibFunc_cosf:
- case LibFunc_cosl:
- return Intrinsic::cos;
- case LibFunc_exp:
- case LibFunc_expf:
- case LibFunc_expl:
- return Intrinsic::exp;
- case LibFunc_exp2:
- case LibFunc_exp2f:
- case LibFunc_exp2l:
- return Intrinsic::exp2;
- case LibFunc_log:
- case LibFunc_logf:
- case LibFunc_logl:
- return Intrinsic::log;
- case LibFunc_log10:
- case LibFunc_log10f:
- case LibFunc_log10l:
- return Intrinsic::log10;
- case LibFunc_log2:
- case LibFunc_log2f:
- case LibFunc_log2l:
- return Intrinsic::log2;
- case LibFunc_fabs:
- case LibFunc_fabsf:
- case LibFunc_fabsl:
- return Intrinsic::fabs;
- case LibFunc_fmin:
- case LibFunc_fminf:
- case LibFunc_fminl:
- return Intrinsic::minnum;
- case LibFunc_fmax:
- case LibFunc_fmaxf:
- case LibFunc_fmaxl:
- return Intrinsic::maxnum;
- case LibFunc_copysign:
- case LibFunc_copysignf:
- case LibFunc_copysignl:
- return Intrinsic::copysign;
- case LibFunc_floor:
- case LibFunc_floorf:
- case LibFunc_floorl:
- return Intrinsic::floor;
- case LibFunc_ceil:
- case LibFunc_ceilf:
- case LibFunc_ceill:
- return Intrinsic::ceil;
- case LibFunc_trunc:
- case LibFunc_truncf:
- case LibFunc_truncl:
- return Intrinsic::trunc;
- case LibFunc_rint:
- case LibFunc_rintf:
- case LibFunc_rintl:
- return Intrinsic::rint;
- case LibFunc_nearbyint:
- case LibFunc_nearbyintf:
- case LibFunc_nearbyintl:
- return Intrinsic::nearbyint;
- case LibFunc_round:
- case LibFunc_roundf:
- case LibFunc_roundl:
- return Intrinsic::round;
- case LibFunc_pow:
- case LibFunc_powf:
- case LibFunc_powl:
- return Intrinsic::pow;
- case LibFunc_sqrt:
- case LibFunc_sqrtf:
- case LibFunc_sqrtl:
- return Intrinsic::sqrt;
- }
-
- return Intrinsic::not_intrinsic;
-}
-
-/// Return true if we can prove that the specified FP value is never equal to
-/// -0.0.
-///
-/// NOTE: this function will need to be revisited when we support non-default
-/// rounding modes!
-bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
- unsigned Depth) {
- if (auto *CFP = dyn_cast<ConstantFP>(V))
- return !CFP->getValueAPF().isNegZero();
-
- // Limit search depth.
- if (Depth == MaxDepth)
- return false;
-
- auto *Op = dyn_cast<Operator>(V);
- if (!Op)
- return false;
-
- // Check if the nsz fast-math flag is set.
- if (auto *FPO = dyn_cast<FPMathOperator>(Op))
- if (FPO->hasNoSignedZeros())
- return true;
-
- // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0.
- if (match(Op, m_FAdd(m_Value(), m_PosZeroFP())))
- return true;
-
- // sitofp and uitofp turn into +0.0 for zero.
- if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op))
- return true;
-
- if (auto *Call = dyn_cast<CallInst>(Op)) {
- Intrinsic::ID IID = getIntrinsicForCallSite(Call, TLI);
- switch (IID) {
- default:
- break;
- // sqrt(-0.0) = -0.0, no other negative results are possible.
- case Intrinsic::sqrt:
- case Intrinsic::canonicalize:
- return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1);
- // fabs(x) != -0.0
- case Intrinsic::fabs:
- return true;
- }
- }
-
- return false;
-}
-
-/// If \p SignBitOnly is true, test for a known 0 sign bit rather than a
-/// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign
-/// bit despite comparing equal.
-static bool cannotBeOrderedLessThanZeroImpl(const Value *V,
- const TargetLibraryInfo *TLI,
- bool SignBitOnly,
- unsigned Depth) {
- // TODO: This function does not do the right thing when SignBitOnly is true
- // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform
- // which flips the sign bits of NaNs. See
- // https://llvm.org/bugs/show_bug.cgi?id=31702.
-
- if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
- return !CFP->getValueAPF().isNegative() ||
- (!SignBitOnly && CFP->getValueAPF().isZero());
- }
-
- // Handle vector of constants.
- if (auto *CV = dyn_cast<Constant>(V)) {
- if (CV->getType()->isVectorTy()) {
- unsigned NumElts = CV->getType()->getVectorNumElements();
- for (unsigned i = 0; i != NumElts; ++i) {
- auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i));
- if (!CFP)
- return false;
- if (CFP->getValueAPF().isNegative() &&
- (SignBitOnly || !CFP->getValueAPF().isZero()))
- return false;
- }
-
- // All non-negative ConstantFPs.
- return true;
- }
- }
-
- if (Depth == MaxDepth)
- return false; // Limit search depth.
-
- const Operator *I = dyn_cast<Operator>(V);
- if (!I)
- return false;
-
- switch (I->getOpcode()) {
- default:
- break;
- // Unsigned integers are always nonnegative.
- case Instruction::UIToFP:
- return true;
- case Instruction::FMul:
- // x*x is always non-negative or a NaN.
- if (I->getOperand(0) == I->getOperand(1) &&
- (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()))
- return true;
-
- LLVM_FALLTHROUGH;
- case Instruction::FAdd:
- case Instruction::FDiv:
- case Instruction::FRem:
- return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
- Depth + 1) &&
- cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
- Depth + 1);
- case Instruction::Select:
- return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
- Depth + 1) &&
- cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
- Depth + 1);
- case Instruction::FPExt:
- case Instruction::FPTrunc:
- // Widening/narrowing never change sign.
- return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
- Depth + 1);
- case Instruction::ExtractElement:
- // Look through extract element. At the moment we keep this simple and skip
- // tracking the specific element. But at least we might find information
- // valid for all elements of the vector.
- return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
- Depth + 1);
- case Instruction::Call:
- const auto *CI = cast<CallInst>(I);
- Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
- switch (IID) {
- default:
- break;
- case Intrinsic::maxnum:
- return (isKnownNeverNaN(I->getOperand(0), TLI) &&
- cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI,
- SignBitOnly, Depth + 1)) ||
- (isKnownNeverNaN(I->getOperand(1), TLI) &&
- cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI,
- SignBitOnly, Depth + 1));
-
- case Intrinsic::maximum:
- return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
- Depth + 1) ||
- cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
- Depth + 1);
- case Intrinsic::minnum:
- case Intrinsic::minimum:
- return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
- Depth + 1) &&
- cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
- Depth + 1);
- case Intrinsic::exp:
- case Intrinsic::exp2:
- case Intrinsic::fabs:
- return true;
-
- case Intrinsic::sqrt:
- // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0.
- if (!SignBitOnly)
- return true;
- return CI->hasNoNaNs() && (CI->hasNoSignedZeros() ||
- CannotBeNegativeZero(CI->getOperand(0), TLI));
-
- case Intrinsic::powi:
- if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) {
- // powi(x,n) is non-negative if n is even.
- if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0)
- return true;
- }
- // TODO: This is not correct. Given that exp is an integer, here are the
- // ways that pow can return a negative value:
- //
- // pow(x, exp) --> negative if exp is odd and x is negative.
- // pow(-0, exp) --> -inf if exp is negative odd.
- // pow(-0, exp) --> -0 if exp is positive odd.
- // pow(-inf, exp) --> -0 if exp is negative odd.
- // pow(-inf, exp) --> -inf if exp is positive odd.
- //
- // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN,
- // but we must return false if x == -0. Unfortunately we do not currently
- // have a way of expressing this constraint. See details in
- // https://llvm.org/bugs/show_bug.cgi?id=31702.
- return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
- Depth + 1);
-
- case Intrinsic::fma:
- case Intrinsic::fmuladd:
- // x*x+y is non-negative if y is non-negative.
- return I->getOperand(0) == I->getOperand(1) &&
- (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) &&
- cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
- Depth + 1);
- }
- break;
- }
- return false;
-}
-
-bool llvm::CannotBeOrderedLessThanZero(const Value *V,
- const TargetLibraryInfo *TLI) {
- return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0);
-}
-
-bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) {
- return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0);
-}
-
-bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI,
- unsigned Depth) {
- assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type");
-
- // If we're told that NaNs won't happen, assume they won't.
- if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
- if (FPMathOp->hasNoNaNs())
- return true;
-
- // Handle scalar constants.
- if (auto *CFP = dyn_cast<ConstantFP>(V))
- return !CFP->isNaN();
-
- if (Depth == MaxDepth)
- return false;
-
- if (auto *Inst = dyn_cast<Instruction>(V)) {
- switch (Inst->getOpcode()) {
- case Instruction::FAdd:
- case Instruction::FMul:
- case Instruction::FSub:
- case Instruction::FDiv:
- case Instruction::FRem: {
- // TODO: Need isKnownNeverInfinity
- return false;
- }
- case Instruction::Select: {
- return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
- isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1);
- }
- case Instruction::SIToFP:
- case Instruction::UIToFP:
- return true;
- case Instruction::FPTrunc:
- case Instruction::FPExt:
- return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1);
- default:
- break;
- }
- }
-
- if (const auto *II = dyn_cast<IntrinsicInst>(V)) {
- switch (II->getIntrinsicID()) {
- case Intrinsic::canonicalize:
- case Intrinsic::fabs:
- case Intrinsic::copysign:
- case Intrinsic::exp:
- case Intrinsic::exp2:
- case Intrinsic::floor:
- case Intrinsic::ceil:
- case Intrinsic::trunc:
- case Intrinsic::rint:
- case Intrinsic::nearbyint:
- case Intrinsic::round:
- return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1);
- case Intrinsic::sqrt:
- return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) &&
- CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI);
- default:
- return false;
- }
- }
-
- // Bail out for constant expressions, but try to handle vector constants.
- if (!V->getType()->isVectorTy() || !isa<Constant>(V))
- return false;
-
- // For vectors, verify that each element is not NaN.
- unsigned NumElts = V->getType()->getVectorNumElements();
- for (unsigned i = 0; i != NumElts; ++i) {
- Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
- if (!Elt)
- return false;
- if (isa<UndefValue>(Elt))
- continue;
- auto *CElt = dyn_cast<ConstantFP>(Elt);
- if (!CElt || CElt->isNaN())
- return false;
- }
- // All elements were confirmed not-NaN or undefined.
- return true;
-}
-
-Value *llvm::isBytewiseValue(Value *V) {
-
- // All byte-wide stores are splatable, even of arbitrary variables.
- if (V->getType()->isIntegerTy(8))
- return V;
-
- LLVMContext &Ctx = V->getContext();
-
- // Undef don't care.
- auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx));
- if (isa<UndefValue>(V))
- return UndefInt8;
-
- Constant *C = dyn_cast<Constant>(V);
- if (!C) {
- // Conceptually, we could handle things like:
- // %a = zext i8 %X to i16
- // %b = shl i16 %a, 8
- // %c = or i16 %a, %b
- // but until there is an example that actually needs this, it doesn't seem
- // worth worrying about.
- return nullptr;
- }
-
- // Handle 'null' ConstantArrayZero etc.
- if (C->isNullValue())
- return Constant::getNullValue(Type::getInt8Ty(Ctx));
-
- // Constant floating-point values can be handled as integer values if the
- // corresponding integer value is "byteable". An important case is 0.0.
- if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
- Type *Ty = nullptr;
- if (CFP->getType()->isHalfTy())
- Ty = Type::getInt16Ty(Ctx);
- else if (CFP->getType()->isFloatTy())
- Ty = Type::getInt32Ty(Ctx);
- else if (CFP->getType()->isDoubleTy())
- Ty = Type::getInt64Ty(Ctx);
- // Don't handle long double formats, which have strange constraints.
- return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty)) : nullptr;
- }
-
- // We can handle constant integers that are multiple of 8 bits.
- if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
- if (CI->getBitWidth() % 8 == 0) {
- assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
- if (!CI->getValue().isSplat(8))
- return nullptr;
- return ConstantInt::get(Ctx, CI->getValue().trunc(8));
- }
- }
-
- auto Merge = [&](Value *LHS, Value *RHS) -> Value * {
- if (LHS == RHS)
- return LHS;
- if (!LHS || !RHS)
- return nullptr;
- if (LHS == UndefInt8)
- return RHS;
- if (RHS == UndefInt8)
- return LHS;
- return nullptr;
- };
-
- if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) {
- Value *Val = UndefInt8;
- for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I)
- if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I)))))
- return nullptr;
- return Val;
- }
-
- if (isa<ConstantVector>(C)) {
- Constant *Splat = cast<ConstantVector>(C)->getSplatValue();
- return Splat ? isBytewiseValue(Splat) : nullptr;
- }
-
- if (isa<ConstantArray>(C) || isa<ConstantStruct>(C)) {
- Value *Val = UndefInt8;
- for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I)
- if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I)))))
- return nullptr;
- return Val;
- }
-
- // Don't try to handle the handful of other constants.
- return nullptr;
-}
-
-// This is the recursive version of BuildSubAggregate. It takes a few different
-// arguments. Idxs is the index within the nested struct From that we are
-// looking at now (which is of type IndexedType). IdxSkip is the number of
-// indices from Idxs that should be left out when inserting into the resulting
-// struct. To is the result struct built so far, new insertvalue instructions
-// build on that.
-static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
- SmallVectorImpl<unsigned> &Idxs,
- unsigned IdxSkip,
- Instruction *InsertBefore) {
- StructType *STy = dyn_cast<StructType>(IndexedType);
- if (STy) {
- // Save the original To argument so we can modify it
- Value *OrigTo = To;
- // General case, the type indexed by Idxs is a struct
- for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
- // Process each struct element recursively
- Idxs.push_back(i);
- Value *PrevTo = To;
- To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
- InsertBefore);
- Idxs.pop_back();
- if (!To) {
- // Couldn't find any inserted value for this index? Cleanup
- while (PrevTo != OrigTo) {
- InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
- PrevTo = Del->getAggregateOperand();
- Del->eraseFromParent();
- }
- // Stop processing elements
- break;
- }
- }
- // If we successfully found a value for each of our subaggregates
- if (To)
- return To;
- }
- // Base case, the type indexed by SourceIdxs is not a struct, or not all of
- // the struct's elements had a value that was inserted directly. In the latter
- // case, perhaps we can't determine each of the subelements individually, but
- // we might be able to find the complete struct somewhere.
-
- // Find the value that is at that particular spot
- Value *V = FindInsertedValue(From, Idxs);
-
- if (!V)
- return nullptr;
-
- // Insert the value in the new (sub) aggregate
- return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
- "tmp", InsertBefore);
-}
-
-// This helper takes a nested struct and extracts a part of it (which is again a
-// struct) into a new value. For example, given the struct:
-// { a, { b, { c, d }, e } }
-// and the indices "1, 1" this returns
-// { c, d }.
-//
-// It does this by inserting an insertvalue for each element in the resulting
-// struct, as opposed to just inserting a single struct. This will only work if
-// each of the elements of the substruct are known (ie, inserted into From by an
-// insertvalue instruction somewhere).
-//
-// All inserted insertvalue instructions are inserted before InsertBefore
-static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
- Instruction *InsertBefore) {
- assert(InsertBefore && "Must have someplace to insert!");
- Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
- idx_range);
- Value *To = UndefValue::get(IndexedType);
- SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
- unsigned IdxSkip = Idxs.size();
-
- return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
-}
-
-/// Given an aggregate and a sequence of indices, see if the scalar value
-/// indexed is already around as a register, for example if it was inserted
-/// directly into the aggregate.
-///
-/// If InsertBefore is not null, this function will duplicate (modified)
-/// insertvalues when a part of a nested struct is extracted.
-Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
- Instruction *InsertBefore) {
- // Nothing to index? Just return V then (this is useful at the end of our
- // recursion).
- if (idx_range.empty())
- return V;
- // We have indices, so V should have an indexable type.
- assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
- "Not looking at a struct or array?");
- assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
- "Invalid indices for type?");
-
- if (Constant *C = dyn_cast<Constant>(V)) {
- C = C->getAggregateElement(idx_range[0]);
- if (!C) return nullptr;
- return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
- }
-
- if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
- // Loop the indices for the insertvalue instruction in parallel with the
- // requested indices
- const unsigned *req_idx = idx_range.begin();
- for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
- i != e; ++i, ++req_idx) {
- if (req_idx == idx_range.end()) {
- // We can't handle this without inserting insertvalues
- if (!InsertBefore)
- return nullptr;
-
- // The requested index identifies a part of a nested aggregate. Handle
- // this specially. For example,
- // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
- // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
- // %C = extractvalue {i32, { i32, i32 } } %B, 1
- // This can be changed into
- // %A = insertvalue {i32, i32 } undef, i32 10, 0
- // %C = insertvalue {i32, i32 } %A, i32 11, 1
- // which allows the unused 0,0 element from the nested struct to be
- // removed.
- return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
- InsertBefore);
- }
-
- // This insert value inserts something else than what we are looking for.
- // See if the (aggregate) value inserted into has the value we are
- // looking for, then.
- if (*req_idx != *i)
- return FindInsertedValue(I->getAggregateOperand(), idx_range,
- InsertBefore);
- }
- // If we end up here, the indices of the insertvalue match with those
- // requested (though possibly only partially). Now we recursively look at
- // the inserted value, passing any remaining indices.
- return FindInsertedValue(I->getInsertedValueOperand(),
- makeArrayRef(req_idx, idx_range.end()),
- InsertBefore);
- }
-
- if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
- // If we're extracting a value from an aggregate that was extracted from
- // something else, we can extract from that something else directly instead.
- // However, we will need to chain I's indices with the requested indices.
-
- // Calculate the number of indices required
- unsigned size = I->getNumIndices() + idx_range.size();
- // Allocate some space to put the new indices in
- SmallVector<unsigned, 5> Idxs;
- Idxs.reserve(size);
- // Add indices from the extract value instruction
- Idxs.append(I->idx_begin(), I->idx_end());
-
- // Add requested indices
- Idxs.append(idx_range.begin(), idx_range.end());
-
- assert(Idxs.size() == size
- && "Number of indices added not correct?");
-
- return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
- }
- // Otherwise, we don't know (such as, extracting from a function return value
- // or load instruction)
- return nullptr;
-}
-
-/// Analyze the specified pointer to see if it can be expressed as a base
-/// pointer plus a constant offset. Return the base and offset to the caller.
-Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
- const DataLayout &DL) {
- unsigned BitWidth = DL.getIndexTypeSizeInBits(Ptr->getType());
- APInt ByteOffset(BitWidth, 0);
-
- // We walk up the defs but use a visited set to handle unreachable code. In
- // that case, we stop after accumulating the cycle once (not that it
- // matters).
- SmallPtrSet<Value *, 16> Visited;
- while (Visited.insert(Ptr).second) {
- if (Ptr->getType()->isVectorTy())
- break;
-
- if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
- // If one of the values we have visited is an addrspacecast, then
- // the pointer type of this GEP may be different from the type
- // of the Ptr parameter which was passed to this function. This
- // means when we construct GEPOffset, we need to use the size
- // of GEP's pointer type rather than the size of the original
- // pointer type.
- APInt GEPOffset(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
- if (!GEP->accumulateConstantOffset(DL, GEPOffset))
- break;
-
- APInt OrigByteOffset(ByteOffset);
- ByteOffset += GEPOffset.sextOrTrunc(ByteOffset.getBitWidth());
- if (ByteOffset.getMinSignedBits() > 64) {
- // Stop traversal if the pointer offset wouldn't fit into int64_t
- // (this should be removed if Offset is updated to an APInt)
- ByteOffset = OrigByteOffset;
- break;
- }
-
- Ptr = GEP->getPointerOperand();
- } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
- Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
- Ptr = cast<Operator>(Ptr)->getOperand(0);
- } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
- if (GA->isInterposable())
- break;
- Ptr = GA->getAliasee();
- } else {
- break;
- }
- }
- Offset = ByteOffset.getSExtValue();
- return Ptr;
-}
-
-bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP,
- unsigned CharSize) {
- // Make sure the GEP has exactly three arguments.
- if (GEP->getNumOperands() != 3)
- return false;
-
- // Make sure the index-ee is a pointer to array of \p CharSize integers.
- // CharSize.
- ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
- if (!AT || !AT->getElementType()->isIntegerTy(CharSize))
- return false;
-
- // Check to make sure that the first operand of the GEP is an integer and
- // has value 0 so that we are sure we're indexing into the initializer.
- const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
- if (!FirstIdx || !FirstIdx->isZero())
- return false;
-
- return true;
-}
-
-bool llvm::getConstantDataArrayInfo(const Value *V,
- ConstantDataArraySlice &Slice,
- unsigned ElementSize, uint64_t Offset) {
- assert(V);
-
- // Look through bitcast instructions and geps.
- V = V->stripPointerCasts();
-
- // If the value is a GEP instruction or constant expression, treat it as an
- // offset.
- if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
- // The GEP operator should be based on a pointer to string constant, and is
- // indexing into the string constant.
- if (!isGEPBasedOnPointerToString(GEP, ElementSize))
- return false;
-
- // If the second index isn't a ConstantInt, then this is a variable index
- // into the array. If this occurs, we can't say anything meaningful about
- // the string.
- uint64_t StartIdx = 0;
- if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
- StartIdx = CI->getZExtValue();
- else
- return false;
- return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize,
- StartIdx + Offset);
- }
-
- // The GEP instruction, constant or instruction, must reference a global
- // variable that is a constant and is initialized. The referenced constant
- // initializer is the array that we'll use for optimization.
- const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
- if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
- return false;
-
- const ConstantDataArray *Array;
- ArrayType *ArrayTy;
- if (GV->getInitializer()->isNullValue()) {
- Type *GVTy = GV->getValueType();
- if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) {
- // A zeroinitializer for the array; there is no ConstantDataArray.
- Array = nullptr;
- } else {
- const DataLayout &DL = GV->getParent()->getDataLayout();
- uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy);
- uint64_t Length = SizeInBytes / (ElementSize / 8);
- if (Length <= Offset)
- return false;
-
- Slice.Array = nullptr;
- Slice.Offset = 0;
- Slice.Length = Length - Offset;
- return true;
- }
- } else {
- // This must be a ConstantDataArray.
- Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
- if (!Array)
- return false;
- ArrayTy = Array->getType();
- }
- if (!ArrayTy->getElementType()->isIntegerTy(ElementSize))
- return false;
-
- uint64_t NumElts = ArrayTy->getArrayNumElements();
- if (Offset > NumElts)
- return false;
-
- Slice.Array = Array;
- Slice.Offset = Offset;
- Slice.Length = NumElts - Offset;
- return true;
-}
-
-/// This function computes the length of a null-terminated C string pointed to
-/// by V. If successful, it returns true and returns the string in Str.
-/// If unsuccessful, it returns false.
-bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
- uint64_t Offset, bool TrimAtNul) {
- ConstantDataArraySlice Slice;
- if (!getConstantDataArrayInfo(V, Slice, 8, Offset))
- return false;
-
- if (Slice.Array == nullptr) {
- if (TrimAtNul) {
- Str = StringRef();
- return true;
- }
- if (Slice.Length == 1) {
- Str = StringRef("", 1);
- return true;
- }
- // We cannot instantiate a StringRef as we do not have an appropriate string
- // of 0s at hand.
- return false;
- }
-
- // Start out with the entire array in the StringRef.
- Str = Slice.Array->getAsString();
- // Skip over 'offset' bytes.
- Str = Str.substr(Slice.Offset);
-
- if (TrimAtNul) {
- // Trim off the \0 and anything after it. If the array is not nul
- // terminated, we just return the whole end of string. The client may know
- // some other way that the string is length-bound.
- Str = Str.substr(0, Str.find('\0'));
- }
- return true;
-}
-
-// These next two are very similar to the above, but also look through PHI
-// nodes.
-// TODO: See if we can integrate these two together.
-
-/// If we can compute the length of the string pointed to by
-/// the specified pointer, return 'len+1'. If we can't, return 0.
-static uint64_t GetStringLengthH(const Value *V,
- SmallPtrSetImpl<const PHINode*> &PHIs,
- unsigned CharSize) {
- // Look through noop bitcast instructions.
- V = V->stripPointerCasts();
-
- // If this is a PHI node, there are two cases: either we have already seen it
- // or we haven't.
- if (const PHINode *PN = dyn_cast<PHINode>(V)) {
- if (!PHIs.insert(PN).second)
- return ~0ULL; // already in the set.
-
- // If it was new, see if all the input strings are the same length.
- uint64_t LenSoFar = ~0ULL;
- for (Value *IncValue : PN->incoming_values()) {
- uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize);
- if (Len == 0) return 0; // Unknown length -> unknown.
-
- if (Len == ~0ULL) continue;
-
- if (Len != LenSoFar && LenSoFar != ~0ULL)
- return 0; // Disagree -> unknown.
- LenSoFar = Len;
- }
-
- // Success, all agree.
- return LenSoFar;
- }
-
- // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
- if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
- uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize);
- if (Len1 == 0) return 0;
- uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize);
- if (Len2 == 0) return 0;
- if (Len1 == ~0ULL) return Len2;
- if (Len2 == ~0ULL) return Len1;
- if (Len1 != Len2) return 0;
- return Len1;
- }
-
- // Otherwise, see if we can read the string.
- ConstantDataArraySlice Slice;
- if (!getConstantDataArrayInfo(V, Slice, CharSize))
- return 0;
-
- if (Slice.Array == nullptr)
- return 1;
-
- // Search for nul characters
- unsigned NullIndex = 0;
- for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) {
- if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0)
- break;
- }
-
- return NullIndex + 1;
-}
-
-/// If we can compute the length of the string pointed to by
-/// the specified pointer, return 'len+1'. If we can't, return 0.
-uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) {
- if (!V->getType()->isPointerTy())
- return 0;
-
- SmallPtrSet<const PHINode*, 32> PHIs;
- uint64_t Len = GetStringLengthH(V, PHIs, CharSize);
- // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
- // an empty string as a length.
- return Len == ~0ULL ? 1 : Len;
-}
-
-const Value *llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call) {
- assert(Call &&
- "getArgumentAliasingToReturnedPointer only works on nonnull calls");
- if (const Value *RV = Call->getReturnedArgOperand())
- return RV;
- // This can be used only as a aliasing property.
- if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(Call))
- return Call->getArgOperand(0);
- return nullptr;
-}
-
-bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
- const CallBase *Call) {
- return Call->getIntrinsicID() == Intrinsic::launder_invariant_group ||
- Call->getIntrinsicID() == Intrinsic::strip_invariant_group;
-}
-
-/// \p PN defines a loop-variant pointer to an object. Check if the
-/// previous iteration of the loop was referring to the same object as \p PN.
-static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
- const LoopInfo *LI) {
- // Find the loop-defined value.
- Loop *L = LI->getLoopFor(PN->getParent());
- if (PN->getNumIncomingValues() != 2)
- return true;
-
- // Find the value from previous iteration.
- auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
- if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
- PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
- if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
- return true;
-
- // If a new pointer is loaded in the loop, the pointer references a different
- // object in every iteration. E.g.:
- // for (i)
- // int *p = a[i];
- // ...
- if (auto *Load = dyn_cast<LoadInst>(PrevValue))
- if (!L->isLoopInvariant(Load->getPointerOperand()))
- return false;
- return true;
-}
-
-Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
- unsigned MaxLookup) {
- if (!V->getType()->isPointerTy())
- return V;
- for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
- if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
- V = GEP->getPointerOperand();
- } else if (Operator::getOpcode(V) == Instruction::BitCast ||
- Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
- V = cast<Operator>(V)->getOperand(0);
- } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
- if (GA->isInterposable())
- return V;
- V = GA->getAliasee();
- } else if (isa<AllocaInst>(V)) {
- // An alloca can't be further simplified.
- return V;
- } else {
- if (auto *Call = dyn_cast<CallBase>(V)) {
- // CaptureTracking can know about special capturing properties of some
- // intrinsics like launder.invariant.group, that can't be expressed with
- // the attributes, but have properties like returning aliasing pointer.
- // Because some analysis may assume that nocaptured pointer is not
- // returned from some special intrinsic (because function would have to
- // be marked with returns attribute), it is crucial to use this function
- // because it should be in sync with CaptureTracking. Not using it may
- // cause weird miscompilations where 2 aliasing pointers are assumed to
- // noalias.
- if (auto *RP = getArgumentAliasingToReturnedPointer(Call)) {
- V = RP;
- continue;
- }
- }
-
- // See if InstructionSimplify knows any relevant tricks.
- if (Instruction *I = dyn_cast<Instruction>(V))
- // TODO: Acquire a DominatorTree and AssumptionCache and use them.
- if (Value *Simplified = SimplifyInstruction(I, {DL, I})) {
- V = Simplified;
- continue;
- }
-
- return V;
- }
- assert(V->getType()->isPointerTy() && "Unexpected operand type!");
- }
- return V;
-}
-
-void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
- const DataLayout &DL, LoopInfo *LI,
- unsigned MaxLookup) {
- SmallPtrSet<Value *, 4> Visited;
- SmallVector<Value *, 4> Worklist;
- Worklist.push_back(V);
- do {
- Value *P = Worklist.pop_back_val();
- P = GetUnderlyingObject(P, DL, MaxLookup);
-
- if (!Visited.insert(P).second)
- continue;
-
- if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
- Worklist.push_back(SI->getTrueValue());
- Worklist.push_back(SI->getFalseValue());
- continue;
- }
-
- if (PHINode *PN = dyn_cast<PHINode>(P)) {
- // If this PHI changes the underlying object in every iteration of the
- // loop, don't look through it. Consider:
- // int **A;
- // for (i) {
- // Prev = Curr; // Prev = PHI (Prev_0, Curr)
- // Curr = A[i];
- // *Prev, *Curr;
- //
- // Prev is tracking Curr one iteration behind so they refer to different
- // underlying objects.
- if (!LI || !LI->isLoopHeader(PN->getParent()) ||
- isSameUnderlyingObjectInLoop(PN, LI))
- for (Value *IncValue : PN->incoming_values())
- Worklist.push_back(IncValue);
- continue;
- }
-
- Objects.push_back(P);
- } while (!Worklist.empty());
-}
-
-/// This is the function that does the work of looking through basic
-/// ptrtoint+arithmetic+inttoptr sequences.
-static const Value *getUnderlyingObjectFromInt(const Value *V) {
- do {
- if (const Operator *U = dyn_cast<Operator>(V)) {
- // If we find a ptrtoint, we can transfer control back to the
- // regular getUnderlyingObjectFromInt.
- if (U->getOpcode() == Instruction::PtrToInt)
- return U->getOperand(0);
- // If we find an add of a constant, a multiplied value, or a phi, it's
- // likely that the other operand will lead us to the base
- // object. We don't have to worry about the case where the
- // object address is somehow being computed by the multiply,
- // because our callers only care when the result is an
- // identifiable object.
- if (U->getOpcode() != Instruction::Add ||
- (!isa<ConstantInt>(U->getOperand(1)) &&
- Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
- !isa<PHINode>(U->getOperand(1))))
- return V;
- V = U->getOperand(0);
- } else {
- return V;
- }
- assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
- } while (true);
-}
-
-/// This is a wrapper around GetUnderlyingObjects and adds support for basic
-/// ptrtoint+arithmetic+inttoptr sequences.
-/// It returns false if unidentified object is found in GetUnderlyingObjects.
-bool llvm::getUnderlyingObjectsForCodeGen(const Value *V,
- SmallVectorImpl<Value *> &Objects,
- const DataLayout &DL) {
- SmallPtrSet<const Value *, 16> Visited;
- SmallVector<const Value *, 4> Working(1, V);
- do {
- V = Working.pop_back_val();
-
- SmallVector<Value *, 4> Objs;
- GetUnderlyingObjects(const_cast<Value *>(V), Objs, DL);
-
- for (Value *V : Objs) {
- if (!Visited.insert(V).second)
- continue;
- if (Operator::getOpcode(V) == Instruction::IntToPtr) {
- const Value *O =
- getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
- if (O->getType()->isPointerTy()) {
- Working.push_back(O);
- continue;
- }
- }
- // If GetUnderlyingObjects fails to find an identifiable object,
- // getUnderlyingObjectsForCodeGen also fails for safety.
- if (!isIdentifiedObject(V)) {
- Objects.clear();
- return false;
- }
- Objects.push_back(const_cast<Value *>(V));
- }
- } while (!Working.empty());
- return true;
-}
-
-/// Return true if the only users of this pointer are lifetime markers.
-bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
- for (const User *U : V->users()) {
- const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
- if (!II) return false;
-
- if (!II->isLifetimeStartOrEnd())
- return false;
- }
- return true;
-}
-
-bool llvm::isSafeToSpeculativelyExecute(const Value *V,
- const Instruction *CtxI,
- const DominatorTree *DT) {
- const Operator *Inst = dyn_cast<Operator>(V);
- if (!Inst)
- return false;
-
- for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
- if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
- if (C->canTrap())
- return false;
-
- switch (Inst->getOpcode()) {
- default:
- return true;
- case Instruction::UDiv:
- case Instruction::URem: {
- // x / y is undefined if y == 0.
- const APInt *V;
- if (match(Inst->getOperand(1), m_APInt(V)))
- return *V != 0;
- return false;
- }
- case Instruction::SDiv:
- case Instruction::SRem: {
- // x / y is undefined if y == 0 or x == INT_MIN and y == -1
- const APInt *Numerator, *Denominator;
- if (!match(Inst->getOperand(1), m_APInt(Denominator)))
- return false;
- // We cannot hoist this division if the denominator is 0.
- if (*Denominator == 0)
- return false;
- // It's safe to hoist if the denominator is not 0 or -1.
- if (*Denominator != -1)
- return true;
- // At this point we know that the denominator is -1. It is safe to hoist as
- // long we know that the numerator is not INT_MIN.
- if (match(Inst->getOperand(0), m_APInt(Numerator)))
- return !Numerator->isMinSignedValue();
- // The numerator *might* be MinSignedValue.
- return false;
- }
- case Instruction::Load: {
- const LoadInst *LI = cast<LoadInst>(Inst);
- if (!LI->isUnordered() ||
- // Speculative load may create a race that did not exist in the source.
- LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) ||
- // Speculative load may load data from dirty regions.
- LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress) ||
- LI->getFunction()->hasFnAttribute(Attribute::SanitizeHWAddress))
- return false;
- const DataLayout &DL = LI->getModule()->getDataLayout();
- return isDereferenceableAndAlignedPointer(LI->getPointerOperand(),
- LI->getAlignment(), DL, CtxI, DT);
- }
- case Instruction::Call: {
- auto *CI = cast<const CallInst>(Inst);
- const Function *Callee = CI->getCalledFunction();
-
- // The called function could have undefined behavior or side-effects, even
- // if marked readnone nounwind.
- return Callee && Callee->isSpeculatable();
- }
- case Instruction::VAArg:
- case Instruction::Alloca:
- case Instruction::Invoke:
- case Instruction::PHI:
- case Instruction::Store:
- case Instruction::Ret:
- case Instruction::Br:
- case Instruction::IndirectBr:
- case Instruction::Switch:
- case Instruction::Unreachable:
- case Instruction::Fence:
- case Instruction::AtomicRMW:
- case Instruction::AtomicCmpXchg:
- case Instruction::LandingPad:
- case Instruction::Resume:
- case Instruction::CatchSwitch:
- case Instruction::CatchPad:
- case Instruction::CatchRet:
- case Instruction::CleanupPad:
- case Instruction::CleanupRet:
- return false; // Misc instructions which have effects
- }
-}
-
-bool llvm::mayBeMemoryDependent(const Instruction &I) {
- return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
-}
-
-OverflowResult llvm::computeOverflowForUnsignedMul(
- const Value *LHS, const Value *RHS, const DataLayout &DL,
- AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
- bool UseInstrInfo) {
- // Multiplying n * m significant bits yields a result of n + m significant
- // bits. If the total number of significant bits does not exceed the
- // result bit width (minus 1), there is no overflow.
- // This means if we have enough leading zero bits in the operands
- // we can guarantee that the result does not overflow.
- // Ref: "Hacker's Delight" by Henry Warren
- unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
- KnownBits LHSKnown(BitWidth);
- KnownBits RHSKnown(BitWidth);
- computeKnownBits(LHS, LHSKnown, DL, /*Depth=*/0, AC, CxtI, DT, nullptr,
- UseInstrInfo);
- computeKnownBits(RHS, RHSKnown, DL, /*Depth=*/0, AC, CxtI, DT, nullptr,
- UseInstrInfo);
- // Note that underestimating the number of zero bits gives a more
- // conservative answer.
- unsigned ZeroBits = LHSKnown.countMinLeadingZeros() +
- RHSKnown.countMinLeadingZeros();
- // First handle the easy case: if we have enough zero bits there's
- // definitely no overflow.
- if (ZeroBits >= BitWidth)
- return OverflowResult::NeverOverflows;
-
- // Get the largest possible values for each operand.
- APInt LHSMax = ~LHSKnown.Zero;
- APInt RHSMax = ~RHSKnown.Zero;
-
- // We know the multiply operation doesn't overflow if the maximum values for
- // each operand will not overflow after we multiply them together.
- bool MaxOverflow;
- (void)LHSMax.umul_ov(RHSMax, MaxOverflow);
- if (!MaxOverflow)
- return OverflowResult::NeverOverflows;
-
- // We know it always overflows if multiplying the smallest possible values for
- // the operands also results in overflow.
- bool MinOverflow;
- (void)LHSKnown.One.umul_ov(RHSKnown.One, MinOverflow);
- if (MinOverflow)
- return OverflowResult::AlwaysOverflows;
-
- return OverflowResult::MayOverflow;
-}
-
-OverflowResult
-llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS,
- const DataLayout &DL, AssumptionCache *AC,
- const Instruction *CxtI,
- const DominatorTree *DT, bool UseInstrInfo) {
- // Multiplying n * m significant bits yields a result of n + m significant
- // bits. If the total number of significant bits does not exceed the
- // result bit width (minus 1), there is no overflow.
- // This means if we have enough leading sign bits in the operands
- // we can guarantee that the result does not overflow.
- // Ref: "Hacker's Delight" by Henry Warren
- unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
-
- // Note that underestimating the number of sign bits gives a more
- // conservative answer.
- unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) +
- ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT);
-
- // First handle the easy case: if we have enough sign bits there's
- // definitely no overflow.
- if (SignBits > BitWidth + 1)
- return OverflowResult::NeverOverflows;
-
- // There are two ambiguous cases where there can be no overflow:
- // SignBits == BitWidth + 1 and
- // SignBits == BitWidth
- // The second case is difficult to check, therefore we only handle the
- // first case.
- if (SignBits == BitWidth + 1) {
- // It overflows only when both arguments are negative and the true
- // product is exactly the minimum negative number.
- // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000
- // For simplicity we just check if at least one side is not negative.
- KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
- nullptr, UseInstrInfo);
- KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
- nullptr, UseInstrInfo);
- if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative())
- return OverflowResult::NeverOverflows;
- }
- return OverflowResult::MayOverflow;
-}
-
-OverflowResult llvm::computeOverflowForUnsignedAdd(
- const Value *LHS, const Value *RHS, const DataLayout &DL,
- AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
- bool UseInstrInfo) {
- KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
- nullptr, UseInstrInfo);
- if (LHSKnown.isNonNegative() || LHSKnown.isNegative()) {
- KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
- nullptr, UseInstrInfo);
-
- if (LHSKnown.isNegative() && RHSKnown.isNegative()) {
- // The sign bit is set in both cases: this MUST overflow.
- return OverflowResult::AlwaysOverflows;
- }
-
- if (LHSKnown.isNonNegative() && RHSKnown.isNonNegative()) {
- // The sign bit is clear in both cases: this CANNOT overflow.
- return OverflowResult::NeverOverflows;
- }
- }
-
- return OverflowResult::MayOverflow;
-}
-
-/// Return true if we can prove that adding the two values of the
-/// knownbits will not overflow.
-/// Otherwise return false.
-static bool checkRippleForSignedAdd(const KnownBits &LHSKnown,
- const KnownBits &RHSKnown) {
- // Addition of two 2's complement numbers having opposite signs will never
- // overflow.
- if ((LHSKnown.isNegative() && RHSKnown.isNonNegative()) ||
- (LHSKnown.isNonNegative() && RHSKnown.isNegative()))
- return true;
-
- // If either of the values is known to be non-negative, adding them can only
- // overflow if the second is also non-negative, so we can assume that.
- // Two non-negative numbers will only overflow if there is a carry to the
- // sign bit, so we can check if even when the values are as big as possible
- // there is no overflow to the sign bit.
- if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) {
- APInt MaxLHS = ~LHSKnown.Zero;
- MaxLHS.clearSignBit();
- APInt MaxRHS = ~RHSKnown.Zero;
- MaxRHS.clearSignBit();
- APInt Result = std::move(MaxLHS) + std::move(MaxRHS);
- return Result.isSignBitClear();
- }
-
- // If either of the values is known to be negative, adding them can only
- // overflow if the second is also negative, so we can assume that.
- // Two negative number will only overflow if there is no carry to the sign
- // bit, so we can check if even when the values are as small as possible
- // there is overflow to the sign bit.
- if (LHSKnown.isNegative() || RHSKnown.isNegative()) {
- APInt MinLHS = LHSKnown.One;
- MinLHS.clearSignBit();
- APInt MinRHS = RHSKnown.One;
- MinRHS.clearSignBit();
- APInt Result = std::move(MinLHS) + std::move(MinRHS);
- return Result.isSignBitSet();
- }
-
- // If we reached here it means that we know nothing about the sign bits.
- // In this case we can't know if there will be an overflow, since by
- // changing the sign bits any two values can be made to overflow.
- return false;
-}
-
-static OverflowResult computeOverflowForSignedAdd(const Value *LHS,
- const Value *RHS,
- const AddOperator *Add,
- const DataLayout &DL,
- AssumptionCache *AC,
- const Instruction *CxtI,
- const DominatorTree *DT) {
- if (Add && Add->hasNoSignedWrap()) {
- return OverflowResult::NeverOverflows;
- }
-
- // If LHS and RHS each have at least two sign bits, the addition will look
- // like
- //
- // XX..... +
- // YY.....
- //
- // If the carry into the most significant position is 0, X and Y can't both
- // be 1 and therefore the carry out of the addition is also 0.
- //
- // If the carry into the most significant position is 1, X and Y can't both
- // be 0 and therefore the carry out of the addition is also 1.
- //
- // Since the carry into the most significant position is always equal to
- // the carry out of the addition, there is no signed overflow.
- if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
- ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
- return OverflowResult::NeverOverflows;
-
- KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT);
- KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT);
-
- if (checkRippleForSignedAdd(LHSKnown, RHSKnown))
- return OverflowResult::NeverOverflows;
-
- // The remaining code needs Add to be available. Early returns if not so.
- if (!Add)
- return OverflowResult::MayOverflow;
-
- // If the sign of Add is the same as at least one of the operands, this add
- // CANNOT overflow. This is particularly useful when the sum is
- // @llvm.assume'ed non-negative rather than proved so from analyzing its
- // operands.
- bool LHSOrRHSKnownNonNegative =
- (LHSKnown.isNonNegative() || RHSKnown.isNonNegative());
- bool LHSOrRHSKnownNegative =
- (LHSKnown.isNegative() || RHSKnown.isNegative());
- if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
- KnownBits AddKnown = computeKnownBits(Add, DL, /*Depth=*/0, AC, CxtI, DT);
- if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) ||
- (AddKnown.isNegative() && LHSOrRHSKnownNegative)) {
- return OverflowResult::NeverOverflows;
- }
- }
-
- return OverflowResult::MayOverflow;
-}
-
-OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS,
- const Value *RHS,
- const DataLayout &DL,
- AssumptionCache *AC,
- const Instruction *CxtI,
- const DominatorTree *DT) {
- KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT);
- if (LHSKnown.isNonNegative() || LHSKnown.isNegative()) {
- KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT);
-
- // If the LHS is negative and the RHS is non-negative, no unsigned wrap.
- if (LHSKnown.isNegative() && RHSKnown.isNonNegative())
- return OverflowResult::NeverOverflows;
-
- // If the LHS is non-negative and the RHS negative, we always wrap.
- if (LHSKnown.isNonNegative() && RHSKnown.isNegative())
- return OverflowResult::AlwaysOverflows;
- }
-
- return OverflowResult::MayOverflow;
-}
-
-OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS,
- const Value *RHS,
- const DataLayout &DL,
- AssumptionCache *AC,
- const Instruction *CxtI,
- const DominatorTree *DT) {
- // If LHS and RHS each have at least two sign bits, the subtraction
- // cannot overflow.
- if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
- ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
- return OverflowResult::NeverOverflows;
-
- KnownBits LHSKnown = computeKnownBits(LHS, DL, 0, AC, CxtI, DT);
-
- KnownBits RHSKnown = computeKnownBits(RHS, DL, 0, AC, CxtI, DT);
-
- // Subtraction of two 2's complement numbers having identical signs will
- // never overflow.
- if ((LHSKnown.isNegative() && RHSKnown.isNegative()) ||
- (LHSKnown.isNonNegative() && RHSKnown.isNonNegative()))
- return OverflowResult::NeverOverflows;
-
- // TODO: implement logic similar to checkRippleForAdd
- return OverflowResult::MayOverflow;
-}
-
-bool llvm::isOverflowIntrinsicNoWrap(const IntrinsicInst *II,
- const DominatorTree &DT) {
-#ifndef NDEBUG
- auto IID = II->getIntrinsicID();
- assert((IID == Intrinsic::sadd_with_overflow ||
- IID == Intrinsic::uadd_with_overflow ||
- IID == Intrinsic::ssub_with_overflow ||
- IID == Intrinsic::usub_with_overflow ||
- IID == Intrinsic::smul_with_overflow ||
- IID == Intrinsic::umul_with_overflow) &&
- "Not an overflow intrinsic!");
-#endif
-
- SmallVector<const BranchInst *, 2> GuardingBranches;
- SmallVector<const ExtractValueInst *, 2> Results;
-
- for (const User *U : II->users()) {
- if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
- assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
-
- if (EVI->getIndices()[0] == 0)
- Results.push_back(EVI);
- else {
- assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
-
- for (const auto *U : EVI->users())
- if (const auto *B = dyn_cast<BranchInst>(U)) {
- assert(B->isConditional() && "How else is it using an i1?");
- GuardingBranches.push_back(B);
- }
- }
- } else {
- // We are using the aggregate directly in a way we don't want to analyze
- // here (storing it to a global, say).
- return false;
- }
- }
-
- auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
- BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
- if (!NoWrapEdge.isSingleEdge())
- return false;
-
- // Check if all users of the add are provably no-wrap.
- for (const auto *Result : Results) {
- // If the extractvalue itself is not executed on overflow, the we don't
- // need to check each use separately, since domination is transitive.
- if (DT.dominates(NoWrapEdge, Result->getParent()))
- continue;
-
- for (auto &RU : Result->uses())
- if (!DT.dominates(NoWrapEdge, RU))
- return false;
- }
-
- return true;
- };
-
- return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch);
-}
-
-
-OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
- const DataLayout &DL,
- AssumptionCache *AC,
- const Instruction *CxtI,
- const DominatorTree *DT) {
- return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
- Add, DL, AC, CxtI, DT);
-}
-
-OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS,
- const Value *RHS,
- const DataLayout &DL,
- AssumptionCache *AC,
- const Instruction *CxtI,
- const DominatorTree *DT) {
- return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
-}
-
-bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
- // A memory operation returns normally if it isn't volatile. A volatile
- // operation is allowed to trap.
- //
- // An atomic operation isn't guaranteed to return in a reasonable amount of
- // time because it's possible for another thread to interfere with it for an
- // arbitrary length of time, but programs aren't allowed to rely on that.
- if (const LoadInst *LI = dyn_cast<LoadInst>(I))
- return !LI->isVolatile();
- if (const StoreInst *SI = dyn_cast<StoreInst>(I))
- return !SI->isVolatile();
- if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
- return !CXI->isVolatile();
- if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
- return !RMWI->isVolatile();
- if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I))
- return !MII->isVolatile();
-
- // If there is no successor, then execution can't transfer to it.
- if (const auto *CRI = dyn_cast<CleanupReturnInst>(I))
- return !CRI->unwindsToCaller();
- if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I))
- return !CatchSwitch->unwindsToCaller();
- if (isa<ResumeInst>(I))
- return false;
- if (isa<ReturnInst>(I))
- return false;
- if (isa<UnreachableInst>(I))
- return false;
-
- // Calls can throw, or contain an infinite loop, or kill the process.
- if (auto CS = ImmutableCallSite(I)) {
- // Call sites that throw have implicit non-local control flow.
- if (!CS.doesNotThrow())
- return false;
-
- // Non-throwing call sites can loop infinitely, call exit/pthread_exit
- // etc. and thus not return. However, LLVM already assumes that
- //
- // - Thread exiting actions are modeled as writes to memory invisible to
- // the program.
- //
- // - Loops that don't have side effects (side effects are volatile/atomic
- // stores and IO) always terminate (see http://llvm.org/PR965).
- // Furthermore IO itself is also modeled as writes to memory invisible to
- // the program.
- //
- // We rely on those assumptions here, and use the memory effects of the call
- // target as a proxy for checking that it always returns.
-
- // FIXME: This isn't aggressive enough; a call which only writes to a global
- // is guaranteed to return.
- return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() ||
- match(I, m_Intrinsic<Intrinsic::assume>()) ||
- match(I, m_Intrinsic<Intrinsic::sideeffect>());
- }
-
- // Other instructions return normally.
- return true;
-}
-
-bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) {
- // TODO: This is slightly consdervative for invoke instruction since exiting
- // via an exception *is* normal control for them.
- for (auto I = BB->begin(), E = BB->end(); I != E; ++I)
- if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
- return false;
- return true;
-}
-
-bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
- const Loop *L) {
- // The loop header is guaranteed to be executed for every iteration.
- //
- // FIXME: Relax this constraint to cover all basic blocks that are
- // guaranteed to be executed at every iteration.
- if (I->getParent() != L->getHeader()) return false;
-
- for (const Instruction &LI : *L->getHeader()) {
- if (&LI == I) return true;
- if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
- }
- llvm_unreachable("Instruction not contained in its own parent basic block.");
-}
-
-bool llvm::propagatesFullPoison(const Instruction *I) {
- switch (I->getOpcode()) {
- case Instruction::Add:
- case Instruction::Sub:
- case Instruction::Xor:
- case Instruction::Trunc:
- case Instruction::BitCast:
- case Instruction::AddrSpaceCast:
- case Instruction::Mul:
- case Instruction::Shl:
- case Instruction::GetElementPtr:
- // These operations all propagate poison unconditionally. Note that poison
- // is not any particular value, so xor or subtraction of poison with
- // itself still yields poison, not zero.
- return true;
-
- case Instruction::AShr:
- case Instruction::SExt:
- // For these operations, one bit of the input is replicated across
- // multiple output bits. A replicated poison bit is still poison.
- return true;
-
- case Instruction::ICmp:
- // Comparing poison with any value yields poison. This is why, for
- // instance, x s< (x +nsw 1) can be folded to true.
- return true;
-
- default:
- return false;
- }
-}
-
-const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) {
- switch (I->getOpcode()) {
- case Instruction::Store:
- return cast<StoreInst>(I)->getPointerOperand();
-
- case Instruction::Load:
- return cast<LoadInst>(I)->getPointerOperand();
-
- case Instruction::AtomicCmpXchg:
- return cast<AtomicCmpXchgInst>(I)->getPointerOperand();
-
- case Instruction::AtomicRMW:
- return cast<AtomicRMWInst>(I)->getPointerOperand();
-
- case Instruction::UDiv:
- case Instruction::SDiv:
- case Instruction::URem:
- case Instruction::SRem:
- return I->getOperand(1);
-
- default:
- return nullptr;
- }
-}
-
-bool llvm::programUndefinedIfFullPoison(const Instruction *PoisonI) {
- // We currently only look for uses of poison values within the same basic
- // block, as that makes it easier to guarantee that the uses will be
- // executed given that PoisonI is executed.
- //
- // FIXME: Expand this to consider uses beyond the same basic block. To do
- // this, look out for the distinction between post-dominance and strong
- // post-dominance.
- const BasicBlock *BB = PoisonI->getParent();
-
- // Set of instructions that we have proved will yield poison if PoisonI
- // does.
- SmallSet<const Value *, 16> YieldsPoison;
- SmallSet<const BasicBlock *, 4> Visited;
- YieldsPoison.insert(PoisonI);
- Visited.insert(PoisonI->getParent());
-
- BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end();
-
- unsigned Iter = 0;
- while (Iter++ < MaxDepth) {
- for (auto &I : make_range(Begin, End)) {
- if (&I != PoisonI) {
- const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I);
- if (NotPoison != nullptr && YieldsPoison.count(NotPoison))
- return true;
- if (!isGuaranteedToTransferExecutionToSuccessor(&I))
- return false;
- }
-
- // Mark poison that propagates from I through uses of I.
- if (YieldsPoison.count(&I)) {
- for (const User *User : I.users()) {
- const Instruction *UserI = cast<Instruction>(User);
- if (propagatesFullPoison(UserI))
- YieldsPoison.insert(User);
- }
- }
- }
-
- if (auto *NextBB = BB->getSingleSuccessor()) {
- if (Visited.insert(NextBB).second) {
- BB = NextBB;
- Begin = BB->getFirstNonPHI()->getIterator();
- End = BB->end();
- continue;
- }
- }
-
- break;
- }
- return false;
-}
-
-static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
- if (FMF.noNaNs())
- return true;
-
- if (auto *C = dyn_cast<ConstantFP>(V))
- return !C->isNaN();
-
- if (auto *C = dyn_cast<ConstantDataVector>(V)) {
- if (!C->getElementType()->isFloatingPointTy())
- return false;
- for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
- if (C->getElementAsAPFloat(I).isNaN())
- return false;
- }
- return true;
- }
-
- return false;
-}
-
-static bool isKnownNonZero(const Value *V) {
- if (auto *C = dyn_cast<ConstantFP>(V))
- return !C->isZero();
-
- if (auto *C = dyn_cast<ConstantDataVector>(V)) {
- if (!C->getElementType()->isFloatingPointTy())
- return false;
- for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
- if (C->getElementAsAPFloat(I).isZero())
- return false;
- }
- return true;
- }
-
- return false;
-}
-
-/// Match clamp pattern for float types without care about NaNs or signed zeros.
-/// Given non-min/max outer cmp/select from the clamp pattern this
-/// function recognizes if it can be substitued by a "canonical" min/max
-/// pattern.
-static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred,
- Value *CmpLHS, Value *CmpRHS,
- Value *TrueVal, Value *FalseVal,
- Value *&LHS, Value *&RHS) {
- // Try to match
- // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2))
- // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2))
- // and return description of the outer Max/Min.
-
- // First, check if select has inverse order:
- if (CmpRHS == FalseVal) {
- std::swap(TrueVal, FalseVal);
- Pred = CmpInst::getInversePredicate(Pred);
- }
-
- // Assume success now. If there's no match, callers should not use these anyway.
- LHS = TrueVal;
- RHS = FalseVal;
-
- const APFloat *FC1;
- if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite())
- return {SPF_UNKNOWN, SPNB_NA, false};
-
- const APFloat *FC2;
- switch (Pred) {
- case CmpInst::FCMP_OLT:
- case CmpInst::FCMP_OLE:
- case CmpInst::FCMP_ULT:
- case CmpInst::FCMP_ULE:
- if (match(FalseVal,
- m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)),
- m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
- FC1->compare(*FC2) == APFloat::cmpResult::cmpLessThan)
- return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false};
- break;
- case CmpInst::FCMP_OGT:
- case CmpInst::FCMP_OGE:
- case CmpInst::FCMP_UGT:
- case CmpInst::FCMP_UGE:
- if (match(FalseVal,
- m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)),
- m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
- FC1->compare(*FC2) == APFloat::cmpResult::cmpGreaterThan)
- return {SPF_FMINNUM, SPNB_RETURNS_ANY, false};
- break;
- default:
- break;
- }
-
- return {SPF_UNKNOWN, SPNB_NA, false};
-}
-
-/// Recognize variations of:
-/// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v)))
-static SelectPatternResult matchClamp(CmpInst::Predicate Pred,
- Value *CmpLHS, Value *CmpRHS,
- Value *TrueVal, Value *FalseVal) {
- // Swap the select operands and predicate to match the patterns below.
- if (CmpRHS != TrueVal) {
- Pred = ICmpInst::getSwappedPredicate(Pred);
- std::swap(TrueVal, FalseVal);
- }
- const APInt *C1;
- if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) {
- const APInt *C2;
- // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1)
- if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) &&
- C1->slt(*C2) && Pred == CmpInst::ICMP_SLT)
- return {SPF_SMAX, SPNB_NA, false};
-
- // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1)
- if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) &&
- C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT)
- return {SPF_SMIN, SPNB_NA, false};
-
- // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1)
- if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) &&
- C1->ult(*C2) && Pred == CmpInst::ICMP_ULT)
- return {SPF_UMAX, SPNB_NA, false};
-
- // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1)
- if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) &&
- C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT)
- return {SPF_UMIN, SPNB_NA, false};
- }
- return {SPF_UNKNOWN, SPNB_NA, false};
-}
-
-/// Recognize variations of:
-/// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c))
-static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred,
- Value *CmpLHS, Value *CmpRHS,
- Value *TVal, Value *FVal,
- unsigned Depth) {
- // TODO: Allow FP min/max with nnan/nsz.
- assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison");
-
- Value *A, *B;
- SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1);
- if (!SelectPatternResult::isMinOrMax(L.Flavor))
- return {SPF_UNKNOWN, SPNB_NA, false};
-
- Value *C, *D;
- SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1);
- if (L.Flavor != R.Flavor)
- return {SPF_UNKNOWN, SPNB_NA, false};
-
- // We have something like: x Pred y ? min(a, b) : min(c, d).
- // Try to match the compare to the min/max operations of the select operands.
- // First, make sure we have the right compare predicate.
- switch (L.Flavor) {
- case SPF_SMIN:
- if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) {
- Pred = ICmpInst::getSwappedPredicate(Pred);
- std::swap(CmpLHS, CmpRHS);
- }
- if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
- break;
- return {SPF_UNKNOWN, SPNB_NA, false};
- case SPF_SMAX:
- if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) {
- Pred = ICmpInst::getSwappedPredicate(Pred);
- std::swap(CmpLHS, CmpRHS);
- }
- if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
- break;
- return {SPF_UNKNOWN, SPNB_NA, false};
- case SPF_UMIN:
- if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
- Pred = ICmpInst::getSwappedPredicate(Pred);
- std::swap(CmpLHS, CmpRHS);
- }
- if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE)
- break;
- return {SPF_UNKNOWN, SPNB_NA, false};
- case SPF_UMAX:
- if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
- Pred = ICmpInst::getSwappedPredicate(Pred);
- std::swap(CmpLHS, CmpRHS);
- }
- if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
- break;
- return {SPF_UNKNOWN, SPNB_NA, false};
- default:
- return {SPF_UNKNOWN, SPNB_NA, false};
- }
-
- // If there is a common operand in the already matched min/max and the other
- // min/max operands match the compare operands (either directly or inverted),
- // then this is min/max of the same flavor.
-
- // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
- // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
- if (D == B) {
- if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
- match(A, m_Not(m_Specific(CmpRHS)))))
- return {L.Flavor, SPNB_NA, false};
- }
- // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
- // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
- if (C == B) {
- if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
- match(A, m_Not(m_Specific(CmpRHS)))))
- return {L.Flavor, SPNB_NA, false};
- }
- // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
- // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
- if (D == A) {
- if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
- match(B, m_Not(m_Specific(CmpRHS)))))
- return {L.Flavor, SPNB_NA, false};
- }
- // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
- // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
- if (C == A) {
- if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
- match(B, m_Not(m_Specific(CmpRHS)))))
- return {L.Flavor, SPNB_NA, false};
- }
-
- return {SPF_UNKNOWN, SPNB_NA, false};
-}
-
-/// Match non-obvious integer minimum and maximum sequences.
-static SelectPatternResult matchMinMax(CmpInst::Predicate Pred,
- Value *CmpLHS, Value *CmpRHS,
- Value *TrueVal, Value *FalseVal,
- Value *&LHS, Value *&RHS,
- unsigned Depth) {
- // Assume success. If there's no match, callers should not use these anyway.
- LHS = TrueVal;
- RHS = FalseVal;
-
- SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal);
- if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
- return SPR;
-
- SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth);
- if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
- return SPR;
-
- if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT)
- return {SPF_UNKNOWN, SPNB_NA, false};
-
- // Z = X -nsw Y
- // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0)
- // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0)
- if (match(TrueVal, m_Zero()) &&
- match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
- return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
-
- // Z = X -nsw Y
- // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0)
- // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0)
- if (match(FalseVal, m_Zero()) &&
- match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
- return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
-
- const APInt *C1;
- if (!match(CmpRHS, m_APInt(C1)))
- return {SPF_UNKNOWN, SPNB_NA, false};
-
- // An unsigned min/max can be written with a signed compare.
- const APInt *C2;
- if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) ||
- (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) {
- // Is the sign bit set?
- // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX
- // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN
- if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() &&
- C2->isMaxSignedValue())
- return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
-
- // Is the sign bit clear?
- // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX
- // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN
- if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() &&
- C2->isMinSignedValue())
- return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
- }
-
- // Look through 'not' ops to find disguised signed min/max.
- // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C)
- // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C)
- if (match(TrueVal, m_Not(m_Specific(CmpLHS))) &&
- match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2)
- return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
-
- // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X)
- // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X)
- if (match(FalseVal, m_Not(m_Specific(CmpLHS))) &&
- match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2)
- return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
-
- return {SPF_UNKNOWN, SPNB_NA, false};
-}
-
-bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) {
- assert(X && Y && "Invalid operand");
-
- // X = sub (0, Y) || X = sub nsw (0, Y)
- if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) ||
- (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y)))))
- return true;
-
- // Y = sub (0, X) || Y = sub nsw (0, X)
- if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) ||
- (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X)))))
- return true;
-
- // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A)
- Value *A, *B;
- return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) &&
- match(Y, m_Sub(m_Specific(B), m_Specific(A))))) ||
- (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) &&
- match(Y, m_NSWSub(m_Specific(B), m_Specific(A)))));
-}
-
-static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
- FastMathFlags FMF,
- Value *CmpLHS, Value *CmpRHS,
- Value *TrueVal, Value *FalseVal,
- Value *&LHS, Value *&RHS,
- unsigned Depth) {
- if (CmpInst::isFPPredicate(Pred)) {
- // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one
- // 0.0 operand, set the compare's 0.0 operands to that same value for the
- // purpose of identifying min/max. Disregard vector constants with undefined
- // elements because those can not be back-propagated for analysis.
- Value *OutputZeroVal = nullptr;
- if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) &&
- !cast<Constant>(TrueVal)->containsUndefElement())
- OutputZeroVal = TrueVal;
- else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) &&
- !cast<Constant>(FalseVal)->containsUndefElement())
- OutputZeroVal = FalseVal;
-
- if (OutputZeroVal) {
- if (match(CmpLHS, m_AnyZeroFP()))
- CmpLHS = OutputZeroVal;
- if (match(CmpRHS, m_AnyZeroFP()))
- CmpRHS = OutputZeroVal;
- }
- }
-
- LHS = CmpLHS;
- RHS = CmpRHS;
-
- // Signed zero may return inconsistent results between implementations.
- // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
- // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
- // Therefore, we behave conservatively and only proceed if at least one of the
- // operands is known to not be zero or if we don't care about signed zero.
- switch (Pred) {
- default: break;
- // FIXME: Include OGT/OLT/UGT/ULT.
- case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
- case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
- if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
- !isKnownNonZero(CmpRHS))
- return {SPF_UNKNOWN, SPNB_NA, false};
- }
-
- SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
- bool Ordered = false;
-
- // When given one NaN and one non-NaN input:
- // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
- // - A simple C99 (a < b ? a : b) construction will return 'b' (as the
- // ordered comparison fails), which could be NaN or non-NaN.
- // so here we discover exactly what NaN behavior is required/accepted.
- if (CmpInst::isFPPredicate(Pred)) {
- bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
- bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
-
- if (LHSSafe && RHSSafe) {
- // Both operands are known non-NaN.
- NaNBehavior = SPNB_RETURNS_ANY;
- } else if (CmpInst::isOrdered(Pred)) {
- // An ordered comparison will return false when given a NaN, so it
- // returns the RHS.
- Ordered = true;
- if (LHSSafe)
- // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
- NaNBehavior = SPNB_RETURNS_NAN;
- else if (RHSSafe)
- NaNBehavior = SPNB_RETURNS_OTHER;
- else
- // Completely unsafe.
- return {SPF_UNKNOWN, SPNB_NA, false};
- } else {
- Ordered = false;
- // An unordered comparison will return true when given a NaN, so it
- // returns the LHS.
- if (LHSSafe)
- // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
- NaNBehavior = SPNB_RETURNS_OTHER;
- else if (RHSSafe)
- NaNBehavior = SPNB_RETURNS_NAN;
- else
- // Completely unsafe.
- return {SPF_UNKNOWN, SPNB_NA, false};
- }
- }
-
- if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
- std::swap(CmpLHS, CmpRHS);
- Pred = CmpInst::getSwappedPredicate(Pred);
- if (NaNBehavior == SPNB_RETURNS_NAN)
- NaNBehavior = SPNB_RETURNS_OTHER;
- else if (NaNBehavior == SPNB_RETURNS_OTHER)
- NaNBehavior = SPNB_RETURNS_NAN;
- Ordered = !Ordered;
- }
-
- // ([if]cmp X, Y) ? X : Y
- if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
- switch (Pred) {
- default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
- case ICmpInst::ICMP_UGT:
- case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
- case ICmpInst::ICMP_SGT:
- case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
- case ICmpInst::ICMP_ULT:
- case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
- case ICmpInst::ICMP_SLT:
- case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
- case FCmpInst::FCMP_UGT:
- case FCmpInst::FCMP_UGE:
- case FCmpInst::FCMP_OGT:
- case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
- case FCmpInst::FCMP_ULT:
- case FCmpInst::FCMP_ULE:
- case FCmpInst::FCMP_OLT:
- case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
- }
- }
-
- if (isKnownNegation(TrueVal, FalseVal)) {
- // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can
- // match against either LHS or sext(LHS).
- auto MaybeSExtCmpLHS =
- m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS)));
- auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes());
- auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One());
- if (match(TrueVal, MaybeSExtCmpLHS)) {
- // Set the return values. If the compare uses the negated value (-X >s 0),
- // swap the return values because the negated value is always 'RHS'.
- LHS = TrueVal;
- RHS = FalseVal;
- if (match(CmpLHS, m_Neg(m_Specific(FalseVal))))
- std::swap(LHS, RHS);
-
- // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X)
- // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X)
- if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
- return {SPF_ABS, SPNB_NA, false};
-
- // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X)
- // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X)
- if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
- return {SPF_NABS, SPNB_NA, false};
- }
- else if (match(FalseVal, MaybeSExtCmpLHS)) {
- // Set the return values. If the compare uses the negated value (-X >s 0),
- // swap the return values because the negated value is always 'RHS'.
- LHS = FalseVal;
- RHS = TrueVal;
- if (match(CmpLHS, m_Neg(m_Specific(TrueVal))))
- std::swap(LHS, RHS);
-
- // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X)
- // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X)
- if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
- return {SPF_NABS, SPNB_NA, false};
-
- // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X)
- // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X)
- if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
- return {SPF_ABS, SPNB_NA, false};
- }
- }
-
- if (CmpInst::isIntPredicate(Pred))
- return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth);
-
- // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar
- // may return either -0.0 or 0.0, so fcmp/select pair has stricter
- // semantics than minNum. Be conservative in such case.
- if (NaNBehavior != SPNB_RETURNS_ANY ||
- (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
- !isKnownNonZero(CmpRHS)))
- return {SPF_UNKNOWN, SPNB_NA, false};
-
- return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
-}
-
-/// Helps to match a select pattern in case of a type mismatch.
-///
-/// The function processes the case when type of true and false values of a
-/// select instruction differs from type of the cmp instruction operands because
-/// of a cast instruction. The function checks if it is legal to move the cast
-/// operation after "select". If yes, it returns the new second value of
-/// "select" (with the assumption that cast is moved):
-/// 1. As operand of cast instruction when both values of "select" are same cast
-/// instructions.
-/// 2. As restored constant (by applying reverse cast operation) when the first
-/// value of the "select" is a cast operation and the second value is a
-/// constant.
-/// NOTE: We return only the new second value because the first value could be
-/// accessed as operand of cast instruction.
-static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
- Instruction::CastOps *CastOp) {
- auto *Cast1 = dyn_cast<CastInst>(V1);
- if (!Cast1)
- return nullptr;
-
- *CastOp = Cast1->getOpcode();
- Type *SrcTy = Cast1->getSrcTy();
- if (auto *Cast2 = dyn_cast<CastInst>(V2)) {
- // If V1 and V2 are both the same cast from the same type, look through V1.
- if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy())
- return Cast2->getOperand(0);
- return nullptr;
- }
-
- auto *C = dyn_cast<Constant>(V2);
- if (!C)
- return nullptr;
-
- Constant *CastedTo = nullptr;
- switch (*CastOp) {
- case Instruction::ZExt:
- if (CmpI->isUnsigned())
- CastedTo = ConstantExpr::getTrunc(C, SrcTy);
- break;
- case Instruction::SExt:
- if (CmpI->isSigned())
- CastedTo = ConstantExpr::getTrunc(C, SrcTy, true);
- break;
- case Instruction::Trunc:
- Constant *CmpConst;
- if (match(CmpI->getOperand(1), m_Constant(CmpConst)) &&
- CmpConst->getType() == SrcTy) {
- // Here we have the following case:
- //
- // %cond = cmp iN %x, CmpConst
- // %tr = trunc iN %x to iK
- // %narrowsel = select i1 %cond, iK %t, iK C
- //
- // We can always move trunc after select operation:
- //
- // %cond = cmp iN %x, CmpConst
- // %widesel = select i1 %cond, iN %x, iN CmpConst
- // %tr = trunc iN %widesel to iK
- //
- // Note that C could be extended in any way because we don't care about
- // upper bits after truncation. It can't be abs pattern, because it would
- // look like:
- //
- // select i1 %cond, x, -x.
- //
- // So only min/max pattern could be matched. Such match requires widened C
- // == CmpConst. That is why set widened C = CmpConst, condition trunc
- // CmpConst == C is checked below.
- CastedTo = CmpConst;
- } else {
- CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned());
- }
- break;
- case Instruction::FPTrunc:
- CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true);
- break;
- case Instruction::FPExt:
- CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true);
- break;
- case Instruction::FPToUI:
- CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true);
- break;
- case Instruction::FPToSI:
- CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true);
- break;
- case Instruction::UIToFP:
- CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true);
- break;
- case Instruction::SIToFP:
- CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true);
- break;
- default:
- break;
- }
-
- if (!CastedTo)
- return nullptr;
-
- // Make sure the cast doesn't lose any information.
- Constant *CastedBack =
- ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true);
- if (CastedBack != C)
- return nullptr;
-
- return CastedTo;
-}
-
-SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
- Instruction::CastOps *CastOp,
- unsigned Depth) {
- if (Depth >= MaxDepth)
- return {SPF_UNKNOWN, SPNB_NA, false};
-
- SelectInst *SI = dyn_cast<SelectInst>(V);
- if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
-
- CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
- if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
-
- CmpInst::Predicate Pred = CmpI->getPredicate();
- Value *CmpLHS = CmpI->getOperand(0);
- Value *CmpRHS = CmpI->getOperand(1);
- Value *TrueVal = SI->getTrueValue();
- Value *FalseVal = SI->getFalseValue();
- FastMathFlags FMF;
- if (isa<FPMathOperator>(CmpI))
- FMF = CmpI->getFastMathFlags();
-
- // Bail out early.
- if (CmpI->isEquality())
- return {SPF_UNKNOWN, SPNB_NA, false};
-
- // Deal with type mismatches.
- if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
- if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) {
- // If this is a potential fmin/fmax with a cast to integer, then ignore
- // -0.0 because there is no corresponding integer value.
- if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
- FMF.setNoSignedZeros();
- return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
- cast<CastInst>(TrueVal)->getOperand(0), C,
- LHS, RHS, Depth);
- }
- if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) {
- // If this is a potential fmin/fmax with a cast to integer, then ignore
- // -0.0 because there is no corresponding integer value.
- if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
- FMF.setNoSignedZeros();
- return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
- C, cast<CastInst>(FalseVal)->getOperand(0),
- LHS, RHS, Depth);
- }
- }
- return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
- LHS, RHS, Depth);
-}
-
-CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) {
- if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT;
- if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT;
- if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT;
- if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT;
- if (SPF == SPF_FMINNUM)
- return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT;
- if (SPF == SPF_FMAXNUM)
- return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT;
- llvm_unreachable("unhandled!");
-}
-
-SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) {
- if (SPF == SPF_SMIN) return SPF_SMAX;
- if (SPF == SPF_UMIN) return SPF_UMAX;
- if (SPF == SPF_SMAX) return SPF_SMIN;
- if (SPF == SPF_UMAX) return SPF_UMIN;
- llvm_unreachable("unhandled!");
-}
-
-CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) {
- return getMinMaxPred(getInverseMinMaxFlavor(SPF));
-}
-
-/// Return true if "icmp Pred LHS RHS" is always true.
-static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS,
- const Value *RHS, const DataLayout &DL,
- unsigned Depth) {
- assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
- if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
- return true;
-
- switch (Pred) {
- default:
- return false;
-
- case CmpInst::ICMP_SLE: {
- const APInt *C;
-
- // LHS s<= LHS +_{nsw} C if C >= 0
- if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
- return !C->isNegative();
- return false;
- }
-
- case CmpInst::ICMP_ULE: {
- const APInt *C;
-
- // LHS u<= LHS +_{nuw} C for any C
- if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
- return true;
-
- // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
- auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B,
- const Value *&X,
- const APInt *&CA, const APInt *&CB) {
- if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
- match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
- return true;
-
- // If X & C == 0 then (X | C) == X +_{nuw} C
- if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
- match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
- KnownBits Known(CA->getBitWidth());
- computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr,
- /*CxtI*/ nullptr, /*DT*/ nullptr);
- if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero))
- return true;
- }
-
- return false;
- };
-
- const Value *X;
- const APInt *CLHS, *CRHS;
- if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
- return CLHS->ule(*CRHS);
-
- return false;
- }
- }
-}
-
-/// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
-/// ALHS ARHS" is true. Otherwise, return None.
-static Optional<bool>
-isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
- const Value *ARHS, const Value *BLHS, const Value *BRHS,
- const DataLayout &DL, unsigned Depth) {
- switch (Pred) {
- default:
- return None;
-
- case CmpInst::ICMP_SLT:
- case CmpInst::ICMP_SLE:
- if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) &&
- isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth))
- return true;
- return None;
-
- case CmpInst::ICMP_ULT:
- case CmpInst::ICMP_ULE:
- if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) &&
- isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth))
- return true;
- return None;
- }
-}
-
-/// Return true if the operands of the two compares match. IsSwappedOps is true
-/// when the operands match, but are swapped.
-static bool isMatchingOps(const Value *ALHS, const Value *ARHS,
- const Value *BLHS, const Value *BRHS,
- bool &IsSwappedOps) {
-
- bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
- IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
- return IsMatchingOps || IsSwappedOps;
-}
-
-/// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true.
-/// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false.
-/// Otherwise, return None if we can't infer anything.
-static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
- CmpInst::Predicate BPred,
- bool AreSwappedOps) {
- // Canonicalize the predicate as if the operands were not commuted.
- if (AreSwappedOps)
- BPred = ICmpInst::getSwappedPredicate(BPred);
-
- if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
- return true;
- if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
- return false;
-
- return None;
-}
-
-/// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true.
-/// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false.
-/// Otherwise, return None if we can't infer anything.
-static Optional<bool>
-isImpliedCondMatchingImmOperands(CmpInst::Predicate APred,
- const ConstantInt *C1,
- CmpInst::Predicate BPred,
- const ConstantInt *C2) {
- ConstantRange DomCR =
- ConstantRange::makeExactICmpRegion(APred, C1->getValue());
- ConstantRange CR =
- ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue());
- ConstantRange Intersection = DomCR.intersectWith(CR);
- ConstantRange Difference = DomCR.difference(CR);
- if (Intersection.isEmptySet())
- return false;
- if (Difference.isEmptySet())
- return true;
- return None;
-}
-
-/// Return true if LHS implies RHS is true. Return false if LHS implies RHS is
-/// false. Otherwise, return None if we can't infer anything.
-static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS,
- const ICmpInst *RHS,
- const DataLayout &DL, bool LHSIsTrue,
- unsigned Depth) {
- Value *ALHS = LHS->getOperand(0);
- Value *ARHS = LHS->getOperand(1);
- // The rest of the logic assumes the LHS condition is true. If that's not the
- // case, invert the predicate to make it so.
- ICmpInst::Predicate APred =
- LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate();
-
- Value *BLHS = RHS->getOperand(0);
- Value *BRHS = RHS->getOperand(1);
- ICmpInst::Predicate BPred = RHS->getPredicate();
-
- // Can we infer anything when the two compares have matching operands?
- bool AreSwappedOps;
- if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) {
- if (Optional<bool> Implication = isImpliedCondMatchingOperands(
- APred, BPred, AreSwappedOps))
- return Implication;
- // No amount of additional analysis will infer the second condition, so
- // early exit.
- return None;
- }
-
- // Can we infer anything when the LHS operands match and the RHS operands are
- // constants (not necessarily matching)?
- if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
- if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
- APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS)))
- return Implication;
- // No amount of additional analysis will infer the second condition, so
- // early exit.
- return None;
- }
-
- if (APred == BPred)
- return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth);
- return None;
-}
-
-/// Return true if LHS implies RHS is true. Return false if LHS implies RHS is
-/// false. Otherwise, return None if we can't infer anything. We expect the
-/// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction.
-static Optional<bool> isImpliedCondAndOr(const BinaryOperator *LHS,
- const ICmpInst *RHS,
- const DataLayout &DL, bool LHSIsTrue,
- unsigned Depth) {
- // The LHS must be an 'or' or an 'and' instruction.
- assert((LHS->getOpcode() == Instruction::And ||
- LHS->getOpcode() == Instruction::Or) &&
- "Expected LHS to be 'and' or 'or'.");
-
- assert(Depth <= MaxDepth && "Hit recursion limit");
-
- // If the result of an 'or' is false, then we know both legs of the 'or' are
- // false. Similarly, if the result of an 'and' is true, then we know both
- // legs of the 'and' are true.
- Value *ALHS, *ARHS;
- if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) ||
- (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) {
- // FIXME: Make this non-recursion.
- if (Optional<bool> Implication =
- isImpliedCondition(ALHS, RHS, DL, LHSIsTrue, Depth + 1))
- return Implication;
- if (Optional<bool> Implication =
- isImpliedCondition(ARHS, RHS, DL, LHSIsTrue, Depth + 1))
- return Implication;
- return None;
- }
- return None;
-}
-
-Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
- const DataLayout &DL, bool LHSIsTrue,
- unsigned Depth) {
- // Bail out when we hit the limit.
- if (Depth == MaxDepth)
- return None;
-
- // A mismatch occurs when we compare a scalar cmp to a vector cmp, for
- // example.
- if (LHS->getType() != RHS->getType())
- return None;
-
- Type *OpTy = LHS->getType();
- assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!");
-
- // LHS ==> RHS by definition
- if (LHS == RHS)
- return LHSIsTrue;
-
- // FIXME: Extending the code below to handle vectors.
- if (OpTy->isVectorTy())
- return None;
-
- assert(OpTy->isIntegerTy(1) && "implied by above");
-
- // Both LHS and RHS are icmps.
- const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS);
- const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS);
- if (LHSCmp && RHSCmp)
- return isImpliedCondICmps(LHSCmp, RHSCmp, DL, LHSIsTrue, Depth);
-
- // The LHS should be an 'or' or an 'and' instruction. We expect the RHS to be
- // an icmp. FIXME: Add support for and/or on the RHS.
- const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS);
- if (LHSBO && RHSCmp) {
- if ((LHSBO->getOpcode() == Instruction::And ||
- LHSBO->getOpcode() == Instruction::Or))
- return isImpliedCondAndOr(LHSBO, RHSCmp, DL, LHSIsTrue, Depth);
- }
- return None;
-}
-
-Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond,
- const Instruction *ContextI,
- const DataLayout &DL) {
- assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool");
- if (!ContextI || !ContextI->getParent())
- return None;
-
- // TODO: This is a poor/cheap way to determine dominance. Should we use a
- // dominator tree (eg, from a SimplifyQuery) instead?
- const BasicBlock *ContextBB = ContextI->getParent();
- const BasicBlock *PredBB = ContextBB->getSinglePredecessor();
- if (!PredBB)
- return None;
-
- // We need a conditional branch in the predecessor.
- Value *PredCond;
- BasicBlock *TrueBB, *FalseBB;
- if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB)))
- return None;
-
- // The branch should get simplified. Don't bother simplifying this condition.
- if (TrueBB == FalseBB)
- return None;
-
- assert((TrueBB == ContextBB || FalseBB == ContextBB) &&
- "Predecessor block does not point to successor?");
-
- // Is this condition implied by the predecessor condition?
- bool CondIsTrue = TrueBB == ContextBB;
- return isImpliedCondition(PredCond, Cond, DL, CondIsTrue);
-}