summaryrefslogtreecommitdiffstats
path: root/gnu/llvm/lib/CodeGen/InterleavedAccessPass.cpp
diff options
context:
space:
mode:
authorpatrick <patrick@openbsd.org>2020-08-03 15:06:44 +0000
committerpatrick <patrick@openbsd.org>2020-08-03 15:06:44 +0000
commitb64793999546ed8adebaeebd9d8345d18db8927d (patch)
tree4357c27b561d73b0e089727c6ed659f2ceff5f47 /gnu/llvm/lib/CodeGen/InterleavedAccessPass.cpp
parentAdd support for UTF-8 DISPLAY-HINTs with octet length. For now only (diff)
downloadwireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.tar.xz
wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.zip
Remove LLVM 8.0.1 files.
Diffstat (limited to 'gnu/llvm/lib/CodeGen/InterleavedAccessPass.cpp')
-rw-r--r--gnu/llvm/lib/CodeGen/InterleavedAccessPass.cpp467
1 files changed, 0 insertions, 467 deletions
diff --git a/gnu/llvm/lib/CodeGen/InterleavedAccessPass.cpp b/gnu/llvm/lib/CodeGen/InterleavedAccessPass.cpp
deleted file mode 100644
index fd2ff162630..00000000000
--- a/gnu/llvm/lib/CodeGen/InterleavedAccessPass.cpp
+++ /dev/null
@@ -1,467 +0,0 @@
-//===- InterleavedAccessPass.cpp ------------------------------------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements the Interleaved Access pass, which identifies
-// interleaved memory accesses and transforms them into target specific
-// intrinsics.
-//
-// An interleaved load reads data from memory into several vectors, with
-// DE-interleaving the data on a factor. An interleaved store writes several
-// vectors to memory with RE-interleaving the data on a factor.
-//
-// As interleaved accesses are difficult to identified in CodeGen (mainly
-// because the VECTOR_SHUFFLE DAG node is quite different from the shufflevector
-// IR), we identify and transform them to intrinsics in this pass so the
-// intrinsics can be easily matched into target specific instructions later in
-// CodeGen.
-//
-// E.g. An interleaved load (Factor = 2):
-// %wide.vec = load <8 x i32>, <8 x i32>* %ptr
-// %v0 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <0, 2, 4, 6>
-// %v1 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <1, 3, 5, 7>
-//
-// It could be transformed into a ld2 intrinsic in AArch64 backend or a vld2
-// intrinsic in ARM backend.
-//
-// In X86, this can be further optimized into a set of target
-// specific loads followed by an optimized sequence of shuffles.
-//
-// E.g. An interleaved store (Factor = 3):
-// %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
-// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
-// store <12 x i32> %i.vec, <12 x i32>* %ptr
-//
-// It could be transformed into a st3 intrinsic in AArch64 backend or a vst3
-// intrinsic in ARM backend.
-//
-// Similarly, a set of interleaved stores can be transformed into an optimized
-// sequence of shuffles followed by a set of target specific stores for X86.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/ADT/ArrayRef.h"
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/CodeGen/TargetLowering.h"
-#include "llvm/CodeGen/TargetPassConfig.h"
-#include "llvm/CodeGen/TargetSubtargetInfo.h"
-#include "llvm/IR/Constants.h"
-#include "llvm/IR/Dominators.h"
-#include "llvm/IR/Function.h"
-#include "llvm/IR/IRBuilder.h"
-#include "llvm/IR/InstIterator.h"
-#include "llvm/IR/Instruction.h"
-#include "llvm/IR/Instructions.h"
-#include "llvm/IR/Type.h"
-#include "llvm/Pass.h"
-#include "llvm/Support/Casting.h"
-#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/MathExtras.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Target/TargetMachine.h"
-#include <cassert>
-#include <utility>
-
-using namespace llvm;
-
-#define DEBUG_TYPE "interleaved-access"
-
-static cl::opt<bool> LowerInterleavedAccesses(
- "lower-interleaved-accesses",
- cl::desc("Enable lowering interleaved accesses to intrinsics"),
- cl::init(true), cl::Hidden);
-
-namespace {
-
-class InterleavedAccess : public FunctionPass {
-public:
- static char ID;
-
- InterleavedAccess() : FunctionPass(ID) {
- initializeInterleavedAccessPass(*PassRegistry::getPassRegistry());
- }
-
- StringRef getPassName() const override { return "Interleaved Access Pass"; }
-
- bool runOnFunction(Function &F) override;
-
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<DominatorTreeWrapperPass>();
- AU.addPreserved<DominatorTreeWrapperPass>();
- }
-
-private:
- DominatorTree *DT = nullptr;
- const TargetLowering *TLI = nullptr;
-
- /// The maximum supported interleave factor.
- unsigned MaxFactor;
-
- /// Transform an interleaved load into target specific intrinsics.
- bool lowerInterleavedLoad(LoadInst *LI,
- SmallVector<Instruction *, 32> &DeadInsts);
-
- /// Transform an interleaved store into target specific intrinsics.
- bool lowerInterleavedStore(StoreInst *SI,
- SmallVector<Instruction *, 32> &DeadInsts);
-
- /// Returns true if the uses of an interleaved load by the
- /// extractelement instructions in \p Extracts can be replaced by uses of the
- /// shufflevector instructions in \p Shuffles instead. If so, the necessary
- /// replacements are also performed.
- bool tryReplaceExtracts(ArrayRef<ExtractElementInst *> Extracts,
- ArrayRef<ShuffleVectorInst *> Shuffles);
-};
-
-} // end anonymous namespace.
-
-char InterleavedAccess::ID = 0;
-
-INITIALIZE_PASS_BEGIN(InterleavedAccess, DEBUG_TYPE,
- "Lower interleaved memory accesses to target specific intrinsics", false,
- false)
-INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
-INITIALIZE_PASS_END(InterleavedAccess, DEBUG_TYPE,
- "Lower interleaved memory accesses to target specific intrinsics", false,
- false)
-
-FunctionPass *llvm::createInterleavedAccessPass() {
- return new InterleavedAccess();
-}
-
-/// Check if the mask is a DE-interleave mask of the given factor
-/// \p Factor like:
-/// <Index, Index+Factor, ..., Index+(NumElts-1)*Factor>
-static bool isDeInterleaveMaskOfFactor(ArrayRef<int> Mask, unsigned Factor,
- unsigned &Index) {
- // Check all potential start indices from 0 to (Factor - 1).
- for (Index = 0; Index < Factor; Index++) {
- unsigned i = 0;
-
- // Check that elements are in ascending order by Factor. Ignore undef
- // elements.
- for (; i < Mask.size(); i++)
- if (Mask[i] >= 0 && static_cast<unsigned>(Mask[i]) != Index + i * Factor)
- break;
-
- if (i == Mask.size())
- return true;
- }
-
- return false;
-}
-
-/// Check if the mask is a DE-interleave mask for an interleaved load.
-///
-/// E.g. DE-interleave masks (Factor = 2) could be:
-/// <0, 2, 4, 6> (mask of index 0 to extract even elements)
-/// <1, 3, 5, 7> (mask of index 1 to extract odd elements)
-static bool isDeInterleaveMask(ArrayRef<int> Mask, unsigned &Factor,
- unsigned &Index, unsigned MaxFactor) {
- if (Mask.size() < 2)
- return false;
-
- // Check potential Factors.
- for (Factor = 2; Factor <= MaxFactor; Factor++)
- if (isDeInterleaveMaskOfFactor(Mask, Factor, Index))
- return true;
-
- return false;
-}
-
-/// Check if the mask can be used in an interleaved store.
-//
-/// It checks for a more general pattern than the RE-interleave mask.
-/// I.e. <x, y, ... z, x+1, y+1, ...z+1, x+2, y+2, ...z+2, ...>
-/// E.g. For a Factor of 2 (LaneLen=4): <4, 32, 5, 33, 6, 34, 7, 35>
-/// E.g. For a Factor of 3 (LaneLen=4): <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
-/// E.g. For a Factor of 4 (LaneLen=2): <8, 2, 12, 4, 9, 3, 13, 5>
-///
-/// The particular case of an RE-interleave mask is:
-/// I.e. <0, LaneLen, ... , LaneLen*(Factor - 1), 1, LaneLen + 1, ...>
-/// E.g. For a Factor of 2 (LaneLen=4): <0, 4, 1, 5, 2, 6, 3, 7>
-static bool isReInterleaveMask(ArrayRef<int> Mask, unsigned &Factor,
- unsigned MaxFactor, unsigned OpNumElts) {
- unsigned NumElts = Mask.size();
- if (NumElts < 4)
- return false;
-
- // Check potential Factors.
- for (Factor = 2; Factor <= MaxFactor; Factor++) {
- if (NumElts % Factor)
- continue;
-
- unsigned LaneLen = NumElts / Factor;
- if (!isPowerOf2_32(LaneLen))
- continue;
-
- // Check whether each element matches the general interleaved rule.
- // Ignore undef elements, as long as the defined elements match the rule.
- // Outer loop processes all factors (x, y, z in the above example)
- unsigned I = 0, J;
- for (; I < Factor; I++) {
- unsigned SavedLaneValue;
- unsigned SavedNoUndefs = 0;
-
- // Inner loop processes consecutive accesses (x, x+1... in the example)
- for (J = 0; J < LaneLen - 1; J++) {
- // Lane computes x's position in the Mask
- unsigned Lane = J * Factor + I;
- unsigned NextLane = Lane + Factor;
- int LaneValue = Mask[Lane];
- int NextLaneValue = Mask[NextLane];
-
- // If both are defined, values must be sequential
- if (LaneValue >= 0 && NextLaneValue >= 0 &&
- LaneValue + 1 != NextLaneValue)
- break;
-
- // If the next value is undef, save the current one as reference
- if (LaneValue >= 0 && NextLaneValue < 0) {
- SavedLaneValue = LaneValue;
- SavedNoUndefs = 1;
- }
-
- // Undefs are allowed, but defined elements must still be consecutive:
- // i.e.: x,..., undef,..., x + 2,..., undef,..., undef,..., x + 5, ....
- // Verify this by storing the last non-undef followed by an undef
- // Check that following non-undef masks are incremented with the
- // corresponding distance.
- if (SavedNoUndefs > 0 && LaneValue < 0) {
- SavedNoUndefs++;
- if (NextLaneValue >= 0 &&
- SavedLaneValue + SavedNoUndefs != (unsigned)NextLaneValue)
- break;
- }
- }
-
- if (J < LaneLen - 1)
- break;
-
- int StartMask = 0;
- if (Mask[I] >= 0) {
- // Check that the start of the I range (J=0) is greater than 0
- StartMask = Mask[I];
- } else if (Mask[(LaneLen - 1) * Factor + I] >= 0) {
- // StartMask defined by the last value in lane
- StartMask = Mask[(LaneLen - 1) * Factor + I] - J;
- } else if (SavedNoUndefs > 0) {
- // StartMask defined by some non-zero value in the j loop
- StartMask = SavedLaneValue - (LaneLen - 1 - SavedNoUndefs);
- }
- // else StartMask remains set to 0, i.e. all elements are undefs
-
- if (StartMask < 0)
- break;
- // We must stay within the vectors; This case can happen with undefs.
- if (StartMask + LaneLen > OpNumElts*2)
- break;
- }
-
- // Found an interleaved mask of current factor.
- if (I == Factor)
- return true;
- }
-
- return false;
-}
-
-bool InterleavedAccess::lowerInterleavedLoad(
- LoadInst *LI, SmallVector<Instruction *, 32> &DeadInsts) {
- if (!LI->isSimple())
- return false;
-
- SmallVector<ShuffleVectorInst *, 4> Shuffles;
- SmallVector<ExtractElementInst *, 4> Extracts;
-
- // Check if all users of this load are shufflevectors. If we encounter any
- // users that are extractelement instructions, we save them to later check if
- // they can be modifed to extract from one of the shufflevectors instead of
- // the load.
- for (auto UI = LI->user_begin(), E = LI->user_end(); UI != E; UI++) {
- auto *Extract = dyn_cast<ExtractElementInst>(*UI);
- if (Extract && isa<ConstantInt>(Extract->getIndexOperand())) {
- Extracts.push_back(Extract);
- continue;
- }
- ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(*UI);
- if (!SVI || !isa<UndefValue>(SVI->getOperand(1)))
- return false;
-
- Shuffles.push_back(SVI);
- }
-
- if (Shuffles.empty())
- return false;
-
- unsigned Factor, Index;
-
- // Check if the first shufflevector is DE-interleave shuffle.
- if (!isDeInterleaveMask(Shuffles[0]->getShuffleMask(), Factor, Index,
- MaxFactor))
- return false;
-
- // Holds the corresponding index for each DE-interleave shuffle.
- SmallVector<unsigned, 4> Indices;
- Indices.push_back(Index);
-
- Type *VecTy = Shuffles[0]->getType();
-
- // Check if other shufflevectors are also DE-interleaved of the same type
- // and factor as the first shufflevector.
- for (unsigned i = 1; i < Shuffles.size(); i++) {
- if (Shuffles[i]->getType() != VecTy)
- return false;
-
- if (!isDeInterleaveMaskOfFactor(Shuffles[i]->getShuffleMask(), Factor,
- Index))
- return false;
-
- Indices.push_back(Index);
- }
-
- // Try and modify users of the load that are extractelement instructions to
- // use the shufflevector instructions instead of the load.
- if (!tryReplaceExtracts(Extracts, Shuffles))
- return false;
-
- LLVM_DEBUG(dbgs() << "IA: Found an interleaved load: " << *LI << "\n");
-
- // Try to create target specific intrinsics to replace the load and shuffles.
- if (!TLI->lowerInterleavedLoad(LI, Shuffles, Indices, Factor))
- return false;
-
- for (auto SVI : Shuffles)
- DeadInsts.push_back(SVI);
-
- DeadInsts.push_back(LI);
- return true;
-}
-
-bool InterleavedAccess::tryReplaceExtracts(
- ArrayRef<ExtractElementInst *> Extracts,
- ArrayRef<ShuffleVectorInst *> Shuffles) {
- // If there aren't any extractelement instructions to modify, there's nothing
- // to do.
- if (Extracts.empty())
- return true;
-
- // Maps extractelement instructions to vector-index pairs. The extractlement
- // instructions will be modified to use the new vector and index operands.
- DenseMap<ExtractElementInst *, std::pair<Value *, int>> ReplacementMap;
-
- for (auto *Extract : Extracts) {
- // The vector index that is extracted.
- auto *IndexOperand = cast<ConstantInt>(Extract->getIndexOperand());
- auto Index = IndexOperand->getSExtValue();
-
- // Look for a suitable shufflevector instruction. The goal is to modify the
- // extractelement instruction (which uses an interleaved load) to use one
- // of the shufflevector instructions instead of the load.
- for (auto *Shuffle : Shuffles) {
- // If the shufflevector instruction doesn't dominate the extract, we
- // can't create a use of it.
- if (!DT->dominates(Shuffle, Extract))
- continue;
-
- // Inspect the indices of the shufflevector instruction. If the shuffle
- // selects the same index that is extracted, we can modify the
- // extractelement instruction.
- SmallVector<int, 4> Indices;
- Shuffle->getShuffleMask(Indices);
- for (unsigned I = 0; I < Indices.size(); ++I)
- if (Indices[I] == Index) {
- assert(Extract->getOperand(0) == Shuffle->getOperand(0) &&
- "Vector operations do not match");
- ReplacementMap[Extract] = std::make_pair(Shuffle, I);
- break;
- }
-
- // If we found a suitable shufflevector instruction, stop looking.
- if (ReplacementMap.count(Extract))
- break;
- }
-
- // If we did not find a suitable shufflevector instruction, the
- // extractelement instruction cannot be modified, so we must give up.
- if (!ReplacementMap.count(Extract))
- return false;
- }
-
- // Finally, perform the replacements.
- IRBuilder<> Builder(Extracts[0]->getContext());
- for (auto &Replacement : ReplacementMap) {
- auto *Extract = Replacement.first;
- auto *Vector = Replacement.second.first;
- auto Index = Replacement.second.second;
- Builder.SetInsertPoint(Extract);
- Extract->replaceAllUsesWith(Builder.CreateExtractElement(Vector, Index));
- Extract->eraseFromParent();
- }
-
- return true;
-}
-
-bool InterleavedAccess::lowerInterleavedStore(
- StoreInst *SI, SmallVector<Instruction *, 32> &DeadInsts) {
- if (!SI->isSimple())
- return false;
-
- ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(SI->getValueOperand());
- if (!SVI || !SVI->hasOneUse())
- return false;
-
- // Check if the shufflevector is RE-interleave shuffle.
- unsigned Factor;
- unsigned OpNumElts = SVI->getOperand(0)->getType()->getVectorNumElements();
- if (!isReInterleaveMask(SVI->getShuffleMask(), Factor, MaxFactor, OpNumElts))
- return false;
-
- LLVM_DEBUG(dbgs() << "IA: Found an interleaved store: " << *SI << "\n");
-
- // Try to create target specific intrinsics to replace the store and shuffle.
- if (!TLI->lowerInterleavedStore(SI, SVI, Factor))
- return false;
-
- // Already have a new target specific interleaved store. Erase the old store.
- DeadInsts.push_back(SI);
- DeadInsts.push_back(SVI);
- return true;
-}
-
-bool InterleavedAccess::runOnFunction(Function &F) {
- auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
- if (!TPC || !LowerInterleavedAccesses)
- return false;
-
- LLVM_DEBUG(dbgs() << "*** " << getPassName() << ": " << F.getName() << "\n");
-
- DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- auto &TM = TPC->getTM<TargetMachine>();
- TLI = TM.getSubtargetImpl(F)->getTargetLowering();
- MaxFactor = TLI->getMaxSupportedInterleaveFactor();
-
- // Holds dead instructions that will be erased later.
- SmallVector<Instruction *, 32> DeadInsts;
- bool Changed = false;
-
- for (auto &I : instructions(F)) {
- if (LoadInst *LI = dyn_cast<LoadInst>(&I))
- Changed |= lowerInterleavedLoad(LI, DeadInsts);
-
- if (StoreInst *SI = dyn_cast<StoreInst>(&I))
- Changed |= lowerInterleavedStore(SI, DeadInsts);
- }
-
- for (auto I : DeadInsts)
- I->eraseFromParent();
-
- return Changed;
-}