diff options
| author | 2020-08-03 15:06:44 +0000 | |
|---|---|---|
| committer | 2020-08-03 15:06:44 +0000 | |
| commit | b64793999546ed8adebaeebd9d8345d18db8927d (patch) | |
| tree | 4357c27b561d73b0e089727c6ed659f2ceff5f47 /gnu/llvm/lib/CodeGen/RegAllocPBQP.cpp | |
| parent | Add support for UTF-8 DISPLAY-HINTs with octet length. For now only (diff) | |
| download | wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.tar.xz wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.zip | |
Remove LLVM 8.0.1 files.
Diffstat (limited to 'gnu/llvm/lib/CodeGen/RegAllocPBQP.cpp')
| -rw-r--r-- | gnu/llvm/lib/CodeGen/RegAllocPBQP.cpp | 943 |
1 files changed, 0 insertions, 943 deletions
diff --git a/gnu/llvm/lib/CodeGen/RegAllocPBQP.cpp b/gnu/llvm/lib/CodeGen/RegAllocPBQP.cpp deleted file mode 100644 index c19001c8403..00000000000 --- a/gnu/llvm/lib/CodeGen/RegAllocPBQP.cpp +++ /dev/null @@ -1,943 +0,0 @@ -//===- RegAllocPBQP.cpp ---- PBQP Register Allocator ----------------------===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file contains a Partitioned Boolean Quadratic Programming (PBQP) based -// register allocator for LLVM. This allocator works by constructing a PBQP -// problem representing the register allocation problem under consideration, -// solving this using a PBQP solver, and mapping the solution back to a -// register assignment. If any variables are selected for spilling then spill -// code is inserted and the process repeated. -// -// The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned -// for register allocation. For more information on PBQP for register -// allocation, see the following papers: -// -// (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with -// PBQP. In Proceedings of the 7th Joint Modular Languages Conference -// (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361. -// -// (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular -// architectures. In Proceedings of the Joint Conference on Languages, -// Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York, -// NY, USA, 139-148. -// -//===----------------------------------------------------------------------===// - -#include "llvm/CodeGen/RegAllocPBQP.h" -#include "RegisterCoalescer.h" -#include "Spiller.h" -#include "llvm/ADT/ArrayRef.h" -#include "llvm/ADT/BitVector.h" -#include "llvm/ADT/DenseMap.h" -#include "llvm/ADT/DenseSet.h" -#include "llvm/ADT/STLExtras.h" -#include "llvm/ADT/SmallPtrSet.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/ADT/StringRef.h" -#include "llvm/Analysis/AliasAnalysis.h" -#include "llvm/CodeGen/CalcSpillWeights.h" -#include "llvm/CodeGen/LiveInterval.h" -#include "llvm/CodeGen/LiveIntervals.h" -#include "llvm/CodeGen/LiveRangeEdit.h" -#include "llvm/CodeGen/LiveStacks.h" -#include "llvm/CodeGen/MachineBlockFrequencyInfo.h" -#include "llvm/CodeGen/MachineDominators.h" -#include "llvm/CodeGen/MachineFunction.h" -#include "llvm/CodeGen/MachineFunctionPass.h" -#include "llvm/CodeGen/MachineInstr.h" -#include "llvm/CodeGen/MachineLoopInfo.h" -#include "llvm/CodeGen/MachineRegisterInfo.h" -#include "llvm/CodeGen/PBQP/Graph.h" -#include "llvm/CodeGen/PBQP/Math.h" -#include "llvm/CodeGen/PBQP/Solution.h" -#include "llvm/CodeGen/PBQPRAConstraint.h" -#include "llvm/CodeGen/RegAllocRegistry.h" -#include "llvm/CodeGen/SlotIndexes.h" -#include "llvm/CodeGen/TargetRegisterInfo.h" -#include "llvm/CodeGen/TargetSubtargetInfo.h" -#include "llvm/CodeGen/VirtRegMap.h" -#include "llvm/Config/llvm-config.h" -#include "llvm/IR/Function.h" -#include "llvm/IR/Module.h" -#include "llvm/MC/MCRegisterInfo.h" -#include "llvm/Pass.h" -#include "llvm/Support/CommandLine.h" -#include "llvm/Support/Compiler.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/FileSystem.h" -#include "llvm/Support/Printable.h" -#include "llvm/Support/raw_ostream.h" -#include <algorithm> -#include <cassert> -#include <cstddef> -#include <limits> -#include <map> -#include <memory> -#include <queue> -#include <set> -#include <sstream> -#include <string> -#include <system_error> -#include <tuple> -#include <utility> -#include <vector> - -using namespace llvm; - -#define DEBUG_TYPE "regalloc" - -static RegisterRegAlloc -RegisterPBQPRepAlloc("pbqp", "PBQP register allocator", - createDefaultPBQPRegisterAllocator); - -static cl::opt<bool> -PBQPCoalescing("pbqp-coalescing", - cl::desc("Attempt coalescing during PBQP register allocation."), - cl::init(false), cl::Hidden); - -#ifndef NDEBUG -static cl::opt<bool> -PBQPDumpGraphs("pbqp-dump-graphs", - cl::desc("Dump graphs for each function/round in the compilation unit."), - cl::init(false), cl::Hidden); -#endif - -namespace { - -/// -/// PBQP based allocators solve the register allocation problem by mapping -/// register allocation problems to Partitioned Boolean Quadratic -/// Programming problems. -class RegAllocPBQP : public MachineFunctionPass { -public: - static char ID; - - /// Construct a PBQP register allocator. - RegAllocPBQP(char *cPassID = nullptr) - : MachineFunctionPass(ID), customPassID(cPassID) { - initializeSlotIndexesPass(*PassRegistry::getPassRegistry()); - initializeLiveIntervalsPass(*PassRegistry::getPassRegistry()); - initializeLiveStacksPass(*PassRegistry::getPassRegistry()); - initializeVirtRegMapPass(*PassRegistry::getPassRegistry()); - } - - /// Return the pass name. - StringRef getPassName() const override { return "PBQP Register Allocator"; } - - /// PBQP analysis usage. - void getAnalysisUsage(AnalysisUsage &au) const override; - - /// Perform register allocation - bool runOnMachineFunction(MachineFunction &MF) override; - - MachineFunctionProperties getRequiredProperties() const override { - return MachineFunctionProperties().set( - MachineFunctionProperties::Property::NoPHIs); - } - -private: - using LI2NodeMap = std::map<const LiveInterval *, unsigned>; - using Node2LIMap = std::vector<const LiveInterval *>; - using AllowedSet = std::vector<unsigned>; - using AllowedSetMap = std::vector<AllowedSet>; - using RegPair = std::pair<unsigned, unsigned>; - using CoalesceMap = std::map<RegPair, PBQP::PBQPNum>; - using RegSet = std::set<unsigned>; - - char *customPassID; - - RegSet VRegsToAlloc, EmptyIntervalVRegs; - - /// Inst which is a def of an original reg and whose defs are already all - /// dead after remat is saved in DeadRemats. The deletion of such inst is - /// postponed till all the allocations are done, so its remat expr is - /// always available for the remat of all the siblings of the original reg. - SmallPtrSet<MachineInstr *, 32> DeadRemats; - - /// Finds the initial set of vreg intervals to allocate. - void findVRegIntervalsToAlloc(const MachineFunction &MF, LiveIntervals &LIS); - - /// Constructs an initial graph. - void initializeGraph(PBQPRAGraph &G, VirtRegMap &VRM, Spiller &VRegSpiller); - - /// Spill the given VReg. - void spillVReg(unsigned VReg, SmallVectorImpl<unsigned> &NewIntervals, - MachineFunction &MF, LiveIntervals &LIS, VirtRegMap &VRM, - Spiller &VRegSpiller); - - /// Given a solved PBQP problem maps this solution back to a register - /// assignment. - bool mapPBQPToRegAlloc(const PBQPRAGraph &G, - const PBQP::Solution &Solution, - VirtRegMap &VRM, - Spiller &VRegSpiller); - - /// Postprocessing before final spilling. Sets basic block "live in" - /// variables. - void finalizeAlloc(MachineFunction &MF, LiveIntervals &LIS, - VirtRegMap &VRM) const; - - void postOptimization(Spiller &VRegSpiller, LiveIntervals &LIS); -}; - -char RegAllocPBQP::ID = 0; - -/// Set spill costs for each node in the PBQP reg-alloc graph. -class SpillCosts : public PBQPRAConstraint { -public: - void apply(PBQPRAGraph &G) override { - LiveIntervals &LIS = G.getMetadata().LIS; - - // A minimum spill costs, so that register constraints can can be set - // without normalization in the [0.0:MinSpillCost( interval. - const PBQP::PBQPNum MinSpillCost = 10.0; - - for (auto NId : G.nodeIds()) { - PBQP::PBQPNum SpillCost = - LIS.getInterval(G.getNodeMetadata(NId).getVReg()).weight; - if (SpillCost == 0.0) - SpillCost = std::numeric_limits<PBQP::PBQPNum>::min(); - else - SpillCost += MinSpillCost; - PBQPRAGraph::RawVector NodeCosts(G.getNodeCosts(NId)); - NodeCosts[PBQP::RegAlloc::getSpillOptionIdx()] = SpillCost; - G.setNodeCosts(NId, std::move(NodeCosts)); - } - } -}; - -/// Add interference edges between overlapping vregs. -class Interference : public PBQPRAConstraint { -private: - using AllowedRegVecPtr = const PBQP::RegAlloc::AllowedRegVector *; - using IKey = std::pair<AllowedRegVecPtr, AllowedRegVecPtr>; - using IMatrixCache = DenseMap<IKey, PBQPRAGraph::MatrixPtr>; - using DisjointAllowedRegsCache = DenseSet<IKey>; - using IEdgeKey = std::pair<PBQP::GraphBase::NodeId, PBQP::GraphBase::NodeId>; - using IEdgeCache = DenseSet<IEdgeKey>; - - bool haveDisjointAllowedRegs(const PBQPRAGraph &G, PBQPRAGraph::NodeId NId, - PBQPRAGraph::NodeId MId, - const DisjointAllowedRegsCache &D) const { - const auto *NRegs = &G.getNodeMetadata(NId).getAllowedRegs(); - const auto *MRegs = &G.getNodeMetadata(MId).getAllowedRegs(); - - if (NRegs == MRegs) - return false; - - if (NRegs < MRegs) - return D.count(IKey(NRegs, MRegs)) > 0; - - return D.count(IKey(MRegs, NRegs)) > 0; - } - - void setDisjointAllowedRegs(const PBQPRAGraph &G, PBQPRAGraph::NodeId NId, - PBQPRAGraph::NodeId MId, - DisjointAllowedRegsCache &D) { - const auto *NRegs = &G.getNodeMetadata(NId).getAllowedRegs(); - const auto *MRegs = &G.getNodeMetadata(MId).getAllowedRegs(); - - assert(NRegs != MRegs && "AllowedRegs can not be disjoint with itself"); - - if (NRegs < MRegs) - D.insert(IKey(NRegs, MRegs)); - else - D.insert(IKey(MRegs, NRegs)); - } - - // Holds (Interval, CurrentSegmentID, and NodeId). The first two are required - // for the fast interference graph construction algorithm. The last is there - // to save us from looking up node ids via the VRegToNode map in the graph - // metadata. - using IntervalInfo = - std::tuple<LiveInterval*, size_t, PBQP::GraphBase::NodeId>; - - static SlotIndex getStartPoint(const IntervalInfo &I) { - return std::get<0>(I)->segments[std::get<1>(I)].start; - } - - static SlotIndex getEndPoint(const IntervalInfo &I) { - return std::get<0>(I)->segments[std::get<1>(I)].end; - } - - static PBQP::GraphBase::NodeId getNodeId(const IntervalInfo &I) { - return std::get<2>(I); - } - - static bool lowestStartPoint(const IntervalInfo &I1, - const IntervalInfo &I2) { - // Condition reversed because priority queue has the *highest* element at - // the front, rather than the lowest. - return getStartPoint(I1) > getStartPoint(I2); - } - - static bool lowestEndPoint(const IntervalInfo &I1, - const IntervalInfo &I2) { - SlotIndex E1 = getEndPoint(I1); - SlotIndex E2 = getEndPoint(I2); - - if (E1 < E2) - return true; - - if (E1 > E2) - return false; - - // If two intervals end at the same point, we need a way to break the tie or - // the set will assume they're actually equal and refuse to insert a - // "duplicate". Just compare the vregs - fast and guaranteed unique. - return std::get<0>(I1)->reg < std::get<0>(I2)->reg; - } - - static bool isAtLastSegment(const IntervalInfo &I) { - return std::get<1>(I) == std::get<0>(I)->size() - 1; - } - - static IntervalInfo nextSegment(const IntervalInfo &I) { - return std::make_tuple(std::get<0>(I), std::get<1>(I) + 1, std::get<2>(I)); - } - -public: - void apply(PBQPRAGraph &G) override { - // The following is loosely based on the linear scan algorithm introduced in - // "Linear Scan Register Allocation" by Poletto and Sarkar. This version - // isn't linear, because the size of the active set isn't bound by the - // number of registers, but rather the size of the largest clique in the - // graph. Still, we expect this to be better than N^2. - LiveIntervals &LIS = G.getMetadata().LIS; - - // Interferenc matrices are incredibly regular - they're only a function of - // the allowed sets, so we cache them to avoid the overhead of constructing - // and uniquing them. - IMatrixCache C; - - // Finding an edge is expensive in the worst case (O(max_clique(G))). So - // cache locally edges we have already seen. - IEdgeCache EC; - - // Cache known disjoint allowed registers pairs - DisjointAllowedRegsCache D; - - using IntervalSet = std::set<IntervalInfo, decltype(&lowestEndPoint)>; - using IntervalQueue = - std::priority_queue<IntervalInfo, std::vector<IntervalInfo>, - decltype(&lowestStartPoint)>; - IntervalSet Active(lowestEndPoint); - IntervalQueue Inactive(lowestStartPoint); - - // Start by building the inactive set. - for (auto NId : G.nodeIds()) { - unsigned VReg = G.getNodeMetadata(NId).getVReg(); - LiveInterval &LI = LIS.getInterval(VReg); - assert(!LI.empty() && "PBQP graph contains node for empty interval"); - Inactive.push(std::make_tuple(&LI, 0, NId)); - } - - while (!Inactive.empty()) { - // Tentatively grab the "next" interval - this choice may be overriden - // below. - IntervalInfo Cur = Inactive.top(); - - // Retire any active intervals that end before Cur starts. - IntervalSet::iterator RetireItr = Active.begin(); - while (RetireItr != Active.end() && - (getEndPoint(*RetireItr) <= getStartPoint(Cur))) { - // If this interval has subsequent segments, add the next one to the - // inactive list. - if (!isAtLastSegment(*RetireItr)) - Inactive.push(nextSegment(*RetireItr)); - - ++RetireItr; - } - Active.erase(Active.begin(), RetireItr); - - // One of the newly retired segments may actually start before the - // Cur segment, so re-grab the front of the inactive list. - Cur = Inactive.top(); - Inactive.pop(); - - // At this point we know that Cur overlaps all active intervals. Add the - // interference edges. - PBQP::GraphBase::NodeId NId = getNodeId(Cur); - for (const auto &A : Active) { - PBQP::GraphBase::NodeId MId = getNodeId(A); - - // Do not add an edge when the nodes' allowed registers do not - // intersect: there is obviously no interference. - if (haveDisjointAllowedRegs(G, NId, MId, D)) - continue; - - // Check that we haven't already added this edge - IEdgeKey EK(std::min(NId, MId), std::max(NId, MId)); - if (EC.count(EK)) - continue; - - // This is a new edge - add it to the graph. - if (!createInterferenceEdge(G, NId, MId, C)) - setDisjointAllowedRegs(G, NId, MId, D); - else - EC.insert(EK); - } - - // Finally, add Cur to the Active set. - Active.insert(Cur); - } - } - -private: - // Create an Interference edge and add it to the graph, unless it is - // a null matrix, meaning the nodes' allowed registers do not have any - // interference. This case occurs frequently between integer and floating - // point registers for example. - // return true iff both nodes interferes. - bool createInterferenceEdge(PBQPRAGraph &G, - PBQPRAGraph::NodeId NId, PBQPRAGraph::NodeId MId, - IMatrixCache &C) { - const TargetRegisterInfo &TRI = - *G.getMetadata().MF.getSubtarget().getRegisterInfo(); - const auto &NRegs = G.getNodeMetadata(NId).getAllowedRegs(); - const auto &MRegs = G.getNodeMetadata(MId).getAllowedRegs(); - - // Try looking the edge costs up in the IMatrixCache first. - IKey K(&NRegs, &MRegs); - IMatrixCache::iterator I = C.find(K); - if (I != C.end()) { - G.addEdgeBypassingCostAllocator(NId, MId, I->second); - return true; - } - - PBQPRAGraph::RawMatrix M(NRegs.size() + 1, MRegs.size() + 1, 0); - bool NodesInterfere = false; - for (unsigned I = 0; I != NRegs.size(); ++I) { - unsigned PRegN = NRegs[I]; - for (unsigned J = 0; J != MRegs.size(); ++J) { - unsigned PRegM = MRegs[J]; - if (TRI.regsOverlap(PRegN, PRegM)) { - M[I + 1][J + 1] = std::numeric_limits<PBQP::PBQPNum>::infinity(); - NodesInterfere = true; - } - } - } - - if (!NodesInterfere) - return false; - - PBQPRAGraph::EdgeId EId = G.addEdge(NId, MId, std::move(M)); - C[K] = G.getEdgeCostsPtr(EId); - - return true; - } -}; - -class Coalescing : public PBQPRAConstraint { -public: - void apply(PBQPRAGraph &G) override { - MachineFunction &MF = G.getMetadata().MF; - MachineBlockFrequencyInfo &MBFI = G.getMetadata().MBFI; - CoalescerPair CP(*MF.getSubtarget().getRegisterInfo()); - - // Scan the machine function and add a coalescing cost whenever CoalescerPair - // gives the Ok. - for (const auto &MBB : MF) { - for (const auto &MI : MBB) { - // Skip not-coalescable or already coalesced copies. - if (!CP.setRegisters(&MI) || CP.getSrcReg() == CP.getDstReg()) - continue; - - unsigned DstReg = CP.getDstReg(); - unsigned SrcReg = CP.getSrcReg(); - - const float Scale = 1.0f / MBFI.getEntryFreq(); - PBQP::PBQPNum CBenefit = MBFI.getBlockFreq(&MBB).getFrequency() * Scale; - - if (CP.isPhys()) { - if (!MF.getRegInfo().isAllocatable(DstReg)) - continue; - - PBQPRAGraph::NodeId NId = G.getMetadata().getNodeIdForVReg(SrcReg); - - const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed = - G.getNodeMetadata(NId).getAllowedRegs(); - - unsigned PRegOpt = 0; - while (PRegOpt < Allowed.size() && Allowed[PRegOpt] != DstReg) - ++PRegOpt; - - if (PRegOpt < Allowed.size()) { - PBQPRAGraph::RawVector NewCosts(G.getNodeCosts(NId)); - NewCosts[PRegOpt + 1] -= CBenefit; - G.setNodeCosts(NId, std::move(NewCosts)); - } - } else { - PBQPRAGraph::NodeId N1Id = G.getMetadata().getNodeIdForVReg(DstReg); - PBQPRAGraph::NodeId N2Id = G.getMetadata().getNodeIdForVReg(SrcReg); - const PBQPRAGraph::NodeMetadata::AllowedRegVector *Allowed1 = - &G.getNodeMetadata(N1Id).getAllowedRegs(); - const PBQPRAGraph::NodeMetadata::AllowedRegVector *Allowed2 = - &G.getNodeMetadata(N2Id).getAllowedRegs(); - - PBQPRAGraph::EdgeId EId = G.findEdge(N1Id, N2Id); - if (EId == G.invalidEdgeId()) { - PBQPRAGraph::RawMatrix Costs(Allowed1->size() + 1, - Allowed2->size() + 1, 0); - addVirtRegCoalesce(Costs, *Allowed1, *Allowed2, CBenefit); - G.addEdge(N1Id, N2Id, std::move(Costs)); - } else { - if (G.getEdgeNode1Id(EId) == N2Id) { - std::swap(N1Id, N2Id); - std::swap(Allowed1, Allowed2); - } - PBQPRAGraph::RawMatrix Costs(G.getEdgeCosts(EId)); - addVirtRegCoalesce(Costs, *Allowed1, *Allowed2, CBenefit); - G.updateEdgeCosts(EId, std::move(Costs)); - } - } - } - } - } - -private: - void addVirtRegCoalesce( - PBQPRAGraph::RawMatrix &CostMat, - const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed1, - const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed2, - PBQP::PBQPNum Benefit) { - assert(CostMat.getRows() == Allowed1.size() + 1 && "Size mismatch."); - assert(CostMat.getCols() == Allowed2.size() + 1 && "Size mismatch."); - for (unsigned I = 0; I != Allowed1.size(); ++I) { - unsigned PReg1 = Allowed1[I]; - for (unsigned J = 0; J != Allowed2.size(); ++J) { - unsigned PReg2 = Allowed2[J]; - if (PReg1 == PReg2) - CostMat[I + 1][J + 1] -= Benefit; - } - } - } -}; - -} // end anonymous namespace - -// Out-of-line destructor/anchor for PBQPRAConstraint. -PBQPRAConstraint::~PBQPRAConstraint() = default; - -void PBQPRAConstraint::anchor() {} - -void PBQPRAConstraintList::anchor() {} - -void RegAllocPBQP::getAnalysisUsage(AnalysisUsage &au) const { - au.setPreservesCFG(); - au.addRequired<AAResultsWrapperPass>(); - au.addPreserved<AAResultsWrapperPass>(); - au.addRequired<SlotIndexes>(); - au.addPreserved<SlotIndexes>(); - au.addRequired<LiveIntervals>(); - au.addPreserved<LiveIntervals>(); - //au.addRequiredID(SplitCriticalEdgesID); - if (customPassID) - au.addRequiredID(*customPassID); - au.addRequired<LiveStacks>(); - au.addPreserved<LiveStacks>(); - au.addRequired<MachineBlockFrequencyInfo>(); - au.addPreserved<MachineBlockFrequencyInfo>(); - au.addRequired<MachineLoopInfo>(); - au.addPreserved<MachineLoopInfo>(); - au.addRequired<MachineDominatorTree>(); - au.addPreserved<MachineDominatorTree>(); - au.addRequired<VirtRegMap>(); - au.addPreserved<VirtRegMap>(); - MachineFunctionPass::getAnalysisUsage(au); -} - -void RegAllocPBQP::findVRegIntervalsToAlloc(const MachineFunction &MF, - LiveIntervals &LIS) { - const MachineRegisterInfo &MRI = MF.getRegInfo(); - - // Iterate over all live ranges. - for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) { - unsigned Reg = TargetRegisterInfo::index2VirtReg(I); - if (MRI.reg_nodbg_empty(Reg)) - continue; - VRegsToAlloc.insert(Reg); - } -} - -static bool isACalleeSavedRegister(unsigned reg, const TargetRegisterInfo &TRI, - const MachineFunction &MF) { - const MCPhysReg *CSR = MF.getRegInfo().getCalleeSavedRegs(); - for (unsigned i = 0; CSR[i] != 0; ++i) - if (TRI.regsOverlap(reg, CSR[i])) - return true; - return false; -} - -void RegAllocPBQP::initializeGraph(PBQPRAGraph &G, VirtRegMap &VRM, - Spiller &VRegSpiller) { - MachineFunction &MF = G.getMetadata().MF; - - LiveIntervals &LIS = G.getMetadata().LIS; - const MachineRegisterInfo &MRI = G.getMetadata().MF.getRegInfo(); - const TargetRegisterInfo &TRI = - *G.getMetadata().MF.getSubtarget().getRegisterInfo(); - - std::vector<unsigned> Worklist(VRegsToAlloc.begin(), VRegsToAlloc.end()); - - std::map<unsigned, std::vector<unsigned>> VRegAllowedMap; - - while (!Worklist.empty()) { - unsigned VReg = Worklist.back(); - Worklist.pop_back(); - - LiveInterval &VRegLI = LIS.getInterval(VReg); - - // If this is an empty interval move it to the EmptyIntervalVRegs set then - // continue. - if (VRegLI.empty()) { - EmptyIntervalVRegs.insert(VRegLI.reg); - VRegsToAlloc.erase(VRegLI.reg); - continue; - } - - const TargetRegisterClass *TRC = MRI.getRegClass(VReg); - - // Record any overlaps with regmask operands. - BitVector RegMaskOverlaps; - LIS.checkRegMaskInterference(VRegLI, RegMaskOverlaps); - - // Compute an initial allowed set for the current vreg. - std::vector<unsigned> VRegAllowed; - ArrayRef<MCPhysReg> RawPRegOrder = TRC->getRawAllocationOrder(MF); - for (unsigned I = 0; I != RawPRegOrder.size(); ++I) { - unsigned PReg = RawPRegOrder[I]; - if (MRI.isReserved(PReg)) - continue; - - // vregLI crosses a regmask operand that clobbers preg. - if (!RegMaskOverlaps.empty() && !RegMaskOverlaps.test(PReg)) - continue; - - // vregLI overlaps fixed regunit interference. - bool Interference = false; - for (MCRegUnitIterator Units(PReg, &TRI); Units.isValid(); ++Units) { - if (VRegLI.overlaps(LIS.getRegUnit(*Units))) { - Interference = true; - break; - } - } - if (Interference) - continue; - - // preg is usable for this virtual register. - VRegAllowed.push_back(PReg); - } - - // Check for vregs that have no allowed registers. These should be - // pre-spilled and the new vregs added to the worklist. - if (VRegAllowed.empty()) { - SmallVector<unsigned, 8> NewVRegs; - spillVReg(VReg, NewVRegs, MF, LIS, VRM, VRegSpiller); - Worklist.insert(Worklist.end(), NewVRegs.begin(), NewVRegs.end()); - continue; - } else - VRegAllowedMap[VReg] = std::move(VRegAllowed); - } - - for (auto &KV : VRegAllowedMap) { - auto VReg = KV.first; - - // Move empty intervals to the EmptyIntervalVReg set. - if (LIS.getInterval(VReg).empty()) { - EmptyIntervalVRegs.insert(VReg); - VRegsToAlloc.erase(VReg); - continue; - } - - auto &VRegAllowed = KV.second; - - PBQPRAGraph::RawVector NodeCosts(VRegAllowed.size() + 1, 0); - - // Tweak cost of callee saved registers, as using then force spilling and - // restoring them. This would only happen in the prologue / epilogue though. - for (unsigned i = 0; i != VRegAllowed.size(); ++i) - if (isACalleeSavedRegister(VRegAllowed[i], TRI, MF)) - NodeCosts[1 + i] += 1.0; - - PBQPRAGraph::NodeId NId = G.addNode(std::move(NodeCosts)); - G.getNodeMetadata(NId).setVReg(VReg); - G.getNodeMetadata(NId).setAllowedRegs( - G.getMetadata().getAllowedRegs(std::move(VRegAllowed))); - G.getMetadata().setNodeIdForVReg(VReg, NId); - } -} - -void RegAllocPBQP::spillVReg(unsigned VReg, - SmallVectorImpl<unsigned> &NewIntervals, - MachineFunction &MF, LiveIntervals &LIS, - VirtRegMap &VRM, Spiller &VRegSpiller) { - VRegsToAlloc.erase(VReg); - LiveRangeEdit LRE(&LIS.getInterval(VReg), NewIntervals, MF, LIS, &VRM, - nullptr, &DeadRemats); - VRegSpiller.spill(LRE); - - const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); - (void)TRI; - LLVM_DEBUG(dbgs() << "VREG " << printReg(VReg, &TRI) << " -> SPILLED (Cost: " - << LRE.getParent().weight << ", New vregs: "); - - // Copy any newly inserted live intervals into the list of regs to - // allocate. - for (LiveRangeEdit::iterator I = LRE.begin(), E = LRE.end(); - I != E; ++I) { - const LiveInterval &LI = LIS.getInterval(*I); - assert(!LI.empty() && "Empty spill range."); - LLVM_DEBUG(dbgs() << printReg(LI.reg, &TRI) << " "); - VRegsToAlloc.insert(LI.reg); - } - - LLVM_DEBUG(dbgs() << ")\n"); -} - -bool RegAllocPBQP::mapPBQPToRegAlloc(const PBQPRAGraph &G, - const PBQP::Solution &Solution, - VirtRegMap &VRM, - Spiller &VRegSpiller) { - MachineFunction &MF = G.getMetadata().MF; - LiveIntervals &LIS = G.getMetadata().LIS; - const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); - (void)TRI; - - // Set to true if we have any spills - bool AnotherRoundNeeded = false; - - // Clear the existing allocation. - VRM.clearAllVirt(); - - // Iterate over the nodes mapping the PBQP solution to a register - // assignment. - for (auto NId : G.nodeIds()) { - unsigned VReg = G.getNodeMetadata(NId).getVReg(); - unsigned AllocOption = Solution.getSelection(NId); - - if (AllocOption != PBQP::RegAlloc::getSpillOptionIdx()) { - unsigned PReg = G.getNodeMetadata(NId).getAllowedRegs()[AllocOption - 1]; - LLVM_DEBUG(dbgs() << "VREG " << printReg(VReg, &TRI) << " -> " - << TRI.getName(PReg) << "\n"); - assert(PReg != 0 && "Invalid preg selected."); - VRM.assignVirt2Phys(VReg, PReg); - } else { - // Spill VReg. If this introduces new intervals we'll need another round - // of allocation. - SmallVector<unsigned, 8> NewVRegs; - spillVReg(VReg, NewVRegs, MF, LIS, VRM, VRegSpiller); - AnotherRoundNeeded |= !NewVRegs.empty(); - } - } - - return !AnotherRoundNeeded; -} - -void RegAllocPBQP::finalizeAlloc(MachineFunction &MF, - LiveIntervals &LIS, - VirtRegMap &VRM) const { - MachineRegisterInfo &MRI = MF.getRegInfo(); - - // First allocate registers for the empty intervals. - for (RegSet::const_iterator - I = EmptyIntervalVRegs.begin(), E = EmptyIntervalVRegs.end(); - I != E; ++I) { - LiveInterval &LI = LIS.getInterval(*I); - - unsigned PReg = MRI.getSimpleHint(LI.reg); - - if (PReg == 0) { - const TargetRegisterClass &RC = *MRI.getRegClass(LI.reg); - const ArrayRef<MCPhysReg> RawPRegOrder = RC.getRawAllocationOrder(MF); - for (unsigned CandidateReg : RawPRegOrder) { - if (!VRM.getRegInfo().isReserved(CandidateReg)) { - PReg = CandidateReg; - break; - } - } - assert(PReg && - "No un-reserved physical registers in this register class"); - } - - VRM.assignVirt2Phys(LI.reg, PReg); - } -} - -void RegAllocPBQP::postOptimization(Spiller &VRegSpiller, LiveIntervals &LIS) { - VRegSpiller.postOptimization(); - /// Remove dead defs because of rematerialization. - for (auto DeadInst : DeadRemats) { - LIS.RemoveMachineInstrFromMaps(*DeadInst); - DeadInst->eraseFromParent(); - } - DeadRemats.clear(); -} - -static inline float normalizePBQPSpillWeight(float UseDefFreq, unsigned Size, - unsigned NumInstr) { - // All intervals have a spill weight that is mostly proportional to the number - // of uses, with uses in loops having a bigger weight. - return NumInstr * normalizeSpillWeight(UseDefFreq, Size, 1); -} - -bool RegAllocPBQP::runOnMachineFunction(MachineFunction &MF) { - LiveIntervals &LIS = getAnalysis<LiveIntervals>(); - MachineBlockFrequencyInfo &MBFI = - getAnalysis<MachineBlockFrequencyInfo>(); - - VirtRegMap &VRM = getAnalysis<VirtRegMap>(); - - calculateSpillWeightsAndHints(LIS, MF, &VRM, getAnalysis<MachineLoopInfo>(), - MBFI, normalizePBQPSpillWeight); - - std::unique_ptr<Spiller> VRegSpiller(createInlineSpiller(*this, MF, VRM)); - - MF.getRegInfo().freezeReservedRegs(MF); - - LLVM_DEBUG(dbgs() << "PBQP Register Allocating for " << MF.getName() << "\n"); - - // Allocator main loop: - // - // * Map current regalloc problem to a PBQP problem - // * Solve the PBQP problem - // * Map the solution back to a register allocation - // * Spill if necessary - // - // This process is continued till no more spills are generated. - - // Find the vreg intervals in need of allocation. - findVRegIntervalsToAlloc(MF, LIS); - -#ifndef NDEBUG - const Function &F = MF.getFunction(); - std::string FullyQualifiedName = - F.getParent()->getModuleIdentifier() + "." + F.getName().str(); -#endif - - // If there are non-empty intervals allocate them using pbqp. - if (!VRegsToAlloc.empty()) { - const TargetSubtargetInfo &Subtarget = MF.getSubtarget(); - std::unique_ptr<PBQPRAConstraintList> ConstraintsRoot = - llvm::make_unique<PBQPRAConstraintList>(); - ConstraintsRoot->addConstraint(llvm::make_unique<SpillCosts>()); - ConstraintsRoot->addConstraint(llvm::make_unique<Interference>()); - if (PBQPCoalescing) - ConstraintsRoot->addConstraint(llvm::make_unique<Coalescing>()); - ConstraintsRoot->addConstraint(Subtarget.getCustomPBQPConstraints()); - - bool PBQPAllocComplete = false; - unsigned Round = 0; - - while (!PBQPAllocComplete) { - LLVM_DEBUG(dbgs() << " PBQP Regalloc round " << Round << ":\n"); - - PBQPRAGraph G(PBQPRAGraph::GraphMetadata(MF, LIS, MBFI)); - initializeGraph(G, VRM, *VRegSpiller); - ConstraintsRoot->apply(G); - -#ifndef NDEBUG - if (PBQPDumpGraphs) { - std::ostringstream RS; - RS << Round; - std::string GraphFileName = FullyQualifiedName + "." + RS.str() + - ".pbqpgraph"; - std::error_code EC; - raw_fd_ostream OS(GraphFileName, EC, sys::fs::F_Text); - LLVM_DEBUG(dbgs() << "Dumping graph for round " << Round << " to \"" - << GraphFileName << "\"\n"); - G.dump(OS); - } -#endif - - PBQP::Solution Solution = PBQP::RegAlloc::solve(G); - PBQPAllocComplete = mapPBQPToRegAlloc(G, Solution, VRM, *VRegSpiller); - ++Round; - } - } - - // Finalise allocation, allocate empty ranges. - finalizeAlloc(MF, LIS, VRM); - postOptimization(*VRegSpiller, LIS); - VRegsToAlloc.clear(); - EmptyIntervalVRegs.clear(); - - LLVM_DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << VRM << "\n"); - - return true; -} - -/// Create Printable object for node and register info. -static Printable PrintNodeInfo(PBQP::RegAlloc::PBQPRAGraph::NodeId NId, - const PBQP::RegAlloc::PBQPRAGraph &G) { - return Printable([NId, &G](raw_ostream &OS) { - const MachineRegisterInfo &MRI = G.getMetadata().MF.getRegInfo(); - const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo(); - unsigned VReg = G.getNodeMetadata(NId).getVReg(); - const char *RegClassName = TRI->getRegClassName(MRI.getRegClass(VReg)); - OS << NId << " (" << RegClassName << ':' << printReg(VReg, TRI) << ')'; - }); -} - -#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) -LLVM_DUMP_METHOD void PBQP::RegAlloc::PBQPRAGraph::dump(raw_ostream &OS) const { - for (auto NId : nodeIds()) { - const Vector &Costs = getNodeCosts(NId); - assert(Costs.getLength() != 0 && "Empty vector in graph."); - OS << PrintNodeInfo(NId, *this) << ": " << Costs << '\n'; - } - OS << '\n'; - - for (auto EId : edgeIds()) { - NodeId N1Id = getEdgeNode1Id(EId); - NodeId N2Id = getEdgeNode2Id(EId); - assert(N1Id != N2Id && "PBQP graphs should not have self-edges."); - const Matrix &M = getEdgeCosts(EId); - assert(M.getRows() != 0 && "No rows in matrix."); - assert(M.getCols() != 0 && "No cols in matrix."); - OS << PrintNodeInfo(N1Id, *this) << ' ' << M.getRows() << " rows / "; - OS << PrintNodeInfo(N2Id, *this) << ' ' << M.getCols() << " cols:\n"; - OS << M << '\n'; - } -} - -LLVM_DUMP_METHOD void PBQP::RegAlloc::PBQPRAGraph::dump() const { - dump(dbgs()); -} -#endif - -void PBQP::RegAlloc::PBQPRAGraph::printDot(raw_ostream &OS) const { - OS << "graph {\n"; - for (auto NId : nodeIds()) { - OS << " node" << NId << " [ label=\"" - << PrintNodeInfo(NId, *this) << "\\n" - << getNodeCosts(NId) << "\" ]\n"; - } - - OS << " edge [ len=" << nodeIds().size() << " ]\n"; - for (auto EId : edgeIds()) { - OS << " node" << getEdgeNode1Id(EId) - << " -- node" << getEdgeNode2Id(EId) - << " [ label=\""; - const Matrix &EdgeCosts = getEdgeCosts(EId); - for (unsigned i = 0; i < EdgeCosts.getRows(); ++i) { - OS << EdgeCosts.getRowAsVector(i) << "\\n"; - } - OS << "\" ]\n"; - } - OS << "}\n"; -} - -FunctionPass *llvm::createPBQPRegisterAllocator(char *customPassID) { - return new RegAllocPBQP(customPassID); -} - -FunctionPass* llvm::createDefaultPBQPRegisterAllocator() { - return createPBQPRegisterAllocator(); -} |
