summaryrefslogtreecommitdiffstats
path: root/gnu/llvm/lib/CodeGen/RegisterCoalescer.cpp
diff options
context:
space:
mode:
authorpatrick <patrick@openbsd.org>2020-08-03 15:06:44 +0000
committerpatrick <patrick@openbsd.org>2020-08-03 15:06:44 +0000
commitb64793999546ed8adebaeebd9d8345d18db8927d (patch)
tree4357c27b561d73b0e089727c6ed659f2ceff5f47 /gnu/llvm/lib/CodeGen/RegisterCoalescer.cpp
parentAdd support for UTF-8 DISPLAY-HINTs with octet length. For now only (diff)
downloadwireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.tar.xz
wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.zip
Remove LLVM 8.0.1 files.
Diffstat (limited to 'gnu/llvm/lib/CodeGen/RegisterCoalescer.cpp')
-rw-r--r--gnu/llvm/lib/CodeGen/RegisterCoalescer.cpp3701
1 files changed, 0 insertions, 3701 deletions
diff --git a/gnu/llvm/lib/CodeGen/RegisterCoalescer.cpp b/gnu/llvm/lib/CodeGen/RegisterCoalescer.cpp
deleted file mode 100644
index 2a06d5e95fb..00000000000
--- a/gnu/llvm/lib/CodeGen/RegisterCoalescer.cpp
+++ /dev/null
@@ -1,3701 +0,0 @@
-//===- RegisterCoalescer.cpp - Generic Register Coalescing Interface ------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements the generic RegisterCoalescer interface which
-// is used as the common interface used by all clients and
-// implementations of register coalescing.
-//
-//===----------------------------------------------------------------------===//
-
-#include "RegisterCoalescer.h"
-#include "llvm/ADT/ArrayRef.h"
-#include "llvm/ADT/BitVector.h"
-#include "llvm/ADT/DenseSet.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/Analysis/AliasAnalysis.h"
-#include "llvm/CodeGen/LiveInterval.h"
-#include "llvm/CodeGen/LiveIntervals.h"
-#include "llvm/CodeGen/LiveRangeEdit.h"
-#include "llvm/CodeGen/MachineBasicBlock.h"
-#include "llvm/CodeGen/MachineFunction.h"
-#include "llvm/CodeGen/MachineFunctionPass.h"
-#include "llvm/CodeGen/MachineInstr.h"
-#include "llvm/CodeGen/MachineInstrBuilder.h"
-#include "llvm/CodeGen/MachineLoopInfo.h"
-#include "llvm/CodeGen/MachineOperand.h"
-#include "llvm/CodeGen/MachineRegisterInfo.h"
-#include "llvm/CodeGen/Passes.h"
-#include "llvm/CodeGen/RegisterClassInfo.h"
-#include "llvm/CodeGen/SlotIndexes.h"
-#include "llvm/CodeGen/TargetInstrInfo.h"
-#include "llvm/CodeGen/TargetOpcodes.h"
-#include "llvm/CodeGen/TargetRegisterInfo.h"
-#include "llvm/CodeGen/TargetSubtargetInfo.h"
-#include "llvm/IR/DebugLoc.h"
-#include "llvm/MC/LaneBitmask.h"
-#include "llvm/MC/MCInstrDesc.h"
-#include "llvm/MC/MCRegisterInfo.h"
-#include "llvm/Pass.h"
-#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/Compiler.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/raw_ostream.h"
-#include <algorithm>
-#include <cassert>
-#include <iterator>
-#include <limits>
-#include <tuple>
-#include <utility>
-#include <vector>
-
-using namespace llvm;
-
-#define DEBUG_TYPE "regalloc"
-
-STATISTIC(numJoins , "Number of interval joins performed");
-STATISTIC(numCrossRCs , "Number of cross class joins performed");
-STATISTIC(numCommutes , "Number of instruction commuting performed");
-STATISTIC(numExtends , "Number of copies extended");
-STATISTIC(NumReMats , "Number of instructions re-materialized");
-STATISTIC(NumInflated , "Number of register classes inflated");
-STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested");
-STATISTIC(NumLaneResolves, "Number of dead lane conflicts resolved");
-STATISTIC(NumShrinkToUses, "Number of shrinkToUses called");
-
-static cl::opt<bool> EnableJoining("join-liveintervals",
- cl::desc("Coalesce copies (default=true)"),
- cl::init(true), cl::Hidden);
-
-static cl::opt<bool> UseTerminalRule("terminal-rule",
- cl::desc("Apply the terminal rule"),
- cl::init(false), cl::Hidden);
-
-/// Temporary flag to test critical edge unsplitting.
-static cl::opt<bool>
-EnableJoinSplits("join-splitedges",
- cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden);
-
-/// Temporary flag to test global copy optimization.
-static cl::opt<cl::boolOrDefault>
-EnableGlobalCopies("join-globalcopies",
- cl::desc("Coalesce copies that span blocks (default=subtarget)"),
- cl::init(cl::BOU_UNSET), cl::Hidden);
-
-static cl::opt<bool>
-VerifyCoalescing("verify-coalescing",
- cl::desc("Verify machine instrs before and after register coalescing"),
- cl::Hidden);
-
-static cl::opt<unsigned> LateRematUpdateThreshold(
- "late-remat-update-threshold", cl::Hidden,
- cl::desc("During rematerialization for a copy, if the def instruction has "
- "many other copy uses to be rematerialized, delay the multiple "
- "separate live interval update work and do them all at once after "
- "all those rematerialization are done. It will save a lot of "
- "repeated work. "),
- cl::init(100));
-
-namespace {
-
- class RegisterCoalescer : public MachineFunctionPass,
- private LiveRangeEdit::Delegate {
- MachineFunction* MF;
- MachineRegisterInfo* MRI;
- const TargetRegisterInfo* TRI;
- const TargetInstrInfo* TII;
- LiveIntervals *LIS;
- const MachineLoopInfo* Loops;
- AliasAnalysis *AA;
- RegisterClassInfo RegClassInfo;
-
- /// A LaneMask to remember on which subregister live ranges we need to call
- /// shrinkToUses() later.
- LaneBitmask ShrinkMask;
-
- /// True if the main range of the currently coalesced intervals should be
- /// checked for smaller live intervals.
- bool ShrinkMainRange;
-
- /// True if the coalescer should aggressively coalesce global copies
- /// in favor of keeping local copies.
- bool JoinGlobalCopies;
-
- /// True if the coalescer should aggressively coalesce fall-thru
- /// blocks exclusively containing copies.
- bool JoinSplitEdges;
-
- /// Copy instructions yet to be coalesced.
- SmallVector<MachineInstr*, 8> WorkList;
- SmallVector<MachineInstr*, 8> LocalWorkList;
-
- /// Set of instruction pointers that have been erased, and
- /// that may be present in WorkList.
- SmallPtrSet<MachineInstr*, 8> ErasedInstrs;
-
- /// Dead instructions that are about to be deleted.
- SmallVector<MachineInstr*, 8> DeadDefs;
-
- /// Virtual registers to be considered for register class inflation.
- SmallVector<unsigned, 8> InflateRegs;
-
- /// The collection of live intervals which should have been updated
- /// immediately after rematerialiation but delayed until
- /// lateLiveIntervalUpdate is called.
- DenseSet<unsigned> ToBeUpdated;
-
- /// Recursively eliminate dead defs in DeadDefs.
- void eliminateDeadDefs();
-
- /// LiveRangeEdit callback for eliminateDeadDefs().
- void LRE_WillEraseInstruction(MachineInstr *MI) override;
-
- /// Coalesce the LocalWorkList.
- void coalesceLocals();
-
- /// Join compatible live intervals
- void joinAllIntervals();
-
- /// Coalesce copies in the specified MBB, putting
- /// copies that cannot yet be coalesced into WorkList.
- void copyCoalesceInMBB(MachineBasicBlock *MBB);
-
- /// Tries to coalesce all copies in CurrList. Returns true if any progress
- /// was made.
- bool copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList);
-
- /// If one def has many copy like uses, and those copy uses are all
- /// rematerialized, the live interval update needed for those
- /// rematerializations will be delayed and done all at once instead
- /// of being done multiple times. This is to save compile cost because
- /// live interval update is costly.
- void lateLiveIntervalUpdate();
-
- /// Attempt to join intervals corresponding to SrcReg/DstReg, which are the
- /// src/dst of the copy instruction CopyMI. This returns true if the copy
- /// was successfully coalesced away. If it is not currently possible to
- /// coalesce this interval, but it may be possible if other things get
- /// coalesced, then it returns true by reference in 'Again'.
- bool joinCopy(MachineInstr *CopyMI, bool &Again);
-
- /// Attempt to join these two intervals. On failure, this
- /// returns false. The output "SrcInt" will not have been modified, so we
- /// can use this information below to update aliases.
- bool joinIntervals(CoalescerPair &CP);
-
- /// Attempt joining two virtual registers. Return true on success.
- bool joinVirtRegs(CoalescerPair &CP);
-
- /// Attempt joining with a reserved physreg.
- bool joinReservedPhysReg(CoalescerPair &CP);
-
- /// Add the LiveRange @p ToMerge as a subregister liverange of @p LI.
- /// Subranges in @p LI which only partially interfere with the desired
- /// LaneMask are split as necessary. @p LaneMask are the lanes that
- /// @p ToMerge will occupy in the coalescer register. @p LI has its subrange
- /// lanemasks already adjusted to the coalesced register.
- void mergeSubRangeInto(LiveInterval &LI, const LiveRange &ToMerge,
- LaneBitmask LaneMask, CoalescerPair &CP);
-
- /// Join the liveranges of two subregisters. Joins @p RRange into
- /// @p LRange, @p RRange may be invalid afterwards.
- void joinSubRegRanges(LiveRange &LRange, LiveRange &RRange,
- LaneBitmask LaneMask, const CoalescerPair &CP);
-
- /// We found a non-trivially-coalescable copy. If the source value number is
- /// defined by a copy from the destination reg see if we can merge these two
- /// destination reg valno# into a single value number, eliminating a copy.
- /// This returns true if an interval was modified.
- bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI);
-
- /// Return true if there are definitions of IntB
- /// other than BValNo val# that can reach uses of AValno val# of IntA.
- bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB,
- VNInfo *AValNo, VNInfo *BValNo);
-
- /// We found a non-trivially-coalescable copy.
- /// If the source value number is defined by a commutable instruction and
- /// its other operand is coalesced to the copy dest register, see if we
- /// can transform the copy into a noop by commuting the definition.
- /// This returns a pair of two flags:
- /// - the first element is true if an interval was modified,
- /// - the second element is true if the destination interval needs
- /// to be shrunk after deleting the copy.
- std::pair<bool,bool> removeCopyByCommutingDef(const CoalescerPair &CP,
- MachineInstr *CopyMI);
-
- /// We found a copy which can be moved to its less frequent predecessor.
- bool removePartialRedundancy(const CoalescerPair &CP, MachineInstr &CopyMI);
-
- /// If the source of a copy is defined by a
- /// trivial computation, replace the copy by rematerialize the definition.
- bool reMaterializeTrivialDef(const CoalescerPair &CP, MachineInstr *CopyMI,
- bool &IsDefCopy);
-
- /// Return true if a copy involving a physreg should be joined.
- bool canJoinPhys(const CoalescerPair &CP);
-
- /// Replace all defs and uses of SrcReg to DstReg and update the subregister
- /// number if it is not zero. If DstReg is a physical register and the
- /// existing subregister number of the def / use being updated is not zero,
- /// make sure to set it to the correct physical subregister.
- void updateRegDefsUses(unsigned SrcReg, unsigned DstReg, unsigned SubIdx);
-
- /// If the given machine operand reads only undefined lanes add an undef
- /// flag.
- /// This can happen when undef uses were previously concealed by a copy
- /// which we coalesced. Example:
- /// %0:sub0<def,read-undef> = ...
- /// %1 = COPY %0 <-- Coalescing COPY reveals undef
- /// = use %1:sub1 <-- hidden undef use
- void addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx,
- MachineOperand &MO, unsigned SubRegIdx);
-
- /// Handle copies of undef values. If the undef value is an incoming
- /// PHI value, it will convert @p CopyMI to an IMPLICIT_DEF.
- /// Returns nullptr if @p CopyMI was not in any way eliminable. Otherwise,
- /// it returns @p CopyMI (which could be an IMPLICIT_DEF at this point).
- MachineInstr *eliminateUndefCopy(MachineInstr *CopyMI);
-
- /// Check whether or not we should apply the terminal rule on the
- /// destination (Dst) of \p Copy.
- /// When the terminal rule applies, Copy is not profitable to
- /// coalesce.
- /// Dst is terminal if it has exactly one affinity (Dst, Src) and
- /// at least one interference (Dst, Dst2). If Dst is terminal, the
- /// terminal rule consists in checking that at least one of
- /// interfering node, say Dst2, has an affinity of equal or greater
- /// weight with Src.
- /// In that case, Dst2 and Dst will not be able to be both coalesced
- /// with Src. Since Dst2 exposes more coalescing opportunities than
- /// Dst, we can drop \p Copy.
- bool applyTerminalRule(const MachineInstr &Copy) const;
-
- /// Wrapper method for \see LiveIntervals::shrinkToUses.
- /// This method does the proper fixing of the live-ranges when the afore
- /// mentioned method returns true.
- void shrinkToUses(LiveInterval *LI,
- SmallVectorImpl<MachineInstr * > *Dead = nullptr) {
- NumShrinkToUses++;
- if (LIS->shrinkToUses(LI, Dead)) {
- /// Check whether or not \p LI is composed by multiple connected
- /// components and if that is the case, fix that.
- SmallVector<LiveInterval*, 8> SplitLIs;
- LIS->splitSeparateComponents(*LI, SplitLIs);
- }
- }
-
- /// Wrapper Method to do all the necessary work when an Instruction is
- /// deleted.
- /// Optimizations should use this to make sure that deleted instructions
- /// are always accounted for.
- void deleteInstr(MachineInstr* MI) {
- ErasedInstrs.insert(MI);
- LIS->RemoveMachineInstrFromMaps(*MI);
- MI->eraseFromParent();
- }
-
- public:
- static char ID; ///< Class identification, replacement for typeinfo
-
- RegisterCoalescer() : MachineFunctionPass(ID) {
- initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
- }
-
- void getAnalysisUsage(AnalysisUsage &AU) const override;
-
- void releaseMemory() override;
-
- /// This is the pass entry point.
- bool runOnMachineFunction(MachineFunction&) override;
-
- /// Implement the dump method.
- void print(raw_ostream &O, const Module* = nullptr) const override;
- };
-
-} // end anonymous namespace
-
-char RegisterCoalescer::ID = 0;
-
-char &llvm::RegisterCoalescerID = RegisterCoalescer::ID;
-
-INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing",
- "Simple Register Coalescing", false, false)
-INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
-INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
-INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
-INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
-INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing",
- "Simple Register Coalescing", false, false)
-
-static bool isMoveInstr(const TargetRegisterInfo &tri, const MachineInstr *MI,
- unsigned &Src, unsigned &Dst,
- unsigned &SrcSub, unsigned &DstSub) {
- if (MI->isCopy()) {
- Dst = MI->getOperand(0).getReg();
- DstSub = MI->getOperand(0).getSubReg();
- Src = MI->getOperand(1).getReg();
- SrcSub = MI->getOperand(1).getSubReg();
- } else if (MI->isSubregToReg()) {
- Dst = MI->getOperand(0).getReg();
- DstSub = tri.composeSubRegIndices(MI->getOperand(0).getSubReg(),
- MI->getOperand(3).getImm());
- Src = MI->getOperand(2).getReg();
- SrcSub = MI->getOperand(2).getSubReg();
- } else
- return false;
- return true;
-}
-
-/// Return true if this block should be vacated by the coalescer to eliminate
-/// branches. The important cases to handle in the coalescer are critical edges
-/// split during phi elimination which contain only copies. Simple blocks that
-/// contain non-branches should also be vacated, but this can be handled by an
-/// earlier pass similar to early if-conversion.
-static bool isSplitEdge(const MachineBasicBlock *MBB) {
- if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
- return false;
-
- for (const auto &MI : *MBB) {
- if (!MI.isCopyLike() && !MI.isUnconditionalBranch())
- return false;
- }
- return true;
-}
-
-bool CoalescerPair::setRegisters(const MachineInstr *MI) {
- SrcReg = DstReg = 0;
- SrcIdx = DstIdx = 0;
- NewRC = nullptr;
- Flipped = CrossClass = false;
-
- unsigned Src, Dst, SrcSub, DstSub;
- if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
- return false;
- Partial = SrcSub || DstSub;
-
- // If one register is a physreg, it must be Dst.
- if (TargetRegisterInfo::isPhysicalRegister(Src)) {
- if (TargetRegisterInfo::isPhysicalRegister(Dst))
- return false;
- std::swap(Src, Dst);
- std::swap(SrcSub, DstSub);
- Flipped = true;
- }
-
- const MachineRegisterInfo &MRI = MI->getMF()->getRegInfo();
-
- if (TargetRegisterInfo::isPhysicalRegister(Dst)) {
- // Eliminate DstSub on a physreg.
- if (DstSub) {
- Dst = TRI.getSubReg(Dst, DstSub);
- if (!Dst) return false;
- DstSub = 0;
- }
-
- // Eliminate SrcSub by picking a corresponding Dst superregister.
- if (SrcSub) {
- Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src));
- if (!Dst) return false;
- } else if (!MRI.getRegClass(Src)->contains(Dst)) {
- return false;
- }
- } else {
- // Both registers are virtual.
- const TargetRegisterClass *SrcRC = MRI.getRegClass(Src);
- const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
-
- // Both registers have subreg indices.
- if (SrcSub && DstSub) {
- // Copies between different sub-registers are never coalescable.
- if (Src == Dst && SrcSub != DstSub)
- return false;
-
- NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub,
- SrcIdx, DstIdx);
- if (!NewRC)
- return false;
- } else if (DstSub) {
- // SrcReg will be merged with a sub-register of DstReg.
- SrcIdx = DstSub;
- NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub);
- } else if (SrcSub) {
- // DstReg will be merged with a sub-register of SrcReg.
- DstIdx = SrcSub;
- NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub);
- } else {
- // This is a straight copy without sub-registers.
- NewRC = TRI.getCommonSubClass(DstRC, SrcRC);
- }
-
- // The combined constraint may be impossible to satisfy.
- if (!NewRC)
- return false;
-
- // Prefer SrcReg to be a sub-register of DstReg.
- // FIXME: Coalescer should support subregs symmetrically.
- if (DstIdx && !SrcIdx) {
- std::swap(Src, Dst);
- std::swap(SrcIdx, DstIdx);
- Flipped = !Flipped;
- }
-
- CrossClass = NewRC != DstRC || NewRC != SrcRC;
- }
- // Check our invariants
- assert(TargetRegisterInfo::isVirtualRegister(Src) && "Src must be virtual");
- assert(!(TargetRegisterInfo::isPhysicalRegister(Dst) && DstSub) &&
- "Cannot have a physical SubIdx");
- SrcReg = Src;
- DstReg = Dst;
- return true;
-}
-
-bool CoalescerPair::flip() {
- if (TargetRegisterInfo::isPhysicalRegister(DstReg))
- return false;
- std::swap(SrcReg, DstReg);
- std::swap(SrcIdx, DstIdx);
- Flipped = !Flipped;
- return true;
-}
-
-bool CoalescerPair::isCoalescable(const MachineInstr *MI) const {
- if (!MI)
- return false;
- unsigned Src, Dst, SrcSub, DstSub;
- if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
- return false;
-
- // Find the virtual register that is SrcReg.
- if (Dst == SrcReg) {
- std::swap(Src, Dst);
- std::swap(SrcSub, DstSub);
- } else if (Src != SrcReg) {
- return false;
- }
-
- // Now check that Dst matches DstReg.
- if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
- if (!TargetRegisterInfo::isPhysicalRegister(Dst))
- return false;
- assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state.");
- // DstSub could be set for a physreg from INSERT_SUBREG.
- if (DstSub)
- Dst = TRI.getSubReg(Dst, DstSub);
- // Full copy of Src.
- if (!SrcSub)
- return DstReg == Dst;
- // This is a partial register copy. Check that the parts match.
- return TRI.getSubReg(DstReg, SrcSub) == Dst;
- } else {
- // DstReg is virtual.
- if (DstReg != Dst)
- return false;
- // Registers match, do the subregisters line up?
- return TRI.composeSubRegIndices(SrcIdx, SrcSub) ==
- TRI.composeSubRegIndices(DstIdx, DstSub);
- }
-}
-
-void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const {
- AU.setPreservesCFG();
- AU.addRequired<AAResultsWrapperPass>();
- AU.addRequired<LiveIntervals>();
- AU.addPreserved<LiveIntervals>();
- AU.addPreserved<SlotIndexes>();
- AU.addRequired<MachineLoopInfo>();
- AU.addPreserved<MachineLoopInfo>();
- AU.addPreservedID(MachineDominatorsID);
- MachineFunctionPass::getAnalysisUsage(AU);
-}
-
-void RegisterCoalescer::eliminateDeadDefs() {
- SmallVector<unsigned, 8> NewRegs;
- LiveRangeEdit(nullptr, NewRegs, *MF, *LIS,
- nullptr, this).eliminateDeadDefs(DeadDefs);
-}
-
-void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) {
- // MI may be in WorkList. Make sure we don't visit it.
- ErasedInstrs.insert(MI);
-}
-
-bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP,
- MachineInstr *CopyMI) {
- assert(!CP.isPartial() && "This doesn't work for partial copies.");
- assert(!CP.isPhys() && "This doesn't work for physreg copies.");
-
- LiveInterval &IntA =
- LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
- LiveInterval &IntB =
- LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
- SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
-
- // We have a non-trivially-coalescable copy with IntA being the source and
- // IntB being the dest, thus this defines a value number in IntB. If the
- // source value number (in IntA) is defined by a copy from B, see if we can
- // merge these two pieces of B into a single value number, eliminating a copy.
- // For example:
- //
- // A3 = B0
- // ...
- // B1 = A3 <- this copy
- //
- // In this case, B0 can be extended to where the B1 copy lives, allowing the
- // B1 value number to be replaced with B0 (which simplifies the B
- // liveinterval).
-
- // BValNo is a value number in B that is defined by a copy from A. 'B1' in
- // the example above.
- LiveInterval::iterator BS = IntB.FindSegmentContaining(CopyIdx);
- if (BS == IntB.end()) return false;
- VNInfo *BValNo = BS->valno;
-
- // Get the location that B is defined at. Two options: either this value has
- // an unknown definition point or it is defined at CopyIdx. If unknown, we
- // can't process it.
- if (BValNo->def != CopyIdx) return false;
-
- // AValNo is the value number in A that defines the copy, A3 in the example.
- SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true);
- LiveInterval::iterator AS = IntA.FindSegmentContaining(CopyUseIdx);
- // The live segment might not exist after fun with physreg coalescing.
- if (AS == IntA.end()) return false;
- VNInfo *AValNo = AS->valno;
-
- // If AValNo is defined as a copy from IntB, we can potentially process this.
- // Get the instruction that defines this value number.
- MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def);
- // Don't allow any partial copies, even if isCoalescable() allows them.
- if (!CP.isCoalescable(ACopyMI) || !ACopyMI->isFullCopy())
- return false;
-
- // Get the Segment in IntB that this value number starts with.
- LiveInterval::iterator ValS =
- IntB.FindSegmentContaining(AValNo->def.getPrevSlot());
- if (ValS == IntB.end())
- return false;
-
- // Make sure that the end of the live segment is inside the same block as
- // CopyMI.
- MachineInstr *ValSEndInst =
- LIS->getInstructionFromIndex(ValS->end.getPrevSlot());
- if (!ValSEndInst || ValSEndInst->getParent() != CopyMI->getParent())
- return false;
-
- // Okay, we now know that ValS ends in the same block that the CopyMI
- // live-range starts. If there are no intervening live segments between them
- // in IntB, we can merge them.
- if (ValS+1 != BS) return false;
-
- LLVM_DEBUG(dbgs() << "Extending: " << printReg(IntB.reg, TRI));
-
- SlotIndex FillerStart = ValS->end, FillerEnd = BS->start;
- // We are about to delete CopyMI, so need to remove it as the 'instruction
- // that defines this value #'. Update the valnum with the new defining
- // instruction #.
- BValNo->def = FillerStart;
-
- // Okay, we can merge them. We need to insert a new liverange:
- // [ValS.end, BS.begin) of either value number, then we merge the
- // two value numbers.
- IntB.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, BValNo));
-
- // Okay, merge "B1" into the same value number as "B0".
- if (BValNo != ValS->valno)
- IntB.MergeValueNumberInto(BValNo, ValS->valno);
-
- // Do the same for the subregister segments.
- for (LiveInterval::SubRange &S : IntB.subranges()) {
- // Check for SubRange Segments of the form [1234r,1234d:0) which can be
- // removed to prevent creating bogus SubRange Segments.
- LiveInterval::iterator SS = S.FindSegmentContaining(CopyIdx);
- if (SS != S.end() && SlotIndex::isSameInstr(SS->start, SS->end)) {
- S.removeSegment(*SS, true);
- continue;
- }
- VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx);
- S.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, SubBValNo));
- VNInfo *SubValSNo = S.getVNInfoAt(AValNo->def.getPrevSlot());
- if (SubBValNo != SubValSNo)
- S.MergeValueNumberInto(SubBValNo, SubValSNo);
- }
-
- LLVM_DEBUG(dbgs() << " result = " << IntB << '\n');
-
- // If the source instruction was killing the source register before the
- // merge, unset the isKill marker given the live range has been extended.
- int UIdx = ValSEndInst->findRegisterUseOperandIdx(IntB.reg, true);
- if (UIdx != -1) {
- ValSEndInst->getOperand(UIdx).setIsKill(false);
- }
-
- // Rewrite the copy.
- CopyMI->substituteRegister(IntA.reg, IntB.reg, 0, *TRI);
- // If the copy instruction was killing the destination register or any
- // subrange before the merge trim the live range.
- bool RecomputeLiveRange = AS->end == CopyIdx;
- if (!RecomputeLiveRange) {
- for (LiveInterval::SubRange &S : IntA.subranges()) {
- LiveInterval::iterator SS = S.FindSegmentContaining(CopyUseIdx);
- if (SS != S.end() && SS->end == CopyIdx) {
- RecomputeLiveRange = true;
- break;
- }
- }
- }
- if (RecomputeLiveRange)
- shrinkToUses(&IntA);
-
- ++numExtends;
- return true;
-}
-
-bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA,
- LiveInterval &IntB,
- VNInfo *AValNo,
- VNInfo *BValNo) {
- // If AValNo has PHI kills, conservatively assume that IntB defs can reach
- // the PHI values.
- if (LIS->hasPHIKill(IntA, AValNo))
- return true;
-
- for (LiveRange::Segment &ASeg : IntA.segments) {
- if (ASeg.valno != AValNo) continue;
- LiveInterval::iterator BI =
- std::upper_bound(IntB.begin(), IntB.end(), ASeg.start);
- if (BI != IntB.begin())
- --BI;
- for (; BI != IntB.end() && ASeg.end >= BI->start; ++BI) {
- if (BI->valno == BValNo)
- continue;
- if (BI->start <= ASeg.start && BI->end > ASeg.start)
- return true;
- if (BI->start > ASeg.start && BI->start < ASeg.end)
- return true;
- }
- }
- return false;
-}
-
-/// Copy segments with value number @p SrcValNo from liverange @p Src to live
-/// range @Dst and use value number @p DstValNo there.
-static std::pair<bool,bool>
-addSegmentsWithValNo(LiveRange &Dst, VNInfo *DstValNo, const LiveRange &Src,
- const VNInfo *SrcValNo) {
- bool Changed = false;
- bool MergedWithDead = false;
- for (const LiveRange::Segment &S : Src.segments) {
- if (S.valno != SrcValNo)
- continue;
- // This is adding a segment from Src that ends in a copy that is about
- // to be removed. This segment is going to be merged with a pre-existing
- // segment in Dst. This works, except in cases when the corresponding
- // segment in Dst is dead. For example: adding [192r,208r:1) from Src
- // to [208r,208d:1) in Dst would create [192r,208d:1) in Dst.
- // Recognized such cases, so that the segments can be shrunk.
- LiveRange::Segment Added = LiveRange::Segment(S.start, S.end, DstValNo);
- LiveRange::Segment &Merged = *Dst.addSegment(Added);
- if (Merged.end.isDead())
- MergedWithDead = true;
- Changed = true;
- }
- return std::make_pair(Changed, MergedWithDead);
-}
-
-std::pair<bool,bool>
-RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP,
- MachineInstr *CopyMI) {
- assert(!CP.isPhys());
-
- LiveInterval &IntA =
- LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
- LiveInterval &IntB =
- LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
-
- // We found a non-trivially-coalescable copy with IntA being the source and
- // IntB being the dest, thus this defines a value number in IntB. If the
- // source value number (in IntA) is defined by a commutable instruction and
- // its other operand is coalesced to the copy dest register, see if we can
- // transform the copy into a noop by commuting the definition. For example,
- //
- // A3 = op A2 killed B0
- // ...
- // B1 = A3 <- this copy
- // ...
- // = op A3 <- more uses
- //
- // ==>
- //
- // B2 = op B0 killed A2
- // ...
- // B1 = B2 <- now an identity copy
- // ...
- // = op B2 <- more uses
-
- // BValNo is a value number in B that is defined by a copy from A. 'B1' in
- // the example above.
- SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
- VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx);
- assert(BValNo != nullptr && BValNo->def == CopyIdx);
-
- // AValNo is the value number in A that defines the copy, A3 in the example.
- VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true));
- assert(AValNo && !AValNo->isUnused() && "COPY source not live");
- if (AValNo->isPHIDef())
- return { false, false };
- MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def);
- if (!DefMI)
- return { false, false };
- if (!DefMI->isCommutable())
- return { false, false };
- // If DefMI is a two-address instruction then commuting it will change the
- // destination register.
- int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg);
- assert(DefIdx != -1);
- unsigned UseOpIdx;
- if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx))
- return { false, false };
-
- // FIXME: The code below tries to commute 'UseOpIdx' operand with some other
- // commutable operand which is expressed by 'CommuteAnyOperandIndex'value
- // passed to the method. That _other_ operand is chosen by
- // the findCommutedOpIndices() method.
- //
- // That is obviously an area for improvement in case of instructions having
- // more than 2 operands. For example, if some instruction has 3 commutable
- // operands then all possible variants (i.e. op#1<->op#2, op#1<->op#3,
- // op#2<->op#3) of commute transformation should be considered/tried here.
- unsigned NewDstIdx = TargetInstrInfo::CommuteAnyOperandIndex;
- if (!TII->findCommutedOpIndices(*DefMI, UseOpIdx, NewDstIdx))
- return { false, false };
-
- MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
- unsigned NewReg = NewDstMO.getReg();
- if (NewReg != IntB.reg || !IntB.Query(AValNo->def).isKill())
- return { false, false };
-
- // Make sure there are no other definitions of IntB that would reach the
- // uses which the new definition can reach.
- if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
- return { false, false };
-
- // If some of the uses of IntA.reg is already coalesced away, return false.
- // It's not possible to determine whether it's safe to perform the coalescing.
- for (MachineOperand &MO : MRI->use_nodbg_operands(IntA.reg)) {
- MachineInstr *UseMI = MO.getParent();
- unsigned OpNo = &MO - &UseMI->getOperand(0);
- SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI);
- LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx);
- if (US == IntA.end() || US->valno != AValNo)
- continue;
- // If this use is tied to a def, we can't rewrite the register.
- if (UseMI->isRegTiedToDefOperand(OpNo))
- return { false, false };
- }
-
- LLVM_DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t'
- << *DefMI);
-
- // At this point we have decided that it is legal to do this
- // transformation. Start by commuting the instruction.
- MachineBasicBlock *MBB = DefMI->getParent();
- MachineInstr *NewMI =
- TII->commuteInstruction(*DefMI, false, UseOpIdx, NewDstIdx);
- if (!NewMI)
- return { false, false };
- if (TargetRegisterInfo::isVirtualRegister(IntA.reg) &&
- TargetRegisterInfo::isVirtualRegister(IntB.reg) &&
- !MRI->constrainRegClass(IntB.reg, MRI->getRegClass(IntA.reg)))
- return { false, false };
- if (NewMI != DefMI) {
- LIS->ReplaceMachineInstrInMaps(*DefMI, *NewMI);
- MachineBasicBlock::iterator Pos = DefMI;
- MBB->insert(Pos, NewMI);
- MBB->erase(DefMI);
- }
-
- // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
- // A = or A, B
- // ...
- // B = A
- // ...
- // C = killed A
- // ...
- // = B
-
- // Update uses of IntA of the specific Val# with IntB.
- for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg),
- UE = MRI->use_end();
- UI != UE; /* ++UI is below because of possible MI removal */) {
- MachineOperand &UseMO = *UI;
- ++UI;
- if (UseMO.isUndef())
- continue;
- MachineInstr *UseMI = UseMO.getParent();
- if (UseMI->isDebugValue()) {
- // FIXME These don't have an instruction index. Not clear we have enough
- // info to decide whether to do this replacement or not. For now do it.
- UseMO.setReg(NewReg);
- continue;
- }
- SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI).getRegSlot(true);
- LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx);
- assert(US != IntA.end() && "Use must be live");
- if (US->valno != AValNo)
- continue;
- // Kill flags are no longer accurate. They are recomputed after RA.
- UseMO.setIsKill(false);
- if (TargetRegisterInfo::isPhysicalRegister(NewReg))
- UseMO.substPhysReg(NewReg, *TRI);
- else
- UseMO.setReg(NewReg);
- if (UseMI == CopyMI)
- continue;
- if (!UseMI->isCopy())
- continue;
- if (UseMI->getOperand(0).getReg() != IntB.reg ||
- UseMI->getOperand(0).getSubReg())
- continue;
-
- // This copy will become a noop. If it's defining a new val#, merge it into
- // BValNo.
- SlotIndex DefIdx = UseIdx.getRegSlot();
- VNInfo *DVNI = IntB.getVNInfoAt(DefIdx);
- if (!DVNI)
- continue;
- LLVM_DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI);
- assert(DVNI->def == DefIdx);
- BValNo = IntB.MergeValueNumberInto(DVNI, BValNo);
- for (LiveInterval::SubRange &S : IntB.subranges()) {
- VNInfo *SubDVNI = S.getVNInfoAt(DefIdx);
- if (!SubDVNI)
- continue;
- VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx);
- assert(SubBValNo->def == CopyIdx);
- S.MergeValueNumberInto(SubDVNI, SubBValNo);
- }
-
- deleteInstr(UseMI);
- }
-
- // Extend BValNo by merging in IntA live segments of AValNo. Val# definition
- // is updated.
- bool ShrinkB = false;
- BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
- if (IntA.hasSubRanges() || IntB.hasSubRanges()) {
- if (!IntA.hasSubRanges()) {
- LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntA.reg);
- IntA.createSubRangeFrom(Allocator, Mask, IntA);
- } else if (!IntB.hasSubRanges()) {
- LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntB.reg);
- IntB.createSubRangeFrom(Allocator, Mask, IntB);
- }
- SlotIndex AIdx = CopyIdx.getRegSlot(true);
- LaneBitmask MaskA;
- for (LiveInterval::SubRange &SA : IntA.subranges()) {
- VNInfo *ASubValNo = SA.getVNInfoAt(AIdx);
- assert(ASubValNo != nullptr);
- MaskA |= SA.LaneMask;
-
- IntB.refineSubRanges(Allocator, SA.LaneMask,
- [&Allocator,&SA,CopyIdx,ASubValNo,&ShrinkB]
- (LiveInterval::SubRange &SR) {
- VNInfo *BSubValNo = SR.empty()
- ? SR.getNextValue(CopyIdx, Allocator)
- : SR.getVNInfoAt(CopyIdx);
- assert(BSubValNo != nullptr);
- auto P = addSegmentsWithValNo(SR, BSubValNo, SA, ASubValNo);
- ShrinkB |= P.second;
- if (P.first)
- BSubValNo->def = ASubValNo->def;
- });
- }
- // Go over all subranges of IntB that have not been covered by IntA,
- // and delete the segments starting at CopyIdx. This can happen if
- // IntA has undef lanes that are defined in IntB.
- for (LiveInterval::SubRange &SB : IntB.subranges()) {
- if ((SB.LaneMask & MaskA).any())
- continue;
- if (LiveRange::Segment *S = SB.getSegmentContaining(CopyIdx))
- if (S->start.getBaseIndex() == CopyIdx.getBaseIndex())
- SB.removeSegment(*S, true);
- }
- }
-
- BValNo->def = AValNo->def;
- auto P = addSegmentsWithValNo(IntB, BValNo, IntA, AValNo);
- ShrinkB |= P.second;
- LLVM_DEBUG(dbgs() << "\t\textended: " << IntB << '\n');
-
- LIS->removeVRegDefAt(IntA, AValNo->def);
-
- LLVM_DEBUG(dbgs() << "\t\ttrimmed: " << IntA << '\n');
- ++numCommutes;
- return { true, ShrinkB };
-}
-
-/// For copy B = A in BB2, if A is defined by A = B in BB0 which is a
-/// predecessor of BB2, and if B is not redefined on the way from A = B
-/// in BB2 to B = A in BB2, B = A in BB2 is partially redundant if the
-/// execution goes through the path from BB0 to BB2. We may move B = A
-/// to the predecessor without such reversed copy.
-/// So we will transform the program from:
-/// BB0:
-/// A = B; BB1:
-/// ... ...
-/// / \ /
-/// BB2:
-/// ...
-/// B = A;
-///
-/// to:
-///
-/// BB0: BB1:
-/// A = B; ...
-/// ... B = A;
-/// / \ /
-/// BB2:
-/// ...
-///
-/// A special case is when BB0 and BB2 are the same BB which is the only
-/// BB in a loop:
-/// BB1:
-/// ...
-/// BB0/BB2: ----
-/// B = A; |
-/// ... |
-/// A = B; |
-/// |-------
-/// |
-/// We may hoist B = A from BB0/BB2 to BB1.
-///
-/// The major preconditions for correctness to remove such partial
-/// redundancy include:
-/// 1. A in B = A in BB2 is defined by a PHI in BB2, and one operand of
-/// the PHI is defined by the reversed copy A = B in BB0.
-/// 2. No B is referenced from the start of BB2 to B = A.
-/// 3. No B is defined from A = B to the end of BB0.
-/// 4. BB1 has only one successor.
-///
-/// 2 and 4 implicitly ensure B is not live at the end of BB1.
-/// 4 guarantees BB2 is hotter than BB1, so we can only move a copy to a
-/// colder place, which not only prevent endless loop, but also make sure
-/// the movement of copy is beneficial.
-bool RegisterCoalescer::removePartialRedundancy(const CoalescerPair &CP,
- MachineInstr &CopyMI) {
- assert(!CP.isPhys());
- if (!CopyMI.isFullCopy())
- return false;
-
- MachineBasicBlock &MBB = *CopyMI.getParent();
- if (MBB.isEHPad())
- return false;
-
- if (MBB.pred_size() != 2)
- return false;
-
- LiveInterval &IntA =
- LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
- LiveInterval &IntB =
- LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
-
- // A is defined by PHI at the entry of MBB.
- SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(true);
- VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx);
- assert(AValNo && !AValNo->isUnused() && "COPY source not live");
- if (!AValNo->isPHIDef())
- return false;
-
- // No B is referenced before CopyMI in MBB.
- if (IntB.overlaps(LIS->getMBBStartIdx(&MBB), CopyIdx))
- return false;
-
- // MBB has two predecessors: one contains A = B so no copy will be inserted
- // for it. The other one will have a copy moved from MBB.
- bool FoundReverseCopy = false;
- MachineBasicBlock *CopyLeftBB = nullptr;
- for (MachineBasicBlock *Pred : MBB.predecessors()) {
- VNInfo *PVal = IntA.getVNInfoBefore(LIS->getMBBEndIdx(Pred));
- MachineInstr *DefMI = LIS->getInstructionFromIndex(PVal->def);
- if (!DefMI || !DefMI->isFullCopy()) {
- CopyLeftBB = Pred;
- continue;
- }
- // Check DefMI is a reverse copy and it is in BB Pred.
- if (DefMI->getOperand(0).getReg() != IntA.reg ||
- DefMI->getOperand(1).getReg() != IntB.reg ||
- DefMI->getParent() != Pred) {
- CopyLeftBB = Pred;
- continue;
- }
- // If there is any other def of B after DefMI and before the end of Pred,
- // we need to keep the copy of B = A at the end of Pred if we remove
- // B = A from MBB.
- bool ValB_Changed = false;
- for (auto VNI : IntB.valnos) {
- if (VNI->isUnused())
- continue;
- if (PVal->def < VNI->def && VNI->def < LIS->getMBBEndIdx(Pred)) {
- ValB_Changed = true;
- break;
- }
- }
- if (ValB_Changed) {
- CopyLeftBB = Pred;
- continue;
- }
- FoundReverseCopy = true;
- }
-
- // If no reverse copy is found in predecessors, nothing to do.
- if (!FoundReverseCopy)
- return false;
-
- // If CopyLeftBB is nullptr, it means every predecessor of MBB contains
- // reverse copy, CopyMI can be removed trivially if only IntA/IntB is updated.
- // If CopyLeftBB is not nullptr, move CopyMI from MBB to CopyLeftBB and
- // update IntA/IntB.
- //
- // If CopyLeftBB is not nullptr, ensure CopyLeftBB has a single succ so
- // MBB is hotter than CopyLeftBB.
- if (CopyLeftBB && CopyLeftBB->succ_size() > 1)
- return false;
-
- // Now (almost sure it's) ok to move copy.
- if (CopyLeftBB) {
- // Position in CopyLeftBB where we should insert new copy.
- auto InsPos = CopyLeftBB->getFirstTerminator();
-
- // Make sure that B isn't referenced in the terminators (if any) at the end
- // of the predecessor since we're about to insert a new definition of B
- // before them.
- if (InsPos != CopyLeftBB->end()) {
- SlotIndex InsPosIdx = LIS->getInstructionIndex(*InsPos).getRegSlot(true);
- if (IntB.overlaps(InsPosIdx, LIS->getMBBEndIdx(CopyLeftBB)))
- return false;
- }
-
- LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Move the copy to "
- << printMBBReference(*CopyLeftBB) << '\t' << CopyMI);
-
- // Insert new copy to CopyLeftBB.
- MachineInstr *NewCopyMI = BuildMI(*CopyLeftBB, InsPos, CopyMI.getDebugLoc(),
- TII->get(TargetOpcode::COPY), IntB.reg)
- .addReg(IntA.reg);
- SlotIndex NewCopyIdx =
- LIS->InsertMachineInstrInMaps(*NewCopyMI).getRegSlot();
- IntB.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator());
- for (LiveInterval::SubRange &SR : IntB.subranges())
- SR.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator());
-
- // If the newly created Instruction has an address of an instruction that was
- // deleted before (object recycled by the allocator) it needs to be removed from
- // the deleted list.
- ErasedInstrs.erase(NewCopyMI);
- } else {
- LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Remove the copy from "
- << printMBBReference(MBB) << '\t' << CopyMI);
- }
-
- // Remove CopyMI.
- // Note: This is fine to remove the copy before updating the live-ranges.
- // While updating the live-ranges, we only look at slot indices and
- // never go back to the instruction.
- // Mark instructions as deleted.
- deleteInstr(&CopyMI);
-
- // Update the liveness.
- SmallVector<SlotIndex, 8> EndPoints;
- VNInfo *BValNo = IntB.Query(CopyIdx).valueOutOrDead();
- LIS->pruneValue(*static_cast<LiveRange *>(&IntB), CopyIdx.getRegSlot(),
- &EndPoints);
- BValNo->markUnused();
- // Extend IntB to the EndPoints of its original live interval.
- LIS->extendToIndices(IntB, EndPoints);
-
- // Now, do the same for its subranges.
- for (LiveInterval::SubRange &SR : IntB.subranges()) {
- EndPoints.clear();
- VNInfo *BValNo = SR.Query(CopyIdx).valueOutOrDead();
- assert(BValNo && "All sublanes should be live");
- LIS->pruneValue(SR, CopyIdx.getRegSlot(), &EndPoints);
- BValNo->markUnused();
- // We can have a situation where the result of the original copy is live,
- // but is immediately dead in this subrange, e.g. [336r,336d:0). That makes
- // the copy appear as an endpoint from pruneValue(), but we don't want it
- // to because the copy has been removed. We can go ahead and remove that
- // endpoint; there is no other situation here that there could be a use at
- // the same place as we know that the copy is a full copy.
- for (unsigned I = 0; I != EndPoints.size(); ) {
- if (SlotIndex::isSameInstr(EndPoints[I], CopyIdx)) {
- EndPoints[I] = EndPoints.back();
- EndPoints.pop_back();
- continue;
- }
- ++I;
- }
- LIS->extendToIndices(SR, EndPoints);
- }
- // If any dead defs were extended, truncate them.
- shrinkToUses(&IntB);
-
- // Finally, update the live-range of IntA.
- shrinkToUses(&IntA);
- return true;
-}
-
-/// Returns true if @p MI defines the full vreg @p Reg, as opposed to just
-/// defining a subregister.
-static bool definesFullReg(const MachineInstr &MI, unsigned Reg) {
- assert(!TargetRegisterInfo::isPhysicalRegister(Reg) &&
- "This code cannot handle physreg aliasing");
- for (const MachineOperand &Op : MI.operands()) {
- if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg)
- continue;
- // Return true if we define the full register or don't care about the value
- // inside other subregisters.
- if (Op.getSubReg() == 0 || Op.isUndef())
- return true;
- }
- return false;
-}
-
-bool RegisterCoalescer::reMaterializeTrivialDef(const CoalescerPair &CP,
- MachineInstr *CopyMI,
- bool &IsDefCopy) {
- IsDefCopy = false;
- unsigned SrcReg = CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg();
- unsigned SrcIdx = CP.isFlipped() ? CP.getDstIdx() : CP.getSrcIdx();
- unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg();
- unsigned DstIdx = CP.isFlipped() ? CP.getSrcIdx() : CP.getDstIdx();
- if (TargetRegisterInfo::isPhysicalRegister(SrcReg))
- return false;
-
- LiveInterval &SrcInt = LIS->getInterval(SrcReg);
- SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI);
- VNInfo *ValNo = SrcInt.Query(CopyIdx).valueIn();
- if (!ValNo)
- return false;
- if (ValNo->isPHIDef() || ValNo->isUnused())
- return false;
- MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def);
- if (!DefMI)
- return false;
- if (DefMI->isCopyLike()) {
- IsDefCopy = true;
- return false;
- }
- if (!TII->isAsCheapAsAMove(*DefMI))
- return false;
- if (!TII->isTriviallyReMaterializable(*DefMI, AA))
- return false;
- if (!definesFullReg(*DefMI, SrcReg))
- return false;
- bool SawStore = false;
- if (!DefMI->isSafeToMove(AA, SawStore))
- return false;
- const MCInstrDesc &MCID = DefMI->getDesc();
- if (MCID.getNumDefs() != 1)
- return false;
- // Only support subregister destinations when the def is read-undef.
- MachineOperand &DstOperand = CopyMI->getOperand(0);
- unsigned CopyDstReg = DstOperand.getReg();
- if (DstOperand.getSubReg() && !DstOperand.isUndef())
- return false;
-
- // If both SrcIdx and DstIdx are set, correct rematerialization would widen
- // the register substantially (beyond both source and dest size). This is bad
- // for performance since it can cascade through a function, introducing many
- // extra spills and fills (e.g. ARM can easily end up copying QQQQPR registers
- // around after a few subreg copies).
- if (SrcIdx && DstIdx)
- return false;
-
- const TargetRegisterClass *DefRC = TII->getRegClass(MCID, 0, TRI, *MF);
- if (!DefMI->isImplicitDef()) {
- if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
- unsigned NewDstReg = DstReg;
-
- unsigned NewDstIdx = TRI->composeSubRegIndices(CP.getSrcIdx(),
- DefMI->getOperand(0).getSubReg());
- if (NewDstIdx)
- NewDstReg = TRI->getSubReg(DstReg, NewDstIdx);
-
- // Finally, make sure that the physical subregister that will be
- // constructed later is permitted for the instruction.
- if (!DefRC->contains(NewDstReg))
- return false;
- } else {
- // Theoretically, some stack frame reference could exist. Just make sure
- // it hasn't actually happened.
- assert(TargetRegisterInfo::isVirtualRegister(DstReg) &&
- "Only expect to deal with virtual or physical registers");
- }
- }
-
- DebugLoc DL = CopyMI->getDebugLoc();
- MachineBasicBlock *MBB = CopyMI->getParent();
- MachineBasicBlock::iterator MII =
- std::next(MachineBasicBlock::iterator(CopyMI));
- TII->reMaterialize(*MBB, MII, DstReg, SrcIdx, *DefMI, *TRI);
- MachineInstr &NewMI = *std::prev(MII);
- NewMI.setDebugLoc(DL);
-
- // In a situation like the following:
- // %0:subreg = instr ; DefMI, subreg = DstIdx
- // %1 = copy %0:subreg ; CopyMI, SrcIdx = 0
- // instead of widening %1 to the register class of %0 simply do:
- // %1 = instr
- const TargetRegisterClass *NewRC = CP.getNewRC();
- if (DstIdx != 0) {
- MachineOperand &DefMO = NewMI.getOperand(0);
- if (DefMO.getSubReg() == DstIdx) {
- assert(SrcIdx == 0 && CP.isFlipped()
- && "Shouldn't have SrcIdx+DstIdx at this point");
- const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
- const TargetRegisterClass *CommonRC =
- TRI->getCommonSubClass(DefRC, DstRC);
- if (CommonRC != nullptr) {
- NewRC = CommonRC;
- DstIdx = 0;
- DefMO.setSubReg(0);
- DefMO.setIsUndef(false); // Only subregs can have def+undef.
- }
- }
- }
-
- // CopyMI may have implicit operands, save them so that we can transfer them
- // over to the newly materialized instruction after CopyMI is removed.
- SmallVector<MachineOperand, 4> ImplicitOps;
- ImplicitOps.reserve(CopyMI->getNumOperands() -
- CopyMI->getDesc().getNumOperands());
- for (unsigned I = CopyMI->getDesc().getNumOperands(),
- E = CopyMI->getNumOperands();
- I != E; ++I) {
- MachineOperand &MO = CopyMI->getOperand(I);
- if (MO.isReg()) {
- assert(MO.isImplicit() && "No explicit operands after implicit operands.");
- // Discard VReg implicit defs.
- if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
- ImplicitOps.push_back(MO);
- }
- }
-
- LIS->ReplaceMachineInstrInMaps(*CopyMI, NewMI);
- CopyMI->eraseFromParent();
- ErasedInstrs.insert(CopyMI);
-
- // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86).
- // We need to remember these so we can add intervals once we insert
- // NewMI into SlotIndexes.
- SmallVector<unsigned, 4> NewMIImplDefs;
- for (unsigned i = NewMI.getDesc().getNumOperands(),
- e = NewMI.getNumOperands();
- i != e; ++i) {
- MachineOperand &MO = NewMI.getOperand(i);
- if (MO.isReg() && MO.isDef()) {
- assert(MO.isImplicit() && MO.isDead() &&
- TargetRegisterInfo::isPhysicalRegister(MO.getReg()));
- NewMIImplDefs.push_back(MO.getReg());
- }
- }
-
- if (TargetRegisterInfo::isVirtualRegister(DstReg)) {
- unsigned NewIdx = NewMI.getOperand(0).getSubReg();
-
- if (DefRC != nullptr) {
- if (NewIdx)
- NewRC = TRI->getMatchingSuperRegClass(NewRC, DefRC, NewIdx);
- else
- NewRC = TRI->getCommonSubClass(NewRC, DefRC);
- assert(NewRC && "subreg chosen for remat incompatible with instruction");
- }
- // Remap subranges to new lanemask and change register class.
- LiveInterval &DstInt = LIS->getInterval(DstReg);
- for (LiveInterval::SubRange &SR : DstInt.subranges()) {
- SR.LaneMask = TRI->composeSubRegIndexLaneMask(DstIdx, SR.LaneMask);
- }
- MRI->setRegClass(DstReg, NewRC);
-
- // Update machine operands and add flags.
- updateRegDefsUses(DstReg, DstReg, DstIdx);
- NewMI.getOperand(0).setSubReg(NewIdx);
- // updateRegDefUses can add an "undef" flag to the definition, since
- // it will replace DstReg with DstReg.DstIdx. If NewIdx is 0, make
- // sure that "undef" is not set.
- if (NewIdx == 0)
- NewMI.getOperand(0).setIsUndef(false);
- // Add dead subregister definitions if we are defining the whole register
- // but only part of it is live.
- // This could happen if the rematerialization instruction is rematerializing
- // more than actually is used in the register.
- // An example would be:
- // %1 = LOAD CONSTANTS 5, 8 ; Loading both 5 and 8 in different subregs
- // ; Copying only part of the register here, but the rest is undef.
- // %2:sub_16bit<def, read-undef> = COPY %1:sub_16bit
- // ==>
- // ; Materialize all the constants but only using one
- // %2 = LOAD_CONSTANTS 5, 8
- //
- // at this point for the part that wasn't defined before we could have
- // subranges missing the definition.
- if (NewIdx == 0 && DstInt.hasSubRanges()) {
- SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI);
- SlotIndex DefIndex =
- CurrIdx.getRegSlot(NewMI.getOperand(0).isEarlyClobber());
- LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(DstReg);
- VNInfo::Allocator& Alloc = LIS->getVNInfoAllocator();
- for (LiveInterval::SubRange &SR : DstInt.subranges()) {
- if (!SR.liveAt(DefIndex))
- SR.createDeadDef(DefIndex, Alloc);
- MaxMask &= ~SR.LaneMask;
- }
- if (MaxMask.any()) {
- LiveInterval::SubRange *SR = DstInt.createSubRange(Alloc, MaxMask);
- SR->createDeadDef(DefIndex, Alloc);
- }
- }
-
- // Make sure that the subrange for resultant undef is removed
- // For example:
- // %1:sub1<def,read-undef> = LOAD CONSTANT 1
- // %2 = COPY %1
- // ==>
- // %2:sub1<def, read-undef> = LOAD CONSTANT 1
- // ; Correct but need to remove the subrange for %2:sub0
- // ; as it is now undef
- if (NewIdx != 0 && DstInt.hasSubRanges()) {
- // The affected subregister segments can be removed.
- SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI);
- LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(NewIdx);
- bool UpdatedSubRanges = false;
- for (LiveInterval::SubRange &SR : DstInt.subranges()) {
- if ((SR.LaneMask & DstMask).none()) {
- LLVM_DEBUG(dbgs()
- << "Removing undefined SubRange "
- << PrintLaneMask(SR.LaneMask) << " : " << SR << "\n");
- // VNI is in ValNo - remove any segments in this SubRange that have this ValNo
- if (VNInfo *RmValNo = SR.getVNInfoAt(CurrIdx.getRegSlot())) {
- SR.removeValNo(RmValNo);
- UpdatedSubRanges = true;
- }
- }
- }
- if (UpdatedSubRanges)
- DstInt.removeEmptySubRanges();
- }
- } else if (NewMI.getOperand(0).getReg() != CopyDstReg) {
- // The New instruction may be defining a sub-register of what's actually
- // been asked for. If so it must implicitly define the whole thing.
- assert(TargetRegisterInfo::isPhysicalRegister(DstReg) &&
- "Only expect virtual or physical registers in remat");
- NewMI.getOperand(0).setIsDead(true);
- NewMI.addOperand(MachineOperand::CreateReg(
- CopyDstReg, true /*IsDef*/, true /*IsImp*/, false /*IsKill*/));
- // Record small dead def live-ranges for all the subregisters
- // of the destination register.
- // Otherwise, variables that live through may miss some
- // interferences, thus creating invalid allocation.
- // E.g., i386 code:
- // %1 = somedef ; %1 GR8
- // %2 = remat ; %2 GR32
- // CL = COPY %2.sub_8bit
- // = somedef %1 ; %1 GR8
- // =>
- // %1 = somedef ; %1 GR8
- // dead ECX = remat ; implicit-def CL
- // = somedef %1 ; %1 GR8
- // %1 will see the interferences with CL but not with CH since
- // no live-ranges would have been created for ECX.
- // Fix that!
- SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
- for (MCRegUnitIterator Units(NewMI.getOperand(0).getReg(), TRI);
- Units.isValid(); ++Units)
- if (LiveRange *LR = LIS->getCachedRegUnit(*Units))
- LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
- }
-
- if (NewMI.getOperand(0).getSubReg())
- NewMI.getOperand(0).setIsUndef();
-
- // Transfer over implicit operands to the rematerialized instruction.
- for (MachineOperand &MO : ImplicitOps)
- NewMI.addOperand(MO);
-
- SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
- for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) {
- unsigned Reg = NewMIImplDefs[i];
- for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
- if (LiveRange *LR = LIS->getCachedRegUnit(*Units))
- LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
- }
-
- LLVM_DEBUG(dbgs() << "Remat: " << NewMI);
- ++NumReMats;
-
- // If the virtual SrcReg is completely eliminated, update all DBG_VALUEs
- // to describe DstReg instead.
- if (MRI->use_nodbg_empty(SrcReg)) {
- for (MachineOperand &UseMO : MRI->use_operands(SrcReg)) {
- MachineInstr *UseMI = UseMO.getParent();
- if (UseMI->isDebugValue()) {
- if (TargetRegisterInfo::isPhysicalRegister(DstReg))
- UseMO.substPhysReg(DstReg, *TRI);
- else
- UseMO.setReg(DstReg);
- // Move the debug value directly after the def of the rematerialized
- // value in DstReg.
- MBB->splice(std::next(NewMI.getIterator()), UseMI->getParent(), UseMI);
- LLVM_DEBUG(dbgs() << "\t\tupdated: " << *UseMI);
- }
- }
- }
-
- if (ToBeUpdated.count(SrcReg))
- return true;
-
- unsigned NumCopyUses = 0;
- for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) {
- if (UseMO.getParent()->isCopyLike())
- NumCopyUses++;
- }
- if (NumCopyUses < LateRematUpdateThreshold) {
- // The source interval can become smaller because we removed a use.
- shrinkToUses(&SrcInt, &DeadDefs);
- if (!DeadDefs.empty())
- eliminateDeadDefs();
- } else {
- ToBeUpdated.insert(SrcReg);
- }
- return true;
-}
-
-MachineInstr *RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI) {
- // ProcessImplicitDefs may leave some copies of <undef> values, it only
- // removes local variables. When we have a copy like:
- //
- // %1 = COPY undef %2
- //
- // We delete the copy and remove the corresponding value number from %1.
- // Any uses of that value number are marked as <undef>.
-
- // Note that we do not query CoalescerPair here but redo isMoveInstr as the
- // CoalescerPair may have a new register class with adjusted subreg indices
- // at this point.
- unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
- isMoveInstr(*TRI, CopyMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx);
-
- SlotIndex Idx = LIS->getInstructionIndex(*CopyMI);
- const LiveInterval &SrcLI = LIS->getInterval(SrcReg);
- // CopyMI is undef iff SrcReg is not live before the instruction.
- if (SrcSubIdx != 0 && SrcLI.hasSubRanges()) {
- LaneBitmask SrcMask = TRI->getSubRegIndexLaneMask(SrcSubIdx);
- for (const LiveInterval::SubRange &SR : SrcLI.subranges()) {
- if ((SR.LaneMask & SrcMask).none())
- continue;
- if (SR.liveAt(Idx))
- return nullptr;
- }
- } else if (SrcLI.liveAt(Idx))
- return nullptr;
-
- // If the undef copy defines a live-out value (i.e. an input to a PHI def),
- // then replace it with an IMPLICIT_DEF.
- LiveInterval &DstLI = LIS->getInterval(DstReg);
- SlotIndex RegIndex = Idx.getRegSlot();
- LiveRange::Segment *Seg = DstLI.getSegmentContaining(RegIndex);
- assert(Seg != nullptr && "No segment for defining instruction");
- if (VNInfo *V = DstLI.getVNInfoAt(Seg->end)) {
- if (V->isPHIDef()) {
- CopyMI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF));
- for (unsigned i = CopyMI->getNumOperands(); i != 0; --i) {
- MachineOperand &MO = CopyMI->getOperand(i-1);
- if (MO.isReg() && MO.isUse())
- CopyMI->RemoveOperand(i-1);
- }
- LLVM_DEBUG(dbgs() << "\tReplaced copy of <undef> value with an "
- "implicit def\n");
- return CopyMI;
- }
- }
-
- // Remove any DstReg segments starting at the instruction.
- LLVM_DEBUG(dbgs() << "\tEliminating copy of <undef> value\n");
-
- // Remove value or merge with previous one in case of a subregister def.
- if (VNInfo *PrevVNI = DstLI.getVNInfoAt(Idx)) {
- VNInfo *VNI = DstLI.getVNInfoAt(RegIndex);
- DstLI.MergeValueNumberInto(VNI, PrevVNI);
-
- // The affected subregister segments can be removed.
- LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(DstSubIdx);
- for (LiveInterval::SubRange &SR : DstLI.subranges()) {
- if ((SR.LaneMask & DstMask).none())
- continue;
-
- VNInfo *SVNI = SR.getVNInfoAt(RegIndex);
- assert(SVNI != nullptr && SlotIndex::isSameInstr(SVNI->def, RegIndex));
- SR.removeValNo(SVNI);
- }
- DstLI.removeEmptySubRanges();
- } else
- LIS->removeVRegDefAt(DstLI, RegIndex);
-
- // Mark uses as undef.
- for (MachineOperand &MO : MRI->reg_nodbg_operands(DstReg)) {
- if (MO.isDef() /*|| MO.isUndef()*/)
- continue;
- const MachineInstr &MI = *MO.getParent();
- SlotIndex UseIdx = LIS->getInstructionIndex(MI);
- LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg());
- bool isLive;
- if (!UseMask.all() && DstLI.hasSubRanges()) {
- isLive = false;
- for (const LiveInterval::SubRange &SR : DstLI.subranges()) {
- if ((SR.LaneMask & UseMask).none())
- continue;
- if (SR.liveAt(UseIdx)) {
- isLive = true;
- break;
- }
- }
- } else
- isLive = DstLI.liveAt(UseIdx);
- if (isLive)
- continue;
- MO.setIsUndef(true);
- LLVM_DEBUG(dbgs() << "\tnew undef: " << UseIdx << '\t' << MI);
- }
-
- // A def of a subregister may be a use of the other subregisters, so
- // deleting a def of a subregister may also remove uses. Since CopyMI
- // is still part of the function (but about to be erased), mark all
- // defs of DstReg in it as <undef>, so that shrinkToUses would
- // ignore them.
- for (MachineOperand &MO : CopyMI->operands())
- if (MO.isReg() && MO.isDef() && MO.getReg() == DstReg)
- MO.setIsUndef(true);
- LIS->shrinkToUses(&DstLI);
-
- return CopyMI;
-}
-
-void RegisterCoalescer::addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx,
- MachineOperand &MO, unsigned SubRegIdx) {
- LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubRegIdx);
- if (MO.isDef())
- Mask = ~Mask;
- bool IsUndef = true;
- for (const LiveInterval::SubRange &S : Int.subranges()) {
- if ((S.LaneMask & Mask).none())
- continue;
- if (S.liveAt(UseIdx)) {
- IsUndef = false;
- break;
- }
- }
- if (IsUndef) {
- MO.setIsUndef(true);
- // We found out some subregister use is actually reading an undefined
- // value. In some cases the whole vreg has become undefined at this
- // point so we have to potentially shrink the main range if the
- // use was ending a live segment there.
- LiveQueryResult Q = Int.Query(UseIdx);
- if (Q.valueOut() == nullptr)
- ShrinkMainRange = true;
- }
-}
-
-void RegisterCoalescer::updateRegDefsUses(unsigned SrcReg,
- unsigned DstReg,
- unsigned SubIdx) {
- bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
- LiveInterval *DstInt = DstIsPhys ? nullptr : &LIS->getInterval(DstReg);
-
- if (DstInt && DstInt->hasSubRanges() && DstReg != SrcReg) {
- for (MachineOperand &MO : MRI->reg_operands(DstReg)) {
- unsigned SubReg = MO.getSubReg();
- if (SubReg == 0 || MO.isUndef())
- continue;
- MachineInstr &MI = *MO.getParent();
- if (MI.isDebugValue())
- continue;
- SlotIndex UseIdx = LIS->getInstructionIndex(MI).getRegSlot(true);
- addUndefFlag(*DstInt, UseIdx, MO, SubReg);
- }
- }
-
- SmallPtrSet<MachineInstr*, 8> Visited;
- for (MachineRegisterInfo::reg_instr_iterator
- I = MRI->reg_instr_begin(SrcReg), E = MRI->reg_instr_end();
- I != E; ) {
- MachineInstr *UseMI = &*(I++);
-
- // Each instruction can only be rewritten once because sub-register
- // composition is not always idempotent. When SrcReg != DstReg, rewriting
- // the UseMI operands removes them from the SrcReg use-def chain, but when
- // SrcReg is DstReg we could encounter UseMI twice if it has multiple
- // operands mentioning the virtual register.
- if (SrcReg == DstReg && !Visited.insert(UseMI).second)
- continue;
-
- SmallVector<unsigned,8> Ops;
- bool Reads, Writes;
- std::tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops);
-
- // If SrcReg wasn't read, it may still be the case that DstReg is live-in
- // because SrcReg is a sub-register.
- if (DstInt && !Reads && SubIdx && !UseMI->isDebugValue())
- Reads = DstInt->liveAt(LIS->getInstructionIndex(*UseMI));
-
- // Replace SrcReg with DstReg in all UseMI operands.
- for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
- MachineOperand &MO = UseMI->getOperand(Ops[i]);
-
- // Adjust <undef> flags in case of sub-register joins. We don't want to
- // turn a full def into a read-modify-write sub-register def and vice
- // versa.
- if (SubIdx && MO.isDef())
- MO.setIsUndef(!Reads);
-
- // A subreg use of a partially undef (super) register may be a complete
- // undef use now and then has to be marked that way.
- if (SubIdx != 0 && MO.isUse() && MRI->shouldTrackSubRegLiveness(DstReg)) {
- if (!DstInt->hasSubRanges()) {
- BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
- LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(DstInt->reg);
- DstInt->createSubRangeFrom(Allocator, Mask, *DstInt);
- }
- SlotIndex MIIdx = UseMI->isDebugValue()
- ? LIS->getSlotIndexes()->getIndexBefore(*UseMI)
- : LIS->getInstructionIndex(*UseMI);
- SlotIndex UseIdx = MIIdx.getRegSlot(true);
- addUndefFlag(*DstInt, UseIdx, MO, SubIdx);
- }
-
- if (DstIsPhys)
- MO.substPhysReg(DstReg, *TRI);
- else
- MO.substVirtReg(DstReg, SubIdx, *TRI);
- }
-
- LLVM_DEBUG({
- dbgs() << "\t\tupdated: ";
- if (!UseMI->isDebugValue())
- dbgs() << LIS->getInstructionIndex(*UseMI) << "\t";
- dbgs() << *UseMI;
- });
- }
-}
-
-bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) {
- // Always join simple intervals that are defined by a single copy from a
- // reserved register. This doesn't increase register pressure, so it is
- // always beneficial.
- if (!MRI->isReserved(CP.getDstReg())) {
- LLVM_DEBUG(dbgs() << "\tCan only merge into reserved registers.\n");
- return false;
- }
-
- LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg());
- if (JoinVInt.containsOneValue())
- return true;
-
- LLVM_DEBUG(
- dbgs() << "\tCannot join complex intervals into reserved register.\n");
- return false;
-}
-
-bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) {
- Again = false;
- LLVM_DEBUG(dbgs() << LIS->getInstructionIndex(*CopyMI) << '\t' << *CopyMI);
-
- CoalescerPair CP(*TRI);
- if (!CP.setRegisters(CopyMI)) {
- LLVM_DEBUG(dbgs() << "\tNot coalescable.\n");
- return false;
- }
-
- if (CP.getNewRC()) {
- auto SrcRC = MRI->getRegClass(CP.getSrcReg());
- auto DstRC = MRI->getRegClass(CP.getDstReg());
- unsigned SrcIdx = CP.getSrcIdx();
- unsigned DstIdx = CP.getDstIdx();
- if (CP.isFlipped()) {
- std::swap(SrcIdx, DstIdx);
- std::swap(SrcRC, DstRC);
- }
- if (!TRI->shouldCoalesce(CopyMI, SrcRC, SrcIdx, DstRC, DstIdx,
- CP.getNewRC(), *LIS)) {
- LLVM_DEBUG(dbgs() << "\tSubtarget bailed on coalescing.\n");
- return false;
- }
- }
-
- // Dead code elimination. This really should be handled by MachineDCE, but
- // sometimes dead copies slip through, and we can't generate invalid live
- // ranges.
- if (!CP.isPhys() && CopyMI->allDefsAreDead()) {
- LLVM_DEBUG(dbgs() << "\tCopy is dead.\n");
- DeadDefs.push_back(CopyMI);
- eliminateDeadDefs();
- return true;
- }
-
- // Eliminate undefs.
- if (!CP.isPhys()) {
- // If this is an IMPLICIT_DEF, leave it alone, but don't try to coalesce.
- if (MachineInstr *UndefMI = eliminateUndefCopy(CopyMI)) {
- if (UndefMI->isImplicitDef())
- return false;
- deleteInstr(CopyMI);
- return false; // Not coalescable.
- }
- }
-
- // Coalesced copies are normally removed immediately, but transformations
- // like removeCopyByCommutingDef() can inadvertently create identity copies.
- // When that happens, just join the values and remove the copy.
- if (CP.getSrcReg() == CP.getDstReg()) {
- LiveInterval &LI = LIS->getInterval(CP.getSrcReg());
- LLVM_DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n');
- const SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI);
- LiveQueryResult LRQ = LI.Query(CopyIdx);
- if (VNInfo *DefVNI = LRQ.valueDefined()) {
- VNInfo *ReadVNI = LRQ.valueIn();
- assert(ReadVNI && "No value before copy and no <undef> flag.");
- assert(ReadVNI != DefVNI && "Cannot read and define the same value.");
- LI.MergeValueNumberInto(DefVNI, ReadVNI);
-
- // Process subregister liveranges.
- for (LiveInterval::SubRange &S : LI.subranges()) {
- LiveQueryResult SLRQ = S.Query(CopyIdx);
- if (VNInfo *SDefVNI = SLRQ.valueDefined()) {
- VNInfo *SReadVNI = SLRQ.valueIn();
- S.MergeValueNumberInto(SDefVNI, SReadVNI);
- }
- }
- LLVM_DEBUG(dbgs() << "\tMerged values: " << LI << '\n');
- }
- deleteInstr(CopyMI);
- return true;
- }
-
- // Enforce policies.
- if (CP.isPhys()) {
- LLVM_DEBUG(dbgs() << "\tConsidering merging "
- << printReg(CP.getSrcReg(), TRI) << " with "
- << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n');
- if (!canJoinPhys(CP)) {
- // Before giving up coalescing, if definition of source is defined by
- // trivial computation, try rematerializing it.
- bool IsDefCopy;
- if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
- return true;
- if (IsDefCopy)
- Again = true; // May be possible to coalesce later.
- return false;
- }
- } else {
- // When possible, let DstReg be the larger interval.
- if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).size() >
- LIS->getInterval(CP.getDstReg()).size())
- CP.flip();
-
- LLVM_DEBUG({
- dbgs() << "\tConsidering merging to "
- << TRI->getRegClassName(CP.getNewRC()) << " with ";
- if (CP.getDstIdx() && CP.getSrcIdx())
- dbgs() << printReg(CP.getDstReg()) << " in "
- << TRI->getSubRegIndexName(CP.getDstIdx()) << " and "
- << printReg(CP.getSrcReg()) << " in "
- << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n';
- else
- dbgs() << printReg(CP.getSrcReg(), TRI) << " in "
- << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n';
- });
- }
-
- ShrinkMask = LaneBitmask::getNone();
- ShrinkMainRange = false;
-
- // Okay, attempt to join these two intervals. On failure, this returns false.
- // Otherwise, if one of the intervals being joined is a physreg, this method
- // always canonicalizes DstInt to be it. The output "SrcInt" will not have
- // been modified, so we can use this information below to update aliases.
- if (!joinIntervals(CP)) {
- // Coalescing failed.
-
- // If definition of source is defined by trivial computation, try
- // rematerializing it.
- bool IsDefCopy;
- if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
- return true;
-
- // If we can eliminate the copy without merging the live segments, do so
- // now.
- if (!CP.isPartial() && !CP.isPhys()) {
- bool Changed = adjustCopiesBackFrom(CP, CopyMI);
- bool Shrink = false;
- if (!Changed)
- std::tie(Changed, Shrink) = removeCopyByCommutingDef(CP, CopyMI);
- if (Changed) {
- deleteInstr(CopyMI);
- if (Shrink) {
- unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg();
- LiveInterval &DstLI = LIS->getInterval(DstReg);
- shrinkToUses(&DstLI);
- LLVM_DEBUG(dbgs() << "\t\tshrunk: " << DstLI << '\n');
- }
- LLVM_DEBUG(dbgs() << "\tTrivial!\n");
- return true;
- }
- }
-
- // Try and see if we can partially eliminate the copy by moving the copy to
- // its predecessor.
- if (!CP.isPartial() && !CP.isPhys())
- if (removePartialRedundancy(CP, *CopyMI))
- return true;
-
- // Otherwise, we are unable to join the intervals.
- LLVM_DEBUG(dbgs() << "\tInterference!\n");
- Again = true; // May be possible to coalesce later.
- return false;
- }
-
- // Coalescing to a virtual register that is of a sub-register class of the
- // other. Make sure the resulting register is set to the right register class.
- if (CP.isCrossClass()) {
- ++numCrossRCs;
- MRI->setRegClass(CP.getDstReg(), CP.getNewRC());
- }
-
- // Removing sub-register copies can ease the register class constraints.
- // Make sure we attempt to inflate the register class of DstReg.
- if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC()))
- InflateRegs.push_back(CP.getDstReg());
-
- // CopyMI has been erased by joinIntervals at this point. Remove it from
- // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back
- // to the work list. This keeps ErasedInstrs from growing needlessly.
- ErasedInstrs.erase(CopyMI);
-
- // Rewrite all SrcReg operands to DstReg.
- // Also update DstReg operands to include DstIdx if it is set.
- if (CP.getDstIdx())
- updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx());
- updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx());
-
- // Shrink subregister ranges if necessary.
- if (ShrinkMask.any()) {
- LiveInterval &LI = LIS->getInterval(CP.getDstReg());
- for (LiveInterval::SubRange &S : LI.subranges()) {
- if ((S.LaneMask & ShrinkMask).none())
- continue;
- LLVM_DEBUG(dbgs() << "Shrink LaneUses (Lane " << PrintLaneMask(S.LaneMask)
- << ")\n");
- LIS->shrinkToUses(S, LI.reg);
- }
- LI.removeEmptySubRanges();
- }
-
- // CP.getSrcReg()'s live interval has been merged into CP.getDstReg's live
- // interval. Since CP.getSrcReg() is in ToBeUpdated set and its live interval
- // is not up-to-date, need to update the merged live interval here.
- if (ToBeUpdated.count(CP.getSrcReg()))
- ShrinkMainRange = true;
-
- if (ShrinkMainRange) {
- LiveInterval &LI = LIS->getInterval(CP.getDstReg());
- shrinkToUses(&LI);
- }
-
- // SrcReg is guaranteed to be the register whose live interval that is
- // being merged.
- LIS->removeInterval(CP.getSrcReg());
-
- // Update regalloc hint.
- TRI->updateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF);
-
- LLVM_DEBUG({
- dbgs() << "\tSuccess: " << printReg(CP.getSrcReg(), TRI, CP.getSrcIdx())
- << " -> " << printReg(CP.getDstReg(), TRI, CP.getDstIdx()) << '\n';
- dbgs() << "\tResult = ";
- if (CP.isPhys())
- dbgs() << printReg(CP.getDstReg(), TRI);
- else
- dbgs() << LIS->getInterval(CP.getDstReg());
- dbgs() << '\n';
- });
-
- ++numJoins;
- return true;
-}
-
-bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) {
- unsigned DstReg = CP.getDstReg();
- unsigned SrcReg = CP.getSrcReg();
- assert(CP.isPhys() && "Must be a physreg copy");
- assert(MRI->isReserved(DstReg) && "Not a reserved register");
- LiveInterval &RHS = LIS->getInterval(SrcReg);
- LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << '\n');
-
- assert(RHS.containsOneValue() && "Invalid join with reserved register");
-
- // Optimization for reserved registers like ESP. We can only merge with a
- // reserved physreg if RHS has a single value that is a copy of DstReg.
- // The live range of the reserved register will look like a set of dead defs
- // - we don't properly track the live range of reserved registers.
-
- // Deny any overlapping intervals. This depends on all the reserved
- // register live ranges to look like dead defs.
- if (!MRI->isConstantPhysReg(DstReg)) {
- for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) {
- // Abort if not all the regunits are reserved.
- for (MCRegUnitRootIterator RI(*UI, TRI); RI.isValid(); ++RI) {
- if (!MRI->isReserved(*RI))
- return false;
- }
- if (RHS.overlaps(LIS->getRegUnit(*UI))) {
- LLVM_DEBUG(dbgs() << "\t\tInterference: " << printRegUnit(*UI, TRI)
- << '\n');
- return false;
- }
- }
-
- // We must also check for overlaps with regmask clobbers.
- BitVector RegMaskUsable;
- if (LIS->checkRegMaskInterference(RHS, RegMaskUsable) &&
- !RegMaskUsable.test(DstReg)) {
- LLVM_DEBUG(dbgs() << "\t\tRegMask interference\n");
- return false;
- }
- }
-
- // Skip any value computations, we are not adding new values to the
- // reserved register. Also skip merging the live ranges, the reserved
- // register live range doesn't need to be accurate as long as all the
- // defs are there.
-
- // Delete the identity copy.
- MachineInstr *CopyMI;
- if (CP.isFlipped()) {
- // Physreg is copied into vreg
- // %y = COPY %physreg_x
- // ... //< no other def of %x here
- // use %y
- // =>
- // ...
- // use %x
- CopyMI = MRI->getVRegDef(SrcReg);
- } else {
- // VReg is copied into physreg:
- // %y = def
- // ... //< no other def or use of %y here
- // %y = COPY %physreg_x
- // =>
- // %y = def
- // ...
- if (!MRI->hasOneNonDBGUse(SrcReg)) {
- LLVM_DEBUG(dbgs() << "\t\tMultiple vreg uses!\n");
- return false;
- }
-
- if (!LIS->intervalIsInOneMBB(RHS)) {
- LLVM_DEBUG(dbgs() << "\t\tComplex control flow!\n");
- return false;
- }
-
- MachineInstr &DestMI = *MRI->getVRegDef(SrcReg);
- CopyMI = &*MRI->use_instr_nodbg_begin(SrcReg);
- SlotIndex CopyRegIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
- SlotIndex DestRegIdx = LIS->getInstructionIndex(DestMI).getRegSlot();
-
- if (!MRI->isConstantPhysReg(DstReg)) {
- // We checked above that there are no interfering defs of the physical
- // register. However, for this case, where we intend to move up the def of
- // the physical register, we also need to check for interfering uses.
- SlotIndexes *Indexes = LIS->getSlotIndexes();
- for (SlotIndex SI = Indexes->getNextNonNullIndex(DestRegIdx);
- SI != CopyRegIdx; SI = Indexes->getNextNonNullIndex(SI)) {
- MachineInstr *MI = LIS->getInstructionFromIndex(SI);
- if (MI->readsRegister(DstReg, TRI)) {
- LLVM_DEBUG(dbgs() << "\t\tInterference (read): " << *MI);
- return false;
- }
- }
- }
-
- // We're going to remove the copy which defines a physical reserved
- // register, so remove its valno, etc.
- LLVM_DEBUG(dbgs() << "\t\tRemoving phys reg def of "
- << printReg(DstReg, TRI) << " at " << CopyRegIdx << "\n");
-
- LIS->removePhysRegDefAt(DstReg, CopyRegIdx);
- // Create a new dead def at the new def location.
- for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) {
- LiveRange &LR = LIS->getRegUnit(*UI);
- LR.createDeadDef(DestRegIdx, LIS->getVNInfoAllocator());
- }
- }
-
- deleteInstr(CopyMI);
-
- // We don't track kills for reserved registers.
- MRI->clearKillFlags(CP.getSrcReg());
-
- return true;
-}
-
-//===----------------------------------------------------------------------===//
-// Interference checking and interval joining
-//===----------------------------------------------------------------------===//
-//
-// In the easiest case, the two live ranges being joined are disjoint, and
-// there is no interference to consider. It is quite common, though, to have
-// overlapping live ranges, and we need to check if the interference can be
-// resolved.
-//
-// The live range of a single SSA value forms a sub-tree of the dominator tree.
-// This means that two SSA values overlap if and only if the def of one value
-// is contained in the live range of the other value. As a special case, the
-// overlapping values can be defined at the same index.
-//
-// The interference from an overlapping def can be resolved in these cases:
-//
-// 1. Coalescable copies. The value is defined by a copy that would become an
-// identity copy after joining SrcReg and DstReg. The copy instruction will
-// be removed, and the value will be merged with the source value.
-//
-// There can be several copies back and forth, causing many values to be
-// merged into one. We compute a list of ultimate values in the joined live
-// range as well as a mappings from the old value numbers.
-//
-// 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI
-// predecessors have a live out value. It doesn't cause real interference,
-// and can be merged into the value it overlaps. Like a coalescable copy, it
-// can be erased after joining.
-//
-// 3. Copy of external value. The overlapping def may be a copy of a value that
-// is already in the other register. This is like a coalescable copy, but
-// the live range of the source register must be trimmed after erasing the
-// copy instruction:
-//
-// %src = COPY %ext
-// %dst = COPY %ext <-- Remove this COPY, trim the live range of %ext.
-//
-// 4. Clobbering undefined lanes. Vector registers are sometimes built by
-// defining one lane at a time:
-//
-// %dst:ssub0<def,read-undef> = FOO
-// %src = BAR
-// %dst:ssub1 = COPY %src
-//
-// The live range of %src overlaps the %dst value defined by FOO, but
-// merging %src into %dst:ssub1 is only going to clobber the ssub1 lane
-// which was undef anyway.
-//
-// The value mapping is more complicated in this case. The final live range
-// will have different value numbers for both FOO and BAR, but there is no
-// simple mapping from old to new values. It may even be necessary to add
-// new PHI values.
-//
-// 5. Clobbering dead lanes. A def may clobber a lane of a vector register that
-// is live, but never read. This can happen because we don't compute
-// individual live ranges per lane.
-//
-// %dst = FOO
-// %src = BAR
-// %dst:ssub1 = COPY %src
-//
-// This kind of interference is only resolved locally. If the clobbered
-// lane value escapes the block, the join is aborted.
-
-namespace {
-
-/// Track information about values in a single virtual register about to be
-/// joined. Objects of this class are always created in pairs - one for each
-/// side of the CoalescerPair (or one for each lane of a side of the coalescer
-/// pair)
-class JoinVals {
- /// Live range we work on.
- LiveRange &LR;
-
- /// (Main) register we work on.
- const unsigned Reg;
-
- /// Reg (and therefore the values in this liverange) will end up as
- /// subregister SubIdx in the coalesced register. Either CP.DstIdx or
- /// CP.SrcIdx.
- const unsigned SubIdx;
-
- /// The LaneMask that this liverange will occupy the coalesced register. May
- /// be smaller than the lanemask produced by SubIdx when merging subranges.
- const LaneBitmask LaneMask;
-
- /// This is true when joining sub register ranges, false when joining main
- /// ranges.
- const bool SubRangeJoin;
-
- /// Whether the current LiveInterval tracks subregister liveness.
- const bool TrackSubRegLiveness;
-
- /// Values that will be present in the final live range.
- SmallVectorImpl<VNInfo*> &NewVNInfo;
-
- const CoalescerPair &CP;
- LiveIntervals *LIS;
- SlotIndexes *Indexes;
- const TargetRegisterInfo *TRI;
-
- /// Value number assignments. Maps value numbers in LI to entries in
- /// NewVNInfo. This is suitable for passing to LiveInterval::join().
- SmallVector<int, 8> Assignments;
-
- /// Conflict resolution for overlapping values.
- enum ConflictResolution {
- /// No overlap, simply keep this value.
- CR_Keep,
-
- /// Merge this value into OtherVNI and erase the defining instruction.
- /// Used for IMPLICIT_DEF, coalescable copies, and copies from external
- /// values.
- CR_Erase,
-
- /// Merge this value into OtherVNI but keep the defining instruction.
- /// This is for the special case where OtherVNI is defined by the same
- /// instruction.
- CR_Merge,
-
- /// Keep this value, and have it replace OtherVNI where possible. This
- /// complicates value mapping since OtherVNI maps to two different values
- /// before and after this def.
- /// Used when clobbering undefined or dead lanes.
- CR_Replace,
-
- /// Unresolved conflict. Visit later when all values have been mapped.
- CR_Unresolved,
-
- /// Unresolvable conflict. Abort the join.
- CR_Impossible
- };
-
- /// Per-value info for LI. The lane bit masks are all relative to the final
- /// joined register, so they can be compared directly between SrcReg and
- /// DstReg.
- struct Val {
- ConflictResolution Resolution = CR_Keep;
-
- /// Lanes written by this def, 0 for unanalyzed values.
- LaneBitmask WriteLanes;
-
- /// Lanes with defined values in this register. Other lanes are undef and
- /// safe to clobber.
- LaneBitmask ValidLanes;
-
- /// Value in LI being redefined by this def.
- VNInfo *RedefVNI = nullptr;
-
- /// Value in the other live range that overlaps this def, if any.
- VNInfo *OtherVNI = nullptr;
-
- /// Is this value an IMPLICIT_DEF that can be erased?
- ///
- /// IMPLICIT_DEF values should only exist at the end of a basic block that
- /// is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be
- /// safely erased if they are overlapping a live value in the other live
- /// interval.
- ///
- /// Weird control flow graphs and incomplete PHI handling in
- /// ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with
- /// longer live ranges. Such IMPLICIT_DEF values should be treated like
- /// normal values.
- bool ErasableImplicitDef = false;
-
- /// True when the live range of this value will be pruned because of an
- /// overlapping CR_Replace value in the other live range.
- bool Pruned = false;
-
- /// True once Pruned above has been computed.
- bool PrunedComputed = false;
-
- /// True if this value is determined to be identical to OtherVNI
- /// (in valuesIdentical). This is used with CR_Erase where the erased
- /// copy is redundant, i.e. the source value is already the same as
- /// the destination. In such cases the subranges need to be updated
- /// properly. See comment at pruneSubRegValues for more info.
- bool Identical = false;
-
- Val() = default;
-
- bool isAnalyzed() const { return WriteLanes.any(); }
- };
-
- /// One entry per value number in LI.
- SmallVector<Val, 8> Vals;
-
- /// Compute the bitmask of lanes actually written by DefMI.
- /// Set Redef if there are any partial register definitions that depend on the
- /// previous value of the register.
- LaneBitmask computeWriteLanes(const MachineInstr *DefMI, bool &Redef) const;
-
- /// Find the ultimate value that VNI was copied from.
- std::pair<const VNInfo*,unsigned> followCopyChain(const VNInfo *VNI) const;
-
- bool valuesIdentical(VNInfo *Value0, VNInfo *Value1, const JoinVals &Other) const;
-
- /// Analyze ValNo in this live range, and set all fields of Vals[ValNo].
- /// Return a conflict resolution when possible, but leave the hard cases as
- /// CR_Unresolved.
- /// Recursively calls computeAssignment() on this and Other, guaranteeing that
- /// both OtherVNI and RedefVNI have been analyzed and mapped before returning.
- /// The recursion always goes upwards in the dominator tree, making loops
- /// impossible.
- ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other);
-
- /// Compute the value assignment for ValNo in RI.
- /// This may be called recursively by analyzeValue(), but never for a ValNo on
- /// the stack.
- void computeAssignment(unsigned ValNo, JoinVals &Other);
-
- /// Assuming ValNo is going to clobber some valid lanes in Other.LR, compute
- /// the extent of the tainted lanes in the block.
- ///
- /// Multiple values in Other.LR can be affected since partial redefinitions
- /// can preserve previously tainted lanes.
- ///
- /// 1 %dst = VLOAD <-- Define all lanes in %dst
- /// 2 %src = FOO <-- ValNo to be joined with %dst:ssub0
- /// 3 %dst:ssub1 = BAR <-- Partial redef doesn't clear taint in ssub0
- /// 4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read
- ///
- /// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes)
- /// entry to TaintedVals.
- ///
- /// Returns false if the tainted lanes extend beyond the basic block.
- bool
- taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other,
- SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent);
-
- /// Return true if MI uses any of the given Lanes from Reg.
- /// This does not include partial redefinitions of Reg.
- bool usesLanes(const MachineInstr &MI, unsigned, unsigned, LaneBitmask) const;
-
- /// Determine if ValNo is a copy of a value number in LR or Other.LR that will
- /// be pruned:
- ///
- /// %dst = COPY %src
- /// %src = COPY %dst <-- This value to be pruned.
- /// %dst = COPY %src <-- This value is a copy of a pruned value.
- bool isPrunedValue(unsigned ValNo, JoinVals &Other);
-
-public:
- JoinVals(LiveRange &LR, unsigned Reg, unsigned SubIdx, LaneBitmask LaneMask,
- SmallVectorImpl<VNInfo*> &newVNInfo, const CoalescerPair &cp,
- LiveIntervals *lis, const TargetRegisterInfo *TRI, bool SubRangeJoin,
- bool TrackSubRegLiveness)
- : LR(LR), Reg(Reg), SubIdx(SubIdx), LaneMask(LaneMask),
- SubRangeJoin(SubRangeJoin), TrackSubRegLiveness(TrackSubRegLiveness),
- NewVNInfo(newVNInfo), CP(cp), LIS(lis), Indexes(LIS->getSlotIndexes()),
- TRI(TRI), Assignments(LR.getNumValNums(), -1), Vals(LR.getNumValNums()) {}
-
- /// Analyze defs in LR and compute a value mapping in NewVNInfo.
- /// Returns false if any conflicts were impossible to resolve.
- bool mapValues(JoinVals &Other);
-
- /// Try to resolve conflicts that require all values to be mapped.
- /// Returns false if any conflicts were impossible to resolve.
- bool resolveConflicts(JoinVals &Other);
-
- /// Prune the live range of values in Other.LR where they would conflict with
- /// CR_Replace values in LR. Collect end points for restoring the live range
- /// after joining.
- void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints,
- bool changeInstrs);
-
- /// Removes subranges starting at copies that get removed. This sometimes
- /// happens when undefined subranges are copied around. These ranges contain
- /// no useful information and can be removed.
- void pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask);
-
- /// Pruning values in subranges can lead to removing segments in these
- /// subranges started by IMPLICIT_DEFs. The corresponding segments in
- /// the main range also need to be removed. This function will mark
- /// the corresponding values in the main range as pruned, so that
- /// eraseInstrs can do the final cleanup.
- /// The parameter @p LI must be the interval whose main range is the
- /// live range LR.
- void pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange);
-
- /// Erase any machine instructions that have been coalesced away.
- /// Add erased instructions to ErasedInstrs.
- /// Add foreign virtual registers to ShrinkRegs if their live range ended at
- /// the erased instrs.
- void eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs,
- SmallVectorImpl<unsigned> &ShrinkRegs,
- LiveInterval *LI = nullptr);
-
- /// Remove liverange defs at places where implicit defs will be removed.
- void removeImplicitDefs();
-
- /// Get the value assignments suitable for passing to LiveInterval::join.
- const int *getAssignments() const { return Assignments.data(); }
-};
-
-} // end anonymous namespace
-
-LaneBitmask JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef)
- const {
- LaneBitmask L;
- for (const MachineOperand &MO : DefMI->operands()) {
- if (!MO.isReg() || MO.getReg() != Reg || !MO.isDef())
- continue;
- L |= TRI->getSubRegIndexLaneMask(
- TRI->composeSubRegIndices(SubIdx, MO.getSubReg()));
- if (MO.readsReg())
- Redef = true;
- }
- return L;
-}
-
-std::pair<const VNInfo*, unsigned> JoinVals::followCopyChain(
- const VNInfo *VNI) const {
- unsigned TrackReg = Reg;
-
- while (!VNI->isPHIDef()) {
- SlotIndex Def = VNI->def;
- MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
- assert(MI && "No defining instruction");
- if (!MI->isFullCopy())
- return std::make_pair(VNI, TrackReg);
- unsigned SrcReg = MI->getOperand(1).getReg();
- if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
- return std::make_pair(VNI, TrackReg);
-
- const LiveInterval &LI = LIS->getInterval(SrcReg);
- const VNInfo *ValueIn;
- // No subrange involved.
- if (!SubRangeJoin || !LI.hasSubRanges()) {
- LiveQueryResult LRQ = LI.Query(Def);
- ValueIn = LRQ.valueIn();
- } else {
- // Query subranges. Ensure that all matching ones take us to the same def
- // (allowing some of them to be undef).
- ValueIn = nullptr;
- for (const LiveInterval::SubRange &S : LI.subranges()) {
- // Transform lanemask to a mask in the joined live interval.
- LaneBitmask SMask = TRI->composeSubRegIndexLaneMask(SubIdx, S.LaneMask);
- if ((SMask & LaneMask).none())
- continue;
- LiveQueryResult LRQ = S.Query(Def);
- if (!ValueIn) {
- ValueIn = LRQ.valueIn();
- continue;
- }
- if (LRQ.valueIn() && ValueIn != LRQ.valueIn())
- return std::make_pair(VNI, TrackReg);
- }
- }
- if (ValueIn == nullptr) {
- // Reaching an undefined value is legitimate, for example:
- //
- // 1 undef %0.sub1 = ... ;; %0.sub0 == undef
- // 2 %1 = COPY %0 ;; %1 is defined here.
- // 3 %0 = COPY %1 ;; Now %0.sub0 has a definition,
- // ;; but it's equivalent to "undef".
- return std::make_pair(nullptr, SrcReg);
- }
- VNI = ValueIn;
- TrackReg = SrcReg;
- }
- return std::make_pair(VNI, TrackReg);
-}
-
-bool JoinVals::valuesIdentical(VNInfo *Value0, VNInfo *Value1,
- const JoinVals &Other) const {
- const VNInfo *Orig0;
- unsigned Reg0;
- std::tie(Orig0, Reg0) = followCopyChain(Value0);
- if (Orig0 == Value1 && Reg0 == Other.Reg)
- return true;
-
- const VNInfo *Orig1;
- unsigned Reg1;
- std::tie(Orig1, Reg1) = Other.followCopyChain(Value1);
- // If both values are undefined, and the source registers are the same
- // register, the values are identical. Filter out cases where only one
- // value is defined.
- if (Orig0 == nullptr || Orig1 == nullptr)
- return Orig0 == Orig1 && Reg0 == Reg1;
-
- // The values are equal if they are defined at the same place and use the
- // same register. Note that we cannot compare VNInfos directly as some of
- // them might be from a copy created in mergeSubRangeInto() while the other
- // is from the original LiveInterval.
- return Orig0->def == Orig1->def && Reg0 == Reg1;
-}
-
-JoinVals::ConflictResolution
-JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) {
- Val &V = Vals[ValNo];
- assert(!V.isAnalyzed() && "Value has already been analyzed!");
- VNInfo *VNI = LR.getValNumInfo(ValNo);
- if (VNI->isUnused()) {
- V.WriteLanes = LaneBitmask::getAll();
- return CR_Keep;
- }
-
- // Get the instruction defining this value, compute the lanes written.
- const MachineInstr *DefMI = nullptr;
- if (VNI->isPHIDef()) {
- // Conservatively assume that all lanes in a PHI are valid.
- LaneBitmask Lanes = SubRangeJoin ? LaneBitmask::getLane(0)
- : TRI->getSubRegIndexLaneMask(SubIdx);
- V.ValidLanes = V.WriteLanes = Lanes;
- } else {
- DefMI = Indexes->getInstructionFromIndex(VNI->def);
- assert(DefMI != nullptr);
- if (SubRangeJoin) {
- // We don't care about the lanes when joining subregister ranges.
- V.WriteLanes = V.ValidLanes = LaneBitmask::getLane(0);
- if (DefMI->isImplicitDef()) {
- V.ValidLanes = LaneBitmask::getNone();
- V.ErasableImplicitDef = true;
- }
- } else {
- bool Redef = false;
- V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef);
-
- // If this is a read-modify-write instruction, there may be more valid
- // lanes than the ones written by this instruction.
- // This only covers partial redef operands. DefMI may have normal use
- // operands reading the register. They don't contribute valid lanes.
- //
- // This adds ssub1 to the set of valid lanes in %src:
- //
- // %src:ssub1 = FOO
- //
- // This leaves only ssub1 valid, making any other lanes undef:
- //
- // %src:ssub1<def,read-undef> = FOO %src:ssub2
- //
- // The <read-undef> flag on the def operand means that old lane values are
- // not important.
- if (Redef) {
- V.RedefVNI = LR.Query(VNI->def).valueIn();
- assert((TrackSubRegLiveness || V.RedefVNI) &&
- "Instruction is reading nonexistent value");
- if (V.RedefVNI != nullptr) {
- computeAssignment(V.RedefVNI->id, Other);
- V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes;
- }
- }
-
- // An IMPLICIT_DEF writes undef values.
- if (DefMI->isImplicitDef()) {
- // We normally expect IMPLICIT_DEF values to be live only until the end
- // of their block. If the value is really live longer and gets pruned in
- // another block, this flag is cleared again.
- //
- // Clearing the valid lanes is deferred until it is sure this can be
- // erased.
- V.ErasableImplicitDef = true;
- }
- }
- }
-
- // Find the value in Other that overlaps VNI->def, if any.
- LiveQueryResult OtherLRQ = Other.LR.Query(VNI->def);
-
- // It is possible that both values are defined by the same instruction, or
- // the values are PHIs defined in the same block. When that happens, the two
- // values should be merged into one, but not into any preceding value.
- // The first value defined or visited gets CR_Keep, the other gets CR_Merge.
- if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) {
- assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ");
-
- // One value stays, the other is merged. Keep the earlier one, or the first
- // one we see.
- if (OtherVNI->def < VNI->def)
- Other.computeAssignment(OtherVNI->id, *this);
- else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) {
- // This is an early-clobber def overlapping a live-in value in the other
- // register. Not mergeable.
- V.OtherVNI = OtherLRQ.valueIn();
- return CR_Impossible;
- }
- V.OtherVNI = OtherVNI;
- Val &OtherV = Other.Vals[OtherVNI->id];
- // Keep this value, check for conflicts when analyzing OtherVNI.
- if (!OtherV.isAnalyzed())
- return CR_Keep;
- // Both sides have been analyzed now.
- // Allow overlapping PHI values. Any real interference would show up in a
- // predecessor, the PHI itself can't introduce any conflicts.
- if (VNI->isPHIDef())
- return CR_Merge;
- if ((V.ValidLanes & OtherV.ValidLanes).any())
- // Overlapping lanes can't be resolved.
- return CR_Impossible;
- else
- return CR_Merge;
- }
-
- // No simultaneous def. Is Other live at the def?
- V.OtherVNI = OtherLRQ.valueIn();
- if (!V.OtherVNI)
- // No overlap, no conflict.
- return CR_Keep;
-
- assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ");
-
- // We have overlapping values, or possibly a kill of Other.
- // Recursively compute assignments up the dominator tree.
- Other.computeAssignment(V.OtherVNI->id, *this);
- Val &OtherV = Other.Vals[V.OtherVNI->id];
-
- if (OtherV.ErasableImplicitDef) {
- // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block.
- // This shouldn't normally happen, but ProcessImplicitDefs can leave such
- // IMPLICIT_DEF instructions behind, and there is nothing wrong with it
- // technically.
- //
- // When it happens, treat that IMPLICIT_DEF as a normal value, and don't try
- // to erase the IMPLICIT_DEF instruction.
- if (DefMI &&
- DefMI->getParent() != Indexes->getMBBFromIndex(V.OtherVNI->def)) {
- LLVM_DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->def
- << " extends into "
- << printMBBReference(*DefMI->getParent())
- << ", keeping it.\n");
- OtherV.ErasableImplicitDef = false;
- } else {
- // We deferred clearing these lanes in case we needed to save them
- OtherV.ValidLanes &= ~OtherV.WriteLanes;
- }
- }
-
- // Allow overlapping PHI values. Any real interference would show up in a
- // predecessor, the PHI itself can't introduce any conflicts.
- if (VNI->isPHIDef())
- return CR_Replace;
-
- // Check for simple erasable conflicts.
- if (DefMI->isImplicitDef()) {
- // We need the def for the subregister if there is nothing else live at the
- // subrange at this point.
- if (TrackSubRegLiveness
- && (V.WriteLanes & (OtherV.ValidLanes | OtherV.WriteLanes)).none())
- return CR_Replace;
- return CR_Erase;
- }
-
- // Include the non-conflict where DefMI is a coalescable copy that kills
- // OtherVNI. We still want the copy erased and value numbers merged.
- if (CP.isCoalescable(DefMI)) {
- // Some of the lanes copied from OtherVNI may be undef, making them undef
- // here too.
- V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes;
- return CR_Erase;
- }
-
- // This may not be a real conflict if DefMI simply kills Other and defines
- // VNI.
- if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def)
- return CR_Keep;
-
- // Handle the case where VNI and OtherVNI can be proven to be identical:
- //
- // %other = COPY %ext
- // %this = COPY %ext <-- Erase this copy
- //
- if (DefMI->isFullCopy() && !CP.isPartial() &&
- valuesIdentical(VNI, V.OtherVNI, Other)) {
- V.Identical = true;
- return CR_Erase;
- }
-
- // The remaining checks apply to the lanes, which aren't tracked here. This
- // was already decided to be OK via the following CR_Replace condition.
- // CR_Replace.
- if (SubRangeJoin)
- return CR_Replace;
-
- // If the lanes written by this instruction were all undef in OtherVNI, it is
- // still safe to join the live ranges. This can't be done with a simple value
- // mapping, though - OtherVNI will map to multiple values:
- //
- // 1 %dst:ssub0 = FOO <-- OtherVNI
- // 2 %src = BAR <-- VNI
- // 3 %dst:ssub1 = COPY killed %src <-- Eliminate this copy.
- // 4 BAZ killed %dst
- // 5 QUUX killed %src
- //
- // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace
- // handles this complex value mapping.
- if ((V.WriteLanes & OtherV.ValidLanes).none())
- return CR_Replace;
-
- // If the other live range is killed by DefMI and the live ranges are still
- // overlapping, it must be because we're looking at an early clobber def:
- //
- // %dst<def,early-clobber> = ASM killed %src
- //
- // In this case, it is illegal to merge the two live ranges since the early
- // clobber def would clobber %src before it was read.
- if (OtherLRQ.isKill()) {
- // This case where the def doesn't overlap the kill is handled above.
- assert(VNI->def.isEarlyClobber() &&
- "Only early clobber defs can overlap a kill");
- return CR_Impossible;
- }
-
- // VNI is clobbering live lanes in OtherVNI, but there is still the
- // possibility that no instructions actually read the clobbered lanes.
- // If we're clobbering all the lanes in OtherVNI, at least one must be read.
- // Otherwise Other.RI wouldn't be live here.
- if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes).none())
- return CR_Impossible;
-
- // We need to verify that no instructions are reading the clobbered lanes. To
- // save compile time, we'll only check that locally. Don't allow the tainted
- // value to escape the basic block.
- MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
- if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(MBB))
- return CR_Impossible;
-
- // There are still some things that could go wrong besides clobbered lanes
- // being read, for example OtherVNI may be only partially redefined in MBB,
- // and some clobbered lanes could escape the block. Save this analysis for
- // resolveConflicts() when all values have been mapped. We need to know
- // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute
- // that now - the recursive analyzeValue() calls must go upwards in the
- // dominator tree.
- return CR_Unresolved;
-}
-
-void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) {
- Val &V = Vals[ValNo];
- if (V.isAnalyzed()) {
- // Recursion should always move up the dominator tree, so ValNo is not
- // supposed to reappear before it has been assigned.
- assert(Assignments[ValNo] != -1 && "Bad recursion?");
- return;
- }
- switch ((V.Resolution = analyzeValue(ValNo, Other))) {
- case CR_Erase:
- case CR_Merge:
- // Merge this ValNo into OtherVNI.
- assert(V.OtherVNI && "OtherVNI not assigned, can't merge.");
- assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion");
- Assignments[ValNo] = Other.Assignments[V.OtherVNI->id];
- LLVM_DEBUG(dbgs() << "\t\tmerge " << printReg(Reg) << ':' << ValNo << '@'
- << LR.getValNumInfo(ValNo)->def << " into "
- << printReg(Other.Reg) << ':' << V.OtherVNI->id << '@'
- << V.OtherVNI->def << " --> @"
- << NewVNInfo[Assignments[ValNo]]->def << '\n');
- break;
- case CR_Replace:
- case CR_Unresolved: {
- // The other value is going to be pruned if this join is successful.
- assert(V.OtherVNI && "OtherVNI not assigned, can't prune");
- Val &OtherV = Other.Vals[V.OtherVNI->id];
- // We cannot erase an IMPLICIT_DEF if we don't have valid values for all
- // its lanes.
- if (OtherV.ErasableImplicitDef &&
- TrackSubRegLiveness &&
- (OtherV.WriteLanes & ~V.ValidLanes).any()) {
- LLVM_DEBUG(dbgs() << "Cannot erase implicit_def with missing values\n");
-
- OtherV.ErasableImplicitDef = false;
- // The valid lanes written by the implicit_def were speculatively cleared
- // before, so make this more conservative. It may be better to track this,
- // I haven't found a testcase where it matters.
- OtherV.ValidLanes = LaneBitmask::getAll();
- }
-
- OtherV.Pruned = true;
- LLVM_FALLTHROUGH;
- }
- default:
- // This value number needs to go in the final joined live range.
- Assignments[ValNo] = NewVNInfo.size();
- NewVNInfo.push_back(LR.getValNumInfo(ValNo));
- break;
- }
-}
-
-bool JoinVals::mapValues(JoinVals &Other) {
- for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
- computeAssignment(i, Other);
- if (Vals[i].Resolution == CR_Impossible) {
- LLVM_DEBUG(dbgs() << "\t\tinterference at " << printReg(Reg) << ':' << i
- << '@' << LR.getValNumInfo(i)->def << '\n');
- return false;
- }
- }
- return true;
-}
-
-bool JoinVals::
-taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other,
- SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent) {
- VNInfo *VNI = LR.getValNumInfo(ValNo);
- MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
- SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB);
-
- // Scan Other.LR from VNI.def to MBBEnd.
- LiveInterval::iterator OtherI = Other.LR.find(VNI->def);
- assert(OtherI != Other.LR.end() && "No conflict?");
- do {
- // OtherI is pointing to a tainted value. Abort the join if the tainted
- // lanes escape the block.
- SlotIndex End = OtherI->end;
- if (End >= MBBEnd) {
- LLVM_DEBUG(dbgs() << "\t\ttaints global " << printReg(Other.Reg) << ':'
- << OtherI->valno->id << '@' << OtherI->start << '\n');
- return false;
- }
- LLVM_DEBUG(dbgs() << "\t\ttaints local " << printReg(Other.Reg) << ':'
- << OtherI->valno->id << '@' << OtherI->start << " to "
- << End << '\n');
- // A dead def is not a problem.
- if (End.isDead())
- break;
- TaintExtent.push_back(std::make_pair(End, TaintedLanes));
-
- // Check for another def in the MBB.
- if (++OtherI == Other.LR.end() || OtherI->start >= MBBEnd)
- break;
-
- // Lanes written by the new def are no longer tainted.
- const Val &OV = Other.Vals[OtherI->valno->id];
- TaintedLanes &= ~OV.WriteLanes;
- if (!OV.RedefVNI)
- break;
- } while (TaintedLanes.any());
- return true;
-}
-
-bool JoinVals::usesLanes(const MachineInstr &MI, unsigned Reg, unsigned SubIdx,
- LaneBitmask Lanes) const {
- if (MI.isDebugInstr())
- return false;
- for (const MachineOperand &MO : MI.operands()) {
- if (!MO.isReg() || MO.isDef() || MO.getReg() != Reg)
- continue;
- if (!MO.readsReg())
- continue;
- unsigned S = TRI->composeSubRegIndices(SubIdx, MO.getSubReg());
- if ((Lanes & TRI->getSubRegIndexLaneMask(S)).any())
- return true;
- }
- return false;
-}
-
-bool JoinVals::resolveConflicts(JoinVals &Other) {
- for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
- Val &V = Vals[i];
- assert(V.Resolution != CR_Impossible && "Unresolvable conflict");
- if (V.Resolution != CR_Unresolved)
- continue;
- LLVM_DEBUG(dbgs() << "\t\tconflict at " << printReg(Reg) << ':' << i << '@'
- << LR.getValNumInfo(i)->def << '\n');
- if (SubRangeJoin)
- return false;
-
- ++NumLaneConflicts;
- assert(V.OtherVNI && "Inconsistent conflict resolution.");
- VNInfo *VNI = LR.getValNumInfo(i);
- const Val &OtherV = Other.Vals[V.OtherVNI->id];
-
- // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the
- // join, those lanes will be tainted with a wrong value. Get the extent of
- // the tainted lanes.
- LaneBitmask TaintedLanes = V.WriteLanes & OtherV.ValidLanes;
- SmallVector<std::pair<SlotIndex, LaneBitmask>, 8> TaintExtent;
- if (!taintExtent(i, TaintedLanes, Other, TaintExtent))
- // Tainted lanes would extend beyond the basic block.
- return false;
-
- assert(!TaintExtent.empty() && "There should be at least one conflict.");
-
- // Now look at the instructions from VNI->def to TaintExtent (inclusive).
- MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
- MachineBasicBlock::iterator MI = MBB->begin();
- if (!VNI->isPHIDef()) {
- MI = Indexes->getInstructionFromIndex(VNI->def);
- // No need to check the instruction defining VNI for reads.
- ++MI;
- }
- assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) &&
- "Interference ends on VNI->def. Should have been handled earlier");
- MachineInstr *LastMI =
- Indexes->getInstructionFromIndex(TaintExtent.front().first);
- assert(LastMI && "Range must end at a proper instruction");
- unsigned TaintNum = 0;
- while (true) {
- assert(MI != MBB->end() && "Bad LastMI");
- if (usesLanes(*MI, Other.Reg, Other.SubIdx, TaintedLanes)) {
- LLVM_DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI);
- return false;
- }
- // LastMI is the last instruction to use the current value.
- if (&*MI == LastMI) {
- if (++TaintNum == TaintExtent.size())
- break;
- LastMI = Indexes->getInstructionFromIndex(TaintExtent[TaintNum].first);
- assert(LastMI && "Range must end at a proper instruction");
- TaintedLanes = TaintExtent[TaintNum].second;
- }
- ++MI;
- }
-
- // The tainted lanes are unused.
- V.Resolution = CR_Replace;
- ++NumLaneResolves;
- }
- return true;
-}
-
-bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) {
- Val &V = Vals[ValNo];
- if (V.Pruned || V.PrunedComputed)
- return V.Pruned;
-
- if (V.Resolution != CR_Erase && V.Resolution != CR_Merge)
- return V.Pruned;
-
- // Follow copies up the dominator tree and check if any intermediate value
- // has been pruned.
- V.PrunedComputed = true;
- V.Pruned = Other.isPrunedValue(V.OtherVNI->id, *this);
- return V.Pruned;
-}
-
-void JoinVals::pruneValues(JoinVals &Other,
- SmallVectorImpl<SlotIndex> &EndPoints,
- bool changeInstrs) {
- for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
- SlotIndex Def = LR.getValNumInfo(i)->def;
- switch (Vals[i].Resolution) {
- case CR_Keep:
- break;
- case CR_Replace: {
- // This value takes precedence over the value in Other.LR.
- LIS->pruneValue(Other.LR, Def, &EndPoints);
- // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF
- // instructions are only inserted to provide a live-out value for PHI
- // predecessors, so the instruction should simply go away once its value
- // has been replaced.
- Val &OtherV = Other.Vals[Vals[i].OtherVNI->id];
- bool EraseImpDef = OtherV.ErasableImplicitDef &&
- OtherV.Resolution == CR_Keep;
- if (!Def.isBlock()) {
- if (changeInstrs) {
- // Remove <def,read-undef> flags. This def is now a partial redef.
- // Also remove dead flags since the joined live range will
- // continue past this instruction.
- for (MachineOperand &MO :
- Indexes->getInstructionFromIndex(Def)->operands()) {
- if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) {
- if (MO.getSubReg() != 0 && MO.isUndef() && !EraseImpDef)
- MO.setIsUndef(false);
- MO.setIsDead(false);
- }
- }
- }
- // This value will reach instructions below, but we need to make sure
- // the live range also reaches the instruction at Def.
- if (!EraseImpDef)
- EndPoints.push_back(Def);
- }
- LLVM_DEBUG(dbgs() << "\t\tpruned " << printReg(Other.Reg) << " at " << Def
- << ": " << Other.LR << '\n');
- break;
- }
- case CR_Erase:
- case CR_Merge:
- if (isPrunedValue(i, Other)) {
- // This value is ultimately a copy of a pruned value in LR or Other.LR.
- // We can no longer trust the value mapping computed by
- // computeAssignment(), the value that was originally copied could have
- // been replaced.
- LIS->pruneValue(LR, Def, &EndPoints);
- LLVM_DEBUG(dbgs() << "\t\tpruned all of " << printReg(Reg) << " at "
- << Def << ": " << LR << '\n');
- }
- break;
- case CR_Unresolved:
- case CR_Impossible:
- llvm_unreachable("Unresolved conflicts");
- }
- }
-}
-
-/// Consider the following situation when coalescing the copy between
-/// %31 and %45 at 800. (The vertical lines represent live range segments.)
-///
-/// Main range Subrange 0004 (sub2)
-/// %31 %45 %31 %45
-/// 544 %45 = COPY %28 + +
-/// | v1 | v1
-/// 560B bb.1: + +
-/// 624 = %45.sub2 | v2 | v2
-/// 800 %31 = COPY %45 + + + +
-/// | v0 | v0
-/// 816 %31.sub1 = ... + |
-/// 880 %30 = COPY %31 | v1 +
-/// 928 %45 = COPY %30 | + +
-/// | | v0 | v0 <--+
-/// 992B ; backedge -> bb.1 | + + |
-/// 1040 = %31.sub0 + |
-/// This value must remain
-/// live-out!
-///
-/// Assuming that %31 is coalesced into %45, the copy at 928 becomes
-/// redundant, since it copies the value from %45 back into it. The
-/// conflict resolution for the main range determines that %45.v0 is
-/// to be erased, which is ok since %31.v1 is identical to it.
-/// The problem happens with the subrange for sub2: it has to be live
-/// on exit from the block, but since 928 was actually a point of
-/// definition of %45.sub2, %45.sub2 was not live immediately prior
-/// to that definition. As a result, when 928 was erased, the value v0
-/// for %45.sub2 was pruned in pruneSubRegValues. Consequently, an
-/// IMPLICIT_DEF was inserted as a "backedge" definition for %45.sub2,
-/// providing an incorrect value to the use at 624.
-///
-/// Since the main-range values %31.v1 and %45.v0 were proved to be
-/// identical, the corresponding values in subranges must also be the
-/// same. A redundant copy is removed because it's not needed, and not
-/// because it copied an undefined value, so any liveness that originated
-/// from that copy cannot disappear. When pruning a value that started
-/// at the removed copy, the corresponding identical value must be
-/// extended to replace it.
-void JoinVals::pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask) {
- // Look for values being erased.
- bool DidPrune = false;
- for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
- Val &V = Vals[i];
- // We should trigger in all cases in which eraseInstrs() does something.
- // match what eraseInstrs() is doing, print a message so
- if (V.Resolution != CR_Erase &&
- (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned))
- continue;
-
- // Check subranges at the point where the copy will be removed.
- SlotIndex Def = LR.getValNumInfo(i)->def;
- SlotIndex OtherDef;
- if (V.Identical)
- OtherDef = V.OtherVNI->def;
-
- // Print message so mismatches with eraseInstrs() can be diagnosed.
- LLVM_DEBUG(dbgs() << "\t\tExpecting instruction removal at " << Def
- << '\n');
- for (LiveInterval::SubRange &S : LI.subranges()) {
- LiveQueryResult Q = S.Query(Def);
-
- // If a subrange starts at the copy then an undefined value has been
- // copied and we must remove that subrange value as well.
- VNInfo *ValueOut = Q.valueOutOrDead();
- if (ValueOut != nullptr && Q.valueIn() == nullptr) {
- LLVM_DEBUG(dbgs() << "\t\tPrune sublane " << PrintLaneMask(S.LaneMask)
- << " at " << Def << "\n");
- SmallVector<SlotIndex,8> EndPoints;
- LIS->pruneValue(S, Def, &EndPoints);
- DidPrune = true;
- // Mark value number as unused.
- ValueOut->markUnused();
-
- if (V.Identical && S.Query(OtherDef).valueOut()) {
- // If V is identical to V.OtherVNI (and S was live at OtherDef),
- // then we can't simply prune V from S. V needs to be replaced
- // with V.OtherVNI.
- LIS->extendToIndices(S, EndPoints);
- }
- continue;
- }
- // If a subrange ends at the copy, then a value was copied but only
- // partially used later. Shrink the subregister range appropriately.
- if (Q.valueIn() != nullptr && Q.valueOut() == nullptr) {
- LLVM_DEBUG(dbgs() << "\t\tDead uses at sublane "
- << PrintLaneMask(S.LaneMask) << " at " << Def
- << "\n");
- ShrinkMask |= S.LaneMask;
- }
- }
- }
- if (DidPrune)
- LI.removeEmptySubRanges();
-}
-
-/// Check if any of the subranges of @p LI contain a definition at @p Def.
-static bool isDefInSubRange(LiveInterval &LI, SlotIndex Def) {
- for (LiveInterval::SubRange &SR : LI.subranges()) {
- if (VNInfo *VNI = SR.Query(Def).valueOutOrDead())
- if (VNI->def == Def)
- return true;
- }
- return false;
-}
-
-void JoinVals::pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange) {
- assert(&static_cast<LiveRange&>(LI) == &LR);
-
- for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
- if (Vals[i].Resolution != CR_Keep)
- continue;
- VNInfo *VNI = LR.getValNumInfo(i);
- if (VNI->isUnused() || VNI->isPHIDef() || isDefInSubRange(LI, VNI->def))
- continue;
- Vals[i].Pruned = true;
- ShrinkMainRange = true;
- }
-}
-
-void JoinVals::removeImplicitDefs() {
- for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
- Val &V = Vals[i];
- if (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned)
- continue;
-
- VNInfo *VNI = LR.getValNumInfo(i);
- VNI->markUnused();
- LR.removeValNo(VNI);
- }
-}
-
-void JoinVals::eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs,
- SmallVectorImpl<unsigned> &ShrinkRegs,
- LiveInterval *LI) {
- for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
- // Get the def location before markUnused() below invalidates it.
- SlotIndex Def = LR.getValNumInfo(i)->def;
- switch (Vals[i].Resolution) {
- case CR_Keep: {
- // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any
- // longer. The IMPLICIT_DEF instructions are only inserted by
- // PHIElimination to guarantee that all PHI predecessors have a value.
- if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned)
- break;
- // Remove value number i from LR.
- // For intervals with subranges, removing a segment from the main range
- // may require extending the previous segment: for each definition of
- // a subregister, there will be a corresponding def in the main range.
- // That def may fall in the middle of a segment from another subrange.
- // In such cases, removing this def from the main range must be
- // complemented by extending the main range to account for the liveness
- // of the other subrange.
- VNInfo *VNI = LR.getValNumInfo(i);
- SlotIndex Def = VNI->def;
- // The new end point of the main range segment to be extended.
- SlotIndex NewEnd;
- if (LI != nullptr) {
- LiveRange::iterator I = LR.FindSegmentContaining(Def);
- assert(I != LR.end());
- // Do not extend beyond the end of the segment being removed.
- // The segment may have been pruned in preparation for joining
- // live ranges.
- NewEnd = I->end;
- }
-
- LR.removeValNo(VNI);
- // Note that this VNInfo is reused and still referenced in NewVNInfo,
- // make it appear like an unused value number.
- VNI->markUnused();
-
- if (LI != nullptr && LI->hasSubRanges()) {
- assert(static_cast<LiveRange*>(LI) == &LR);
- // Determine the end point based on the subrange information:
- // minimum of (earliest def of next segment,
- // latest end point of containing segment)
- SlotIndex ED, LE;
- for (LiveInterval::SubRange &SR : LI->subranges()) {
- LiveRange::iterator I = SR.find(Def);
- if (I == SR.end())
- continue;
- if (I->start > Def)
- ED = ED.isValid() ? std::min(ED, I->start) : I->start;
- else
- LE = LE.isValid() ? std::max(LE, I->end) : I->end;
- }
- if (LE.isValid())
- NewEnd = std::min(NewEnd, LE);
- if (ED.isValid())
- NewEnd = std::min(NewEnd, ED);
-
- // We only want to do the extension if there was a subrange that
- // was live across Def.
- if (LE.isValid()) {
- LiveRange::iterator S = LR.find(Def);
- if (S != LR.begin())
- std::prev(S)->end = NewEnd;
- }
- }
- LLVM_DEBUG({
- dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LR << '\n';
- if (LI != nullptr)
- dbgs() << "\t\t LHS = " << *LI << '\n';
- });
- LLVM_FALLTHROUGH;
- }
-
- case CR_Erase: {
- MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
- assert(MI && "No instruction to erase");
- if (MI->isCopy()) {
- unsigned Reg = MI->getOperand(1).getReg();
- if (TargetRegisterInfo::isVirtualRegister(Reg) &&
- Reg != CP.getSrcReg() && Reg != CP.getDstReg())
- ShrinkRegs.push_back(Reg);
- }
- ErasedInstrs.insert(MI);
- LLVM_DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI);
- LIS->RemoveMachineInstrFromMaps(*MI);
- MI->eraseFromParent();
- break;
- }
- default:
- break;
- }
- }
-}
-
-void RegisterCoalescer::joinSubRegRanges(LiveRange &LRange, LiveRange &RRange,
- LaneBitmask LaneMask,
- const CoalescerPair &CP) {
- SmallVector<VNInfo*, 16> NewVNInfo;
- JoinVals RHSVals(RRange, CP.getSrcReg(), CP.getSrcIdx(), LaneMask,
- NewVNInfo, CP, LIS, TRI, true, true);
- JoinVals LHSVals(LRange, CP.getDstReg(), CP.getDstIdx(), LaneMask,
- NewVNInfo, CP, LIS, TRI, true, true);
-
- // Compute NewVNInfo and resolve conflicts (see also joinVirtRegs())
- // We should be able to resolve all conflicts here as we could successfully do
- // it on the mainrange already. There is however a problem when multiple
- // ranges get mapped to the "overflow" lane mask bit which creates unexpected
- // interferences.
- if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) {
- // We already determined that it is legal to merge the intervals, so this
- // should never fail.
- llvm_unreachable("*** Couldn't join subrange!\n");
- }
- if (!LHSVals.resolveConflicts(RHSVals) ||
- !RHSVals.resolveConflicts(LHSVals)) {
- // We already determined that it is legal to merge the intervals, so this
- // should never fail.
- llvm_unreachable("*** Couldn't join subrange!\n");
- }
-
- // The merging algorithm in LiveInterval::join() can't handle conflicting
- // value mappings, so we need to remove any live ranges that overlap a
- // CR_Replace resolution. Collect a set of end points that can be used to
- // restore the live range after joining.
- SmallVector<SlotIndex, 8> EndPoints;
- LHSVals.pruneValues(RHSVals, EndPoints, false);
- RHSVals.pruneValues(LHSVals, EndPoints, false);
-
- LHSVals.removeImplicitDefs();
- RHSVals.removeImplicitDefs();
-
- LRange.verify();
- RRange.verify();
-
- // Join RRange into LHS.
- LRange.join(RRange, LHSVals.getAssignments(), RHSVals.getAssignments(),
- NewVNInfo);
-
- LLVM_DEBUG(dbgs() << "\t\tjoined lanes: " << PrintLaneMask(LaneMask)
- << ' ' << LRange << "\n");
- if (EndPoints.empty())
- return;
-
- // Recompute the parts of the live range we had to remove because of
- // CR_Replace conflicts.
- LLVM_DEBUG({
- dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: ";
- for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) {
- dbgs() << EndPoints[i];
- if (i != n-1)
- dbgs() << ',';
- }
- dbgs() << ": " << LRange << '\n';
- });
- LIS->extendToIndices(LRange, EndPoints);
-}
-
-void RegisterCoalescer::mergeSubRangeInto(LiveInterval &LI,
- const LiveRange &ToMerge,
- LaneBitmask LaneMask,
- CoalescerPair &CP) {
- BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
- LI.refineSubRanges(Allocator, LaneMask,
- [this,&Allocator,&ToMerge,&CP](LiveInterval::SubRange &SR) {
- if (SR.empty()) {
- SR.assign(ToMerge, Allocator);
- } else {
- // joinSubRegRange() destroys the merged range, so we need a copy.
- LiveRange RangeCopy(ToMerge, Allocator);
- joinSubRegRanges(SR, RangeCopy, SR.LaneMask, CP);
- }
- });
-}
-
-bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) {
- SmallVector<VNInfo*, 16> NewVNInfo;
- LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
- LiveInterval &LHS = LIS->getInterval(CP.getDstReg());
- bool TrackSubRegLiveness = MRI->shouldTrackSubRegLiveness(*CP.getNewRC());
- JoinVals RHSVals(RHS, CP.getSrcReg(), CP.getSrcIdx(), LaneBitmask::getNone(),
- NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness);
- JoinVals LHSVals(LHS, CP.getDstReg(), CP.getDstIdx(), LaneBitmask::getNone(),
- NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness);
-
- LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << "\n\t\tLHS = " << LHS << '\n');
-
- // First compute NewVNInfo and the simple value mappings.
- // Detect impossible conflicts early.
- if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals))
- return false;
-
- // Some conflicts can only be resolved after all values have been mapped.
- if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals))
- return false;
-
- // All clear, the live ranges can be merged.
- if (RHS.hasSubRanges() || LHS.hasSubRanges()) {
- BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
-
- // Transform lanemasks from the LHS to masks in the coalesced register and
- // create initial subranges if necessary.
- unsigned DstIdx = CP.getDstIdx();
- if (!LHS.hasSubRanges()) {
- LaneBitmask Mask = DstIdx == 0 ? CP.getNewRC()->getLaneMask()
- : TRI->getSubRegIndexLaneMask(DstIdx);
- // LHS must support subregs or we wouldn't be in this codepath.
- assert(Mask.any());
- LHS.createSubRangeFrom(Allocator, Mask, LHS);
- } else if (DstIdx != 0) {
- // Transform LHS lanemasks to new register class if necessary.
- for (LiveInterval::SubRange &R : LHS.subranges()) {
- LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(DstIdx, R.LaneMask);
- R.LaneMask = Mask;
- }
- }
- LLVM_DEBUG(dbgs() << "\t\tLHST = " << printReg(CP.getDstReg()) << ' ' << LHS
- << '\n');
-
- // Determine lanemasks of RHS in the coalesced register and merge subranges.
- unsigned SrcIdx = CP.getSrcIdx();
- if (!RHS.hasSubRanges()) {
- LaneBitmask Mask = SrcIdx == 0 ? CP.getNewRC()->getLaneMask()
- : TRI->getSubRegIndexLaneMask(SrcIdx);
- mergeSubRangeInto(LHS, RHS, Mask, CP);
- } else {
- // Pair up subranges and merge.
- for (LiveInterval::SubRange &R : RHS.subranges()) {
- LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(SrcIdx, R.LaneMask);
- mergeSubRangeInto(LHS, R, Mask, CP);
- }
- }
- LLVM_DEBUG(dbgs() << "\tJoined SubRanges " << LHS << "\n");
-
- // Pruning implicit defs from subranges may result in the main range
- // having stale segments.
- LHSVals.pruneMainSegments(LHS, ShrinkMainRange);
-
- LHSVals.pruneSubRegValues(LHS, ShrinkMask);
- RHSVals.pruneSubRegValues(LHS, ShrinkMask);
- }
-
- // The merging algorithm in LiveInterval::join() can't handle conflicting
- // value mappings, so we need to remove any live ranges that overlap a
- // CR_Replace resolution. Collect a set of end points that can be used to
- // restore the live range after joining.
- SmallVector<SlotIndex, 8> EndPoints;
- LHSVals.pruneValues(RHSVals, EndPoints, true);
- RHSVals.pruneValues(LHSVals, EndPoints, true);
-
- // Erase COPY and IMPLICIT_DEF instructions. This may cause some external
- // registers to require trimming.
- SmallVector<unsigned, 8> ShrinkRegs;
- LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs, &LHS);
- RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs);
- while (!ShrinkRegs.empty())
- shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val()));
-
- // Join RHS into LHS.
- LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo);
-
- // Kill flags are going to be wrong if the live ranges were overlapping.
- // Eventually, we should simply clear all kill flags when computing live
- // ranges. They are reinserted after register allocation.
- MRI->clearKillFlags(LHS.reg);
- MRI->clearKillFlags(RHS.reg);
-
- if (!EndPoints.empty()) {
- // Recompute the parts of the live range we had to remove because of
- // CR_Replace conflicts.
- LLVM_DEBUG({
- dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: ";
- for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) {
- dbgs() << EndPoints[i];
- if (i != n-1)
- dbgs() << ',';
- }
- dbgs() << ": " << LHS << '\n';
- });
- LIS->extendToIndices((LiveRange&)LHS, EndPoints);
- }
-
- return true;
-}
-
-bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) {
- return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP);
-}
-
-namespace {
-
-/// Information concerning MBB coalescing priority.
-struct MBBPriorityInfo {
- MachineBasicBlock *MBB;
- unsigned Depth;
- bool IsSplit;
-
- MBBPriorityInfo(MachineBasicBlock *mbb, unsigned depth, bool issplit)
- : MBB(mbb), Depth(depth), IsSplit(issplit) {}
-};
-
-} // end anonymous namespace
-
-/// C-style comparator that sorts first based on the loop depth of the basic
-/// block (the unsigned), and then on the MBB number.
-///
-/// EnableGlobalCopies assumes that the primary sort key is loop depth.
-static int compareMBBPriority(const MBBPriorityInfo *LHS,
- const MBBPriorityInfo *RHS) {
- // Deeper loops first
- if (LHS->Depth != RHS->Depth)
- return LHS->Depth > RHS->Depth ? -1 : 1;
-
- // Try to unsplit critical edges next.
- if (LHS->IsSplit != RHS->IsSplit)
- return LHS->IsSplit ? -1 : 1;
-
- // Prefer blocks that are more connected in the CFG. This takes care of
- // the most difficult copies first while intervals are short.
- unsigned cl = LHS->MBB->pred_size() + LHS->MBB->succ_size();
- unsigned cr = RHS->MBB->pred_size() + RHS->MBB->succ_size();
- if (cl != cr)
- return cl > cr ? -1 : 1;
-
- // As a last resort, sort by block number.
- return LHS->MBB->getNumber() < RHS->MBB->getNumber() ? -1 : 1;
-}
-
-/// \returns true if the given copy uses or defines a local live range.
-static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS) {
- if (!Copy->isCopy())
- return false;
-
- if (Copy->getOperand(1).isUndef())
- return false;
-
- unsigned SrcReg = Copy->getOperand(1).getReg();
- unsigned DstReg = Copy->getOperand(0).getReg();
- if (TargetRegisterInfo::isPhysicalRegister(SrcReg)
- || TargetRegisterInfo::isPhysicalRegister(DstReg))
- return false;
-
- return LIS->intervalIsInOneMBB(LIS->getInterval(SrcReg))
- || LIS->intervalIsInOneMBB(LIS->getInterval(DstReg));
-}
-
-void RegisterCoalescer::lateLiveIntervalUpdate() {
- for (unsigned reg : ToBeUpdated) {
- if (!LIS->hasInterval(reg))
- continue;
- LiveInterval &LI = LIS->getInterval(reg);
- shrinkToUses(&LI, &DeadDefs);
- if (!DeadDefs.empty())
- eliminateDeadDefs();
- }
- ToBeUpdated.clear();
-}
-
-bool RegisterCoalescer::
-copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList) {
- bool Progress = false;
- for (unsigned i = 0, e = CurrList.size(); i != e; ++i) {
- if (!CurrList[i])
- continue;
- // Skip instruction pointers that have already been erased, for example by
- // dead code elimination.
- if (ErasedInstrs.count(CurrList[i])) {
- CurrList[i] = nullptr;
- continue;
- }
- bool Again = false;
- bool Success = joinCopy(CurrList[i], Again);
- Progress |= Success;
- if (Success || !Again)
- CurrList[i] = nullptr;
- }
- return Progress;
-}
-
-/// Check if DstReg is a terminal node.
-/// I.e., it does not have any affinity other than \p Copy.
-static bool isTerminalReg(unsigned DstReg, const MachineInstr &Copy,
- const MachineRegisterInfo *MRI) {
- assert(Copy.isCopyLike());
- // Check if the destination of this copy as any other affinity.
- for (const MachineInstr &MI : MRI->reg_nodbg_instructions(DstReg))
- if (&MI != &Copy && MI.isCopyLike())
- return false;
- return true;
-}
-
-bool RegisterCoalescer::applyTerminalRule(const MachineInstr &Copy) const {
- assert(Copy.isCopyLike());
- if (!UseTerminalRule)
- return false;
- unsigned DstReg, DstSubReg, SrcReg, SrcSubReg;
- isMoveInstr(*TRI, &Copy, SrcReg, DstReg, SrcSubReg, DstSubReg);
- // Check if the destination of this copy has any other affinity.
- if (TargetRegisterInfo::isPhysicalRegister(DstReg) ||
- // If SrcReg is a physical register, the copy won't be coalesced.
- // Ignoring it may have other side effect (like missing
- // rematerialization). So keep it.
- TargetRegisterInfo::isPhysicalRegister(SrcReg) ||
- !isTerminalReg(DstReg, Copy, MRI))
- return false;
-
- // DstReg is a terminal node. Check if it interferes with any other
- // copy involving SrcReg.
- const MachineBasicBlock *OrigBB = Copy.getParent();
- const LiveInterval &DstLI = LIS->getInterval(DstReg);
- for (const MachineInstr &MI : MRI->reg_nodbg_instructions(SrcReg)) {
- // Technically we should check if the weight of the new copy is
- // interesting compared to the other one and update the weight
- // of the copies accordingly. However, this would only work if
- // we would gather all the copies first then coalesce, whereas
- // right now we interleave both actions.
- // For now, just consider the copies that are in the same block.
- if (&MI == &Copy || !MI.isCopyLike() || MI.getParent() != OrigBB)
- continue;
- unsigned OtherReg, OtherSubReg, OtherSrcReg, OtherSrcSubReg;
- isMoveInstr(*TRI, &Copy, OtherSrcReg, OtherReg, OtherSrcSubReg,
- OtherSubReg);
- if (OtherReg == SrcReg)
- OtherReg = OtherSrcReg;
- // Check if OtherReg is a non-terminal.
- if (TargetRegisterInfo::isPhysicalRegister(OtherReg) ||
- isTerminalReg(OtherReg, MI, MRI))
- continue;
- // Check that OtherReg interfere with DstReg.
- if (LIS->getInterval(OtherReg).overlaps(DstLI)) {
- LLVM_DEBUG(dbgs() << "Apply terminal rule for: " << printReg(DstReg)
- << '\n');
- return true;
- }
- }
- return false;
-}
-
-void
-RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) {
- LLVM_DEBUG(dbgs() << MBB->getName() << ":\n");
-
- // Collect all copy-like instructions in MBB. Don't start coalescing anything
- // yet, it might invalidate the iterator.
- const unsigned PrevSize = WorkList.size();
- if (JoinGlobalCopies) {
- SmallVector<MachineInstr*, 2> LocalTerminals;
- SmallVector<MachineInstr*, 2> GlobalTerminals;
- // Coalesce copies bottom-up to coalesce local defs before local uses. They
- // are not inherently easier to resolve, but slightly preferable until we
- // have local live range splitting. In particular this is required by
- // cmp+jmp macro fusion.
- for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
- MII != E; ++MII) {
- if (!MII->isCopyLike())
- continue;
- bool ApplyTerminalRule = applyTerminalRule(*MII);
- if (isLocalCopy(&(*MII), LIS)) {
- if (ApplyTerminalRule)
- LocalTerminals.push_back(&(*MII));
- else
- LocalWorkList.push_back(&(*MII));
- } else {
- if (ApplyTerminalRule)
- GlobalTerminals.push_back(&(*MII));
- else
- WorkList.push_back(&(*MII));
- }
- }
- // Append the copies evicted by the terminal rule at the end of the list.
- LocalWorkList.append(LocalTerminals.begin(), LocalTerminals.end());
- WorkList.append(GlobalTerminals.begin(), GlobalTerminals.end());
- }
- else {
- SmallVector<MachineInstr*, 2> Terminals;
- for (MachineInstr &MII : *MBB)
- if (MII.isCopyLike()) {
- if (applyTerminalRule(MII))
- Terminals.push_back(&MII);
- else
- WorkList.push_back(&MII);
- }
- // Append the copies evicted by the terminal rule at the end of the list.
- WorkList.append(Terminals.begin(), Terminals.end());
- }
- // Try coalescing the collected copies immediately, and remove the nulls.
- // This prevents the WorkList from getting too large since most copies are
- // joinable on the first attempt.
- MutableArrayRef<MachineInstr*>
- CurrList(WorkList.begin() + PrevSize, WorkList.end());
- if (copyCoalesceWorkList(CurrList))
- WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(),
- nullptr), WorkList.end());
-}
-
-void RegisterCoalescer::coalesceLocals() {
- copyCoalesceWorkList(LocalWorkList);
- for (unsigned j = 0, je = LocalWorkList.size(); j != je; ++j) {
- if (LocalWorkList[j])
- WorkList.push_back(LocalWorkList[j]);
- }
- LocalWorkList.clear();
-}
-
-void RegisterCoalescer::joinAllIntervals() {
- LLVM_DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");
- assert(WorkList.empty() && LocalWorkList.empty() && "Old data still around.");
-
- std::vector<MBBPriorityInfo> MBBs;
- MBBs.reserve(MF->size());
- for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I) {
- MachineBasicBlock *MBB = &*I;
- MBBs.push_back(MBBPriorityInfo(MBB, Loops->getLoopDepth(MBB),
- JoinSplitEdges && isSplitEdge(MBB)));
- }
- array_pod_sort(MBBs.begin(), MBBs.end(), compareMBBPriority);
-
- // Coalesce intervals in MBB priority order.
- unsigned CurrDepth = std::numeric_limits<unsigned>::max();
- for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
- // Try coalescing the collected local copies for deeper loops.
- if (JoinGlobalCopies && MBBs[i].Depth < CurrDepth) {
- coalesceLocals();
- CurrDepth = MBBs[i].Depth;
- }
- copyCoalesceInMBB(MBBs[i].MBB);
- }
- lateLiveIntervalUpdate();
- coalesceLocals();
-
- // Joining intervals can allow other intervals to be joined. Iteratively join
- // until we make no progress.
- while (copyCoalesceWorkList(WorkList))
- /* empty */ ;
- lateLiveIntervalUpdate();
-}
-
-void RegisterCoalescer::releaseMemory() {
- ErasedInstrs.clear();
- WorkList.clear();
- DeadDefs.clear();
- InflateRegs.clear();
-}
-
-bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) {
- MF = &fn;
- MRI = &fn.getRegInfo();
- const TargetSubtargetInfo &STI = fn.getSubtarget();
- TRI = STI.getRegisterInfo();
- TII = STI.getInstrInfo();
- LIS = &getAnalysis<LiveIntervals>();
- AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
- Loops = &getAnalysis<MachineLoopInfo>();
- if (EnableGlobalCopies == cl::BOU_UNSET)
- JoinGlobalCopies = STI.enableJoinGlobalCopies();
- else
- JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE);
-
- // The MachineScheduler does not currently require JoinSplitEdges. This will
- // either be enabled unconditionally or replaced by a more general live range
- // splitting optimization.
- JoinSplitEdges = EnableJoinSplits;
-
- LLVM_DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"
- << "********** Function: " << MF->getName() << '\n');
-
- if (VerifyCoalescing)
- MF->verify(this, "Before register coalescing");
-
- RegClassInfo.runOnMachineFunction(fn);
-
- // Join (coalesce) intervals if requested.
- if (EnableJoining)
- joinAllIntervals();
-
- // After deleting a lot of copies, register classes may be less constrained.
- // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 ->
- // DPR inflation.
- array_pod_sort(InflateRegs.begin(), InflateRegs.end());
- InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()),
- InflateRegs.end());
- LLVM_DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size()
- << " regs.\n");
- for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) {
- unsigned Reg = InflateRegs[i];
- if (MRI->reg_nodbg_empty(Reg))
- continue;
- if (MRI->recomputeRegClass(Reg)) {
- LLVM_DEBUG(dbgs() << printReg(Reg) << " inflated to "
- << TRI->getRegClassName(MRI->getRegClass(Reg)) << '\n');
- ++NumInflated;
-
- LiveInterval &LI = LIS->getInterval(Reg);
- if (LI.hasSubRanges()) {
- // If the inflated register class does not support subregisters anymore
- // remove the subranges.
- if (!MRI->shouldTrackSubRegLiveness(Reg)) {
- LI.clearSubRanges();
- } else {
-#ifndef NDEBUG
- LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
- // If subranges are still supported, then the same subregs
- // should still be supported.
- for (LiveInterval::SubRange &S : LI.subranges()) {
- assert((S.LaneMask & ~MaxMask).none());
- }
-#endif
- }
- }
- }
- }
-
- LLVM_DEBUG(dump());
- if (VerifyCoalescing)
- MF->verify(this, "After register coalescing");
- return true;
-}
-
-void RegisterCoalescer::print(raw_ostream &O, const Module* m) const {
- LIS->print(O, m);
-}