summaryrefslogtreecommitdiffstats
path: root/gnu/llvm/lib/CodeGen/ScheduleDAG.cpp
diff options
context:
space:
mode:
authorpatrick <patrick@openbsd.org>2020-08-03 15:06:44 +0000
committerpatrick <patrick@openbsd.org>2020-08-03 15:06:44 +0000
commitb64793999546ed8adebaeebd9d8345d18db8927d (patch)
tree4357c27b561d73b0e089727c6ed659f2ceff5f47 /gnu/llvm/lib/CodeGen/ScheduleDAG.cpp
parentAdd support for UTF-8 DISPLAY-HINTs with octet length. For now only (diff)
downloadwireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.tar.xz
wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.zip
Remove LLVM 8.0.1 files.
Diffstat (limited to 'gnu/llvm/lib/CodeGen/ScheduleDAG.cpp')
-rw-r--r--gnu/llvm/lib/CodeGen/ScheduleDAG.cpp704
1 files changed, 0 insertions, 704 deletions
diff --git a/gnu/llvm/lib/CodeGen/ScheduleDAG.cpp b/gnu/llvm/lib/CodeGen/ScheduleDAG.cpp
deleted file mode 100644
index 6c135b3d69d..00000000000
--- a/gnu/llvm/lib/CodeGen/ScheduleDAG.cpp
+++ /dev/null
@@ -1,704 +0,0 @@
-//===- ScheduleDAG.cpp - Implement the ScheduleDAG class ------------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-/// \file Implements the ScheduleDAG class, which is a base class used by
-/// scheduling implementation classes.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/CodeGen/ScheduleDAG.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/iterator_range.h"
-#include "llvm/CodeGen/MachineFunction.h"
-#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
-#include "llvm/CodeGen/SelectionDAGNodes.h"
-#include "llvm/CodeGen/TargetInstrInfo.h"
-#include "llvm/CodeGen/TargetRegisterInfo.h"
-#include "llvm/CodeGen/TargetSubtargetInfo.h"
-#include "llvm/Config/llvm-config.h"
-#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/Compiler.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/raw_ostream.h"
-#include <algorithm>
-#include <cassert>
-#include <iterator>
-#include <limits>
-#include <utility>
-#include <vector>
-
-using namespace llvm;
-
-#define DEBUG_TYPE "pre-RA-sched"
-
-#ifndef NDEBUG
-static cl::opt<bool> StressSchedOpt(
- "stress-sched", cl::Hidden, cl::init(false),
- cl::desc("Stress test instruction scheduling"));
-#endif
-
-void SchedulingPriorityQueue::anchor() {}
-
-ScheduleDAG::ScheduleDAG(MachineFunction &mf)
- : TM(mf.getTarget()), TII(mf.getSubtarget().getInstrInfo()),
- TRI(mf.getSubtarget().getRegisterInfo()), MF(mf),
- MRI(mf.getRegInfo()) {
-#ifndef NDEBUG
- StressSched = StressSchedOpt;
-#endif
-}
-
-ScheduleDAG::~ScheduleDAG() = default;
-
-void ScheduleDAG::clearDAG() {
- SUnits.clear();
- EntrySU = SUnit();
- ExitSU = SUnit();
-}
-
-const MCInstrDesc *ScheduleDAG::getNodeDesc(const SDNode *Node) const {
- if (!Node || !Node->isMachineOpcode()) return nullptr;
- return &TII->get(Node->getMachineOpcode());
-}
-
-LLVM_DUMP_METHOD void SDep::dump(const TargetRegisterInfo *TRI) const {
- switch (getKind()) {
- case Data: dbgs() << "Data"; break;
- case Anti: dbgs() << "Anti"; break;
- case Output: dbgs() << "Out "; break;
- case Order: dbgs() << "Ord "; break;
- }
-
- switch (getKind()) {
- case Data:
- dbgs() << " Latency=" << getLatency();
- if (TRI && isAssignedRegDep())
- dbgs() << " Reg=" << printReg(getReg(), TRI);
- break;
- case Anti:
- case Output:
- dbgs() << " Latency=" << getLatency();
- break;
- case Order:
- dbgs() << " Latency=" << getLatency();
- switch(Contents.OrdKind) {
- case Barrier: dbgs() << " Barrier"; break;
- case MayAliasMem:
- case MustAliasMem: dbgs() << " Memory"; break;
- case Artificial: dbgs() << " Artificial"; break;
- case Weak: dbgs() << " Weak"; break;
- case Cluster: dbgs() << " Cluster"; break;
- }
- break;
- }
-}
-
-bool SUnit::addPred(const SDep &D, bool Required) {
- // If this node already has this dependence, don't add a redundant one.
- for (SDep &PredDep : Preds) {
- // Zero-latency weak edges may be added purely for heuristic ordering. Don't
- // add them if another kind of edge already exists.
- if (!Required && PredDep.getSUnit() == D.getSUnit())
- return false;
- if (PredDep.overlaps(D)) {
- // Extend the latency if needed. Equivalent to
- // removePred(PredDep) + addPred(D).
- if (PredDep.getLatency() < D.getLatency()) {
- SUnit *PredSU = PredDep.getSUnit();
- // Find the corresponding successor in N.
- SDep ForwardD = PredDep;
- ForwardD.setSUnit(this);
- for (SDep &SuccDep : PredSU->Succs) {
- if (SuccDep == ForwardD) {
- SuccDep.setLatency(D.getLatency());
- break;
- }
- }
- PredDep.setLatency(D.getLatency());
- }
- return false;
- }
- }
- // Now add a corresponding succ to N.
- SDep P = D;
- P.setSUnit(this);
- SUnit *N = D.getSUnit();
- // Update the bookkeeping.
- if (D.getKind() == SDep::Data) {
- assert(NumPreds < std::numeric_limits<unsigned>::max() &&
- "NumPreds will overflow!");
- assert(N->NumSuccs < std::numeric_limits<unsigned>::max() &&
- "NumSuccs will overflow!");
- ++NumPreds;
- ++N->NumSuccs;
- }
- if (!N->isScheduled) {
- if (D.isWeak()) {
- ++WeakPredsLeft;
- }
- else {
- assert(NumPredsLeft < std::numeric_limits<unsigned>::max() &&
- "NumPredsLeft will overflow!");
- ++NumPredsLeft;
- }
- }
- if (!isScheduled) {
- if (D.isWeak()) {
- ++N->WeakSuccsLeft;
- }
- else {
- assert(N->NumSuccsLeft < std::numeric_limits<unsigned>::max() &&
- "NumSuccsLeft will overflow!");
- ++N->NumSuccsLeft;
- }
- }
- Preds.push_back(D);
- N->Succs.push_back(P);
- if (P.getLatency() != 0) {
- this->setDepthDirty();
- N->setHeightDirty();
- }
- return true;
-}
-
-void SUnit::removePred(const SDep &D) {
- // Find the matching predecessor.
- SmallVectorImpl<SDep>::iterator I = llvm::find(Preds, D);
- if (I == Preds.end())
- return;
- // Find the corresponding successor in N.
- SDep P = D;
- P.setSUnit(this);
- SUnit *N = D.getSUnit();
- SmallVectorImpl<SDep>::iterator Succ = llvm::find(N->Succs, P);
- assert(Succ != N->Succs.end() && "Mismatching preds / succs lists!");
- N->Succs.erase(Succ);
- Preds.erase(I);
- // Update the bookkeeping.
- if (P.getKind() == SDep::Data) {
- assert(NumPreds > 0 && "NumPreds will underflow!");
- assert(N->NumSuccs > 0 && "NumSuccs will underflow!");
- --NumPreds;
- --N->NumSuccs;
- }
- if (!N->isScheduled) {
- if (D.isWeak())
- --WeakPredsLeft;
- else {
- assert(NumPredsLeft > 0 && "NumPredsLeft will underflow!");
- --NumPredsLeft;
- }
- }
- if (!isScheduled) {
- if (D.isWeak())
- --N->WeakSuccsLeft;
- else {
- assert(N->NumSuccsLeft > 0 && "NumSuccsLeft will underflow!");
- --N->NumSuccsLeft;
- }
- }
- if (P.getLatency() != 0) {
- this->setDepthDirty();
- N->setHeightDirty();
- }
-}
-
-void SUnit::setDepthDirty() {
- if (!isDepthCurrent) return;
- SmallVector<SUnit*, 8> WorkList;
- WorkList.push_back(this);
- do {
- SUnit *SU = WorkList.pop_back_val();
- SU->isDepthCurrent = false;
- for (SDep &SuccDep : SU->Succs) {
- SUnit *SuccSU = SuccDep.getSUnit();
- if (SuccSU->isDepthCurrent)
- WorkList.push_back(SuccSU);
- }
- } while (!WorkList.empty());
-}
-
-void SUnit::setHeightDirty() {
- if (!isHeightCurrent) return;
- SmallVector<SUnit*, 8> WorkList;
- WorkList.push_back(this);
- do {
- SUnit *SU = WorkList.pop_back_val();
- SU->isHeightCurrent = false;
- for (SDep &PredDep : SU->Preds) {
- SUnit *PredSU = PredDep.getSUnit();
- if (PredSU->isHeightCurrent)
- WorkList.push_back(PredSU);
- }
- } while (!WorkList.empty());
-}
-
-void SUnit::setDepthToAtLeast(unsigned NewDepth) {
- if (NewDepth <= getDepth())
- return;
- setDepthDirty();
- Depth = NewDepth;
- isDepthCurrent = true;
-}
-
-void SUnit::setHeightToAtLeast(unsigned NewHeight) {
- if (NewHeight <= getHeight())
- return;
- setHeightDirty();
- Height = NewHeight;
- isHeightCurrent = true;
-}
-
-/// Calculates the maximal path from the node to the exit.
-void SUnit::ComputeDepth() {
- SmallVector<SUnit*, 8> WorkList;
- WorkList.push_back(this);
- do {
- SUnit *Cur = WorkList.back();
-
- bool Done = true;
- unsigned MaxPredDepth = 0;
- for (const SDep &PredDep : Cur->Preds) {
- SUnit *PredSU = PredDep.getSUnit();
- if (PredSU->isDepthCurrent)
- MaxPredDepth = std::max(MaxPredDepth,
- PredSU->Depth + PredDep.getLatency());
- else {
- Done = false;
- WorkList.push_back(PredSU);
- }
- }
-
- if (Done) {
- WorkList.pop_back();
- if (MaxPredDepth != Cur->Depth) {
- Cur->setDepthDirty();
- Cur->Depth = MaxPredDepth;
- }
- Cur->isDepthCurrent = true;
- }
- } while (!WorkList.empty());
-}
-
-/// Calculates the maximal path from the node to the entry.
-void SUnit::ComputeHeight() {
- SmallVector<SUnit*, 8> WorkList;
- WorkList.push_back(this);
- do {
- SUnit *Cur = WorkList.back();
-
- bool Done = true;
- unsigned MaxSuccHeight = 0;
- for (const SDep &SuccDep : Cur->Succs) {
- SUnit *SuccSU = SuccDep.getSUnit();
- if (SuccSU->isHeightCurrent)
- MaxSuccHeight = std::max(MaxSuccHeight,
- SuccSU->Height + SuccDep.getLatency());
- else {
- Done = false;
- WorkList.push_back(SuccSU);
- }
- }
-
- if (Done) {
- WorkList.pop_back();
- if (MaxSuccHeight != Cur->Height) {
- Cur->setHeightDirty();
- Cur->Height = MaxSuccHeight;
- }
- Cur->isHeightCurrent = true;
- }
- } while (!WorkList.empty());
-}
-
-void SUnit::biasCriticalPath() {
- if (NumPreds < 2)
- return;
-
- SUnit::pred_iterator BestI = Preds.begin();
- unsigned MaxDepth = BestI->getSUnit()->getDepth();
- for (SUnit::pred_iterator I = std::next(BestI), E = Preds.end(); I != E;
- ++I) {
- if (I->getKind() == SDep::Data && I->getSUnit()->getDepth() > MaxDepth)
- BestI = I;
- }
- if (BestI != Preds.begin())
- std::swap(*Preds.begin(), *BestI);
-}
-
-#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
-LLVM_DUMP_METHOD void SUnit::dumpAttributes() const {
- dbgs() << " # preds left : " << NumPredsLeft << "\n";
- dbgs() << " # succs left : " << NumSuccsLeft << "\n";
- if (WeakPredsLeft)
- dbgs() << " # weak preds left : " << WeakPredsLeft << "\n";
- if (WeakSuccsLeft)
- dbgs() << " # weak succs left : " << WeakSuccsLeft << "\n";
- dbgs() << " # rdefs left : " << NumRegDefsLeft << "\n";
- dbgs() << " Latency : " << Latency << "\n";
- dbgs() << " Depth : " << getDepth() << "\n";
- dbgs() << " Height : " << getHeight() << "\n";
-}
-
-LLVM_DUMP_METHOD void ScheduleDAG::dumpNodeName(const SUnit &SU) const {
- if (&SU == &EntrySU)
- dbgs() << "EntrySU";
- else if (&SU == &ExitSU)
- dbgs() << "ExitSU";
- else
- dbgs() << "SU(" << SU.NodeNum << ")";
-}
-
-LLVM_DUMP_METHOD void ScheduleDAG::dumpNodeAll(const SUnit &SU) const {
- dumpNode(SU);
- SU.dumpAttributes();
- if (SU.Preds.size() > 0) {
- dbgs() << " Predecessors:\n";
- for (const SDep &Dep : SU.Preds) {
- dbgs() << " ";
- dumpNodeName(*Dep.getSUnit());
- dbgs() << ": ";
- Dep.dump(TRI);
- dbgs() << '\n';
- }
- }
- if (SU.Succs.size() > 0) {
- dbgs() << " Successors:\n";
- for (const SDep &Dep : SU.Succs) {
- dbgs() << " ";
- dumpNodeName(*Dep.getSUnit());
- dbgs() << ": ";
- Dep.dump(TRI);
- dbgs() << '\n';
- }
- }
-}
-#endif
-
-#ifndef NDEBUG
-unsigned ScheduleDAG::VerifyScheduledDAG(bool isBottomUp) {
- bool AnyNotSched = false;
- unsigned DeadNodes = 0;
- for (const SUnit &SUnit : SUnits) {
- if (!SUnit.isScheduled) {
- if (SUnit.NumPreds == 0 && SUnit.NumSuccs == 0) {
- ++DeadNodes;
- continue;
- }
- if (!AnyNotSched)
- dbgs() << "*** Scheduling failed! ***\n";
- dumpNode(SUnit);
- dbgs() << "has not been scheduled!\n";
- AnyNotSched = true;
- }
- if (SUnit.isScheduled &&
- (isBottomUp ? SUnit.getHeight() : SUnit.getDepth()) >
- unsigned(std::numeric_limits<int>::max())) {
- if (!AnyNotSched)
- dbgs() << "*** Scheduling failed! ***\n";
- dumpNode(SUnit);
- dbgs() << "has an unexpected "
- << (isBottomUp ? "Height" : "Depth") << " value!\n";
- AnyNotSched = true;
- }
- if (isBottomUp) {
- if (SUnit.NumSuccsLeft != 0) {
- if (!AnyNotSched)
- dbgs() << "*** Scheduling failed! ***\n";
- dumpNode(SUnit);
- dbgs() << "has successors left!\n";
- AnyNotSched = true;
- }
- } else {
- if (SUnit.NumPredsLeft != 0) {
- if (!AnyNotSched)
- dbgs() << "*** Scheduling failed! ***\n";
- dumpNode(SUnit);
- dbgs() << "has predecessors left!\n";
- AnyNotSched = true;
- }
- }
- }
- assert(!AnyNotSched);
- return SUnits.size() - DeadNodes;
-}
-#endif
-
-void ScheduleDAGTopologicalSort::InitDAGTopologicalSorting() {
- // The idea of the algorithm is taken from
- // "Online algorithms for managing the topological order of
- // a directed acyclic graph" by David J. Pearce and Paul H.J. Kelly
- // This is the MNR algorithm, which was first introduced by
- // A. Marchetti-Spaccamela, U. Nanni and H. Rohnert in
- // "Maintaining a topological order under edge insertions".
- //
- // Short description of the algorithm:
- //
- // Topological ordering, ord, of a DAG maps each node to a topological
- // index so that for all edges X->Y it is the case that ord(X) < ord(Y).
- //
- // This means that if there is a path from the node X to the node Z,
- // then ord(X) < ord(Z).
- //
- // This property can be used to check for reachability of nodes:
- // if Z is reachable from X, then an insertion of the edge Z->X would
- // create a cycle.
- //
- // The algorithm first computes a topological ordering for the DAG by
- // initializing the Index2Node and Node2Index arrays and then tries to keep
- // the ordering up-to-date after edge insertions by reordering the DAG.
- //
- // On insertion of the edge X->Y, the algorithm first marks by calling DFS
- // the nodes reachable from Y, and then shifts them using Shift to lie
- // immediately after X in Index2Node.
- unsigned DAGSize = SUnits.size();
- std::vector<SUnit*> WorkList;
- WorkList.reserve(DAGSize);
-
- Index2Node.resize(DAGSize);
- Node2Index.resize(DAGSize);
-
- // Initialize the data structures.
- if (ExitSU)
- WorkList.push_back(ExitSU);
- for (SUnit &SU : SUnits) {
- int NodeNum = SU.NodeNum;
- unsigned Degree = SU.Succs.size();
- // Temporarily use the Node2Index array as scratch space for degree counts.
- Node2Index[NodeNum] = Degree;
-
- // Is it a node without dependencies?
- if (Degree == 0) {
- assert(SU.Succs.empty() && "SUnit should have no successors");
- // Collect leaf nodes.
- WorkList.push_back(&SU);
- }
- }
-
- int Id = DAGSize;
- while (!WorkList.empty()) {
- SUnit *SU = WorkList.back();
- WorkList.pop_back();
- if (SU->NodeNum < DAGSize)
- Allocate(SU->NodeNum, --Id);
- for (const SDep &PredDep : SU->Preds) {
- SUnit *SU = PredDep.getSUnit();
- if (SU->NodeNum < DAGSize && !--Node2Index[SU->NodeNum])
- // If all dependencies of the node are processed already,
- // then the node can be computed now.
- WorkList.push_back(SU);
- }
- }
-
- Visited.resize(DAGSize);
-
-#ifndef NDEBUG
- // Check correctness of the ordering
- for (SUnit &SU : SUnits) {
- for (const SDep &PD : SU.Preds) {
- assert(Node2Index[SU.NodeNum] > Node2Index[PD.getSUnit()->NodeNum] &&
- "Wrong topological sorting");
- }
- }
-#endif
-}
-
-void ScheduleDAGTopologicalSort::AddPred(SUnit *Y, SUnit *X) {
- int UpperBound, LowerBound;
- LowerBound = Node2Index[Y->NodeNum];
- UpperBound = Node2Index[X->NodeNum];
- bool HasLoop = false;
- // Is Ord(X) < Ord(Y) ?
- if (LowerBound < UpperBound) {
- // Update the topological order.
- Visited.reset();
- DFS(Y, UpperBound, HasLoop);
- assert(!HasLoop && "Inserted edge creates a loop!");
- // Recompute topological indexes.
- Shift(Visited, LowerBound, UpperBound);
- }
-}
-
-void ScheduleDAGTopologicalSort::RemovePred(SUnit *M, SUnit *N) {
- // InitDAGTopologicalSorting();
-}
-
-void ScheduleDAGTopologicalSort::DFS(const SUnit *SU, int UpperBound,
- bool &HasLoop) {
- std::vector<const SUnit*> WorkList;
- WorkList.reserve(SUnits.size());
-
- WorkList.push_back(SU);
- do {
- SU = WorkList.back();
- WorkList.pop_back();
- Visited.set(SU->NodeNum);
- for (const SDep &SuccDep
- : make_range(SU->Succs.rbegin(), SU->Succs.rend())) {
- unsigned s = SuccDep.getSUnit()->NodeNum;
- // Edges to non-SUnits are allowed but ignored (e.g. ExitSU).
- if (s >= Node2Index.size())
- continue;
- if (Node2Index[s] == UpperBound) {
- HasLoop = true;
- return;
- }
- // Visit successors if not already and in affected region.
- if (!Visited.test(s) && Node2Index[s] < UpperBound) {
- WorkList.push_back(SuccDep.getSUnit());
- }
- }
- } while (!WorkList.empty());
-}
-
-std::vector<int> ScheduleDAGTopologicalSort::GetSubGraph(const SUnit &StartSU,
- const SUnit &TargetSU,
- bool &Success) {
- std::vector<const SUnit*> WorkList;
- int LowerBound = Node2Index[StartSU.NodeNum];
- int UpperBound = Node2Index[TargetSU.NodeNum];
- bool Found = false;
- BitVector VisitedBack;
- std::vector<int> Nodes;
-
- if (LowerBound > UpperBound) {
- Success = false;
- return Nodes;
- }
-
- WorkList.reserve(SUnits.size());
- Visited.reset();
-
- // Starting from StartSU, visit all successors up
- // to UpperBound.
- WorkList.push_back(&StartSU);
- do {
- const SUnit *SU = WorkList.back();
- WorkList.pop_back();
- for (int I = SU->Succs.size()-1; I >= 0; --I) {
- const SUnit *Succ = SU->Succs[I].getSUnit();
- unsigned s = Succ->NodeNum;
- // Edges to non-SUnits are allowed but ignored (e.g. ExitSU).
- if (Succ->isBoundaryNode())
- continue;
- if (Node2Index[s] == UpperBound) {
- Found = true;
- continue;
- }
- // Visit successors if not already and in affected region.
- if (!Visited.test(s) && Node2Index[s] < UpperBound) {
- Visited.set(s);
- WorkList.push_back(Succ);
- }
- }
- } while (!WorkList.empty());
-
- if (!Found) {
- Success = false;
- return Nodes;
- }
-
- WorkList.clear();
- VisitedBack.resize(SUnits.size());
- Found = false;
-
- // Starting from TargetSU, visit all predecessors up
- // to LowerBound. SUs that are visited by the two
- // passes are added to Nodes.
- WorkList.push_back(&TargetSU);
- do {
- const SUnit *SU = WorkList.back();
- WorkList.pop_back();
- for (int I = SU->Preds.size()-1; I >= 0; --I) {
- const SUnit *Pred = SU->Preds[I].getSUnit();
- unsigned s = Pred->NodeNum;
- // Edges to non-SUnits are allowed but ignored (e.g. EntrySU).
- if (Pred->isBoundaryNode())
- continue;
- if (Node2Index[s] == LowerBound) {
- Found = true;
- continue;
- }
- if (!VisitedBack.test(s) && Visited.test(s)) {
- VisitedBack.set(s);
- WorkList.push_back(Pred);
- Nodes.push_back(s);
- }
- }
- } while (!WorkList.empty());
-
- assert(Found && "Error in SUnit Graph!");
- Success = true;
- return Nodes;
-}
-
-void ScheduleDAGTopologicalSort::Shift(BitVector& Visited, int LowerBound,
- int UpperBound) {
- std::vector<int> L;
- int shift = 0;
- int i;
-
- for (i = LowerBound; i <= UpperBound; ++i) {
- // w is node at topological index i.
- int w = Index2Node[i];
- if (Visited.test(w)) {
- // Unmark.
- Visited.reset(w);
- L.push_back(w);
- shift = shift + 1;
- } else {
- Allocate(w, i - shift);
- }
- }
-
- for (unsigned LI : L) {
- Allocate(LI, i - shift);
- i = i + 1;
- }
-}
-
-bool ScheduleDAGTopologicalSort::WillCreateCycle(SUnit *TargetSU, SUnit *SU) {
- // Is SU reachable from TargetSU via successor edges?
- if (IsReachable(SU, TargetSU))
- return true;
- for (const SDep &PredDep : TargetSU->Preds)
- if (PredDep.isAssignedRegDep() &&
- IsReachable(SU, PredDep.getSUnit()))
- return true;
- return false;
-}
-
-bool ScheduleDAGTopologicalSort::IsReachable(const SUnit *SU,
- const SUnit *TargetSU) {
- // If insertion of the edge SU->TargetSU would create a cycle
- // then there is a path from TargetSU to SU.
- int UpperBound, LowerBound;
- LowerBound = Node2Index[TargetSU->NodeNum];
- UpperBound = Node2Index[SU->NodeNum];
- bool HasLoop = false;
- // Is Ord(TargetSU) < Ord(SU) ?
- if (LowerBound < UpperBound) {
- Visited.reset();
- // There may be a path from TargetSU to SU. Check for it.
- DFS(TargetSU, UpperBound, HasLoop);
- }
- return HasLoop;
-}
-
-void ScheduleDAGTopologicalSort::Allocate(int n, int index) {
- Node2Index[n] = index;
- Index2Node[index] = n;
-}
-
-ScheduleDAGTopologicalSort::
-ScheduleDAGTopologicalSort(std::vector<SUnit> &sunits, SUnit *exitsu)
- : SUnits(sunits), ExitSU(exitsu) {}
-
-ScheduleHazardRecognizer::~ScheduleHazardRecognizer() = default;