summaryrefslogtreecommitdiffstats
path: root/gnu/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp
diff options
context:
space:
mode:
authorpatrick <patrick@openbsd.org>2020-08-03 15:06:44 +0000
committerpatrick <patrick@openbsd.org>2020-08-03 15:06:44 +0000
commitb64793999546ed8adebaeebd9d8345d18db8927d (patch)
tree4357c27b561d73b0e089727c6ed659f2ceff5f47 /gnu/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp
parentAdd support for UTF-8 DISPLAY-HINTs with octet length. For now only (diff)
downloadwireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.tar.xz
wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.zip
Remove LLVM 8.0.1 files.
Diffstat (limited to 'gnu/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp')
-rw-r--r--gnu/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp5407
1 files changed, 0 insertions, 5407 deletions
diff --git a/gnu/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp b/gnu/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp
deleted file mode 100644
index a2f05c1e3ce..00000000000
--- a/gnu/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp
+++ /dev/null
@@ -1,5407 +0,0 @@
-//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This implements the TargetLowering class.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/CodeGen/TargetLowering.h"
-#include "llvm/ADT/BitVector.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/CodeGen/CallingConvLower.h"
-#include "llvm/CodeGen/MachineFrameInfo.h"
-#include "llvm/CodeGen/MachineFunction.h"
-#include "llvm/CodeGen/MachineJumpTableInfo.h"
-#include "llvm/CodeGen/MachineRegisterInfo.h"
-#include "llvm/CodeGen/SelectionDAG.h"
-#include "llvm/CodeGen/TargetRegisterInfo.h"
-#include "llvm/CodeGen/TargetSubtargetInfo.h"
-#include "llvm/IR/DataLayout.h"
-#include "llvm/IR/DerivedTypes.h"
-#include "llvm/IR/GlobalVariable.h"
-#include "llvm/IR/LLVMContext.h"
-#include "llvm/MC/MCAsmInfo.h"
-#include "llvm/MC/MCExpr.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/KnownBits.h"
-#include "llvm/Support/MathExtras.h"
-#include "llvm/Target/TargetLoweringObjectFile.h"
-#include "llvm/Target/TargetMachine.h"
-#include <cctype>
-using namespace llvm;
-
-/// NOTE: The TargetMachine owns TLOF.
-TargetLowering::TargetLowering(const TargetMachine &tm)
- : TargetLoweringBase(tm) {}
-
-const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
- return nullptr;
-}
-
-bool TargetLowering::isPositionIndependent() const {
- return getTargetMachine().isPositionIndependent();
-}
-
-/// Check whether a given call node is in tail position within its function. If
-/// so, it sets Chain to the input chain of the tail call.
-bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
- SDValue &Chain) const {
- const Function &F = DAG.getMachineFunction().getFunction();
-
- // Conservatively require the attributes of the call to match those of
- // the return. Ignore NoAlias and NonNull because they don't affect the
- // call sequence.
- AttributeList CallerAttrs = F.getAttributes();
- if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
- .removeAttribute(Attribute::NoAlias)
- .removeAttribute(Attribute::NonNull)
- .hasAttributes())
- return false;
-
- // It's not safe to eliminate the sign / zero extension of the return value.
- if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
- CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
- return false;
-
- // Check if the only use is a function return node.
- return isUsedByReturnOnly(Node, Chain);
-}
-
-bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
- const uint32_t *CallerPreservedMask,
- const SmallVectorImpl<CCValAssign> &ArgLocs,
- const SmallVectorImpl<SDValue> &OutVals) const {
- for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
- const CCValAssign &ArgLoc = ArgLocs[I];
- if (!ArgLoc.isRegLoc())
- continue;
- unsigned Reg = ArgLoc.getLocReg();
- // Only look at callee saved registers.
- if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
- continue;
- // Check that we pass the value used for the caller.
- // (We look for a CopyFromReg reading a virtual register that is used
- // for the function live-in value of register Reg)
- SDValue Value = OutVals[I];
- if (Value->getOpcode() != ISD::CopyFromReg)
- return false;
- unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
- if (MRI.getLiveInPhysReg(ArgReg) != Reg)
- return false;
- }
- return true;
-}
-
-/// Set CallLoweringInfo attribute flags based on a call instruction
-/// and called function attributes.
-void TargetLoweringBase::ArgListEntry::setAttributes(ImmutableCallSite *CS,
- unsigned ArgIdx) {
- IsSExt = CS->paramHasAttr(ArgIdx, Attribute::SExt);
- IsZExt = CS->paramHasAttr(ArgIdx, Attribute::ZExt);
- IsInReg = CS->paramHasAttr(ArgIdx, Attribute::InReg);
- IsSRet = CS->paramHasAttr(ArgIdx, Attribute::StructRet);
- IsNest = CS->paramHasAttr(ArgIdx, Attribute::Nest);
- IsByVal = CS->paramHasAttr(ArgIdx, Attribute::ByVal);
- IsInAlloca = CS->paramHasAttr(ArgIdx, Attribute::InAlloca);
- IsReturned = CS->paramHasAttr(ArgIdx, Attribute::Returned);
- IsSwiftSelf = CS->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
- IsSwiftError = CS->paramHasAttr(ArgIdx, Attribute::SwiftError);
- Alignment = CS->getParamAlignment(ArgIdx);
-}
-
-/// Generate a libcall taking the given operands as arguments and returning a
-/// result of type RetVT.
-std::pair<SDValue, SDValue>
-TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
- ArrayRef<SDValue> Ops, bool isSigned,
- const SDLoc &dl, bool doesNotReturn,
- bool isReturnValueUsed) const {
- TargetLowering::ArgListTy Args;
- Args.reserve(Ops.size());
-
- TargetLowering::ArgListEntry Entry;
- for (SDValue Op : Ops) {
- Entry.Node = Op;
- Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
- Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned);
- Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned);
- Args.push_back(Entry);
- }
-
- if (LC == RTLIB::UNKNOWN_LIBCALL)
- report_fatal_error("Unsupported library call operation!");
- SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
- getPointerTy(DAG.getDataLayout()));
-
- Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
- TargetLowering::CallLoweringInfo CLI(DAG);
- bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned);
- CLI.setDebugLoc(dl)
- .setChain(DAG.getEntryNode())
- .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
- .setNoReturn(doesNotReturn)
- .setDiscardResult(!isReturnValueUsed)
- .setSExtResult(signExtend)
- .setZExtResult(!signExtend);
- return LowerCallTo(CLI);
-}
-
-/// Soften the operands of a comparison. This code is shared among BR_CC,
-/// SELECT_CC, and SETCC handlers.
-void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
- SDValue &NewLHS, SDValue &NewRHS,
- ISD::CondCode &CCCode,
- const SDLoc &dl) const {
- assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
- && "Unsupported setcc type!");
-
- // Expand into one or more soft-fp libcall(s).
- RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
- bool ShouldInvertCC = false;
- switch (CCCode) {
- case ISD::SETEQ:
- case ISD::SETOEQ:
- LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
- (VT == MVT::f64) ? RTLIB::OEQ_F64 :
- (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
- break;
- case ISD::SETNE:
- case ISD::SETUNE:
- LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
- (VT == MVT::f64) ? RTLIB::UNE_F64 :
- (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
- break;
- case ISD::SETGE:
- case ISD::SETOGE:
- LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
- (VT == MVT::f64) ? RTLIB::OGE_F64 :
- (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
- break;
- case ISD::SETLT:
- case ISD::SETOLT:
- LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
- (VT == MVT::f64) ? RTLIB::OLT_F64 :
- (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
- break;
- case ISD::SETLE:
- case ISD::SETOLE:
- LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
- (VT == MVT::f64) ? RTLIB::OLE_F64 :
- (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
- break;
- case ISD::SETGT:
- case ISD::SETOGT:
- LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
- (VT == MVT::f64) ? RTLIB::OGT_F64 :
- (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
- break;
- case ISD::SETUO:
- LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
- (VT == MVT::f64) ? RTLIB::UO_F64 :
- (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
- break;
- case ISD::SETO:
- LC1 = (VT == MVT::f32) ? RTLIB::O_F32 :
- (VT == MVT::f64) ? RTLIB::O_F64 :
- (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128;
- break;
- case ISD::SETONE:
- // SETONE = SETOLT | SETOGT
- LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
- (VT == MVT::f64) ? RTLIB::OLT_F64 :
- (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
- LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
- (VT == MVT::f64) ? RTLIB::OGT_F64 :
- (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
- break;
- case ISD::SETUEQ:
- LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
- (VT == MVT::f64) ? RTLIB::UO_F64 :
- (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
- LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
- (VT == MVT::f64) ? RTLIB::OEQ_F64 :
- (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
- break;
- default:
- // Invert CC for unordered comparisons
- ShouldInvertCC = true;
- switch (CCCode) {
- case ISD::SETULT:
- LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
- (VT == MVT::f64) ? RTLIB::OGE_F64 :
- (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
- break;
- case ISD::SETULE:
- LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
- (VT == MVT::f64) ? RTLIB::OGT_F64 :
- (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
- break;
- case ISD::SETUGT:
- LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
- (VT == MVT::f64) ? RTLIB::OLE_F64 :
- (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
- break;
- case ISD::SETUGE:
- LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
- (VT == MVT::f64) ? RTLIB::OLT_F64 :
- (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
- break;
- default: llvm_unreachable("Do not know how to soften this setcc!");
- }
- }
-
- // Use the target specific return value for comparions lib calls.
- EVT RetVT = getCmpLibcallReturnType();
- SDValue Ops[2] = {NewLHS, NewRHS};
- NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, false /*sign irrelevant*/,
- dl).first;
- NewRHS = DAG.getConstant(0, dl, RetVT);
-
- CCCode = getCmpLibcallCC(LC1);
- if (ShouldInvertCC)
- CCCode = getSetCCInverse(CCCode, /*isInteger=*/true);
-
- if (LC2 != RTLIB::UNKNOWN_LIBCALL) {
- SDValue Tmp = DAG.getNode(
- ISD::SETCC, dl,
- getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
- NewLHS, NewRHS, DAG.getCondCode(CCCode));
- NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, false/*sign irrelevant*/,
- dl).first;
- NewLHS = DAG.getNode(
- ISD::SETCC, dl,
- getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
- NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2)));
- NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS);
- NewRHS = SDValue();
- }
-}
-
-/// Return the entry encoding for a jump table in the current function. The
-/// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
-unsigned TargetLowering::getJumpTableEncoding() const {
- // In non-pic modes, just use the address of a block.
- if (!isPositionIndependent())
- return MachineJumpTableInfo::EK_BlockAddress;
-
- // In PIC mode, if the target supports a GPRel32 directive, use it.
- if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
- return MachineJumpTableInfo::EK_GPRel32BlockAddress;
-
- // Otherwise, use a label difference.
- return MachineJumpTableInfo::EK_LabelDifference32;
-}
-
-SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
- SelectionDAG &DAG) const {
- // If our PIC model is GP relative, use the global offset table as the base.
- unsigned JTEncoding = getJumpTableEncoding();
-
- if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
- (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
- return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
-
- return Table;
-}
-
-/// This returns the relocation base for the given PIC jumptable, the same as
-/// getPICJumpTableRelocBase, but as an MCExpr.
-const MCExpr *
-TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
- unsigned JTI,MCContext &Ctx) const{
- // The normal PIC reloc base is the label at the start of the jump table.
- return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
-}
-
-bool
-TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
- const TargetMachine &TM = getTargetMachine();
- const GlobalValue *GV = GA->getGlobal();
-
- // If the address is not even local to this DSO we will have to load it from
- // a got and then add the offset.
- if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
- return false;
-
- // If the code is position independent we will have to add a base register.
- if (isPositionIndependent())
- return false;
-
- // Otherwise we can do it.
- return true;
-}
-
-//===----------------------------------------------------------------------===//
-// Optimization Methods
-//===----------------------------------------------------------------------===//
-
-/// If the specified instruction has a constant integer operand and there are
-/// bits set in that constant that are not demanded, then clear those bits and
-/// return true.
-bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded,
- TargetLoweringOpt &TLO) const {
- SelectionDAG &DAG = TLO.DAG;
- SDLoc DL(Op);
- unsigned Opcode = Op.getOpcode();
-
- // Do target-specific constant optimization.
- if (targetShrinkDemandedConstant(Op, Demanded, TLO))
- return TLO.New.getNode();
-
- // FIXME: ISD::SELECT, ISD::SELECT_CC
- switch (Opcode) {
- default:
- break;
- case ISD::XOR:
- case ISD::AND:
- case ISD::OR: {
- auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
- if (!Op1C)
- return false;
-
- // If this is a 'not' op, don't touch it because that's a canonical form.
- const APInt &C = Op1C->getAPIntValue();
- if (Opcode == ISD::XOR && Demanded.isSubsetOf(C))
- return false;
-
- if (!C.isSubsetOf(Demanded)) {
- EVT VT = Op.getValueType();
- SDValue NewC = DAG.getConstant(Demanded & C, DL, VT);
- SDValue NewOp = DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
- return TLO.CombineTo(Op, NewOp);
- }
-
- break;
- }
- }
-
- return false;
-}
-
-/// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
-/// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
-/// generalized for targets with other types of implicit widening casts.
-bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
- const APInt &Demanded,
- TargetLoweringOpt &TLO) const {
- assert(Op.getNumOperands() == 2 &&
- "ShrinkDemandedOp only supports binary operators!");
- assert(Op.getNode()->getNumValues() == 1 &&
- "ShrinkDemandedOp only supports nodes with one result!");
-
- SelectionDAG &DAG = TLO.DAG;
- SDLoc dl(Op);
-
- // Early return, as this function cannot handle vector types.
- if (Op.getValueType().isVector())
- return false;
-
- // Don't do this if the node has another user, which may require the
- // full value.
- if (!Op.getNode()->hasOneUse())
- return false;
-
- // Search for the smallest integer type with free casts to and from
- // Op's type. For expedience, just check power-of-2 integer types.
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- unsigned DemandedSize = Demanded.getActiveBits();
- unsigned SmallVTBits = DemandedSize;
- if (!isPowerOf2_32(SmallVTBits))
- SmallVTBits = NextPowerOf2(SmallVTBits);
- for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
- EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
- if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
- TLI.isZExtFree(SmallVT, Op.getValueType())) {
- // We found a type with free casts.
- SDValue X = DAG.getNode(
- Op.getOpcode(), dl, SmallVT,
- DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
- DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
- assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
- SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
- return TLO.CombineTo(Op, Z);
- }
- }
- return false;
-}
-
-bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
- DAGCombinerInfo &DCI) const {
- SelectionDAG &DAG = DCI.DAG;
- TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
- !DCI.isBeforeLegalizeOps());
- KnownBits Known;
-
- bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
- if (Simplified) {
- DCI.AddToWorklist(Op.getNode());
- DCI.CommitTargetLoweringOpt(TLO);
- }
- return Simplified;
-}
-
-bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
- KnownBits &Known,
- TargetLoweringOpt &TLO,
- unsigned Depth,
- bool AssumeSingleUse) const {
- EVT VT = Op.getValueType();
- APInt DemandedElts = VT.isVector()
- ? APInt::getAllOnesValue(VT.getVectorNumElements())
- : APInt(1, 1);
- return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
- AssumeSingleUse);
-}
-
-/// Look at Op. At this point, we know that only the OriginalDemandedBits of the
-/// result of Op are ever used downstream. If we can use this information to
-/// simplify Op, create a new simplified DAG node and return true, returning the
-/// original and new nodes in Old and New. Otherwise, analyze the expression and
-/// return a mask of Known bits for the expression (used to simplify the
-/// caller). The Known bits may only be accurate for those bits in the
-/// OriginalDemandedBits and OriginalDemandedElts.
-bool TargetLowering::SimplifyDemandedBits(
- SDValue Op, const APInt &OriginalDemandedBits,
- const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
- unsigned Depth, bool AssumeSingleUse) const {
- unsigned BitWidth = OriginalDemandedBits.getBitWidth();
- assert(Op.getScalarValueSizeInBits() == BitWidth &&
- "Mask size mismatches value type size!");
-
- unsigned NumElts = OriginalDemandedElts.getBitWidth();
- assert((!Op.getValueType().isVector() ||
- NumElts == Op.getValueType().getVectorNumElements()) &&
- "Unexpected vector size");
-
- APInt DemandedBits = OriginalDemandedBits;
- APInt DemandedElts = OriginalDemandedElts;
- SDLoc dl(Op);
- auto &DL = TLO.DAG.getDataLayout();
-
- // Don't know anything.
- Known = KnownBits(BitWidth);
-
- if (Op.getOpcode() == ISD::Constant) {
- // We know all of the bits for a constant!
- Known.One = cast<ConstantSDNode>(Op)->getAPIntValue();
- Known.Zero = ~Known.One;
- return false;
- }
-
- // Other users may use these bits.
- EVT VT = Op.getValueType();
- if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
- if (Depth != 0) {
- // If not at the root, Just compute the Known bits to
- // simplify things downstream.
- Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
- return false;
- }
- // If this is the root being simplified, allow it to have multiple uses,
- // just set the DemandedBits/Elts to all bits.
- DemandedBits = APInt::getAllOnesValue(BitWidth);
- DemandedElts = APInt::getAllOnesValue(NumElts);
- } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
- // Not demanding any bits/elts from Op.
- if (!Op.isUndef())
- return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
- return false;
- } else if (Depth == 6) { // Limit search depth.
- return false;
- }
-
- KnownBits Known2, KnownOut;
- switch (Op.getOpcode()) {
- case ISD::BUILD_VECTOR:
- // Collect the known bits that are shared by every constant vector element.
- Known.Zero.setAllBits(); Known.One.setAllBits();
- for (SDValue SrcOp : Op->ops()) {
- if (!isa<ConstantSDNode>(SrcOp)) {
- // We can only handle all constant values - bail out with no known bits.
- Known = KnownBits(BitWidth);
- return false;
- }
- Known2.One = cast<ConstantSDNode>(SrcOp)->getAPIntValue();
- Known2.Zero = ~Known2.One;
-
- // BUILD_VECTOR can implicitly truncate sources, we must handle this.
- if (Known2.One.getBitWidth() != BitWidth) {
- assert(Known2.getBitWidth() > BitWidth &&
- "Expected BUILD_VECTOR implicit truncation");
- Known2 = Known2.trunc(BitWidth);
- }
-
- // Known bits are the values that are shared by every element.
- // TODO: support per-element known bits.
- Known.One &= Known2.One;
- Known.Zero &= Known2.Zero;
- }
- return false; // Don't fall through, will infinitely loop.
- case ISD::CONCAT_VECTORS: {
- Known.Zero.setAllBits();
- Known.One.setAllBits();
- EVT SubVT = Op.getOperand(0).getValueType();
- unsigned NumSubVecs = Op.getNumOperands();
- unsigned NumSubElts = SubVT.getVectorNumElements();
- for (unsigned i = 0; i != NumSubVecs; ++i) {
- APInt DemandedSubElts =
- DemandedElts.extractBits(NumSubElts, i * NumSubElts);
- if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
- Known2, TLO, Depth + 1))
- return true;
- // Known bits are shared by every demanded subvector element.
- if (!!DemandedSubElts) {
- Known.One &= Known2.One;
- Known.Zero &= Known2.Zero;
- }
- }
- break;
- }
- case ISD::VECTOR_SHUFFLE: {
- ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
-
- // Collect demanded elements from shuffle operands..
- APInt DemandedLHS(NumElts, 0);
- APInt DemandedRHS(NumElts, 0);
- for (unsigned i = 0; i != NumElts; ++i) {
- if (!DemandedElts[i])
- continue;
- int M = ShuffleMask[i];
- if (M < 0) {
- // For UNDEF elements, we don't know anything about the common state of
- // the shuffle result.
- DemandedLHS.clearAllBits();
- DemandedRHS.clearAllBits();
- break;
- }
- assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
- if (M < (int)NumElts)
- DemandedLHS.setBit(M);
- else
- DemandedRHS.setBit(M - NumElts);
- }
-
- if (!!DemandedLHS || !!DemandedRHS) {
- Known.Zero.setAllBits();
- Known.One.setAllBits();
- if (!!DemandedLHS) {
- if (SimplifyDemandedBits(Op.getOperand(0), DemandedBits, DemandedLHS,
- Known2, TLO, Depth + 1))
- return true;
- Known.One &= Known2.One;
- Known.Zero &= Known2.Zero;
- }
- if (!!DemandedRHS) {
- if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedRHS,
- Known2, TLO, Depth + 1))
- return true;
- Known.One &= Known2.One;
- Known.Zero &= Known2.Zero;
- }
- }
- break;
- }
- case ISD::AND: {
- SDValue Op0 = Op.getOperand(0);
- SDValue Op1 = Op.getOperand(1);
-
- // If the RHS is a constant, check to see if the LHS would be zero without
- // using the bits from the RHS. Below, we use knowledge about the RHS to
- // simplify the LHS, here we're using information from the LHS to simplify
- // the RHS.
- if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
- // Do not increment Depth here; that can cause an infinite loop.
- KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
- // If the LHS already has zeros where RHSC does, this 'and' is dead.
- if ((LHSKnown.Zero & DemandedBits) ==
- (~RHSC->getAPIntValue() & DemandedBits))
- return TLO.CombineTo(Op, Op0);
-
- // If any of the set bits in the RHS are known zero on the LHS, shrink
- // the constant.
- if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO))
- return true;
-
- // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
- // constant, but if this 'and' is only clearing bits that were just set by
- // the xor, then this 'and' can be eliminated by shrinking the mask of
- // the xor. For example, for a 32-bit X:
- // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
- if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
- LHSKnown.One == ~RHSC->getAPIntValue()) {
- SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
- return TLO.CombineTo(Op, Xor);
- }
- }
-
- if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, Depth + 1))
- return true;
- assert(!Known.hasConflict() && "Bits known to be one AND zero?");
- if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, Known2, TLO,
- Depth + 1))
- return true;
- assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
-
- // If all of the demanded bits are known one on one side, return the other.
- // These bits cannot contribute to the result of the 'and'.
- if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
- return TLO.CombineTo(Op, Op0);
- if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
- return TLO.CombineTo(Op, Op1);
- // If all of the demanded bits in the inputs are known zeros, return zero.
- if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
- return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
- // If the RHS is a constant, see if we can simplify it.
- if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO))
- return true;
- // If the operation can be done in a smaller type, do so.
- if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
- return true;
-
- // Output known-1 bits are only known if set in both the LHS & RHS.
- Known.One &= Known2.One;
- // Output known-0 are known to be clear if zero in either the LHS | RHS.
- Known.Zero |= Known2.Zero;
- break;
- }
- case ISD::OR: {
- SDValue Op0 = Op.getOperand(0);
- SDValue Op1 = Op.getOperand(1);
-
- if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, Depth + 1))
- return true;
- assert(!Known.hasConflict() && "Bits known to be one AND zero?");
- if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, Known2, TLO,
- Depth + 1))
- return true;
- assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
-
- // If all of the demanded bits are known zero on one side, return the other.
- // These bits cannot contribute to the result of the 'or'.
- if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
- return TLO.CombineTo(Op, Op0);
- if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
- return TLO.CombineTo(Op, Op1);
- // If the RHS is a constant, see if we can simplify it.
- if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
- return true;
- // If the operation can be done in a smaller type, do so.
- if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
- return true;
-
- // Output known-0 bits are only known if clear in both the LHS & RHS.
- Known.Zero &= Known2.Zero;
- // Output known-1 are known to be set if set in either the LHS | RHS.
- Known.One |= Known2.One;
- break;
- }
- case ISD::XOR: {
- SDValue Op0 = Op.getOperand(0);
- SDValue Op1 = Op.getOperand(1);
-
- if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, Depth + 1))
- return true;
- assert(!Known.hasConflict() && "Bits known to be one AND zero?");
- if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, Depth + 1))
- return true;
- assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
-
- // If all of the demanded bits are known zero on one side, return the other.
- // These bits cannot contribute to the result of the 'xor'.
- if (DemandedBits.isSubsetOf(Known.Zero))
- return TLO.CombineTo(Op, Op0);
- if (DemandedBits.isSubsetOf(Known2.Zero))
- return TLO.CombineTo(Op, Op1);
- // If the operation can be done in a smaller type, do so.
- if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
- return true;
-
- // If all of the unknown bits are known to be zero on one side or the other
- // (but not both) turn this into an *inclusive* or.
- // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
- if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
- return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
-
- // Output known-0 bits are known if clear or set in both the LHS & RHS.
- KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
- // Output known-1 are known to be set if set in only one of the LHS, RHS.
- KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
-
- if (ConstantSDNode *C = isConstOrConstSplat(Op1)) {
- // If one side is a constant, and all of the known set bits on the other
- // side are also set in the constant, turn this into an AND, as we know
- // the bits will be cleared.
- // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
- // NB: it is okay if more bits are known than are requested
- if (C->getAPIntValue() == Known2.One) {
- SDValue ANDC =
- TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
- return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
- }
-
- // If the RHS is a constant, see if we can change it. Don't alter a -1
- // constant because that's a 'not' op, and that is better for combining
- // and codegen.
- if (!C->isAllOnesValue()) {
- if (DemandedBits.isSubsetOf(C->getAPIntValue())) {
- // We're flipping all demanded bits. Flip the undemanded bits too.
- SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
- return TLO.CombineTo(Op, New);
- }
- // If we can't turn this into a 'not', try to shrink the constant.
- if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
- return true;
- }
- }
-
- Known = std::move(KnownOut);
- break;
- }
- case ISD::SELECT:
- if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
- Depth + 1))
- return true;
- if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
- Depth + 1))
- return true;
- assert(!Known.hasConflict() && "Bits known to be one AND zero?");
- assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
-
- // If the operands are constants, see if we can simplify them.
- if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
- return true;
-
- // Only known if known in both the LHS and RHS.
- Known.One &= Known2.One;
- Known.Zero &= Known2.Zero;
- break;
- case ISD::SELECT_CC:
- if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
- Depth + 1))
- return true;
- if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
- Depth + 1))
- return true;
- assert(!Known.hasConflict() && "Bits known to be one AND zero?");
- assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
-
- // If the operands are constants, see if we can simplify them.
- if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
- return true;
-
- // Only known if known in both the LHS and RHS.
- Known.One &= Known2.One;
- Known.Zero &= Known2.Zero;
- break;
- case ISD::SETCC: {
- SDValue Op0 = Op.getOperand(0);
- SDValue Op1 = Op.getOperand(1);
- ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
- // If (1) we only need the sign-bit, (2) the setcc operands are the same
- // width as the setcc result, and (3) the result of a setcc conforms to 0 or
- // -1, we may be able to bypass the setcc.
- if (DemandedBits.isSignMask() &&
- Op0.getScalarValueSizeInBits() == BitWidth &&
- getBooleanContents(VT) ==
- BooleanContent::ZeroOrNegativeOneBooleanContent) {
- // If we're testing X < 0, then this compare isn't needed - just use X!
- // FIXME: We're limiting to integer types here, but this should also work
- // if we don't care about FP signed-zero. The use of SETLT with FP means
- // that we don't care about NaNs.
- if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
- (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
- return TLO.CombineTo(Op, Op0);
-
- // TODO: Should we check for other forms of sign-bit comparisons?
- // Examples: X <= -1, X >= 0
- }
- if (getBooleanContents(Op0.getValueType()) ==
- TargetLowering::ZeroOrOneBooleanContent &&
- BitWidth > 1)
- Known.Zero.setBitsFrom(1);
- break;
- }
- case ISD::SHL: {
- SDValue Op0 = Op.getOperand(0);
- SDValue Op1 = Op.getOperand(1);
-
- if (ConstantSDNode *SA = isConstOrConstSplat(Op1)) {
- // If the shift count is an invalid immediate, don't do anything.
- if (SA->getAPIntValue().uge(BitWidth))
- break;
-
- unsigned ShAmt = SA->getZExtValue();
-
- // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
- // single shift. We can do this if the bottom bits (which are shifted
- // out) are never demanded.
- if (Op0.getOpcode() == ISD::SRL) {
- if (ShAmt &&
- (DemandedBits & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
- if (ConstantSDNode *SA2 = isConstOrConstSplat(Op0.getOperand(1))) {
- if (SA2->getAPIntValue().ult(BitWidth)) {
- unsigned C1 = SA2->getZExtValue();
- unsigned Opc = ISD::SHL;
- int Diff = ShAmt - C1;
- if (Diff < 0) {
- Diff = -Diff;
- Opc = ISD::SRL;
- }
-
- SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType());
- return TLO.CombineTo(
- Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
- }
- }
- }
- }
-
- if (SimplifyDemandedBits(Op0, DemandedBits.lshr(ShAmt), DemandedElts, Known, TLO,
- Depth + 1))
- return true;
-
- // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
- // are not demanded. This will likely allow the anyext to be folded away.
- if (Op0.getOpcode() == ISD::ANY_EXTEND) {
- SDValue InnerOp = Op0.getOperand(0);
- EVT InnerVT = InnerOp.getValueType();
- unsigned InnerBits = InnerVT.getScalarSizeInBits();
- if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
- isTypeDesirableForOp(ISD::SHL, InnerVT)) {
- EVT ShTy = getShiftAmountTy(InnerVT, DL);
- if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
- ShTy = InnerVT;
- SDValue NarrowShl =
- TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
- TLO.DAG.getConstant(ShAmt, dl, ShTy));
- return TLO.CombineTo(
- Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
- }
- // Repeat the SHL optimization above in cases where an extension
- // intervenes: (shl (anyext (shr x, c1)), c2) to
- // (shl (anyext x), c2-c1). This requires that the bottom c1 bits
- // aren't demanded (as above) and that the shifted upper c1 bits of
- // x aren't demanded.
- if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
- InnerOp.hasOneUse()) {
- if (ConstantSDNode *SA2 =
- isConstOrConstSplat(InnerOp.getOperand(1))) {
- unsigned InnerShAmt = SA2->getLimitedValue(InnerBits);
- if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
- DemandedBits.getActiveBits() <=
- (InnerBits - InnerShAmt + ShAmt) &&
- DemandedBits.countTrailingZeros() >= ShAmt) {
- SDValue NewSA = TLO.DAG.getConstant(ShAmt - InnerShAmt, dl,
- Op1.getValueType());
- SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
- InnerOp.getOperand(0));
- return TLO.CombineTo(
- Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
- }
- }
- }
- }
-
- Known.Zero <<= ShAmt;
- Known.One <<= ShAmt;
- // low bits known zero.
- Known.Zero.setLowBits(ShAmt);
- }
- break;
- }
- case ISD::SRL: {
- SDValue Op0 = Op.getOperand(0);
- SDValue Op1 = Op.getOperand(1);
-
- if (ConstantSDNode *SA = isConstOrConstSplat(Op1)) {
- // If the shift count is an invalid immediate, don't do anything.
- if (SA->getAPIntValue().uge(BitWidth))
- break;
-
- unsigned ShAmt = SA->getZExtValue();
- APInt InDemandedMask = (DemandedBits << ShAmt);
-
- // If the shift is exact, then it does demand the low bits (and knows that
- // they are zero).
- if (Op->getFlags().hasExact())
- InDemandedMask.setLowBits(ShAmt);
-
- // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
- // single shift. We can do this if the top bits (which are shifted out)
- // are never demanded.
- if (Op0.getOpcode() == ISD::SHL) {
- if (ConstantSDNode *SA2 = isConstOrConstSplat(Op0.getOperand(1))) {
- if (ShAmt &&
- (DemandedBits & APInt::getHighBitsSet(BitWidth, ShAmt)) == 0) {
- if (SA2->getAPIntValue().ult(BitWidth)) {
- unsigned C1 = SA2->getZExtValue();
- unsigned Opc = ISD::SRL;
- int Diff = ShAmt - C1;
- if (Diff < 0) {
- Diff = -Diff;
- Opc = ISD::SHL;
- }
-
- SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType());
- return TLO.CombineTo(
- Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
- }
- }
- }
- }
-
- // Compute the new bits that are at the top now.
- if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, Depth + 1))
- return true;
- assert(!Known.hasConflict() && "Bits known to be one AND zero?");
- Known.Zero.lshrInPlace(ShAmt);
- Known.One.lshrInPlace(ShAmt);
-
- Known.Zero.setHighBits(ShAmt); // High bits known zero.
- }
- break;
- }
- case ISD::SRA: {
- SDValue Op0 = Op.getOperand(0);
- SDValue Op1 = Op.getOperand(1);
-
- // If this is an arithmetic shift right and only the low-bit is set, we can
- // always convert this into a logical shr, even if the shift amount is
- // variable. The low bit of the shift cannot be an input sign bit unless
- // the shift amount is >= the size of the datatype, which is undefined.
- if (DemandedBits.isOneValue())
- return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
-
- if (ConstantSDNode *SA = isConstOrConstSplat(Op1)) {
- // If the shift count is an invalid immediate, don't do anything.
- if (SA->getAPIntValue().uge(BitWidth))
- break;
-
- unsigned ShAmt = SA->getZExtValue();
- APInt InDemandedMask = (DemandedBits << ShAmt);
-
- // If the shift is exact, then it does demand the low bits (and knows that
- // they are zero).
- if (Op->getFlags().hasExact())
- InDemandedMask.setLowBits(ShAmt);
-
- // If any of the demanded bits are produced by the sign extension, we also
- // demand the input sign bit.
- if (DemandedBits.countLeadingZeros() < ShAmt)
- InDemandedMask.setSignBit();
-
- if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, Depth + 1))
- return true;
- assert(!Known.hasConflict() && "Bits known to be one AND zero?");
- Known.Zero.lshrInPlace(ShAmt);
- Known.One.lshrInPlace(ShAmt);
-
- // If the input sign bit is known to be zero, or if none of the top bits
- // are demanded, turn this into an unsigned shift right.
- if (Known.Zero[BitWidth - ShAmt - 1] ||
- DemandedBits.countLeadingZeros() >= ShAmt) {
- SDNodeFlags Flags;
- Flags.setExact(Op->getFlags().hasExact());
- return TLO.CombineTo(
- Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
- }
-
- int Log2 = DemandedBits.exactLogBase2();
- if (Log2 >= 0) {
- // The bit must come from the sign.
- SDValue NewSA =
- TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, Op1.getValueType());
- return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
- }
-
- if (Known.One[BitWidth - ShAmt - 1])
- // New bits are known one.
- Known.One.setHighBits(ShAmt);
- }
- break;
- }
- case ISD::SIGN_EXTEND_INREG: {
- SDValue Op0 = Op.getOperand(0);
- EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
- unsigned ExVTBits = ExVT.getScalarSizeInBits();
-
- // If we only care about the highest bit, don't bother shifting right.
- if (DemandedBits.isSignMask()) {
- bool AlreadySignExtended =
- TLO.DAG.ComputeNumSignBits(Op0) >= BitWidth - ExVTBits + 1;
- // However if the input is already sign extended we expect the sign
- // extension to be dropped altogether later and do not simplify.
- if (!AlreadySignExtended) {
- // Compute the correct shift amount type, which must be getShiftAmountTy
- // for scalar types after legalization.
- EVT ShiftAmtTy = VT;
- if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
- ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
-
- SDValue ShiftAmt =
- TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy);
- return TLO.CombineTo(Op,
- TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
- }
- }
-
- // If none of the extended bits are demanded, eliminate the sextinreg.
- if (DemandedBits.getActiveBits() <= ExVTBits)
- return TLO.CombineTo(Op, Op0);
-
- APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
-
- // Since the sign extended bits are demanded, we know that the sign
- // bit is demanded.
- InputDemandedBits.setBit(ExVTBits - 1);
-
- if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
- return true;
- assert(!Known.hasConflict() && "Bits known to be one AND zero?");
-
- // If the sign bit of the input is known set or clear, then we know the
- // top bits of the result.
-
- // If the input sign bit is known zero, convert this into a zero extension.
- if (Known.Zero[ExVTBits - 1])
- return TLO.CombineTo(
- Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT.getScalarType()));
-
- APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
- if (Known.One[ExVTBits - 1]) { // Input sign bit known set
- Known.One.setBitsFrom(ExVTBits);
- Known.Zero &= Mask;
- } else { // Input sign bit unknown
- Known.Zero &= Mask;
- Known.One &= Mask;
- }
- break;
- }
- case ISD::BUILD_PAIR: {
- EVT HalfVT = Op.getOperand(0).getValueType();
- unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
-
- APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
- APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
-
- KnownBits KnownLo, KnownHi;
-
- if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
- return true;
-
- if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
- return true;
-
- Known.Zero = KnownLo.Zero.zext(BitWidth) |
- KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
-
- Known.One = KnownLo.One.zext(BitWidth) |
- KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
- break;
- }
- case ISD::ZERO_EXTEND: {
- SDValue Src = Op.getOperand(0);
- unsigned InBits = Src.getScalarValueSizeInBits();
-
- // If none of the top bits are demanded, convert this into an any_extend.
- if (DemandedBits.getActiveBits() <= InBits)
- return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, Src));
-
- APInt InDemandedBits = DemandedBits.trunc(InBits);
- if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth+1))
- return true;
- assert(!Known.hasConflict() && "Bits known to be one AND zero?");
- Known = Known.zext(BitWidth);
- Known.Zero.setBitsFrom(InBits);
- break;
- }
- case ISD::SIGN_EXTEND: {
- SDValue Src = Op.getOperand(0);
- unsigned InBits = Src.getScalarValueSizeInBits();
-
- // If none of the top bits are demanded, convert this into an any_extend.
- if (DemandedBits.getActiveBits() <= InBits)
- return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, Src));
-
- // Since some of the sign extended bits are demanded, we know that the sign
- // bit is demanded.
- APInt InDemandedBits = DemandedBits.trunc(InBits);
- InDemandedBits.setBit(InBits - 1);
-
- if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth + 1))
- return true;
- assert(!Known.hasConflict() && "Bits known to be one AND zero?");
- // If the sign bit is known one, the top bits match.
- Known = Known.sext(BitWidth);
-
- // If the sign bit is known zero, convert this to a zero extend.
- if (Known.isNonNegative())
- return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Src));
- break;
- }
- case ISD::SIGN_EXTEND_VECTOR_INREG: {
- // TODO - merge this with SIGN_EXTEND above?
- SDValue Src = Op.getOperand(0);
- unsigned InBits = Src.getScalarValueSizeInBits();
-
- APInt InDemandedBits = DemandedBits.trunc(InBits);
-
- // If some of the sign extended bits are demanded, we know that the sign
- // bit is demanded.
- if (InBits < DemandedBits.getActiveBits())
- InDemandedBits.setBit(InBits - 1);
-
- if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth + 1))
- return true;
- assert(!Known.hasConflict() && "Bits known to be one AND zero?");
- // If the sign bit is known one, the top bits match.
- Known = Known.sext(BitWidth);
- break;
- }
- case ISD::ANY_EXTEND: {
- SDValue Src = Op.getOperand(0);
- unsigned InBits = Src.getScalarValueSizeInBits();
- APInt InDemandedBits = DemandedBits.trunc(InBits);
- if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth+1))
- return true;
- assert(!Known.hasConflict() && "Bits known to be one AND zero?");
- Known = Known.zext(BitWidth);
- break;
- }
- case ISD::TRUNCATE: {
- SDValue Src = Op.getOperand(0);
-
- // Simplify the input, using demanded bit information, and compute the known
- // zero/one bits live out.
- unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
- APInt TruncMask = DemandedBits.zext(OperandBitWidth);
- if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1))
- return true;
- Known = Known.trunc(BitWidth);
-
- // If the input is only used by this truncate, see if we can shrink it based
- // on the known demanded bits.
- if (Src.getNode()->hasOneUse()) {
- switch (Src.getOpcode()) {
- default:
- break;
- case ISD::SRL:
- // Shrink SRL by a constant if none of the high bits shifted in are
- // demanded.
- if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
- // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
- // undesirable.
- break;
- ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Src.getOperand(1));
- if (!ShAmt)
- break;
- SDValue Shift = Src.getOperand(1);
- if (TLO.LegalTypes()) {
- uint64_t ShVal = ShAmt->getZExtValue();
- Shift = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL));
- }
-
- if (ShAmt->getZExtValue() < BitWidth) {
- APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
- OperandBitWidth - BitWidth);
- HighBits.lshrInPlace(ShAmt->getZExtValue());
- HighBits = HighBits.trunc(BitWidth);
-
- if (!(HighBits & DemandedBits)) {
- // None of the shifted in bits are needed. Add a truncate of the
- // shift input, then shift it.
- SDValue NewTrunc =
- TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
- return TLO.CombineTo(
- Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, Shift));
- }
- }
- break;
- }
- }
-
- assert(!Known.hasConflict() && "Bits known to be one AND zero?");
- break;
- }
- case ISD::AssertZext: {
- // AssertZext demands all of the high bits, plus any of the low bits
- // demanded by its users.
- EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
- APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
- if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits,
- Known, TLO, Depth+1))
- return true;
- assert(!Known.hasConflict() && "Bits known to be one AND zero?");
-
- Known.Zero |= ~InMask;
- break;
- }
- case ISD::EXTRACT_VECTOR_ELT: {
- SDValue Src = Op.getOperand(0);
- SDValue Idx = Op.getOperand(1);
- unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
- unsigned EltBitWidth = Src.getScalarValueSizeInBits();
-
- // Demand the bits from every vector element without a constant index.
- APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
- if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
- if (CIdx->getAPIntValue().ult(NumSrcElts))
- DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
-
- // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
- // anything about the extended bits.
- APInt DemandedSrcBits = DemandedBits;
- if (BitWidth > EltBitWidth)
- DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
-
- if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
- Depth + 1))
- return true;
-
- Known = Known2;
- if (BitWidth > EltBitWidth)
- Known = Known.zext(BitWidth);
- break;
- }
- case ISD::BITCAST: {
- SDValue Src = Op.getOperand(0);
- EVT SrcVT = Src.getValueType();
- unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
-
- // If this is an FP->Int bitcast and if the sign bit is the only
- // thing demanded, turn this into a FGETSIGN.
- if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
- DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
- SrcVT.isFloatingPoint()) {
- bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
- bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
- if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
- SrcVT != MVT::f128) {
- // Cannot eliminate/lower SHL for f128 yet.
- EVT Ty = OpVTLegal ? VT : MVT::i32;
- // Make a FGETSIGN + SHL to move the sign bit into the appropriate
- // place. We expect the SHL to be eliminated by other optimizations.
- SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
- unsigned OpVTSizeInBits = Op.getValueSizeInBits();
- if (!OpVTLegal && OpVTSizeInBits > 32)
- Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
- unsigned ShVal = Op.getValueSizeInBits() - 1;
- SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
- return TLO.CombineTo(Op,
- TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
- }
- }
- // If bitcast from a vector, see if we can use SimplifyDemandedVectorElts by
- // demanding the element if any bits from it are demanded.
- // TODO - bigendian once we have test coverage.
- // TODO - bool vectors once SimplifyDemandedVectorElts has SETCC support.
- if (SrcVT.isVector() && NumSrcEltBits > 1 &&
- (BitWidth % NumSrcEltBits) == 0 &&
- TLO.DAG.getDataLayout().isLittleEndian()) {
- unsigned Scale = BitWidth / NumSrcEltBits;
- auto GetDemandedSubMask = [&](APInt &DemandedSubElts) -> bool {
- DemandedSubElts = APInt::getNullValue(Scale);
- for (unsigned i = 0; i != Scale; ++i) {
- unsigned Offset = i * NumSrcEltBits;
- APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
- if (!Sub.isNullValue())
- DemandedSubElts.setBit(i);
- }
- return true;
- };
-
- APInt DemandedSubElts;
- if (GetDemandedSubMask(DemandedSubElts)) {
- unsigned NumSrcElts = SrcVT.getVectorNumElements();
- APInt DemandedElts = APInt::getSplat(NumSrcElts, DemandedSubElts);
-
- APInt KnownUndef, KnownZero;
- if (SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, KnownZero,
- TLO, Depth + 1))
- return true;
- }
- }
- // If this is a bitcast, let computeKnownBits handle it. Only do this on a
- // recursive call where Known may be useful to the caller.
- if (Depth > 0) {
- Known = TLO.DAG.computeKnownBits(Op, Depth);
- return false;
- }
- break;
- }
- case ISD::ADD:
- case ISD::MUL:
- case ISD::SUB: {
- // Add, Sub, and Mul don't demand any bits in positions beyond that
- // of the highest bit demanded of them.
- SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
- unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
- APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
- if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, Depth + 1) ||
- SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, Depth + 1) ||
- // See if the operation should be performed at a smaller bit width.
- ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
- SDNodeFlags Flags = Op.getNode()->getFlags();
- if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
- // Disable the nsw and nuw flags. We can no longer guarantee that we
- // won't wrap after simplification.
- Flags.setNoSignedWrap(false);
- Flags.setNoUnsignedWrap(false);
- SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1,
- Flags);
- return TLO.CombineTo(Op, NewOp);
- }
- return true;
- }
-
- // If we have a constant operand, we may be able to turn it into -1 if we
- // do not demand the high bits. This can make the constant smaller to
- // encode, allow more general folding, or match specialized instruction
- // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
- // is probably not useful (and could be detrimental).
- ConstantSDNode *C = isConstOrConstSplat(Op1);
- APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
- if (C && !C->isAllOnesValue() && !C->isOne() &&
- (C->getAPIntValue() | HighMask).isAllOnesValue()) {
- SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
- // We can't guarantee that the new math op doesn't wrap, so explicitly
- // clear those flags to prevent folding with a potential existing node
- // that has those flags set.
- SDNodeFlags Flags;
- Flags.setNoSignedWrap(false);
- Flags.setNoUnsignedWrap(false);
- SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
- return TLO.CombineTo(Op, NewOp);
- }
-
- LLVM_FALLTHROUGH;
- }
- default:
- if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
- if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
- Known, TLO, Depth))
- return true;
- break;
- }
-
- // Just use computeKnownBits to compute output bits.
- Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
- break;
- }
-
- // If we know the value of all of the demanded bits, return this as a
- // constant.
- if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
- // Avoid folding to a constant if any OpaqueConstant is involved.
- const SDNode *N = Op.getNode();
- for (SDNodeIterator I = SDNodeIterator::begin(N),
- E = SDNodeIterator::end(N);
- I != E; ++I) {
- SDNode *Op = *I;
- if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
- if (C->isOpaque())
- return false;
- }
- // TODO: Handle float bits as well.
- if (VT.isInteger())
- return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
- }
-
- return false;
-}
-
-bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
- const APInt &DemandedElts,
- APInt &KnownUndef,
- APInt &KnownZero,
- DAGCombinerInfo &DCI) const {
- SelectionDAG &DAG = DCI.DAG;
- TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
- !DCI.isBeforeLegalizeOps());
-
- bool Simplified =
- SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
- if (Simplified) {
- DCI.AddToWorklist(Op.getNode());
- DCI.CommitTargetLoweringOpt(TLO);
- }
- return Simplified;
-}
-
-bool TargetLowering::SimplifyDemandedVectorElts(
- SDValue Op, const APInt &DemandedEltMask, APInt &KnownUndef,
- APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
- bool AssumeSingleUse) const {
- EVT VT = Op.getValueType();
- APInt DemandedElts = DemandedEltMask;
- unsigned NumElts = DemandedElts.getBitWidth();
- assert(VT.isVector() && "Expected vector op");
- assert(VT.getVectorNumElements() == NumElts &&
- "Mask size mismatches value type element count!");
-
- KnownUndef = KnownZero = APInt::getNullValue(NumElts);
-
- // Undef operand.
- if (Op.isUndef()) {
- KnownUndef.setAllBits();
- return false;
- }
-
- // If Op has other users, assume that all elements are needed.
- if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
- DemandedElts.setAllBits();
-
- // Not demanding any elements from Op.
- if (DemandedElts == 0) {
- KnownUndef.setAllBits();
- return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
- }
-
- // Limit search depth.
- if (Depth >= 6)
- return false;
-
- SDLoc DL(Op);
- unsigned EltSizeInBits = VT.getScalarSizeInBits();
-
- switch (Op.getOpcode()) {
- case ISD::SCALAR_TO_VECTOR: {
- if (!DemandedElts[0]) {
- KnownUndef.setAllBits();
- return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
- }
- KnownUndef.setHighBits(NumElts - 1);
- break;
- }
- case ISD::BITCAST: {
- SDValue Src = Op.getOperand(0);
- EVT SrcVT = Src.getValueType();
-
- // We only handle vectors here.
- // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
- if (!SrcVT.isVector())
- break;
-
- // Fast handling of 'identity' bitcasts.
- unsigned NumSrcElts = SrcVT.getVectorNumElements();
- if (NumSrcElts == NumElts)
- return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
- KnownZero, TLO, Depth + 1);
-
- APInt SrcZero, SrcUndef;
- APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts);
-
- // Bitcast from 'large element' src vector to 'small element' vector, we
- // must demand a source element if any DemandedElt maps to it.
- if ((NumElts % NumSrcElts) == 0) {
- unsigned Scale = NumElts / NumSrcElts;
- for (unsigned i = 0; i != NumElts; ++i)
- if (DemandedElts[i])
- SrcDemandedElts.setBit(i / Scale);
-
- if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
- TLO, Depth + 1))
- return true;
-
- // Try calling SimplifyDemandedBits, converting demanded elts to the bits
- // of the large element.
- // TODO - bigendian once we have test coverage.
- if (TLO.DAG.getDataLayout().isLittleEndian()) {
- unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
- APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits);
- for (unsigned i = 0; i != NumElts; ++i)
- if (DemandedElts[i]) {
- unsigned Ofs = (i % Scale) * EltSizeInBits;
- SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
- }
-
- KnownBits Known;
- if (SimplifyDemandedBits(Src, SrcDemandedBits, Known, TLO, Depth + 1))
- return true;
- }
-
- // If the src element is zero/undef then all the output elements will be -
- // only demanded elements are guaranteed to be correct.
- for (unsigned i = 0; i != NumSrcElts; ++i) {
- if (SrcDemandedElts[i]) {
- if (SrcZero[i])
- KnownZero.setBits(i * Scale, (i + 1) * Scale);
- if (SrcUndef[i])
- KnownUndef.setBits(i * Scale, (i + 1) * Scale);
- }
- }
- }
-
- // Bitcast from 'small element' src vector to 'large element' vector, we
- // demand all smaller source elements covered by the larger demanded element
- // of this vector.
- if ((NumSrcElts % NumElts) == 0) {
- unsigned Scale = NumSrcElts / NumElts;
- for (unsigned i = 0; i != NumElts; ++i)
- if (DemandedElts[i])
- SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale);
-
- if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
- TLO, Depth + 1))
- return true;
-
- // If all the src elements covering an output element are zero/undef, then
- // the output element will be as well, assuming it was demanded.
- for (unsigned i = 0; i != NumElts; ++i) {
- if (DemandedElts[i]) {
- if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue())
- KnownZero.setBit(i);
- if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue())
- KnownUndef.setBit(i);
- }
- }
- }
- break;
- }
- case ISD::BUILD_VECTOR: {
- // Check all elements and simplify any unused elements with UNDEF.
- if (!DemandedElts.isAllOnesValue()) {
- // Don't simplify BROADCASTS.
- if (llvm::any_of(Op->op_values(),
- [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
- SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
- bool Updated = false;
- for (unsigned i = 0; i != NumElts; ++i) {
- if (!DemandedElts[i] && !Ops[i].isUndef()) {
- Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
- KnownUndef.setBit(i);
- Updated = true;
- }
- }
- if (Updated)
- return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
- }
- }
- for (unsigned i = 0; i != NumElts; ++i) {
- SDValue SrcOp = Op.getOperand(i);
- if (SrcOp.isUndef()) {
- KnownUndef.setBit(i);
- } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
- (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
- KnownZero.setBit(i);
- }
- }
- break;
- }
- case ISD::CONCAT_VECTORS: {
- EVT SubVT = Op.getOperand(0).getValueType();
- unsigned NumSubVecs = Op.getNumOperands();
- unsigned NumSubElts = SubVT.getVectorNumElements();
- for (unsigned i = 0; i != NumSubVecs; ++i) {
- SDValue SubOp = Op.getOperand(i);
- APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
- APInt SubUndef, SubZero;
- if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
- Depth + 1))
- return true;
- KnownUndef.insertBits(SubUndef, i * NumSubElts);
- KnownZero.insertBits(SubZero, i * NumSubElts);
- }
- break;
- }
- case ISD::INSERT_SUBVECTOR: {
- if (!isa<ConstantSDNode>(Op.getOperand(2)))
- break;
- SDValue Base = Op.getOperand(0);
- SDValue Sub = Op.getOperand(1);
- EVT SubVT = Sub.getValueType();
- unsigned NumSubElts = SubVT.getVectorNumElements();
- const APInt& Idx = cast<ConstantSDNode>(Op.getOperand(2))->getAPIntValue();
- if (Idx.ugt(NumElts - NumSubElts))
- break;
- unsigned SubIdx = Idx.getZExtValue();
- APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx);
- APInt SubUndef, SubZero;
- if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO,
- Depth + 1))
- return true;
- APInt BaseElts = DemandedElts;
- BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx);
- if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO,
- Depth + 1))
- return true;
- KnownUndef.insertBits(SubUndef, SubIdx);
- KnownZero.insertBits(SubZero, SubIdx);
- break;
- }
- case ISD::EXTRACT_SUBVECTOR: {
- SDValue Src = Op.getOperand(0);
- ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
- unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
- if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
- // Offset the demanded elts by the subvector index.
- uint64_t Idx = SubIdx->getZExtValue();
- APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
- APInt SrcUndef, SrcZero;
- if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO,
- Depth + 1))
- return true;
- KnownUndef = SrcUndef.extractBits(NumElts, Idx);
- KnownZero = SrcZero.extractBits(NumElts, Idx);
- }
- break;
- }
- case ISD::INSERT_VECTOR_ELT: {
- SDValue Vec = Op.getOperand(0);
- SDValue Scl = Op.getOperand(1);
- auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
-
- // For a legal, constant insertion index, if we don't need this insertion
- // then strip it, else remove it from the demanded elts.
- if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
- unsigned Idx = CIdx->getZExtValue();
- if (!DemandedElts[Idx])
- return TLO.CombineTo(Op, Vec);
-
- APInt DemandedVecElts(DemandedElts);
- DemandedVecElts.clearBit(Idx);
- if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
- KnownZero, TLO, Depth + 1))
- return true;
-
- KnownUndef.clearBit(Idx);
- if (Scl.isUndef())
- KnownUndef.setBit(Idx);
-
- KnownZero.clearBit(Idx);
- if (isNullConstant(Scl) || isNullFPConstant(Scl))
- KnownZero.setBit(Idx);
- break;
- }
-
- APInt VecUndef, VecZero;
- if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
- Depth + 1))
- return true;
- // Without knowing the insertion index we can't set KnownUndef/KnownZero.
- break;
- }
- case ISD::VSELECT: {
- // Try to transform the select condition based on the current demanded
- // elements.
- // TODO: If a condition element is undef, we can choose from one arm of the
- // select (and if one arm is undef, then we can propagate that to the
- // result).
- // TODO - add support for constant vselect masks (see IR version of this).
- APInt UnusedUndef, UnusedZero;
- if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
- UnusedZero, TLO, Depth + 1))
- return true;
-
- // See if we can simplify either vselect operand.
- APInt DemandedLHS(DemandedElts);
- APInt DemandedRHS(DemandedElts);
- APInt UndefLHS, ZeroLHS;
- APInt UndefRHS, ZeroRHS;
- if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
- ZeroLHS, TLO, Depth + 1))
- return true;
- if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
- ZeroRHS, TLO, Depth + 1))
- return true;
-
- KnownUndef = UndefLHS & UndefRHS;
- KnownZero = ZeroLHS & ZeroRHS;
- break;
- }
- case ISD::VECTOR_SHUFFLE: {
- ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
-
- // Collect demanded elements from shuffle operands..
- APInt DemandedLHS(NumElts, 0);
- APInt DemandedRHS(NumElts, 0);
- for (unsigned i = 0; i != NumElts; ++i) {
- int M = ShuffleMask[i];
- if (M < 0 || !DemandedElts[i])
- continue;
- assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
- if (M < (int)NumElts)
- DemandedLHS.setBit(M);
- else
- DemandedRHS.setBit(M - NumElts);
- }
-
- // See if we can simplify either shuffle operand.
- APInt UndefLHS, ZeroLHS;
- APInt UndefRHS, ZeroRHS;
- if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
- ZeroLHS, TLO, Depth + 1))
- return true;
- if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
- ZeroRHS, TLO, Depth + 1))
- return true;
-
- // Simplify mask using undef elements from LHS/RHS.
- bool Updated = false;
- bool IdentityLHS = true, IdentityRHS = true;
- SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
- for (unsigned i = 0; i != NumElts; ++i) {
- int &M = NewMask[i];
- if (M < 0)
- continue;
- if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
- (M >= (int)NumElts && UndefRHS[M - NumElts])) {
- Updated = true;
- M = -1;
- }
- IdentityLHS &= (M < 0) || (M == (int)i);
- IdentityRHS &= (M < 0) || ((M - NumElts) == i);
- }
-
- // Update legal shuffle masks based on demanded elements if it won't reduce
- // to Identity which can cause premature removal of the shuffle mask.
- if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps &&
- isShuffleMaskLegal(NewMask, VT))
- return TLO.CombineTo(Op,
- TLO.DAG.getVectorShuffle(VT, DL, Op.getOperand(0),
- Op.getOperand(1), NewMask));
-
- // Propagate undef/zero elements from LHS/RHS.
- for (unsigned i = 0; i != NumElts; ++i) {
- int M = ShuffleMask[i];
- if (M < 0) {
- KnownUndef.setBit(i);
- } else if (M < (int)NumElts) {
- if (UndefLHS[M])
- KnownUndef.setBit(i);
- if (ZeroLHS[M])
- KnownZero.setBit(i);
- } else {
- if (UndefRHS[M - NumElts])
- KnownUndef.setBit(i);
- if (ZeroRHS[M - NumElts])
- KnownZero.setBit(i);
- }
- }
- break;
- }
- case ISD::SIGN_EXTEND_VECTOR_INREG:
- case ISD::ZERO_EXTEND_VECTOR_INREG: {
- APInt SrcUndef, SrcZero;
- SDValue Src = Op.getOperand(0);
- unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
- APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
- if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef,
- SrcZero, TLO, Depth + 1))
- return true;
- KnownZero = SrcZero.zextOrTrunc(NumElts);
- KnownUndef = SrcUndef.zextOrTrunc(NumElts);
-
- if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
- // zext(undef) upper bits are guaranteed to be zero.
- if (DemandedElts.isSubsetOf(KnownUndef))
- return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
- KnownUndef.clearAllBits();
- }
- break;
- }
- case ISD::OR:
- case ISD::XOR:
- case ISD::ADD:
- case ISD::SUB:
- case ISD::FADD:
- case ISD::FSUB:
- case ISD::FMUL:
- case ISD::FDIV:
- case ISD::FREM: {
- APInt SrcUndef, SrcZero;
- if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef,
- SrcZero, TLO, Depth + 1))
- return true;
- if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
- KnownZero, TLO, Depth + 1))
- return true;
- KnownZero &= SrcZero;
- KnownUndef &= SrcUndef;
- break;
- }
- case ISD::AND: {
- APInt SrcUndef, SrcZero;
- if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef,
- SrcZero, TLO, Depth + 1))
- return true;
- if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
- KnownZero, TLO, Depth + 1))
- return true;
-
- // If either side has a zero element, then the result element is zero, even
- // if the other is an UNDEF.
- KnownZero |= SrcZero;
- KnownUndef &= SrcUndef;
- KnownUndef &= ~KnownZero;
- break;
- }
- case ISD::TRUNCATE:
- case ISD::SIGN_EXTEND:
- case ISD::ZERO_EXTEND:
- if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
- KnownZero, TLO, Depth + 1))
- return true;
-
- if (Op.getOpcode() == ISD::ZERO_EXTEND) {
- // zext(undef) upper bits are guaranteed to be zero.
- if (DemandedElts.isSubsetOf(KnownUndef))
- return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
- KnownUndef.clearAllBits();
- }
- break;
- default: {
- if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
- if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
- KnownZero, TLO, Depth))
- return true;
- } else {
- KnownBits Known;
- APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits);
- if (SimplifyDemandedBits(Op, DemandedBits, DemandedEltMask, Known, TLO,
- Depth, AssumeSingleUse))
- return true;
- }
- break;
- }
- }
- assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
-
- // Constant fold all undef cases.
- // TODO: Handle zero cases as well.
- if (DemandedElts.isSubsetOf(KnownUndef))
- return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
-
- return false;
-}
-
-/// Determine which of the bits specified in Mask are known to be either zero or
-/// one and return them in the Known.
-void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
- KnownBits &Known,
- const APInt &DemandedElts,
- const SelectionDAG &DAG,
- unsigned Depth) const {
- assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
- Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
- Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
- Op.getOpcode() == ISD::INTRINSIC_VOID) &&
- "Should use MaskedValueIsZero if you don't know whether Op"
- " is a target node!");
- Known.resetAll();
-}
-
-void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op,
- KnownBits &Known,
- const APInt &DemandedElts,
- const SelectionDAG &DAG,
- unsigned Depth) const {
- assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex");
-
- if (unsigned Align = DAG.InferPtrAlignment(Op)) {
- // The low bits are known zero if the pointer is aligned.
- Known.Zero.setLowBits(Log2_32(Align));
- }
-}
-
-/// This method can be implemented by targets that want to expose additional
-/// information about sign bits to the DAG Combiner.
-unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
- const APInt &,
- const SelectionDAG &,
- unsigned Depth) const {
- assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
- Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
- Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
- Op.getOpcode() == ISD::INTRINSIC_VOID) &&
- "Should use ComputeNumSignBits if you don't know whether Op"
- " is a target node!");
- return 1;
-}
-
-bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
- SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
- TargetLoweringOpt &TLO, unsigned Depth) const {
- assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
- Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
- Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
- Op.getOpcode() == ISD::INTRINSIC_VOID) &&
- "Should use SimplifyDemandedVectorElts if you don't know whether Op"
- " is a target node!");
- return false;
-}
-
-bool TargetLowering::SimplifyDemandedBitsForTargetNode(
- SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
- KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
- assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
- Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
- Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
- Op.getOpcode() == ISD::INTRINSIC_VOID) &&
- "Should use SimplifyDemandedBits if you don't know whether Op"
- " is a target node!");
- computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
- return false;
-}
-
-bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
- const SelectionDAG &DAG,
- bool SNaN,
- unsigned Depth) const {
- assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
- Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
- Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
- Op.getOpcode() == ISD::INTRINSIC_VOID) &&
- "Should use isKnownNeverNaN if you don't know whether Op"
- " is a target node!");
- return false;
-}
-
-// FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
-// work with truncating build vectors and vectors with elements of less than
-// 8 bits.
-bool TargetLowering::isConstTrueVal(const SDNode *N) const {
- if (!N)
- return false;
-
- APInt CVal;
- if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
- CVal = CN->getAPIntValue();
- } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
- auto *CN = BV->getConstantSplatNode();
- if (!CN)
- return false;
-
- // If this is a truncating build vector, truncate the splat value.
- // Otherwise, we may fail to match the expected values below.
- unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
- CVal = CN->getAPIntValue();
- if (BVEltWidth < CVal.getBitWidth())
- CVal = CVal.trunc(BVEltWidth);
- } else {
- return false;
- }
-
- switch (getBooleanContents(N->getValueType(0))) {
- case UndefinedBooleanContent:
- return CVal[0];
- case ZeroOrOneBooleanContent:
- return CVal.isOneValue();
- case ZeroOrNegativeOneBooleanContent:
- return CVal.isAllOnesValue();
- }
-
- llvm_unreachable("Invalid boolean contents");
-}
-
-bool TargetLowering::isConstFalseVal(const SDNode *N) const {
- if (!N)
- return false;
-
- const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
- if (!CN) {
- const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
- if (!BV)
- return false;
-
- // Only interested in constant splats, we don't care about undef
- // elements in identifying boolean constants and getConstantSplatNode
- // returns NULL if all ops are undef;
- CN = BV->getConstantSplatNode();
- if (!CN)
- return false;
- }
-
- if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
- return !CN->getAPIntValue()[0];
-
- return CN->isNullValue();
-}
-
-bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
- bool SExt) const {
- if (VT == MVT::i1)
- return N->isOne();
-
- TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
- switch (Cnt) {
- case TargetLowering::ZeroOrOneBooleanContent:
- // An extended value of 1 is always true, unless its original type is i1,
- // in which case it will be sign extended to -1.
- return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
- case TargetLowering::UndefinedBooleanContent:
- case TargetLowering::ZeroOrNegativeOneBooleanContent:
- return N->isAllOnesValue() && SExt;
- }
- llvm_unreachable("Unexpected enumeration.");
-}
-
-/// This helper function of SimplifySetCC tries to optimize the comparison when
-/// either operand of the SetCC node is a bitwise-and instruction.
-SDValue TargetLowering::simplifySetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
- ISD::CondCode Cond,
- DAGCombinerInfo &DCI,
- const SDLoc &DL) const {
- // Match these patterns in any of their permutations:
- // (X & Y) == Y
- // (X & Y) != Y
- if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
- std::swap(N0, N1);
-
- EVT OpVT = N0.getValueType();
- if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
- (Cond != ISD::SETEQ && Cond != ISD::SETNE))
- return SDValue();
-
- SDValue X, Y;
- if (N0.getOperand(0) == N1) {
- X = N0.getOperand(1);
- Y = N0.getOperand(0);
- } else if (N0.getOperand(1) == N1) {
- X = N0.getOperand(0);
- Y = N0.getOperand(1);
- } else {
- return SDValue();
- }
-
- SelectionDAG &DAG = DCI.DAG;
- SDValue Zero = DAG.getConstant(0, DL, OpVT);
- if (DAG.isKnownToBeAPowerOfTwo(Y)) {
- // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
- // Note that where Y is variable and is known to have at most one bit set
- // (for example, if it is Z & 1) we cannot do this; the expressions are not
- // equivalent when Y == 0.
- Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
- if (DCI.isBeforeLegalizeOps() ||
- isCondCodeLegal(Cond, N0.getSimpleValueType()))
- return DAG.getSetCC(DL, VT, N0, Zero, Cond);
- } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
- // If the target supports an 'and-not' or 'and-complement' logic operation,
- // try to use that to make a comparison operation more efficient.
- // But don't do this transform if the mask is a single bit because there are
- // more efficient ways to deal with that case (for example, 'bt' on x86 or
- // 'rlwinm' on PPC).
-
- // Bail out if the compare operand that we want to turn into a zero is
- // already a zero (otherwise, infinite loop).
- auto *YConst = dyn_cast<ConstantSDNode>(Y);
- if (YConst && YConst->isNullValue())
- return SDValue();
-
- // Transform this into: ~X & Y == 0.
- SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
- SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
- return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
- }
-
- return SDValue();
-}
-
-/// There are multiple IR patterns that could be checking whether certain
-/// truncation of a signed number would be lossy or not. The pattern which is
-/// best at IR level, may not lower optimally. Thus, we want to unfold it.
-/// We are looking for the following pattern: (KeptBits is a constant)
-/// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
-/// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
-/// KeptBits also can't be 1, that would have been folded to %x dstcond 0
-/// We will unfold it into the natural trunc+sext pattern:
-/// ((%x << C) a>> C) dstcond %x
-/// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x)
-SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
- EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
- const SDLoc &DL) const {
- // We must be comparing with a constant.
- ConstantSDNode *C1;
- if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
- return SDValue();
-
- // N0 should be: add %x, (1 << (KeptBits-1))
- if (N0->getOpcode() != ISD::ADD)
- return SDValue();
-
- // And we must be 'add'ing a constant.
- ConstantSDNode *C01;
- if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
- return SDValue();
-
- SDValue X = N0->getOperand(0);
- EVT XVT = X.getValueType();
-
- // Validate constants ...
-
- APInt I1 = C1->getAPIntValue();
-
- ISD::CondCode NewCond;
- if (Cond == ISD::CondCode::SETULT) {
- NewCond = ISD::CondCode::SETEQ;
- } else if (Cond == ISD::CondCode::SETULE) {
- NewCond = ISD::CondCode::SETEQ;
- // But need to 'canonicalize' the constant.
- I1 += 1;
- } else if (Cond == ISD::CondCode::SETUGT) {
- NewCond = ISD::CondCode::SETNE;
- // But need to 'canonicalize' the constant.
- I1 += 1;
- } else if (Cond == ISD::CondCode::SETUGE) {
- NewCond = ISD::CondCode::SETNE;
- } else
- return SDValue();
-
- APInt I01 = C01->getAPIntValue();
-
- auto checkConstants = [&I1, &I01]() -> bool {
- // Both of them must be power-of-two, and the constant from setcc is bigger.
- return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
- };
-
- if (checkConstants()) {
- // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256
- } else {
- // What if we invert constants? (and the target predicate)
- I1.negate();
- I01.negate();
- NewCond = getSetCCInverse(NewCond, /*isInteger=*/true);
- if (!checkConstants())
- return SDValue();
- // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256
- }
-
- // They are power-of-two, so which bit is set?
- const unsigned KeptBits = I1.logBase2();
- const unsigned KeptBitsMinusOne = I01.logBase2();
-
- // Magic!
- if (KeptBits != (KeptBitsMinusOne + 1))
- return SDValue();
- assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
-
- // We don't want to do this in every single case.
- SelectionDAG &DAG = DCI.DAG;
- if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
- XVT, KeptBits))
- return SDValue();
-
- const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
- assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
-
- // Unfold into: ((%x << C) a>> C) cond %x
- // Where 'cond' will be either 'eq' or 'ne'.
- SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
- SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
- SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
- SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
-
- return T2;
-}
-
-/// Try to simplify a setcc built with the specified operands and cc. If it is
-/// unable to simplify it, return a null SDValue.
-SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
- ISD::CondCode Cond, bool foldBooleans,
- DAGCombinerInfo &DCI,
- const SDLoc &dl) const {
- SelectionDAG &DAG = DCI.DAG;
- EVT OpVT = N0.getValueType();
-
- // These setcc operations always fold.
- switch (Cond) {
- default: break;
- case ISD::SETFALSE:
- case ISD::SETFALSE2: return DAG.getBoolConstant(false, dl, VT, OpVT);
- case ISD::SETTRUE:
- case ISD::SETTRUE2: return DAG.getBoolConstant(true, dl, VT, OpVT);
- }
-
- // Ensure that the constant occurs on the RHS and fold constant comparisons.
- // TODO: Handle non-splat vector constants. All undef causes trouble.
- ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
- if (isConstOrConstSplat(N0) &&
- (DCI.isBeforeLegalizeOps() ||
- isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
- return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
-
- if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
- const APInt &C1 = N1C->getAPIntValue();
-
- // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
- // equality comparison, then we're just comparing whether X itself is
- // zero.
- if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) &&
- N0.getOperand(0).getOpcode() == ISD::CTLZ &&
- N0.getOperand(1).getOpcode() == ISD::Constant) {
- const APInt &ShAmt
- = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
- if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
- ShAmt == Log2_32(N0.getValueSizeInBits())) {
- if ((C1 == 0) == (Cond == ISD::SETEQ)) {
- // (srl (ctlz x), 5) == 0 -> X != 0
- // (srl (ctlz x), 5) != 1 -> X != 0
- Cond = ISD::SETNE;
- } else {
- // (srl (ctlz x), 5) != 0 -> X == 0
- // (srl (ctlz x), 5) == 1 -> X == 0
- Cond = ISD::SETEQ;
- }
- SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
- return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
- Zero, Cond);
- }
- }
-
- SDValue CTPOP = N0;
- // Look through truncs that don't change the value of a ctpop.
- if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
- CTPOP = N0.getOperand(0);
-
- if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
- (N0 == CTPOP ||
- N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) {
- EVT CTVT = CTPOP.getValueType();
- SDValue CTOp = CTPOP.getOperand(0);
-
- // (ctpop x) u< 2 -> (x & x-1) == 0
- // (ctpop x) u> 1 -> (x & x-1) != 0
- if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
- SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp,
- DAG.getConstant(1, dl, CTVT));
- SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub);
- ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
- return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC);
- }
-
- // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal.
- }
-
- // (zext x) == C --> x == (trunc C)
- // (sext x) == C --> x == (trunc C)
- if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
- DCI.isBeforeLegalize() && N0->hasOneUse()) {
- unsigned MinBits = N0.getValueSizeInBits();
- SDValue PreExt;
- bool Signed = false;
- if (N0->getOpcode() == ISD::ZERO_EXTEND) {
- // ZExt
- MinBits = N0->getOperand(0).getValueSizeInBits();
- PreExt = N0->getOperand(0);
- } else if (N0->getOpcode() == ISD::AND) {
- // DAGCombine turns costly ZExts into ANDs
- if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
- if ((C->getAPIntValue()+1).isPowerOf2()) {
- MinBits = C->getAPIntValue().countTrailingOnes();
- PreExt = N0->getOperand(0);
- }
- } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
- // SExt
- MinBits = N0->getOperand(0).getValueSizeInBits();
- PreExt = N0->getOperand(0);
- Signed = true;
- } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
- // ZEXTLOAD / SEXTLOAD
- if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
- MinBits = LN0->getMemoryVT().getSizeInBits();
- PreExt = N0;
- } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
- Signed = true;
- MinBits = LN0->getMemoryVT().getSizeInBits();
- PreExt = N0;
- }
- }
-
- // Figure out how many bits we need to preserve this constant.
- unsigned ReqdBits = Signed ?
- C1.getBitWidth() - C1.getNumSignBits() + 1 :
- C1.getActiveBits();
-
- // Make sure we're not losing bits from the constant.
- if (MinBits > 0 &&
- MinBits < C1.getBitWidth() &&
- MinBits >= ReqdBits) {
- EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
- if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
- // Will get folded away.
- SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
- if (MinBits == 1 && C1 == 1)
- // Invert the condition.
- return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
- Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
- SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
- return DAG.getSetCC(dl, VT, Trunc, C, Cond);
- }
-
- // If truncating the setcc operands is not desirable, we can still
- // simplify the expression in some cases:
- // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
- // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
- // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
- // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
- // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
- // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
- SDValue TopSetCC = N0->getOperand(0);
- unsigned N0Opc = N0->getOpcode();
- bool SExt = (N0Opc == ISD::SIGN_EXTEND);
- if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
- TopSetCC.getOpcode() == ISD::SETCC &&
- (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
- (isConstFalseVal(N1C) ||
- isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
-
- bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
- (!N1C->isNullValue() && Cond == ISD::SETNE);
-
- if (!Inverse)
- return TopSetCC;
-
- ISD::CondCode InvCond = ISD::getSetCCInverse(
- cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
- TopSetCC.getOperand(0).getValueType().isInteger());
- return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
- TopSetCC.getOperand(1),
- InvCond);
- }
- }
- }
-
- // If the LHS is '(and load, const)', the RHS is 0, the test is for
- // equality or unsigned, and all 1 bits of the const are in the same
- // partial word, see if we can shorten the load.
- if (DCI.isBeforeLegalize() &&
- !ISD::isSignedIntSetCC(Cond) &&
- N0.getOpcode() == ISD::AND && C1 == 0 &&
- N0.getNode()->hasOneUse() &&
- isa<LoadSDNode>(N0.getOperand(0)) &&
- N0.getOperand(0).getNode()->hasOneUse() &&
- isa<ConstantSDNode>(N0.getOperand(1))) {
- LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
- APInt bestMask;
- unsigned bestWidth = 0, bestOffset = 0;
- if (!Lod->isVolatile() && Lod->isUnindexed()) {
- unsigned origWidth = N0.getValueSizeInBits();
- unsigned maskWidth = origWidth;
- // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
- // 8 bits, but have to be careful...
- if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
- origWidth = Lod->getMemoryVT().getSizeInBits();
- const APInt &Mask =
- cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
- for (unsigned width = origWidth / 2; width>=8; width /= 2) {
- APInt newMask = APInt::getLowBitsSet(maskWidth, width);
- for (unsigned offset=0; offset<origWidth/width; offset++) {
- if (Mask.isSubsetOf(newMask)) {
- if (DAG.getDataLayout().isLittleEndian())
- bestOffset = (uint64_t)offset * (width/8);
- else
- bestOffset = (origWidth/width - offset - 1) * (width/8);
- bestMask = Mask.lshr(offset * (width/8) * 8);
- bestWidth = width;
- break;
- }
- newMask <<= width;
- }
- }
- }
- if (bestWidth) {
- EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
- if (newVT.isRound() &&
- shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
- EVT PtrType = Lod->getOperand(1).getValueType();
- SDValue Ptr = Lod->getBasePtr();
- if (bestOffset != 0)
- Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
- DAG.getConstant(bestOffset, dl, PtrType));
- unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
- SDValue NewLoad = DAG.getLoad(
- newVT, dl, Lod->getChain(), Ptr,
- Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign);
- return DAG.getSetCC(dl, VT,
- DAG.getNode(ISD::AND, dl, newVT, NewLoad,
- DAG.getConstant(bestMask.trunc(bestWidth),
- dl, newVT)),
- DAG.getConstant(0LL, dl, newVT), Cond);
- }
- }
- }
-
- // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
- if (N0.getOpcode() == ISD::ZERO_EXTEND) {
- unsigned InSize = N0.getOperand(0).getValueSizeInBits();
-
- // If the comparison constant has bits in the upper part, the
- // zero-extended value could never match.
- if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
- C1.getBitWidth() - InSize))) {
- switch (Cond) {
- case ISD::SETUGT:
- case ISD::SETUGE:
- case ISD::SETEQ:
- return DAG.getConstant(0, dl, VT);
- case ISD::SETULT:
- case ISD::SETULE:
- case ISD::SETNE:
- return DAG.getConstant(1, dl, VT);
- case ISD::SETGT:
- case ISD::SETGE:
- // True if the sign bit of C1 is set.
- return DAG.getConstant(C1.isNegative(), dl, VT);
- case ISD::SETLT:
- case ISD::SETLE:
- // True if the sign bit of C1 isn't set.
- return DAG.getConstant(C1.isNonNegative(), dl, VT);
- default:
- break;
- }
- }
-
- // Otherwise, we can perform the comparison with the low bits.
- switch (Cond) {
- case ISD::SETEQ:
- case ISD::SETNE:
- case ISD::SETUGT:
- case ISD::SETUGE:
- case ISD::SETULT:
- case ISD::SETULE: {
- EVT newVT = N0.getOperand(0).getValueType();
- if (DCI.isBeforeLegalizeOps() ||
- (isOperationLegal(ISD::SETCC, newVT) &&
- isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
- EVT NewSetCCVT =
- getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT);
- SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
-
- SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
- NewConst, Cond);
- return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
- }
- break;
- }
- default:
- break; // todo, be more careful with signed comparisons
- }
- } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
- (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
- EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
- unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
- EVT ExtDstTy = N0.getValueType();
- unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
-
- // If the constant doesn't fit into the number of bits for the source of
- // the sign extension, it is impossible for both sides to be equal.
- if (C1.getMinSignedBits() > ExtSrcTyBits)
- return DAG.getConstant(Cond == ISD::SETNE, dl, VT);
-
- SDValue ZextOp;
- EVT Op0Ty = N0.getOperand(0).getValueType();
- if (Op0Ty == ExtSrcTy) {
- ZextOp = N0.getOperand(0);
- } else {
- APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
- ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
- DAG.getConstant(Imm, dl, Op0Ty));
- }
- if (!DCI.isCalledByLegalizer())
- DCI.AddToWorklist(ZextOp.getNode());
- // Otherwise, make this a use of a zext.
- return DAG.getSetCC(dl, VT, ZextOp,
- DAG.getConstant(C1 & APInt::getLowBitsSet(
- ExtDstTyBits,
- ExtSrcTyBits),
- dl, ExtDstTy),
- Cond);
- } else if ((N1C->isNullValue() || N1C->isOne()) &&
- (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
- // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC
- if (N0.getOpcode() == ISD::SETCC &&
- isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
- bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
- if (TrueWhenTrue)
- return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
- // Invert the condition.
- ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
- CC = ISD::getSetCCInverse(CC,
- N0.getOperand(0).getValueType().isInteger());
- if (DCI.isBeforeLegalizeOps() ||
- isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
- return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
- }
-
- if ((N0.getOpcode() == ISD::XOR ||
- (N0.getOpcode() == ISD::AND &&
- N0.getOperand(0).getOpcode() == ISD::XOR &&
- N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
- isa<ConstantSDNode>(N0.getOperand(1)) &&
- cast<ConstantSDNode>(N0.getOperand(1))->isOne()) {
- // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We
- // can only do this if the top bits are known zero.
- unsigned BitWidth = N0.getValueSizeInBits();
- if (DAG.MaskedValueIsZero(N0,
- APInt::getHighBitsSet(BitWidth,
- BitWidth-1))) {
- // Okay, get the un-inverted input value.
- SDValue Val;
- if (N0.getOpcode() == ISD::XOR) {
- Val = N0.getOperand(0);
- } else {
- assert(N0.getOpcode() == ISD::AND &&
- N0.getOperand(0).getOpcode() == ISD::XOR);
- // ((X^1)&1)^1 -> X & 1
- Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
- N0.getOperand(0).getOperand(0),
- N0.getOperand(1));
- }
-
- return DAG.getSetCC(dl, VT, Val, N1,
- Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
- }
- } else if (N1C->isOne() &&
- (VT == MVT::i1 ||
- getBooleanContents(N0->getValueType(0)) ==
- ZeroOrOneBooleanContent)) {
- SDValue Op0 = N0;
- if (Op0.getOpcode() == ISD::TRUNCATE)
- Op0 = Op0.getOperand(0);
-
- if ((Op0.getOpcode() == ISD::XOR) &&
- Op0.getOperand(0).getOpcode() == ISD::SETCC &&
- Op0.getOperand(1).getOpcode() == ISD::SETCC) {
- // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
- Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
- return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
- Cond);
- }
- if (Op0.getOpcode() == ISD::AND &&
- isa<ConstantSDNode>(Op0.getOperand(1)) &&
- cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) {
- // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
- if (Op0.getValueType().bitsGT(VT))
- Op0 = DAG.getNode(ISD::AND, dl, VT,
- DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
- DAG.getConstant(1, dl, VT));
- else if (Op0.getValueType().bitsLT(VT))
- Op0 = DAG.getNode(ISD::AND, dl, VT,
- DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
- DAG.getConstant(1, dl, VT));
-
- return DAG.getSetCC(dl, VT, Op0,
- DAG.getConstant(0, dl, Op0.getValueType()),
- Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
- }
- if (Op0.getOpcode() == ISD::AssertZext &&
- cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
- return DAG.getSetCC(dl, VT, Op0,
- DAG.getConstant(0, dl, Op0.getValueType()),
- Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
- }
- }
-
- if (SDValue V =
- optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
- return V;
- }
-
- // These simplifications apply to splat vectors as well.
- // TODO: Handle more splat vector cases.
- if (auto *N1C = isConstOrConstSplat(N1)) {
- const APInt &C1 = N1C->getAPIntValue();
-
- APInt MinVal, MaxVal;
- unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
- if (ISD::isSignedIntSetCC(Cond)) {
- MinVal = APInt::getSignedMinValue(OperandBitSize);
- MaxVal = APInt::getSignedMaxValue(OperandBitSize);
- } else {
- MinVal = APInt::getMinValue(OperandBitSize);
- MaxVal = APInt::getMaxValue(OperandBitSize);
- }
-
- // Canonicalize GE/LE comparisons to use GT/LT comparisons.
- if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
- // X >= MIN --> true
- if (C1 == MinVal)
- return DAG.getBoolConstant(true, dl, VT, OpVT);
-
- if (!VT.isVector()) { // TODO: Support this for vectors.
- // X >= C0 --> X > (C0 - 1)
- APInt C = C1 - 1;
- ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
- if ((DCI.isBeforeLegalizeOps() ||
- isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
- (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
- isLegalICmpImmediate(C.getSExtValue())))) {
- return DAG.getSetCC(dl, VT, N0,
- DAG.getConstant(C, dl, N1.getValueType()),
- NewCC);
- }
- }
- }
-
- if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
- // X <= MAX --> true
- if (C1 == MaxVal)
- return DAG.getBoolConstant(true, dl, VT, OpVT);
-
- // X <= C0 --> X < (C0 + 1)
- if (!VT.isVector()) { // TODO: Support this for vectors.
- APInt C = C1 + 1;
- ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
- if ((DCI.isBeforeLegalizeOps() ||
- isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
- (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
- isLegalICmpImmediate(C.getSExtValue())))) {
- return DAG.getSetCC(dl, VT, N0,
- DAG.getConstant(C, dl, N1.getValueType()),
- NewCC);
- }
- }
- }
-
- if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
- if (C1 == MinVal)
- return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
-
- // TODO: Support this for vectors after legalize ops.
- if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
- // Canonicalize setlt X, Max --> setne X, Max
- if (C1 == MaxVal)
- return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
-
- // If we have setult X, 1, turn it into seteq X, 0
- if (C1 == MinVal+1)
- return DAG.getSetCC(dl, VT, N0,
- DAG.getConstant(MinVal, dl, N0.getValueType()),
- ISD::SETEQ);
- }
- }
-
- if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
- if (C1 == MaxVal)
- return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
-
- // TODO: Support this for vectors after legalize ops.
- if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
- // Canonicalize setgt X, Min --> setne X, Min
- if (C1 == MinVal)
- return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
-
- // If we have setugt X, Max-1, turn it into seteq X, Max
- if (C1 == MaxVal-1)
- return DAG.getSetCC(dl, VT, N0,
- DAG.getConstant(MaxVal, dl, N0.getValueType()),
- ISD::SETEQ);
- }
- }
-
- // If we have "setcc X, C0", check to see if we can shrink the immediate
- // by changing cc.
- // TODO: Support this for vectors after legalize ops.
- if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
- // SETUGT X, SINTMAX -> SETLT X, 0
- if (Cond == ISD::SETUGT &&
- C1 == APInt::getSignedMaxValue(OperandBitSize))
- return DAG.getSetCC(dl, VT, N0,
- DAG.getConstant(0, dl, N1.getValueType()),
- ISD::SETLT);
-
- // SETULT X, SINTMIN -> SETGT X, -1
- if (Cond == ISD::SETULT &&
- C1 == APInt::getSignedMinValue(OperandBitSize)) {
- SDValue ConstMinusOne =
- DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl,
- N1.getValueType());
- return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
- }
- }
- }
-
- // Back to non-vector simplifications.
- // TODO: Can we do these for vector splats?
- if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
- const APInt &C1 = N1C->getAPIntValue();
-
- // Fold bit comparisons when we can.
- if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
- (VT == N0.getValueType() ||
- (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
- N0.getOpcode() == ISD::AND) {
- auto &DL = DAG.getDataLayout();
- if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
- EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
- !DCI.isBeforeLegalize());
- if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3
- // Perform the xform if the AND RHS is a single bit.
- if (AndRHS->getAPIntValue().isPowerOf2()) {
- return DAG.getNode(ISD::TRUNCATE, dl, VT,
- DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
- DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl,
- ShiftTy)));
- }
- } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
- // (X & 8) == 8 --> (X & 8) >> 3
- // Perform the xform if C1 is a single bit.
- if (C1.isPowerOf2()) {
- return DAG.getNode(ISD::TRUNCATE, dl, VT,
- DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
- DAG.getConstant(C1.logBase2(), dl,
- ShiftTy)));
- }
- }
- }
- }
-
- if (C1.getMinSignedBits() <= 64 &&
- !isLegalICmpImmediate(C1.getSExtValue())) {
- // (X & -256) == 256 -> (X >> 8) == 1
- if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
- N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
- if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
- const APInt &AndRHSC = AndRHS->getAPIntValue();
- if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
- unsigned ShiftBits = AndRHSC.countTrailingZeros();
- auto &DL = DAG.getDataLayout();
- EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
- !DCI.isBeforeLegalize());
- EVT CmpTy = N0.getValueType();
- SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0),
- DAG.getConstant(ShiftBits, dl,
- ShiftTy));
- SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy);
- return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
- }
- }
- } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
- Cond == ISD::SETULE || Cond == ISD::SETUGT) {
- bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
- // X < 0x100000000 -> (X >> 32) < 1
- // X >= 0x100000000 -> (X >> 32) >= 1
- // X <= 0x0ffffffff -> (X >> 32) < 1
- // X > 0x0ffffffff -> (X >> 32) >= 1
- unsigned ShiftBits;
- APInt NewC = C1;
- ISD::CondCode NewCond = Cond;
- if (AdjOne) {
- ShiftBits = C1.countTrailingOnes();
- NewC = NewC + 1;
- NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
- } else {
- ShiftBits = C1.countTrailingZeros();
- }
- NewC.lshrInPlace(ShiftBits);
- if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
- isLegalICmpImmediate(NewC.getSExtValue())) {
- auto &DL = DAG.getDataLayout();
- EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
- !DCI.isBeforeLegalize());
- EVT CmpTy = N0.getValueType();
- SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0,
- DAG.getConstant(ShiftBits, dl, ShiftTy));
- SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy);
- return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
- }
- }
- }
- }
-
- if (isa<ConstantFPSDNode>(N0.getNode())) {
- // Constant fold or commute setcc.
- SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
- if (O.getNode()) return O;
- } else if (auto *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
- // If the RHS of an FP comparison is a constant, simplify it away in
- // some cases.
- if (CFP->getValueAPF().isNaN()) {
- // If an operand is known to be a nan, we can fold it.
- switch (ISD::getUnorderedFlavor(Cond)) {
- default: llvm_unreachable("Unknown flavor!");
- case 0: // Known false.
- return DAG.getBoolConstant(false, dl, VT, OpVT);
- case 1: // Known true.
- return DAG.getBoolConstant(true, dl, VT, OpVT);
- case 2: // Undefined.
- return DAG.getUNDEF(VT);
- }
- }
-
- // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the
- // constant if knowing that the operand is non-nan is enough. We prefer to
- // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
- // materialize 0.0.
- if (Cond == ISD::SETO || Cond == ISD::SETUO)
- return DAG.getSetCC(dl, VT, N0, N0, Cond);
-
- // setcc (fneg x), C -> setcc swap(pred) x, -C
- if (N0.getOpcode() == ISD::FNEG) {
- ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
- if (DCI.isBeforeLegalizeOps() ||
- isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
- SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
- return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
- }
- }
-
- // If the condition is not legal, see if we can find an equivalent one
- // which is legal.
- if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
- // If the comparison was an awkward floating-point == or != and one of
- // the comparison operands is infinity or negative infinity, convert the
- // condition to a less-awkward <= or >=.
- if (CFP->getValueAPF().isInfinity()) {
- if (CFP->getValueAPF().isNegative()) {
- if (Cond == ISD::SETOEQ &&
- isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
- return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
- if (Cond == ISD::SETUEQ &&
- isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
- return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
- if (Cond == ISD::SETUNE &&
- isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
- return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
- if (Cond == ISD::SETONE &&
- isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
- return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
- } else {
- if (Cond == ISD::SETOEQ &&
- isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
- return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
- if (Cond == ISD::SETUEQ &&
- isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
- return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
- if (Cond == ISD::SETUNE &&
- isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
- return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
- if (Cond == ISD::SETONE &&
- isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
- return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
- }
- }
- }
- }
-
- if (N0 == N1) {
- // The sext(setcc()) => setcc() optimization relies on the appropriate
- // constant being emitted.
-
- bool EqTrue = ISD::isTrueWhenEqual(Cond);
-
- // We can always fold X == X for integer setcc's.
- if (N0.getValueType().isInteger())
- return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
-
- unsigned UOF = ISD::getUnorderedFlavor(Cond);
- if (UOF == 2) // FP operators that are undefined on NaNs.
- return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
- if (UOF == unsigned(EqTrue))
- return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
- // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO
- // if it is not already.
- ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
- if (NewCond != Cond &&
- (DCI.isBeforeLegalizeOps() ||
- isCondCodeLegal(NewCond, N0.getSimpleValueType())))
- return DAG.getSetCC(dl, VT, N0, N1, NewCond);
- }
-
- if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
- N0.getValueType().isInteger()) {
- if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
- N0.getOpcode() == ISD::XOR) {
- // Simplify (X+Y) == (X+Z) --> Y == Z
- if (N0.getOpcode() == N1.getOpcode()) {
- if (N0.getOperand(0) == N1.getOperand(0))
- return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
- if (N0.getOperand(1) == N1.getOperand(1))
- return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
- if (isCommutativeBinOp(N0.getOpcode())) {
- // If X op Y == Y op X, try other combinations.
- if (N0.getOperand(0) == N1.getOperand(1))
- return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
- Cond);
- if (N0.getOperand(1) == N1.getOperand(0))
- return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
- Cond);
- }
- }
-
- // If RHS is a legal immediate value for a compare instruction, we need
- // to be careful about increasing register pressure needlessly.
- bool LegalRHSImm = false;
-
- if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
- if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
- // Turn (X+C1) == C2 --> X == C2-C1
- if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
- return DAG.getSetCC(dl, VT, N0.getOperand(0),
- DAG.getConstant(RHSC->getAPIntValue()-
- LHSR->getAPIntValue(),
- dl, N0.getValueType()), Cond);
- }
-
- // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
- if (N0.getOpcode() == ISD::XOR)
- // If we know that all of the inverted bits are zero, don't bother
- // performing the inversion.
- if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
- return
- DAG.getSetCC(dl, VT, N0.getOperand(0),
- DAG.getConstant(LHSR->getAPIntValue() ^
- RHSC->getAPIntValue(),
- dl, N0.getValueType()),
- Cond);
- }
-
- // Turn (C1-X) == C2 --> X == C1-C2
- if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
- if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
- return
- DAG.getSetCC(dl, VT, N0.getOperand(1),
- DAG.getConstant(SUBC->getAPIntValue() -
- RHSC->getAPIntValue(),
- dl, N0.getValueType()),
- Cond);
- }
- }
-
- // Could RHSC fold directly into a compare?
- if (RHSC->getValueType(0).getSizeInBits() <= 64)
- LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
- }
-
- // Simplify (X+Z) == X --> Z == 0
- // Don't do this if X is an immediate that can fold into a cmp
- // instruction and X+Z has other uses. It could be an induction variable
- // chain, and the transform would increase register pressure.
- if (!LegalRHSImm || N0.getNode()->hasOneUse()) {
- if (N0.getOperand(0) == N1)
- return DAG.getSetCC(dl, VT, N0.getOperand(1),
- DAG.getConstant(0, dl, N0.getValueType()), Cond);
- if (N0.getOperand(1) == N1) {
- if (isCommutativeBinOp(N0.getOpcode()))
- return DAG.getSetCC(dl, VT, N0.getOperand(0),
- DAG.getConstant(0, dl, N0.getValueType()),
- Cond);
- if (N0.getNode()->hasOneUse()) {
- assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
- auto &DL = DAG.getDataLayout();
- // (Z-X) == X --> Z == X<<1
- SDValue SH = DAG.getNode(
- ISD::SHL, dl, N1.getValueType(), N1,
- DAG.getConstant(1, dl,
- getShiftAmountTy(N1.getValueType(), DL,
- !DCI.isBeforeLegalize())));
- if (!DCI.isCalledByLegalizer())
- DCI.AddToWorklist(SH.getNode());
- return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
- }
- }
- }
- }
-
- if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
- N1.getOpcode() == ISD::XOR) {
- // Simplify X == (X+Z) --> Z == 0
- if (N1.getOperand(0) == N0)
- return DAG.getSetCC(dl, VT, N1.getOperand(1),
- DAG.getConstant(0, dl, N1.getValueType()), Cond);
- if (N1.getOperand(1) == N0) {
- if (isCommutativeBinOp(N1.getOpcode()))
- return DAG.getSetCC(dl, VT, N1.getOperand(0),
- DAG.getConstant(0, dl, N1.getValueType()), Cond);
- if (N1.getNode()->hasOneUse()) {
- assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
- auto &DL = DAG.getDataLayout();
- // X == (Z-X) --> X<<1 == Z
- SDValue SH = DAG.getNode(
- ISD::SHL, dl, N1.getValueType(), N0,
- DAG.getConstant(1, dl, getShiftAmountTy(N0.getValueType(), DL,
- !DCI.isBeforeLegalize())));
- if (!DCI.isCalledByLegalizer())
- DCI.AddToWorklist(SH.getNode());
- return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
- }
- }
- }
-
- if (SDValue V = simplifySetCCWithAnd(VT, N0, N1, Cond, DCI, dl))
- return V;
- }
-
- // Fold away ALL boolean setcc's.
- SDValue Temp;
- if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
- EVT OpVT = N0.getValueType();
- switch (Cond) {
- default: llvm_unreachable("Unknown integer setcc!");
- case ISD::SETEQ: // X == Y -> ~(X^Y)
- Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
- N0 = DAG.getNOT(dl, Temp, OpVT);
- if (!DCI.isCalledByLegalizer())
- DCI.AddToWorklist(Temp.getNode());
- break;
- case ISD::SETNE: // X != Y --> (X^Y)
- N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
- break;
- case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y
- case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y
- Temp = DAG.getNOT(dl, N0, OpVT);
- N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
- if (!DCI.isCalledByLegalizer())
- DCI.AddToWorklist(Temp.getNode());
- break;
- case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X
- case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X
- Temp = DAG.getNOT(dl, N1, OpVT);
- N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
- if (!DCI.isCalledByLegalizer())
- DCI.AddToWorklist(Temp.getNode());
- break;
- case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y
- case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y
- Temp = DAG.getNOT(dl, N0, OpVT);
- N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
- if (!DCI.isCalledByLegalizer())
- DCI.AddToWorklist(Temp.getNode());
- break;
- case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X
- case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X
- Temp = DAG.getNOT(dl, N1, OpVT);
- N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
- break;
- }
- if (VT.getScalarType() != MVT::i1) {
- if (!DCI.isCalledByLegalizer())
- DCI.AddToWorklist(N0.getNode());
- // FIXME: If running after legalize, we probably can't do this.
- ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
- N0 = DAG.getNode(ExtendCode, dl, VT, N0);
- }
- return N0;
- }
-
- // Could not fold it.
- return SDValue();
-}
-
-/// Returns true (and the GlobalValue and the offset) if the node is a
-/// GlobalAddress + offset.
-bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
- int64_t &Offset) const {
-
- SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
-
- if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
- GA = GASD->getGlobal();
- Offset += GASD->getOffset();
- return true;
- }
-
- if (N->getOpcode() == ISD::ADD) {
- SDValue N1 = N->getOperand(0);
- SDValue N2 = N->getOperand(1);
- if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
- if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
- Offset += V->getSExtValue();
- return true;
- }
- } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
- if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
- Offset += V->getSExtValue();
- return true;
- }
- }
- }
-
- return false;
-}
-
-SDValue TargetLowering::PerformDAGCombine(SDNode *N,
- DAGCombinerInfo &DCI) const {
- // Default implementation: no optimization.
- return SDValue();
-}
-
-//===----------------------------------------------------------------------===//
-// Inline Assembler Implementation Methods
-//===----------------------------------------------------------------------===//
-
-TargetLowering::ConstraintType
-TargetLowering::getConstraintType(StringRef Constraint) const {
- unsigned S = Constraint.size();
-
- if (S == 1) {
- switch (Constraint[0]) {
- default: break;
- case 'r': return C_RegisterClass;
- case 'm': // memory
- case 'o': // offsetable
- case 'V': // not offsetable
- return C_Memory;
- case 'i': // Simple Integer or Relocatable Constant
- case 'n': // Simple Integer
- case 'E': // Floating Point Constant
- case 'F': // Floating Point Constant
- case 's': // Relocatable Constant
- case 'p': // Address.
- case 'X': // Allow ANY value.
- case 'I': // Target registers.
- case 'J':
- case 'K':
- case 'L':
- case 'M':
- case 'N':
- case 'O':
- case 'P':
- case '<':
- case '>':
- return C_Other;
- }
- }
-
- if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') {
- if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
- return C_Memory;
- return C_Register;
- }
- return C_Unknown;
-}
-
-/// Try to replace an X constraint, which matches anything, with another that
-/// has more specific requirements based on the type of the corresponding
-/// operand.
-const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
- if (ConstraintVT.isInteger())
- return "r";
- if (ConstraintVT.isFloatingPoint())
- return "f"; // works for many targets
- return nullptr;
-}
-
-/// Lower the specified operand into the Ops vector.
-/// If it is invalid, don't add anything to Ops.
-void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
- std::string &Constraint,
- std::vector<SDValue> &Ops,
- SelectionDAG &DAG) const {
-
- if (Constraint.length() > 1) return;
-
- char ConstraintLetter = Constraint[0];
- switch (ConstraintLetter) {
- default: break;
- case 'X': // Allows any operand; labels (basic block) use this.
- if (Op.getOpcode() == ISD::BasicBlock) {
- Ops.push_back(Op);
- return;
- }
- LLVM_FALLTHROUGH;
- case 'i': // Simple Integer or Relocatable Constant
- case 'n': // Simple Integer
- case 's': { // Relocatable Constant
- // These operands are interested in values of the form (GV+C), where C may
- // be folded in as an offset of GV, or it may be explicitly added. Also, it
- // is possible and fine if either GV or C are missing.
- ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
- GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
-
- // If we have "(add GV, C)", pull out GV/C
- if (Op.getOpcode() == ISD::ADD) {
- C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
- GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
- if (!C || !GA) {
- C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
- GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
- }
- if (!C || !GA) {
- C = nullptr;
- GA = nullptr;
- }
- }
-
- // If we find a valid operand, map to the TargetXXX version so that the
- // value itself doesn't get selected.
- if (GA) { // Either &GV or &GV+C
- if (ConstraintLetter != 'n') {
- int64_t Offs = GA->getOffset();
- if (C) Offs += C->getZExtValue();
- Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
- C ? SDLoc(C) : SDLoc(),
- Op.getValueType(), Offs));
- }
- return;
- }
- if (C) { // just C, no GV.
- // Simple constants are not allowed for 's'.
- if (ConstraintLetter != 's') {
- // gcc prints these as sign extended. Sign extend value to 64 bits
- // now; without this it would get ZExt'd later in
- // ScheduleDAGSDNodes::EmitNode, which is very generic.
- Ops.push_back(DAG.getTargetConstant(C->getSExtValue(),
- SDLoc(C), MVT::i64));
- }
- return;
- }
- break;
- }
- }
-}
-
-std::pair<unsigned, const TargetRegisterClass *>
-TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
- StringRef Constraint,
- MVT VT) const {
- if (Constraint.empty() || Constraint[0] != '{')
- return std::make_pair(0u, static_cast<TargetRegisterClass*>(nullptr));
- assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
-
- // Remove the braces from around the name.
- StringRef RegName(Constraint.data()+1, Constraint.size()-2);
-
- std::pair<unsigned, const TargetRegisterClass*> R =
- std::make_pair(0u, static_cast<const TargetRegisterClass*>(nullptr));
-
- // Figure out which register class contains this reg.
- for (const TargetRegisterClass *RC : RI->regclasses()) {
- // If none of the value types for this register class are valid, we
- // can't use it. For example, 64-bit reg classes on 32-bit targets.
- if (!isLegalRC(*RI, *RC))
- continue;
-
- for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
- I != E; ++I) {
- if (RegName.equals_lower(RI->getRegAsmName(*I))) {
- std::pair<unsigned, const TargetRegisterClass*> S =
- std::make_pair(*I, RC);
-
- // If this register class has the requested value type, return it,
- // otherwise keep searching and return the first class found
- // if no other is found which explicitly has the requested type.
- if (RI->isTypeLegalForClass(*RC, VT))
- return S;
- if (!R.second)
- R = S;
- }
- }
- }
-
- return R;
-}
-
-//===----------------------------------------------------------------------===//
-// Constraint Selection.
-
-/// Return true of this is an input operand that is a matching constraint like
-/// "4".
-bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
- assert(!ConstraintCode.empty() && "No known constraint!");
- return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
-}
-
-/// If this is an input matching constraint, this method returns the output
-/// operand it matches.
-unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
- assert(!ConstraintCode.empty() && "No known constraint!");
- return atoi(ConstraintCode.c_str());
-}
-
-/// Split up the constraint string from the inline assembly value into the
-/// specific constraints and their prefixes, and also tie in the associated
-/// operand values.
-/// If this returns an empty vector, and if the constraint string itself
-/// isn't empty, there was an error parsing.
-TargetLowering::AsmOperandInfoVector
-TargetLowering::ParseConstraints(const DataLayout &DL,
- const TargetRegisterInfo *TRI,
- ImmutableCallSite CS) const {
- /// Information about all of the constraints.
- AsmOperandInfoVector ConstraintOperands;
- const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
- unsigned maCount = 0; // Largest number of multiple alternative constraints.
-
- // Do a prepass over the constraints, canonicalizing them, and building up the
- // ConstraintOperands list.
- unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
- unsigned ResNo = 0; // ResNo - The result number of the next output.
-
- for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
- ConstraintOperands.emplace_back(std::move(CI));
- AsmOperandInfo &OpInfo = ConstraintOperands.back();
-
- // Update multiple alternative constraint count.
- if (OpInfo.multipleAlternatives.size() > maCount)
- maCount = OpInfo.multipleAlternatives.size();
-
- OpInfo.ConstraintVT = MVT::Other;
-
- // Compute the value type for each operand.
- switch (OpInfo.Type) {
- case InlineAsm::isOutput:
- // Indirect outputs just consume an argument.
- if (OpInfo.isIndirect) {
- OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
- break;
- }
-
- // The return value of the call is this value. As such, there is no
- // corresponding argument.
- assert(!CS.getType()->isVoidTy() &&
- "Bad inline asm!");
- if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
- OpInfo.ConstraintVT =
- getSimpleValueType(DL, STy->getElementType(ResNo));
- } else {
- assert(ResNo == 0 && "Asm only has one result!");
- OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType());
- }
- ++ResNo;
- break;
- case InlineAsm::isInput:
- OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
- break;
- case InlineAsm::isClobber:
- // Nothing to do.
- break;
- }
-
- if (OpInfo.CallOperandVal) {
- llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
- if (OpInfo.isIndirect) {
- llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
- if (!PtrTy)
- report_fatal_error("Indirect operand for inline asm not a pointer!");
- OpTy = PtrTy->getElementType();
- }
-
- // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
- if (StructType *STy = dyn_cast<StructType>(OpTy))
- if (STy->getNumElements() == 1)
- OpTy = STy->getElementType(0);
-
- // If OpTy is not a single value, it may be a struct/union that we
- // can tile with integers.
- if (!OpTy->isSingleValueType() && OpTy->isSized()) {
- unsigned BitSize = DL.getTypeSizeInBits(OpTy);
- switch (BitSize) {
- default: break;
- case 1:
- case 8:
- case 16:
- case 32:
- case 64:
- case 128:
- OpInfo.ConstraintVT =
- MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
- break;
- }
- } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
- unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
- OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
- } else {
- OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
- }
- }
- }
-
- // If we have multiple alternative constraints, select the best alternative.
- if (!ConstraintOperands.empty()) {
- if (maCount) {
- unsigned bestMAIndex = 0;
- int bestWeight = -1;
- // weight: -1 = invalid match, and 0 = so-so match to 5 = good match.
- int weight = -1;
- unsigned maIndex;
- // Compute the sums of the weights for each alternative, keeping track
- // of the best (highest weight) one so far.
- for (maIndex = 0; maIndex < maCount; ++maIndex) {
- int weightSum = 0;
- for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
- cIndex != eIndex; ++cIndex) {
- AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
- if (OpInfo.Type == InlineAsm::isClobber)
- continue;
-
- // If this is an output operand with a matching input operand,
- // look up the matching input. If their types mismatch, e.g. one
- // is an integer, the other is floating point, or their sizes are
- // different, flag it as an maCantMatch.
- if (OpInfo.hasMatchingInput()) {
- AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
- if (OpInfo.ConstraintVT != Input.ConstraintVT) {
- if ((OpInfo.ConstraintVT.isInteger() !=
- Input.ConstraintVT.isInteger()) ||
- (OpInfo.ConstraintVT.getSizeInBits() !=
- Input.ConstraintVT.getSizeInBits())) {
- weightSum = -1; // Can't match.
- break;
- }
- }
- }
- weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
- if (weight == -1) {
- weightSum = -1;
- break;
- }
- weightSum += weight;
- }
- // Update best.
- if (weightSum > bestWeight) {
- bestWeight = weightSum;
- bestMAIndex = maIndex;
- }
- }
-
- // Now select chosen alternative in each constraint.
- for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
- cIndex != eIndex; ++cIndex) {
- AsmOperandInfo& cInfo = ConstraintOperands[cIndex];
- if (cInfo.Type == InlineAsm::isClobber)
- continue;
- cInfo.selectAlternative(bestMAIndex);
- }
- }
- }
-
- // Check and hook up tied operands, choose constraint code to use.
- for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
- cIndex != eIndex; ++cIndex) {
- AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
-
- // If this is an output operand with a matching input operand, look up the
- // matching input. If their types mismatch, e.g. one is an integer, the
- // other is floating point, or their sizes are different, flag it as an
- // error.
- if (OpInfo.hasMatchingInput()) {
- AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
-
- if (OpInfo.ConstraintVT != Input.ConstraintVT) {
- std::pair<unsigned, const TargetRegisterClass *> MatchRC =
- getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
- OpInfo.ConstraintVT);
- std::pair<unsigned, const TargetRegisterClass *> InputRC =
- getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
- Input.ConstraintVT);
- if ((OpInfo.ConstraintVT.isInteger() !=
- Input.ConstraintVT.isInteger()) ||
- (MatchRC.second != InputRC.second)) {
- report_fatal_error("Unsupported asm: input constraint"
- " with a matching output constraint of"
- " incompatible type!");
- }
- }
- }
- }
-
- return ConstraintOperands;
-}
-
-/// Return an integer indicating how general CT is.
-static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
- switch (CT) {
- case TargetLowering::C_Other:
- case TargetLowering::C_Unknown:
- return 0;
- case TargetLowering::C_Register:
- return 1;
- case TargetLowering::C_RegisterClass:
- return 2;
- case TargetLowering::C_Memory:
- return 3;
- }
- llvm_unreachable("Invalid constraint type");
-}
-
-/// Examine constraint type and operand type and determine a weight value.
-/// This object must already have been set up with the operand type
-/// and the current alternative constraint selected.
-TargetLowering::ConstraintWeight
- TargetLowering::getMultipleConstraintMatchWeight(
- AsmOperandInfo &info, int maIndex) const {
- InlineAsm::ConstraintCodeVector *rCodes;
- if (maIndex >= (int)info.multipleAlternatives.size())
- rCodes = &info.Codes;
- else
- rCodes = &info.multipleAlternatives[maIndex].Codes;
- ConstraintWeight BestWeight = CW_Invalid;
-
- // Loop over the options, keeping track of the most general one.
- for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
- ConstraintWeight weight =
- getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
- if (weight > BestWeight)
- BestWeight = weight;
- }
-
- return BestWeight;
-}
-
-/// Examine constraint type and operand type and determine a weight value.
-/// This object must already have been set up with the operand type
-/// and the current alternative constraint selected.
-TargetLowering::ConstraintWeight
- TargetLowering::getSingleConstraintMatchWeight(
- AsmOperandInfo &info, const char *constraint) const {
- ConstraintWeight weight = CW_Invalid;
- Value *CallOperandVal = info.CallOperandVal;
- // If we don't have a value, we can't do a match,
- // but allow it at the lowest weight.
- if (!CallOperandVal)
- return CW_Default;
- // Look at the constraint type.
- switch (*constraint) {
- case 'i': // immediate integer.
- case 'n': // immediate integer with a known value.
- if (isa<ConstantInt>(CallOperandVal))
- weight = CW_Constant;
- break;
- case 's': // non-explicit intregal immediate.
- if (isa<GlobalValue>(CallOperandVal))
- weight = CW_Constant;
- break;
- case 'E': // immediate float if host format.
- case 'F': // immediate float.
- if (isa<ConstantFP>(CallOperandVal))
- weight = CW_Constant;
- break;
- case '<': // memory operand with autodecrement.
- case '>': // memory operand with autoincrement.
- case 'm': // memory operand.
- case 'o': // offsettable memory operand
- case 'V': // non-offsettable memory operand
- weight = CW_Memory;
- break;
- case 'r': // general register.
- case 'g': // general register, memory operand or immediate integer.
- // note: Clang converts "g" to "imr".
- if (CallOperandVal->getType()->isIntegerTy())
- weight = CW_Register;
- break;
- case 'X': // any operand.
- default:
- weight = CW_Default;
- break;
- }
- return weight;
-}
-
-/// If there are multiple different constraints that we could pick for this
-/// operand (e.g. "imr") try to pick the 'best' one.
-/// This is somewhat tricky: constraints fall into four classes:
-/// Other -> immediates and magic values
-/// Register -> one specific register
-/// RegisterClass -> a group of regs
-/// Memory -> memory
-/// Ideally, we would pick the most specific constraint possible: if we have
-/// something that fits into a register, we would pick it. The problem here
-/// is that if we have something that could either be in a register or in
-/// memory that use of the register could cause selection of *other*
-/// operands to fail: they might only succeed if we pick memory. Because of
-/// this the heuristic we use is:
-///
-/// 1) If there is an 'other' constraint, and if the operand is valid for
-/// that constraint, use it. This makes us take advantage of 'i'
-/// constraints when available.
-/// 2) Otherwise, pick the most general constraint present. This prefers
-/// 'm' over 'r', for example.
-///
-static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
- const TargetLowering &TLI,
- SDValue Op, SelectionDAG *DAG) {
- assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
- unsigned BestIdx = 0;
- TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
- int BestGenerality = -1;
-
- // Loop over the options, keeping track of the most general one.
- for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
- TargetLowering::ConstraintType CType =
- TLI.getConstraintType(OpInfo.Codes[i]);
-
- // If this is an 'other' constraint, see if the operand is valid for it.
- // For example, on X86 we might have an 'rI' constraint. If the operand
- // is an integer in the range [0..31] we want to use I (saving a load
- // of a register), otherwise we must use 'r'.
- if (CType == TargetLowering::C_Other && Op.getNode()) {
- assert(OpInfo.Codes[i].size() == 1 &&
- "Unhandled multi-letter 'other' constraint");
- std::vector<SDValue> ResultOps;
- TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
- ResultOps, *DAG);
- if (!ResultOps.empty()) {
- BestType = CType;
- BestIdx = i;
- break;
- }
- }
-
- // Things with matching constraints can only be registers, per gcc
- // documentation. This mainly affects "g" constraints.
- if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
- continue;
-
- // This constraint letter is more general than the previous one, use it.
- int Generality = getConstraintGenerality(CType);
- if (Generality > BestGenerality) {
- BestType = CType;
- BestIdx = i;
- BestGenerality = Generality;
- }
- }
-
- OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
- OpInfo.ConstraintType = BestType;
-}
-
-/// Determines the constraint code and constraint type to use for the specific
-/// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
-void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
- SDValue Op,
- SelectionDAG *DAG) const {
- assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
-
- // Single-letter constraints ('r') are very common.
- if (OpInfo.Codes.size() == 1) {
- OpInfo.ConstraintCode = OpInfo.Codes[0];
- OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
- } else {
- ChooseConstraint(OpInfo, *this, Op, DAG);
- }
-
- // 'X' matches anything.
- if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
- // Labels and constants are handled elsewhere ('X' is the only thing
- // that matches labels). For Functions, the type here is the type of
- // the result, which is not what we want to look at; leave them alone.
- Value *v = OpInfo.CallOperandVal;
- if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
- OpInfo.CallOperandVal = v;
- return;
- }
-
- // Otherwise, try to resolve it to something we know about by looking at
- // the actual operand type.
- if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
- OpInfo.ConstraintCode = Repl;
- OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
- }
- }
-}
-
-/// Given an exact SDIV by a constant, create a multiplication
-/// with the multiplicative inverse of the constant.
-static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
- const SDLoc &dl, SelectionDAG &DAG,
- SmallVectorImpl<SDNode *> &Created) {
- SDValue Op0 = N->getOperand(0);
- SDValue Op1 = N->getOperand(1);
- EVT VT = N->getValueType(0);
- EVT SVT = VT.getScalarType();
- EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
- EVT ShSVT = ShVT.getScalarType();
-
- bool UseSRA = false;
- SmallVector<SDValue, 16> Shifts, Factors;
-
- auto BuildSDIVPattern = [&](ConstantSDNode *C) {
- if (C->isNullValue())
- return false;
- APInt Divisor = C->getAPIntValue();
- unsigned Shift = Divisor.countTrailingZeros();
- if (Shift) {
- Divisor.ashrInPlace(Shift);
- UseSRA = true;
- }
- // Calculate the multiplicative inverse, using Newton's method.
- APInt t;
- APInt Factor = Divisor;
- while ((t = Divisor * Factor) != 1)
- Factor *= APInt(Divisor.getBitWidth(), 2) - t;
- Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
- Factors.push_back(DAG.getConstant(Factor, dl, SVT));
- return true;
- };
-
- // Collect all magic values from the build vector.
- if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
- return SDValue();
-
- SDValue Shift, Factor;
- if (VT.isVector()) {
- Shift = DAG.getBuildVector(ShVT, dl, Shifts);
- Factor = DAG.getBuildVector(VT, dl, Factors);
- } else {
- Shift = Shifts[0];
- Factor = Factors[0];
- }
-
- SDValue Res = Op0;
-
- // Shift the value upfront if it is even, so the LSB is one.
- if (UseSRA) {
- // TODO: For UDIV use SRL instead of SRA.
- SDNodeFlags Flags;
- Flags.setExact(true);
- Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
- Created.push_back(Res.getNode());
- }
-
- return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
-}
-
-SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
- SelectionDAG &DAG,
- SmallVectorImpl<SDNode *> &Created) const {
- AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- if (TLI.isIntDivCheap(N->getValueType(0), Attr))
- return SDValue(N,0); // Lower SDIV as SDIV
- return SDValue();
-}
-
-/// Given an ISD::SDIV node expressing a divide by constant,
-/// return a DAG expression to select that will generate the same value by
-/// multiplying by a magic number.
-/// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
-SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
- bool IsAfterLegalization,
- SmallVectorImpl<SDNode *> &Created) const {
- SDLoc dl(N);
- EVT VT = N->getValueType(0);
- EVT SVT = VT.getScalarType();
- EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
- EVT ShSVT = ShVT.getScalarType();
- unsigned EltBits = VT.getScalarSizeInBits();
-
- // Check to see if we can do this.
- // FIXME: We should be more aggressive here.
- if (!isTypeLegal(VT))
- return SDValue();
-
- // If the sdiv has an 'exact' bit we can use a simpler lowering.
- if (N->getFlags().hasExact())
- return BuildExactSDIV(*this, N, dl, DAG, Created);
-
- SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
-
- auto BuildSDIVPattern = [&](ConstantSDNode *C) {
- if (C->isNullValue())
- return false;
-
- const APInt &Divisor = C->getAPIntValue();
- APInt::ms magics = Divisor.magic();
- int NumeratorFactor = 0;
- int ShiftMask = -1;
-
- if (Divisor.isOneValue() || Divisor.isAllOnesValue()) {
- // If d is +1/-1, we just multiply the numerator by +1/-1.
- NumeratorFactor = Divisor.getSExtValue();
- magics.m = 0;
- magics.s = 0;
- ShiftMask = 0;
- } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
- // If d > 0 and m < 0, add the numerator.
- NumeratorFactor = 1;
- } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
- // If d < 0 and m > 0, subtract the numerator.
- NumeratorFactor = -1;
- }
-
- MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT));
- Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
- Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT));
- ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
- return true;
- };
-
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
-
- // Collect the shifts / magic values from each element.
- if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
- return SDValue();
-
- SDValue MagicFactor, Factor, Shift, ShiftMask;
- if (VT.isVector()) {
- MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
- Factor = DAG.getBuildVector(VT, dl, Factors);
- Shift = DAG.getBuildVector(ShVT, dl, Shifts);
- ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
- } else {
- MagicFactor = MagicFactors[0];
- Factor = Factors[0];
- Shift = Shifts[0];
- ShiftMask = ShiftMasks[0];
- }
-
- // Multiply the numerator (operand 0) by the magic value.
- // FIXME: We should support doing a MUL in a wider type.
- SDValue Q;
- if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT)
- : isOperationLegalOrCustom(ISD::MULHS, VT))
- Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor);
- else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT)
- : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) {
- SDValue LoHi =
- DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor);
- Q = SDValue(LoHi.getNode(), 1);
- } else
- return SDValue(); // No mulhs or equivalent.
- Created.push_back(Q.getNode());
-
- // (Optionally) Add/subtract the numerator using Factor.
- Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
- Created.push_back(Factor.getNode());
- Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
- Created.push_back(Q.getNode());
-
- // Shift right algebraic by shift value.
- Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
- Created.push_back(Q.getNode());
-
- // Extract the sign bit, mask it and add it to the quotient.
- SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
- SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
- Created.push_back(T.getNode());
- T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
- Created.push_back(T.getNode());
- return DAG.getNode(ISD::ADD, dl, VT, Q, T);
-}
-
-/// Given an ISD::UDIV node expressing a divide by constant,
-/// return a DAG expression to select that will generate the same value by
-/// multiplying by a magic number.
-/// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
-SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
- bool IsAfterLegalization,
- SmallVectorImpl<SDNode *> &Created) const {
- SDLoc dl(N);
- EVT VT = N->getValueType(0);
- EVT SVT = VT.getScalarType();
- EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
- EVT ShSVT = ShVT.getScalarType();
- unsigned EltBits = VT.getScalarSizeInBits();
-
- // Check to see if we can do this.
- // FIXME: We should be more aggressive here.
- if (!isTypeLegal(VT))
- return SDValue();
-
- bool UseNPQ = false;
- SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
-
- auto BuildUDIVPattern = [&](ConstantSDNode *C) {
- if (C->isNullValue())
- return false;
- // FIXME: We should use a narrower constant when the upper
- // bits are known to be zero.
- APInt Divisor = C->getAPIntValue();
- APInt::mu magics = Divisor.magicu();
- unsigned PreShift = 0, PostShift = 0;
-
- // If the divisor is even, we can avoid using the expensive fixup by
- // shifting the divided value upfront.
- if (magics.a != 0 && !Divisor[0]) {
- PreShift = Divisor.countTrailingZeros();
- // Get magic number for the shifted divisor.
- magics = Divisor.lshr(PreShift).magicu(PreShift);
- assert(magics.a == 0 && "Should use cheap fixup now");
- }
-
- APInt Magic = magics.m;
-
- unsigned SelNPQ;
- if (magics.a == 0 || Divisor.isOneValue()) {
- assert(magics.s < Divisor.getBitWidth() &&
- "We shouldn't generate an undefined shift!");
- PostShift = magics.s;
- SelNPQ = false;
- } else {
- PostShift = magics.s - 1;
- SelNPQ = true;
- }
-
- PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
- MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
- NPQFactors.push_back(
- DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
- : APInt::getNullValue(EltBits),
- dl, SVT));
- PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
- UseNPQ |= SelNPQ;
- return true;
- };
-
- SDValue N0 = N->getOperand(0);
- SDValue N1 = N->getOperand(1);
-
- // Collect the shifts/magic values from each element.
- if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
- return SDValue();
-
- SDValue PreShift, PostShift, MagicFactor, NPQFactor;
- if (VT.isVector()) {
- PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
- MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
- NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
- PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
- } else {
- PreShift = PreShifts[0];
- MagicFactor = MagicFactors[0];
- PostShift = PostShifts[0];
- }
-
- SDValue Q = N0;
- Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
- Created.push_back(Q.getNode());
-
- // FIXME: We should support doing a MUL in a wider type.
- auto GetMULHU = [&](SDValue X, SDValue Y) {
- if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT)
- : isOperationLegalOrCustom(ISD::MULHU, VT))
- return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
- if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT)
- : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) {
- SDValue LoHi =
- DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
- return SDValue(LoHi.getNode(), 1);
- }
- return SDValue(); // No mulhu or equivalent
- };
-
- // Multiply the numerator (operand 0) by the magic value.
- Q = GetMULHU(Q, MagicFactor);
- if (!Q)
- return SDValue();
-
- Created.push_back(Q.getNode());
-
- if (UseNPQ) {
- SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
- Created.push_back(NPQ.getNode());
-
- // For vectors we might have a mix of non-NPQ/NPQ paths, so use
- // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
- if (VT.isVector())
- NPQ = GetMULHU(NPQ, NPQFactor);
- else
- NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
-
- Created.push_back(NPQ.getNode());
-
- Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
- Created.push_back(Q.getNode());
- }
-
- Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
- Created.push_back(Q.getNode());
-
- SDValue One = DAG.getConstant(1, dl, VT);
- SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ);
- return DAG.getSelect(dl, VT, IsOne, N0, Q);
-}
-
-bool TargetLowering::
-verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
- if (!isa<ConstantSDNode>(Op.getOperand(0))) {
- DAG.getContext()->emitError("argument to '__builtin_return_address' must "
- "be a constant integer");
- return true;
- }
-
- return false;
-}
-
-//===----------------------------------------------------------------------===//
-// Legalization Utilities
-//===----------------------------------------------------------------------===//
-
-bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl,
- SDValue LHS, SDValue RHS,
- SmallVectorImpl<SDValue> &Result,
- EVT HiLoVT, SelectionDAG &DAG,
- MulExpansionKind Kind, SDValue LL,
- SDValue LH, SDValue RL, SDValue RH) const {
- assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
- Opcode == ISD::SMUL_LOHI);
-
- bool HasMULHS = (Kind == MulExpansionKind::Always) ||
- isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
- bool HasMULHU = (Kind == MulExpansionKind::Always) ||
- isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
- bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
- isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
- bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
- isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
-
- if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
- return false;
-
- unsigned OuterBitSize = VT.getScalarSizeInBits();
- unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
- unsigned LHSSB = DAG.ComputeNumSignBits(LHS);
- unsigned RHSSB = DAG.ComputeNumSignBits(RHS);
-
- // LL, LH, RL, and RH must be either all NULL or all set to a value.
- assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
- (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
-
- SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
- auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
- bool Signed) -> bool {
- if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
- Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
- Hi = SDValue(Lo.getNode(), 1);
- return true;
- }
- if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
- Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
- Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
- return true;
- }
- return false;
- };
-
- SDValue Lo, Hi;
-
- if (!LL.getNode() && !RL.getNode() &&
- isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
- LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
- RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
- }
-
- if (!LL.getNode())
- return false;
-
- APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
- if (DAG.MaskedValueIsZero(LHS, HighMask) &&
- DAG.MaskedValueIsZero(RHS, HighMask)) {
- // The inputs are both zero-extended.
- if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
- Result.push_back(Lo);
- Result.push_back(Hi);
- if (Opcode != ISD::MUL) {
- SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
- Result.push_back(Zero);
- Result.push_back(Zero);
- }
- return true;
- }
- }
-
- if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize &&
- RHSSB > InnerBitSize) {
- // The input values are both sign-extended.
- // TODO non-MUL case?
- if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
- Result.push_back(Lo);
- Result.push_back(Hi);
- return true;
- }
- }
-
- unsigned ShiftAmount = OuterBitSize - InnerBitSize;
- EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
- if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
- // FIXME getShiftAmountTy does not always return a sensible result when VT
- // is an illegal type, and so the type may be too small to fit the shift
- // amount. Override it with i32. The shift will have to be legalized.
- ShiftAmountTy = MVT::i32;
- }
- SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
-
- if (!LH.getNode() && !RH.getNode() &&
- isOperationLegalOrCustom(ISD::SRL, VT) &&
- isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
- LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
- LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
- RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
- RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
- }
-
- if (!LH.getNode())
- return false;
-
- if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
- return false;
-
- Result.push_back(Lo);
-
- if (Opcode == ISD::MUL) {
- RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
- LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
- Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
- Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
- Result.push_back(Hi);
- return true;
- }
-
- // Compute the full width result.
- auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
- Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
- Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
- Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
- return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
- };
-
- SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
- if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
- return false;
-
- // This is effectively the add part of a multiply-add of half-sized operands,
- // so it cannot overflow.
- Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
-
- if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
- return false;
-
- SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
- EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
-
- bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
- isOperationLegalOrCustom(ISD::ADDE, VT));
- if (UseGlue)
- Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
- Merge(Lo, Hi));
- else
- Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
- Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
-
- SDValue Carry = Next.getValue(1);
- Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
- Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
-
- if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
- return false;
-
- if (UseGlue)
- Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
- Carry);
- else
- Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
- Zero, Carry);
-
- Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
-
- if (Opcode == ISD::SMUL_LOHI) {
- SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
- DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
- Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
-
- NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
- DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
- Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
- }
-
- Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
- Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
- Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
- return true;
-}
-
-bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
- SelectionDAG &DAG, MulExpansionKind Kind,
- SDValue LL, SDValue LH, SDValue RL,
- SDValue RH) const {
- SmallVector<SDValue, 2> Result;
- bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N,
- N->getOperand(0), N->getOperand(1), Result, HiLoVT,
- DAG, Kind, LL, LH, RL, RH);
- if (Ok) {
- assert(Result.size() == 2);
- Lo = Result[0];
- Hi = Result[1];
- }
- return Ok;
-}
-
-bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result,
- SelectionDAG &DAG) const {
- EVT VT = Node->getValueType(0);
-
- if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
- !isOperationLegalOrCustom(ISD::SRL, VT) ||
- !isOperationLegalOrCustom(ISD::SUB, VT) ||
- !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
- return false;
-
- // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
- // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
- SDValue X = Node->getOperand(0);
- SDValue Y = Node->getOperand(1);
- SDValue Z = Node->getOperand(2);
-
- unsigned EltSizeInBits = VT.getScalarSizeInBits();
- bool IsFSHL = Node->getOpcode() == ISD::FSHL;
- SDLoc DL(SDValue(Node, 0));
-
- EVT ShVT = Z.getValueType();
- SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
- SDValue Zero = DAG.getConstant(0, DL, ShVT);
-
- SDValue ShAmt;
- if (isPowerOf2_32(EltSizeInBits)) {
- SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
- ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
- } else {
- ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
- }
-
- SDValue InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
- SDValue ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
- SDValue ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
- SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
-
- // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
- // and that is undefined. We must compare and select to avoid UB.
- EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShVT);
-
- // For fshl, 0-shift returns the 1st arg (X).
- // For fshr, 0-shift returns the 2nd arg (Y).
- SDValue IsZeroShift = DAG.getSetCC(DL, CCVT, ShAmt, Zero, ISD::SETEQ);
- Result = DAG.getSelect(DL, VT, IsZeroShift, IsFSHL ? X : Y, Or);
- return true;
-}
-
-// TODO: Merge with expandFunnelShift.
-bool TargetLowering::expandROT(SDNode *Node, SDValue &Result,
- SelectionDAG &DAG) const {
- EVT VT = Node->getValueType(0);
- unsigned EltSizeInBits = VT.getScalarSizeInBits();
- bool IsLeft = Node->getOpcode() == ISD::ROTL;
- SDValue Op0 = Node->getOperand(0);
- SDValue Op1 = Node->getOperand(1);
- SDLoc DL(SDValue(Node, 0));
-
- EVT ShVT = Op1.getValueType();
- SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
-
- // If a rotate in the other direction is legal, use it.
- unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
- if (isOperationLegal(RevRot, VT)) {
- SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
- Result = DAG.getNode(RevRot, DL, VT, Op0, Sub);
- return true;
- }
-
- if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
- !isOperationLegalOrCustom(ISD::SRL, VT) ||
- !isOperationLegalOrCustom(ISD::SUB, VT) ||
- !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
- !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
- return false;
-
- // Otherwise,
- // (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1)))
- // (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1)))
- //
- assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 &&
- "Expecting the type bitwidth to be a power of 2");
- unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
- unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
- SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
- SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
- SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
- SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
- Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0),
- DAG.getNode(HsOpc, DL, VT, Op0, And1));
- return true;
-}
-
-bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
- SelectionDAG &DAG) const {
- SDValue Src = Node->getOperand(0);
- EVT SrcVT = Src.getValueType();
- EVT DstVT = Node->getValueType(0);
- SDLoc dl(SDValue(Node, 0));
-
- // FIXME: Only f32 to i64 conversions are supported.
- if (SrcVT != MVT::f32 || DstVT != MVT::i64)
- return false;
-
- // Expand f32 -> i64 conversion
- // This algorithm comes from compiler-rt's implementation of fixsfdi:
- // https://github.com/llvm-mirror/compiler-rt/blob/master/lib/builtins/fixsfdi.c
- unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
- EVT IntVT = SrcVT.changeTypeToInteger();
- EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
-
- SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
- SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
- SDValue Bias = DAG.getConstant(127, dl, IntVT);
- SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
- SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
- SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
-
- SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
-
- SDValue ExponentBits = DAG.getNode(
- ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
- DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
- SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
-
- SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
- DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
- DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
- Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
-
- SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
- DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
- DAG.getConstant(0x00800000, dl, IntVT));
-
- R = DAG.getZExtOrTrunc(R, dl, DstVT);
-
- R = DAG.getSelectCC(
- dl, Exponent, ExponentLoBit,
- DAG.getNode(ISD::SHL, dl, DstVT, R,
- DAG.getZExtOrTrunc(
- DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
- dl, IntShVT)),
- DAG.getNode(ISD::SRL, dl, DstVT, R,
- DAG.getZExtOrTrunc(
- DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
- dl, IntShVT)),
- ISD::SETGT);
-
- SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
- DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
-
- Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
- DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
- return true;
-}
-
-bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
- SelectionDAG &DAG) const {
- SDLoc dl(SDValue(Node, 0));
- SDValue Src = Node->getOperand(0);
-
- EVT SrcVT = Src.getValueType();
- EVT DstVT = Node->getValueType(0);
- EVT SetCCVT =
- getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
-
- // Only expand vector types if we have the appropriate vector bit operations.
- if (DstVT.isVector() && (!isOperationLegalOrCustom(ISD::FP_TO_SINT, DstVT) ||
- !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
- return false;
-
- // If the maximum float value is smaller then the signed integer range,
- // the destination signmask can't be represented by the float, so we can
- // just use FP_TO_SINT directly.
- const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
- APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits()));
- APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
- if (APFloat::opOverflow &
- APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
- Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
- return true;
- }
-
- SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
- SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
-
- bool Strict = shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
- if (Strict) {
- // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
- // signmask then offset (the result of which should be fully representable).
- // Sel = Src < 0x8000000000000000
- // Val = select Sel, Src, Src - 0x8000000000000000
- // Ofs = select Sel, 0, 0x8000000000000000
- // Result = fp_to_sint(Val) ^ Ofs
-
- // TODO: Should any fast-math-flags be set for the FSUB?
- SDValue Val = DAG.getSelect(dl, SrcVT, Sel, Src,
- DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
- SDValue Ofs = DAG.getSelect(dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT),
- DAG.getConstant(SignMask, dl, DstVT));
- Result = DAG.getNode(ISD::XOR, dl, DstVT,
- DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val), Ofs);
- } else {
- // Expand based on maximum range of FP_TO_SINT:
- // True = fp_to_sint(Src)
- // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
- // Result = select (Src < 0x8000000000000000), True, False
-
- SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
- // TODO: Should any fast-math-flags be set for the FSUB?
- SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
- DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
- False = DAG.getNode(ISD::XOR, dl, DstVT, False,
- DAG.getConstant(SignMask, dl, DstVT));
- Result = DAG.getSelect(dl, DstVT, Sel, True, False);
- }
- return true;
-}
-
-bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
- SelectionDAG &DAG) const {
- SDValue Src = Node->getOperand(0);
- EVT SrcVT = Src.getValueType();
- EVT DstVT = Node->getValueType(0);
-
- if (SrcVT.getScalarType() != MVT::i64)
- return false;
-
- SDLoc dl(SDValue(Node, 0));
- EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
-
- if (DstVT.getScalarType() == MVT::f32) {
- // Only expand vector types if we have the appropriate vector bit
- // operations.
- if (SrcVT.isVector() &&
- (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
- !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
- !isOperationLegalOrCustom(ISD::SINT_TO_FP, SrcVT) ||
- !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
- !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
- return false;
-
- // For unsigned conversions, convert them to signed conversions using the
- // algorithm from the x86_64 __floatundidf in compiler_rt.
- SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Src);
-
- SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT);
- SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Src, ShiftConst);
- SDValue AndConst = DAG.getConstant(1, dl, SrcVT);
- SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Src, AndConst);
- SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr);
-
- SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Or);
- SDValue Slow = DAG.getNode(ISD::FADD, dl, DstVT, SignCvt, SignCvt);
-
- // TODO: This really should be implemented using a branch rather than a
- // select. We happen to get lucky and machinesink does the right
- // thing most of the time. This would be a good candidate for a
- // pseudo-op, or, even better, for whole-function isel.
- EVT SetCCVT =
- getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
-
- SDValue SignBitTest = DAG.getSetCC(
- dl, SetCCVT, Src, DAG.getConstant(0, dl, SrcVT), ISD::SETLT);
- Result = DAG.getSelect(dl, DstVT, SignBitTest, Slow, Fast);
- return true;
- }
-
- if (DstVT.getScalarType() == MVT::f64) {
- // Only expand vector types if we have the appropriate vector bit
- // operations.
- if (SrcVT.isVector() &&
- (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
- !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
- !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
- !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
- !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
- return false;
-
- // Implementation of unsigned i64 to f64 following the algorithm in
- // __floatundidf in compiler_rt. This implementation has the advantage
- // of performing rounding correctly, both in the default rounding mode
- // and in all alternate rounding modes.
- SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
- SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
- BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
- SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
- SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
- SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
-
- SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
- SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
- SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
- SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
- SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
- SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
- SDValue HiSub = DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
- Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
- return true;
- }
-
- return false;
-}
-
-SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
- SelectionDAG &DAG) const {
- SDLoc dl(Node);
- unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
- ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
- EVT VT = Node->getValueType(0);
- if (isOperationLegalOrCustom(NewOp, VT)) {
- SDValue Quiet0 = Node->getOperand(0);
- SDValue Quiet1 = Node->getOperand(1);
-
- if (!Node->getFlags().hasNoNaNs()) {
- // Insert canonicalizes if it's possible we need to quiet to get correct
- // sNaN behavior.
- if (!DAG.isKnownNeverSNaN(Quiet0)) {
- Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
- Node->getFlags());
- }
- if (!DAG.isKnownNeverSNaN(Quiet1)) {
- Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
- Node->getFlags());
- }
- }
-
- return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
- }
-
- return SDValue();
-}
-
-bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result,
- SelectionDAG &DAG) const {
- SDLoc dl(Node);
- EVT VT = Node->getValueType(0);
- EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
- SDValue Op = Node->getOperand(0);
- unsigned Len = VT.getScalarSizeInBits();
- assert(VT.isInteger() && "CTPOP not implemented for this type.");
-
- // TODO: Add support for irregular type lengths.
- if (!(Len <= 128 && Len % 8 == 0))
- return false;
-
- // Only expand vector types if we have the appropriate vector bit operations.
- if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) ||
- !isOperationLegalOrCustom(ISD::SUB, VT) ||
- !isOperationLegalOrCustom(ISD::SRL, VT) ||
- (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) ||
- !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
- return false;
-
- // This is the "best" algorithm from
- // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
- SDValue Mask55 =
- DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
- SDValue Mask33 =
- DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
- SDValue Mask0F =
- DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
- SDValue Mask01 =
- DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
-
- // v = v - ((v >> 1) & 0x55555555...)
- Op = DAG.getNode(ISD::SUB, dl, VT, Op,
- DAG.getNode(ISD::AND, dl, VT,
- DAG.getNode(ISD::SRL, dl, VT, Op,
- DAG.getConstant(1, dl, ShVT)),
- Mask55));
- // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
- Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
- DAG.getNode(ISD::AND, dl, VT,
- DAG.getNode(ISD::SRL, dl, VT, Op,
- DAG.getConstant(2, dl, ShVT)),
- Mask33));
- // v = (v + (v >> 4)) & 0x0F0F0F0F...
- Op = DAG.getNode(ISD::AND, dl, VT,
- DAG.getNode(ISD::ADD, dl, VT, Op,
- DAG.getNode(ISD::SRL, dl, VT, Op,
- DAG.getConstant(4, dl, ShVT))),
- Mask0F);
- // v = (v * 0x01010101...) >> (Len - 8)
- if (Len > 8)
- Op =
- DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
- DAG.getConstant(Len - 8, dl, ShVT));
-
- Result = Op;
- return true;
-}
-
-bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result,
- SelectionDAG &DAG) const {
- SDLoc dl(Node);
- EVT VT = Node->getValueType(0);
- EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
- SDValue Op = Node->getOperand(0);
- unsigned NumBitsPerElt = VT.getScalarSizeInBits();
-
- // If the non-ZERO_UNDEF version is supported we can use that instead.
- if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
- isOperationLegalOrCustom(ISD::CTLZ, VT)) {
- Result = DAG.getNode(ISD::CTLZ, dl, VT, Op);
- return true;
- }
-
- // If the ZERO_UNDEF version is supported use that and handle the zero case.
- if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
- EVT SetCCVT =
- getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
- SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
- SDValue Zero = DAG.getConstant(0, dl, VT);
- SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
- Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
- DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
- return true;
- }
-
- // Only expand vector types if we have the appropriate vector bit operations.
- if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
- !isOperationLegalOrCustom(ISD::CTPOP, VT) ||
- !isOperationLegalOrCustom(ISD::SRL, VT) ||
- !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
- return false;
-
- // for now, we do this:
- // x = x | (x >> 1);
- // x = x | (x >> 2);
- // ...
- // x = x | (x >>16);
- // x = x | (x >>32); // for 64-bit input
- // return popcount(~x);
- //
- // Ref: "Hacker's Delight" by Henry Warren
- for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
- SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
- Op = DAG.getNode(ISD::OR, dl, VT, Op,
- DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
- }
- Op = DAG.getNOT(dl, Op, VT);
- Result = DAG.getNode(ISD::CTPOP, dl, VT, Op);
- return true;
-}
-
-bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result,
- SelectionDAG &DAG) const {
- SDLoc dl(Node);
- EVT VT = Node->getValueType(0);
- SDValue Op = Node->getOperand(0);
- unsigned NumBitsPerElt = VT.getScalarSizeInBits();
-
- // If the non-ZERO_UNDEF version is supported we can use that instead.
- if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
- isOperationLegalOrCustom(ISD::CTTZ, VT)) {
- Result = DAG.getNode(ISD::CTTZ, dl, VT, Op);
- return true;
- }
-
- // If the ZERO_UNDEF version is supported use that and handle the zero case.
- if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
- EVT SetCCVT =
- getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
- SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
- SDValue Zero = DAG.getConstant(0, dl, VT);
- SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
- Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
- DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
- return true;
- }
-
- // Only expand vector types if we have the appropriate vector bit operations.
- if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
- (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
- !isOperationLegalOrCustom(ISD::CTLZ, VT)) ||
- !isOperationLegalOrCustom(ISD::SUB, VT) ||
- !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
- !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
- return false;
-
- // for now, we use: { return popcount(~x & (x - 1)); }
- // unless the target has ctlz but not ctpop, in which case we use:
- // { return 32 - nlz(~x & (x-1)); }
- // Ref: "Hacker's Delight" by Henry Warren
- SDValue Tmp = DAG.getNode(
- ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
- DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
-
- // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
- if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
- Result =
- DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
- DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
- return true;
- }
-
- Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
- return true;
-}
-
-bool TargetLowering::expandABS(SDNode *N, SDValue &Result,
- SelectionDAG &DAG) const {
- SDLoc dl(N);
- EVT VT = N->getValueType(0);
- EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
- SDValue Op = N->getOperand(0);
-
- // Only expand vector types if we have the appropriate vector operations.
- if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) ||
- !isOperationLegalOrCustom(ISD::ADD, VT) ||
- !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
- return false;
-
- SDValue Shift =
- DAG.getNode(ISD::SRA, dl, VT, Op,
- DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
- SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift);
- Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift);
- return true;
-}
-
-SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
- SelectionDAG &DAG) const {
- SDLoc SL(LD);
- SDValue Chain = LD->getChain();
- SDValue BasePTR = LD->getBasePtr();
- EVT SrcVT = LD->getMemoryVT();
- ISD::LoadExtType ExtType = LD->getExtensionType();
-
- unsigned NumElem = SrcVT.getVectorNumElements();
-
- EVT SrcEltVT = SrcVT.getScalarType();
- EVT DstEltVT = LD->getValueType(0).getScalarType();
-
- unsigned Stride = SrcEltVT.getSizeInBits() / 8;
- assert(SrcEltVT.isByteSized());
-
- SmallVector<SDValue, 8> Vals;
- SmallVector<SDValue, 8> LoadChains;
-
- for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
- SDValue ScalarLoad =
- DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
- LD->getPointerInfo().getWithOffset(Idx * Stride),
- SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride),
- LD->getMemOperand()->getFlags(), LD->getAAInfo());
-
- BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride);
-
- Vals.push_back(ScalarLoad.getValue(0));
- LoadChains.push_back(ScalarLoad.getValue(1));
- }
-
- SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
- SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals);
-
- return DAG.getMergeValues({ Value, NewChain }, SL);
-}
-
-SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
- SelectionDAG &DAG) const {
- SDLoc SL(ST);
-
- SDValue Chain = ST->getChain();
- SDValue BasePtr = ST->getBasePtr();
- SDValue Value = ST->getValue();
- EVT StVT = ST->getMemoryVT();
-
- // The type of the data we want to save
- EVT RegVT = Value.getValueType();
- EVT RegSclVT = RegVT.getScalarType();
-
- // The type of data as saved in memory.
- EVT MemSclVT = StVT.getScalarType();
-
- EVT IdxVT = getVectorIdxTy(DAG.getDataLayout());
- unsigned NumElem = StVT.getVectorNumElements();
-
- // A vector must always be stored in memory as-is, i.e. without any padding
- // between the elements, since various code depend on it, e.g. in the
- // handling of a bitcast of a vector type to int, which may be done with a
- // vector store followed by an integer load. A vector that does not have
- // elements that are byte-sized must therefore be stored as an integer
- // built out of the extracted vector elements.
- if (!MemSclVT.isByteSized()) {
- unsigned NumBits = StVT.getSizeInBits();
- EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
-
- SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
-
- for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
- SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
- DAG.getConstant(Idx, SL, IdxVT));
- SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
- SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
- unsigned ShiftIntoIdx =
- (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
- SDValue ShiftAmount =
- DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
- SDValue ShiftedElt =
- DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
- CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
- }
-
- return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
- ST->getAlignment(), ST->getMemOperand()->getFlags(),
- ST->getAAInfo());
- }
-
- // Store Stride in bytes
- unsigned Stride = MemSclVT.getSizeInBits() / 8;
- assert (Stride && "Zero stride!");
- // Extract each of the elements from the original vector and save them into
- // memory individually.
- SmallVector<SDValue, 8> Stores;
- for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
- SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
- DAG.getConstant(Idx, SL, IdxVT));
-
- SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride);
-
- // This scalar TruncStore may be illegal, but we legalize it later.
- SDValue Store = DAG.getTruncStore(
- Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
- MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride),
- ST->getMemOperand()->getFlags(), ST->getAAInfo());
-
- Stores.push_back(Store);
- }
-
- return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
-}
-
-std::pair<SDValue, SDValue>
-TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
- assert(LD->getAddressingMode() == ISD::UNINDEXED &&
- "unaligned indexed loads not implemented!");
- SDValue Chain = LD->getChain();
- SDValue Ptr = LD->getBasePtr();
- EVT VT = LD->getValueType(0);
- EVT LoadedVT = LD->getMemoryVT();
- SDLoc dl(LD);
- auto &MF = DAG.getMachineFunction();
-
- if (VT.isFloatingPoint() || VT.isVector()) {
- EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
- if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
- if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
- LoadedVT.isVector()) {
- // Scalarize the load and let the individual components be handled.
- SDValue Scalarized = scalarizeVectorLoad(LD, DAG);
- if (Scalarized->getOpcode() == ISD::MERGE_VALUES)
- return std::make_pair(Scalarized.getOperand(0), Scalarized.getOperand(1));
- return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1));
- }
-
- // Expand to a (misaligned) integer load of the same size,
- // then bitconvert to floating point or vector.
- SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
- LD->getMemOperand());
- SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
- if (LoadedVT != VT)
- Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
- ISD::ANY_EXTEND, dl, VT, Result);
-
- return std::make_pair(Result, newLoad.getValue(1));
- }
-
- // Copy the value to a (aligned) stack slot using (unaligned) integer
- // loads and stores, then do a (aligned) load from the stack slot.
- MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
- unsigned LoadedBytes = LoadedVT.getStoreSize();
- unsigned RegBytes = RegVT.getSizeInBits() / 8;
- unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
-
- // Make sure the stack slot is also aligned for the register type.
- SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
- auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
- SmallVector<SDValue, 8> Stores;
- SDValue StackPtr = StackBase;
- unsigned Offset = 0;
-
- EVT PtrVT = Ptr.getValueType();
- EVT StackPtrVT = StackPtr.getValueType();
-
- SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
- SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
-
- // Do all but one copies using the full register width.
- for (unsigned i = 1; i < NumRegs; i++) {
- // Load one integer register's worth from the original location.
- SDValue Load = DAG.getLoad(
- RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
- MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(),
- LD->getAAInfo());
- // Follow the load with a store to the stack slot. Remember the store.
- Stores.push_back(DAG.getStore(
- Load.getValue(1), dl, Load, StackPtr,
- MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
- // Increment the pointers.
- Offset += RegBytes;
-
- Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
- StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
- }
-
- // The last copy may be partial. Do an extending load.
- EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
- 8 * (LoadedBytes - Offset));
- SDValue Load =
- DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
- LD->getPointerInfo().getWithOffset(Offset), MemVT,
- MinAlign(LD->getAlignment(), Offset),
- LD->getMemOperand()->getFlags(), LD->getAAInfo());
- // Follow the load with a store to the stack slot. Remember the store.
- // On big-endian machines this requires a truncating store to ensure
- // that the bits end up in the right place.
- Stores.push_back(DAG.getTruncStore(
- Load.getValue(1), dl, Load, StackPtr,
- MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
-
- // The order of the stores doesn't matter - say it with a TokenFactor.
- SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
-
- // Finally, perform the original load only redirected to the stack slot.
- Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
- MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
- LoadedVT);
-
- // Callers expect a MERGE_VALUES node.
- return std::make_pair(Load, TF);
- }
-
- assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
- "Unaligned load of unsupported type.");
-
- // Compute the new VT that is half the size of the old one. This is an
- // integer MVT.
- unsigned NumBits = LoadedVT.getSizeInBits();
- EVT NewLoadedVT;
- NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
- NumBits >>= 1;
-
- unsigned Alignment = LD->getAlignment();
- unsigned IncrementSize = NumBits / 8;
- ISD::LoadExtType HiExtType = LD->getExtensionType();
-
- // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
- if (HiExtType == ISD::NON_EXTLOAD)
- HiExtType = ISD::ZEXTLOAD;
-
- // Load the value in two parts
- SDValue Lo, Hi;
- if (DAG.getDataLayout().isLittleEndian()) {
- Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
- NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
- LD->getAAInfo());
-
- Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
- Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
- LD->getPointerInfo().getWithOffset(IncrementSize),
- NewLoadedVT, MinAlign(Alignment, IncrementSize),
- LD->getMemOperand()->getFlags(), LD->getAAInfo());
- } else {
- Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
- NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
- LD->getAAInfo());
-
- Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
- Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
- LD->getPointerInfo().getWithOffset(IncrementSize),
- NewLoadedVT, MinAlign(Alignment, IncrementSize),
- LD->getMemOperand()->getFlags(), LD->getAAInfo());
- }
-
- // aggregate the two parts
- SDValue ShiftAmount =
- DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
- DAG.getDataLayout()));
- SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
- Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
-
- SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
- Hi.getValue(1));
-
- return std::make_pair(Result, TF);
-}
-
-SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
- SelectionDAG &DAG) const {
- assert(ST->getAddressingMode() == ISD::UNINDEXED &&
- "unaligned indexed stores not implemented!");
- SDValue Chain = ST->getChain();
- SDValue Ptr = ST->getBasePtr();
- SDValue Val = ST->getValue();
- EVT VT = Val.getValueType();
- int Alignment = ST->getAlignment();
- auto &MF = DAG.getMachineFunction();
- EVT MemVT = ST->getMemoryVT();
-
- SDLoc dl(ST);
- if (MemVT.isFloatingPoint() || MemVT.isVector()) {
- EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
- if (isTypeLegal(intVT)) {
- if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
- MemVT.isVector()) {
- // Scalarize the store and let the individual components be handled.
- SDValue Result = scalarizeVectorStore(ST, DAG);
-
- return Result;
- }
- // Expand to a bitconvert of the value to the integer type of the
- // same size, then a (misaligned) int store.
- // FIXME: Does not handle truncating floating point stores!
- SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
- Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
- Alignment, ST->getMemOperand()->getFlags());
- return Result;
- }
- // Do a (aligned) store to a stack slot, then copy from the stack slot
- // to the final destination using (unaligned) integer loads and stores.
- EVT StoredVT = ST->getMemoryVT();
- MVT RegVT =
- getRegisterType(*DAG.getContext(),
- EVT::getIntegerVT(*DAG.getContext(),
- StoredVT.getSizeInBits()));
- EVT PtrVT = Ptr.getValueType();
- unsigned StoredBytes = StoredVT.getStoreSize();
- unsigned RegBytes = RegVT.getSizeInBits() / 8;
- unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
-
- // Make sure the stack slot is also aligned for the register type.
- SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
- auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
-
- // Perform the original store, only redirected to the stack slot.
- SDValue Store = DAG.getTruncStore(
- Chain, dl, Val, StackPtr,
- MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoredVT);
-
- EVT StackPtrVT = StackPtr.getValueType();
-
- SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
- SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
- SmallVector<SDValue, 8> Stores;
- unsigned Offset = 0;
-
- // Do all but one copies using the full register width.
- for (unsigned i = 1; i < NumRegs; i++) {
- // Load one integer register's worth from the stack slot.
- SDValue Load = DAG.getLoad(
- RegVT, dl, Store, StackPtr,
- MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
- // Store it to the final location. Remember the store.
- Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
- ST->getPointerInfo().getWithOffset(Offset),
- MinAlign(ST->getAlignment(), Offset),
- ST->getMemOperand()->getFlags()));
- // Increment the pointers.
- Offset += RegBytes;
- StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
- Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
- }
-
- // The last store may be partial. Do a truncating store. On big-endian
- // machines this requires an extending load from the stack slot to ensure
- // that the bits are in the right place.
- EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
- 8 * (StoredBytes - Offset));
-
- // Load from the stack slot.
- SDValue Load = DAG.getExtLoad(
- ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
- MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT);
-
- Stores.push_back(
- DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
- ST->getPointerInfo().getWithOffset(Offset), MemVT,
- MinAlign(ST->getAlignment(), Offset),
- ST->getMemOperand()->getFlags(), ST->getAAInfo()));
- // The order of the stores doesn't matter - say it with a TokenFactor.
- SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
- return Result;
- }
-
- assert(ST->getMemoryVT().isInteger() &&
- !ST->getMemoryVT().isVector() &&
- "Unaligned store of unknown type.");
- // Get the half-size VT
- EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext());
- int NumBits = NewStoredVT.getSizeInBits();
- int IncrementSize = NumBits / 8;
-
- // Divide the stored value in two parts.
- SDValue ShiftAmount =
- DAG.getConstant(NumBits, dl, getShiftAmountTy(Val.getValueType(),
- DAG.getDataLayout()));
- SDValue Lo = Val;
- SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
-
- // Store the two parts
- SDValue Store1, Store2;
- Store1 = DAG.getTruncStore(Chain, dl,
- DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
- Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
- ST->getMemOperand()->getFlags());
-
- Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
- Alignment = MinAlign(Alignment, IncrementSize);
- Store2 = DAG.getTruncStore(
- Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
- ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
- ST->getMemOperand()->getFlags(), ST->getAAInfo());
-
- SDValue Result =
- DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
- return Result;
-}
-
-SDValue
-TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
- const SDLoc &DL, EVT DataVT,
- SelectionDAG &DAG,
- bool IsCompressedMemory) const {
- SDValue Increment;
- EVT AddrVT = Addr.getValueType();
- EVT MaskVT = Mask.getValueType();
- assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() &&
- "Incompatible types of Data and Mask");
- if (IsCompressedMemory) {
- // Incrementing the pointer according to number of '1's in the mask.
- EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
- SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
- if (MaskIntVT.getSizeInBits() < 32) {
- MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
- MaskIntVT = MVT::i32;
- }
-
- // Count '1's with POPCNT.
- Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
- Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
- // Scale is an element size in bytes.
- SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
- AddrVT);
- Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
- } else
- Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
-
- return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
-}
-
-static SDValue clampDynamicVectorIndex(SelectionDAG &DAG,
- SDValue Idx,
- EVT VecVT,
- const SDLoc &dl) {
- if (isa<ConstantSDNode>(Idx))
- return Idx;
-
- EVT IdxVT = Idx.getValueType();
- unsigned NElts = VecVT.getVectorNumElements();
- if (isPowerOf2_32(NElts)) {
- APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(),
- Log2_32(NElts));
- return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
- DAG.getConstant(Imm, dl, IdxVT));
- }
-
- return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
- DAG.getConstant(NElts - 1, dl, IdxVT));
-}
-
-SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
- SDValue VecPtr, EVT VecVT,
- SDValue Index) const {
- SDLoc dl(Index);
- // Make sure the index type is big enough to compute in.
- Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
-
- EVT EltVT = VecVT.getVectorElementType();
-
- // Calculate the element offset and add it to the pointer.
- unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
- assert(EltSize * 8 == EltVT.getSizeInBits() &&
- "Converting bits to bytes lost precision");
-
- Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl);
-
- EVT IdxVT = Index.getValueType();
-
- Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
- DAG.getConstant(EltSize, dl, IdxVT));
- return DAG.getNode(ISD::ADD, dl, IdxVT, VecPtr, Index);
-}
-
-//===----------------------------------------------------------------------===//
-// Implementation of Emulated TLS Model
-//===----------------------------------------------------------------------===//
-
-SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
- SelectionDAG &DAG) const {
- // Access to address of TLS varialbe xyz is lowered to a function call:
- // __emutls_get_address( address of global variable named "__emutls_v.xyz" )
- EVT PtrVT = getPointerTy(DAG.getDataLayout());
- PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
- SDLoc dl(GA);
-
- ArgListTy Args;
- ArgListEntry Entry;
- std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
- Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
- StringRef EmuTlsVarName(NameString);
- GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
- assert(EmuTlsVar && "Cannot find EmuTlsVar ");
- Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
- Entry.Ty = VoidPtrType;
- Args.push_back(Entry);
-
- SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
-
- TargetLowering::CallLoweringInfo CLI(DAG);
- CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
- CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
- std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
-
- // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
- // At last for X86 targets, maybe good for other targets too?
- MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
- MFI.setAdjustsStack(true); // Is this only for X86 target?
- MFI.setHasCalls(true);
-
- assert((GA->getOffset() == 0) &&
- "Emulated TLS must have zero offset in GlobalAddressSDNode");
- return CallResult.first;
-}
-
-SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
- SelectionDAG &DAG) const {
- assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
- if (!isCtlzFast())
- return SDValue();
- ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
- SDLoc dl(Op);
- if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
- if (C->isNullValue() && CC == ISD::SETEQ) {
- EVT VT = Op.getOperand(0).getValueType();
- SDValue Zext = Op.getOperand(0);
- if (VT.bitsLT(MVT::i32)) {
- VT = MVT::i32;
- Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
- }
- unsigned Log2b = Log2_32(VT.getSizeInBits());
- SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
- SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
- DAG.getConstant(Log2b, dl, MVT::i32));
- return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
- }
- }
- return SDValue();
-}
-
-SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
- unsigned Opcode = Node->getOpcode();
- SDValue LHS = Node->getOperand(0);
- SDValue RHS = Node->getOperand(1);
- EVT VT = LHS.getValueType();
- SDLoc dl(Node);
-
- // usub.sat(a, b) -> umax(a, b) - b
- if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) {
- SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
- return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
- }
-
- if (VT.isVector()) {
- // TODO: Consider not scalarizing here.
- return SDValue();
- }
-
- unsigned OverflowOp;
- switch (Opcode) {
- case ISD::SADDSAT:
- OverflowOp = ISD::SADDO;
- break;
- case ISD::UADDSAT:
- OverflowOp = ISD::UADDO;
- break;
- case ISD::SSUBSAT:
- OverflowOp = ISD::SSUBO;
- break;
- case ISD::USUBSAT:
- OverflowOp = ISD::USUBO;
- break;
- default:
- llvm_unreachable("Expected method to receive signed or unsigned saturation "
- "addition or subtraction node.");
- }
-
- assert(LHS.getValueType().isScalarInteger() &&
- "Expected operands to be integers. Vector of int arguments should "
- "already be unrolled.");
- assert(RHS.getValueType().isScalarInteger() &&
- "Expected operands to be integers. Vector of int arguments should "
- "already be unrolled.");
- assert(LHS.getValueType() == RHS.getValueType() &&
- "Expected both operands to be the same type");
-
- unsigned BitWidth = LHS.getValueSizeInBits();
- EVT ResultType = LHS.getValueType();
- EVT BoolVT =
- getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ResultType);
- SDValue Result =
- DAG.getNode(OverflowOp, dl, DAG.getVTList(ResultType, BoolVT), LHS, RHS);
- SDValue SumDiff = Result.getValue(0);
- SDValue Overflow = Result.getValue(1);
- SDValue Zero = DAG.getConstant(0, dl, ResultType);
-
- if (Opcode == ISD::UADDSAT) {
- // Just need to check overflow for SatMax.
- APInt MaxVal = APInt::getMaxValue(BitWidth);
- SDValue SatMax = DAG.getConstant(MaxVal, dl, ResultType);
- return DAG.getSelect(dl, ResultType, Overflow, SatMax, SumDiff);
- } else if (Opcode == ISD::USUBSAT) {
- // Just need to check overflow for SatMin.
- APInt MinVal = APInt::getMinValue(BitWidth);
- SDValue SatMin = DAG.getConstant(MinVal, dl, ResultType);
- return DAG.getSelect(dl, ResultType, Overflow, SatMin, SumDiff);
- } else {
- // SatMax -> Overflow && SumDiff < 0
- // SatMin -> Overflow && SumDiff >= 0
- APInt MinVal = APInt::getSignedMinValue(BitWidth);
- APInt MaxVal = APInt::getSignedMaxValue(BitWidth);
- SDValue SatMin = DAG.getConstant(MinVal, dl, ResultType);
- SDValue SatMax = DAG.getConstant(MaxVal, dl, ResultType);
- SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT);
- Result = DAG.getSelect(dl, ResultType, SumNeg, SatMax, SatMin);
- return DAG.getSelect(dl, ResultType, Overflow, Result, SumDiff);
- }
-}
-
-SDValue
-TargetLowering::getExpandedFixedPointMultiplication(SDNode *Node,
- SelectionDAG &DAG) const {
- assert(Node->getOpcode() == ISD::SMULFIX && "Expected opcode to be SMULFIX.");
- assert(Node->getNumOperands() == 3 &&
- "Expected signed fixed point multiplication to have 3 operands.");
-
- SDLoc dl(Node);
- SDValue LHS = Node->getOperand(0);
- SDValue RHS = Node->getOperand(1);
- assert(LHS.getValueType().isScalarInteger() &&
- "Expected operands to be integers. Vector of int arguments should "
- "already be unrolled.");
- assert(RHS.getValueType().isScalarInteger() &&
- "Expected operands to be integers. Vector of int arguments should "
- "already be unrolled.");
- assert(LHS.getValueType() == RHS.getValueType() &&
- "Expected both operands to be the same type");
-
- unsigned Scale = Node->getConstantOperandVal(2);
- EVT VT = LHS.getValueType();
- assert(Scale < VT.getScalarSizeInBits() &&
- "Expected scale to be less than the number of bits.");
-
- if (!Scale)
- return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
-
- // Get the upper and lower bits of the result.
- SDValue Lo, Hi;
- if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) {
- SDValue Result =
- DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), LHS, RHS);
- Lo = Result.getValue(0);
- Hi = Result.getValue(1);
- } else if (isOperationLegalOrCustom(ISD::MULHS, VT)) {
- Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
- Hi = DAG.getNode(ISD::MULHS, dl, VT, LHS, RHS);
- } else {
- report_fatal_error("Unable to expand signed fixed point multiplication.");
- }
-
- // The result will need to be shifted right by the scale since both operands
- // are scaled. The result is given to us in 2 halves, so we only want part of
- // both in the result.
- EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
- Lo = DAG.getNode(ISD::SRL, dl, VT, Lo, DAG.getConstant(Scale, dl, ShiftTy));
- Hi = DAG.getNode(
- ISD::SHL, dl, VT, Hi,
- DAG.getConstant(VT.getScalarSizeInBits() - Scale, dl, ShiftTy));
- return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
-}