diff options
| author | 2020-08-03 15:06:44 +0000 | |
|---|---|---|
| committer | 2020-08-03 15:06:44 +0000 | |
| commit | b64793999546ed8adebaeebd9d8345d18db8927d (patch) | |
| tree | 4357c27b561d73b0e089727c6ed659f2ceff5f47 /gnu/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp | |
| parent | Add support for UTF-8 DISPLAY-HINTs with octet length. For now only (diff) | |
| download | wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.tar.xz wireguard-openbsd-b64793999546ed8adebaeebd9d8345d18db8927d.zip | |
Remove LLVM 8.0.1 files.
Diffstat (limited to 'gnu/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp')
| -rw-r--r-- | gnu/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp | 5407 |
1 files changed, 0 insertions, 5407 deletions
diff --git a/gnu/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp b/gnu/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp deleted file mode 100644 index a2f05c1e3ce..00000000000 --- a/gnu/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp +++ /dev/null @@ -1,5407 +0,0 @@ -//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This implements the TargetLowering class. -// -//===----------------------------------------------------------------------===// - -#include "llvm/CodeGen/TargetLowering.h" -#include "llvm/ADT/BitVector.h" -#include "llvm/ADT/STLExtras.h" -#include "llvm/CodeGen/CallingConvLower.h" -#include "llvm/CodeGen/MachineFrameInfo.h" -#include "llvm/CodeGen/MachineFunction.h" -#include "llvm/CodeGen/MachineJumpTableInfo.h" -#include "llvm/CodeGen/MachineRegisterInfo.h" -#include "llvm/CodeGen/SelectionDAG.h" -#include "llvm/CodeGen/TargetRegisterInfo.h" -#include "llvm/CodeGen/TargetSubtargetInfo.h" -#include "llvm/IR/DataLayout.h" -#include "llvm/IR/DerivedTypes.h" -#include "llvm/IR/GlobalVariable.h" -#include "llvm/IR/LLVMContext.h" -#include "llvm/MC/MCAsmInfo.h" -#include "llvm/MC/MCExpr.h" -#include "llvm/Support/ErrorHandling.h" -#include "llvm/Support/KnownBits.h" -#include "llvm/Support/MathExtras.h" -#include "llvm/Target/TargetLoweringObjectFile.h" -#include "llvm/Target/TargetMachine.h" -#include <cctype> -using namespace llvm; - -/// NOTE: The TargetMachine owns TLOF. -TargetLowering::TargetLowering(const TargetMachine &tm) - : TargetLoweringBase(tm) {} - -const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { - return nullptr; -} - -bool TargetLowering::isPositionIndependent() const { - return getTargetMachine().isPositionIndependent(); -} - -/// Check whether a given call node is in tail position within its function. If -/// so, it sets Chain to the input chain of the tail call. -bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, - SDValue &Chain) const { - const Function &F = DAG.getMachineFunction().getFunction(); - - // Conservatively require the attributes of the call to match those of - // the return. Ignore NoAlias and NonNull because they don't affect the - // call sequence. - AttributeList CallerAttrs = F.getAttributes(); - if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) - .removeAttribute(Attribute::NoAlias) - .removeAttribute(Attribute::NonNull) - .hasAttributes()) - return false; - - // It's not safe to eliminate the sign / zero extension of the return value. - if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || - CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) - return false; - - // Check if the only use is a function return node. - return isUsedByReturnOnly(Node, Chain); -} - -bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, - const uint32_t *CallerPreservedMask, - const SmallVectorImpl<CCValAssign> &ArgLocs, - const SmallVectorImpl<SDValue> &OutVals) const { - for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { - const CCValAssign &ArgLoc = ArgLocs[I]; - if (!ArgLoc.isRegLoc()) - continue; - unsigned Reg = ArgLoc.getLocReg(); - // Only look at callee saved registers. - if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) - continue; - // Check that we pass the value used for the caller. - // (We look for a CopyFromReg reading a virtual register that is used - // for the function live-in value of register Reg) - SDValue Value = OutVals[I]; - if (Value->getOpcode() != ISD::CopyFromReg) - return false; - unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); - if (MRI.getLiveInPhysReg(ArgReg) != Reg) - return false; - } - return true; -} - -/// Set CallLoweringInfo attribute flags based on a call instruction -/// and called function attributes. -void TargetLoweringBase::ArgListEntry::setAttributes(ImmutableCallSite *CS, - unsigned ArgIdx) { - IsSExt = CS->paramHasAttr(ArgIdx, Attribute::SExt); - IsZExt = CS->paramHasAttr(ArgIdx, Attribute::ZExt); - IsInReg = CS->paramHasAttr(ArgIdx, Attribute::InReg); - IsSRet = CS->paramHasAttr(ArgIdx, Attribute::StructRet); - IsNest = CS->paramHasAttr(ArgIdx, Attribute::Nest); - IsByVal = CS->paramHasAttr(ArgIdx, Attribute::ByVal); - IsInAlloca = CS->paramHasAttr(ArgIdx, Attribute::InAlloca); - IsReturned = CS->paramHasAttr(ArgIdx, Attribute::Returned); - IsSwiftSelf = CS->paramHasAttr(ArgIdx, Attribute::SwiftSelf); - IsSwiftError = CS->paramHasAttr(ArgIdx, Attribute::SwiftError); - Alignment = CS->getParamAlignment(ArgIdx); -} - -/// Generate a libcall taking the given operands as arguments and returning a -/// result of type RetVT. -std::pair<SDValue, SDValue> -TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, - ArrayRef<SDValue> Ops, bool isSigned, - const SDLoc &dl, bool doesNotReturn, - bool isReturnValueUsed) const { - TargetLowering::ArgListTy Args; - Args.reserve(Ops.size()); - - TargetLowering::ArgListEntry Entry; - for (SDValue Op : Ops) { - Entry.Node = Op; - Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); - Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned); - Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned); - Args.push_back(Entry); - } - - if (LC == RTLIB::UNKNOWN_LIBCALL) - report_fatal_error("Unsupported library call operation!"); - SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), - getPointerTy(DAG.getDataLayout())); - - Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); - TargetLowering::CallLoweringInfo CLI(DAG); - bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned); - CLI.setDebugLoc(dl) - .setChain(DAG.getEntryNode()) - .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) - .setNoReturn(doesNotReturn) - .setDiscardResult(!isReturnValueUsed) - .setSExtResult(signExtend) - .setZExtResult(!signExtend); - return LowerCallTo(CLI); -} - -/// Soften the operands of a comparison. This code is shared among BR_CC, -/// SELECT_CC, and SETCC handlers. -void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, - SDValue &NewLHS, SDValue &NewRHS, - ISD::CondCode &CCCode, - const SDLoc &dl) const { - assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) - && "Unsupported setcc type!"); - - // Expand into one or more soft-fp libcall(s). - RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; - bool ShouldInvertCC = false; - switch (CCCode) { - case ISD::SETEQ: - case ISD::SETOEQ: - LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : - (VT == MVT::f64) ? RTLIB::OEQ_F64 : - (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; - break; - case ISD::SETNE: - case ISD::SETUNE: - LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : - (VT == MVT::f64) ? RTLIB::UNE_F64 : - (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; - break; - case ISD::SETGE: - case ISD::SETOGE: - LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : - (VT == MVT::f64) ? RTLIB::OGE_F64 : - (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; - break; - case ISD::SETLT: - case ISD::SETOLT: - LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : - (VT == MVT::f64) ? RTLIB::OLT_F64 : - (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; - break; - case ISD::SETLE: - case ISD::SETOLE: - LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : - (VT == MVT::f64) ? RTLIB::OLE_F64 : - (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; - break; - case ISD::SETGT: - case ISD::SETOGT: - LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : - (VT == MVT::f64) ? RTLIB::OGT_F64 : - (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; - break; - case ISD::SETUO: - LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : - (VT == MVT::f64) ? RTLIB::UO_F64 : - (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; - break; - case ISD::SETO: - LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : - (VT == MVT::f64) ? RTLIB::O_F64 : - (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128; - break; - case ISD::SETONE: - // SETONE = SETOLT | SETOGT - LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : - (VT == MVT::f64) ? RTLIB::OLT_F64 : - (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; - LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : - (VT == MVT::f64) ? RTLIB::OGT_F64 : - (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; - break; - case ISD::SETUEQ: - LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : - (VT == MVT::f64) ? RTLIB::UO_F64 : - (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; - LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : - (VT == MVT::f64) ? RTLIB::OEQ_F64 : - (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; - break; - default: - // Invert CC for unordered comparisons - ShouldInvertCC = true; - switch (CCCode) { - case ISD::SETULT: - LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : - (VT == MVT::f64) ? RTLIB::OGE_F64 : - (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; - break; - case ISD::SETULE: - LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : - (VT == MVT::f64) ? RTLIB::OGT_F64 : - (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; - break; - case ISD::SETUGT: - LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : - (VT == MVT::f64) ? RTLIB::OLE_F64 : - (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; - break; - case ISD::SETUGE: - LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : - (VT == MVT::f64) ? RTLIB::OLT_F64 : - (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; - break; - default: llvm_unreachable("Do not know how to soften this setcc!"); - } - } - - // Use the target specific return value for comparions lib calls. - EVT RetVT = getCmpLibcallReturnType(); - SDValue Ops[2] = {NewLHS, NewRHS}; - NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, false /*sign irrelevant*/, - dl).first; - NewRHS = DAG.getConstant(0, dl, RetVT); - - CCCode = getCmpLibcallCC(LC1); - if (ShouldInvertCC) - CCCode = getSetCCInverse(CCCode, /*isInteger=*/true); - - if (LC2 != RTLIB::UNKNOWN_LIBCALL) { - SDValue Tmp = DAG.getNode( - ISD::SETCC, dl, - getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), - NewLHS, NewRHS, DAG.getCondCode(CCCode)); - NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, false/*sign irrelevant*/, - dl).first; - NewLHS = DAG.getNode( - ISD::SETCC, dl, - getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), - NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2))); - NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS); - NewRHS = SDValue(); - } -} - -/// Return the entry encoding for a jump table in the current function. The -/// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. -unsigned TargetLowering::getJumpTableEncoding() const { - // In non-pic modes, just use the address of a block. - if (!isPositionIndependent()) - return MachineJumpTableInfo::EK_BlockAddress; - - // In PIC mode, if the target supports a GPRel32 directive, use it. - if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) - return MachineJumpTableInfo::EK_GPRel32BlockAddress; - - // Otherwise, use a label difference. - return MachineJumpTableInfo::EK_LabelDifference32; -} - -SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, - SelectionDAG &DAG) const { - // If our PIC model is GP relative, use the global offset table as the base. - unsigned JTEncoding = getJumpTableEncoding(); - - if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || - (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) - return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); - - return Table; -} - -/// This returns the relocation base for the given PIC jumptable, the same as -/// getPICJumpTableRelocBase, but as an MCExpr. -const MCExpr * -TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, - unsigned JTI,MCContext &Ctx) const{ - // The normal PIC reloc base is the label at the start of the jump table. - return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); -} - -bool -TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { - const TargetMachine &TM = getTargetMachine(); - const GlobalValue *GV = GA->getGlobal(); - - // If the address is not even local to this DSO we will have to load it from - // a got and then add the offset. - if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) - return false; - - // If the code is position independent we will have to add a base register. - if (isPositionIndependent()) - return false; - - // Otherwise we can do it. - return true; -} - -//===----------------------------------------------------------------------===// -// Optimization Methods -//===----------------------------------------------------------------------===// - -/// If the specified instruction has a constant integer operand and there are -/// bits set in that constant that are not demanded, then clear those bits and -/// return true. -bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded, - TargetLoweringOpt &TLO) const { - SelectionDAG &DAG = TLO.DAG; - SDLoc DL(Op); - unsigned Opcode = Op.getOpcode(); - - // Do target-specific constant optimization. - if (targetShrinkDemandedConstant(Op, Demanded, TLO)) - return TLO.New.getNode(); - - // FIXME: ISD::SELECT, ISD::SELECT_CC - switch (Opcode) { - default: - break; - case ISD::XOR: - case ISD::AND: - case ISD::OR: { - auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); - if (!Op1C) - return false; - - // If this is a 'not' op, don't touch it because that's a canonical form. - const APInt &C = Op1C->getAPIntValue(); - if (Opcode == ISD::XOR && Demanded.isSubsetOf(C)) - return false; - - if (!C.isSubsetOf(Demanded)) { - EVT VT = Op.getValueType(); - SDValue NewC = DAG.getConstant(Demanded & C, DL, VT); - SDValue NewOp = DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); - return TLO.CombineTo(Op, NewOp); - } - - break; - } - } - - return false; -} - -/// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. -/// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be -/// generalized for targets with other types of implicit widening casts. -bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, - const APInt &Demanded, - TargetLoweringOpt &TLO) const { - assert(Op.getNumOperands() == 2 && - "ShrinkDemandedOp only supports binary operators!"); - assert(Op.getNode()->getNumValues() == 1 && - "ShrinkDemandedOp only supports nodes with one result!"); - - SelectionDAG &DAG = TLO.DAG; - SDLoc dl(Op); - - // Early return, as this function cannot handle vector types. - if (Op.getValueType().isVector()) - return false; - - // Don't do this if the node has another user, which may require the - // full value. - if (!Op.getNode()->hasOneUse()) - return false; - - // Search for the smallest integer type with free casts to and from - // Op's type. For expedience, just check power-of-2 integer types. - const TargetLowering &TLI = DAG.getTargetLoweringInfo(); - unsigned DemandedSize = Demanded.getActiveBits(); - unsigned SmallVTBits = DemandedSize; - if (!isPowerOf2_32(SmallVTBits)) - SmallVTBits = NextPowerOf2(SmallVTBits); - for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { - EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); - if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && - TLI.isZExtFree(SmallVT, Op.getValueType())) { - // We found a type with free casts. - SDValue X = DAG.getNode( - Op.getOpcode(), dl, SmallVT, - DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), - DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); - assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); - SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); - return TLO.CombineTo(Op, Z); - } - } - return false; -} - -bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, - DAGCombinerInfo &DCI) const { - SelectionDAG &DAG = DCI.DAG; - TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), - !DCI.isBeforeLegalizeOps()); - KnownBits Known; - - bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); - if (Simplified) { - DCI.AddToWorklist(Op.getNode()); - DCI.CommitTargetLoweringOpt(TLO); - } - return Simplified; -} - -bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, - KnownBits &Known, - TargetLoweringOpt &TLO, - unsigned Depth, - bool AssumeSingleUse) const { - EVT VT = Op.getValueType(); - APInt DemandedElts = VT.isVector() - ? APInt::getAllOnesValue(VT.getVectorNumElements()) - : APInt(1, 1); - return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, - AssumeSingleUse); -} - -/// Look at Op. At this point, we know that only the OriginalDemandedBits of the -/// result of Op are ever used downstream. If we can use this information to -/// simplify Op, create a new simplified DAG node and return true, returning the -/// original and new nodes in Old and New. Otherwise, analyze the expression and -/// return a mask of Known bits for the expression (used to simplify the -/// caller). The Known bits may only be accurate for those bits in the -/// OriginalDemandedBits and OriginalDemandedElts. -bool TargetLowering::SimplifyDemandedBits( - SDValue Op, const APInt &OriginalDemandedBits, - const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, - unsigned Depth, bool AssumeSingleUse) const { - unsigned BitWidth = OriginalDemandedBits.getBitWidth(); - assert(Op.getScalarValueSizeInBits() == BitWidth && - "Mask size mismatches value type size!"); - - unsigned NumElts = OriginalDemandedElts.getBitWidth(); - assert((!Op.getValueType().isVector() || - NumElts == Op.getValueType().getVectorNumElements()) && - "Unexpected vector size"); - - APInt DemandedBits = OriginalDemandedBits; - APInt DemandedElts = OriginalDemandedElts; - SDLoc dl(Op); - auto &DL = TLO.DAG.getDataLayout(); - - // Don't know anything. - Known = KnownBits(BitWidth); - - if (Op.getOpcode() == ISD::Constant) { - // We know all of the bits for a constant! - Known.One = cast<ConstantSDNode>(Op)->getAPIntValue(); - Known.Zero = ~Known.One; - return false; - } - - // Other users may use these bits. - EVT VT = Op.getValueType(); - if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { - if (Depth != 0) { - // If not at the root, Just compute the Known bits to - // simplify things downstream. - Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); - return false; - } - // If this is the root being simplified, allow it to have multiple uses, - // just set the DemandedBits/Elts to all bits. - DemandedBits = APInt::getAllOnesValue(BitWidth); - DemandedElts = APInt::getAllOnesValue(NumElts); - } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { - // Not demanding any bits/elts from Op. - if (!Op.isUndef()) - return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); - return false; - } else if (Depth == 6) { // Limit search depth. - return false; - } - - KnownBits Known2, KnownOut; - switch (Op.getOpcode()) { - case ISD::BUILD_VECTOR: - // Collect the known bits that are shared by every constant vector element. - Known.Zero.setAllBits(); Known.One.setAllBits(); - for (SDValue SrcOp : Op->ops()) { - if (!isa<ConstantSDNode>(SrcOp)) { - // We can only handle all constant values - bail out with no known bits. - Known = KnownBits(BitWidth); - return false; - } - Known2.One = cast<ConstantSDNode>(SrcOp)->getAPIntValue(); - Known2.Zero = ~Known2.One; - - // BUILD_VECTOR can implicitly truncate sources, we must handle this. - if (Known2.One.getBitWidth() != BitWidth) { - assert(Known2.getBitWidth() > BitWidth && - "Expected BUILD_VECTOR implicit truncation"); - Known2 = Known2.trunc(BitWidth); - } - - // Known bits are the values that are shared by every element. - // TODO: support per-element known bits. - Known.One &= Known2.One; - Known.Zero &= Known2.Zero; - } - return false; // Don't fall through, will infinitely loop. - case ISD::CONCAT_VECTORS: { - Known.Zero.setAllBits(); - Known.One.setAllBits(); - EVT SubVT = Op.getOperand(0).getValueType(); - unsigned NumSubVecs = Op.getNumOperands(); - unsigned NumSubElts = SubVT.getVectorNumElements(); - for (unsigned i = 0; i != NumSubVecs; ++i) { - APInt DemandedSubElts = - DemandedElts.extractBits(NumSubElts, i * NumSubElts); - if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, - Known2, TLO, Depth + 1)) - return true; - // Known bits are shared by every demanded subvector element. - if (!!DemandedSubElts) { - Known.One &= Known2.One; - Known.Zero &= Known2.Zero; - } - } - break; - } - case ISD::VECTOR_SHUFFLE: { - ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); - - // Collect demanded elements from shuffle operands.. - APInt DemandedLHS(NumElts, 0); - APInt DemandedRHS(NumElts, 0); - for (unsigned i = 0; i != NumElts; ++i) { - if (!DemandedElts[i]) - continue; - int M = ShuffleMask[i]; - if (M < 0) { - // For UNDEF elements, we don't know anything about the common state of - // the shuffle result. - DemandedLHS.clearAllBits(); - DemandedRHS.clearAllBits(); - break; - } - assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); - if (M < (int)NumElts) - DemandedLHS.setBit(M); - else - DemandedRHS.setBit(M - NumElts); - } - - if (!!DemandedLHS || !!DemandedRHS) { - Known.Zero.setAllBits(); - Known.One.setAllBits(); - if (!!DemandedLHS) { - if (SimplifyDemandedBits(Op.getOperand(0), DemandedBits, DemandedLHS, - Known2, TLO, Depth + 1)) - return true; - Known.One &= Known2.One; - Known.Zero &= Known2.Zero; - } - if (!!DemandedRHS) { - if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedRHS, - Known2, TLO, Depth + 1)) - return true; - Known.One &= Known2.One; - Known.Zero &= Known2.Zero; - } - } - break; - } - case ISD::AND: { - SDValue Op0 = Op.getOperand(0); - SDValue Op1 = Op.getOperand(1); - - // If the RHS is a constant, check to see if the LHS would be zero without - // using the bits from the RHS. Below, we use knowledge about the RHS to - // simplify the LHS, here we're using information from the LHS to simplify - // the RHS. - if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { - // Do not increment Depth here; that can cause an infinite loop. - KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); - // If the LHS already has zeros where RHSC does, this 'and' is dead. - if ((LHSKnown.Zero & DemandedBits) == - (~RHSC->getAPIntValue() & DemandedBits)) - return TLO.CombineTo(Op, Op0); - - // If any of the set bits in the RHS are known zero on the LHS, shrink - // the constant. - if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO)) - return true; - - // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its - // constant, but if this 'and' is only clearing bits that were just set by - // the xor, then this 'and' can be eliminated by shrinking the mask of - // the xor. For example, for a 32-bit X: - // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 - if (isBitwiseNot(Op0) && Op0.hasOneUse() && - LHSKnown.One == ~RHSC->getAPIntValue()) { - SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); - return TLO.CombineTo(Op, Xor); - } - } - - if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, Depth + 1)) - return true; - assert(!Known.hasConflict() && "Bits known to be one AND zero?"); - if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, Known2, TLO, - Depth + 1)) - return true; - assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); - - // If all of the demanded bits are known one on one side, return the other. - // These bits cannot contribute to the result of the 'and'. - if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) - return TLO.CombineTo(Op, Op0); - if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) - return TLO.CombineTo(Op, Op1); - // If all of the demanded bits in the inputs are known zeros, return zero. - if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) - return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); - // If the RHS is a constant, see if we can simplify it. - if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO)) - return true; - // If the operation can be done in a smaller type, do so. - if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) - return true; - - // Output known-1 bits are only known if set in both the LHS & RHS. - Known.One &= Known2.One; - // Output known-0 are known to be clear if zero in either the LHS | RHS. - Known.Zero |= Known2.Zero; - break; - } - case ISD::OR: { - SDValue Op0 = Op.getOperand(0); - SDValue Op1 = Op.getOperand(1); - - if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, Depth + 1)) - return true; - assert(!Known.hasConflict() && "Bits known to be one AND zero?"); - if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, Known2, TLO, - Depth + 1)) - return true; - assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); - - // If all of the demanded bits are known zero on one side, return the other. - // These bits cannot contribute to the result of the 'or'. - if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) - return TLO.CombineTo(Op, Op0); - if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) - return TLO.CombineTo(Op, Op1); - // If the RHS is a constant, see if we can simplify it. - if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) - return true; - // If the operation can be done in a smaller type, do so. - if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) - return true; - - // Output known-0 bits are only known if clear in both the LHS & RHS. - Known.Zero &= Known2.Zero; - // Output known-1 are known to be set if set in either the LHS | RHS. - Known.One |= Known2.One; - break; - } - case ISD::XOR: { - SDValue Op0 = Op.getOperand(0); - SDValue Op1 = Op.getOperand(1); - - if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, Depth + 1)) - return true; - assert(!Known.hasConflict() && "Bits known to be one AND zero?"); - if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, Depth + 1)) - return true; - assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); - - // If all of the demanded bits are known zero on one side, return the other. - // These bits cannot contribute to the result of the 'xor'. - if (DemandedBits.isSubsetOf(Known.Zero)) - return TLO.CombineTo(Op, Op0); - if (DemandedBits.isSubsetOf(Known2.Zero)) - return TLO.CombineTo(Op, Op1); - // If the operation can be done in a smaller type, do so. - if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) - return true; - - // If all of the unknown bits are known to be zero on one side or the other - // (but not both) turn this into an *inclusive* or. - // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 - if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) - return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); - - // Output known-0 bits are known if clear or set in both the LHS & RHS. - KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); - // Output known-1 are known to be set if set in only one of the LHS, RHS. - KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); - - if (ConstantSDNode *C = isConstOrConstSplat(Op1)) { - // If one side is a constant, and all of the known set bits on the other - // side are also set in the constant, turn this into an AND, as we know - // the bits will be cleared. - // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 - // NB: it is okay if more bits are known than are requested - if (C->getAPIntValue() == Known2.One) { - SDValue ANDC = - TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); - return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); - } - - // If the RHS is a constant, see if we can change it. Don't alter a -1 - // constant because that's a 'not' op, and that is better for combining - // and codegen. - if (!C->isAllOnesValue()) { - if (DemandedBits.isSubsetOf(C->getAPIntValue())) { - // We're flipping all demanded bits. Flip the undemanded bits too. - SDValue New = TLO.DAG.getNOT(dl, Op0, VT); - return TLO.CombineTo(Op, New); - } - // If we can't turn this into a 'not', try to shrink the constant. - if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) - return true; - } - } - - Known = std::move(KnownOut); - break; - } - case ISD::SELECT: - if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, - Depth + 1)) - return true; - if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, - Depth + 1)) - return true; - assert(!Known.hasConflict() && "Bits known to be one AND zero?"); - assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); - - // If the operands are constants, see if we can simplify them. - if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) - return true; - - // Only known if known in both the LHS and RHS. - Known.One &= Known2.One; - Known.Zero &= Known2.Zero; - break; - case ISD::SELECT_CC: - if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, - Depth + 1)) - return true; - if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, - Depth + 1)) - return true; - assert(!Known.hasConflict() && "Bits known to be one AND zero?"); - assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); - - // If the operands are constants, see if we can simplify them. - if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) - return true; - - // Only known if known in both the LHS and RHS. - Known.One &= Known2.One; - Known.Zero &= Known2.Zero; - break; - case ISD::SETCC: { - SDValue Op0 = Op.getOperand(0); - SDValue Op1 = Op.getOperand(1); - ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); - // If (1) we only need the sign-bit, (2) the setcc operands are the same - // width as the setcc result, and (3) the result of a setcc conforms to 0 or - // -1, we may be able to bypass the setcc. - if (DemandedBits.isSignMask() && - Op0.getScalarValueSizeInBits() == BitWidth && - getBooleanContents(VT) == - BooleanContent::ZeroOrNegativeOneBooleanContent) { - // If we're testing X < 0, then this compare isn't needed - just use X! - // FIXME: We're limiting to integer types here, but this should also work - // if we don't care about FP signed-zero. The use of SETLT with FP means - // that we don't care about NaNs. - if (CC == ISD::SETLT && Op1.getValueType().isInteger() && - (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) - return TLO.CombineTo(Op, Op0); - - // TODO: Should we check for other forms of sign-bit comparisons? - // Examples: X <= -1, X >= 0 - } - if (getBooleanContents(Op0.getValueType()) == - TargetLowering::ZeroOrOneBooleanContent && - BitWidth > 1) - Known.Zero.setBitsFrom(1); - break; - } - case ISD::SHL: { - SDValue Op0 = Op.getOperand(0); - SDValue Op1 = Op.getOperand(1); - - if (ConstantSDNode *SA = isConstOrConstSplat(Op1)) { - // If the shift count is an invalid immediate, don't do anything. - if (SA->getAPIntValue().uge(BitWidth)) - break; - - unsigned ShAmt = SA->getZExtValue(); - - // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a - // single shift. We can do this if the bottom bits (which are shifted - // out) are never demanded. - if (Op0.getOpcode() == ISD::SRL) { - if (ShAmt && - (DemandedBits & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) { - if (ConstantSDNode *SA2 = isConstOrConstSplat(Op0.getOperand(1))) { - if (SA2->getAPIntValue().ult(BitWidth)) { - unsigned C1 = SA2->getZExtValue(); - unsigned Opc = ISD::SHL; - int Diff = ShAmt - C1; - if (Diff < 0) { - Diff = -Diff; - Opc = ISD::SRL; - } - - SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType()); - return TLO.CombineTo( - Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); - } - } - } - } - - if (SimplifyDemandedBits(Op0, DemandedBits.lshr(ShAmt), DemandedElts, Known, TLO, - Depth + 1)) - return true; - - // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits - // are not demanded. This will likely allow the anyext to be folded away. - if (Op0.getOpcode() == ISD::ANY_EXTEND) { - SDValue InnerOp = Op0.getOperand(0); - EVT InnerVT = InnerOp.getValueType(); - unsigned InnerBits = InnerVT.getScalarSizeInBits(); - if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && - isTypeDesirableForOp(ISD::SHL, InnerVT)) { - EVT ShTy = getShiftAmountTy(InnerVT, DL); - if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) - ShTy = InnerVT; - SDValue NarrowShl = - TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, - TLO.DAG.getConstant(ShAmt, dl, ShTy)); - return TLO.CombineTo( - Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); - } - // Repeat the SHL optimization above in cases where an extension - // intervenes: (shl (anyext (shr x, c1)), c2) to - // (shl (anyext x), c2-c1). This requires that the bottom c1 bits - // aren't demanded (as above) and that the shifted upper c1 bits of - // x aren't demanded. - if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && - InnerOp.hasOneUse()) { - if (ConstantSDNode *SA2 = - isConstOrConstSplat(InnerOp.getOperand(1))) { - unsigned InnerShAmt = SA2->getLimitedValue(InnerBits); - if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && - DemandedBits.getActiveBits() <= - (InnerBits - InnerShAmt + ShAmt) && - DemandedBits.countTrailingZeros() >= ShAmt) { - SDValue NewSA = TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, - Op1.getValueType()); - SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, - InnerOp.getOperand(0)); - return TLO.CombineTo( - Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); - } - } - } - } - - Known.Zero <<= ShAmt; - Known.One <<= ShAmt; - // low bits known zero. - Known.Zero.setLowBits(ShAmt); - } - break; - } - case ISD::SRL: { - SDValue Op0 = Op.getOperand(0); - SDValue Op1 = Op.getOperand(1); - - if (ConstantSDNode *SA = isConstOrConstSplat(Op1)) { - // If the shift count is an invalid immediate, don't do anything. - if (SA->getAPIntValue().uge(BitWidth)) - break; - - unsigned ShAmt = SA->getZExtValue(); - APInt InDemandedMask = (DemandedBits << ShAmt); - - // If the shift is exact, then it does demand the low bits (and knows that - // they are zero). - if (Op->getFlags().hasExact()) - InDemandedMask.setLowBits(ShAmt); - - // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a - // single shift. We can do this if the top bits (which are shifted out) - // are never demanded. - if (Op0.getOpcode() == ISD::SHL) { - if (ConstantSDNode *SA2 = isConstOrConstSplat(Op0.getOperand(1))) { - if (ShAmt && - (DemandedBits & APInt::getHighBitsSet(BitWidth, ShAmt)) == 0) { - if (SA2->getAPIntValue().ult(BitWidth)) { - unsigned C1 = SA2->getZExtValue(); - unsigned Opc = ISD::SRL; - int Diff = ShAmt - C1; - if (Diff < 0) { - Diff = -Diff; - Opc = ISD::SHL; - } - - SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType()); - return TLO.CombineTo( - Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); - } - } - } - } - - // Compute the new bits that are at the top now. - if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, Depth + 1)) - return true; - assert(!Known.hasConflict() && "Bits known to be one AND zero?"); - Known.Zero.lshrInPlace(ShAmt); - Known.One.lshrInPlace(ShAmt); - - Known.Zero.setHighBits(ShAmt); // High bits known zero. - } - break; - } - case ISD::SRA: { - SDValue Op0 = Op.getOperand(0); - SDValue Op1 = Op.getOperand(1); - - // If this is an arithmetic shift right and only the low-bit is set, we can - // always convert this into a logical shr, even if the shift amount is - // variable. The low bit of the shift cannot be an input sign bit unless - // the shift amount is >= the size of the datatype, which is undefined. - if (DemandedBits.isOneValue()) - return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); - - if (ConstantSDNode *SA = isConstOrConstSplat(Op1)) { - // If the shift count is an invalid immediate, don't do anything. - if (SA->getAPIntValue().uge(BitWidth)) - break; - - unsigned ShAmt = SA->getZExtValue(); - APInt InDemandedMask = (DemandedBits << ShAmt); - - // If the shift is exact, then it does demand the low bits (and knows that - // they are zero). - if (Op->getFlags().hasExact()) - InDemandedMask.setLowBits(ShAmt); - - // If any of the demanded bits are produced by the sign extension, we also - // demand the input sign bit. - if (DemandedBits.countLeadingZeros() < ShAmt) - InDemandedMask.setSignBit(); - - if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, Depth + 1)) - return true; - assert(!Known.hasConflict() && "Bits known to be one AND zero?"); - Known.Zero.lshrInPlace(ShAmt); - Known.One.lshrInPlace(ShAmt); - - // If the input sign bit is known to be zero, or if none of the top bits - // are demanded, turn this into an unsigned shift right. - if (Known.Zero[BitWidth - ShAmt - 1] || - DemandedBits.countLeadingZeros() >= ShAmt) { - SDNodeFlags Flags; - Flags.setExact(Op->getFlags().hasExact()); - return TLO.CombineTo( - Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); - } - - int Log2 = DemandedBits.exactLogBase2(); - if (Log2 >= 0) { - // The bit must come from the sign. - SDValue NewSA = - TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, Op1.getValueType()); - return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); - } - - if (Known.One[BitWidth - ShAmt - 1]) - // New bits are known one. - Known.One.setHighBits(ShAmt); - } - break; - } - case ISD::SIGN_EXTEND_INREG: { - SDValue Op0 = Op.getOperand(0); - EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); - unsigned ExVTBits = ExVT.getScalarSizeInBits(); - - // If we only care about the highest bit, don't bother shifting right. - if (DemandedBits.isSignMask()) { - bool AlreadySignExtended = - TLO.DAG.ComputeNumSignBits(Op0) >= BitWidth - ExVTBits + 1; - // However if the input is already sign extended we expect the sign - // extension to be dropped altogether later and do not simplify. - if (!AlreadySignExtended) { - // Compute the correct shift amount type, which must be getShiftAmountTy - // for scalar types after legalization. - EVT ShiftAmtTy = VT; - if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) - ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); - - SDValue ShiftAmt = - TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy); - return TLO.CombineTo(Op, - TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); - } - } - - // If none of the extended bits are demanded, eliminate the sextinreg. - if (DemandedBits.getActiveBits() <= ExVTBits) - return TLO.CombineTo(Op, Op0); - - APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); - - // Since the sign extended bits are demanded, we know that the sign - // bit is demanded. - InputDemandedBits.setBit(ExVTBits - 1); - - if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1)) - return true; - assert(!Known.hasConflict() && "Bits known to be one AND zero?"); - - // If the sign bit of the input is known set or clear, then we know the - // top bits of the result. - - // If the input sign bit is known zero, convert this into a zero extension. - if (Known.Zero[ExVTBits - 1]) - return TLO.CombineTo( - Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT.getScalarType())); - - APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); - if (Known.One[ExVTBits - 1]) { // Input sign bit known set - Known.One.setBitsFrom(ExVTBits); - Known.Zero &= Mask; - } else { // Input sign bit unknown - Known.Zero &= Mask; - Known.One &= Mask; - } - break; - } - case ISD::BUILD_PAIR: { - EVT HalfVT = Op.getOperand(0).getValueType(); - unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); - - APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); - APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); - - KnownBits KnownLo, KnownHi; - - if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) - return true; - - if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) - return true; - - Known.Zero = KnownLo.Zero.zext(BitWidth) | - KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); - - Known.One = KnownLo.One.zext(BitWidth) | - KnownHi.One.zext(BitWidth).shl(HalfBitWidth); - break; - } - case ISD::ZERO_EXTEND: { - SDValue Src = Op.getOperand(0); - unsigned InBits = Src.getScalarValueSizeInBits(); - - // If none of the top bits are demanded, convert this into an any_extend. - if (DemandedBits.getActiveBits() <= InBits) - return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, Src)); - - APInt InDemandedBits = DemandedBits.trunc(InBits); - if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth+1)) - return true; - assert(!Known.hasConflict() && "Bits known to be one AND zero?"); - Known = Known.zext(BitWidth); - Known.Zero.setBitsFrom(InBits); - break; - } - case ISD::SIGN_EXTEND: { - SDValue Src = Op.getOperand(0); - unsigned InBits = Src.getScalarValueSizeInBits(); - - // If none of the top bits are demanded, convert this into an any_extend. - if (DemandedBits.getActiveBits() <= InBits) - return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, Src)); - - // Since some of the sign extended bits are demanded, we know that the sign - // bit is demanded. - APInt InDemandedBits = DemandedBits.trunc(InBits); - InDemandedBits.setBit(InBits - 1); - - if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth + 1)) - return true; - assert(!Known.hasConflict() && "Bits known to be one AND zero?"); - // If the sign bit is known one, the top bits match. - Known = Known.sext(BitWidth); - - // If the sign bit is known zero, convert this to a zero extend. - if (Known.isNonNegative()) - return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Src)); - break; - } - case ISD::SIGN_EXTEND_VECTOR_INREG: { - // TODO - merge this with SIGN_EXTEND above? - SDValue Src = Op.getOperand(0); - unsigned InBits = Src.getScalarValueSizeInBits(); - - APInt InDemandedBits = DemandedBits.trunc(InBits); - - // If some of the sign extended bits are demanded, we know that the sign - // bit is demanded. - if (InBits < DemandedBits.getActiveBits()) - InDemandedBits.setBit(InBits - 1); - - if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth + 1)) - return true; - assert(!Known.hasConflict() && "Bits known to be one AND zero?"); - // If the sign bit is known one, the top bits match. - Known = Known.sext(BitWidth); - break; - } - case ISD::ANY_EXTEND: { - SDValue Src = Op.getOperand(0); - unsigned InBits = Src.getScalarValueSizeInBits(); - APInt InDemandedBits = DemandedBits.trunc(InBits); - if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth+1)) - return true; - assert(!Known.hasConflict() && "Bits known to be one AND zero?"); - Known = Known.zext(BitWidth); - break; - } - case ISD::TRUNCATE: { - SDValue Src = Op.getOperand(0); - - // Simplify the input, using demanded bit information, and compute the known - // zero/one bits live out. - unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); - APInt TruncMask = DemandedBits.zext(OperandBitWidth); - if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1)) - return true; - Known = Known.trunc(BitWidth); - - // If the input is only used by this truncate, see if we can shrink it based - // on the known demanded bits. - if (Src.getNode()->hasOneUse()) { - switch (Src.getOpcode()) { - default: - break; - case ISD::SRL: - // Shrink SRL by a constant if none of the high bits shifted in are - // demanded. - if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) - // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is - // undesirable. - break; - ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Src.getOperand(1)); - if (!ShAmt) - break; - SDValue Shift = Src.getOperand(1); - if (TLO.LegalTypes()) { - uint64_t ShVal = ShAmt->getZExtValue(); - Shift = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL)); - } - - if (ShAmt->getZExtValue() < BitWidth) { - APInt HighBits = APInt::getHighBitsSet(OperandBitWidth, - OperandBitWidth - BitWidth); - HighBits.lshrInPlace(ShAmt->getZExtValue()); - HighBits = HighBits.trunc(BitWidth); - - if (!(HighBits & DemandedBits)) { - // None of the shifted in bits are needed. Add a truncate of the - // shift input, then shift it. - SDValue NewTrunc = - TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); - return TLO.CombineTo( - Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, Shift)); - } - } - break; - } - } - - assert(!Known.hasConflict() && "Bits known to be one AND zero?"); - break; - } - case ISD::AssertZext: { - // AssertZext demands all of the high bits, plus any of the low bits - // demanded by its users. - EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); - APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); - if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, - Known, TLO, Depth+1)) - return true; - assert(!Known.hasConflict() && "Bits known to be one AND zero?"); - - Known.Zero |= ~InMask; - break; - } - case ISD::EXTRACT_VECTOR_ELT: { - SDValue Src = Op.getOperand(0); - SDValue Idx = Op.getOperand(1); - unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); - unsigned EltBitWidth = Src.getScalarValueSizeInBits(); - - // Demand the bits from every vector element without a constant index. - APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); - if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) - if (CIdx->getAPIntValue().ult(NumSrcElts)) - DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); - - // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know - // anything about the extended bits. - APInt DemandedSrcBits = DemandedBits; - if (BitWidth > EltBitWidth) - DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); - - if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, - Depth + 1)) - return true; - - Known = Known2; - if (BitWidth > EltBitWidth) - Known = Known.zext(BitWidth); - break; - } - case ISD::BITCAST: { - SDValue Src = Op.getOperand(0); - EVT SrcVT = Src.getValueType(); - unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); - - // If this is an FP->Int bitcast and if the sign bit is the only - // thing demanded, turn this into a FGETSIGN. - if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && - DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && - SrcVT.isFloatingPoint()) { - bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); - bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); - if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && - SrcVT != MVT::f128) { - // Cannot eliminate/lower SHL for f128 yet. - EVT Ty = OpVTLegal ? VT : MVT::i32; - // Make a FGETSIGN + SHL to move the sign bit into the appropriate - // place. We expect the SHL to be eliminated by other optimizations. - SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); - unsigned OpVTSizeInBits = Op.getValueSizeInBits(); - if (!OpVTLegal && OpVTSizeInBits > 32) - Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); - unsigned ShVal = Op.getValueSizeInBits() - 1; - SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); - return TLO.CombineTo(Op, - TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); - } - } - // If bitcast from a vector, see if we can use SimplifyDemandedVectorElts by - // demanding the element if any bits from it are demanded. - // TODO - bigendian once we have test coverage. - // TODO - bool vectors once SimplifyDemandedVectorElts has SETCC support. - if (SrcVT.isVector() && NumSrcEltBits > 1 && - (BitWidth % NumSrcEltBits) == 0 && - TLO.DAG.getDataLayout().isLittleEndian()) { - unsigned Scale = BitWidth / NumSrcEltBits; - auto GetDemandedSubMask = [&](APInt &DemandedSubElts) -> bool { - DemandedSubElts = APInt::getNullValue(Scale); - for (unsigned i = 0; i != Scale; ++i) { - unsigned Offset = i * NumSrcEltBits; - APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); - if (!Sub.isNullValue()) - DemandedSubElts.setBit(i); - } - return true; - }; - - APInt DemandedSubElts; - if (GetDemandedSubMask(DemandedSubElts)) { - unsigned NumSrcElts = SrcVT.getVectorNumElements(); - APInt DemandedElts = APInt::getSplat(NumSrcElts, DemandedSubElts); - - APInt KnownUndef, KnownZero; - if (SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, KnownZero, - TLO, Depth + 1)) - return true; - } - } - // If this is a bitcast, let computeKnownBits handle it. Only do this on a - // recursive call where Known may be useful to the caller. - if (Depth > 0) { - Known = TLO.DAG.computeKnownBits(Op, Depth); - return false; - } - break; - } - case ISD::ADD: - case ISD::MUL: - case ISD::SUB: { - // Add, Sub, and Mul don't demand any bits in positions beyond that - // of the highest bit demanded of them. - SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); - unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); - APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); - if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, Depth + 1) || - SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, Depth + 1) || - // See if the operation should be performed at a smaller bit width. - ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { - SDNodeFlags Flags = Op.getNode()->getFlags(); - if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { - // Disable the nsw and nuw flags. We can no longer guarantee that we - // won't wrap after simplification. - Flags.setNoSignedWrap(false); - Flags.setNoUnsignedWrap(false); - SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, - Flags); - return TLO.CombineTo(Op, NewOp); - } - return true; - } - - // If we have a constant operand, we may be able to turn it into -1 if we - // do not demand the high bits. This can make the constant smaller to - // encode, allow more general folding, or match specialized instruction - // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that - // is probably not useful (and could be detrimental). - ConstantSDNode *C = isConstOrConstSplat(Op1); - APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); - if (C && !C->isAllOnesValue() && !C->isOne() && - (C->getAPIntValue() | HighMask).isAllOnesValue()) { - SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); - // We can't guarantee that the new math op doesn't wrap, so explicitly - // clear those flags to prevent folding with a potential existing node - // that has those flags set. - SDNodeFlags Flags; - Flags.setNoSignedWrap(false); - Flags.setNoUnsignedWrap(false); - SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); - return TLO.CombineTo(Op, NewOp); - } - - LLVM_FALLTHROUGH; - } - default: - if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { - if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, - Known, TLO, Depth)) - return true; - break; - } - - // Just use computeKnownBits to compute output bits. - Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); - break; - } - - // If we know the value of all of the demanded bits, return this as a - // constant. - if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) { - // Avoid folding to a constant if any OpaqueConstant is involved. - const SDNode *N = Op.getNode(); - for (SDNodeIterator I = SDNodeIterator::begin(N), - E = SDNodeIterator::end(N); - I != E; ++I) { - SDNode *Op = *I; - if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) - if (C->isOpaque()) - return false; - } - // TODO: Handle float bits as well. - if (VT.isInteger()) - return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); - } - - return false; -} - -bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, - const APInt &DemandedElts, - APInt &KnownUndef, - APInt &KnownZero, - DAGCombinerInfo &DCI) const { - SelectionDAG &DAG = DCI.DAG; - TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), - !DCI.isBeforeLegalizeOps()); - - bool Simplified = - SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); - if (Simplified) { - DCI.AddToWorklist(Op.getNode()); - DCI.CommitTargetLoweringOpt(TLO); - } - return Simplified; -} - -bool TargetLowering::SimplifyDemandedVectorElts( - SDValue Op, const APInt &DemandedEltMask, APInt &KnownUndef, - APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, - bool AssumeSingleUse) const { - EVT VT = Op.getValueType(); - APInt DemandedElts = DemandedEltMask; - unsigned NumElts = DemandedElts.getBitWidth(); - assert(VT.isVector() && "Expected vector op"); - assert(VT.getVectorNumElements() == NumElts && - "Mask size mismatches value type element count!"); - - KnownUndef = KnownZero = APInt::getNullValue(NumElts); - - // Undef operand. - if (Op.isUndef()) { - KnownUndef.setAllBits(); - return false; - } - - // If Op has other users, assume that all elements are needed. - if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) - DemandedElts.setAllBits(); - - // Not demanding any elements from Op. - if (DemandedElts == 0) { - KnownUndef.setAllBits(); - return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); - } - - // Limit search depth. - if (Depth >= 6) - return false; - - SDLoc DL(Op); - unsigned EltSizeInBits = VT.getScalarSizeInBits(); - - switch (Op.getOpcode()) { - case ISD::SCALAR_TO_VECTOR: { - if (!DemandedElts[0]) { - KnownUndef.setAllBits(); - return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); - } - KnownUndef.setHighBits(NumElts - 1); - break; - } - case ISD::BITCAST: { - SDValue Src = Op.getOperand(0); - EVT SrcVT = Src.getValueType(); - - // We only handle vectors here. - // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? - if (!SrcVT.isVector()) - break; - - // Fast handling of 'identity' bitcasts. - unsigned NumSrcElts = SrcVT.getVectorNumElements(); - if (NumSrcElts == NumElts) - return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, - KnownZero, TLO, Depth + 1); - - APInt SrcZero, SrcUndef; - APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts); - - // Bitcast from 'large element' src vector to 'small element' vector, we - // must demand a source element if any DemandedElt maps to it. - if ((NumElts % NumSrcElts) == 0) { - unsigned Scale = NumElts / NumSrcElts; - for (unsigned i = 0; i != NumElts; ++i) - if (DemandedElts[i]) - SrcDemandedElts.setBit(i / Scale); - - if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, - TLO, Depth + 1)) - return true; - - // Try calling SimplifyDemandedBits, converting demanded elts to the bits - // of the large element. - // TODO - bigendian once we have test coverage. - if (TLO.DAG.getDataLayout().isLittleEndian()) { - unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); - APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits); - for (unsigned i = 0; i != NumElts; ++i) - if (DemandedElts[i]) { - unsigned Ofs = (i % Scale) * EltSizeInBits; - SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); - } - - KnownBits Known; - if (SimplifyDemandedBits(Src, SrcDemandedBits, Known, TLO, Depth + 1)) - return true; - } - - // If the src element is zero/undef then all the output elements will be - - // only demanded elements are guaranteed to be correct. - for (unsigned i = 0; i != NumSrcElts; ++i) { - if (SrcDemandedElts[i]) { - if (SrcZero[i]) - KnownZero.setBits(i * Scale, (i + 1) * Scale); - if (SrcUndef[i]) - KnownUndef.setBits(i * Scale, (i + 1) * Scale); - } - } - } - - // Bitcast from 'small element' src vector to 'large element' vector, we - // demand all smaller source elements covered by the larger demanded element - // of this vector. - if ((NumSrcElts % NumElts) == 0) { - unsigned Scale = NumSrcElts / NumElts; - for (unsigned i = 0; i != NumElts; ++i) - if (DemandedElts[i]) - SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale); - - if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, - TLO, Depth + 1)) - return true; - - // If all the src elements covering an output element are zero/undef, then - // the output element will be as well, assuming it was demanded. - for (unsigned i = 0; i != NumElts; ++i) { - if (DemandedElts[i]) { - if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue()) - KnownZero.setBit(i); - if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue()) - KnownUndef.setBit(i); - } - } - } - break; - } - case ISD::BUILD_VECTOR: { - // Check all elements and simplify any unused elements with UNDEF. - if (!DemandedElts.isAllOnesValue()) { - // Don't simplify BROADCASTS. - if (llvm::any_of(Op->op_values(), - [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { - SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); - bool Updated = false; - for (unsigned i = 0; i != NumElts; ++i) { - if (!DemandedElts[i] && !Ops[i].isUndef()) { - Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); - KnownUndef.setBit(i); - Updated = true; - } - } - if (Updated) - return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); - } - } - for (unsigned i = 0; i != NumElts; ++i) { - SDValue SrcOp = Op.getOperand(i); - if (SrcOp.isUndef()) { - KnownUndef.setBit(i); - } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && - (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { - KnownZero.setBit(i); - } - } - break; - } - case ISD::CONCAT_VECTORS: { - EVT SubVT = Op.getOperand(0).getValueType(); - unsigned NumSubVecs = Op.getNumOperands(); - unsigned NumSubElts = SubVT.getVectorNumElements(); - for (unsigned i = 0; i != NumSubVecs; ++i) { - SDValue SubOp = Op.getOperand(i); - APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); - APInt SubUndef, SubZero; - if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, - Depth + 1)) - return true; - KnownUndef.insertBits(SubUndef, i * NumSubElts); - KnownZero.insertBits(SubZero, i * NumSubElts); - } - break; - } - case ISD::INSERT_SUBVECTOR: { - if (!isa<ConstantSDNode>(Op.getOperand(2))) - break; - SDValue Base = Op.getOperand(0); - SDValue Sub = Op.getOperand(1); - EVT SubVT = Sub.getValueType(); - unsigned NumSubElts = SubVT.getVectorNumElements(); - const APInt& Idx = cast<ConstantSDNode>(Op.getOperand(2))->getAPIntValue(); - if (Idx.ugt(NumElts - NumSubElts)) - break; - unsigned SubIdx = Idx.getZExtValue(); - APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx); - APInt SubUndef, SubZero; - if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO, - Depth + 1)) - return true; - APInt BaseElts = DemandedElts; - BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx); - if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO, - Depth + 1)) - return true; - KnownUndef.insertBits(SubUndef, SubIdx); - KnownZero.insertBits(SubZero, SubIdx); - break; - } - case ISD::EXTRACT_SUBVECTOR: { - SDValue Src = Op.getOperand(0); - ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); - unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); - if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { - // Offset the demanded elts by the subvector index. - uint64_t Idx = SubIdx->getZExtValue(); - APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); - APInt SrcUndef, SrcZero; - if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO, - Depth + 1)) - return true; - KnownUndef = SrcUndef.extractBits(NumElts, Idx); - KnownZero = SrcZero.extractBits(NumElts, Idx); - } - break; - } - case ISD::INSERT_VECTOR_ELT: { - SDValue Vec = Op.getOperand(0); - SDValue Scl = Op.getOperand(1); - auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); - - // For a legal, constant insertion index, if we don't need this insertion - // then strip it, else remove it from the demanded elts. - if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { - unsigned Idx = CIdx->getZExtValue(); - if (!DemandedElts[Idx]) - return TLO.CombineTo(Op, Vec); - - APInt DemandedVecElts(DemandedElts); - DemandedVecElts.clearBit(Idx); - if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, - KnownZero, TLO, Depth + 1)) - return true; - - KnownUndef.clearBit(Idx); - if (Scl.isUndef()) - KnownUndef.setBit(Idx); - - KnownZero.clearBit(Idx); - if (isNullConstant(Scl) || isNullFPConstant(Scl)) - KnownZero.setBit(Idx); - break; - } - - APInt VecUndef, VecZero; - if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, - Depth + 1)) - return true; - // Without knowing the insertion index we can't set KnownUndef/KnownZero. - break; - } - case ISD::VSELECT: { - // Try to transform the select condition based on the current demanded - // elements. - // TODO: If a condition element is undef, we can choose from one arm of the - // select (and if one arm is undef, then we can propagate that to the - // result). - // TODO - add support for constant vselect masks (see IR version of this). - APInt UnusedUndef, UnusedZero; - if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, - UnusedZero, TLO, Depth + 1)) - return true; - - // See if we can simplify either vselect operand. - APInt DemandedLHS(DemandedElts); - APInt DemandedRHS(DemandedElts); - APInt UndefLHS, ZeroLHS; - APInt UndefRHS, ZeroRHS; - if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, - ZeroLHS, TLO, Depth + 1)) - return true; - if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, - ZeroRHS, TLO, Depth + 1)) - return true; - - KnownUndef = UndefLHS & UndefRHS; - KnownZero = ZeroLHS & ZeroRHS; - break; - } - case ISD::VECTOR_SHUFFLE: { - ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); - - // Collect demanded elements from shuffle operands.. - APInt DemandedLHS(NumElts, 0); - APInt DemandedRHS(NumElts, 0); - for (unsigned i = 0; i != NumElts; ++i) { - int M = ShuffleMask[i]; - if (M < 0 || !DemandedElts[i]) - continue; - assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); - if (M < (int)NumElts) - DemandedLHS.setBit(M); - else - DemandedRHS.setBit(M - NumElts); - } - - // See if we can simplify either shuffle operand. - APInt UndefLHS, ZeroLHS; - APInt UndefRHS, ZeroRHS; - if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, - ZeroLHS, TLO, Depth + 1)) - return true; - if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, - ZeroRHS, TLO, Depth + 1)) - return true; - - // Simplify mask using undef elements from LHS/RHS. - bool Updated = false; - bool IdentityLHS = true, IdentityRHS = true; - SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); - for (unsigned i = 0; i != NumElts; ++i) { - int &M = NewMask[i]; - if (M < 0) - continue; - if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || - (M >= (int)NumElts && UndefRHS[M - NumElts])) { - Updated = true; - M = -1; - } - IdentityLHS &= (M < 0) || (M == (int)i); - IdentityRHS &= (M < 0) || ((M - NumElts) == i); - } - - // Update legal shuffle masks based on demanded elements if it won't reduce - // to Identity which can cause premature removal of the shuffle mask. - if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps && - isShuffleMaskLegal(NewMask, VT)) - return TLO.CombineTo(Op, - TLO.DAG.getVectorShuffle(VT, DL, Op.getOperand(0), - Op.getOperand(1), NewMask)); - - // Propagate undef/zero elements from LHS/RHS. - for (unsigned i = 0; i != NumElts; ++i) { - int M = ShuffleMask[i]; - if (M < 0) { - KnownUndef.setBit(i); - } else if (M < (int)NumElts) { - if (UndefLHS[M]) - KnownUndef.setBit(i); - if (ZeroLHS[M]) - KnownZero.setBit(i); - } else { - if (UndefRHS[M - NumElts]) - KnownUndef.setBit(i); - if (ZeroRHS[M - NumElts]) - KnownZero.setBit(i); - } - } - break; - } - case ISD::SIGN_EXTEND_VECTOR_INREG: - case ISD::ZERO_EXTEND_VECTOR_INREG: { - APInt SrcUndef, SrcZero; - SDValue Src = Op.getOperand(0); - unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); - APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); - if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, - SrcZero, TLO, Depth + 1)) - return true; - KnownZero = SrcZero.zextOrTrunc(NumElts); - KnownUndef = SrcUndef.zextOrTrunc(NumElts); - - if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { - // zext(undef) upper bits are guaranteed to be zero. - if (DemandedElts.isSubsetOf(KnownUndef)) - return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); - KnownUndef.clearAllBits(); - } - break; - } - case ISD::OR: - case ISD::XOR: - case ISD::ADD: - case ISD::SUB: - case ISD::FADD: - case ISD::FSUB: - case ISD::FMUL: - case ISD::FDIV: - case ISD::FREM: { - APInt SrcUndef, SrcZero; - if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef, - SrcZero, TLO, Depth + 1)) - return true; - if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, - KnownZero, TLO, Depth + 1)) - return true; - KnownZero &= SrcZero; - KnownUndef &= SrcUndef; - break; - } - case ISD::AND: { - APInt SrcUndef, SrcZero; - if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef, - SrcZero, TLO, Depth + 1)) - return true; - if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, - KnownZero, TLO, Depth + 1)) - return true; - - // If either side has a zero element, then the result element is zero, even - // if the other is an UNDEF. - KnownZero |= SrcZero; - KnownUndef &= SrcUndef; - KnownUndef &= ~KnownZero; - break; - } - case ISD::TRUNCATE: - case ISD::SIGN_EXTEND: - case ISD::ZERO_EXTEND: - if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, - KnownZero, TLO, Depth + 1)) - return true; - - if (Op.getOpcode() == ISD::ZERO_EXTEND) { - // zext(undef) upper bits are guaranteed to be zero. - if (DemandedElts.isSubsetOf(KnownUndef)) - return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); - KnownUndef.clearAllBits(); - } - break; - default: { - if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { - if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, - KnownZero, TLO, Depth)) - return true; - } else { - KnownBits Known; - APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits); - if (SimplifyDemandedBits(Op, DemandedBits, DemandedEltMask, Known, TLO, - Depth, AssumeSingleUse)) - return true; - } - break; - } - } - assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); - - // Constant fold all undef cases. - // TODO: Handle zero cases as well. - if (DemandedElts.isSubsetOf(KnownUndef)) - return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); - - return false; -} - -/// Determine which of the bits specified in Mask are known to be either zero or -/// one and return them in the Known. -void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, - KnownBits &Known, - const APInt &DemandedElts, - const SelectionDAG &DAG, - unsigned Depth) const { - assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || - Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || - Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || - Op.getOpcode() == ISD::INTRINSIC_VOID) && - "Should use MaskedValueIsZero if you don't know whether Op" - " is a target node!"); - Known.resetAll(); -} - -void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op, - KnownBits &Known, - const APInt &DemandedElts, - const SelectionDAG &DAG, - unsigned Depth) const { - assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex"); - - if (unsigned Align = DAG.InferPtrAlignment(Op)) { - // The low bits are known zero if the pointer is aligned. - Known.Zero.setLowBits(Log2_32(Align)); - } -} - -/// This method can be implemented by targets that want to expose additional -/// information about sign bits to the DAG Combiner. -unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, - const APInt &, - const SelectionDAG &, - unsigned Depth) const { - assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || - Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || - Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || - Op.getOpcode() == ISD::INTRINSIC_VOID) && - "Should use ComputeNumSignBits if you don't know whether Op" - " is a target node!"); - return 1; -} - -bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( - SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, - TargetLoweringOpt &TLO, unsigned Depth) const { - assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || - Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || - Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || - Op.getOpcode() == ISD::INTRINSIC_VOID) && - "Should use SimplifyDemandedVectorElts if you don't know whether Op" - " is a target node!"); - return false; -} - -bool TargetLowering::SimplifyDemandedBitsForTargetNode( - SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, - KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { - assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || - Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || - Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || - Op.getOpcode() == ISD::INTRINSIC_VOID) && - "Should use SimplifyDemandedBits if you don't know whether Op" - " is a target node!"); - computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); - return false; -} - -bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, - const SelectionDAG &DAG, - bool SNaN, - unsigned Depth) const { - assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || - Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || - Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || - Op.getOpcode() == ISD::INTRINSIC_VOID) && - "Should use isKnownNeverNaN if you don't know whether Op" - " is a target node!"); - return false; -} - -// FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must -// work with truncating build vectors and vectors with elements of less than -// 8 bits. -bool TargetLowering::isConstTrueVal(const SDNode *N) const { - if (!N) - return false; - - APInt CVal; - if (auto *CN = dyn_cast<ConstantSDNode>(N)) { - CVal = CN->getAPIntValue(); - } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) { - auto *CN = BV->getConstantSplatNode(); - if (!CN) - return false; - - // If this is a truncating build vector, truncate the splat value. - // Otherwise, we may fail to match the expected values below. - unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits(); - CVal = CN->getAPIntValue(); - if (BVEltWidth < CVal.getBitWidth()) - CVal = CVal.trunc(BVEltWidth); - } else { - return false; - } - - switch (getBooleanContents(N->getValueType(0))) { - case UndefinedBooleanContent: - return CVal[0]; - case ZeroOrOneBooleanContent: - return CVal.isOneValue(); - case ZeroOrNegativeOneBooleanContent: - return CVal.isAllOnesValue(); - } - - llvm_unreachable("Invalid boolean contents"); -} - -bool TargetLowering::isConstFalseVal(const SDNode *N) const { - if (!N) - return false; - - const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); - if (!CN) { - const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); - if (!BV) - return false; - - // Only interested in constant splats, we don't care about undef - // elements in identifying boolean constants and getConstantSplatNode - // returns NULL if all ops are undef; - CN = BV->getConstantSplatNode(); - if (!CN) - return false; - } - - if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) - return !CN->getAPIntValue()[0]; - - return CN->isNullValue(); -} - -bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, - bool SExt) const { - if (VT == MVT::i1) - return N->isOne(); - - TargetLowering::BooleanContent Cnt = getBooleanContents(VT); - switch (Cnt) { - case TargetLowering::ZeroOrOneBooleanContent: - // An extended value of 1 is always true, unless its original type is i1, - // in which case it will be sign extended to -1. - return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); - case TargetLowering::UndefinedBooleanContent: - case TargetLowering::ZeroOrNegativeOneBooleanContent: - return N->isAllOnesValue() && SExt; - } - llvm_unreachable("Unexpected enumeration."); -} - -/// This helper function of SimplifySetCC tries to optimize the comparison when -/// either operand of the SetCC node is a bitwise-and instruction. -SDValue TargetLowering::simplifySetCCWithAnd(EVT VT, SDValue N0, SDValue N1, - ISD::CondCode Cond, - DAGCombinerInfo &DCI, - const SDLoc &DL) const { - // Match these patterns in any of their permutations: - // (X & Y) == Y - // (X & Y) != Y - if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) - std::swap(N0, N1); - - EVT OpVT = N0.getValueType(); - if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || - (Cond != ISD::SETEQ && Cond != ISD::SETNE)) - return SDValue(); - - SDValue X, Y; - if (N0.getOperand(0) == N1) { - X = N0.getOperand(1); - Y = N0.getOperand(0); - } else if (N0.getOperand(1) == N1) { - X = N0.getOperand(0); - Y = N0.getOperand(1); - } else { - return SDValue(); - } - - SelectionDAG &DAG = DCI.DAG; - SDValue Zero = DAG.getConstant(0, DL, OpVT); - if (DAG.isKnownToBeAPowerOfTwo(Y)) { - // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. - // Note that where Y is variable and is known to have at most one bit set - // (for example, if it is Z & 1) we cannot do this; the expressions are not - // equivalent when Y == 0. - Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); - if (DCI.isBeforeLegalizeOps() || - isCondCodeLegal(Cond, N0.getSimpleValueType())) - return DAG.getSetCC(DL, VT, N0, Zero, Cond); - } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { - // If the target supports an 'and-not' or 'and-complement' logic operation, - // try to use that to make a comparison operation more efficient. - // But don't do this transform if the mask is a single bit because there are - // more efficient ways to deal with that case (for example, 'bt' on x86 or - // 'rlwinm' on PPC). - - // Bail out if the compare operand that we want to turn into a zero is - // already a zero (otherwise, infinite loop). - auto *YConst = dyn_cast<ConstantSDNode>(Y); - if (YConst && YConst->isNullValue()) - return SDValue(); - - // Transform this into: ~X & Y == 0. - SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); - SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); - return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); - } - - return SDValue(); -} - -/// There are multiple IR patterns that could be checking whether certain -/// truncation of a signed number would be lossy or not. The pattern which is -/// best at IR level, may not lower optimally. Thus, we want to unfold it. -/// We are looking for the following pattern: (KeptBits is a constant) -/// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) -/// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. -/// KeptBits also can't be 1, that would have been folded to %x dstcond 0 -/// We will unfold it into the natural trunc+sext pattern: -/// ((%x << C) a>> C) dstcond %x -/// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) -SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( - EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, - const SDLoc &DL) const { - // We must be comparing with a constant. - ConstantSDNode *C1; - if (!(C1 = dyn_cast<ConstantSDNode>(N1))) - return SDValue(); - - // N0 should be: add %x, (1 << (KeptBits-1)) - if (N0->getOpcode() != ISD::ADD) - return SDValue(); - - // And we must be 'add'ing a constant. - ConstantSDNode *C01; - if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) - return SDValue(); - - SDValue X = N0->getOperand(0); - EVT XVT = X.getValueType(); - - // Validate constants ... - - APInt I1 = C1->getAPIntValue(); - - ISD::CondCode NewCond; - if (Cond == ISD::CondCode::SETULT) { - NewCond = ISD::CondCode::SETEQ; - } else if (Cond == ISD::CondCode::SETULE) { - NewCond = ISD::CondCode::SETEQ; - // But need to 'canonicalize' the constant. - I1 += 1; - } else if (Cond == ISD::CondCode::SETUGT) { - NewCond = ISD::CondCode::SETNE; - // But need to 'canonicalize' the constant. - I1 += 1; - } else if (Cond == ISD::CondCode::SETUGE) { - NewCond = ISD::CondCode::SETNE; - } else - return SDValue(); - - APInt I01 = C01->getAPIntValue(); - - auto checkConstants = [&I1, &I01]() -> bool { - // Both of them must be power-of-two, and the constant from setcc is bigger. - return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); - }; - - if (checkConstants()) { - // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 - } else { - // What if we invert constants? (and the target predicate) - I1.negate(); - I01.negate(); - NewCond = getSetCCInverse(NewCond, /*isInteger=*/true); - if (!checkConstants()) - return SDValue(); - // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 - } - - // They are power-of-two, so which bit is set? - const unsigned KeptBits = I1.logBase2(); - const unsigned KeptBitsMinusOne = I01.logBase2(); - - // Magic! - if (KeptBits != (KeptBitsMinusOne + 1)) - return SDValue(); - assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); - - // We don't want to do this in every single case. - SelectionDAG &DAG = DCI.DAG; - if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( - XVT, KeptBits)) - return SDValue(); - - const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; - assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); - - // Unfold into: ((%x << C) a>> C) cond %x - // Where 'cond' will be either 'eq' or 'ne'. - SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); - SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); - SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); - SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); - - return T2; -} - -/// Try to simplify a setcc built with the specified operands and cc. If it is -/// unable to simplify it, return a null SDValue. -SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, - ISD::CondCode Cond, bool foldBooleans, - DAGCombinerInfo &DCI, - const SDLoc &dl) const { - SelectionDAG &DAG = DCI.DAG; - EVT OpVT = N0.getValueType(); - - // These setcc operations always fold. - switch (Cond) { - default: break; - case ISD::SETFALSE: - case ISD::SETFALSE2: return DAG.getBoolConstant(false, dl, VT, OpVT); - case ISD::SETTRUE: - case ISD::SETTRUE2: return DAG.getBoolConstant(true, dl, VT, OpVT); - } - - // Ensure that the constant occurs on the RHS and fold constant comparisons. - // TODO: Handle non-splat vector constants. All undef causes trouble. - ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); - if (isConstOrConstSplat(N0) && - (DCI.isBeforeLegalizeOps() || - isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) - return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); - - if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { - const APInt &C1 = N1C->getAPIntValue(); - - // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an - // equality comparison, then we're just comparing whether X itself is - // zero. - if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) && - N0.getOperand(0).getOpcode() == ISD::CTLZ && - N0.getOperand(1).getOpcode() == ISD::Constant) { - const APInt &ShAmt - = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); - if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && - ShAmt == Log2_32(N0.getValueSizeInBits())) { - if ((C1 == 0) == (Cond == ISD::SETEQ)) { - // (srl (ctlz x), 5) == 0 -> X != 0 - // (srl (ctlz x), 5) != 1 -> X != 0 - Cond = ISD::SETNE; - } else { - // (srl (ctlz x), 5) != 0 -> X == 0 - // (srl (ctlz x), 5) == 1 -> X == 0 - Cond = ISD::SETEQ; - } - SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); - return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), - Zero, Cond); - } - } - - SDValue CTPOP = N0; - // Look through truncs that don't change the value of a ctpop. - if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) - CTPOP = N0.getOperand(0); - - if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && - (N0 == CTPOP || - N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) { - EVT CTVT = CTPOP.getValueType(); - SDValue CTOp = CTPOP.getOperand(0); - - // (ctpop x) u< 2 -> (x & x-1) == 0 - // (ctpop x) u> 1 -> (x & x-1) != 0 - if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ - SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp, - DAG.getConstant(1, dl, CTVT)); - SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub); - ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; - return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC); - } - - // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal. - } - - // (zext x) == C --> x == (trunc C) - // (sext x) == C --> x == (trunc C) - if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && - DCI.isBeforeLegalize() && N0->hasOneUse()) { - unsigned MinBits = N0.getValueSizeInBits(); - SDValue PreExt; - bool Signed = false; - if (N0->getOpcode() == ISD::ZERO_EXTEND) { - // ZExt - MinBits = N0->getOperand(0).getValueSizeInBits(); - PreExt = N0->getOperand(0); - } else if (N0->getOpcode() == ISD::AND) { - // DAGCombine turns costly ZExts into ANDs - if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) - if ((C->getAPIntValue()+1).isPowerOf2()) { - MinBits = C->getAPIntValue().countTrailingOnes(); - PreExt = N0->getOperand(0); - } - } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { - // SExt - MinBits = N0->getOperand(0).getValueSizeInBits(); - PreExt = N0->getOperand(0); - Signed = true; - } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { - // ZEXTLOAD / SEXTLOAD - if (LN0->getExtensionType() == ISD::ZEXTLOAD) { - MinBits = LN0->getMemoryVT().getSizeInBits(); - PreExt = N0; - } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { - Signed = true; - MinBits = LN0->getMemoryVT().getSizeInBits(); - PreExt = N0; - } - } - - // Figure out how many bits we need to preserve this constant. - unsigned ReqdBits = Signed ? - C1.getBitWidth() - C1.getNumSignBits() + 1 : - C1.getActiveBits(); - - // Make sure we're not losing bits from the constant. - if (MinBits > 0 && - MinBits < C1.getBitWidth() && - MinBits >= ReqdBits) { - EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); - if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { - // Will get folded away. - SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); - if (MinBits == 1 && C1 == 1) - // Invert the condition. - return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), - Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); - SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); - return DAG.getSetCC(dl, VT, Trunc, C, Cond); - } - - // If truncating the setcc operands is not desirable, we can still - // simplify the expression in some cases: - // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) - // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) - // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) - // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) - // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) - // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) - SDValue TopSetCC = N0->getOperand(0); - unsigned N0Opc = N0->getOpcode(); - bool SExt = (N0Opc == ISD::SIGN_EXTEND); - if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && - TopSetCC.getOpcode() == ISD::SETCC && - (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && - (isConstFalseVal(N1C) || - isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { - - bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) || - (!N1C->isNullValue() && Cond == ISD::SETNE); - - if (!Inverse) - return TopSetCC; - - ISD::CondCode InvCond = ISD::getSetCCInverse( - cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), - TopSetCC.getOperand(0).getValueType().isInteger()); - return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), - TopSetCC.getOperand(1), - InvCond); - } - } - } - - // If the LHS is '(and load, const)', the RHS is 0, the test is for - // equality or unsigned, and all 1 bits of the const are in the same - // partial word, see if we can shorten the load. - if (DCI.isBeforeLegalize() && - !ISD::isSignedIntSetCC(Cond) && - N0.getOpcode() == ISD::AND && C1 == 0 && - N0.getNode()->hasOneUse() && - isa<LoadSDNode>(N0.getOperand(0)) && - N0.getOperand(0).getNode()->hasOneUse() && - isa<ConstantSDNode>(N0.getOperand(1))) { - LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); - APInt bestMask; - unsigned bestWidth = 0, bestOffset = 0; - if (!Lod->isVolatile() && Lod->isUnindexed()) { - unsigned origWidth = N0.getValueSizeInBits(); - unsigned maskWidth = origWidth; - // We can narrow (e.g.) 16-bit extending loads on 32-bit target to - // 8 bits, but have to be careful... - if (Lod->getExtensionType() != ISD::NON_EXTLOAD) - origWidth = Lod->getMemoryVT().getSizeInBits(); - const APInt &Mask = - cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); - for (unsigned width = origWidth / 2; width>=8; width /= 2) { - APInt newMask = APInt::getLowBitsSet(maskWidth, width); - for (unsigned offset=0; offset<origWidth/width; offset++) { - if (Mask.isSubsetOf(newMask)) { - if (DAG.getDataLayout().isLittleEndian()) - bestOffset = (uint64_t)offset * (width/8); - else - bestOffset = (origWidth/width - offset - 1) * (width/8); - bestMask = Mask.lshr(offset * (width/8) * 8); - bestWidth = width; - break; - } - newMask <<= width; - } - } - } - if (bestWidth) { - EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); - if (newVT.isRound() && - shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { - EVT PtrType = Lod->getOperand(1).getValueType(); - SDValue Ptr = Lod->getBasePtr(); - if (bestOffset != 0) - Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(), - DAG.getConstant(bestOffset, dl, PtrType)); - unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); - SDValue NewLoad = DAG.getLoad( - newVT, dl, Lod->getChain(), Ptr, - Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign); - return DAG.getSetCC(dl, VT, - DAG.getNode(ISD::AND, dl, newVT, NewLoad, - DAG.getConstant(bestMask.trunc(bestWidth), - dl, newVT)), - DAG.getConstant(0LL, dl, newVT), Cond); - } - } - } - - // If the LHS is a ZERO_EXTEND, perform the comparison on the input. - if (N0.getOpcode() == ISD::ZERO_EXTEND) { - unsigned InSize = N0.getOperand(0).getValueSizeInBits(); - - // If the comparison constant has bits in the upper part, the - // zero-extended value could never match. - if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), - C1.getBitWidth() - InSize))) { - switch (Cond) { - case ISD::SETUGT: - case ISD::SETUGE: - case ISD::SETEQ: - return DAG.getConstant(0, dl, VT); - case ISD::SETULT: - case ISD::SETULE: - case ISD::SETNE: - return DAG.getConstant(1, dl, VT); - case ISD::SETGT: - case ISD::SETGE: - // True if the sign bit of C1 is set. - return DAG.getConstant(C1.isNegative(), dl, VT); - case ISD::SETLT: - case ISD::SETLE: - // True if the sign bit of C1 isn't set. - return DAG.getConstant(C1.isNonNegative(), dl, VT); - default: - break; - } - } - - // Otherwise, we can perform the comparison with the low bits. - switch (Cond) { - case ISD::SETEQ: - case ISD::SETNE: - case ISD::SETUGT: - case ISD::SETUGE: - case ISD::SETULT: - case ISD::SETULE: { - EVT newVT = N0.getOperand(0).getValueType(); - if (DCI.isBeforeLegalizeOps() || - (isOperationLegal(ISD::SETCC, newVT) && - isCondCodeLegal(Cond, newVT.getSimpleVT()))) { - EVT NewSetCCVT = - getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT); - SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); - - SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), - NewConst, Cond); - return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); - } - break; - } - default: - break; // todo, be more careful with signed comparisons - } - } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && - (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { - EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); - unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); - EVT ExtDstTy = N0.getValueType(); - unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); - - // If the constant doesn't fit into the number of bits for the source of - // the sign extension, it is impossible for both sides to be equal. - if (C1.getMinSignedBits() > ExtSrcTyBits) - return DAG.getConstant(Cond == ISD::SETNE, dl, VT); - - SDValue ZextOp; - EVT Op0Ty = N0.getOperand(0).getValueType(); - if (Op0Ty == ExtSrcTy) { - ZextOp = N0.getOperand(0); - } else { - APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); - ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), - DAG.getConstant(Imm, dl, Op0Ty)); - } - if (!DCI.isCalledByLegalizer()) - DCI.AddToWorklist(ZextOp.getNode()); - // Otherwise, make this a use of a zext. - return DAG.getSetCC(dl, VT, ZextOp, - DAG.getConstant(C1 & APInt::getLowBitsSet( - ExtDstTyBits, - ExtSrcTyBits), - dl, ExtDstTy), - Cond); - } else if ((N1C->isNullValue() || N1C->isOne()) && - (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { - // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC - if (N0.getOpcode() == ISD::SETCC && - isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) { - bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); - if (TrueWhenTrue) - return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); - // Invert the condition. - ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); - CC = ISD::getSetCCInverse(CC, - N0.getOperand(0).getValueType().isInteger()); - if (DCI.isBeforeLegalizeOps() || - isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) - return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); - } - - if ((N0.getOpcode() == ISD::XOR || - (N0.getOpcode() == ISD::AND && - N0.getOperand(0).getOpcode() == ISD::XOR && - N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && - isa<ConstantSDNode>(N0.getOperand(1)) && - cast<ConstantSDNode>(N0.getOperand(1))->isOne()) { - // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We - // can only do this if the top bits are known zero. - unsigned BitWidth = N0.getValueSizeInBits(); - if (DAG.MaskedValueIsZero(N0, - APInt::getHighBitsSet(BitWidth, - BitWidth-1))) { - // Okay, get the un-inverted input value. - SDValue Val; - if (N0.getOpcode() == ISD::XOR) { - Val = N0.getOperand(0); - } else { - assert(N0.getOpcode() == ISD::AND && - N0.getOperand(0).getOpcode() == ISD::XOR); - // ((X^1)&1)^1 -> X & 1 - Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), - N0.getOperand(0).getOperand(0), - N0.getOperand(1)); - } - - return DAG.getSetCC(dl, VT, Val, N1, - Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); - } - } else if (N1C->isOne() && - (VT == MVT::i1 || - getBooleanContents(N0->getValueType(0)) == - ZeroOrOneBooleanContent)) { - SDValue Op0 = N0; - if (Op0.getOpcode() == ISD::TRUNCATE) - Op0 = Op0.getOperand(0); - - if ((Op0.getOpcode() == ISD::XOR) && - Op0.getOperand(0).getOpcode() == ISD::SETCC && - Op0.getOperand(1).getOpcode() == ISD::SETCC) { - // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) - Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; - return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1), - Cond); - } - if (Op0.getOpcode() == ISD::AND && - isa<ConstantSDNode>(Op0.getOperand(1)) && - cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) { - // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. - if (Op0.getValueType().bitsGT(VT)) - Op0 = DAG.getNode(ISD::AND, dl, VT, - DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), - DAG.getConstant(1, dl, VT)); - else if (Op0.getValueType().bitsLT(VT)) - Op0 = DAG.getNode(ISD::AND, dl, VT, - DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), - DAG.getConstant(1, dl, VT)); - - return DAG.getSetCC(dl, VT, Op0, - DAG.getConstant(0, dl, Op0.getValueType()), - Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); - } - if (Op0.getOpcode() == ISD::AssertZext && - cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) - return DAG.getSetCC(dl, VT, Op0, - DAG.getConstant(0, dl, Op0.getValueType()), - Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); - } - } - - if (SDValue V = - optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) - return V; - } - - // These simplifications apply to splat vectors as well. - // TODO: Handle more splat vector cases. - if (auto *N1C = isConstOrConstSplat(N1)) { - const APInt &C1 = N1C->getAPIntValue(); - - APInt MinVal, MaxVal; - unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); - if (ISD::isSignedIntSetCC(Cond)) { - MinVal = APInt::getSignedMinValue(OperandBitSize); - MaxVal = APInt::getSignedMaxValue(OperandBitSize); - } else { - MinVal = APInt::getMinValue(OperandBitSize); - MaxVal = APInt::getMaxValue(OperandBitSize); - } - - // Canonicalize GE/LE comparisons to use GT/LT comparisons. - if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { - // X >= MIN --> true - if (C1 == MinVal) - return DAG.getBoolConstant(true, dl, VT, OpVT); - - if (!VT.isVector()) { // TODO: Support this for vectors. - // X >= C0 --> X > (C0 - 1) - APInt C = C1 - 1; - ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; - if ((DCI.isBeforeLegalizeOps() || - isCondCodeLegal(NewCC, VT.getSimpleVT())) && - (!N1C->isOpaque() || (C.getBitWidth() <= 64 && - isLegalICmpImmediate(C.getSExtValue())))) { - return DAG.getSetCC(dl, VT, N0, - DAG.getConstant(C, dl, N1.getValueType()), - NewCC); - } - } - } - - if (Cond == ISD::SETLE || Cond == ISD::SETULE) { - // X <= MAX --> true - if (C1 == MaxVal) - return DAG.getBoolConstant(true, dl, VT, OpVT); - - // X <= C0 --> X < (C0 + 1) - if (!VT.isVector()) { // TODO: Support this for vectors. - APInt C = C1 + 1; - ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; - if ((DCI.isBeforeLegalizeOps() || - isCondCodeLegal(NewCC, VT.getSimpleVT())) && - (!N1C->isOpaque() || (C.getBitWidth() <= 64 && - isLegalICmpImmediate(C.getSExtValue())))) { - return DAG.getSetCC(dl, VT, N0, - DAG.getConstant(C, dl, N1.getValueType()), - NewCC); - } - } - } - - if (Cond == ISD::SETLT || Cond == ISD::SETULT) { - if (C1 == MinVal) - return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false - - // TODO: Support this for vectors after legalize ops. - if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { - // Canonicalize setlt X, Max --> setne X, Max - if (C1 == MaxVal) - return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); - - // If we have setult X, 1, turn it into seteq X, 0 - if (C1 == MinVal+1) - return DAG.getSetCC(dl, VT, N0, - DAG.getConstant(MinVal, dl, N0.getValueType()), - ISD::SETEQ); - } - } - - if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { - if (C1 == MaxVal) - return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false - - // TODO: Support this for vectors after legalize ops. - if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { - // Canonicalize setgt X, Min --> setne X, Min - if (C1 == MinVal) - return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); - - // If we have setugt X, Max-1, turn it into seteq X, Max - if (C1 == MaxVal-1) - return DAG.getSetCC(dl, VT, N0, - DAG.getConstant(MaxVal, dl, N0.getValueType()), - ISD::SETEQ); - } - } - - // If we have "setcc X, C0", check to see if we can shrink the immediate - // by changing cc. - // TODO: Support this for vectors after legalize ops. - if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { - // SETUGT X, SINTMAX -> SETLT X, 0 - if (Cond == ISD::SETUGT && - C1 == APInt::getSignedMaxValue(OperandBitSize)) - return DAG.getSetCC(dl, VT, N0, - DAG.getConstant(0, dl, N1.getValueType()), - ISD::SETLT); - - // SETULT X, SINTMIN -> SETGT X, -1 - if (Cond == ISD::SETULT && - C1 == APInt::getSignedMinValue(OperandBitSize)) { - SDValue ConstMinusOne = - DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl, - N1.getValueType()); - return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); - } - } - } - - // Back to non-vector simplifications. - // TODO: Can we do these for vector splats? - if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { - const APInt &C1 = N1C->getAPIntValue(); - - // Fold bit comparisons when we can. - if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && - (VT == N0.getValueType() || - (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) && - N0.getOpcode() == ISD::AND) { - auto &DL = DAG.getDataLayout(); - if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { - EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL, - !DCI.isBeforeLegalize()); - if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 - // Perform the xform if the AND RHS is a single bit. - if (AndRHS->getAPIntValue().isPowerOf2()) { - return DAG.getNode(ISD::TRUNCATE, dl, VT, - DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, - DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl, - ShiftTy))); - } - } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { - // (X & 8) == 8 --> (X & 8) >> 3 - // Perform the xform if C1 is a single bit. - if (C1.isPowerOf2()) { - return DAG.getNode(ISD::TRUNCATE, dl, VT, - DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, - DAG.getConstant(C1.logBase2(), dl, - ShiftTy))); - } - } - } - } - - if (C1.getMinSignedBits() <= 64 && - !isLegalICmpImmediate(C1.getSExtValue())) { - // (X & -256) == 256 -> (X >> 8) == 1 - if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && - N0.getOpcode() == ISD::AND && N0.hasOneUse()) { - if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { - const APInt &AndRHSC = AndRHS->getAPIntValue(); - if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { - unsigned ShiftBits = AndRHSC.countTrailingZeros(); - auto &DL = DAG.getDataLayout(); - EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL, - !DCI.isBeforeLegalize()); - EVT CmpTy = N0.getValueType(); - SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0), - DAG.getConstant(ShiftBits, dl, - ShiftTy)); - SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy); - return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); - } - } - } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || - Cond == ISD::SETULE || Cond == ISD::SETUGT) { - bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); - // X < 0x100000000 -> (X >> 32) < 1 - // X >= 0x100000000 -> (X >> 32) >= 1 - // X <= 0x0ffffffff -> (X >> 32) < 1 - // X > 0x0ffffffff -> (X >> 32) >= 1 - unsigned ShiftBits; - APInt NewC = C1; - ISD::CondCode NewCond = Cond; - if (AdjOne) { - ShiftBits = C1.countTrailingOnes(); - NewC = NewC + 1; - NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; - } else { - ShiftBits = C1.countTrailingZeros(); - } - NewC.lshrInPlace(ShiftBits); - if (ShiftBits && NewC.getMinSignedBits() <= 64 && - isLegalICmpImmediate(NewC.getSExtValue())) { - auto &DL = DAG.getDataLayout(); - EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL, - !DCI.isBeforeLegalize()); - EVT CmpTy = N0.getValueType(); - SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0, - DAG.getConstant(ShiftBits, dl, ShiftTy)); - SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy); - return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); - } - } - } - } - - if (isa<ConstantFPSDNode>(N0.getNode())) { - // Constant fold or commute setcc. - SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl); - if (O.getNode()) return O; - } else if (auto *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) { - // If the RHS of an FP comparison is a constant, simplify it away in - // some cases. - if (CFP->getValueAPF().isNaN()) { - // If an operand is known to be a nan, we can fold it. - switch (ISD::getUnorderedFlavor(Cond)) { - default: llvm_unreachable("Unknown flavor!"); - case 0: // Known false. - return DAG.getBoolConstant(false, dl, VT, OpVT); - case 1: // Known true. - return DAG.getBoolConstant(true, dl, VT, OpVT); - case 2: // Undefined. - return DAG.getUNDEF(VT); - } - } - - // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the - // constant if knowing that the operand is non-nan is enough. We prefer to - // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to - // materialize 0.0. - if (Cond == ISD::SETO || Cond == ISD::SETUO) - return DAG.getSetCC(dl, VT, N0, N0, Cond); - - // setcc (fneg x), C -> setcc swap(pred) x, -C - if (N0.getOpcode() == ISD::FNEG) { - ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); - if (DCI.isBeforeLegalizeOps() || - isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { - SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); - return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); - } - } - - // If the condition is not legal, see if we can find an equivalent one - // which is legal. - if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { - // If the comparison was an awkward floating-point == or != and one of - // the comparison operands is infinity or negative infinity, convert the - // condition to a less-awkward <= or >=. - if (CFP->getValueAPF().isInfinity()) { - if (CFP->getValueAPF().isNegative()) { - if (Cond == ISD::SETOEQ && - isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) - return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE); - if (Cond == ISD::SETUEQ && - isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) - return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE); - if (Cond == ISD::SETUNE && - isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) - return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT); - if (Cond == ISD::SETONE && - isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) - return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT); - } else { - if (Cond == ISD::SETOEQ && - isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) - return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE); - if (Cond == ISD::SETUEQ && - isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) - return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE); - if (Cond == ISD::SETUNE && - isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) - return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT); - if (Cond == ISD::SETONE && - isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) - return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT); - } - } - } - } - - if (N0 == N1) { - // The sext(setcc()) => setcc() optimization relies on the appropriate - // constant being emitted. - - bool EqTrue = ISD::isTrueWhenEqual(Cond); - - // We can always fold X == X for integer setcc's. - if (N0.getValueType().isInteger()) - return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); - - unsigned UOF = ISD::getUnorderedFlavor(Cond); - if (UOF == 2) // FP operators that are undefined on NaNs. - return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); - if (UOF == unsigned(EqTrue)) - return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); - // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO - // if it is not already. - ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; - if (NewCond != Cond && - (DCI.isBeforeLegalizeOps() || - isCondCodeLegal(NewCond, N0.getSimpleValueType()))) - return DAG.getSetCC(dl, VT, N0, N1, NewCond); - } - - if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && - N0.getValueType().isInteger()) { - if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || - N0.getOpcode() == ISD::XOR) { - // Simplify (X+Y) == (X+Z) --> Y == Z - if (N0.getOpcode() == N1.getOpcode()) { - if (N0.getOperand(0) == N1.getOperand(0)) - return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); - if (N0.getOperand(1) == N1.getOperand(1)) - return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); - if (isCommutativeBinOp(N0.getOpcode())) { - // If X op Y == Y op X, try other combinations. - if (N0.getOperand(0) == N1.getOperand(1)) - return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), - Cond); - if (N0.getOperand(1) == N1.getOperand(0)) - return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), - Cond); - } - } - - // If RHS is a legal immediate value for a compare instruction, we need - // to be careful about increasing register pressure needlessly. - bool LegalRHSImm = false; - - if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { - if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { - // Turn (X+C1) == C2 --> X == C2-C1 - if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { - return DAG.getSetCC(dl, VT, N0.getOperand(0), - DAG.getConstant(RHSC->getAPIntValue()- - LHSR->getAPIntValue(), - dl, N0.getValueType()), Cond); - } - - // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. - if (N0.getOpcode() == ISD::XOR) - // If we know that all of the inverted bits are zero, don't bother - // performing the inversion. - if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) - return - DAG.getSetCC(dl, VT, N0.getOperand(0), - DAG.getConstant(LHSR->getAPIntValue() ^ - RHSC->getAPIntValue(), - dl, N0.getValueType()), - Cond); - } - - // Turn (C1-X) == C2 --> X == C1-C2 - if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { - if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { - return - DAG.getSetCC(dl, VT, N0.getOperand(1), - DAG.getConstant(SUBC->getAPIntValue() - - RHSC->getAPIntValue(), - dl, N0.getValueType()), - Cond); - } - } - - // Could RHSC fold directly into a compare? - if (RHSC->getValueType(0).getSizeInBits() <= 64) - LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); - } - - // Simplify (X+Z) == X --> Z == 0 - // Don't do this if X is an immediate that can fold into a cmp - // instruction and X+Z has other uses. It could be an induction variable - // chain, and the transform would increase register pressure. - if (!LegalRHSImm || N0.getNode()->hasOneUse()) { - if (N0.getOperand(0) == N1) - return DAG.getSetCC(dl, VT, N0.getOperand(1), - DAG.getConstant(0, dl, N0.getValueType()), Cond); - if (N0.getOperand(1) == N1) { - if (isCommutativeBinOp(N0.getOpcode())) - return DAG.getSetCC(dl, VT, N0.getOperand(0), - DAG.getConstant(0, dl, N0.getValueType()), - Cond); - if (N0.getNode()->hasOneUse()) { - assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!"); - auto &DL = DAG.getDataLayout(); - // (Z-X) == X --> Z == X<<1 - SDValue SH = DAG.getNode( - ISD::SHL, dl, N1.getValueType(), N1, - DAG.getConstant(1, dl, - getShiftAmountTy(N1.getValueType(), DL, - !DCI.isBeforeLegalize()))); - if (!DCI.isCalledByLegalizer()) - DCI.AddToWorklist(SH.getNode()); - return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond); - } - } - } - } - - if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || - N1.getOpcode() == ISD::XOR) { - // Simplify X == (X+Z) --> Z == 0 - if (N1.getOperand(0) == N0) - return DAG.getSetCC(dl, VT, N1.getOperand(1), - DAG.getConstant(0, dl, N1.getValueType()), Cond); - if (N1.getOperand(1) == N0) { - if (isCommutativeBinOp(N1.getOpcode())) - return DAG.getSetCC(dl, VT, N1.getOperand(0), - DAG.getConstant(0, dl, N1.getValueType()), Cond); - if (N1.getNode()->hasOneUse()) { - assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!"); - auto &DL = DAG.getDataLayout(); - // X == (Z-X) --> X<<1 == Z - SDValue SH = DAG.getNode( - ISD::SHL, dl, N1.getValueType(), N0, - DAG.getConstant(1, dl, getShiftAmountTy(N0.getValueType(), DL, - !DCI.isBeforeLegalize()))); - if (!DCI.isCalledByLegalizer()) - DCI.AddToWorklist(SH.getNode()); - return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond); - } - } - } - - if (SDValue V = simplifySetCCWithAnd(VT, N0, N1, Cond, DCI, dl)) - return V; - } - - // Fold away ALL boolean setcc's. - SDValue Temp; - if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { - EVT OpVT = N0.getValueType(); - switch (Cond) { - default: llvm_unreachable("Unknown integer setcc!"); - case ISD::SETEQ: // X == Y -> ~(X^Y) - Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); - N0 = DAG.getNOT(dl, Temp, OpVT); - if (!DCI.isCalledByLegalizer()) - DCI.AddToWorklist(Temp.getNode()); - break; - case ISD::SETNE: // X != Y --> (X^Y) - N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); - break; - case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y - case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y - Temp = DAG.getNOT(dl, N0, OpVT); - N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); - if (!DCI.isCalledByLegalizer()) - DCI.AddToWorklist(Temp.getNode()); - break; - case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X - case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X - Temp = DAG.getNOT(dl, N1, OpVT); - N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); - if (!DCI.isCalledByLegalizer()) - DCI.AddToWorklist(Temp.getNode()); - break; - case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y - case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y - Temp = DAG.getNOT(dl, N0, OpVT); - N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); - if (!DCI.isCalledByLegalizer()) - DCI.AddToWorklist(Temp.getNode()); - break; - case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X - case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X - Temp = DAG.getNOT(dl, N1, OpVT); - N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); - break; - } - if (VT.getScalarType() != MVT::i1) { - if (!DCI.isCalledByLegalizer()) - DCI.AddToWorklist(N0.getNode()); - // FIXME: If running after legalize, we probably can't do this. - ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); - N0 = DAG.getNode(ExtendCode, dl, VT, N0); - } - return N0; - } - - // Could not fold it. - return SDValue(); -} - -/// Returns true (and the GlobalValue and the offset) if the node is a -/// GlobalAddress + offset. -bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, - int64_t &Offset) const { - - SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); - - if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { - GA = GASD->getGlobal(); - Offset += GASD->getOffset(); - return true; - } - - if (N->getOpcode() == ISD::ADD) { - SDValue N1 = N->getOperand(0); - SDValue N2 = N->getOperand(1); - if (isGAPlusOffset(N1.getNode(), GA, Offset)) { - if (auto *V = dyn_cast<ConstantSDNode>(N2)) { - Offset += V->getSExtValue(); - return true; - } - } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { - if (auto *V = dyn_cast<ConstantSDNode>(N1)) { - Offset += V->getSExtValue(); - return true; - } - } - } - - return false; -} - -SDValue TargetLowering::PerformDAGCombine(SDNode *N, - DAGCombinerInfo &DCI) const { - // Default implementation: no optimization. - return SDValue(); -} - -//===----------------------------------------------------------------------===// -// Inline Assembler Implementation Methods -//===----------------------------------------------------------------------===// - -TargetLowering::ConstraintType -TargetLowering::getConstraintType(StringRef Constraint) const { - unsigned S = Constraint.size(); - - if (S == 1) { - switch (Constraint[0]) { - default: break; - case 'r': return C_RegisterClass; - case 'm': // memory - case 'o': // offsetable - case 'V': // not offsetable - return C_Memory; - case 'i': // Simple Integer or Relocatable Constant - case 'n': // Simple Integer - case 'E': // Floating Point Constant - case 'F': // Floating Point Constant - case 's': // Relocatable Constant - case 'p': // Address. - case 'X': // Allow ANY value. - case 'I': // Target registers. - case 'J': - case 'K': - case 'L': - case 'M': - case 'N': - case 'O': - case 'P': - case '<': - case '>': - return C_Other; - } - } - - if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') { - if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" - return C_Memory; - return C_Register; - } - return C_Unknown; -} - -/// Try to replace an X constraint, which matches anything, with another that -/// has more specific requirements based on the type of the corresponding -/// operand. -const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{ - if (ConstraintVT.isInteger()) - return "r"; - if (ConstraintVT.isFloatingPoint()) - return "f"; // works for many targets - return nullptr; -} - -/// Lower the specified operand into the Ops vector. -/// If it is invalid, don't add anything to Ops. -void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, - std::string &Constraint, - std::vector<SDValue> &Ops, - SelectionDAG &DAG) const { - - if (Constraint.length() > 1) return; - - char ConstraintLetter = Constraint[0]; - switch (ConstraintLetter) { - default: break; - case 'X': // Allows any operand; labels (basic block) use this. - if (Op.getOpcode() == ISD::BasicBlock) { - Ops.push_back(Op); - return; - } - LLVM_FALLTHROUGH; - case 'i': // Simple Integer or Relocatable Constant - case 'n': // Simple Integer - case 's': { // Relocatable Constant - // These operands are interested in values of the form (GV+C), where C may - // be folded in as an offset of GV, or it may be explicitly added. Also, it - // is possible and fine if either GV or C are missing. - ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); - GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op); - - // If we have "(add GV, C)", pull out GV/C - if (Op.getOpcode() == ISD::ADD) { - C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); - GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0)); - if (!C || !GA) { - C = dyn_cast<ConstantSDNode>(Op.getOperand(0)); - GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1)); - } - if (!C || !GA) { - C = nullptr; - GA = nullptr; - } - } - - // If we find a valid operand, map to the TargetXXX version so that the - // value itself doesn't get selected. - if (GA) { // Either &GV or &GV+C - if (ConstraintLetter != 'n') { - int64_t Offs = GA->getOffset(); - if (C) Offs += C->getZExtValue(); - Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), - C ? SDLoc(C) : SDLoc(), - Op.getValueType(), Offs)); - } - return; - } - if (C) { // just C, no GV. - // Simple constants are not allowed for 's'. - if (ConstraintLetter != 's') { - // gcc prints these as sign extended. Sign extend value to 64 bits - // now; without this it would get ZExt'd later in - // ScheduleDAGSDNodes::EmitNode, which is very generic. - Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), - SDLoc(C), MVT::i64)); - } - return; - } - break; - } - } -} - -std::pair<unsigned, const TargetRegisterClass *> -TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, - StringRef Constraint, - MVT VT) const { - if (Constraint.empty() || Constraint[0] != '{') - return std::make_pair(0u, static_cast<TargetRegisterClass*>(nullptr)); - assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?"); - - // Remove the braces from around the name. - StringRef RegName(Constraint.data()+1, Constraint.size()-2); - - std::pair<unsigned, const TargetRegisterClass*> R = - std::make_pair(0u, static_cast<const TargetRegisterClass*>(nullptr)); - - // Figure out which register class contains this reg. - for (const TargetRegisterClass *RC : RI->regclasses()) { - // If none of the value types for this register class are valid, we - // can't use it. For example, 64-bit reg classes on 32-bit targets. - if (!isLegalRC(*RI, *RC)) - continue; - - for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); - I != E; ++I) { - if (RegName.equals_lower(RI->getRegAsmName(*I))) { - std::pair<unsigned, const TargetRegisterClass*> S = - std::make_pair(*I, RC); - - // If this register class has the requested value type, return it, - // otherwise keep searching and return the first class found - // if no other is found which explicitly has the requested type. - if (RI->isTypeLegalForClass(*RC, VT)) - return S; - if (!R.second) - R = S; - } - } - } - - return R; -} - -//===----------------------------------------------------------------------===// -// Constraint Selection. - -/// Return true of this is an input operand that is a matching constraint like -/// "4". -bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { - assert(!ConstraintCode.empty() && "No known constraint!"); - return isdigit(static_cast<unsigned char>(ConstraintCode[0])); -} - -/// If this is an input matching constraint, this method returns the output -/// operand it matches. -unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { - assert(!ConstraintCode.empty() && "No known constraint!"); - return atoi(ConstraintCode.c_str()); -} - -/// Split up the constraint string from the inline assembly value into the -/// specific constraints and their prefixes, and also tie in the associated -/// operand values. -/// If this returns an empty vector, and if the constraint string itself -/// isn't empty, there was an error parsing. -TargetLowering::AsmOperandInfoVector -TargetLowering::ParseConstraints(const DataLayout &DL, - const TargetRegisterInfo *TRI, - ImmutableCallSite CS) const { - /// Information about all of the constraints. - AsmOperandInfoVector ConstraintOperands; - const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); - unsigned maCount = 0; // Largest number of multiple alternative constraints. - - // Do a prepass over the constraints, canonicalizing them, and building up the - // ConstraintOperands list. - unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. - unsigned ResNo = 0; // ResNo - The result number of the next output. - - for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { - ConstraintOperands.emplace_back(std::move(CI)); - AsmOperandInfo &OpInfo = ConstraintOperands.back(); - - // Update multiple alternative constraint count. - if (OpInfo.multipleAlternatives.size() > maCount) - maCount = OpInfo.multipleAlternatives.size(); - - OpInfo.ConstraintVT = MVT::Other; - - // Compute the value type for each operand. - switch (OpInfo.Type) { - case InlineAsm::isOutput: - // Indirect outputs just consume an argument. - if (OpInfo.isIndirect) { - OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); - break; - } - - // The return value of the call is this value. As such, there is no - // corresponding argument. - assert(!CS.getType()->isVoidTy() && - "Bad inline asm!"); - if (StructType *STy = dyn_cast<StructType>(CS.getType())) { - OpInfo.ConstraintVT = - getSimpleValueType(DL, STy->getElementType(ResNo)); - } else { - assert(ResNo == 0 && "Asm only has one result!"); - OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType()); - } - ++ResNo; - break; - case InlineAsm::isInput: - OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); - break; - case InlineAsm::isClobber: - // Nothing to do. - break; - } - - if (OpInfo.CallOperandVal) { - llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); - if (OpInfo.isIndirect) { - llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); - if (!PtrTy) - report_fatal_error("Indirect operand for inline asm not a pointer!"); - OpTy = PtrTy->getElementType(); - } - - // Look for vector wrapped in a struct. e.g. { <16 x i8> }. - if (StructType *STy = dyn_cast<StructType>(OpTy)) - if (STy->getNumElements() == 1) - OpTy = STy->getElementType(0); - - // If OpTy is not a single value, it may be a struct/union that we - // can tile with integers. - if (!OpTy->isSingleValueType() && OpTy->isSized()) { - unsigned BitSize = DL.getTypeSizeInBits(OpTy); - switch (BitSize) { - default: break; - case 1: - case 8: - case 16: - case 32: - case 64: - case 128: - OpInfo.ConstraintVT = - MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); - break; - } - } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { - unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); - OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); - } else { - OpInfo.ConstraintVT = MVT::getVT(OpTy, true); - } - } - } - - // If we have multiple alternative constraints, select the best alternative. - if (!ConstraintOperands.empty()) { - if (maCount) { - unsigned bestMAIndex = 0; - int bestWeight = -1; - // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. - int weight = -1; - unsigned maIndex; - // Compute the sums of the weights for each alternative, keeping track - // of the best (highest weight) one so far. - for (maIndex = 0; maIndex < maCount; ++maIndex) { - int weightSum = 0; - for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); - cIndex != eIndex; ++cIndex) { - AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; - if (OpInfo.Type == InlineAsm::isClobber) - continue; - - // If this is an output operand with a matching input operand, - // look up the matching input. If their types mismatch, e.g. one - // is an integer, the other is floating point, or their sizes are - // different, flag it as an maCantMatch. - if (OpInfo.hasMatchingInput()) { - AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; - if (OpInfo.ConstraintVT != Input.ConstraintVT) { - if ((OpInfo.ConstraintVT.isInteger() != - Input.ConstraintVT.isInteger()) || - (OpInfo.ConstraintVT.getSizeInBits() != - Input.ConstraintVT.getSizeInBits())) { - weightSum = -1; // Can't match. - break; - } - } - } - weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); - if (weight == -1) { - weightSum = -1; - break; - } - weightSum += weight; - } - // Update best. - if (weightSum > bestWeight) { - bestWeight = weightSum; - bestMAIndex = maIndex; - } - } - - // Now select chosen alternative in each constraint. - for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); - cIndex != eIndex; ++cIndex) { - AsmOperandInfo& cInfo = ConstraintOperands[cIndex]; - if (cInfo.Type == InlineAsm::isClobber) - continue; - cInfo.selectAlternative(bestMAIndex); - } - } - } - - // Check and hook up tied operands, choose constraint code to use. - for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); - cIndex != eIndex; ++cIndex) { - AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; - - // If this is an output operand with a matching input operand, look up the - // matching input. If their types mismatch, e.g. one is an integer, the - // other is floating point, or their sizes are different, flag it as an - // error. - if (OpInfo.hasMatchingInput()) { - AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; - - if (OpInfo.ConstraintVT != Input.ConstraintVT) { - std::pair<unsigned, const TargetRegisterClass *> MatchRC = - getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, - OpInfo.ConstraintVT); - std::pair<unsigned, const TargetRegisterClass *> InputRC = - getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, - Input.ConstraintVT); - if ((OpInfo.ConstraintVT.isInteger() != - Input.ConstraintVT.isInteger()) || - (MatchRC.second != InputRC.second)) { - report_fatal_error("Unsupported asm: input constraint" - " with a matching output constraint of" - " incompatible type!"); - } - } - } - } - - return ConstraintOperands; -} - -/// Return an integer indicating how general CT is. -static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { - switch (CT) { - case TargetLowering::C_Other: - case TargetLowering::C_Unknown: - return 0; - case TargetLowering::C_Register: - return 1; - case TargetLowering::C_RegisterClass: - return 2; - case TargetLowering::C_Memory: - return 3; - } - llvm_unreachable("Invalid constraint type"); -} - -/// Examine constraint type and operand type and determine a weight value. -/// This object must already have been set up with the operand type -/// and the current alternative constraint selected. -TargetLowering::ConstraintWeight - TargetLowering::getMultipleConstraintMatchWeight( - AsmOperandInfo &info, int maIndex) const { - InlineAsm::ConstraintCodeVector *rCodes; - if (maIndex >= (int)info.multipleAlternatives.size()) - rCodes = &info.Codes; - else - rCodes = &info.multipleAlternatives[maIndex].Codes; - ConstraintWeight BestWeight = CW_Invalid; - - // Loop over the options, keeping track of the most general one. - for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { - ConstraintWeight weight = - getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); - if (weight > BestWeight) - BestWeight = weight; - } - - return BestWeight; -} - -/// Examine constraint type and operand type and determine a weight value. -/// This object must already have been set up with the operand type -/// and the current alternative constraint selected. -TargetLowering::ConstraintWeight - TargetLowering::getSingleConstraintMatchWeight( - AsmOperandInfo &info, const char *constraint) const { - ConstraintWeight weight = CW_Invalid; - Value *CallOperandVal = info.CallOperandVal; - // If we don't have a value, we can't do a match, - // but allow it at the lowest weight. - if (!CallOperandVal) - return CW_Default; - // Look at the constraint type. - switch (*constraint) { - case 'i': // immediate integer. - case 'n': // immediate integer with a known value. - if (isa<ConstantInt>(CallOperandVal)) - weight = CW_Constant; - break; - case 's': // non-explicit intregal immediate. - if (isa<GlobalValue>(CallOperandVal)) - weight = CW_Constant; - break; - case 'E': // immediate float if host format. - case 'F': // immediate float. - if (isa<ConstantFP>(CallOperandVal)) - weight = CW_Constant; - break; - case '<': // memory operand with autodecrement. - case '>': // memory operand with autoincrement. - case 'm': // memory operand. - case 'o': // offsettable memory operand - case 'V': // non-offsettable memory operand - weight = CW_Memory; - break; - case 'r': // general register. - case 'g': // general register, memory operand or immediate integer. - // note: Clang converts "g" to "imr". - if (CallOperandVal->getType()->isIntegerTy()) - weight = CW_Register; - break; - case 'X': // any operand. - default: - weight = CW_Default; - break; - } - return weight; -} - -/// If there are multiple different constraints that we could pick for this -/// operand (e.g. "imr") try to pick the 'best' one. -/// This is somewhat tricky: constraints fall into four classes: -/// Other -> immediates and magic values -/// Register -> one specific register -/// RegisterClass -> a group of regs -/// Memory -> memory -/// Ideally, we would pick the most specific constraint possible: if we have -/// something that fits into a register, we would pick it. The problem here -/// is that if we have something that could either be in a register or in -/// memory that use of the register could cause selection of *other* -/// operands to fail: they might only succeed if we pick memory. Because of -/// this the heuristic we use is: -/// -/// 1) If there is an 'other' constraint, and if the operand is valid for -/// that constraint, use it. This makes us take advantage of 'i' -/// constraints when available. -/// 2) Otherwise, pick the most general constraint present. This prefers -/// 'm' over 'r', for example. -/// -static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, - const TargetLowering &TLI, - SDValue Op, SelectionDAG *DAG) { - assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); - unsigned BestIdx = 0; - TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; - int BestGenerality = -1; - - // Loop over the options, keeping track of the most general one. - for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { - TargetLowering::ConstraintType CType = - TLI.getConstraintType(OpInfo.Codes[i]); - - // If this is an 'other' constraint, see if the operand is valid for it. - // For example, on X86 we might have an 'rI' constraint. If the operand - // is an integer in the range [0..31] we want to use I (saving a load - // of a register), otherwise we must use 'r'. - if (CType == TargetLowering::C_Other && Op.getNode()) { - assert(OpInfo.Codes[i].size() == 1 && - "Unhandled multi-letter 'other' constraint"); - std::vector<SDValue> ResultOps; - TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], - ResultOps, *DAG); - if (!ResultOps.empty()) { - BestType = CType; - BestIdx = i; - break; - } - } - - // Things with matching constraints can only be registers, per gcc - // documentation. This mainly affects "g" constraints. - if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) - continue; - - // This constraint letter is more general than the previous one, use it. - int Generality = getConstraintGenerality(CType); - if (Generality > BestGenerality) { - BestType = CType; - BestIdx = i; - BestGenerality = Generality; - } - } - - OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; - OpInfo.ConstraintType = BestType; -} - -/// Determines the constraint code and constraint type to use for the specific -/// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. -void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, - SDValue Op, - SelectionDAG *DAG) const { - assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); - - // Single-letter constraints ('r') are very common. - if (OpInfo.Codes.size() == 1) { - OpInfo.ConstraintCode = OpInfo.Codes[0]; - OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); - } else { - ChooseConstraint(OpInfo, *this, Op, DAG); - } - - // 'X' matches anything. - if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { - // Labels and constants are handled elsewhere ('X' is the only thing - // that matches labels). For Functions, the type here is the type of - // the result, which is not what we want to look at; leave them alone. - Value *v = OpInfo.CallOperandVal; - if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { - OpInfo.CallOperandVal = v; - return; - } - - // Otherwise, try to resolve it to something we know about by looking at - // the actual operand type. - if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { - OpInfo.ConstraintCode = Repl; - OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); - } - } -} - -/// Given an exact SDIV by a constant, create a multiplication -/// with the multiplicative inverse of the constant. -static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, - const SDLoc &dl, SelectionDAG &DAG, - SmallVectorImpl<SDNode *> &Created) { - SDValue Op0 = N->getOperand(0); - SDValue Op1 = N->getOperand(1); - EVT VT = N->getValueType(0); - EVT SVT = VT.getScalarType(); - EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); - EVT ShSVT = ShVT.getScalarType(); - - bool UseSRA = false; - SmallVector<SDValue, 16> Shifts, Factors; - - auto BuildSDIVPattern = [&](ConstantSDNode *C) { - if (C->isNullValue()) - return false; - APInt Divisor = C->getAPIntValue(); - unsigned Shift = Divisor.countTrailingZeros(); - if (Shift) { - Divisor.ashrInPlace(Shift); - UseSRA = true; - } - // Calculate the multiplicative inverse, using Newton's method. - APInt t; - APInt Factor = Divisor; - while ((t = Divisor * Factor) != 1) - Factor *= APInt(Divisor.getBitWidth(), 2) - t; - Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); - Factors.push_back(DAG.getConstant(Factor, dl, SVT)); - return true; - }; - - // Collect all magic values from the build vector. - if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) - return SDValue(); - - SDValue Shift, Factor; - if (VT.isVector()) { - Shift = DAG.getBuildVector(ShVT, dl, Shifts); - Factor = DAG.getBuildVector(VT, dl, Factors); - } else { - Shift = Shifts[0]; - Factor = Factors[0]; - } - - SDValue Res = Op0; - - // Shift the value upfront if it is even, so the LSB is one. - if (UseSRA) { - // TODO: For UDIV use SRL instead of SRA. - SDNodeFlags Flags; - Flags.setExact(true); - Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); - Created.push_back(Res.getNode()); - } - - return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); -} - -SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, - SelectionDAG &DAG, - SmallVectorImpl<SDNode *> &Created) const { - AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); - const TargetLowering &TLI = DAG.getTargetLoweringInfo(); - if (TLI.isIntDivCheap(N->getValueType(0), Attr)) - return SDValue(N,0); // Lower SDIV as SDIV - return SDValue(); -} - -/// Given an ISD::SDIV node expressing a divide by constant, -/// return a DAG expression to select that will generate the same value by -/// multiplying by a magic number. -/// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". -SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, - bool IsAfterLegalization, - SmallVectorImpl<SDNode *> &Created) const { - SDLoc dl(N); - EVT VT = N->getValueType(0); - EVT SVT = VT.getScalarType(); - EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); - EVT ShSVT = ShVT.getScalarType(); - unsigned EltBits = VT.getScalarSizeInBits(); - - // Check to see if we can do this. - // FIXME: We should be more aggressive here. - if (!isTypeLegal(VT)) - return SDValue(); - - // If the sdiv has an 'exact' bit we can use a simpler lowering. - if (N->getFlags().hasExact()) - return BuildExactSDIV(*this, N, dl, DAG, Created); - - SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; - - auto BuildSDIVPattern = [&](ConstantSDNode *C) { - if (C->isNullValue()) - return false; - - const APInt &Divisor = C->getAPIntValue(); - APInt::ms magics = Divisor.magic(); - int NumeratorFactor = 0; - int ShiftMask = -1; - - if (Divisor.isOneValue() || Divisor.isAllOnesValue()) { - // If d is +1/-1, we just multiply the numerator by +1/-1. - NumeratorFactor = Divisor.getSExtValue(); - magics.m = 0; - magics.s = 0; - ShiftMask = 0; - } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { - // If d > 0 and m < 0, add the numerator. - NumeratorFactor = 1; - } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { - // If d < 0 and m > 0, subtract the numerator. - NumeratorFactor = -1; - } - - MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT)); - Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); - Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT)); - ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); - return true; - }; - - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - - // Collect the shifts / magic values from each element. - if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) - return SDValue(); - - SDValue MagicFactor, Factor, Shift, ShiftMask; - if (VT.isVector()) { - MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); - Factor = DAG.getBuildVector(VT, dl, Factors); - Shift = DAG.getBuildVector(ShVT, dl, Shifts); - ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); - } else { - MagicFactor = MagicFactors[0]; - Factor = Factors[0]; - Shift = Shifts[0]; - ShiftMask = ShiftMasks[0]; - } - - // Multiply the numerator (operand 0) by the magic value. - // FIXME: We should support doing a MUL in a wider type. - SDValue Q; - if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) - : isOperationLegalOrCustom(ISD::MULHS, VT)) - Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor); - else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) - : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) { - SDValue LoHi = - DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor); - Q = SDValue(LoHi.getNode(), 1); - } else - return SDValue(); // No mulhs or equivalent. - Created.push_back(Q.getNode()); - - // (Optionally) Add/subtract the numerator using Factor. - Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); - Created.push_back(Factor.getNode()); - Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); - Created.push_back(Q.getNode()); - - // Shift right algebraic by shift value. - Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); - Created.push_back(Q.getNode()); - - // Extract the sign bit, mask it and add it to the quotient. - SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); - SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); - Created.push_back(T.getNode()); - T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); - Created.push_back(T.getNode()); - return DAG.getNode(ISD::ADD, dl, VT, Q, T); -} - -/// Given an ISD::UDIV node expressing a divide by constant, -/// return a DAG expression to select that will generate the same value by -/// multiplying by a magic number. -/// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". -SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, - bool IsAfterLegalization, - SmallVectorImpl<SDNode *> &Created) const { - SDLoc dl(N); - EVT VT = N->getValueType(0); - EVT SVT = VT.getScalarType(); - EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); - EVT ShSVT = ShVT.getScalarType(); - unsigned EltBits = VT.getScalarSizeInBits(); - - // Check to see if we can do this. - // FIXME: We should be more aggressive here. - if (!isTypeLegal(VT)) - return SDValue(); - - bool UseNPQ = false; - SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; - - auto BuildUDIVPattern = [&](ConstantSDNode *C) { - if (C->isNullValue()) - return false; - // FIXME: We should use a narrower constant when the upper - // bits are known to be zero. - APInt Divisor = C->getAPIntValue(); - APInt::mu magics = Divisor.magicu(); - unsigned PreShift = 0, PostShift = 0; - - // If the divisor is even, we can avoid using the expensive fixup by - // shifting the divided value upfront. - if (magics.a != 0 && !Divisor[0]) { - PreShift = Divisor.countTrailingZeros(); - // Get magic number for the shifted divisor. - magics = Divisor.lshr(PreShift).magicu(PreShift); - assert(magics.a == 0 && "Should use cheap fixup now"); - } - - APInt Magic = magics.m; - - unsigned SelNPQ; - if (magics.a == 0 || Divisor.isOneValue()) { - assert(magics.s < Divisor.getBitWidth() && - "We shouldn't generate an undefined shift!"); - PostShift = magics.s; - SelNPQ = false; - } else { - PostShift = magics.s - 1; - SelNPQ = true; - } - - PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); - MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); - NPQFactors.push_back( - DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) - : APInt::getNullValue(EltBits), - dl, SVT)); - PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); - UseNPQ |= SelNPQ; - return true; - }; - - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - - // Collect the shifts/magic values from each element. - if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) - return SDValue(); - - SDValue PreShift, PostShift, MagicFactor, NPQFactor; - if (VT.isVector()) { - PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); - MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); - NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); - PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); - } else { - PreShift = PreShifts[0]; - MagicFactor = MagicFactors[0]; - PostShift = PostShifts[0]; - } - - SDValue Q = N0; - Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); - Created.push_back(Q.getNode()); - - // FIXME: We should support doing a MUL in a wider type. - auto GetMULHU = [&](SDValue X, SDValue Y) { - if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) - : isOperationLegalOrCustom(ISD::MULHU, VT)) - return DAG.getNode(ISD::MULHU, dl, VT, X, Y); - if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) - : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) { - SDValue LoHi = - DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); - return SDValue(LoHi.getNode(), 1); - } - return SDValue(); // No mulhu or equivalent - }; - - // Multiply the numerator (operand 0) by the magic value. - Q = GetMULHU(Q, MagicFactor); - if (!Q) - return SDValue(); - - Created.push_back(Q.getNode()); - - if (UseNPQ) { - SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); - Created.push_back(NPQ.getNode()); - - // For vectors we might have a mix of non-NPQ/NPQ paths, so use - // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. - if (VT.isVector()) - NPQ = GetMULHU(NPQ, NPQFactor); - else - NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); - - Created.push_back(NPQ.getNode()); - - Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); - Created.push_back(Q.getNode()); - } - - Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); - Created.push_back(Q.getNode()); - - SDValue One = DAG.getConstant(1, dl, VT); - SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ); - return DAG.getSelect(dl, VT, IsOne, N0, Q); -} - -bool TargetLowering:: -verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { - if (!isa<ConstantSDNode>(Op.getOperand(0))) { - DAG.getContext()->emitError("argument to '__builtin_return_address' must " - "be a constant integer"); - return true; - } - - return false; -} - -//===----------------------------------------------------------------------===// -// Legalization Utilities -//===----------------------------------------------------------------------===// - -bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl, - SDValue LHS, SDValue RHS, - SmallVectorImpl<SDValue> &Result, - EVT HiLoVT, SelectionDAG &DAG, - MulExpansionKind Kind, SDValue LL, - SDValue LH, SDValue RL, SDValue RH) const { - assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || - Opcode == ISD::SMUL_LOHI); - - bool HasMULHS = (Kind == MulExpansionKind::Always) || - isOperationLegalOrCustom(ISD::MULHS, HiLoVT); - bool HasMULHU = (Kind == MulExpansionKind::Always) || - isOperationLegalOrCustom(ISD::MULHU, HiLoVT); - bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || - isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); - bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || - isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); - - if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) - return false; - - unsigned OuterBitSize = VT.getScalarSizeInBits(); - unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); - unsigned LHSSB = DAG.ComputeNumSignBits(LHS); - unsigned RHSSB = DAG.ComputeNumSignBits(RHS); - - // LL, LH, RL, and RH must be either all NULL or all set to a value. - assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || - (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); - - SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); - auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, - bool Signed) -> bool { - if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { - Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); - Hi = SDValue(Lo.getNode(), 1); - return true; - } - if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { - Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); - Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); - return true; - } - return false; - }; - - SDValue Lo, Hi; - - if (!LL.getNode() && !RL.getNode() && - isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { - LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); - RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); - } - - if (!LL.getNode()) - return false; - - APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); - if (DAG.MaskedValueIsZero(LHS, HighMask) && - DAG.MaskedValueIsZero(RHS, HighMask)) { - // The inputs are both zero-extended. - if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { - Result.push_back(Lo); - Result.push_back(Hi); - if (Opcode != ISD::MUL) { - SDValue Zero = DAG.getConstant(0, dl, HiLoVT); - Result.push_back(Zero); - Result.push_back(Zero); - } - return true; - } - } - - if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize && - RHSSB > InnerBitSize) { - // The input values are both sign-extended. - // TODO non-MUL case? - if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { - Result.push_back(Lo); - Result.push_back(Hi); - return true; - } - } - - unsigned ShiftAmount = OuterBitSize - InnerBitSize; - EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); - if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) { - // FIXME getShiftAmountTy does not always return a sensible result when VT - // is an illegal type, and so the type may be too small to fit the shift - // amount. Override it with i32. The shift will have to be legalized. - ShiftAmountTy = MVT::i32; - } - SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); - - if (!LH.getNode() && !RH.getNode() && - isOperationLegalOrCustom(ISD::SRL, VT) && - isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { - LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); - LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); - RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); - RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); - } - - if (!LH.getNode()) - return false; - - if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) - return false; - - Result.push_back(Lo); - - if (Opcode == ISD::MUL) { - RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); - LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); - Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); - Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); - Result.push_back(Hi); - return true; - } - - // Compute the full width result. - auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { - Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); - Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); - Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); - return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); - }; - - SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); - if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) - return false; - - // This is effectively the add part of a multiply-add of half-sized operands, - // so it cannot overflow. - Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); - - if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) - return false; - - SDValue Zero = DAG.getConstant(0, dl, HiLoVT); - EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); - - bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && - isOperationLegalOrCustom(ISD::ADDE, VT)); - if (UseGlue) - Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, - Merge(Lo, Hi)); - else - Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, - Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); - - SDValue Carry = Next.getValue(1); - Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); - Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); - - if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) - return false; - - if (UseGlue) - Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, - Carry); - else - Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, - Zero, Carry); - - Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); - - if (Opcode == ISD::SMUL_LOHI) { - SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, - DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); - Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); - - NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, - DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); - Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); - } - - Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); - Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); - Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); - return true; -} - -bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, - SelectionDAG &DAG, MulExpansionKind Kind, - SDValue LL, SDValue LH, SDValue RL, - SDValue RH) const { - SmallVector<SDValue, 2> Result; - bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N, - N->getOperand(0), N->getOperand(1), Result, HiLoVT, - DAG, Kind, LL, LH, RL, RH); - if (Ok) { - assert(Result.size() == 2); - Lo = Result[0]; - Hi = Result[1]; - } - return Ok; -} - -bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result, - SelectionDAG &DAG) const { - EVT VT = Node->getValueType(0); - - if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || - !isOperationLegalOrCustom(ISD::SRL, VT) || - !isOperationLegalOrCustom(ISD::SUB, VT) || - !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) - return false; - - // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) - // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) - SDValue X = Node->getOperand(0); - SDValue Y = Node->getOperand(1); - SDValue Z = Node->getOperand(2); - - unsigned EltSizeInBits = VT.getScalarSizeInBits(); - bool IsFSHL = Node->getOpcode() == ISD::FSHL; - SDLoc DL(SDValue(Node, 0)); - - EVT ShVT = Z.getValueType(); - SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); - SDValue Zero = DAG.getConstant(0, DL, ShVT); - - SDValue ShAmt; - if (isPowerOf2_32(EltSizeInBits)) { - SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); - ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); - } else { - ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); - } - - SDValue InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); - SDValue ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); - SDValue ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); - SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShX, ShY); - - // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, - // and that is undefined. We must compare and select to avoid UB. - EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShVT); - - // For fshl, 0-shift returns the 1st arg (X). - // For fshr, 0-shift returns the 2nd arg (Y). - SDValue IsZeroShift = DAG.getSetCC(DL, CCVT, ShAmt, Zero, ISD::SETEQ); - Result = DAG.getSelect(DL, VT, IsZeroShift, IsFSHL ? X : Y, Or); - return true; -} - -// TODO: Merge with expandFunnelShift. -bool TargetLowering::expandROT(SDNode *Node, SDValue &Result, - SelectionDAG &DAG) const { - EVT VT = Node->getValueType(0); - unsigned EltSizeInBits = VT.getScalarSizeInBits(); - bool IsLeft = Node->getOpcode() == ISD::ROTL; - SDValue Op0 = Node->getOperand(0); - SDValue Op1 = Node->getOperand(1); - SDLoc DL(SDValue(Node, 0)); - - EVT ShVT = Op1.getValueType(); - SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); - - // If a rotate in the other direction is legal, use it. - unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; - if (isOperationLegal(RevRot, VT)) { - SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1); - Result = DAG.getNode(RevRot, DL, VT, Op0, Sub); - return true; - } - - if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || - !isOperationLegalOrCustom(ISD::SRL, VT) || - !isOperationLegalOrCustom(ISD::SUB, VT) || - !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || - !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) - return false; - - // Otherwise, - // (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1))) - // (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1))) - // - assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 && - "Expecting the type bitwidth to be a power of 2"); - unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; - unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; - SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); - SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1); - SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); - SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); - Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0), - DAG.getNode(HsOpc, DL, VT, Op0, And1)); - return true; -} - -bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, - SelectionDAG &DAG) const { - SDValue Src = Node->getOperand(0); - EVT SrcVT = Src.getValueType(); - EVT DstVT = Node->getValueType(0); - SDLoc dl(SDValue(Node, 0)); - - // FIXME: Only f32 to i64 conversions are supported. - if (SrcVT != MVT::f32 || DstVT != MVT::i64) - return false; - - // Expand f32 -> i64 conversion - // This algorithm comes from compiler-rt's implementation of fixsfdi: - // https://github.com/llvm-mirror/compiler-rt/blob/master/lib/builtins/fixsfdi.c - unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); - EVT IntVT = SrcVT.changeTypeToInteger(); - EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); - - SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); - SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); - SDValue Bias = DAG.getConstant(127, dl, IntVT); - SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); - SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); - SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); - - SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); - - SDValue ExponentBits = DAG.getNode( - ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), - DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); - SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); - - SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, - DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), - DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); - Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); - - SDValue R = DAG.getNode(ISD::OR, dl, IntVT, - DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), - DAG.getConstant(0x00800000, dl, IntVT)); - - R = DAG.getZExtOrTrunc(R, dl, DstVT); - - R = DAG.getSelectCC( - dl, Exponent, ExponentLoBit, - DAG.getNode(ISD::SHL, dl, DstVT, R, - DAG.getZExtOrTrunc( - DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), - dl, IntShVT)), - DAG.getNode(ISD::SRL, dl, DstVT, R, - DAG.getZExtOrTrunc( - DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), - dl, IntShVT)), - ISD::SETGT); - - SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, - DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); - - Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), - DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); - return true; -} - -bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, - SelectionDAG &DAG) const { - SDLoc dl(SDValue(Node, 0)); - SDValue Src = Node->getOperand(0); - - EVT SrcVT = Src.getValueType(); - EVT DstVT = Node->getValueType(0); - EVT SetCCVT = - getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); - - // Only expand vector types if we have the appropriate vector bit operations. - if (DstVT.isVector() && (!isOperationLegalOrCustom(ISD::FP_TO_SINT, DstVT) || - !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) - return false; - - // If the maximum float value is smaller then the signed integer range, - // the destination signmask can't be represented by the float, so we can - // just use FP_TO_SINT directly. - const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); - APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits())); - APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); - if (APFloat::opOverflow & - APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { - Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); - return true; - } - - SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); - SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); - - bool Strict = shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); - if (Strict) { - // Expand based on maximum range of FP_TO_SINT, if the value exceeds the - // signmask then offset (the result of which should be fully representable). - // Sel = Src < 0x8000000000000000 - // Val = select Sel, Src, Src - 0x8000000000000000 - // Ofs = select Sel, 0, 0x8000000000000000 - // Result = fp_to_sint(Val) ^ Ofs - - // TODO: Should any fast-math-flags be set for the FSUB? - SDValue Val = DAG.getSelect(dl, SrcVT, Sel, Src, - DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); - SDValue Ofs = DAG.getSelect(dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT), - DAG.getConstant(SignMask, dl, DstVT)); - Result = DAG.getNode(ISD::XOR, dl, DstVT, - DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val), Ofs); - } else { - // Expand based on maximum range of FP_TO_SINT: - // True = fp_to_sint(Src) - // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) - // Result = select (Src < 0x8000000000000000), True, False - - SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); - // TODO: Should any fast-math-flags be set for the FSUB? - SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, - DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); - False = DAG.getNode(ISD::XOR, dl, DstVT, False, - DAG.getConstant(SignMask, dl, DstVT)); - Result = DAG.getSelect(dl, DstVT, Sel, True, False); - } - return true; -} - -bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, - SelectionDAG &DAG) const { - SDValue Src = Node->getOperand(0); - EVT SrcVT = Src.getValueType(); - EVT DstVT = Node->getValueType(0); - - if (SrcVT.getScalarType() != MVT::i64) - return false; - - SDLoc dl(SDValue(Node, 0)); - EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); - - if (DstVT.getScalarType() == MVT::f32) { - // Only expand vector types if we have the appropriate vector bit - // operations. - if (SrcVT.isVector() && - (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || - !isOperationLegalOrCustom(ISD::FADD, DstVT) || - !isOperationLegalOrCustom(ISD::SINT_TO_FP, SrcVT) || - !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || - !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) - return false; - - // For unsigned conversions, convert them to signed conversions using the - // algorithm from the x86_64 __floatundidf in compiler_rt. - SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Src); - - SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT); - SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Src, ShiftConst); - SDValue AndConst = DAG.getConstant(1, dl, SrcVT); - SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Src, AndConst); - SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr); - - SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Or); - SDValue Slow = DAG.getNode(ISD::FADD, dl, DstVT, SignCvt, SignCvt); - - // TODO: This really should be implemented using a branch rather than a - // select. We happen to get lucky and machinesink does the right - // thing most of the time. This would be a good candidate for a - // pseudo-op, or, even better, for whole-function isel. - EVT SetCCVT = - getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); - - SDValue SignBitTest = DAG.getSetCC( - dl, SetCCVT, Src, DAG.getConstant(0, dl, SrcVT), ISD::SETLT); - Result = DAG.getSelect(dl, DstVT, SignBitTest, Slow, Fast); - return true; - } - - if (DstVT.getScalarType() == MVT::f64) { - // Only expand vector types if we have the appropriate vector bit - // operations. - if (SrcVT.isVector() && - (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || - !isOperationLegalOrCustom(ISD::FADD, DstVT) || - !isOperationLegalOrCustom(ISD::FSUB, DstVT) || - !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || - !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) - return false; - - // Implementation of unsigned i64 to f64 following the algorithm in - // __floatundidf in compiler_rt. This implementation has the advantage - // of performing rounding correctly, both in the default rounding mode - // and in all alternate rounding modes. - SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); - SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( - BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); - SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); - SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); - SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); - - SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); - SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); - SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); - SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); - SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); - SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); - SDValue HiSub = DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); - Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); - return true; - } - - return false; -} - -SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, - SelectionDAG &DAG) const { - SDLoc dl(Node); - unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? - ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; - EVT VT = Node->getValueType(0); - if (isOperationLegalOrCustom(NewOp, VT)) { - SDValue Quiet0 = Node->getOperand(0); - SDValue Quiet1 = Node->getOperand(1); - - if (!Node->getFlags().hasNoNaNs()) { - // Insert canonicalizes if it's possible we need to quiet to get correct - // sNaN behavior. - if (!DAG.isKnownNeverSNaN(Quiet0)) { - Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, - Node->getFlags()); - } - if (!DAG.isKnownNeverSNaN(Quiet1)) { - Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, - Node->getFlags()); - } - } - - return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); - } - - return SDValue(); -} - -bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result, - SelectionDAG &DAG) const { - SDLoc dl(Node); - EVT VT = Node->getValueType(0); - EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); - SDValue Op = Node->getOperand(0); - unsigned Len = VT.getScalarSizeInBits(); - assert(VT.isInteger() && "CTPOP not implemented for this type."); - - // TODO: Add support for irregular type lengths. - if (!(Len <= 128 && Len % 8 == 0)) - return false; - - // Only expand vector types if we have the appropriate vector bit operations. - if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) || - !isOperationLegalOrCustom(ISD::SUB, VT) || - !isOperationLegalOrCustom(ISD::SRL, VT) || - (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) || - !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) - return false; - - // This is the "best" algorithm from - // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel - SDValue Mask55 = - DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); - SDValue Mask33 = - DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); - SDValue Mask0F = - DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); - SDValue Mask01 = - DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); - - // v = v - ((v >> 1) & 0x55555555...) - Op = DAG.getNode(ISD::SUB, dl, VT, Op, - DAG.getNode(ISD::AND, dl, VT, - DAG.getNode(ISD::SRL, dl, VT, Op, - DAG.getConstant(1, dl, ShVT)), - Mask55)); - // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) - Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), - DAG.getNode(ISD::AND, dl, VT, - DAG.getNode(ISD::SRL, dl, VT, Op, - DAG.getConstant(2, dl, ShVT)), - Mask33)); - // v = (v + (v >> 4)) & 0x0F0F0F0F... - Op = DAG.getNode(ISD::AND, dl, VT, - DAG.getNode(ISD::ADD, dl, VT, Op, - DAG.getNode(ISD::SRL, dl, VT, Op, - DAG.getConstant(4, dl, ShVT))), - Mask0F); - // v = (v * 0x01010101...) >> (Len - 8) - if (Len > 8) - Op = - DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), - DAG.getConstant(Len - 8, dl, ShVT)); - - Result = Op; - return true; -} - -bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result, - SelectionDAG &DAG) const { - SDLoc dl(Node); - EVT VT = Node->getValueType(0); - EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); - SDValue Op = Node->getOperand(0); - unsigned NumBitsPerElt = VT.getScalarSizeInBits(); - - // If the non-ZERO_UNDEF version is supported we can use that instead. - if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && - isOperationLegalOrCustom(ISD::CTLZ, VT)) { - Result = DAG.getNode(ISD::CTLZ, dl, VT, Op); - return true; - } - - // If the ZERO_UNDEF version is supported use that and handle the zero case. - if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { - EVT SetCCVT = - getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); - SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); - SDValue Zero = DAG.getConstant(0, dl, VT); - SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); - Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, - DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); - return true; - } - - // Only expand vector types if we have the appropriate vector bit operations. - if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || - !isOperationLegalOrCustom(ISD::CTPOP, VT) || - !isOperationLegalOrCustom(ISD::SRL, VT) || - !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) - return false; - - // for now, we do this: - // x = x | (x >> 1); - // x = x | (x >> 2); - // ... - // x = x | (x >>16); - // x = x | (x >>32); // for 64-bit input - // return popcount(~x); - // - // Ref: "Hacker's Delight" by Henry Warren - for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) { - SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); - Op = DAG.getNode(ISD::OR, dl, VT, Op, - DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); - } - Op = DAG.getNOT(dl, Op, VT); - Result = DAG.getNode(ISD::CTPOP, dl, VT, Op); - return true; -} - -bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result, - SelectionDAG &DAG) const { - SDLoc dl(Node); - EVT VT = Node->getValueType(0); - SDValue Op = Node->getOperand(0); - unsigned NumBitsPerElt = VT.getScalarSizeInBits(); - - // If the non-ZERO_UNDEF version is supported we can use that instead. - if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && - isOperationLegalOrCustom(ISD::CTTZ, VT)) { - Result = DAG.getNode(ISD::CTTZ, dl, VT, Op); - return true; - } - - // If the ZERO_UNDEF version is supported use that and handle the zero case. - if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { - EVT SetCCVT = - getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); - SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); - SDValue Zero = DAG.getConstant(0, dl, VT); - SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); - Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, - DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); - return true; - } - - // Only expand vector types if we have the appropriate vector bit operations. - if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || - (!isOperationLegalOrCustom(ISD::CTPOP, VT) && - !isOperationLegalOrCustom(ISD::CTLZ, VT)) || - !isOperationLegalOrCustom(ISD::SUB, VT) || - !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || - !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) - return false; - - // for now, we use: { return popcount(~x & (x - 1)); } - // unless the target has ctlz but not ctpop, in which case we use: - // { return 32 - nlz(~x & (x-1)); } - // Ref: "Hacker's Delight" by Henry Warren - SDValue Tmp = DAG.getNode( - ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), - DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); - - // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. - if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { - Result = - DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), - DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); - return true; - } - - Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp); - return true; -} - -bool TargetLowering::expandABS(SDNode *N, SDValue &Result, - SelectionDAG &DAG) const { - SDLoc dl(N); - EVT VT = N->getValueType(0); - EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); - SDValue Op = N->getOperand(0); - - // Only expand vector types if we have the appropriate vector operations. - if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) || - !isOperationLegalOrCustom(ISD::ADD, VT) || - !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) - return false; - - SDValue Shift = - DAG.getNode(ISD::SRA, dl, VT, Op, - DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); - SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift); - Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift); - return true; -} - -SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, - SelectionDAG &DAG) const { - SDLoc SL(LD); - SDValue Chain = LD->getChain(); - SDValue BasePTR = LD->getBasePtr(); - EVT SrcVT = LD->getMemoryVT(); - ISD::LoadExtType ExtType = LD->getExtensionType(); - - unsigned NumElem = SrcVT.getVectorNumElements(); - - EVT SrcEltVT = SrcVT.getScalarType(); - EVT DstEltVT = LD->getValueType(0).getScalarType(); - - unsigned Stride = SrcEltVT.getSizeInBits() / 8; - assert(SrcEltVT.isByteSized()); - - SmallVector<SDValue, 8> Vals; - SmallVector<SDValue, 8> LoadChains; - - for (unsigned Idx = 0; Idx < NumElem; ++Idx) { - SDValue ScalarLoad = - DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, - LD->getPointerInfo().getWithOffset(Idx * Stride), - SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride), - LD->getMemOperand()->getFlags(), LD->getAAInfo()); - - BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride); - - Vals.push_back(ScalarLoad.getValue(0)); - LoadChains.push_back(ScalarLoad.getValue(1)); - } - - SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); - SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals); - - return DAG.getMergeValues({ Value, NewChain }, SL); -} - -SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, - SelectionDAG &DAG) const { - SDLoc SL(ST); - - SDValue Chain = ST->getChain(); - SDValue BasePtr = ST->getBasePtr(); - SDValue Value = ST->getValue(); - EVT StVT = ST->getMemoryVT(); - - // The type of the data we want to save - EVT RegVT = Value.getValueType(); - EVT RegSclVT = RegVT.getScalarType(); - - // The type of data as saved in memory. - EVT MemSclVT = StVT.getScalarType(); - - EVT IdxVT = getVectorIdxTy(DAG.getDataLayout()); - unsigned NumElem = StVT.getVectorNumElements(); - - // A vector must always be stored in memory as-is, i.e. without any padding - // between the elements, since various code depend on it, e.g. in the - // handling of a bitcast of a vector type to int, which may be done with a - // vector store followed by an integer load. A vector that does not have - // elements that are byte-sized must therefore be stored as an integer - // built out of the extracted vector elements. - if (!MemSclVT.isByteSized()) { - unsigned NumBits = StVT.getSizeInBits(); - EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); - - SDValue CurrVal = DAG.getConstant(0, SL, IntVT); - - for (unsigned Idx = 0; Idx < NumElem; ++Idx) { - SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, - DAG.getConstant(Idx, SL, IdxVT)); - SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); - SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); - unsigned ShiftIntoIdx = - (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); - SDValue ShiftAmount = - DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); - SDValue ShiftedElt = - DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); - CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); - } - - return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), - ST->getAlignment(), ST->getMemOperand()->getFlags(), - ST->getAAInfo()); - } - - // Store Stride in bytes - unsigned Stride = MemSclVT.getSizeInBits() / 8; - assert (Stride && "Zero stride!"); - // Extract each of the elements from the original vector and save them into - // memory individually. - SmallVector<SDValue, 8> Stores; - for (unsigned Idx = 0; Idx < NumElem; ++Idx) { - SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, - DAG.getConstant(Idx, SL, IdxVT)); - - SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride); - - // This scalar TruncStore may be illegal, but we legalize it later. - SDValue Store = DAG.getTruncStore( - Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), - MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride), - ST->getMemOperand()->getFlags(), ST->getAAInfo()); - - Stores.push_back(Store); - } - - return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); -} - -std::pair<SDValue, SDValue> -TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { - assert(LD->getAddressingMode() == ISD::UNINDEXED && - "unaligned indexed loads not implemented!"); - SDValue Chain = LD->getChain(); - SDValue Ptr = LD->getBasePtr(); - EVT VT = LD->getValueType(0); - EVT LoadedVT = LD->getMemoryVT(); - SDLoc dl(LD); - auto &MF = DAG.getMachineFunction(); - - if (VT.isFloatingPoint() || VT.isVector()) { - EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); - if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { - if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && - LoadedVT.isVector()) { - // Scalarize the load and let the individual components be handled. - SDValue Scalarized = scalarizeVectorLoad(LD, DAG); - if (Scalarized->getOpcode() == ISD::MERGE_VALUES) - return std::make_pair(Scalarized.getOperand(0), Scalarized.getOperand(1)); - return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1)); - } - - // Expand to a (misaligned) integer load of the same size, - // then bitconvert to floating point or vector. - SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, - LD->getMemOperand()); - SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); - if (LoadedVT != VT) - Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : - ISD::ANY_EXTEND, dl, VT, Result); - - return std::make_pair(Result, newLoad.getValue(1)); - } - - // Copy the value to a (aligned) stack slot using (unaligned) integer - // loads and stores, then do a (aligned) load from the stack slot. - MVT RegVT = getRegisterType(*DAG.getContext(), intVT); - unsigned LoadedBytes = LoadedVT.getStoreSize(); - unsigned RegBytes = RegVT.getSizeInBits() / 8; - unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; - - // Make sure the stack slot is also aligned for the register type. - SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); - auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); - SmallVector<SDValue, 8> Stores; - SDValue StackPtr = StackBase; - unsigned Offset = 0; - - EVT PtrVT = Ptr.getValueType(); - EVT StackPtrVT = StackPtr.getValueType(); - - SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); - SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); - - // Do all but one copies using the full register width. - for (unsigned i = 1; i < NumRegs; i++) { - // Load one integer register's worth from the original location. - SDValue Load = DAG.getLoad( - RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), - MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(), - LD->getAAInfo()); - // Follow the load with a store to the stack slot. Remember the store. - Stores.push_back(DAG.getStore( - Load.getValue(1), dl, Load, StackPtr, - MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); - // Increment the pointers. - Offset += RegBytes; - - Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); - StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); - } - - // The last copy may be partial. Do an extending load. - EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), - 8 * (LoadedBytes - Offset)); - SDValue Load = - DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, - LD->getPointerInfo().getWithOffset(Offset), MemVT, - MinAlign(LD->getAlignment(), Offset), - LD->getMemOperand()->getFlags(), LD->getAAInfo()); - // Follow the load with a store to the stack slot. Remember the store. - // On big-endian machines this requires a truncating store to ensure - // that the bits end up in the right place. - Stores.push_back(DAG.getTruncStore( - Load.getValue(1), dl, Load, StackPtr, - MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); - - // The order of the stores doesn't matter - say it with a TokenFactor. - SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); - - // Finally, perform the original load only redirected to the stack slot. - Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, - MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), - LoadedVT); - - // Callers expect a MERGE_VALUES node. - return std::make_pair(Load, TF); - } - - assert(LoadedVT.isInteger() && !LoadedVT.isVector() && - "Unaligned load of unsupported type."); - - // Compute the new VT that is half the size of the old one. This is an - // integer MVT. - unsigned NumBits = LoadedVT.getSizeInBits(); - EVT NewLoadedVT; - NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); - NumBits >>= 1; - - unsigned Alignment = LD->getAlignment(); - unsigned IncrementSize = NumBits / 8; - ISD::LoadExtType HiExtType = LD->getExtensionType(); - - // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. - if (HiExtType == ISD::NON_EXTLOAD) - HiExtType = ISD::ZEXTLOAD; - - // Load the value in two parts - SDValue Lo, Hi; - if (DAG.getDataLayout().isLittleEndian()) { - Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), - NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), - LD->getAAInfo()); - - Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); - Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, - LD->getPointerInfo().getWithOffset(IncrementSize), - NewLoadedVT, MinAlign(Alignment, IncrementSize), - LD->getMemOperand()->getFlags(), LD->getAAInfo()); - } else { - Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), - NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), - LD->getAAInfo()); - - Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); - Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, - LD->getPointerInfo().getWithOffset(IncrementSize), - NewLoadedVT, MinAlign(Alignment, IncrementSize), - LD->getMemOperand()->getFlags(), LD->getAAInfo()); - } - - // aggregate the two parts - SDValue ShiftAmount = - DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), - DAG.getDataLayout())); - SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); - Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); - - SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), - Hi.getValue(1)); - - return std::make_pair(Result, TF); -} - -SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, - SelectionDAG &DAG) const { - assert(ST->getAddressingMode() == ISD::UNINDEXED && - "unaligned indexed stores not implemented!"); - SDValue Chain = ST->getChain(); - SDValue Ptr = ST->getBasePtr(); - SDValue Val = ST->getValue(); - EVT VT = Val.getValueType(); - int Alignment = ST->getAlignment(); - auto &MF = DAG.getMachineFunction(); - EVT MemVT = ST->getMemoryVT(); - - SDLoc dl(ST); - if (MemVT.isFloatingPoint() || MemVT.isVector()) { - EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); - if (isTypeLegal(intVT)) { - if (!isOperationLegalOrCustom(ISD::STORE, intVT) && - MemVT.isVector()) { - // Scalarize the store and let the individual components be handled. - SDValue Result = scalarizeVectorStore(ST, DAG); - - return Result; - } - // Expand to a bitconvert of the value to the integer type of the - // same size, then a (misaligned) int store. - // FIXME: Does not handle truncating floating point stores! - SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); - Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), - Alignment, ST->getMemOperand()->getFlags()); - return Result; - } - // Do a (aligned) store to a stack slot, then copy from the stack slot - // to the final destination using (unaligned) integer loads and stores. - EVT StoredVT = ST->getMemoryVT(); - MVT RegVT = - getRegisterType(*DAG.getContext(), - EVT::getIntegerVT(*DAG.getContext(), - StoredVT.getSizeInBits())); - EVT PtrVT = Ptr.getValueType(); - unsigned StoredBytes = StoredVT.getStoreSize(); - unsigned RegBytes = RegVT.getSizeInBits() / 8; - unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; - - // Make sure the stack slot is also aligned for the register type. - SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT); - auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); - - // Perform the original store, only redirected to the stack slot. - SDValue Store = DAG.getTruncStore( - Chain, dl, Val, StackPtr, - MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoredVT); - - EVT StackPtrVT = StackPtr.getValueType(); - - SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); - SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); - SmallVector<SDValue, 8> Stores; - unsigned Offset = 0; - - // Do all but one copies using the full register width. - for (unsigned i = 1; i < NumRegs; i++) { - // Load one integer register's worth from the stack slot. - SDValue Load = DAG.getLoad( - RegVT, dl, Store, StackPtr, - MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); - // Store it to the final location. Remember the store. - Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, - ST->getPointerInfo().getWithOffset(Offset), - MinAlign(ST->getAlignment(), Offset), - ST->getMemOperand()->getFlags())); - // Increment the pointers. - Offset += RegBytes; - StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); - Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); - } - - // The last store may be partial. Do a truncating store. On big-endian - // machines this requires an extending load from the stack slot to ensure - // that the bits are in the right place. - EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), - 8 * (StoredBytes - Offset)); - - // Load from the stack slot. - SDValue Load = DAG.getExtLoad( - ISD::EXTLOAD, dl, RegVT, Store, StackPtr, - MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT); - - Stores.push_back( - DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, - ST->getPointerInfo().getWithOffset(Offset), MemVT, - MinAlign(ST->getAlignment(), Offset), - ST->getMemOperand()->getFlags(), ST->getAAInfo())); - // The order of the stores doesn't matter - say it with a TokenFactor. - SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); - return Result; - } - - assert(ST->getMemoryVT().isInteger() && - !ST->getMemoryVT().isVector() && - "Unaligned store of unknown type."); - // Get the half-size VT - EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext()); - int NumBits = NewStoredVT.getSizeInBits(); - int IncrementSize = NumBits / 8; - - // Divide the stored value in two parts. - SDValue ShiftAmount = - DAG.getConstant(NumBits, dl, getShiftAmountTy(Val.getValueType(), - DAG.getDataLayout())); - SDValue Lo = Val; - SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); - - // Store the two parts - SDValue Store1, Store2; - Store1 = DAG.getTruncStore(Chain, dl, - DAG.getDataLayout().isLittleEndian() ? Lo : Hi, - Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, - ST->getMemOperand()->getFlags()); - - Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); - Alignment = MinAlign(Alignment, IncrementSize); - Store2 = DAG.getTruncStore( - Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, - ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, - ST->getMemOperand()->getFlags(), ST->getAAInfo()); - - SDValue Result = - DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); - return Result; -} - -SDValue -TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, - const SDLoc &DL, EVT DataVT, - SelectionDAG &DAG, - bool IsCompressedMemory) const { - SDValue Increment; - EVT AddrVT = Addr.getValueType(); - EVT MaskVT = Mask.getValueType(); - assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() && - "Incompatible types of Data and Mask"); - if (IsCompressedMemory) { - // Incrementing the pointer according to number of '1's in the mask. - EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); - SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); - if (MaskIntVT.getSizeInBits() < 32) { - MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); - MaskIntVT = MVT::i32; - } - - // Count '1's with POPCNT. - Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); - Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); - // Scale is an element size in bytes. - SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, - AddrVT); - Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); - } else - Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); - - return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); -} - -static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, - SDValue Idx, - EVT VecVT, - const SDLoc &dl) { - if (isa<ConstantSDNode>(Idx)) - return Idx; - - EVT IdxVT = Idx.getValueType(); - unsigned NElts = VecVT.getVectorNumElements(); - if (isPowerOf2_32(NElts)) { - APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), - Log2_32(NElts)); - return DAG.getNode(ISD::AND, dl, IdxVT, Idx, - DAG.getConstant(Imm, dl, IdxVT)); - } - - return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, - DAG.getConstant(NElts - 1, dl, IdxVT)); -} - -SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, - SDValue VecPtr, EVT VecVT, - SDValue Index) const { - SDLoc dl(Index); - // Make sure the index type is big enough to compute in. - Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); - - EVT EltVT = VecVT.getVectorElementType(); - - // Calculate the element offset and add it to the pointer. - unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size. - assert(EltSize * 8 == EltVT.getSizeInBits() && - "Converting bits to bytes lost precision"); - - Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl); - - EVT IdxVT = Index.getValueType(); - - Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, - DAG.getConstant(EltSize, dl, IdxVT)); - return DAG.getNode(ISD::ADD, dl, IdxVT, VecPtr, Index); -} - -//===----------------------------------------------------------------------===// -// Implementation of Emulated TLS Model -//===----------------------------------------------------------------------===// - -SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, - SelectionDAG &DAG) const { - // Access to address of TLS varialbe xyz is lowered to a function call: - // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) - EVT PtrVT = getPointerTy(DAG.getDataLayout()); - PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); - SDLoc dl(GA); - - ArgListTy Args; - ArgListEntry Entry; - std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); - Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); - StringRef EmuTlsVarName(NameString); - GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); - assert(EmuTlsVar && "Cannot find EmuTlsVar "); - Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); - Entry.Ty = VoidPtrType; - Args.push_back(Entry); - - SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); - - TargetLowering::CallLoweringInfo CLI(DAG); - CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); - CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); - std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); - - // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. - // At last for X86 targets, maybe good for other targets too? - MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); - MFI.setAdjustsStack(true); // Is this only for X86 target? - MFI.setHasCalls(true); - - assert((GA->getOffset() == 0) && - "Emulated TLS must have zero offset in GlobalAddressSDNode"); - return CallResult.first; -} - -SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, - SelectionDAG &DAG) const { - assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); - if (!isCtlzFast()) - return SDValue(); - ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); - SDLoc dl(Op); - if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { - if (C->isNullValue() && CC == ISD::SETEQ) { - EVT VT = Op.getOperand(0).getValueType(); - SDValue Zext = Op.getOperand(0); - if (VT.bitsLT(MVT::i32)) { - VT = MVT::i32; - Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); - } - unsigned Log2b = Log2_32(VT.getSizeInBits()); - SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); - SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, - DAG.getConstant(Log2b, dl, MVT::i32)); - return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); - } - } - return SDValue(); -} - -SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { - unsigned Opcode = Node->getOpcode(); - SDValue LHS = Node->getOperand(0); - SDValue RHS = Node->getOperand(1); - EVT VT = LHS.getValueType(); - SDLoc dl(Node); - - // usub.sat(a, b) -> umax(a, b) - b - if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) { - SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); - return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); - } - - if (VT.isVector()) { - // TODO: Consider not scalarizing here. - return SDValue(); - } - - unsigned OverflowOp; - switch (Opcode) { - case ISD::SADDSAT: - OverflowOp = ISD::SADDO; - break; - case ISD::UADDSAT: - OverflowOp = ISD::UADDO; - break; - case ISD::SSUBSAT: - OverflowOp = ISD::SSUBO; - break; - case ISD::USUBSAT: - OverflowOp = ISD::USUBO; - break; - default: - llvm_unreachable("Expected method to receive signed or unsigned saturation " - "addition or subtraction node."); - } - - assert(LHS.getValueType().isScalarInteger() && - "Expected operands to be integers. Vector of int arguments should " - "already be unrolled."); - assert(RHS.getValueType().isScalarInteger() && - "Expected operands to be integers. Vector of int arguments should " - "already be unrolled."); - assert(LHS.getValueType() == RHS.getValueType() && - "Expected both operands to be the same type"); - - unsigned BitWidth = LHS.getValueSizeInBits(); - EVT ResultType = LHS.getValueType(); - EVT BoolVT = - getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ResultType); - SDValue Result = - DAG.getNode(OverflowOp, dl, DAG.getVTList(ResultType, BoolVT), LHS, RHS); - SDValue SumDiff = Result.getValue(0); - SDValue Overflow = Result.getValue(1); - SDValue Zero = DAG.getConstant(0, dl, ResultType); - - if (Opcode == ISD::UADDSAT) { - // Just need to check overflow for SatMax. - APInt MaxVal = APInt::getMaxValue(BitWidth); - SDValue SatMax = DAG.getConstant(MaxVal, dl, ResultType); - return DAG.getSelect(dl, ResultType, Overflow, SatMax, SumDiff); - } else if (Opcode == ISD::USUBSAT) { - // Just need to check overflow for SatMin. - APInt MinVal = APInt::getMinValue(BitWidth); - SDValue SatMin = DAG.getConstant(MinVal, dl, ResultType); - return DAG.getSelect(dl, ResultType, Overflow, SatMin, SumDiff); - } else { - // SatMax -> Overflow && SumDiff < 0 - // SatMin -> Overflow && SumDiff >= 0 - APInt MinVal = APInt::getSignedMinValue(BitWidth); - APInt MaxVal = APInt::getSignedMaxValue(BitWidth); - SDValue SatMin = DAG.getConstant(MinVal, dl, ResultType); - SDValue SatMax = DAG.getConstant(MaxVal, dl, ResultType); - SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT); - Result = DAG.getSelect(dl, ResultType, SumNeg, SatMax, SatMin); - return DAG.getSelect(dl, ResultType, Overflow, Result, SumDiff); - } -} - -SDValue -TargetLowering::getExpandedFixedPointMultiplication(SDNode *Node, - SelectionDAG &DAG) const { - assert(Node->getOpcode() == ISD::SMULFIX && "Expected opcode to be SMULFIX."); - assert(Node->getNumOperands() == 3 && - "Expected signed fixed point multiplication to have 3 operands."); - - SDLoc dl(Node); - SDValue LHS = Node->getOperand(0); - SDValue RHS = Node->getOperand(1); - assert(LHS.getValueType().isScalarInteger() && - "Expected operands to be integers. Vector of int arguments should " - "already be unrolled."); - assert(RHS.getValueType().isScalarInteger() && - "Expected operands to be integers. Vector of int arguments should " - "already be unrolled."); - assert(LHS.getValueType() == RHS.getValueType() && - "Expected both operands to be the same type"); - - unsigned Scale = Node->getConstantOperandVal(2); - EVT VT = LHS.getValueType(); - assert(Scale < VT.getScalarSizeInBits() && - "Expected scale to be less than the number of bits."); - - if (!Scale) - return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); - - // Get the upper and lower bits of the result. - SDValue Lo, Hi; - if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) { - SDValue Result = - DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), LHS, RHS); - Lo = Result.getValue(0); - Hi = Result.getValue(1); - } else if (isOperationLegalOrCustom(ISD::MULHS, VT)) { - Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); - Hi = DAG.getNode(ISD::MULHS, dl, VT, LHS, RHS); - } else { - report_fatal_error("Unable to expand signed fixed point multiplication."); - } - - // The result will need to be shifted right by the scale since both operands - // are scaled. The result is given to us in 2 halves, so we only want part of - // both in the result. - EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); - Lo = DAG.getNode(ISD::SRL, dl, VT, Lo, DAG.getConstant(Scale, dl, ShiftTy)); - Hi = DAG.getNode( - ISD::SHL, dl, VT, Hi, - DAG.getConstant(VT.getScalarSizeInBits() - Scale, dl, ShiftTy)); - return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); -} |
